Chapter 3

Theory

This chapter mainly deals with the methods on measuring microwave properties
of microwave device. First, the scattering parameters (S-parameters) will be discussed
to extract the unloaded quality factor (Q,) of resonator from the measurements taken
by network analyzer [121]. It is well known that the loaded quality factor (Q)) can be
estimated by simply taking the ratio of the central frequency to the 3 dB bandwidth of
the transmission response of a resonator,.and the unloaded quality factor can be
calculated by simply taking the ihsertiontloss‘measured at resonance into account. In
particular, for a two-port meastrement both symmetrical and asymmetrical coupling
are considered. Throughout the discussion; eriterions of how the accuracy of unloaded
quality factor measurements could be obtained are given. In addition, some theoretical
models which consider the transport properties of quasiparticles on the microwave
measurement in d-wave superconductors with disorders, especially for Lee’s model

[80], Vishveshwara and Fisher’s model [84], will be discussed.

3.1 S Parameter

The two-port resonator measured by a microwave vector network analyzer can
be described in terms of scattering parameters by converting the ABCD matrix for the

two-port circuit. There are the voltages and currents of the two-port network, in which
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the input and output are designated as 1 and 2, respectively. These relations can be

represented as follows [122],

Vi = AV, + Bl v,\] [A Bl [V,
or = . (3.1)
I, = CV, + DI, ) [C DJ (L]

For frequencies higher than 30 MHz, the measurement of voltages and currents
for the circuit is difficult, because of parasitic effects on the circuits: the induced
inductance of a short circuit and the induced capacitance of an open circuit. The
parasitic effects can give rise to the measurement illegibility. Therefore, the
above-mentioned methods are not suitable for measuring two-port circuit in high
frequencies, and then the scattering parameters (S-parameters) are used to describe the
relations between the incident and reflected waves in the system.

For a two-port network, the phasor, quantities V", V', I and I are
represented as the forward and:reverse voltage and current waves on the resonator,

respectively. The characteristic impedance of'the network is assumed to be Zy. Then,

we define
a= \72_ =1"./z,, (3.2)
and

out
b -1 7, (3.3)

VZ,

where a and b are the incident and reflected waves, respectively. So, the incident and

reflected waves are related by the following equations,
b, =S§,a,+5,a, or (b1J={S11 812:|.(a1]’ (3.4)
b,=S,a,+5,a, b, Sy Syl

where the set of S;; are called the scattering parameters (S-parameters) and defined as
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S = b = Port 1 Reflection Coefficient, (3.5)
& dy = 0

b

Sy, = 2 = Port 2 Reflection Coefficient, (3.6)
Bla =0
b . .

Sy = -2 = Forward Transmission Coefficient, (3.7)
a a = 0

Spp = LE = Reverse Transmission Coefficient, (3.8)
@la =0

respectively. Moreover, the insertion loss L, can be obtained as

b .
L, =20log—= =20 logﬁ with the measurement of S,,.
a, 21

3.2 Losses of Microstrip Device

3.2.1 Conductor Loss

The Maxwell’s equations in an isotropic and homogeneous medium can be

written as
WH:J#Q, (3.9)
ot
WE:—@, (3.10)
ot
V-B=0, (3.11)
V-E=p, (3.12)

where the magnetic flux density is related to the magnetic filed strength B = uH
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and the displacement current is related to the electric field by D =¢E in the linear
response.

As an electromagnetic (EM) wave propagates in an infinite conductor, the wave
equation for the electric and magnetic field can be derived from the Maxwell’s

equations as
2= 2 LN =
VE+wsu(l- j—)E =0, (3.13)
we
and
G o . O
V'H+wo su(l- j—)H =0, (3.14)
we

where €, (£, and o are the dielectric constant, permeability and conductivity of the
conductor, respectively. Both Eq. (3.13) and Eq. (3.14) can be simplified as:
V’E-y’E =0, (3.15)
and
V?H - y*H =0. (3.16)

We then define a complex propagation constant for the medium as

. . O .
y = jorfsu I=j—=a+ip (3.17)

Assuming an electric field of the electromagnetic wave with only an X
component and uniform in x and y, and considering the boundary condition of the
tangent electric field between the vacuum and an infinite conductor, the relation of the

electric field can be taken as

E(2)=E,(0)e

= E (0)e*e 7, 19

where E4(0) is the electric field at boundary. It represents a wave traveling in the +z

direction with a phase constant, 3, and the attenuation constant, o, and indicates an
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exponential damping of the amplitude while it travels along the conductor.
Furthermore, when considering the time harmonic variation in the system, then the

electric wave becomes
E (z,t)=E (0,t) e *%el“F1), (3.19)
where B is the wave number of the propagating wave. By using Faraday’s law

- oH
VXxE=—-pu—o , 3.20
yz Y (3.20)

the associated magnetic field can be calculated as

_ 1ok _

“Ire 3.21)

H =
ou 02 wu

y

This result shows that the magnetic field intensity vector lies in a plane normal to the
direction of propagation, and that magneétic field is perpendicular to electric field. So,

we can define the impedance as

zzgz x _dOH, (3.22)

If a good conductor has conductive current much greater than the displacement

current, that is,  >> e, then the propagation constant can be reduced as
y=a+ijp

. . 3.23
= joylau |—— =1+ ), L. 329
Jwe 2

The characteristic depth of penetration, or the skin depth 0, is defined as,

Sy =1/a= 2z (3.24)
OUC

Another meaning of the skin depth is that the surface current flows uniformly just
below the surface within the depth. That is

J(1)=cE,e“=J] e, (3.25)
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and it can be simplified as

J ()=, for 0<z<o,,
(3.26)
=0 for z> ..
The surface current is
3, =[3.(2)dz=[ o Eedz
_9E o (3.27)
=ocE, =J,0,.
Moreover, the surface impedance, Zs, of a good conductor can be obtained as
ZS = RS + jXS
. |ou 1 (3.28)
=1+ D|—=0+ ) —,
1+ 1), = ( 1)055

where Ry and X are the surface resistance and téactance, respectively.

3.2.2 Dielectric Loss

When the dielectric substrate interacts with an applied electric field, the
dielectric material becomes polarized due to the displacements of bound charges in it.
In fact, the inertia of the charged particles tends to counteract the opposite
displacement and keep in phase with the field variations. Therefore, there is always a
power loss in this condition, since work must be done to overcome the damping

mechanism.

For a dielectric material, an applied electric field E causes the polarization of
the neutral atoms or molecules of the material to generate electric dipole moments
that argue the total displacement flux, D . This additional polarization vector is called

the electric polarization P,, and one has
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D=¢E+P. (3.29)
For a linear medium, the electric polarization vector is linear response with respect to

the applied electric field as

P, =¢,x.E, (3.30)

where ¥ is known as the electric susceptibility, which may be complex. Then, one has
D=¢gE+P, =¢,(1+ z,)E = ¢, (3.31)
and,
e=¢g-je"=¢,(1+ y,), (3.32)
where ¢ is the complex permittivity of the medium. The imaginary part of € is
accounted for the loss in the medium due to damping of the vibrating dipole moments.
This dielectric loss may be considéred as an equivalent loss of a conductor. For
example, in a material with conductivity, 6, current density follows the Ohm’s law:
J =ot. (3.33)
Maxwell’s curl equation for H then becomes
VxH=joD+J
= jweE + o
= joe'E + (we"+0)E (3.34)
= jo(e'-je"-}7E,
where it seems that loss due to dielectric damping @e¢"is indistinguishable from
conductivity loss o. The term we"+c could be considered as the total effective
conductivity. A related quantity of interest is the loss tangent of dielectric, given by

tans = 2512 (3.35)

1

&

It is the ratio between the real and the imaginary part of the total displacement current.

If the loss tangent is not low enough, then the advantage of using a superconductor
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can be negated. By the way, the dielectric materials are usually characterized by

specifying the real permittivity, &'= €,&,, and by the loss tangent at a certain frequency.

The dielectric loss can easily be introduced by replacing the real € with a complex

=g — je =& (1- jtano). (3.36)

3.2.3 Radiation Loss

Because the microstrip resonator is not fully enclosed, then it will radiate. It is
important to investigate this radiation and consider whether it has any effect upon the
loss mechanism. For example, the radiation loss from an open aperture can be equally,
or more, important in contrast to_other doss mechanisms. For the ultimate in
performance of cavity resonator.the radiation from the structure (or the absorption of
energy due to the proximity of the box (sample housing) wall) must be considered and
optimized. The radiation can be‘reduced by reducing the substrate thickness [123].
Box resonances must be kept well away from the resonance of interest, so as not to
have any modal coupling. The box must also be made as large as possible in order to
reduce wall losses. These two criteria may not be compatible and careful design is

needed in order to minimize radiation loss.

3.3 Quality Factor (Q) of Resonator

3.3.1 Measured Quantities

If a certain amount of energy is stored in a resonator and left therein to dissipate,

it would do so only after many circles of oscillation. The decay of the amplitude of
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the oscillations is a measure of the quality factor (Q) of the resonator. In other words,
the measurements of the quality factor of the resonator are to extract the loss
information about the resonator. It may be used to designate a guidepost for
determining the parameters of the resonator for various application purposes. So,
various types are involved in the Q-value in order to extract the microwave properties
of the samples. Specifically, the unloaded quality factor Q is of basic interest.

A resonator is able to sustain an oscillating electromagnetic field within it. In
general, it has a number of distinct resonance frequencies or degenerate fundamental
mode dependent upon the geometry of the resonator. The resonant electromagnetic
field will gradually decay because of losses. These losses including the
above-mentioned are mainly due to

(1) the finite conductivity of the resonator,
(i1))  the loss tangent,of the dielectric,
(ii1))  radiation loss:
The main reason for using high-T. superconductors in the construction of a
resonator is due to possess a function of reducing the conductor loss to a possible
minimum. The decay (or loss) of the oscillating field can be expressed to be inversely
proportional to the quality factor of the resonator. Quality factor, Q, is thus turned out
an important quantitative parameter for clarifying a high quality resonator. The Q
-factor for a resonator is then defined as
27 times the ratio of the time-averaged energy
stored in the resonator to the energy loss per
cycle.

That is,

Q=2x Energy Stored —w Energy Stored

=, , (3.37)
Energy Loss per Cycle Average Power Lost
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where @, is the resonance frequency.

By the law of conservation of energy, the power dissipated in ohmic losses is the
negative of the time rate of change of store energy U:

oy (3.38)
it Q

The solution of Eq. (3.38) is

U)=Ue“"°. (3.39)
For a resonator with finite Q, it decays away exponentially with a constant inversely
proportional to Q. This implies that the resonator has a time-dependent field which is
damping as

E(t) = E,e !/ *Cg o), (3.40)
The damping has a part of shift 8@ to the;dominant resonance frequency @,. Thus

the field can be expressed in @ space as

E(a)e 'do, (3.41)

E0=—— |

where

E(w) = T2 gllome gy (3.42)

1
o jo E.e
The integral in Eq. (3.42) leads to a frequency distribution for the energy in the cavity
resonator, resulting in a resonant line shape:

1
—w, -6 )% +(w,/2Q)*

2_ 1 o
Bl =5 &l (3.43)

The shape of the resonance peak is Lorentzian, which has a maximum at the
frequency, wo+om, and has two frequencies at half-maximum with a frequency

difference dw. The difference can be calculated as
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S =22
Q (3.44)
a)O
or Q = %

Eq. (3.44) gives the loaded Q factor extracted from the field response. In practice, the
resonance frequency oo was defined by the peak position on the curve of E*(wp) ,
while the Q-factor of the resonator was derived from the full bandwidth at
half-maximum. Consequently, the maximum of the response in this system can be
easily obtained from the definition of Q-factor. However, it is noted that the error of
determining Q from the above equations will become significant for a low Q
resonator, since the actual resonance frequency is ®yt+dw instead of ®y, and dw is

quite pronounce for a poorly designed resonator.
3.3.2 Series Resonant Circuit

Microwave resonators made by highsT, superconducting thin films can be used
in a variety of applications, including oscillators, filters, tuned amplifiers, and
frequency meters. Since the operation of microwave resonators is very similar to that
of the lumped-element resonators of the circuit theory, we begin by modeling a series
RLC lumped-element resonant circuit, and so we can derive some of the basic
properties of such circuits. For a series RLC circuit, as shown in Fig. 3.1(a) [121], the

input impedance is
. .1
Z, =R+ joL—-J—:, (3.45)
@C
and the power dissipated by the resistor R is

Poss = |1 R. (3.46)
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The energy stored in the capacitor C and the inductor L are expressed as

Iy, o 1,2 1
W, =— =—|l|"——, 3.47
c 4 [\/C | 4 | | COZC ( )
12
W, =—|I]'L, (3.48)
4
respectively.
Then the complex power delivered to the resonator can be written as
Py =2 Zy 1= 1P R oL~ )
2 2 @C (3.49)

=Py +2jo(W —W,).
Resonance occurs when the average stored magnetic and electric energies are

equal, Wz =W, , which implies that the resonance frequency can be defined as

(3.50)

and the input impedance at resonance is Zi, = R. The Q factor is a measure of the

loss of the resonant circuit and is be expressed as

_ (average energy stored)

=,
Q 0 (energy loss / second)
We +W 211PL
=0, =0, 4|2| (3.51)
F)|OSS %|I| R
oL 1
R oRC’

which shows that Q increases with R decrease.
As the input impedance of the resonant circuit is near its resonance frequency,

one lets @ = w, + dw, where dw is small. The input impedance can then be rewritten

as
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Z,=R+ joL+ jL
oC

:R+j£(w2u:—1) 52
: LC(a)é +2m,00 + 5&)2)— 1
(a)o + 50))(3

~R+ j2Léw

=R+

This is a good approximation for most practical resonators because the loss is
very small. The effect of loss can then be added to ® to replace wo, and input
impedance becomes a complex form.

Consider a real microstrip resonator of length 7, short circuit at one end, which
has the characteristic impedance Z,, load impedance Z; (= 0), propagation constant 3,

and attenuation constant o.. As the frequency ® = 0o, /=nA/2,A=2n/Bandn=1,

2, 3..., the input impedance of the{ransmission line is

7 _7 Z, +Z tanh
" °Z, +Z tanh y
= Z, tanh ¥ =Z, tanh (a+"]p){ (3.53)
tanh o/ + | tan B¢
°1+ jtanaftan B0

Now let ® = wy+0w, where dw is small, then

ﬂf:%: a)o€+@
\% \'% \'%
P P P (3.54)
_7[+7z5a)
a,

0o
Consequently, the loss tangent becomes

7r5a)) _ tan oW ~ oW _ (3.55)
) ) )

tan g0 = tan(z +

Inserting this result into Eq. (3.53) the impedance can be obtained as
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al + j(méw/w,)

1+ jat mow

@, (3.56)

~ ZOLOM + Jﬂé_a)]
o,

0

~7Z

in o

Comparing with Eq. (3.52), we can then identify the resistance, inductance and

capacitance of the equivalent circuit as

R=Zal (3.57)
L= "o (3.58)
20,
|
C=—, 3.59
ey (3.59)

R (3.60)

3.3.3 Total Losses of Resonator:

The losses in a resonator arise due to conductor loss, dielectric loss and radiation
loss. Then the total loss of the resonator can be expressed as

l;L+L+L, (3.61)
Q Q Q Q

where Q., Qq4, and Q; are the conductor, dielectric, and radiation quality factors,
respectively. Using proper dielectric material with low loss tangent, we can reduce the
dielectric loss significantly. The radiation loss can be decreased by using a housing
well designed. Then the loss for the microstrip line is mainly due to the conductor

loss.
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The conductor quality factor Q, is defined as

Energy Stored in the resonator

Average Power Lost due to ohmic dissipation

I;J\H|2dv (3.62)
— resonator
o [EPdv’

conductor
where o, is the normal conductivity. The term in numerator is integrated throughout
the whole volume of the cavity resonator, and the denominator is integrated over the

conductor volume only. Since E =ZH by definition, the Eq. (3.62) becomes

p”HEw

— resonator

* o, |Z) ﬂwa

conductor (363)
[ulHT dv

— 20)/’1 resonator.

Aoy |ZF JIHT ds.

conductor

The factor of A/2 arises due to the integration of the €éxponentially decaying magnetic
field distribution inside the conductor, and the integration in the denominator is over
the surface of the conductor, now. This is a very good approximation because the
penetration depth is small compared with the radius of curvature of the conductor. The

Eq. (3.63) can also be reduced to

[ulHT dv
a)ﬂ resonator
Q = Hwoaor 1 3.64
R, ﬁHEw R, (364)

conductor

where
[ulHPdv
r= a)y—res°"]f""H s (3.65)

conductor

is the geometry factor of the resonator.
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As the superconductor film was deposited on the surface of a dielectric substrate,
there will be a loss of energy by dissipation in the dielectric material. This dissipation
can be associated with a dielectric quality factor

Energy Stored in the resonator

Q=0

Average Power Lost in dielectric

H|® dv 3.66
_ 1 reso!af:r‘ ‘ ( )
tand  [g|E[ dv

dielectric

The numerator is integrated throughout the whole volume of the resonator, and the
denominator is the integration over |E[* within the volume of the dielectric material.

The loss tangent of the dielectric is given by

tans =29 (3.67)
wu

where G4 is the conductivity of the dielectric. As the dielectric completely fills in the

cavity resonator, the dielectric Qq is then simply

1
tand

Q, (3.68)

If the radiation loss is considered in the resonator, then the radiation quality

factor can be defined as

Q - Energy Stored in the resonator
=

Average Power radiated

JIH T dv (3.69)

resonator

5|§ 1 Re(E H)dv.

sphere

=1Lla)

The average power radiated is given by the integration of the Poynting vector
over the spherical surface surrounding the resonator. If the integration takes place in
free space far away from the resonator, then the radiation quality factor can be

reduced to
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[IH P av

Q, = 2w.\Jus m (3.70)

sphere

We turn the attention to a real application system for the microwave device.
When a resonator is coupled to an external circuit, additional power loss out of the
coupling ports occurs. An external quality factor Q. can be attributed to this. The
combination of the external Q. and the unloaded Q, gives rise to the loaded quality
factor of the cavity resonator Q. It follows that

tr_t.1 (3.71)

QI Qu Qe '

Here Q is the loaded quality factor and Q, is the unloaded quality factor. The Q, is a
characteristic of the resonator itself and is not dependent on the coupling to the cavity
resonator. In fact, the measuremient of ‘Q-factor for the microstrip resonator is no
longer the characteristic of the resonator at all, but also includes the effect of the
ensemble. There are actually three Q ‘factors to-be included. Namely,

Energy Stored in the Resonant Circuit
Power Loss in the Resonant Circuit (3.72)

UnloadedQ :Q, = o

(]

Energy Stored in the Resonant Circuit
Power Loss in the External Circuit (3.73)

External Q: Q, =

0

Energy Stored in the Resonant Circuit
Total Power Loss . (3.74)

LoadedQ: Q, =w

(o]

3.3.4 Two Ports Measurements of Unloaded Quality Factor

In order to extract these values of Q from measurements of the transmission
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coefficients, an equivalent circuit model of a resonator will be considered. The
transmission measurements are usually 2-ports measurements. The measurement
methods are discussed below [121]. The transformers are assumed lossless in the
derivations given below, and in most cases this is an excellent approximation.

For two ports resonator it requires the calculation of four S-parameters, which
are done by converting the ABCD matrix to an S-parameters matrix. The ABCD

matrix for the circuit in Fig. 3.1(b) is given by

A B I/n, Off1 Zfn, O n,/n,  Z/nn,
= = . (3.75)
cC D 0 njJO 1]0 1/n, 0 n/n,

The ABCD matrix can be translated to S-parameter matrix by the standard expression

Sll S12 — 1
S,, S,| Z,A+B+iZiC%Z,D

(3.76)
Z,A#B-Z2;C=Z,D 2Z,(AD -BC)
oZk ~Z,A+B-2C+Z,D|
Using Eq. (3.75) and Eq. (3.76),:0ne gets
(N3 —n))Z,+2
Su(f)=—"F—3 , (3.77)
(n, +n))Z,+7Z
2 A2
Su(f)= (n‘z ni)z‘) +Z, (3.78)
(ny+ny)Z,+Z
2Z,nn
SL(f)=S,,(f)= ¢L2 3.79
12( ) 21( ) (n12+n§)zo+z ( )
The impedance of the series resonance circuit can be written
Z =R[1+ jQ,A,1, (3.80)
where
ol
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-, 3.82

20 C ( )

Af=i—i=f2_f°2z2f_f°=i (3.83)
f, f f,f f, f,

Here we let f = f;. Substitutions for Z into Eq. (3.77), Eq. (3.78), and Eq. (3.79) result

in the values for the S-parameters given by

1+ﬂ2_131+ onAf

Su(h)= 1+ 8+ B, + jQA,

(3.84)

S (f)=1+ﬂ1_ﬂ2+jQ0Af (385)
- 1+ 8+ B, + jQA,’ '

Sp(f)=S5,(f)= 2“ﬂ1ﬂ2. , (3.86)
1+ 6, + 5, + 1Q,A;
where
nZZ 2Z
B = R ¢ and B, = R (3.87)

At the resonance frequency ,, thé.above equations can reduce to

Siu(fy)= 1+ZZ 2 (3.88)
Sy(fy) = ré Z (3.89)
S, (f))=S,(fy) =%. (3.90)
Substituting Eq. (3.90) into Eq. (3.84), Eq. (3.85), and Eq. (3.86), it gives
S, (f)= S“(li))jgleQf'Af : (3.91)
S,(f)= Su(h)+ 194, : (3.92)

1+ jQA,
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Slz(f)=521(f)=:”j%. (3.93)

The magnitude of the forward transmission coefficient S;; can be calculated as

Su(fy)] .94)

| 821( f ) |: .
N +Qr A,

The above curve of [S,(f)| is a conventional Lorentzian curve and can be fitted by
using Lorentzian curve to reduce the noise and increase the experimental accuracy.

The loaded Q at the half-power point can be calculated by

2
1S51(fo) | Y (3.95)
1S5,(F)]
Then the loaded Q is given by
Q- T (3.96)
FAYRIN]

where 6f is the resonance bandwidth at the half-power points.
The external quality factor-was- calculated from Eq. (3.72) and Eq. (3.73). By

considering the power dissipated both"externally in ports and internally in the

resonator:
P _Q
Q, =Q,—L=—=¢, (3.97)
LR B
and
P _Q
Q,, =Q,—L ==, (3.98)
© R, B

thus the loaded quality factor can be calculated from Eq. (3.71) in the asymmetrical

coupling case and be obtained as

__Q
Q = YR (3.99)

In the case of symmetric coupling, both ports are identically connected to the
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resonator, then 3; = 3, = 3. Since the value of 3 can be determined from Eq. (3.90):

__Sy(fy
h= 2[1-S,,(f)1’ (3-100)

Substitution of above equation into Eq. (3.99) one gets

_ QI _ fO
© T8, () A-Su(h) e

It is much simpler if the resonator is symmetrically coupled. If the resonator is weakly

coupled and S,(fy) is small, then Q; = Qq.

3.4 Complex Conductivity

Superconductivity is a condensed state of the-conduction electron of the material.
The condensed state is the formation of loosely associated pairs of electrons traveling
adjacent to the Fermi surface. Due to-the thermal fluctuations, some of the electron
pairs are split, and still some normal electrons-are always present under the transition
temperature of superconductor. It is therefore possible to model the superconductor in
terms of a complex conductivity 6 = o, - jo, with the two fluid model [23]. Following
the two-fluid model the carriers in a superconductor were assumed to consist of both
superconducting and normal carriers. Under the influence of an electromagnetic field,
the normal electrons are driven alternatively by the normal fluid and thus cause the
resistive loss.

Considering the external force acted on an electron pair, the dynamic equation
can be written as

By 0B oor mBYs ZeE, (3.102)
dt dt

m

where vy is the velocity of the electron pair, e* is the effective charge of an electron
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pair, m* is the effective mass of an electron pair and E is the applied electric field.
A similar equation can be written with respect to the normal electrons and

traveling at velocity Vv, :

md<v”>+m<v”>:—eé, (3.103)

where 7, is the relaxation time of the normal electrons and <\7n> is the slowly
varying part of the velocity. This is called Drude model for metals. If the velocities of

the pairing and un-pairing electrons are proportional to el with applied
microwave, where o is the microwave frequency, Eq. (3.102) and Eq. (3.103) can be

represented by

jomv, = —eE, (3.104)

and

(J'wm +mJ<Vn> - N S (3.105)

Ta

respectively. Then, the total current gives

J=J,+7J,
=Ny (_ e)vs +n, (_ e)<<,n>
n,e’r,  [(ne* one’r’ |- (3.100)
= -] + E
m(l+w’z}) om  m(l+o’c))
= ok = (o, - jo, )E,

where n, and ns are the normal and paired electron densities respectively. For

a)zr% << 1 and the real and the imaginary part of the complex conductivity o can

be reduced as

n.er n 1
=0,—/ and o, =

2
m n U0

(3.107)
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where o, = rnezn / m is the conductivity in normal state and A, =M/ g e’n, is
the London penetration depth in the local limit (& << 4,, & is the coherence length).

It is accessible to measure the complex conductivity of a superconductor and this
measured value can be used for elucidating the intrinsic properties of a microwave

device.

Since the surface impedance of a good conductor is Z¢ = (jwu, /O'C)l/ 2,

similarity for a superconductor the surface impedance can be obtained by using the

complex conductivity as Eq. (3.107) instead of o, thus

56 _ [op, | jotumA
S i jO'Z n7no-n:uoa)ﬂ“2 - J
n

12

=2
= jﬂowﬂ{l + jn—”anﬂowf} (3-108)
n
1/2 2293
= ju,w| | - | oo, ok =2 oA N0 i,
2n 2n

R, + JX,,

where Ry and X are the surface resistance and reactance of the superconductor,
respectively. The surface resistance of a superconductor increases more rapidly (¢ ©?)
than that in normal metals in frequency. The surface reactance can be seen that energy
storage in the surface of the superconductor takes place via two mechanisms: kinetic
energy storage and the energy storage due to the penetration of the field. If both R

and X, have been determined by measurements, it is often useful to determine o,
and o, from their values. Equation (3.108) can be rearranged to give

o

o, —-jo, =
1o X +2R2X2 +R!

(2R, X, — (X2 ~R2)). (3.109)

From Eq. (3.109), the real part ; and imaginary part o, of the complex conductivity
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G = 0] - Jo, can be found as [121]

RSXS
XZ-R?
o,(T)=pyo—>= > (3.111)

(RS + X"

If required, this can be simplified further using R, << X,.
Based on two-fluid model, the o, relates to the quasiparticle’s relaxation time to

be

n,(Me’  z(T)

o,(T)= ,
(1) m 1+ c*(T)

(3.112)

where t(T) is the relaxation time of the quasiparticles. The paired electron (superfluid)

resulting in the imaginary part of the complex’conductivity is

o, =TeDe Y _Hd (3.113)
Mo JINOYS
From Eq. (3.112) and Eq. (3.113).we can get
o, (M) _n, (M)
. (T) = . (T) f(wr), (3.114)
_ot(T)
f(a)r)——1+w22_2(_|_). (3.115)

Note that f(wt) is only a function of @t and it has the following properties [55].

1. An linear slope, f(wt) = ot for the condition of wt << 1,

2. abroad peak centered at mt = 1 with maximum value of 1/2, and

3. f(ot) = /ot for ot >> 1.
Moreover, a small value of f(wt) is usually occurring for temperature near T, and the
value is increasing with respect to temperature decreasing. According the Eq. (3.114),

the o1(T)/ox(T) remains finite values while n,(T)/n(T) is going to zero at zero
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temperature. Therefore the [o1(T)/c2(T)])/[nn(T)/ng(T)] diverges at zero temperature.
This question was a long-standing problem and was already studied in detail in
conventional superconductors [119]. If the divergence of [o1(T)/c2(T)])/[n.(T)/ny(T)]
could be attributed to a residual normal electron density fraction X, which depends

on the defects in the sample, then the temperature-dependence of ratio of the normal

electrons to the pairing electrons is

n,(T) _ 1 L
n(T) (1=X,)A(5K)/ 2 (T))

(3.116)

From the measurements of 1(T) and o5(T), X, can be determined from Eq. (3.114)
if f(wr) is known.
Using Eq. (3.114), Eq. (3.115) with Eq. (3.116) one can calculate the scattering

rater”' as

12261—@ (3.117)
r

1-+1-4a°%

where

a= (D)o, (M) . (3.118)
/(1= %) (2 (5K)/ 2 (T) -1

Here we have used the generalized two-fluid model to analyze the real and imaginary
part of the conductivity obtained from surface resistance and penetration depth. It

turns out that the generalized, f(wt), can be used to extract the temperature

dependence of scattering rate 77'.

3.5 Penetration Depth

To understand the electrodynamics of HTS one must first know the London
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penetration depth, which is the length scale to reveal the properties within which the
supercurrent screens out external fields from the surface into the superconductor. In

the local limit, the London penetration depth is given by

2
4= [HDE (3.119)

*

m

where Ly, ng and m* are permeability of vacuum, superfluid density and effective
mass, respectively. Herein a rich information about the ratio between the superfluid
density and the effective mass of paired electrons, ng/m* can be obtained. However, it
could not account for the behavior of the penetration depth of the Sn and Pb due to the
non-local effect resulted from the fact that the penetration depth A is shorter than
coherence length & in the superconducting state. When the dimension of & is smaller
than A, the London’s model can be:applied to the system.

We consider a microstrip lineresonator, which was successfully fabricated using
double-sided YBCO or Ca-YBCO films;deposited on LaAlO; (LAO) substrates.
Assuming that the magnetic field 15 z€ro just at outside resonator and neglecting the
edge effects, the magnetic field can be calculated in the following way.

The field solution of the superconducting microstrip line structure must satisfy
Maxwell’s equations and the London equation. We assume that the superconducting
currents flow in the z-direction in the strip line so that vector potential A has only

the z-component A,. For a wide superconducting strip line it is reasonable that the
normal magnetic field B, vanishes along the dielectric-superconductor boundary. So

to a good approximation, the normal magnetic field along the boundary may be

assumed to be zero (assuming no vortex),

B, A o, (3.120)
ot
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where t indicates tangential direction. Integrating Eq. (3.120) in tangential direction,
we find that A, is constant along the dielectric-superconductor boundary. The
relationship of vector potential A, satisfies with the Laplace equation in the dielectric
region. Thus the magnetic field distribution for A, in the dielectric region can be
solved in term of the Laplace equation with the boundary conditions

A, =1 at the strip-line surface,

A, =0 at the ground-plane surface. (3.121)
The two constants can be chosen arbitrarily, but are chosen to be 0 and 1 for
convenience. For the thin strip over a ground plane, the boundary conditions are

By(b) = By = ol /W and By(0) = 0, where | is the total current, w and b are the

width and thickness of the strip, respectively. Then one can obtain

(151 /w) sinh(y/4)/sinh(b/2). (3.122)

Bx(y)

The total storage energy per unit length includes the magnetic field energy and

the kinetic energy, which can be’expressed m-terms of inductance as

2 2 2
L2' =L£ZB +Lk2' jdv (3.123)
m |

From the right hand side of the Eq. (3.123), the first term presents the storage energy
due to the magnetic field and the second term is the kinetic energy of the supercurrent
flowing in the superconductor. When the supercurrent in the London local limit, then

we have

)
JS:j{nse JE, (3.124)

om’

where E is the electric field. Comparing with the inductance of an effective circuit, it

shows
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Y
jo |

1 E-¢ 1 ¢
jo J-A jo Ac

(3.125)

where A and ¢ are the cross-section area and the length of the transmission line,
respectively, and o is the conductivity. Then the kinetic inductance of the

superconductor is

*

m ¢
2
e A

L, = ST (3.126)

ng

2
, since 2= m*/ Lo Ng €" . In turn, the kinetic energy of the supercurrent per unit

volume is

I2I—k (‘]s i A)2 :uoﬂ’zz - /uo/?’z‘]s2

Vo 2(A-r) SA 2

(3.127)

Inserting above equation into Eq. (3.123), the total energy can be expressed as

2 2 o
L2 B et j2 g, (3.128)
244 TR

0

The integration of the volume is performed including three parts:
(i) the upper strip with thickness b,,
(ii) the ground plane with thickness b, ,
(iii) the intervening space with thickness h.

Combining the Eq. (3.122) with J =V x (I§/ y7a ), one can obtain

1 cosh(y/4)
Js,(y) = o sinh(b/2) (3.129)

Therefore, the storage energy of the upper strip per unit length is
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1o (212 sinh*(y/4) |, 1% cosh’(y/4)
24, L( w?  sinh?(b, /zl)w o Aw? sinh*(b, / 4,) “

§|2/Wz (. )
B 2yo/:inh2(b1 /zl)jo (sinh?(y/4, )+ cosh*(y/4, )w-dy (3.130)

_ % 2, coth(b, /4,)

Similarly, the storage energy of the ground plane per unit length is

212 inp2 2 2
1 I ﬂo; smh2 (y/2) v 2R I2 : cosh2 (y/2y) s,
24 *S2( w* sinh*(y/4,) p°w* sinh” (b, /4;)
(3.131)
= tol” 25 coth(by /4y)
2w 2 22

Finally, we assume that the magnetic field is uniform in the intervening dielectric, and

then the stored magnetic energy per unit length is obtained as

272 242

1 151 L. ch 451

2 .[s ( " Jd%:_ W - dy
Ho "3\ W

(3.132)
_ ”0_|2 h
2w
In combination with Eq. (3.130), Eq. (3.131), Eq. (3.132) and Eq. (3.128), the total

inductance of the microstrip transmission line is given by

L = %h@ + % coth(by /4;) + % coth(bz/ﬂz)j. (3.133)

It is evident that the inductance of microstrip line resonator is expressed by the
function of the penetration depths [124]. Furthermore, the above equation is not
available if the contribution of the fringe field due to the finite dimension of the strip
line (W/h =1 in our microstrip line resonator) takes into account. A detailed formula
was derived by Chang [125-127], who considered the inductance of a finite-width of
the superconducting microstrip line. The result is given by Eq. (3.134). The first term

in the equation represents the contribution due to the external magnetic field, the
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second and the third terms are the contributions from the strip line, and the fourth

term is the contribution from the ground plane.

M
L= WK (WD) {th+ A,[coth(b, /4, )+ gesch(b, /4, )] + 4, coth(b, /2, )},  (3.134)

where the fringing field factor K is

K = Ez|n(2ﬁ], (3.135)
Wz o\ I
and
12
g=2P" (3.136)
rb
D 1/2
b = tbo — (oo — ibo — P)I'* + (p + 1)“”‘”{%
0
(3.137)
ho +— 1/2 W W
—2p1/2 tanh_l[bo—pj +—p1/2, for5 > — >1,
p(rbo = 1) 2h h
o=n+ pglln(A), (3.138)
/
p:252—1+[(2ﬁ2—1)2—1]'2, (3.139)
A = larger value, 7 or p (3.140)
aw o p+1 4 Zif o
n= pl/z{ﬁ+m|:l+ln(ﬁjj|_2tanh l(p 1/2)}’ (3.141)
/2
p:2ﬂ2—1+[(2ﬁ2—1)z—1] , (3.142)
B :1+%, (3.143)
o p+1 1 ~-12 p-—1

Inr, =-1-2"—P7 " tanh —In| 2|, 3.144
0ty 72h p1/2 a (p ) n( 4p J ( )

and the effective capacitance per unit length is
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CZE{FMK@mmql (3.145)

where ¢, is the dielectric constant of the intervening material.

Since the resonance frequency, fo(T), is proportional to the inverse square root of
the product of inductance and capacitance, and the inductance is function of
penetration depth, one thus can extract A(T) from the measurement of fy(T). If the
dielectric constant ¢, is insensitive to the temperature dependence, then the change of
the capacitance with respect to the temperature should be much smaller than that of
the inductance. So, the variation of the resonance frequency is mainly due to the

change of the inductance, and one can obtain the relation

f,(T)  [L(a(T,
f.(T,) | L)) (3.146)

Substituting Eq. (3.134) into Eq.(3.146), we have

b

f, (T ) _ \/ h+ ﬂ(To )[COth(bl /Z(To )) + gCSCh(bl /ﬂ(To ))] + Z(To )COth(bz //1(1-0 ))
f.(T,) h + A(T )[coth(b, / A(T))+ gesehib, ZA(T))]+ A(T )coth(b, /A(T))

(3.147)
where Ty is an arbitrary temperature (taken as 5 K here) and g is the conductor
asymmetry factor. So, the relation of the penetration depth and temperature can be
estimated by the Eq. (3.147) in the microstrip line resonators. For the ring resonator,
we will also use the above equation as a sound approximation since the mean radius
of the ring is much greater than the width of the strip. When the penetration depth is
known, the other microwave properties, such as surface impedance, can be extracted

immediately.

As mentioned previously, from the unloaded quality factor Q, and the resonance
frequency f(T), the surface resistance Rs and reactance Xs consisting of surface
impedance Zs(T)=Rs(T)+iXs(T) are calculated with the aid of the formula:
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R(T)=T/Q,(T), (3.148)

Xs(T)-Xs(To)=-2I[f(T)-f(To)/f(T), (3.149)
where I' is the geometry factor of the resonator and Ty is the lowest temperature in the
experiment (To = 5K). Actually, I depends [121] on the penetration depth A and
geometry parameters ( such as the microstrip line width W, substrate thickness h,
and thin film thickness b) of the superconducting resonator if b/A is not much larger
than 1. The value of " can be calculated by the method of incremental frequency rules
[128-130] via

I=po0*/4{-Aw/AL} ", (3.150)
where Aw/AA is the derivative of the angular resonance frequency (w=2nf) with
respect to the penetration depth A(T). Using Chang’s formula for the inductance and
capacitance of a superconducting strip line the angular resonance frequency is given
by:

o (T)=(c/e;"*L) {1+3(T)/d[2coth(b/A(T))+gcsch(b/A(T) ] 2, (3.151)
where ¢, is the dielectric constant of'the substrate, d is the effective substrate thickness,
L is the length of the strip line, g is the conductor asymmetry factor, and c is the
velocity of the light in vacuum. By substituting Aw/AA obtained from Eq. (3.151) into
Eq. (3.150), I" can be derived as

I'=(1/2)pood { 1+A/d[2coth(b/A)+g/sinh(b/L)]}/

{coth(b/L)+(b/L)/sinh*(b/A)+g[ 1+(t/A)coth(b/A)]/[2sinh(b/A)]}, (3.152)
where g is the conductor asymmetry factor accounting for the fringe field effect as the
aspect ratio wW/d of the stripline near or less than 1. On the other hand, we have the
relation between the surface reactance Xs(T) and the penetration depth A(T), i.e.,

Xs(T)=powt(T). (3.153)

Here we have used Chang’s inductive formula and the generalized two-fluid

model to analyze the magnetic penetration, from which the surface resistance and
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reactance can be obtained. It turns out that the real and imaginary part of the

conductivity can be extracted by use of Eq. (3.110) and Eq. (3.111).

3.6 Some Models in Disordered d-wave Superconductors

(Lee’s model, Vishveshwara and Fisher’s model)

From theoretical viewpoint, a number of theories on the oxide d-wave
superconductors give strong indications that the effect of disorder playing an essential
role in these materials, especially for Lee’s model [80], Vishveshwara and Fisher’s
model [84] that we will utilize these two models to analyze our experimental results.
In Lee’s model, impurity scatters in the unitary limit produce low energy
quasiparticles in a two-dimensionalyd-wave superconductor. They argued that if the
impurity concentration is small so that the wave functions in the normal state are
essentially extended, the quasipatticles in the superconducting state becomes strongly
localized for a short coherence length d-wave superconductor. An effective mobility
gap then leads to thermally activated behavior for the microwave conductivity and

possibly for the London penetration depth. Their model also stressed that the
quasiparticles are localized in a localization length & with energy E <y, , where

7, 1s the impurity band. And these quasiparticles have caused the universal

2
¢ i,where & = Ve
h a A,

conductance o, = is the coherence length and a is lattice

constant. It should be noted that in this case o, is independent of scattering rate

/7.

In Lee’s model, two models of disorder were considered. In model 1, he

assumed a § correlated random potential U (F) such that <U(F)U(0) >=u 5(F). In
the normal state, the Born approximation leads to an isotropic scattering rate
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™' =27p,u;, where p, is the density of states. In model II, he assumed a dilute

density n, of strong scatterers, each with phase shift J,. For simplicity, he

specialized to the unitary limit 6, = 7/2, in which case the normal state scattering

rate is 7' =T =n. /zp,. Note that in contrast to the Born approximation 7' is
i/ 7P, pp

inversely proportional to p,. In both models, he assumed that &7 >>1, so that the

normal state is a good metal.

In particular, we consider Lee’s model with model II, in which the low-lying

quasiparticles are localized. The self energy is given by

Y(iw,)=Tg,(@,)/[c’ - gi(o,)], (3.154)
where T'=n,/7zp,, c=cotd,, and.@j(@)=(m0,)"' M xZ,G(K,»,). G is the
Green function near each zero of d-wave-energy.gap, A, = A (cosk,a—cosk a). If
we focus around the point IZO on the Fermiysurface in the (1,1) direction, it lets us
introduce a coordinate system parallel (kAl) and perpendicular (122) to the Fermi
surface at k,. One obtains & =Vek, and A, =vk, where Kk =(k, —ky)/\/z,

k, =(k, + ky)/\/z—‘lzo ,and Vv, = \/EAoasin(kOXa). Then, G is given by

Gk,m,)=(—i@d, +V K, /(@] +V K} +ViK}). (3.155)
In the unitary case, we have 0, =x/2 or ¢=0. The solution of Eq. (3.154) in the
limit @ — 0 yields an estimate for y, =iX(@w — 0) to be

7o = (Cakev, /12)2 2 Ay(Ay) "7, (3.156)

where we have ignored a small logarithmic correction of order In(A,/I'). For
unitary scatterers, the scattering rate y'(w) of a quasipartilce with energy @ is
estimated tobe y(w)=TA,/w for y, <w<A,.

85



The localization length &, was then be estimated for unitary scatterers. The
conclusion that the dimensionless conductance g~V /v, =& /a~e /A is not
changed and is of order unity for the oxide superconductors. The mean free path, i.e.,
the distance scale at which diffusion begins, is now given by V. /y, and we estimate

the localization length to be
£~ (Ve [AB) exples 1A,), (3.157)

which is reasonably short for a short coherence length superconductor even in the
clean limit A,z ~100.

To ascertain the physical significance of the localization length we estimate the
typical energy level spacing between states within a localization length, i.e.,
AW = (p&l)~". Using Eq. (3.157) we find

AW =y (A, / ¢ )eXp(=2&il D) - (3.158)
For the oxide superconductors, A,/é&r =1 and we:find that AW is a reasonable
fraction of y,. The significance oft AW -is that for T <AW the localized states
begin to decouple and conductivity becomes activated.

The microwave conductivity can be calculated via the formula,

Glzvész+(lz)G_(|Z) , where G, =(& *i/2r)”"' , for normal metals or

superconductors. For a d-wave superconductor, the density of states is linear in

energy N(¢&) < ¢, so that crudely we expect Zk—> Idgf. The extra factor of &

changes the power counting so that o, is independent of 7. After being careful

calculations performed by Lee, the microwave conductivity at T -0 and o — 0

2
20

7h a

was obtained as o, = when considering the low-lying quasiparticles are

e’ o
2 at T—>0 and w—0
7h a

localized in model II. In fact, this result of o, =

was also hold in model T .

86



From the above discussion, we have known that the presence of localization of
impurity-induced low-energy quasiparticle states in a two dimensional d-wave
superconductor is shown for a small amount of disorder in the limit of unitary
scatterers. Recently, the role of imperfections in d-wave superconductors has also
been considered by Hirschfeld et al. [131], Durst and Lee [81], Vishveshwara and
Fisher [84], Balatsky and Salkola [85], and subsequently by others [132, 133]. In
particular, Vishveshwara and Fisher theoretically explored the quasiparticle transport
properties which are greatly influenced by the disordered state in the samples. They
started from that qausiparticle excitations about the superconducting ground state are
well described within the framework of the Bogoliubov-de Gennes (BdG)
Hamiltonian for a spin-singlet paired superconductor. To repeat the example offered
of the dirty d-wave superconductor, they “.consider a system of impure
superconducting sheets with d-wave pairing coupled to one another. For low
interplane coupling strength or highimpurity, concentration, they found that the
qausiparticle states to be localized,and upon-increasing the coupling or lowing the
disorder, they found that the quasiparticle states are of accessible a critical point
beyond which these states become extended. A detail calculation and numerical
analysis was reference to Ref. [84]. In a word, they conclude that the low-energy
quasiparticles can either be delocalized and free to move through the sample as an
extended state, or can be localized by the disorder. These two possibilities correspond
to two distinct superconducting phases —the thermal metal with delocalized
quasiparticle excitations and the thermal insulator with localized quasiparticles- and

the critical point between them.
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Fig. 3.1. (a) A series RLC circuit. (b) Equivalent circuit of a cavity
resonator for two-port measurements.
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