
 

Chapter 3 

Theory  

This chapter mainly deals with the methods on measuring microwave properties 

of microwave device. First, the scattering parameters (S-parameters) will be discussed 

to extract the unloaded quality factor (Qu) of resonator from the measurements taken 

by network analyzer [121]. It is well known that the loaded quality factor (Ql) can be 

estimated by simply taking the ratio of the central frequency to the 3 dB bandwidth of 

the transmission response of a resonator, and the unloaded quality factor can be 

calculated by simply taking the insertion loss measured at resonance into account. In 

particular, for a two-port measurement both symmetrical and asymmetrical coupling 

are considered. Throughout the discussion, criterions of how the accuracy of unloaded 

quality factor measurements could be obtained are given. In addition, some theoretical 

models which consider the transport properties of quasiparticles on the microwave 

measurement in d-wave superconductors with disorders, especially for Lee’s model 

[80], Vishveshwara and Fisher’s model [84], will be discussed.  

 

3.1 S Parameter 

 

The two-port resonator measured by a microwave vector network analyzer can 

be described in terms of scattering parameters by converting the ABCD matrix for the 

two-port circuit. There are the voltages and currents of the two-port network, in which 
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the input and output are designated as 1 and 2, respectively. These relations can be 

represented as follows [122],  
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 For frequencies higher than 30 MHz, the measurement of voltages and currents 

for the circuit is difficult, because of parasitic effects on the circuits: the induced 

inductance of a short circuit and the induced capacitance of an open circuit. The 

parasitic effects can give rise to the measurement illegibility. Therefore, the 

above-mentioned methods are not suitable for measuring two-port circuit in high 

frequencies, and then the scattering parameters (S-parameters) are used to describe the 

relations between the incident and reflected waves in the system. 

 For a two-port network, the phasor quantities Vin, Vout in out, I , and I  are 

represented as the forward and reverse voltage and current waves on the resonator, 

respectively. The characteristic impedance of the network is assumed to be Z0. Then, 

we define  
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where a and b are the incident and reflected waves, respectively. So, the incident and 

reflected waves are related by the following equations, 
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where the set of Sij are called the scattering parameters (S-parameters) and defined as 
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respectively. Moreover, the insertion loss  can be obtained as IL
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3.2 Losses of Microstrip Device 

 
3.2.1 Conductor Loss 

 

 The Maxwell’s equations in an isotropic and homogeneous medium can be 

written as  
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B Hμ=
v v

 where the magnetic flux density is related to the magnetic filed strength 
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D Eε=
v v

and the displacement current is related to the electric field by  in the linear 

response. 

    As an electromagnetic (EM) wave propagates in an infinite conductor, the wave 

equation for the electric and magnetic field can be derived from the Maxwell’s 

equations as 

2 2 (1 ) 0,E j Eσω εμ
ωε

∇ + − =
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and  

2 2 (1 ) 0,H j Hσω εμ
ωε

∇ + − =
r r

                (3.14) 

where ε, μ, and σ are the dielectric constant, permeability and conductivity of the 

conductor, respectively. Both Eq. (3.13) and Eq. (3.14) can be simplified as: 
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We then define a complex propagation constant for the medium as  
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Assuming an electric field of the electromagnetic wave with only an  

component and uniform in x and y, and considering the boundary condition of the 

tangent electric field between the vacuum and an infinite conductor, the relation of the 

electric field can be taken as  
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where Ex(0) is the electric field at boundary. It represents a wave traveling in the +z 

direction with a phase constant, β, and the attenuation constant, α, and indicates an 
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exponential damping of the amplitude while it travels along the conductor. 

Furthermore, when considering the time harmonic variation in the system, then the 

electric wave becomes 
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where β is the wave number of the propagating wave. By using Faraday’s law 
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the associated magnetic field can be calculated as  
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This result shows that the magnetic field intensity vector lies in a plane normal to the 

direction of propagation, and that magnetic field is perpendicular to electric field. So, 

we can define the impedance as 
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If a good conductor has conductive current much greater than the displacement 

current, that is, σ >> ωε, then the propagation constant can be reduced as  
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The characteristic depth of penetration, or the skin depth δ , is defined as,  s

ωμσ
αδ 21 ==s    .           (3.24) 

Another meaning of the skin depth is that the surface current flows uniformly just 

below the surface within the depth. That is  
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and it can be simplified as 
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The surface current is 

. 
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Moreover, the surface impedance, Z , of a good conductor can be obtained as s
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 and X  are the surface resistance and reactance, respectively. where Rs s

 

3.2.2 Dielectric Loss 

 

 When the dielectric substrate interacts with an applied electric field, the 

dielectric material becomes polarized due to the displacements of bound charges in it. 

In fact, the inertia of the charged particles tends to counteract the opposite 

displacement and keep in phase with the field variations. Therefore, there is always a 

power loss in this condition, since work must be done to overcome the damping 

mechanism. 

E
r

For a dielectric material, an applied electric field  causes the polarization of 

the neutral atoms or molecules of the material to generate electric dipole moments 

that argue the total displacement flux, D
v

. This additional polarization vector is called 

the electric polarization eP
v

, and one has 
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For a linear medium, the electric polarization vector is linear response with respect to 

the applied electric field as 
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where χe is known as the electric susceptibility, which may be complex. Then, one has 
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and, 
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where ε is the complex permittivity of the medium. The imaginary part of ε is 

accounted for the loss in the medium due to damping of the vibrating dipole moments. 

This dielectric loss may be considered as an equivalent loss of a conductor. For 

example, in a material with conductivity, σ, current density follows the Ohm’s law: 
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"ωεwhere it seems that loss due to dielectric damping is indistinguishable from 

conductivity loss σ. The term "ωε +σ could be considered as the total effective 

conductivity. A related quantity of interest is the loss tangent of dielectric, given by 

.
'

"tan
ωε

σωεδ +
=                                       (3.35)             

It is the ratio between the real and the imaginary part of the total displacement current. 

If the loss tangent is not low enough, then the advantage of using a superconductor 
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can be negated. By the way, the dielectric materials are usually characterized by 

specifying the real permittivity, 0' εεε r= , and by the loss tangent at a certain frequency. 

The dielectric loss can easily be introduced by replacing the real ε with a complex  

).tan1('"' δεεεε jj −=−=                             (3.36) 

 

3.2.3 Radiation Loss 

 

 Because the microstrip resonator is not fully enclosed, then it will radiate. It is 

important to investigate this radiation and consider whether it has any effect upon the 

loss mechanism. For example, the radiation loss from an open aperture can be equally, 

or more, important in contrast to other loss mechanisms. For the ultimate in 

performance of cavity resonator the radiation from the structure (or the absorption of 

energy due to the proximity of the box (sample housing) wall) must be considered and 

optimized. The radiation can be reduced by reducing the substrate thickness [123]. 

Box resonances must be kept well away from the resonance of interest, so as not to 

have any modal coupling. The box must also be made as large as possible in order to 

reduce wall losses. These two criteria may not be compatible and careful design is 

needed in order to minimize radiation loss. 

 

3.3 Quality Factor (Q) of Resonator 

 
3.3.1 Measured Quantities 

 

 If a certain amount of energy is stored in a resonator and left therein to dissipate, 

it would do so only after many circles of oscillation. The decay of the amplitude of 
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the oscillations is a measure of the quality factor (Q) of the resonator. In other words, 

the measurements of the quality factor of the resonator are to extract the loss 

information about the resonator. It may be used to designate a guidepost for 

determining the parameters of the resonator for various application purposes. So, 

various types are involved in the Q-value in order to extract the microwave properties 

of the samples. Specifically, the unloaded quality factor Q0 is of basic interest. 

A resonator is able to sustain an oscillating electromagnetic field within it. In 

general, it has a number of distinct resonance frequencies or degenerate fundamental 

mode dependent upon the geometry of the resonator. The resonant electromagnetic 

field will gradually decay because of losses. These losses including the 

above-mentioned are mainly due to 

(i) the finite conductivity of the resonator,  

(ii) the loss tangent of the dielectric, 

(iii) radiation loss. 

The main reason for using high-Tc superconductors in the construction of a 

resonator is due to possess a function of reducing the conductor loss to a possible 

minimum. The decay (or loss) of the oscillating field can be expressed to be inversely 

proportional to the quality factor of the resonator. Quality factor, Q, is thus turned out 

an important quantitative parameter for clarifying a high quality resonator. The Q 

-factor for a resonator is then defined as  

2π times the ratio of the time-averaged energy 

stored in the resonator to the energy loss per 

cycle. 

That is,  

,
LostPower  Average

StoredEnergy 
Cycleper  LossEnergy 

StoredEnergy 2 oQ ωπ =≡       (3.37) 
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 is the resonance frequency.  where oω

 By the law of conservation of energy, the power dissipated in ohmic losses is the 

negative of the time rate of change of store energy U:  

.U
Qdt

dU oω
−=                (3.38) 

The solution of Eq. (3.38) is 

               (3.39) .)( / Qt
o

oeUtU ω−=

For a resonator with finite Q, it decays away exponentially with a constant inversely 

proportional to Q. This implies that the resonator has a time-dependent field which is 

damping as 
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The damping has a part of shift δω to the dominant resonance frequency oω . Thus 

the field can be expressed in −ω space as 
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The integral in Eq. (3.42) leads to a frequency distribution for the energy in the cavity 

resonator, resulting in a resonant line shape: 
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The shape of the resonance peak is Lorentzian, which has a maximum at the 

frequency, ω0+δω, and has two frequencies at half-maximum with a frequency 

difference δω. The difference can be calculated as 
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Eq. (3.44) gives the loaded Q factor extracted from the field response. In practice, the 

resonance frequency ω  was defined by the peak position on the curve of E2(ω0 0) , 

while the Q-factor of the resonator was derived from the full bandwidth at 

half-maximum. Consequently, the maximum of the response in this system can be 

easily obtained from the definition of Q-factor. However, it is noted that the error of 

determining Q from the above equations will become significant for a low Q 

resonator, since the actual resonance frequency is ω +δω instead of ω0 0, and δω is 

quite pronounce for a poorly designed resonator. 

 

3.3.2 Series Resonant Circuit 

 

 Microwave resonators made by high-Tc superconducting thin films can be used 

in a variety of applications, including oscillators, filters, tuned amplifiers, and 

frequency meters. Since the operation of microwave resonators is very similar to that 

of the lumped-element resonators of the circuit theory, we begin by modeling a series 

RLC lumped-element resonant circuit, and so we can derive some of the basic 

properties of such circuits. For a series RLC circuit, as shown in Fig. 3.1(a) [121], the 

input impedance is 
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and the power dissipated by the resistor R is 
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The energy stored in the capacitor C and the inductor L are expressed as  
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respectively. 

Then the complex power delivered to the resonator can be written as 
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 Resonance occurs when the average stored magnetic and electric energies are 

equal, , which implies that the resonance frequency can be defined as LC WW =

   
LCo
1

=ω  ,                 (3.50) 

RZin =and the input impedance at resonance is . The Q factor is a measure of the 

loss of the resonant circuit and is be expressed as 
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which shows that Q increases with R decrease. 

As the input impedance of the resonant circuit is near its resonance frequency, 

one lets δωωω += 0 , where δω is small. The input impedance can then be rewritten 

as  
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This is a good approximation for most practical resonators because the loss is 

very small. The effect of loss can then be added to ω to replace ω0, and input 

impedance becomes a complex form. 

Consider a real microstrip resonator of length l , short circuit at one end, which 

has the characteristic impedance Z , load impedance Z0 L(= 0), propagation constant β, 

and attenuation constant α. As the frequency ω = ω 2λn=l, 0 , λ = 2π / β and n = 1, 

2, 3…, the input impedance of the transmission line is 
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Now let ω = ω +δω, where δω is small, then  0
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 Consequently, the loss tangent becomes      
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Inserting this result into Eq. (3.53) the impedance can be obtained as 
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Comparing with Eq. (3.52), we can then identify the resistance, inductance and 

capacitance of the equivalent circuit as 
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respectively. The Q factor of this microstrip resonator can be expressed as 

,
22 α
β

α
πω ===
lR

LQ o    for n = 1.         (3.60) 

 

3.3.3 Total Losses of Resonator 

 

 The losses in a resonator arise due to conductor loss, dielectric loss and radiation 

loss. Then the total loss of the resonator can be expressed as  

,1111

rdc QQQQ
++≅                  (3.61)    

where Qc, Q , and Qd r are the conductor, dielectric, and radiation quality factors, 

respectively. Using proper dielectric material with low loss tangent, we can reduce the 

dielectric loss significantly. The radiation loss can be decreased by using a housing 

well designed. Then the loss for the microstrip line is mainly due to the conductor 

loss.  
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The conductor quality factor Qc is defined as 
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where σ1 is the normal conductivity. The term in numerator is integrated throughout 

the whole volume of the cavity resonator, and the denominator is integrated over the 

conductor volume only. Since  by definition, the Eq. (3.62) becomes ZHE =
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The factor of λ/2 arises due to the integration of the exponentially decaying magnetic 

field distribution inside the conductor, and the integration in the denominator is over 

the surface of the conductor, now. This is a very good approximation because the 

penetration depth is small compared with the radius of curvature of the conductor. The 

Eq. (3.63) can also be reduced to 
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is the geometry factor of the resonator. 
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As the superconductor film was deposited on the surface of a dielectric substrate, 

there will be a loss of energy by dissipation in the dielectric material. This dissipation 

can be associated with a dielectric quality factor  
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The numerator is integrated throughout the whole volume of the resonator, and the 

denominator is the integration over |E|2 within the volume of the dielectric material. 

The loss tangent of the dielectric is given by 
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σδ d=                                                     (3.67) 

where σd is the conductivity of the dielectric. As the dielectric completely fills in the 

cavity resonator, the dielectric Qd is then simply  
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If the radiation loss is considered in the resonator, then the radiation quality 

factor can be defined as 
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The average power radiated is given by the integration of the Poynting vector 

over the spherical surface surrounding the resonator. If the integration takes place in 

free space far away from the resonator, then the radiation quality factor can be 

reduced to 

 67



.
||

||
2

2

2

vdH

dvH
Q

sphere

resonator
r

∫

∫
= μεω                               (3.70) 

We turn the attention to a real application system for the microwave device. 

When a resonator is coupled to an external circuit, additional power loss out of the 

coupling ports occurs. An external quality factor Qe can be attributed to this. The 

combination of the external Qe and the unloaded Qu gives rise to the loaded quality 

factor of the cavity resonator Q . It follows that  l

.111

eul QQQ
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Here Q  is the loaded quality factor and Q  is the unloaded quality factor. The Ql u u is a 

characteristic of the resonator itself and is not dependent on the coupling to the cavity 

resonator. In fact, the measurement of Q-factor for the microstrip resonator is no 

longer the characteristic of the resonator at all, but also includes the effect of the 

ensemble. There are actually three Q factors to be included. Namely, 
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Circuit  External thein Power Loss
Circuit Resonant  thein StoredEnergy   : External oeQQ ω≡     (3.73) 

    
                         

 s Power LosTotal
Circuit Resonant  thein StoredEnergy   : Loaded olQQ ω≡ .    (3.74) 

 

3.3.4 Two Ports Measurements of Unloaded Quality Factor 

 

In order to extract these values of Q from measurements of the transmission 
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coefficients, an equivalent circuit model of a resonator will be considered. The 

transmission measurements are usually 2-ports measurements. The measurement 

methods are discussed below [121]. The transformers are assumed lossless in the 

derivations given below, and in most cases this is an excellent approximation. 

For two ports resonator it requires the calculation of four S-parameters, which 

are done by converting the ABCD matrix to an S-parameters matrix. The ABCD 

matrix for the circuit in Fig. 3.1(b) is given by 
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The ABCD matrix can be translated to S-parameter matrix by the standard expression 
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Using Eq. (3.75) and Eq. (3.76), one gets 
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The impedance of the series resonance circuit can be written 
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where 
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Here we let f ≈ f0. Substitutions for Z into Eq. (3.77), Eq. (3.78), and Eq. (3.79) result 

in the values for the S-parameters given by 
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where 

. and  0
2
2

2
0

2
1

1 R
Zn

R
Zn

== ββ                              (3.87)             

, the above equations can reduce to At the resonance frequency ω0
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Substituting Eq. (3.90) into Eq. (3.84), Eq. (3.85), and Eq. (3.86), it gives 
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The magnitude of the forward transmission coefficient S21 can be calculated as 
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The above curve of |S21(f)| is a conventional Lorentzian curve and can be fitted by 

using Lorentzian curve to reduce the noise and increase the experimental accuracy. 

The loaded Q at the half-power point can be calculated by 
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Then the loaded Q is given by 
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where δf is the resonance bandwidth at the half-power points. 

The external quality factor was calculated from Eq. (3.72) and Eq. (3.73). By 

considering the power dissipated both externally in ports and internally in the 

resonator: 
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thus the loaded quality factor can be calculated from Eq. (3.71) in the asymmetrical 

coupling case and be obtained as  
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In the case of symmetric coupling, both ports are identically connected to the 
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resonator, then β1 = β2 = β. Since the value of β can be determined from Eq. (3.90): 
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Substitution of above equation into Eq. (3.99) one gets 
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It is much simpler if the resonator is symmetrically coupled. If the resonator is weakly 

coupled and S21(f0) is small, then Q  ≈ Q .  l 0

 

3.4 Complex Conductivity  

 

Superconductivity is a condensed state of the conduction electron of the material. 

The condensed state is the formation of loosely associated pairs of electrons traveling 

adjacent to the Fermi surface. Due to the thermal fluctuations, some of the electron 

pairs are split, and still some normal electrons are always present under the transition 

temperature of superconductor. It is therefore possible to model the superconductor in 

terms of a complex conductivity σ = σ1 - jσ2 with the two fluid model [23]. Following 

the two-fluid model the carriers in a superconductor were assumed to consist of both 

superconducting and normal carriers. Under the influence of an electromagnetic field, 

the normal electrons are driven alternatively by the normal fluid and thus cause the 

resistive loss.  

Considering the external force acted on an electron pair, the dynamic equation 

can be written as 

,
dt
vdor    
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vd ss EemEem

rrrr

== ∗∗                    (3.102) 

 is the velocity of the electron pair, e* is the effective charge of an electron where vs
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E
v

 is the applied electric field. pair, m* is the effective mass of an electron pair and 

A similar equation can be written with respect to the normal electrons and 

traveling at velocity : nvr

,
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dt

d
m

n

nn
rrr

−=+
τ

            (3.103) 

nvrwhere  is the relaxation time of the normal electrons and nτ  is the slowly 

varying part of the velocity. This is called Drude model for metals. If the velocities of 

the pairing and un-pairing electrons are proportional to tje  ω  with applied 

microwave, where ω is the microwave frequency, Eq. (3.102) and Eq. (3.103) can be 

represented by 
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respectively. Then, the total current gives 
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where nn and ns are the normal and paired electron densities respectively. For 

 and the real and the imaginary part of the complex conductivity 122 <<nτω σ  can 

be reduced as  
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mnenn
2τσ = so nem 2

0 / μλ = is the conductivity in normal state and where  is 

the London penetration depth in the local limit ( , 0λξ << ξ  is the coherence length). 

It is accessible to measure the complex conductivity of a superconductor and this 

measured value can be used for elucidating the intrinsic properties of a microwave 

device. 

( ) 21
cos jZ σωμ= Since the surface impedance of a good conductor is , 

similarity for a superconductor the surface impedance can be obtained by using the 

complex conductivity as Eq. (3.107) instead of , thus  cσ
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         (3.108) 

where R  and Xs s are the surface resistance and reactance of the superconductor, 

respectively. The surface resistance of a superconductor increases more rapidly (∝ ω2) 

than that in normal metals in frequency. The surface reactance can be seen that energy 

storage in the surface of the superconductor takes place via two mechanisms: kinetic 

energy storage and the energy storage due to the penetration of the field. If both Rs 

and X 1σ have been determined by measurements, it is often useful to determine s  

and 2σ  from their values. Equation (3.108) can be rearranged to give 
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From Eq. (3.109), the real part σ  and imaginary part σ  of the complex conductivity 1 2

 74



 - jσ  can be found as [121] σ = σ1 2
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ss XR <<If required, this can be simplified further using . 

Based on two-fluid model, the σ1 relates to the quasiparticle’s relaxation time to 

be 
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where τ(T) is the relaxation time of the quasiparticles. The paired electron (superfluid) 

resulting in the imaginary part of the complex conductivity is 
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From Eq. (3.112) and Eq. (3.113) we can get 
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Note that f(ωτ) is only a function of ωτ and it has the following properties [55]. 

1. An linear slope, f(ωτ) ≈ ωτ for the condition of ωτ << 1, 

2. a broad peak centered at ωτ = 1 with maximum value of 1/2, and 

3. f(ωτ) ≈ 1/ωτ for ωτ >> 1. 

Moreover, a small value of f(ωτ) is usually occurring for temperature near Tc, and the 

value is increasing with respect to temperature decreasing. According the Eq. (3.114), 

the σ (T)/σ (T) remains finite values while n (T)/n1 2 n s(T) is going to zero at zero 
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(T)/σ (T)]/[n (T)/ntemperature. Therefore the [σ1 2 n s(T)] diverges at zero temperature. 

This question was a long-standing problem and was already studied in detail in 

conventional superconductors [119]. If the divergence of [σ1(T)/σ2(T)]/[n (T)/nn s(T)] 

could be attributed to a residual normal electron density fraction  which depends 

on the defects in the sample, then the temperature-dependence of ratio of the normal 

electrons to the pairing electrons is 
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From the measurements of σ1(T) and σ2(T),  can be determined from Eq. (3.114) 

if 

nx

 is known. )(ωτf

Using Eq. (3.114), Eq. (3.115) with Eq. (3.116) one can calculate the scattering 

rate  as 1−τ
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Here we have used the generalized two-fluid model to analyze the real and imaginary 

part of the conductivity obtained from surface resistance and penetration depth. It 

turns out that the generalized, f(ωτ), can be used to extract the temperature 

dependence of scattering rate . 1−τ

 

3.5 Penetration Depth  

 

To understand the electrodynamics of HTS one must first know the London 
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penetration depth, which is the length scale to reveal the properties within which the 

supercurrent screens out external fields from the surface into the superconductor. In 

the local limit, the London penetration depth is given by 

,*

2
0

m
ensμλ =                                             (3.119) 

where μ , n0 s and m* are permeability of vacuum, superfluid density and effective 

mass, respectively. Herein a rich information about the ratio between the superfluid 

density and the effective mass of paired electrons, ns/m* can be obtained. However, it 

could not account for the behavior of the penetration depth of the Sn and Pb due to the 

non-local effect resulted from the fact that the penetration depth λ is shorter than 

coherence length ξ in the superconducting state. When the dimension of ξ is smaller 

than λ, the London’s model can be applied to the system. 

 We consider a microstrip line resonator, which was successfully fabricated using 

double-sided YBCO or Ca-YBCO films deposited on LaAlO3 (LAO) substrates. 

Assuming that the magnetic field is zero just at outside resonator and neglecting the 

edge effects, the magnetic field can be calculated in the following way. 

 The field solution of the superconducting microstrip line structure must satisfy 

Maxwell’s equations and the London equation. We assume that the superconducting 

currents flow in the z-direction in the strip line so that vector potential A  has only 

the z-component . For a wide superconducting strip line it is reasonable that the 

normal magnetic field  vanishes along the dielectric-superconductor boundary. So 

to a good approximation, the normal magnetic field along the boundary may be 

assumed to be zero (assuming no vortex), 

zA
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AB z
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where t indicates tangential direction. Integrating Eq. (3.120) in tangential direction, 

we find that Az is constant along the dielectric-superconductor boundary. The 

relationship of vector potential Az satisfies with the Laplace equation in the dielectric 

region. Thus the magnetic field distribution for Az in the dielectric region can be 

solved in term of the Laplace equation with the boundary conditions 

Az = 1 at the strip-line surface, 

Az = 0 at the ground-plane surface.                       (3.121) 

The two constants can be chosen arbitrarily, but are chosen to be 0 and 1 for 

convenience. For the thin strip over a ground plane, the boundary conditions are 

( ) wIBbB oox μ== ( ) 00 =xB and , where I is the total current, w and b are the 

width and thickness of the strip, respectively. Then one can obtain  

( ) ( ) ( ) ( )λλμ bsinhysinhwIyB ox =   .          (3.122) 

The total storage energy per unit length includes the magnetic field energy and 

the kinetic energy, which can be expressed in terms of inductance as 
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         (3.123)    

From the right hand side of the Eq. (3.123), the first term presents the storage energy 

due to the magnetic field and the second term is the kinetic energy of the supercurrent 

flowing in the superconductor. When the supercurrent in the London local limit, then 

we have  
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where E is the electric field. Comparing with the inductance of an effective circuit, it 

shows 
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where A and  are the cross-section area and the length of the transmission line, 

respectively, and σ is the conductivity. Then the kinetic inductance of the 

superconductor is 
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2
 

2  ∗∗∗= enm soμλ, since . In turn, the kinetic energy of the supercurrent per unit 

volume is  
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Inserting above equation into Eq. (3.123), the total energy can be expressed as  
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The integration of the volume is performed including three parts:   

(i) the upper strip with thickness ,  1b

(ii) the ground plane with thickness ,  2b

            (iii) the intervening space with thickness . h

( )oBJ μ
vv

×∇= , one can obtain  Combining the Eq. (3.122) with 
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Therefore, the storage energy of the upper strip per unit length is 
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Similarly, the storage energy of the ground plane per unit length is  
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Finally, we assume that the magnetic field is uniform in the intervening dielectric, and 

then the stored magnetic energy per unit length is obtained as 
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         (3.132) 

In combination with Eq. (3.130), Eq. (3.131), Eq. (3.132) and Eq. (3.128), the total 

inductance of the microstrip transmission line is given by   
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It is evident that the inductance of microstrip line resonator is expressed by the 

function of the penetration depths [124]. Furthermore, the above equation is not 

available if the contribution of the fringe field due to the finite dimension of the strip 

line ( 1=hw  in our microstrip line resonator) takes into account. A detailed formula 

was derived by Chang [125-127], who considered the inductance of a finite-width of 

the superconducting microstrip line. The result is given by Eq. (3.134). The first term 

in the equation represents the contribution due to the external magnetic field, the 
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second and the third terms are the contributions from the strip line, and the fourth 

term is the contribution from the ground plane. 
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where the fringing field factor K is 
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and the effective capacitance per unit length is  
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where εr is the dielectric constant of the intervening material. 

 Since the resonance frequency, f0(T), is proportional to the inverse square root of 

the product of inductance and capacitance, and the inductance is function of 

penetration depth, one thus can extract λ(T) from the measurement of f0(T). If the 

dielectric constant εr is insensitive to the temperature dependence, then the change of 

the capacitance with respect to the temperature should be much smaller than that of 

the inductance. So, the variation of the resonance frequency is mainly due to the 

change of the inductance, and one can obtain the relation 
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Substituting Eq. (3.134) into Eq. (3.146), we have 
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(3.147) 

where T0 is an arbitrary temperature (taken as 5 K here) and g is the conductor 

asymmetry factor. So, the relation of the penetration depth and temperature can be 

estimated by the Eq. (3.147) in the microstrip line resonators. For the ring resonator, 

we will also use the above equation as a sound approximation since the mean radius 

of the ring is much greater than the width of the strip. When the penetration depth is 

known, the other microwave properties, such as surface impedance, can be extracted 

immediately.   

As mentioned previously, from the unloaded quality factor Qu and the resonance 

frequency f(T), the surface resistance Rs and reactance Xs consisting of surface 

impedance Zs(T)=Rs(T)+iXs(T) are calculated with the aid of the formula: 
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),(/)( TQTR us Γ=                                    (3.148) 

        Xs(T)-Xs(T )=-2Γ[f(T)-f(T0 0)]/f(T),                       (3.149) 

where Γ is the geometry factor of the resonator and T0 is the lowest temperature in the 

experiment (T0 = 5K). Actually, Γ depends [121] on the penetration depth λ and 

geometry parameters ( such as the microstrip line width , substrate thickness , 

and thin film thickness ) of the superconducting resonator if b/λ is not much larger 

than 1. The value of Γ can be calculated by the method of incremental frequency rules 

[128-130] via  

w h

b

Γ=μ0ω2/4{-Δω/Δλ}-1,                                                  (3.150) 

where Δω/Δλ is the derivative of the angular resonance frequency (ω=2πf) with 

respect to the penetration depth λ(T). Using Chang’s formula for the inductance and 

capacitance of a superconducting strip line the angular resonance frequency is given 

by: 

ω (T)=(c/εr
1/2L){1+λ(T)/d[2coth(b/λ(T))+gcsch(b/λ(T))]}-1/2,      (3.151) 

where εr is the dielectric constant of the substrate, d is the effective substrate thickness, 

L is the length of the strip line, g is the conductor asymmetry factor, and c is the 

velocity of the light in vacuum. By substituting Δω/Δλ obtained from Eq. (3.151) into 

Eq. (3.150), Γ can be derived as 

ωd{1+λ/d[2coth(b/λ)+g/sinh(b/λ)]}/ Γ=(1/2)μ0

{coth(b/λ)+(b/λ)/sinh2(b/λ)+g[1+(t/λ)coth(b/λ)]/[2sinh(b/λ)]},        (3.152) 

where g is the conductor asymmetry factor accounting for the fringe field effect as the 

aspect ratio w/d of the stripline near or less than 1. On the other hand, we have the 

relation between the surface reactance Xs(T) and the penetration depth λ(T), i.e.,   

ωλ(T).                            (3.153) Xs(T)=μ0

Here we have used Chang’s inductive formula and the generalized two-fluid 

model to analyze the magnetic penetration, from which the surface resistance and 
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reactance can be obtained. It turns out that the real and imaginary part of the 

conductivity can be extracted by use of Eq. (3.110) and Eq. (3.111). 

 

3.6 Some Models in Disordered d-wave Superconductors 

(Lee’s model, Vishveshwara and Fisher’s model) 

From theoretical viewpoint, a number of theories on the oxide d-wave 

superconductors give strong indications that the effect of disorder playing an essential 

role in these materials, especially for Lee’s model [80], Vishveshwara and Fisher’s 

model [84] that we will utilize these two models to analyze our experimental results. 

In Lee’s model, impurity scatters in the unitary limit produce low energy 

quasiparticles in a two-dimensional d-wave superconductor. They argued that if the 

impurity concentration is small so that the wave functions in the normal state are 

essentially extended, the quasiparticles in the superconducting state becomes strongly 

localized for a short coherence length d-wave superconductor. An effective mobility 

gap then leads to thermally activated behavior for the microwave conductivity and 

possibly for the London penetration depth. Their model also stressed that the 

quasiparticles are localized in a localization length Lξ 0E γ< with energy , where 

0γ  is the impurity band. And these quasiparticles have caused the universal 

conductance 
2

0
0 2

e
a
ξσ

π
=

h
0

0

Fvξ
π

=
Δ

, where  is the coherence length and a is lattice 

constant. It should be noted that in this case  is independent of scattering rate 0σ

1/τ . 

In Lee’s model, two models of disorder were considered. In model Ⅰ, he 

assumed a δ correlated random potential )(rU v )()0()( 2
0 ruUrU vv δ>=< such that . In 

the normal state, the Born approximation leads to an isotropic scattering rate 
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2
00

1 2 uπρτ =− , where 0ρ  is the density of states. In model Ⅱ, he assumed a dilute 

density  of strong scatterers, each with phase shift in 0δ . For simplicity, he 

specialized to the unitary limit 2/0 πδ = , in which case the normal state scattering 

rate is . Note that in contrast to the Born approximation  is 

inversely proportional to 

0
1 /πρτ in≡Γ=− 1−τ

1>>τε F. In both models, he assumed that 0ρ , so that the 

normal state is a good metal.            

In particular, we consider Lee’s model with model Ⅱ, in which the low-lying 

quasiparticles are localized. The self energy is given by  

)](/[)()( 2
0

2
0 nnn gcgi ωωω −Γ=Σ ,                       (3.154) 

where 0/πρin=Γ , 0cotδ=c , and .  is the 

Green function near each zero of d-wave energy gap, 

G),()()( 1
00 nkn kGMg ωπρω Σ×= −

)cos(cos0 akak yxk −Δ=Δ v . If 

we focus around the point 0k
v

 on the Fermi surface in the (1,1) direction, it lets us 

introduce a coordinate system parallel ( ) and perpendicular ( ) to the Fermi 

surface at 

1̂k 2k̂

0k
v

2/)(1 yx kkk −=. One obtains  and  where , 2kvFk =vξ 11kvk =Δ v

02 2/)( kkkk yx

v
−+= )sin(2 001 akav xΔ=, and . Then,  is given by  G

)~/()~(),( 2
2

22
1

2
1

2
2 kvkvkvikG FnFnn +++−= ωωω .             (3.155) 

0=c or In the unitary case, we have 2/0 πδ = . The solution of Eq. (3.154) in the 

limit 0→ω )0(0 →Σ= ωγ i yields an estimate for  to be 

2/1
00

2/1
10 )()2/( −ΔΔ≈Γ= τπγ vkF ,                      (3.156) 

where we have ignored a small logarithmic correction of order . For 

unitary scatterers, the scattering rate 

)/ln( 0 ΓΔ

ω of a quasipartilce with energy )(' ωγ  is 

estimated to be ωωγ /)( 0ΓΔ≈  for .      00 Δ<< ωγ
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LξThe localization length  was then be estimated for unitary scatterers. The 

conclusion that the dimensionless conductance Δ≈≈≈ /// 02 FF avvg εξ  is not 

changed and is of order unity for the oxide superconductors. The mean free path, i.e., 

the distance scale at which diffusion begins, is now given by 0/ γFv  and we estimate 

the localization length to be  

)/exp())(/( 0
2/1

00 ΔΔΔ≈ FFL v ετξ ,                      (3.157) 

which is reasonably short for a short coherence length superconductor even in the 

clean limit .1000 ≈Δ τ   

To ascertain the physical significance of the localization length we estimate the 

typical energy level spacing between states within a localization length, i.e., 

. Using Eq. (3.157) we find 12 )( −=Δ LW ρξ

)/2exp()/( 000 Δ−Δ≈Δ FFW εεγ .                       (3.158) 

WΔ and we find that For the oxide superconductors, 1/0 ≈Δ Fε  is a reasonable 

fraction of WΔ WT Δ<. The significance of  is that for 0γ  the localized states 

begin to decouple and conductivity becomes activated.  

The microwave conductivity can be calculated via the formula, 

)()(2
1 kGkGv

kF

vv
−+∑≈σ , where , for normal metals or 

superconductors. For a d-wave superconductor, the density of states is linear in 

energy 

1)2/( −
± ±= τξ iG k

∑ ∫→
k

dξξεε ∝)(N , so that crudely we expect . The extra factor of ξ  

changes the power counting so that τ1σ  is independent of . After being careful 

calculations performed by Lee, the microwave conductivity at  and 0→T 0→ω  

was obtained as 
a

e 0
2

1 2
ξ

π
σ

h
≈  when considering the low-lying quasiparticles are 

localized in model Ⅱ. In fact, this result of 
a

e 0
2

1 2
ξ

π
σ

h
≈  at  and 0→T 0→ω  

was also hold in model Ⅰ.  
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From the above discussion, we have known that the presence of localization of 

impurity-induced low-energy quasiparticle states in a two dimensional d-wave 

superconductor is shown for a small amount of disorder in the limit of unitary 

scatterers. Recently, the role of imperfections in d-wave superconductors has also 

been considered by Hirschfeld et al. [131], Durst and Lee [81], Vishveshwara and 

Fisher [84], Balatsky and Salkola [85], and subsequently by others [132, 133]. In 

particular, Vishveshwara and Fisher theoretically explored the quasiparticle transport 

properties which are greatly influenced by the disordered state in the samples. They 

started from that qausiparticle excitations about the superconducting ground state are 

well described within the framework of the Bogoliubov-de Gennes (BdG) 

Hamiltonian for a spin-singlet paired superconductor. To repeat the example offered 

of the dirty d-wave superconductor, they consider a system of impure 

superconducting sheets with d-wave pairing coupled to one another. For low 

interplane coupling strength or high impurity concentration, they found that the 

qausiparticle states to be localized, and upon increasing the coupling or lowing the 

disorder, they found that the quasiparticle states are of accessible a critical point 

beyond which these states become extended. A detail calculation and numerical 

analysis was reference to Ref. [84]. In a word, they conclude that the low-energy 

quasiparticles can either be delocalized and free to move through the sample as an 

extended state, or can be localized by the disorder. These two possibilities correspond 

to two distinct superconducting phases –the thermal metal with delocalized 

quasiparticle excitations and the thermal insulator with localized quasiparticles- and 

the critical point between them.  
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Fig. 3.1. (a) A series RLC circuit. (b) Equivalent circuit of a cavity 
resonator for two-port measurements. 
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