
量子糾纏態與量子資訊處理 

Entanglement and Quantum Information Processing 

 

研 究 生 : 李哲明                         Student : Che-Ming Li 

指導教授 : 褚德三                         Advisor : Der-San Chuu 

 

國 立 交 通 大 學  

電子物理研究所  

博士論文  

 
A Thesis  

Submitted to Institute of Electrophysics  
College of Science  

National Chiao Tung University  
in partial Fulfillment of the Requirements  

for the Degree of  
Doctor of Philosophy  

in  
 
 

Electrophysics  
 
 

February 2008  
 
 

Hsinchu, Taiwan, Republic of China 
 
 

中 華 民 國 九十七 年 二 月 



Entanglement and Quantum Information Processing

Che-Ming Li

March 3, 2008



  i 

量 子 糾 纏 態 與 量 子 資 訊 處 理 

 

研 究 生 : 李哲明                                          指導教授 : 褚德三 

 

 

國 立 交 通 大 學 

電子物理研究所 

 

 

摘要 

 
本論文提出量子糾纏與量子資訊處理的理論與實驗研究成果。我們引

進且利用系統性的方法分析量子多體糾纏態的關連結構並偵測隱含於

多體多維物理系統中的量子關連，我們亦提出了嶄新的量子方案以實

現量子糾纏態的製造、純化、量子糾錯及量子搜尋演算法；這些理論

方法與結果有助於了解量子力學的基本特徵並開發量子訊息領域中的

相關應用。 

    在實驗工作方面，我們發展並開發了用於實現單向量子計算的二光

子四量子位元糾纏源。利用高亮度糾纏源所產生的二光子量子態在偏

振與空間自由度上的糾纏特性，我們實現了高效率的量子搜尋演算法，

此實驗結果顯示二光子超糾纏態可作為快速且精確的光學量子計算之

基礎。 
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Abstract

The present thesis shows the result of theoretical and experimental study on the physics

of entanglement and quantum information processing. We propose a systematic approach

to analyze the correlation structures of multipartite entanglement and detect genuine

quantum correlations inherent in multipartite multi-level systems. In addition, we intro-

duce novel proposals for entanglement generation, entanglement purification, quantum

error corrections, and quantum search algorithm. These theoretical methods and results

are both significant for studying the fundamental feature of quantum mechanics and for

exploiting the field of quantum information.

The experimental work has developed and exploited a source of two-photon four

quantum-bit entanglement to realize one-way quantum computing. With the bright source

which produces a two-photon state entangled both in polarization and spatial modes, we

implemented a highly efficient quantum search algorithm. The experimental result demon-

strates that such hyperentangled states could serve as a building block of rapid and precise

optical quantum computation.
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Chapter 1

Introduction

1.1 Entanglement, EPR paradox, and Bell’s theorem

Entanglement is one of fundamental pillars in the field of quantum information [1–4].

The remarkable properties of entanglement go essentially beyond the classical correlation

constrained by two plausible assumptions, namely locality and realism (local realism)

[5, 6]. The assumption of realism states that physical properties of objects have definite

values which exist independently of their observation, and the one of locality says that

in a causally disconnected manner a measurement of a system does not influence the

result of measurement of another system at spacelike separation. Local realism is the

essence of the view of Einstein, Podolsky, and Rosen (EPR) [7] on elements of reality.

EPR considered that any element of reality must be described by any complete physical

theory, and by local realism that was sufficient for the reality of a physical quantity, they

showed that quantum mechanics is incomplete. The criterion of EPR is applied to a

composite quantum system comprised of two distant particles with a wave function of the

form [8]: Ψ = δ(x2 − x1 − x0)δ(p1 + p2), where δ denotes a modified delta function, that

is normalizable and possesses an arbitrary high-narrow peak, and x0 is a large distance

that is much larger than the range of interaction between particles 1 and 2. From the

description of the wave function Ψ, one knows that the total momentum of the system is

1
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close to zero and the relative distance of the particles is close to x0. If one measures x2,

one then can predict with certainty the value of x1 without having any actual influence

on particle 1. Then, according to the criterion of EPR, x1 corresponds to an element

of physical reality. Furthermore, if one measures p2, one can predict with certainty the

value of p1 without having any actual influence on particle 1. Therefore, according to the

criterion of EPR, p1 corresponds to an element of physical reality. However, Heisenberg

uncertainty principle precludes one from knowing position and momentum simultaneously.

Thus EPR considered that quantum mechanics was an incomplete theory.

After EPR’s article, Bohr published a response [9] where he gave the principle of

complementarity and argued that the two particles in the situation considered by EPR

are always parts of one quantum system and the measurement performed on the first

system determines the possible predictions that can be made for the second particle. In

addition to Bohr’s reply, Schrödinger [10] claimed that, since the composed system is

describe by a single wave function, the two remote particles can influence each other

nonlocally. In 1951 Bohm [11] introduced spin-entangled systems and gave a simpler

example of the dilemma of EPR. The model of Bohm has become the most studied one

for the so-called EPR paradox.

The EPR paradox remained a philosophical discussion until Bell [5] in 1964 introduce

quantitative criteria for the existence of any local-realistic theory. Bell derived corre-

lation inequalities to show that there is an upper limit to the correlation predicted by

local-realistic theories whereas the upper bound can be violated by correlations imbedded

in entangled states. The inequalities advocated by Bell are experimental testable. Exper-

iments with entangled pairs have confirmed correlations predicted by quantum mechanics

and then show Einstein locality are incompatible with quantum correlations as the proof

given in Bell’s theorem [12].

By the inspiration of Bell’s theorem, the so-called Bell inequalities [5, 13–16] for

two-level systems have been proposed to experimentally invalidate the point of view of

EPR and to show that quantum mechanics is not locally realistic. Furthermore, while
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entanglement for quantum two-level systems (qubits) is still under intensive study, en-

tangled quantum multi-level systems (qudits) attract much attention for their nonlocal

characters [17–21] and advantages in quantum information processing [22–24]. It has been

shown that entangled qudit pair can maximally violate the Clauser-Horne-Shimony-Holt

(CHSH) inequality [13] and the corresponding violation continues to survive in the limit

of infinite dimension [25]. Using the method of linear programming to give necessary and

sufficient conditions [26], numerical calculations have demonstrated that contradiction

between local realism and quantum mechanics increases with the dimension. Latter, this

contradiction has been confirm analytically in [17, 27]. Collins et al. [17] have reformu-

lated Bell inequalities to construct a large family of multi-level inequalities in terms of

a novel constraint for local-realistic theories called Collins-Gisin-Linden-Massar-Popescu

(CGLMP) inequality. Recently, Son, Lee, and Kim (SLK) [18] presented generic Bell

inequalities and their variants for arbitrary high-dimensional systems through the gener-

alized Greenberger, Horne and Zeilinger (GHZ) nonlocality [28].

1.2 Entanglement and quantum information process-

ing

For the aspect of quantum information processing, the nonlocal features of quantum corre-

lations enable people to perform high-security and novel quantum communication [29, 30].

Moreover, it promotes a novel model of universal quantum computation [31–33]. Quantum

communication could be consider as the first application of quantum mechanics, that is

based on entanglement, no-cloning theorem, and quantum superposition. Quantum com-

munication involves transmissions of quantum states form one place to another. In 1984,

the first quantum-cryptography protocol has been proposed by Bennett and Brassard [34].

The essence of their scheme is the fact that unknown quantum states cannot be cloned.

In 1991, the first application of quantum non-locality is introduced by Ekert [29]. In the

protocol of Ekert, maximally entangled pairs are utilized for transmission of quantum
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key and the corresponding security is guaranteed by the distinct features of entanglement

cooperating with Bell’s theorem. These novel encryption schemes provide a fundamental

improvements compared to conventional ones. In 1993, quantum teleportation was ex-

posed by Bennett et al. [30] in a momentous article entitled ”Teleporting an unknown

quantum state via dual classical and Einstein-Podolsky-Rosen channels” . With share

maximally entangled pairs together with two classical bits of communication as specified

in their protocol, unknown quantum states can be transferred from one place to another

without any intermediate location. Quantum teleportation is also central to a number of

quantum computation protocols [35, 36]. In addition to the above quantum protocols,

super dense coding [37] and quantum secret sharing [38] are based on resources of entan-

gled states for quantum information processing. The former illustrates that two bits of

information can be transmitted from sender to receiver by sending only a single qubit.

Quantum secret sharing does not only give a procedure required for the goal of secret

sharing but also provides a way to detect the presence of an eavesdropper. Many-qubit

entanglement are necessary for performing some specific types of protocol of quantum

secret sharing.

Experimental demonstrations of single-qubit teleportation have been implemented

with different physical systems [39–43] . Recently, teleportation of two-qubit composed

systems has been experimentally realized with photonic qubits successfully [44]. As for

quantum secret sharing, in Re. [45] four-party secret sharing with four-photon singlet

states has been experimentally preformed. On the other hand, in order to achieve the aim

of long-distance entanglement-based communication, up to now experiments have demon-

strated over distances of up to 144 km using polarization-entangled photons via free-space

links through the atmosphere. In Re. [46], the violation of CHSH-type [13] Bell inequality

shows the distinct features of entanglement observed 144 km apart and then the Ekert

protocol for quantum key distribution has been demonstrated successfully. However, to

dissolve the problems about limitation communication distance further, quantum relays

[47] and quantum memories [48, 49], i.e., quantum repeaters, are needed.
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Entanglement is also a resource for universal quantum computing. One-way quan-

tum computation [31–33] is performed with a certain multipartite entangled source, a

cluster state [31], and local measurements on the constituents, and then it is also called

measurement-based quantum computation. Before the model of one-way quantum com-

putation is introduced, a quantum computer including the mathematical model and the

corresponding experimental realizations is designed for logic circuit [50] of universal quan-

tum gates [51] that require highly controlled interactions between selected qubits. It has

been proven that one-way quantum computer can simulate any quantum logic circuit

[32]. Three experiments have created four-photon cluster states and then demonstrated

quantum one-way computation by performing quantum search algorithm [52–54]. Quan-

tum mechanical algorithms involves utilization of quantum effects and have become very

popular in the field of computation science because they can speed up a computation over

classical algorithms. Famous examples include Deutsch-Josza algorithm [55], the factoriz-

ing algorithm discovered by Shor [56], and the quantum search algorithm well-develpoed

by Grover [57, 58]. If there is an unsorted database containing N items, and out of which

only one marked item satisfies a given condition, then using Grover’s algorithm one will

find the object in O(
√
N) quantum mechanical steps instead of O(N) classical steps. It

has been shown that Grover’s original algorithm is optimal [59–61]. Through four-photon

cluster states, Deutsch-Josza quantum algorithm [55], that is a quantum method to iden-

tify whether a given function is constant or balanced, has also been experimentally realized

in the one-way approach [62]. Besides, the compiled version of Shor’s quantum factoring

algorithm has been demonstrated by using photonic qubits [63].

In addition to qubits for quantum information protocols discussed above, qudits are

very useful for several different kinds of quantum communication tasks. It has been shown

that quantum key distribution with higher alphabets is more secure than that based on

qubits [64–66]. The coin-flipping and the Byzantine agreement problems can be solved by

making use of qutrits (quantum three-level systems) [67]. Entangled qutrits can be used

to solve two-party communication complexity problem [68]. N -party N -level supersinglet

5



CHAPTER 1. INTRODUCTION

states can help to solve the problems which have no solution using classical method:

N -strangers, secret sharing, and liar detection problems [69].

1.3 Entanglement detections, purifications, and quan-

tum error corrections

Quantum communication protocols for tasks such as quantum key distributions [29], quan-

tum teleportation [30], and quantum super dense coding [37] rely on the transmission of

maximally entangled qubit pairs over quantum channels between a sender (Alice) and a

receiver (Bob). The quantum channel, however, is always noisy due to the interaction

with the environment and even possibly the measurement controlled by an eavesdropper.

Therefore, the pairs shared by Alice and Bob are no longer of the desired pure ones to

begin with a quantum processing. The resource in the noisy channel then can be viewed

as a mixed state, or equivalently, an ensemble of pure states with definite random proba-

bilities. The fidelity of the pure states in the ensemble are random so should be unknown

to Alice and Bob. Accordingly, first, Alice and Bob need to find efficient experimen-

tal methods to detect whether a experimental output is indeed entangled. Then, they

could take an action of entanglement purification to regain, at least asymptotically, the

desired maximally entangled pure state if the mixed state is distillable. This aim can be

achieved by Alice and Bob, using consecutive local operations and classical communica-

tions (LOCC). Above processes are also necessary for many-party protocols of quantum

communication, e.g., experimental achievement of open-destination teleportation [43]. In

addition to the importance of entanglement detections for quantum communication, de-

tecting genuine many-qubit correlations of multipartite entanglement is also crucial for

performing faithful measurement-based quantum computation [31–33].

Since Bell inequalities can be consider as a means to feature quantum correlations in

the corresponding violations, it is natural to think that Bell inequalities are useful for

entanglement detections. However, there are two difficulties in utilizing Bell inequalities
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for entanglement detections. One involves experimental difficulty and another is about

limits of their intrinsic utilities. First, for detecting N -qubit entangled states, the number

of local measurement settings (see the definition in the second chapter) required increases

with exponentially with N [14–16]. Second, Bell inequalities cannot always detect an

entangled state with some specific characters of quantum correlation, e.g., detections of

genuine multipartite entanglement [70]. To resolve these problems, entanglement wit-

nesses are introduced to detect entanglement [71]. Entanglement witness operators rely

on an use of the whole or partial knowledge of an entangled state to be created, which

are designed for distinguishing entangled states from separable ones. Furthermore, entan-

glement witnesses can be designed for detecting genuine multipartite entanglement [70],

and some witnesses for truly multipartite entanglement require fewer local measurement

settings [72, 73] when used in experiments.

The first entanglement purification protocol (the IBM protocol) was developed by

Bennett et al. [74, 75] in achieving a faithful quantum teleportation. Soon later, an

improved protocol entitled “Quantum Privacy Amplification” (QPA, or the Oxford pro-

tocol) was addressed by Deutsch et al. [76] in consideration of the security of a quantum

cryptography over noisy channels. Both the IBM and Oxford protocols are capable of pu-

rifying a desired maximally entangled pure state from every distillable mixed state whose

components are not learned by Alice and Bob initially.

It is worth noting that Bennett et al. [74] have presented the equivalence between

the entanglement purification protocol based on one-way classical communication, that

is different from the IBM protocol with two-way classical communication, and the five-

qubit quantum error-correcting code [77, 78]. Quantum states can be encoded into qubits

through quantum error-correcting codes [79, 80]. With an introduction of redundancy,

the encoded data can tolerate little errors which are due to decoherence in some individ-

ual qubits. Then, quantum error-correcting codes play a crucial role in scalable quantum

computation and communication to preserve the gain in computational time and in secu-

rity.
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The experimental purification of entangled qubits of IBM protocol has been demon-

strated by using entangled-photon source [81]. In addition to the IBM and Oxford pro-

tocols, further extensions cover purifications of many-qubit W [82] and graph states [83]

and multi-level GHZ states [84].

1.4 Experimental generations of quantum entangle-

ment

For the aspect of generating entanglement in real physical systems, many different archi-

tectures and schemes have been proposed. An entanglement can be generated in atom-

[85–87] and ion-trap systems [88], superconducting charge [89, 90] and flux [91] qubit

systems. However, in order to perform quantum information processing, in addition to

entanglement generations there are several criteria for measuring how good physical sys-

tems are. To realize quantum computation, the requirements of the physical systems

involve scalability, isolation, initialization, measurement, and controllably interactions for

universal quantum gates [92]. To achieve quantum communication, the physical systems

carrying information are expected to transmit between remote places [93, 94]. Accord-

ing to these reasons, optical quantum systems [36, 93–96] are important candidates for

quantum information processing and then become leading approaches over the past few

years. Many experimental achievements of tasks of quantum information processing are

attained with optical quantum systems.

Polarization-entangled photons emitted by the process of spontaneous parametric

down-conversion (SPDC) [97, 98] in a nonlinear crystal has been widely utilized to ana-

lyze quantum correlation and to experimentally demonstrate quantum computation and

quantum communication, e.g., the experimental realizations of the quantum protocol

mentioned above [39–41, 43–46, 52–54, 62, 63, 81], entanglement of six photons in graph

states [99], and test of non-local realism [100]. These experiments are designed to process

information encoded in qubits.
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Recently, due to the advantages and distinct characteristics of qudits as mentioned

above, many researches have paid attention to generations of hyperentanglement. Or-

bital angular momentum entangled photons generated from the SPDC process have been

experimentally realized and provide a resource to study quantum correlation inherent

in multilevel systems [20]. Using this kind of entangled source, violation of three-level

Bell inequalities has been experimentally confirmed and quantum key distribution with

qutrits has also been demonstrated [23]. In addition to the polarization and orbital angu-

lar momentum of photons, utilizing accessible degrees of freedom including path modes

[54, 101, 102], enery time, time bin [103–105], and every degree of freedom [106], one

can produce hyperentanged photon sources. Since a hyperentangled state is in a larger

Hilbert space, this feature can be used to perform 100% efficient complete Bell-state anal-

ysis with only linear elements [107], to purify entanglement [101], and to realize all versus

nothing test of quantum mechanics [102]. An experimental CGLMP test for energy-time

entangled qutrits has been reported in Re. [105]. The experimental scheme for deter-

ministic and efficient quantum communication based on hyperentanglement has also been

proposed [108]. In particular, experimental realization of one-way quantum computing

with two-photon four-qubit hyperentangled states has been reported in Re. [54].

1.5 Outline of the Thesis

We have proposed several novel ideas and proposals for quantum information processing

and experimentally demonstrated one important element of quantum computation dur-

ing the time of my Ph. D. studies. Our research mainly concentrates on entanglement

detection, on entanglement generation, on entanglement purification, on quantum error

corrections, on quantum search algorithm, and on the experimental creation of four-qubit

hyperentangled states and realization of one-way quantum computation. We investigate

into several key subjects involved in almost the whole process of quantum information pro-

cessing. We start with a study into the properties of correlations inherent in multipartite
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entangled states and then provide a new insight into entanglement detections including

Bell inequalities, entanglement witness operators, and the connections between them. We

improve the purification protocols of entanglement and then design a new efficient one.

Furthermore, we give an analytic and systematic way to construct quantum circuits for

both entanglement purification and quantum error corrections. For entanglement genera-

tion, we propose a scheme for generating a many-qubit entangled state with translational

symmetry. We also analyze the quantum search algorithm in detail and experimentally

perform a quantum search by one-way realization successfully. A summary is given as

follows.

Chapter 2 Quantum correlations imbedded in many-qubit and two-qudit entangled states

are described by novel criteria of correlation for dependent systems. Correlation

structures of Bell inequalities and entanglement witness operators are in terms of

correlation criteria proposed. Several robust and efficient Bell inequalities and en-

tanglement witnesses are also introduced.

Chapter 3 We apply the correlation criteria to the stabilizer formalism and discuss the

entanglement of stabilizer states in a new point of view. Entanglement witnesses for

stabilizer-entangled states that required only two local measurement settings when

used in experiments are given.

Chapter 4 Entanglement witnesses for detecting several different kinds of many-qubit

entangled states that are useful for quantum information processing are proposed.

Chapter 5 General correlation criteria for many-qudit entanglement are introduced.

We reveal the essential elements of the GHZ paradoxes and the generic Bell inequal-

ities for many qudits are comprised of the criteria introduced. Several witnesses for

multipartite entangled qudits are proposed.

Chapter 6 Standard entanglement purification protocols based on hybrid maps are pro-

posed to purify any distillable state to a desired maximally entangled pure state.
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Chapter 7 An analytical method to simplify the encoder-decoder circuit for a perfect

five-qubit quantum error correcting code that is converted from its equivalent one-

way entanglement purification protocol is introduced.

Chapter 8 We study how dot-like single quantum well excitons, which are coupled to

single-mode cavity photon, evolve into maximally entangled state as a series of

conditional measurements are taken on the cavity field state.

Chapter 9 Detailed analyses of the constructions of quantum search algorithm are pre-

sented in this chapter. We focus on the accuracy and noise tolerance of the quantum

algorithm.

Chapter 10 We experimentally develop a two-photon cluster state source entangled both

in polarization and spatial modes. We also utilize the created hyperentangled qubit

source to give a experimental demonstration of one-way quantum computation. A

quantum search task is performed in an one-way realization.

Chapter 11 We summarize the main results in the thesis and give an outlook.
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Chapter 2

Entanglement and correlation

conditions

2.1 Introduction

Bell inequalities are results about local realism, and then violations of which by entan-

gled states can be considered as a means to feature the distinct properties of quantum

correlations. In this situation, three main questions arise: (i) Is there a necessary condi-

tion of quantum correlation associated with some entangled state in the kernels of Bell

inequalities? While Bell inequalities are based on the local realistic theories, we wonder

whether their kernels can provide conditions of correlation for entangled states. (ii) What

is the connection between the correlation structures of Bell inequalities for qubits and the

ones for qudits? Can it be utilized to analyze the correlation properties of both entangled

qudits and many-qubit entanglement? (iii) What is the connection between the correla-

tion structures of Bell inequalities and entanglement witnesses? Can the kernels of Bell

inequalities be used to construct entanglement witnesses for qudits?

The goal of this chapter is threefold. First, we introduce necessary conditions of

correlation for many-qubit and two-qudit entanglement. Second, we reveal that the Bell

inequalities for many qubits introduced by Clauser-Horne-Shimony-Holt (CHSH) [13],
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Mermin [14], and Seevinck-Svetlichny [15], and the Collins-Gisin-Linden-Massar-Popescu

(CGLMP) [17] and Son-Lee-Kim (SLK) [18] inequalities for bipartite arbitrarily high-

dimensional systems are composed of the correlation conditions proposed. The general

correlation functions of the CHSH inequality proposed by Fu [109] are also shown to

consist of conditions of correlation. Bell inequalities based on correlation criteria for

qudits are introduced. In addition, we show that the Durkin-Simon inequalities [110] for

many-qubit entanglement can be rephrased in terms of correlation criteria. Third, we

use the criteria to construct the first entanglement witness operator for detecting a two-

qudit Bell state. In particular, this witness needs only two local measurement settings

(see below) when used in experiments and is very robust against noise, independent of

the number of levels. Further, two novel and robust witnesses for qudits are proposed.

The conditions of correlations for Bell inequalities are also utilized to construct witness

operators for qudits. In short, the condition presented is common among Bell inequalities

for qudits and many qubits. The constructions introduced show connections between Bell

inequalities and entanglement witnesses.

This chapter is organized as follows. We start in Sec. 2.2 by revisiting the scenario of

a many-party Bell-type experiment for identifying the correlations between outcomes of

measurements. Then we present the basic idea of the condition of correlation and intro-

duce the dependence criterion for many-qubit and two-qudit correlations. Since many-

qubit GHZ and two-qudit Bell states are very useful for quantum information processing

and under intensive study in entanglement physics, in Sec. 2.3 we proposed different kinds

of correlation conditions to analyze their correlation characters. In Sec. 2.4, we show the

criteria of correlations introduced in Sec. 2.3 are the kernels of the Bell inequalities that

have been presented. We also introduce Bell inequalities based on the conditions of quan-

tum correlations for qudits. In Sec. 2.5 we give a novel entanglement witness operator for

detecting states close to a two-qudit Bell state. We also consider entanglement detections

of two given multilevel entangled states. In addition, we give witness operators for N -

qubit GHZ states and analyze the structure of the inequalities beased on the geometry of
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spin vectors by the conditions proposed. Then a conclusion follows. Finally, in Appendix

A we give a proof to show the tightness of the Bell inequalities for qudits proposed in Sec.

2.4.

2.2 Correlation condition and entanglement detec-

tion

In a N -party Bell-type experiment, measurements on each spatially-separated particle are

assumed to be performed with two distinct results (d distinct results for d-level Bell-type

experiments) from two different observables. In each run of the experiment, each party

chooses one observable for a simultaneous measurement on the particle in parallel. Let

us denote the local measurement setting by M = (V1, V2, ..., VN), where Vi represents the

observable chosen by the ith party. After measurements, a set of results, (v1, v2, ..., vN),

where vi ∈ {0, 1} (vi ∈ {0, 1, ..., d− 1} for d-level Bell-type experiments), is acquired. If

sufficient runs of such measurements have been made under the chosen local measurement

setting, the correlation between experimental outcomes can be revealed through analytical

analyses of experimental records. In analogy, experiments for bipartite multilevel systems

work in the same way as mentioned above.

For quantum mechanical representation, we introduce an operator of the form

V̂i =
1∑

vi=0

(−1)vi v̂i, (2.1)

where v̂i = |vi〉ViVi
〈vi| and {|vi〉Vi

} is a complete set of orthonormal basis vectors for the

observable V̂i. Each N -product operator of the form V̂ ± = ±
⊗N

i=1 V̂i can be represented

explicitly by

V̂ ± = Ĉ±
0 + Ĉ±

1 , (2.2)
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where

Ĉ+
0 = (0̂m − 1̂m) ⊗ 0̂m̄, Ĉ

+
1 = (1̂m − 0̂m) ⊗ 1̂m̄, (2.3)

Ĉ−
0 = (0̂m − 1̂m) ⊗ 1̂m̄, Ĉ

−
1 = (1̂m − 0̂m) ⊗ 0̂m̄, (2.4)

and

0̂m =
∑

v1,...,vm

m⊗

i=1

v̂i for

m∑

i=1

vi
.
= 0,

1̂m =
∑

v1,...,vm

m⊗

i=1

v̂i for
m∑

i=1

vi
.
= 1,

0̂m̄ =
∑

vm+1,...,vN

N⊗

i=m+1

v̂i for

N∑

i=m+1

vi
.
= 0,

1̂m̄ =
∑

vm+1,...,vN

N⊗

i=m+1

v̂i for

N∑

i=m+1

vi
.
= 1, (2.5)

and
.
= denotes equality modulus two. Expectation values of V̂ ± for some physical states,

denoted by 〈V̂ ±〉, are typically called N -point correlation functions. Here we will give

a new insight into 〈V̂ ±〉 via their elements Ĉ±
0 and Ĉ±

1 . Determining the expectation

values of Ĉ±
0 and Ĉ±

1 can provide information about correlation between the subsystems

composed of the first m qubits and the rest of the system.

Theorem 1. If measured outcomes show that expectation values of operators satisfy

〈Ĉ±
0 〉 > 0 and 〈Ĉ±

1 〉 > 0, or, 〈Ĉ±
0 〉 < 0 and 〈Ĉ±

1 〉 < 0, the outcomes of measurements

performed on the subsystem of the first m qubits are correlated with the ones performed

on the subsystem of the last N −m qubits [111].

Proof. If the subsystems are independent, we have the following relations

〈Ĉ+
0 〉 = (〈0̂m〉 − 〈1̂m〉)〈0̂m̄〉, 〈Ĉ+

1 〉 = (〈1̂m〉 − 〈0̂m〉)〈1̂m̄〉, (2.6)

and

〈Ĉ−
0 〉 = (〈0̂m〉 − 〈1̂m〉)〈1̂m̄〉, 〈Ĉ−

1 〉 = (〈1̂m〉 − 〈0̂m〉)〈0̂m̄〉. (2.7)
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Since 〈0̂m〉 + 〈1̂m〉 = 1, 〈0̂m̄〉 ≥ 0, and 〈1̂m̄〉 ≥ 0 for any physical systems, it turns out

that 〈Ĉ+
0 〉〈Ĉ+

1 〉 ≤ 0 and 〈Ĉ−
0 〉〈Ĉ−

1 〉 ≤ 0. Thus a contradiction reveals the dependency of

one subsystem on another one.

Then 〈V̂ ±〉 is not just a N -point correlation function but a general one composed of

〈Ĉ±
0,1〉 that gives nc conditions of dependence for correlations between any two subsystems

with m qubits and N −m ones, where

nc =

⌊N/2⌋∑

k=1

f(N, k)
N !

k!(N − k)!
, (2.8)

f(N, k) = 2−δ[k,⌊N/2⌋] for even N , δ[·] denotes Kronecker delta symbol, and f(N, k) = 1

for odd one. Take N = 3 for example. A correlation function 〈V̂1V̂2V̂3〉 involves three

conditions, i.e., nc = 3, to describe correlations between subsystems including the fol-

lowing classifications, {[1, 2, 3]}: [1|2, 3], [2|1, 3], and [3|1, 2], where [i|j, k] denotes the

correlation between the ith qubit and the subsystem composed of the j th and kth ones.

For N qubits, we use the denotation {[1, 2, ..., N ]} or {[m, m̄]} to represent nc differ-

ent kinds of partitions for correlation, and we sometimes use the notations Ĉ±
0[m,m̄] and

Ĉ±
1[m,m̄] emphasizing the correlations between two specific subsystems denoted by m and

m̄ respectively.

By the same idea of constructing Ĉ±
0,1 for qubits, we introduce the following sets of

operators for two-qudit correlations:

Ĉ
(q)
k = [k̂ − T (k̂)] ⊗ U(k̂), (2.9)

for k = 0, 1, ..., d − 1 and q = 1, ..., γd, where T and U are injective maps such that

T (k̂) 7→ k̂′, U(k̂) 7→ k̂′′, and k′ 6= k, and each set {T (k̂)} composed of T (k̂)’s is numbered

by q. Take d = 3 for example, we have two sets of {T (k̂)} and hence the sets of operators
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{Ĉ(q)
k } could be

{Ĉ(1)
0 = (0̂ − 1̂)0̂, Ĉ

(1)
1 = (1̂ − 2̂)1̂, Ĉ

(1)
2 = (2̂ − 0̂)2̂},

{Ĉ(2)
0 = (0̂ − 2̂)0̂, Ĉ

(2)
1 = (1̂ − 0̂)1̂, Ĉ

(2)
2 = (2̂ − 1̂)2̂}.

where U(k̂) = k̂ is used in this example. For d = 2, we get the sets of operators for qubits

introduced above: Ĉ
(1)
0 = Ĉ+

0 and Ĉ
(1)
1 = Ĉ+

1 for U(k̂) = k̂, or Ĉ
(1)
0 = Ĉ−

0 and Ĉ
(1)
1 = Ĉ−

1

for U(k̂) = k̂′′ and k′′ 6= k. Then it is clear that the number of sets {Ĉ(q)
k } depends on the

number of {T (k̂)}. For general d, we have γd sets of {Ĉ(q)
k }, where γ2 = 1, γ3 = 2, γ4 = 9,

γ5 = 44, γ6 = 285, and

γd = (d− 2)
d−1∏

v=3

v + (d− 1)γd−2, (2.10)

for d ≥ 7. The correlation between outcomes of measurements performed on two remote

qudits can be revealed by the help of the following theorem.

Theorem 2. If measured outcomes show each expectation value 〈Ĉ(q)
k 〉 in the qth set

{〈Ĉ(q)
k 〉} is positive or each one is negative, the outcomes of measurements performed on

the first qudit are correlated with the ones performed on the second qudit [112].

Proof. If the subsystems are independent, one can recast 〈Ĉ(q)
k 〉 as

〈Ĉ(q)
k 〉 = (〈k̂〉 − 〈T (k̂)〉)〈U(k̂)〉, (2.11)

Since
∑

k〈k̂〉 =
∑

k〈T (k̂)〉 = 1 and 〈U(k̂)〉 ≥ 0, 〈Ĉ(q)
k 〉 > 0 for all k’s is impossible for

independent subsystems. Then a contradiction indicates the dependency of the first qudit

on the second one.

With the above two theorems, one can feature a many-qubit or two-qudit entangled

state in sets of correlation conditions proposed under different local measurement set-

tings. These conditions can be considered as necessary ones for the entangled state under
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study. We call the expectation values 〈Ĉ(q)
k 〉 and 〈Ĉ±

0,1〉 correlators due to their utilities for

correlations. We give three concrete examples to illustrate how correlators work for ana-

lyzations of the correlation structures of given states and the basic idea of entanglement

detections based on correlators:

(a) A two-qubit pure entangled state in the following representation:

|φ〉 = sin(ξ) |00〉 + cos(ξ) |11〉 , (2.12)

for 0 < ξ < π/4, where |v1v2〉 = |v1〉 ⊗ |v2〉 and |vi〉 is the eigenstate of Pauli-operator σz

with eigenvalue (−1)vi , can be described by correlators that correspond to the operators

Ĉ0Z = Ĉ+
0 = (0̂ − 1̂)0̂ and Ĉ1Z = Ĉ+

1 = (1̂ − 0̂)1̂. By a direct calculation, one obtains

the correlators 〈Ĉ0Z〉 = sin2(ξ) and 〈Ĉ1Z〉 = cos2(ξ) for the state |φ〉, which reveals the

correlation properties when observed in the local measurement setting Mz = (Z,Z) where

Z = σz. The state |φ〉 can also be shown in another representation, e.g.,

|φ〉 = a(|00〉X + |11〉X) + b(|01〉X + |10〉X), (2.13)

where a = [cos(θ) + sin(θ)]/2, b = [cos(θ) − sin(θ)]/2, and |vi〉X is an eigenstate of Pauli-

operator σx with an eigenvalue (−1)vi . This representation provides the information of

probability distribution for {|v1v2〉X} when measured in the setting Mx = (X,X) where

X = σx. From which, one can construct correlators, and the characters of correlation

can be described by 〈Ĉ0X〉 = 〈Ĉ0X〉 = sin(2ξ)/2 where Ĉ0X = Ĉ+
0 = (0̂ − 1̂)0̂ and

Ĉ0X = Ĉ+
1 = (1̂ − 0̂)1̂.

(b) The probability distribution for |φ〉 when measured with the setting Mz is the

same as the one of the following mixture of product states:

ρφ = sin2(ξ) |00〉 〈00| + cos2(ξ) |11〉 〈11| . (2.14)

Then we have the correlators 〈Ĉ0Z〉ρφ
= sin2(ξ) and 〈Ĉ1Z〉ρφ

= cos2(ξ) and know outcomes
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of measurements for these particles are dependent. When the state ρφ is represented in

the basis {|v1v2〉X}, the probability for observing an element in {|v1v2〉XX 〈v1v2|} of ρφ is

1/4, which implies that these two particles are independent. This fact can be shown by

the correlators 〈Ĉ0X〉 = 〈Ĉ1X〉 = 0.

From the above examples, one has
∑

l=X,Z

∑1
k=0〈Ĉkl〉 >

∑
l=X,Z

∑1
k=0〈Ĉkl〉ρφ

. From

which, it is worth noting that determining a sum of correlators associated with two dif-

ferent local measurement settings can help us to distinguish the entangled state |φ〉 from

the separable state ρφ. This idea and approach can be applied to detections of truly

many-qubit entanglement and bipartite entangled qudits. For any many-qubit system

composed of two independent parts, outcomes of measurements should satisfy

∣∣∣∣∣
∑

k

〈Ĉ±
k[m,m̄]〉

∣∣∣∣∣ = |(〈0̂m〉 − 〈1̂m〉)(〈0̂m̄〉 − 〈1̂m̄〉)| ≤ 1 (2.15)

for any measurement settings chosen. Whereas, for some specific entangled states, one

can feature properties of entanglement to be created in |
∑

k〈Ĉ±
k[m,m̄]〉| = 1 for several local

measurement settings chosen and consider which as necessary conditions for the entangled

state. Furthermore, we could give all conditions of correlations [m, m̄] associated with any

two subsystems of the many-qubit entangled state under study. Thus we can use these

conditions of genuine many-qubit entanglement to rule out biseparable correlations. For

two independent qudits observed under any measurement settings, a sum of correlators

should follow the criteria

∣∣∣∣∣
∑

k

〈Ĉ(q)
k 〉

∣∣∣∣∣ ≤
∑

k

|(〈k̂〉 − 〈T (k̂)〉)|2
∑

k′

|〈U(k̂′)〉|2

≤ 1. (2.16)

Then entanglement conditions |
∑

k〈Ĉ
(q)
k 〉| = 1 for all local measurement settings con-

sidered can be very useful to detect entangled qudit pairs. Using the idea introduced

above can promote constructions of many-qubit and two-qudit entanglement witness op-

erators that require only two local measurement settings. Even though the conditions
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|
∑

k〈Ĉ±
k[m,m̄]〉| = 1 and |

∑
k〈Ĉ

(q)
k 〉| = 1 cannot be satisfied by all entangled states con-

sidered, the above approach still can be applied to entanglement detections if more local

measurement settings are used. See the case discussed in the second subsection of Sec.

2.5.

(c) The state vector of a two-qubit singlet state is represented by

|ψ〉 =
1√
2
(|01〉 − |10〉). (2.17)

If V̂1 ∈ {V̂ (1)
1 = Z, V̂

(2)
1 = X} and V̂2 ∈ {V̂ (1)

2 = −(Z +X)/
√

2, V̂
(2)
2 = (Z −X)/

√
2}, we

have four different local measurement settings M = (V̂1, V̂2) to give four sets of correlators.

The operators of correlators are as follows: Ĉ
(rt)
0 = Ĉ+

0 = (0̂ − 1̂)0̂, Ĉ
(rt)
1 = Ĉ+

1 = (1̂ −

0̂)1̂ for (rt) ∈ {(11), (21), (22)} and Ĉ
(12)
0 = Ĉ−

0 = (0̂ − 1̂)1̂, Ĉ
(12)
1 = Ĉ−

1 = (1̂ − 0̂)0̂ ,

where the superscripts (rt) mean an observable V̂
(r)
1 and another one V̂

(t)
2 are chosen

for measurements. The correlators can be easily calculated, and then we have 〈Ĉ(rt)
0 〉 =

〈Ĉ(rt)
1 〉 = 1/2

√
2. When collecting all of the correlator operators proposed above, one gets

B =
2∑

r,t=1

1∑

k=0

Ĉ
(rt)
k

= V̂
(1)
1 V̂

(1)
2 + V̂

(2)
2 V̂

(2)
2 + V̂

(2)
1 V̂

(1)
2 − V̂

(1)
1 V̂

(2)
2 . (2.18)

Local-realistic theories predict that B ≤ 2, which is called the CHSH inequality [13],

whereas the entangled state |ψ〉 predicted by quantum mechanics provides a violation by

∑
rt〈Ĉ(rt)〉 = 2

√
2. It is remarkable that the kernel of the CHSH inequality [13] is com-

posed of necessary conditions of the state |ψ〉 in terms of the correlators (〈Ĉ(rt)
0 〉, 〈Ĉ(rt)

1 〉).

In what follows, we will use correlators to analyze the most studied many-qubit and

two-qudit entangled states: the N -qubit GHZ state [113] and the two-qudit Bell state.

The correlators proposed are necessary for states to be the entanglement under study and

play important roles in identifying quantum correlations including ruling out biseparable

correlations and ones predicted by local-realistic theories.
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2.3 Quantum correlations imbedded in entangled states

2.3.1 Correlation structures of many-qubit GHZ states

The three-qubit GHZ state is first discussed in the GHZ argument [113] which provides

important insights into tripartite entanglement. Entanglement embedded in a three-qubit

GHZ state has been shown very useful to investigate both noncontextual variables and

Bell-EPR theorems [114]. In addition to the three-qubit GHZ state, the generalized N -

qubit GHZ sates have attracted much attentions. Many Bell inequalities for many qubits

[14–16] have been shown to be violated by N -qubit GHZ states. Furthermore, six-atom

[85] and six-photon [99] GHZ states have been demonstrated experimentally.

In this subsection, we utilize three different types of correlators to specify the features

of N -qubit correlation of a N -qubit GHZ state which is of the state vector:

|Φ〉 =
1√
2
(|0〉⊗N + |1〉⊗N). (2.19)

The classification of correlator depends on which kind a local measurement setting is

chosen and how many settings are used in Bell-type experiments. These correlators will

be utilized to subsequent investigations on entanglement detections.

Specification 1. Firstly, we introduce alternative dichotomous observable for qubits by

V̂k ∈ {X, Y }, V̂N ∈ {Y +X√
2

,
Y −X√

2
}, (2.20)

for k = 1, 2, ..., N − 1, where Y denotes the Pauli-operator σy. Since each party has two

choices to perform measurements, there are 2N possible sets of local measurement settings.

Then we give the following operators of correlators

Ĉ0l = γlĈ
+
0 , Ĉ1l = γlĈ

+
1 , (2.21)

for l = 1, 2, ..., 2N , where l is used to number 2N different measurement settings and γl
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are constants.

By a direct calculation, we have the correlators

〈Ĉ0l〉 = 〈Ĉ1l〉 =
γl(−1)n2(n2+1)/2

2
√

2
, (2.22)

where n2 denotes the number of V̂k = Y and V̂N = (Y − X)/
√

2 chosen in a setting

numbered l. If we assign γl = (−1)n2(n2+1)/2, then each correlator has the same sign and

becomes 〈Ĉ0l〉 = 〈Ĉ1l〉 = 1/2
√

2.

Specification 2. The observable of each particle designed for measurement is given by

V̂k ∈ {X, Y }, (2.23)

for k = 1, 2, ..., N . Although there are 2N possible settings of local measurements, we

focus only on settings in which there are even number of Y ’s chosen for measurements.

For odd N and 2n Y ’s where n is odd, we introduce correlator operators of the form

Ĉ0l = Ĉ−
0 , Ĉ1l = Ĉ−

1 , (2.24)

for l = 1, 2, ..., 2N−1 − 1. For even N and 2n Y ’s where n is even, the operators of

correlators are given by

Ĉ0l = Ĉ+
0 , Ĉ1l = Ĉ+

1 , (2.25)

for l = 1, 2, ..., 2N−1. For a N -qubit GHZ state, the correlators proposed are all the same:

〈Ĉ0l〉 = 〈Ĉ1l〉 =
1

2
. (2.26)

Specification 3. In this specification, we use only two local measurement settings to
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feature correlation structure in correlators:

Mz = {Z,Z, ..., Z},Mx = {X,X, ..., X}. (2.27)

When a N -qubit GHZ state is measured under the setting Mz, correlations between some

subsystem composed of m qubits and the rest can be described by correlators correspond-

ing to the operators:

Ĉ0Z[m,m̄] = (0mZ − 1mZ)0m̄Z , Ĉ1Z[m,m̄] = (1mZ − 0mZ)1m̄Z , (2.28)

where 0m(m̄)Z =
⊗

i∈m(m̄) v̂i for all vi = 0, 1m(m̄)Z =
⊗

i∈m(m̄) v̂i for all vi = 1, and m and

m̄ denote the subsystems comprised of m and N −m qubits respectively. For instance, to

detect three-qubit GHZ state the correlator operators have the explicit representations:

Ĉ0Z[i,pq] = (0̂i − 1̂i)0̂p0̂q, Ĉ1Z[i,pq] = (1̂i − 0̂i)1̂p1̂q,

where the set of subscripts (ipq) is used to number qubits. For each set of correlator, we

have

〈Ĉ0Z[m,m̄]〉 = 〈Ĉ1Z[m,m̄]〉 =
1

2
. (2.29)

For the sets of correlators constructed under the setting Mx, their constructions are

similar to the ones of (Ĉ0Z[m|m̄], Ĉ1Z[m|m̄]) and represented by

Ĉ0X[m|m̄] = Ĉ+
0[m|m̄], Ĉ1X[m|m̄] = Ĉ+

1[m|m̄]. (2.30)

where the operators Ĉ+
0[m|m̄] and Ĉ+

1[m|m̄] are of the forms as Eq. (2.3). Take three-qubit

operators of correlators for example, they are of the forms:

Ĉ0X[i,pq] = (0̂i − 1̂i)(0̂p0̂q + 1̂p1̂q), Ĉ1X[i,pq] = (1̂i − 0̂i)(0̂p1̂q + 1̂p0̂q).
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The correlators corresponding to the above operators can be easily calculated and given

by

〈Ĉ0X[m,m̄]〉 = 〈Ĉ1X[m,m̄]〉 =
1

2
. (2.31)

2.3.2 Correlation conditions for bipartite arbitrary-dimensional

Bell states

We proceed to introduce correlators to study the correlation structure of a bipartite

arbitrary-dimensional Bell state:

|Ψ〉 =
1√
d

d−1∑

v=0

|v〉 ⊗ |v〉 . (2.32)

The constructions of correlators are based on the basic idea shown in the introduction

and mainly in the second theorem. The generalized Bell state plays an important role

both in violations of Bell inequalities for two qudits [17, 18] and in quantum communi-

cation protocols [24]. Experiments have demonstrated generalized Bell states for d = 3

successfully and even used for further applications [23].

Specification 1. The correlator operators presented in this specification can be formu-

lated by the following general form

Ĉ
(rt)
k (v

(r)
1 , v

′(r)
1 , v

(t)
2 ) = (v̂

(r)
1 − v̂

′(r)
1 ) ⊗ v̂

(t)
2 , (2.33)

where the superscripts, (rt), (r), and (t), mean that the measurement V̂
(r)
1 numbered r

and the one V̂
(t)
2 numbered t have been selected from two choices by each party. Four
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designations of (v
(r)
1 , v

′(r)
1 , v

(t)
2 ) associated four local measurement settings are given by

(v
(1)
1

.
= −k, v′(1)1

.
= 1 − k, v

(2)
2 = k),

(v
(2)
1

.
= d− k − 1, v

′(2)
1

.
= −k, v(1)

2 = k),

(v
(h)
1

.
= −k, v′(h)

1
.
= d− k − 1, v

(h)
2 = k), (2.34)

for h = 1, 2 and k = 0, 1, ..., d−1, where
.
= denotes equality modulo d . The set of operators

{Ĉ(rt)
k } is a special case of the general one {Ĉ(q)

k } discussed in the second theorem, and

for each measurement setting {Ĉ(rt)
k } involves one set of correlation condition rather than

γd conditions for {Ĉ(q)
k }.

To evaluate the correlators concretely, we choose specific sets of complete orthonormal

basis {|v(h)
j 〉

V
(h)
j

} for projectors {v̂(h)
j = |v(h)

j 〉
V

(h)
j V

(h)
j

〈v(h)
j |} and operators {V̂ (h)

j }, where

∣∣∣v(h)
j

〉

V
(h)
j

=
1

d

d−1∑

v=0

exp[i
2πv

d
(v

(h)
j + n

(h)
j )] |v〉 , (2.35)

and n
(h)
j are local parameters that manifest observable V̂

(h)
j . For a set of local parameters

given by

n
(1)
1 = 0, n

(1)
2 = 1/4, n

(2)
1 = 1/2, n

(2)
2 = −1/4, (2.36)

the joint probabilities for obtaining a set of measured outcome (v
(r)
1 , v

(t)
2 ) for the state |Ψ〉

is [17]

〈v̂(r)
1 ⊗ v̂

(t)
2 〉 =

1

2d3 sin2[π
d
(v(rt) + n(rt))]

, (2.37)

where v(rt) = v
(r)
1 + v

(t)
2 and n(rt) = n

(r)
1 + n

(t)
2 . Therefore, the correlators 〈Ĉ(rt)

k 〉 can be

calculated analytically, and then we arrive at

〈Ĉ(rt)
k 〉 =

1

2d3
[csc2(

π

4d
) − csc2(

3π

4d
)]. (2.38)
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Since 〈Ĉ(rt)
k 〉 > 0 for all k’s with any finite value of d, we ensure that outcomes of mea-

surements performed on particles of a state |Ψ〉 are dependent under four different local

measurement settings.

Specification 2. We can generalize the designations (v
(r)
1 , v

′(r)
1 , v

(t)
2 ) introduced in the

above specification to more general cases. The correlator operators are given by

Ĉ
(rt)
kα = (v̂

(r)
1 − v̂

′(r)
1 ) ⊗ v̂

(t)
2 . (2.39)

We propose the following designation as the kernel of the second specification of correla-

tion:

(v
(1)
1

.
= k − α, v

′(1)
1

.
= k + α+ 1, v

(2)
2 = k),

(v
(2)
1

.
= k − α− 1, v′1

(2) .= k + α, v
(1)
2 = k),

(v
(h)
1

.
= k + α, v

′(h)
1

.
= k − α− 1, v

(h)
2 = k), (2.40)

for h = 1, 2, k = 0, 1, ..., d− 1, and α = 0, ..., ⌊d/2 − 1⌋.

The sets of projectors {v̂(h)
j =

∣∣∣v(h)
j

〉

V
(h)
j V

(h)
j

〈
v

(h)
j

∣∣∣} for the first qudit and the second

one are defined by two specific sets of complete orthonormal basis {
∣∣∣v(h)

j

〉

V
(h)
j

}, where

∣∣∣v(h)
1

〉

V
(h)
1

=
1

d

d−1∑

v=0

exp[i
2πv

d
(v

(h)
1 + n

(h)
1 )] |v〉 ,

∣∣∣v(h)
2

〉

V
(h)
2

=
1

d

d−1∑

v=0

exp[i
2πv

d
(−v(h)

2 + n
(h)
2 )] |v〉 , (2.41)

and the set of local parameters {n(h)
j } chosen is the same as the one used in the first

specification. We have the correlators

〈Ĉ(rt)
kα 〉 =

1

2d3
{csc2[

(1 + 4α)π

4d
] − csc2[

(3 + 4α)π

4d
]}, (2.42)

which are positive for all k’s and α’s considered. For a given α, we have one necessary
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condition of the generalized Bell state. Thus one can feature the quantum correlations

embedded in the bipartite d-level Bell state in 4⌊d/2⌋ sets of correlators and hence have

4⌊d/2⌋ necessary conditions.

Specification 3. There is a specific relation between the projector v̂
(r)
1 and v̂

′(r)
1 via

the variable α introduced in the second specification. Then it is natural to consider a

generalization about sets of correlators containing two variables. For this motivation, we

introduce correlators of the form

Ĉ
(rt)
kηµ = (v̂

(r)
1 − ˆv′(r)1) ⊗ v̂

(t)
2 , (2.43)

where

(v
(r)
1

.
= η − k, v′

(r)

1
.
= µ− k, v

(t)
2 = k), (2.44)

for k = 0, 1, ..., d− 1, and η and µ are introduced variables. Let the projectors {v̂(h)
j } are

the same as the one introduced in the first specification, refer to Eq. (2.35) and definitions

before which. Then the probability for getting a set of result (v
(r)
1 , v

(t)
2 ) is

〈v̂(r)
1 ⊗ v̂

(r)
1 〉 =

1

d3

sin2[π(v(rt) + n(rt))]

sin2[π
d
(v(rt) + n(rt))]

. (2.45)

From which we have the correlators:

〈Ĉ(rt)
kηµ〉 = 〈η̂ ⊗ 0̂〉 − 〈µ̂⊗ 0̂〉, (2.46)

for all k’s, and for each local measurement setting chosen, all of the correlators 〈Ĉ(rt)
kηµ〉

satisfy either of the conditions:

〈Ĉ(rt)
kηµ〉 > 0, for k = 0, 1, ..., d− 1, (2.47)

〈Ĉ(rt)
kηµ〉 < 0, for k = 0, 1, ..., d− 1, (2.48)
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i.e., the criteria of dependence.

Specification 4. In the previous three specifications, we use four local measurement

settings to investigate correlations. Whereas we will give correlators under two measure-

ment settings in this specification. For the first setting, our operators of correlators are

of the form:

Ĉ
(q)
k = [k̂ − T (k̂)] ⊗ k̂, (2.49)

for k = 0, 1, ..., d− 1 and q = 1, ..., γd, where k̂ = |k〉 〈k|. The above formulation of {Ĉ(q)
k }

follows the same definition as the one introduced in the second theorem, and note that

we have applied U(k̂) = k̂ to the present specification.

For the second measurement setting, we choose a specific complete set of orthonormal

basis vectors {|vj〉Fj
} where

|vj〉Fj
=

1

d

d−1∑

v=0

exp(−i2πv
d
vj) |v〉 , (2.50)

to represent correlator operators, and then we give the following operators of correlators

Ĉ
(q)
kF = [k̂ − T (k̂)] ⊗ v̂2, (2.51)

for k = 0, 1, ..., d− 1 and q = 1, ..., γd, where v̂j = |vj〉FjFj
〈vj| and v2 + k

.
= 0. By a direct

calculation, one has the correlators

〈Ĉ(q)
k 〉 = 〈Ĉ(q)

kF 〉 =
1

d
, (2.52)

for all k’s and q’s, which satisfies the condition of dependence.
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2.4 Correlators embedded in Bell inequalities

Entanglement manifests itself via correlations in different directions of measurements. In

the previous section, we feature quantum correlations of the genuine many-qubit GHZ

states and the two-qudit Bell state in the correlators under different local measurement

settings. These correlators can be considered as necessary conditions of the states under

study. In addition to the CHSH inequality discussed in Sec. 2.2, further, we will reveal

that four Bell inequalities that have been presented are composed of correlators.

2.4.1 Bell inequalities for many qubits

Seevinck-Svetlichny inequality

In the first specification for the N -qubit GHZ state, we give 2N sets of correlators corre-

sponding 2N local measurement settings to describe the correlation structure of a GHZ

state. It is worth noting that each set of correlator (Ĉ0l, Ĉ1l) provides information about

correlations between any two subsystems of the N -qubit state and give nc sets of necessary

conditions of a generalized GHZ state. Each correlator has the same value whatever a

partition is chosen, i.e., 〈Ĉ0l[m,m̄]〉 = 〈Ĉ0l[m,m̄]〉 = 1
2
√

2
, for l = 1, ..., 2N and for all different

partitions involved in {[m, m̄]} , which describes the properties of genuine multipartite

entanglement. A N -qubit genuine multipartite entanglement cannot be created without

participation of all of the N particles. It is an interesting question whether one can use

these correlators associated characters of many-qubit correlation to rule out correlations

predicted by local-realistic theories.

Using a linear combination of the correlators

CΦ1 =
∑

l

〈Ĉ0l〉 + 〈Ĉ1l〉 (2.53)

could be a means of the identification of a N -qubit GHZ state, which helps to approach

the question mentioned above. Recently, Seevinck and Svetlichny [15] introduce a new
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type of hidden variable theory by studying partial separability. The hypothesis of partial

separability says that each subsystem of a N -particle decaying ensemble forms extended

systems which are uncorrelated to each other [15]. Then, for a subsystem with m particles

which is uncorrelated with the one with N −m elements, the hypothesis of partial sep-

arability can be represented through a factorizable expression for joint probability given

by

P (v1, v2, ..., vN)

=

∫
p(v1, v2, ..., vm|λ)q(vm+1, vm+2, ..., vN |λ)dρ(λ),

where p and q are probabilities conditioned to the hidden variable λ with probability

measure dρ.

For systems constrained by the hypothesis of partial separability, Seevinck and Svetlichny

[15] have proved that local realistic theories predict CΦ1 by CΦ1,LR ≤ 2N−1, which is smaller

than 2N−1/2 that a truly N -qubit GHZ state can achieve. In addition, they also showed

that for any N -particle systems with the partition [k′|k : 1, ..., N ; k 6= k′], i.e. biseparable,

the sum of correlators gives the bound CΦ1 ≤ 2N−1. Thus from their results, we realize

that the many-particle correlations of a N -qubit GHZ state and CΦ1 cannot be mimicked

by biseparable states and cannot be reproduced by systems governed by the hypothesis

of partial separability.

Mermin inequality

A linear combination of correlator operators proposed in the second specification for a

N -qubit GHZ state, ĈΦ2 =
∑

l Ĉ0l + Ĉ1l, can be rephrased in the following form:

ĈΦ2 =
1

2

[
N⊗

k=1

(Xk + iYk) +

N⊗

k=1

(Xk − iYk)

]

, (2.54)

where {Xk, Yk} denotes the set of observable {X, Y } for the k th particle. It is remark-

able that ĈΦ2 is an alternative form of the operator introduced by Mermin [14] for Bell

30



CHAPTER 2. ENTANGLEMENT AND CORRELATION CONDITIONS

inequality. For a N -qubit GHZ state, quantum correlations provide CΦ2 = 〈ĈΦ2〉 = 2N−1.

Mermin showed that correlations predicted by quantum mechanics are stronger than the

ones predicted by local-realistic theories by the following inequalities [14]: CΦ2,LR ≤ 2N/2,

for even N , and CΦ2,LR ≤ 2(N−1)/2, for odd N .

A N -qubit GHZ state is the eigenstate of ĈΦ2 with the maximum eigenvalue 2N−1.

Then aN -qubit GHZ state gives a maximal violation of the Mermin inequality. In addition

to this fact, through the correlators proposed, we gain an insight into the structure of

ĈΦ2. In particular, by an analytical analysis of the elements of ĈΦ2, one can realize that

the correlation conditions that are necessary for states to be a N -qubit GHZ state are

embedded in ĈΦ2. From which, we could know how property of quantum correlations

manifests itself via correlations in different measurement settings in a concrete way.

2.4.2 Bell inequalities for two qudits

Correlator-based Bell inequalities

We combine all of the correlator operators introduced in the first specification for the

state |Ψ〉,

Ĉ
(d)
Ψ1 =

∑

r,t,k

Ĉ
(rt)
k , (2.55)

and use its expectation value C
(d)
Ψ1 = 〈Ĉ(d)

Ψ1 〉 to be a single identification of the correlation

properties of entangled qudits. Then it is interesting to investigate what is the maximal

values of C
(d)
Ψ1 that can be provided by classical correlations under local-realistic theories.
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The expectation value C
(d)
Ψ1 for any physical systems can be represented as:

C
(d)
Ψ1 = P (v

(1)
1 + v

(1)
2

.
= 0) − P (v

(1)
1 + v

(1)
2

.
= −1)

+P (v
(1)
1 + v

(2)
2

.
= 0) − P (v

(1)
1 + v

(2)
2

.
= 1)

+P (v
(2)
1 + v

(2)
2

.
= 0) − P (v

(2)
1 + v

(2)
2

.
= −1)

+P (v
(2)
1 + v

(1)
2

.
= −1) − P (v

(2)
1 + v

(1)
2

.
= 0), (2.56)

where P (·) denotes a joint probability for getting a set of result (v
(r)
1 , v

(t)
2 ) which satisfies a

condition shown in the bracket. In order to have a compact form of C
(d)
Ψ1 for a convenient

discussion, we define the following variables:

χ11 = v
(1)
1 + v

(1)
2 + ḋ11,

χ12 = −v(1)
1 − v

(2)
2 + ḋ12,

χ22 = v
(2)
1 + v

(2)
2 + ḋ22,

χ21 = −v(2)
1 − v

(1)
2 − 1 + ḋ21, (2.57)

where ḋrt denotes a multiple of d and χrt ∈ {−1, 0} for r, t = 1, 2. In particular, the sum

of the variables satisfies the constrain:

2∑

r,t=1

χrt
.
= −1. (2.58)

With the defined variables, C
(d)
Ψ1 is written as

C
(d)
Ψ1 =

2∑

r,t=1

P (χrt = 0) − P (χrt = −1). (2.59)

Next, we proceed to consider the extreme values of C
(d)
Ψ1 under the local-realistic theories.

The all possible sets of (χ11, χ12, χ22, χ21) which fulfill the constraint of the sum of the

variables are as the following: (i) three of the variables are 0 and the rest is −1. (ii)

all of the variables are −1. The first class can be applied to arbitrary d, whereas the
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second one is only applicable for d = 3 . Thus, we have C
(d)
Ψ1,LR = 2 for the class (i) and

C
(3)
Ψ1,LR = −4 for (ii), which mean that for all the generators of the convex polytope for

C
(d)
Ψ1,LR the value of C

(d)
Ψ1,LR is equal or less than 2. Therefore, in the regime governed by

local-realistic theories, the value of C
(d)
Ψ1,LR is bounded by 2, i.e., C

(d)
Ψ1,LR ≤ 2.

For a generalized Bell state, the summation of all of the correlators can be calculated

analytically and we have

〈Ĉ(d)
Ψ1 〉 =

1

2d2
[csc2(

π

4d
) − csc2(

3π

4d
)]. (2.60)

which is an increasing function of d. For example, if d = 3, one has 〈Ĉ(3)
Ψ1〉 ≃ 2.87293, and

in the limit of large d, we obtain, limd→∞〈Ĉ(d)
Ψ1 〉 = (16/3π)2 ≃ 2.88202. From the above

results, we realize that 〈Ĉ(d)
Ψ1 〉 > C

(d)
Ψ1,LR. Therefore, the quantum correlations are stronger

than the ones predicted by the local-realistic theories. With this fact, the derived kernel

C
(d)
Ψ1 can be utilized to tell quantum correlations from classical ones.

From a geometric point of view, we have examined our Bell-type inequality by the

work of Masanes about tightness of Bell inequalities [115]. The result shows that the

inequality is non-tight, i.e., it is not an optimal detector of non-local-realistic correlation.

The detailed proof and discussions are given in Appendix A.

We proceed to consider another Bell inequality which consists of only the sets of cor-

relators C
(rt)
kα = 〈Ĉ(rt)

kα 〉 for α = 0 presented in the second specification for the generalized

Bell states. The kernel of our Bell inequality is of the form

C
′(d)
Ψ2 =

∑

r,t,k

C
(rt)
k0

= P (v
(1)
2 − v

(1)
1

.
= 0) − P (v

(1)
2 − v

(1)
1

.
= 1)

+P (v
(2)
2 − v

(1)
1

.
= 0) − P (v

(2)
2 − v

(1)
1

.
= −1)

+P (v
(2)
2 − v

(2)
1

.
= 0) − P (v

(2)
2 − v

(2)
1

.
= 1)

+P (v
(1)
2 − v

(2)
1

.
= 1) − P (v

(1)
2 − v

(2)
1

.
= 0). (2.61)
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Using the following substitutions,

χ11 = v
(1)
1 − v

(1)
2 + ḋ11,

χ12 = −v(1)
1 + v

(2)
2 + ḋ12,

χ22 = v
(2)
1 − v

(2)
2 + ḋ22,

χ21 = −v(2)
1 + v

(1)
2 − 1 + ḋ21, (2.62)

C
′(d)
Ψ2 is expressed by

C
′(d)
Ψ2 =

2∑

r,t=1

P (χrt = 0) − P (χrt = −1), (2.63)

with the constraint
∑2

r,t=1 χrt
.
= −1. Then, by the same method as the approach for

determining the extreme values of C
(d)
Ψ1,LR, one has C

′(d)
Ψ2,LR ≤ 2. Whereas, for a generalized

Bell state, the expectation values of Ĉ
′(d)
Ψ2 are 〈Ĉ ′(d)

Ψ2 〉 = [csc2( π
4d

)− csc2(3π
4d

)]/(2d2) and are

greater than the local-realistic upper bound for arbitrary d.

The above Bell inequality is non-tight. The proof for showing its tightness is similar to

the one for C
(d)
Ψ1,LR ≤ 2, refer to Appendix A. In addition, although the values of maximal

quantum violation are slightly smaller than the CGLMP inequalities [17], the total number

of joint probabilities required by each of the presented correlation functions C
(rt)
k0 is only

2d, which is much smaller than that in Fu’s general correlation function [109], which is

about O(d2) (refer to the following discussions). Moreover, the factors for violations of

Bell inequalities are larger than the ones for SLK inequalities [18] for d > 2 (see below).

Another feature of the sum of all correlators is its robustness to noise. If a generalized Bell

state is suffered from white noise and turns into a mixed one, say ρ, with a noise fraction

pnoise, the value of 〈Ĉ ′(d)
Ψ2 〉 for the state ρ becomes 〈Ĉ ′(d)

Ψ2 〉ρ = (1 − pnoise)〈Ĉ ′(d)
Ψ2 〉. If the

criterion, 〈Ĉ ′(d)
Ψ2 〉ρ > 2, i.e., pnoise < 1 − 2/〈Ĉ ′(d)

Ψ2 〉, is imposed on the system, one ensures

that the mixed state still exhibits quantum correlations in outcomes of measurements.

For instance, to maintain the quantum correlation for the limit of large d, the system
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must have pnoise < 0.30604.

CGLMP inequality

In the second specification of the state |Ψ〉, we have proposed 4⌊d/2⌋ sets of correlators to

describe the structure of correlation. We use a linear combination of all of these correlators

to detect quantum correlations. Since each correlator is a function of α, a combination of

correlator operators could be of the form:

Ĉ
(d)
Ψ2 =

∑

α,r,t,k

f(α)Ĉ
(rt)
kα , (2.64)

where f(α) denotes a coefficient of combination which is function of α. If we let f(α) be

f(α) = 1 − 2α

d− 1
, (2.65)

the summation of all of the correlators C
(rt)
kα becomes the kernel of the CGLMP inequality

[17]:

C
(d)
Ψ2 = C

′(d)
Ψ2 +

⌊d/2−1⌋∑

α=1

2∑

r,t=1

d−1∑

k=0

(1 − 2α

d− 1
)C

(rt)
kα , (2.66)

where C
′(d)
Ψ2 is the kernel of correlator-based Bell inequality defined by Eq. (2.61). Es-

pecially, note that for d = 2, 3 the CGLMP inequalities are the correlator-based Bell

inequalities. The local realistic constraint proposed by Collins et al. [17] specifies that

correlations have to satisfy the condition: C
(d)
Ψ2,LR ≤ 2. On the other hand, by Eq. (2.42),

quantum correlations of a generalized Bell state gives a violation of the CGLMP inequality

for arbitrary high-dimensional systems. Thus, through the related discussions in the sec-

ond specification for |Ψ〉, we realize that the CGLMP inequality is composed of correlators

for correlations.
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It is worth representing Eq, (2.66) in the following form:

C
(d)
Ψ2 = C(11) + C(12) − C(21) + C(22), (2.67)

where

C(rt) =

⌊d/2−1⌋∑

α=0

d−1∑

k=0

εrt(1 − 2α

d− 1
)C

(rt)
kα , (2.68)

ε11 = ε22 = ε12 = 1, and ε21 = −1. The representation of C
(d)
Ψ2 in Eq. (2.67) takes the

same simple form as the kernel of the CHSH inequality [13], and the linear combinations

of correlators, C(rt), are just the general correlation functions of the CHSH inequality

for arbitrarily high-dimensional systems introduced by Fu [109]. Each C(rt) provides

⌊d/2⌋ sets of correlators for identifying correlations and then consists of 2d⌊d/2⌋ joint

probabilities.

SLK inequality

Following a way similar to the one for constructing the kernel of the CGLMP inequality, we

take a linear combination of the operators of correlators proposed in the third specification

for the generalized Bell state and give an operator of the form

Ĉ
(d)
Ψ3 =

∑

η,µ,r,t,k

f (rt)(η, µ)Ĉ
(rt)
kηµ, (2.69)

where f (rt)(η, µ) is a coefficient of combination and depends on a local measurement chosen

and a set of variables (η, µ). Let us give a concrete example to show above formulation

by the following summation of correlators:

d−1∑

η=0

g(rt)(η)
d−1∑

k=0

P (v1
.
= η − k, v2 = k), (2.70)
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where

g(rt)(η) =
1

4
sin[2(ν + η + νrt)π]{cot[(ν + η + νrt)π/d] − cot[(ν + η + νrt)π]}, (2.71)

for ν + η + νrt 6= 0, ν, and νrt are constants, and

g(rt)(η) =
1

2
(d− 1), (2.72)

for ν + η + νrt = 0. It is worth noting that [116]

d−1∑

η=0

g(rt)(η) = 0, (2.73)

for ν + νrt 6= 0, which indicates that the sum of positive g(rt)(η)’s and negative ones is

zero and implies that one can always have the following relation:

d−1∑

η=0

g(rt)(η)

d−1∑

k=0

P (v
(r)
1

.
= η − k, v

(t)
2 = k)

=
∑

η,µ,k

f (rt)(η, µ)
[
P (v

(r)
1

.
= η − k, v

(t)
2 = k) − P (v

(r)
1

.
= µ− k, v

(t)
2 = k)

]
. (2.74)

If we choose the same measurement settings as the ones mentioned in the third speci-

fication and let n
(1)
1,2 = 0, n

(2)
1,2 = 1/2 (refer to Eqs. (2.35) and (2.45)), ν = ν11 = 0, ν22 = 1,

and ν12 = ν21 = 1/2, one obtains
∑d−1

η=1 g(η)
(hh) = (1 − d)/2 and g(0)(hh) = (d − 1)/2 for

h = 1, 2. Thus, one arrives at the exact forms of f (rt)(η, µ) for r = t = h that are given

by f (hh)(0, µ) = 1/2. Furthermore, with Eq. (2.71) we have g(η)(12) = g(η)(21) = 0, which

means that there are only two local measurement settings involved in the kernel. Thus

〈Ĉ(d)
Ψ3 〉 = C

(d)
Ψ3 is of the following explicit form:

C
(d)
Ψ3 =

1

2

2∑

h=1

d−1∑

µ=1

d−1∑

k=0

[
P (v

(h)
1

.
= −k, v(h)

2 = k) − P (v
(h)
1

.
= µ− k, v

(h)
2 = k)

]
. (2.75)
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For a generalized Bell state, the values of correlators 〈Ĉ(hh)
kηµ 〉 = P (v

(h)
1

.
= −k, v(h)

2 =

k)−P (v
(h)
1

.
= µ− k, v

(h)
2 = k) strictly satisfy the criteria (2.47) by the facts 〈Ĉ(hh)

kηµ 〉 = 1/d

for all parameters considered.

In the operator representation, C
(d)
Ψ3 can be represented in the form

Ĉ
(d)
Ψ3 =

1

4

d−1∑

n=1

N⊗

j=1

(V̂
(1)
j + ωn/2V̂

(2)
j ) + H.c., (2.76)

where V̂ (h) =
∑d−1

v=0 ω
vv̂(h) and ω = exp(i2π/d). Furthermore, in the next section we will

show Ĉ
(d)
Ψ3 can be used to construct entanglement witness operators to detect states close

to |Ψ〉.

One also can utilize Ĉ
(d)
Ψ3 to detect a state under a local unitary transformation of one

of the qudits of |Ψ〉. For example, the state |Ψν〉 = (I ⊗ Ŝν) |Ψ〉, where Ŝν is a phase shift

operator such that Ŝν |v〉 = ωνv |v〉, is detected by the following operator:

Ĉ
(d)
Ψ3ν = (I ⊗ Ŝν)Ĉ

(d)
Ψ3 (I ⊗ Ŝ†

ν)

=
1

4

d−1∑

n=1

ωνn

N⊗

j=1

(V̂
(1)
j + ωn/2V̂

(2)
j ) + H.c.. (2.77)

Furthermore, if ν = 1/4 is chosen and other parameters involved in g(rt)(η) are set as

the previous ones, the expectation value 〈Ĉ(d)
Ψ3ν〉 = C

(d)
Ψ3ν can be represented in terms of

correlators:

C
(d)
Ψ3ν =

d−1∑

µ=1

d−1∑

k=0

g(11)(µ)[P (v
(1)
1

.
= −k, v(1)

2 = k) − P (v
(1)
1

.
= µ− k, v

(1)
2 = k)]

+
2∑

r,t=1

d−2∑

µ=0

d−1∑

k=0

g(rt)(µ)[P (v
(r)
1

.
= d− 1 − k, v

(t)
2 = k)

− P (v
(r)
1

.
= µ− k, v

(t)
2 = k)], (2.78)

where in the last line the summation of local measurement setting does not include
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(r, t) = (1, 1). Since g(rt)(µ) 6= 0 for all r’s and t’s, four measurement settings are required

for realizing Ĉ
(d)
Ψ3ν . For generalized GHZ states, the sum of correlators is C

(d)
Ψ3 = C

(d)
Ψ3ν =

d− 1. Son et al. [18] have shown that local-realistic theories predict the value of C
(d)
Ψ3ν by

C
(d)
Ψ3ν,LR ≤ 1

4
[3 cot(

π

4d
) − cot(

π

3d
)] − 1, (2.79)

for arbitrarily high-dimensional systems, which is called the SLK inequality. The SLK

inequality is shown to be violated by the generalized Bell state by a factor:

lim
d→∞

C
(d)
Ψ3

C
(d)
Ψ3ν,LR

=
3π

8
≃ 1.1781, (2.80)

for large limit of d, which is smaller than the ones for the CGLMP [17] (≃ 1.4849) and

the correlator-based (≃ 1.4410) Bell inequalities.

2.5 Correlators imbedded in entanglement witness

operators

Using partial or complete knowledge of a state to be created is an usual way to construct

an entanglement witness operator for identifying an experimental output state. Choice of

correlation criteria used to feature entanglement affects the effort for realizing identifica-

tions of quantum correlations. Thereby, how to feature the state under study in criteria

that can describe the central part of correlation properties of entanglement and can be

realized efficiently is a crucial task. In what follows, we will show the correlation con-

ditions in terms of correlators are useful for performing entanglement detections. Since

operators of correlators are locally measurable, these witnesses can be performed with

Bell-type experiments and require only two local measurement settings. Furthermore, we

reveal known inequalities of entanglement are composed of correlators.
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2.5.1 Detections of genuine many-qubit GHZ states

Since correlators proposed in the third specification for the many-qubit GHZ state consists

of conditions of many-qubit correlations, we use them to detect genuine multipartite

entanglement. Since we know that

1∑

k=0

〈ĈkZ[m|m̄]〉 =

1∑

k=0

〈ĈkX[m|m̄]〉 = 1

from the previous results, the strategy of entanglement detection follows the basic idea

shown in the examples (a), (b), and related discussions in Sec. 2.2. The central part of

our witness is a linear combination of correlator operators:

ĈΦ = cz
∑

{[m|m̄]}
(Ĉ0Z[m|m̄] + Ĉ1Z[m|m̄])

+ cx
∑

{[m|m̄]}
(Ĉ0X[m|m̄] + Ĉ1X[m|m̄])

= cz[2
N−1(0̂⊗N + 1̂⊗N) − 1] + cx(2

N−1 − 1)X⊗N , (2.81)

where cz and cx are constants, and 1 denotes an identity matrix with 2N dimensions.

From which, we give the following entanglement witness operator

WΦ = αΦ1 − ĈΦ, (2.82)

where αΦ is some constant. With a well choice of (cz, cx, αΦ), if Tr(WΦρ) < 0 for some

experimental output state ρ, the state ρ is identified as a truly multipartite entanglement

close to a N -qubit GHZ state.

To determine whether an operator WΦ is a witness, firstly we compare WΦ with a

project-based witness operator of the form:

Wp
Φ = αp

Φ1 − |Φ〉 〈Φ| , (2.83)
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where αp
Φ = max|χ〉∈B| 〈χ|Φ〉 |2, and B denotes the set of biseparable states. The overlap

αp
Ψ can be determined through the general method proposed by Bourennane et al. [70],

and thereby αp
Φ = 1/2 is obtained. If measured outcomes show that Tr(Wp

Φρ) < 0, the

state ρ is identified as an entanglement close to |Φ〉. Thus we have to show if the state

ρ satisfies Tr(WΦρ) < 0, it also satisfies Tr(Wp
Φρ) < 0, i.e., WΦ − γΦWp

Φ ≥ 0 where γΦ

is some positive constant [72]. Second, we concern the robustness of an operator which

satisfies the above condition. The robustness to noise can be determined by the noise

tolerance: pnoise < δ noise, is such that |Φ〉 suffered from white noise with a noise fraction

pnoise is identified as a truly multipartite entanglement. When taking above two points

into consideration, we have (cz = 2, cx = 2N−1, αΦ = 3czcx/2− cz − cx) and γΦ = czcx for

achieving a noise tolerance δΦ = (3 − 4/2N)−1.

We find that the witnesses WΦ proposed possess the same structures of the one given

by Ref. [72] based on the stabilizer formalism [117], which means that one could investi-

gate the stabilizer entanglement witnesses [72] via concrete and analytical conditions of

correlations based on correlators.

2.5.2 Inequalities based on the geometry of spin vectors

Before investigating the structure of inequalities of entanglement proposed by Dukin and

Simon [110], we will discuss the multi-qubit entangled states involved in the violations of

the inequalities. First, let us investigate the correlation structure of a two-qubit entan-

glement imbedded in the eigenstate of dot product of two spins:

D̂(2) = S1 · S2,

= X1 ⊗X2 + Y1 ⊗ Y2 + Z1 ⊗ Z2, (2.84)

where Sk = {Xk, Yk, Zk}. In the following the symbol of tensor product will be omit-

ted from the equations for simplicity. We focus on the eigenstate with the extreme

(means maximal or minimal ) eigenvalue of D̂(2), i.e., the singlet state |D2〉 = |ψ〉. Since
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D̂
(2)
l |D2〉 = − |D2〉, where D̂

(2)
1 = X1X2, D̂

(2)
2 = Y1Y2, and D̂

(2)
3 = Z1Z2, each D̂

(2)
l con-

tributes equally towards the minimal eigenvalue of D̂(2) which is −3. For the state |D2〉

with the operators D̂
(2)
l = Ĉ+

0 + Ĉ+
1 , we have the correlators 〈Ĉ+

0 〉 = 〈Ĉ+
1 〉 = −1/2 that

satisfy the condition of dependence, and we are convinced that the qubits of the singlet

state are dependent on each other.

We give another example by considering the structure of the entangled pair with the

form:

|Q2〉 =
1√
2
(|01〉 + i |10〉), (2.85)

which is also the eigenvector with the maximal eigenvalue of the z -direction component

of the cross product between two spins:

Q̂2z = (S2 × S1)z

= Y1X2 −X1Y2. (2.86)

It is clear that Q̂2z,1 = Y1X2 and Q̂2z,2 = −X1Y2 are comprised of correlator operators.

The necessary conditions of quantum correlation of |Q2〉 are specified by 〈Ĉ+
0 〉 = 〈Ĉ+

1 〉 =

1/2 for Q̂2z,1 = Ĉ+
0 + Ĉ+

1 and 〈Ĉ−
0 〉 = 〈Ĉ−

1 〉 = 1/2 for Q̂2z,2 = Ĉ−
0 + Ĉ−

1 , which proves the

above statement.

For three-qubit cases, first, we consider an entanglement of the eigenstate with extreme

eigenvalues of the following operator composed of cross and dot product of spins:

D̂(3) = S3 · (S2 × S1)

= Z1Y2X3 − Y1Z2X3 +X1Z2Y3 − Z1X2Y3 + Y1X2Z3 −X1Y2Z3. (2.87)

We denote every element of D̂(3) by D̂
(3)
l for l = 1, 2, ..., 6 according to the order shown in

the above equation, e.g. D̂
(3)
1 = Z1Y2X3, D̂

(3)
2 = −Y1Z2X3 et al.. The state represented
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by the following form

|D3〉 =
1√
3
(|011〉 − e−iπ/3 |110〉 − eiπ/3 |101〉), (2.88)

is the eigenstate with the maximum eigenvalue 2
√

3 of D̂(3) and gives 〈D̂(3)
l 〉 = 1/

√
3 for

all l’s.

We can utilize D̂
(3)
l to describe the characters of entanglement of the state |D3〉 by

the first theorem. Every operator belonging to {D̂(3)
l : l = 1, .., 6} possesses three types

of detections of quantum correlation according to the partitions of the system {[1, 2, 3]}.

Let us take D̂
(3)
1 for example, for the state |D3〉, we have the following correlators with

positive values to show the dependence of qubits:

〈Ĉ+
0[1|2,3]〉 = (

√
3 − 1)/6, 〈Ĉ+

1[1|2,3]〉 = (
√

3 + 1)/6,

〈Ĉ+
0[2|1,3]〉 = 〈Ĉ+

1[2|1,3]〉 = 1/2
√

3,

〈Ĉ+
0[3|1,2]〉 = 〈Ĉ+

1[3|1,2]〉 = 1/2
√

3.

Moreover, for D̂
(3)
2 = −Y1Z2X3, we have

〈Ĉ−
0[1|2,3]〉 = 〈Ĉ−

1[1|2,3]〉 = 1/2
√

3,

〈Ĉ−
0[2|1,3]〉 = (

√
3 − 1)/6, 〈Ĉ−

1[2|1,3]〉 = (
√

3 + 1)/6,

〈Ĉ−
0[3|1,2]〉 = 〈Ĉ−

1[3|1,2]〉 = 1/2
√

3,

which also show the character of dependent qubits. We have shown that the other four

sets of correlators also fulfill the condition of correlation. Hence we could consider the

criteria involved in the correlators of {D̂(3)
l : l = 1, .., 6} as the necessary conditions for

the state |D3〉 and specify the structure of quantum correlation under six settings of local

measurements. Therefore we reveal that the observable D̂(3) =
∑6

l=1 D̂
(3)
l consists of the

conditions of multipartite entanglement for its eigenstate |D3〉 through the conditions of

quantum correlations introduced.
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Let us proceed with another three-qubit entangled state of the form:

|Q3〉 =
1

2
(|011〉 − |101〉 −

√
2 |110〉), (2.89)

which is the eigenstate of the z-component of cross product of three spins:

Q̂3z = [S3 × (S2 × S1)]z,

= X1Z2X3 − Z1X2X3 − Z1Y2Y3 + Y1Z2Y3, (2.90)

corresponding to the maximal eigenvalue 2
√

2. The structure of the state |Q3〉 can be

specified by the correlators involved in the operators Q̂3z,1 = X1Z2X3, Q̂3z,2 = −Z1X2X3,

Q̂3z,3 = −Z1Y2Y3, and Q̂3z,4 = Y1Z2Y3. For example, Q̂3z,1 contains the necessary condi-

tions of |D3〉 due to the fact that

〈Ĉ0[1|2,3]〉 = 〈Ĉ1[1|2,3]〉 = 1/2
√

2,

〈Ĉ0[2|1,3]〉 = (
√

2 − 1)/4, 〈Ĉ1[2|1,3]〉 = (
√

2 + 1)/4,

〈Ĉ0[3|1,2]〉 = 〈Ĉ1[3|1,2]〉 = 1/2
√

2,

and for Q̂3z,2 = −Z1X2X3 we can obtain more necessary ones by the following correlators:

〈Ĉ0[1|2,3]〉 = (
√

2 − 1)/4, 〈Ĉ1[1|2,3]〉 = (
√

2 + 1)/4,

〈Ĉ0[2|1,3]〉 = 〈Ĉ1[2|1,3]〉 = 1/2
√

2,

〈Ĉ0[3|1,2]〉 = 〈Ĉ1[3|1,2]〉 = 1/2
√

2.

Therefore, Q̂3z is a linear combination of the operators which can be utilized to feature

the sate |Q3〉.

The N -qubit entangled state |DN 〉 can be derived from the following observable:

D̂(N) = SN · QN−1, (2.91)
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where

QN−1 = SN−1 × ...(S2 × S1), (2.92)

and |DN〉 is the eigenstate of D̂(N) with the extreme eigenvalue. From the cases which

have been considered for N = 2, ..., 11, we find that D̂(N) consists of correlator opera-

tors for the state |DN〉 and every pair of correlators satisfies the proposed condition of

correlation. Furthermore, through the numerical results we know that the correlation be-

tween subsystems of qubits for all classifications {[1, 2, ..., N ]} can be shown through the

operators D̂
(N)
l which constitutes the operator D̂(N) =

∑
l D̂

(N)
l and details the N -qubit

dependence in nc ways (see Eq. (2.8)). Therefore, we have a complete information of the

structures of D̂(N) and |DN 〉 including the relation between them, and thereby one can

view the spin observable D̂(N) as a means of identification of truly mulit-qubit quantum

correlations embedded in the state |DN〉. It is interesting to investigate the difference

between fully separable states and |DN〉 through D̂(N). For fully separable states, Durkin

and Simon [110] have shown that |〈D̂(N)〉FS| ≤ 1. Whereas |DN〉 for N = 2, ..., 11 provide

maximal violation of the above dot-type inequalities.

In addition to do-type inequalities, QN gives the cross-type inequalities by ‖QN‖FS ≤ 1

for fully separable states. Maximum values of ‖QN‖ and also the maximal violation of the

inequality could be found by determining the maximum eigenvalues of the components

of QN e.g. Q̂Nz. Our numerical results show that the genuine multi-qubit correlation of

the state |QN〉 for N = 2, ..., 11 can be described by the proposed condition of correlation

imbedded in the operators Q̂Nz, and the sum of all of the correlators is greater than one

and violates the upper bound of the cross-type inequality for fully separable states.
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2.5.3 Detecting entangled qudits with two local measurement

settings

Two-qudit Bell state

It is an important and interesting question whether one can construct an entanglement

witness operator to detect a truly many-qudit entanglement without using much experi-

mental effort. Instead of investigating this subject, we will show one can detect multi-level

entanglement for states in the proximity of a d-level Bell state with two local measurement

settings, which is preliminary to the previous question.

We use the correlators introduced in the fourth specification of |Ψ〉 to construct an

entanglement witness operator with a highly robustness, and with the fact that

d−1∑

k=0

〈Ĉ(q)
k 〉 =

d−1∑

k=0

〈Ĉ(q)
kF 〉 = 1,

the basic idea relies on the strategy introduced in examples (a), (b), and related discussions

in Sec. 2.2. The kernel of our witness is of the form:

ĈΨ4 = Ĉ + ĈF , (2.93)

where

Ĉ =

γd∑

q=1

d−1∑

k=0

Ĉ
(q)
k

=
d−1∑

k=0

γd(k̂ −
1

d− 1

d−1∑

k′=0,k′ 6=k

k̂′) ⊗ k̂, (2.94)

ĈF =

γd∑

q=1

d−1∑

k=0

Ĉ
(q)
kF

=
d−1∑

k=0

γd(k̂ −
1

d− 1

d−1∑

k′=0,k′ 6=k

k̂′) ⊗ k̂. (2.95)

Note that the representation of the projector k̂’s in Ĉ is different from the one in ĈF .
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Then our witness operator is

WΨ4 = αΨ41 − ĈΨ4, (2.96)

where αΨ4 = γd and 1 denotes an identify operator with d2 dimensions. If a state ρ shows

Tr (WΨ4ρ) < 0, ρ is identified as an entanglement close to the state |Ψ〉. Especially, the

witness WΨ4 is very robust. The robustness of WΨ4 is determined by the noise tolerance:

pnoise < δ noise, is such that

ρ = pnoise1/d
2 + (1 − pnoise) |Ψ〉 〈Ψ| (2.97)

is identified as an entanglement. The witness WΨ4 tolerates noise if pnoise < 1/2, inde-

pendent of the number of levels.

Next, we will show that the operator WΨ4 is a witness. In order to achieve this aim,

we compare WΨ4 with a project-based witness operator of the form:

Wp
Ψ = αp

Ψ1 − |Ψ〉 〈Ψ| , (2.98)

where αp
Ψ = 1/d [70]. If measured outcomes show that Tr(Wp

Ψρ) < 0, the state ρ is

identified as an entanglement close to |Ψ〉. Then one has to show if ρ satisfies Tr(WΨ4ρ) <

0, it also satisfies Tr(Wp
Ψρ) < 0, i.e., WΨ4 − γΨ4Wp

Ψ ≥ 0 where γΨ4 is some positive

constant. Let us consider the operator W = WΨ4 − dγd/(d − 1)Wp
Ψ. To diagonalize W ,

we propose a complete basis {|Ψkv〉}, where

|Ψkv〉 =
1√
d

d−1∑

v′=0

exp(i2πkv′/d) |v′〉 ⊗ |v′ + v〉 , (2.99)

for k, v = 0, 1, ..., d− 1, where the addition of v′ and v is modulo d. Since both of WΨ4

and Wp
Ψ are diagonal in this basis, W is also diagonal. The diagonal elements of W in
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this basis can be calculated analytically, and then we have

〈Ψkv|W |Ψkv〉 =
d

d− 1
γd, (2.100)

for k ≥ 1 and v ≥ 1, and 〈Ψkv|W |Ψkv〉 = 0 otherwise. This proves our claim.

Entangled state comprised of subsystems with different dimensions

We proceed to give another witness to detect an entangled sate composed of a qutrit and

a ququat (quantum four-level system) of the state vector:

|ǫ〉 =
1√
3
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 + |2〉 ⊗ |3〉). (2.101)

where the kets on the left-hand side of tensor products denote single qutrits and form an

orthonormal basis: {|0〉 , |1〉 |2〉}, and the kets on the right-hand side of tensor products

are ququants described by an orthonormal basis {|0〉 , |1〉 , |2〉 , |3〉}. When |ǫ〉 is in the

above representation, one can easily derive two set of correlator operators to describe

correlations from the knowledge of the state vector:

Ĉ
(1)
0 = (0̂ − 1̂)0̂, Ĉ

(1)
1 = (1̂ − 2̂)1̂, Ĉ

(1)
2 = (2̂ − 0̂)3̂,

Ĉ
(2)
0 = (0̂ − 2̂)0̂, Ĉ

(2)
1 = (1̂ − 0̂)1̂, Ĉ

(2)
2 = (2̂ − 1̂)3̂. (2.102)

Each correlator proposed above is 〈Ĉ(q)
k 〉 = 1/3. Similarly, by the knowledge of the state

vector given by

|ǫ〉 =
1√
3
(|0〉F ⊗ |0′〉F + |1〉F ⊗ |1′〉F + |2〉F ⊗ |2′〉F ), (2.103)

48



CHAPTER 2. ENTANGLEMENT AND CORRELATION CONDITIONS

where

|0′〉F =
1

2
√

3
(3 |0〉F + |1〉F − |2〉F + |3〉F ),

|1′〉F =
1

6
[(−3 +

√
3) |1〉F + 2

√
3 |2〉F + (3 +

√
3) |3〉F ],

|2′〉F =
1

6
[(3 +

√
3) |1〉F + 2

√
3 |2〉F + (−3 +

√
3) |3〉F ], (2.104)

and |v〉F are defined by Eq. (2.50), we give the second type of correlator operators:

Ĉ
(1)
0F = (0̂ − 1̂)0̂′, Ĉ

(1)
1F = (1̂ − 2̂)1̂′, Ĉ

(1)
2F = (2̂ − 0̂)2̂′,

Ĉ
(2)
0F = (0̂ − 2̂)0̂′, Ĉ

(2)
1F = (1̂ − 0̂)1̂′, Ĉ

(2)
2F = (2̂ − 1̂)2̂′. (2.105)

Each correlator is 〈Ĉ(q)
kF 〉 = 1/3. Therefore, our witness consists of all of the correlator

operators introduced above is

Wǫ = αǫ1 − Ĉǫ, (2.106)

where αǫ = 2 and Ĉǫ =
∑

q,k Ĉ
(q)
k + Ĉ

(q)
kF .

We proceed to prove the operator Wǫ is a witness. To attain this aim, we have to

compare Wǫ with the following projector-based witness

Wp
ǫ = αp

ǫ 1 − |ǫ〉 〈ǫ| , (2.107)

where αp
ǫ = 1/3 [70]. With the whole knowledge of |ǫ〉, the witness Wp

ǫ can be used to

identify a state ρ as the one close to |ǫ〉 if Tr(Wp
ǫ ρ) < 0. We find that Wǫ − 3Wp

ǫ ≥ 0 and

from which we deduce that if Tr(Wǫρ) < 0 then Tr(Wp
ǫ ρ) < 0 also applies to ρ. Thus Wǫ

is an entanglement witness operator. In addition, Wǫ is very robust against noise. When

a pure state |ǫ〉 is suffered from white noise, the mixed sate is identified as entanglement

if the noise fraction is less than 0.5.
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Four-qubit GHZ state shared by two parties

In the previous cases of entanglement detections for qubits, each party of a system has

access to perform measurements on only one qubit. It is natural to ask how to design

a strategy of detections of genuine multipartite entanglement if each party has access to

measure more than one qubits in a Bell-type experiment. For instance, how to construct

an entanglement witness operator for detecting a four-qubit GHZ state which is shared

by two parties? Since more information about nonlocal properties of the GHZ state can

be acquired via measurements, it is interesting to investigate the difference between the

new witness and the previous one.

We will present a witness which requires only two local measurements to attain the aim

mentioned above. First, let us assume two individual pairs of qubits of a four-qubit GHZ

state are shared by two parties respectively, and then each party can perform two-qubit

measurements on the qubits. For the first measurement setting, we use the correlator

operators introduced in the third specification for the generalized GHZ state: Ĉ0Z[m,m̄]

and Ĉ1Z[m,m̄], i.e.,

Ĉ0Z[m,m̄] = (0̂0̂ − 1̂1̂)0̂0̂, Ĉ1Z[m,m̄] = (1̂1̂ − 0̂0̂)1̂1̂. (2.108)

A four-qubit GHZ state of the form

|Φ〉 =
1√
2
(|00〉 ⊗ |00〉 + |11〉 ⊗ |11〉),

gives 〈Ĉ0Z[m,m̄]〉 = 〈Ĉ1Z[m,m̄]〉 = 1/2. For the second measurement setting, we propose

the operators

Ĉ0F [m,m̄] = (0mF − 1mF )0m̄F , Ĉ1F [m,m̄] = (1mF − 0mF )1m̄F . (2.109)
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where

0m(m̄)F =
1

2
(|00〉F + |10〉F )(F 〈00| +F 〈10|),

1m(m̄)F =
1

2
(|01〉F + |11〉F )(F 〈01| +F 〈11|),

|vv′〉F =
1

2

1∑

k,k′=0

exp[−i2πnvv′

4
(2k + k′)] |kk′〉 , (2.110)

n00 = 0, n01 = 1, n10 = 3, and n11 = 2. The correlators are 〈Ĉ0F [m,m̄]〉 = 〈Ĉ1F [m,m̄]〉 = 1/2.

Thus our witness is

WΦ2 = 1 −
1∑

k=0

ĈkZ[m,m̄] + ĈkF [m,m̄]. (2.111)

Since a comparison between WΦ2 and the projector-based witness Wp
Φ satisfies WΦ2 −

2Wp
Φ ≥ 0, WΦ2 is a witness for detecting truly four-qubit entanglement for states close to

|Φ〉.

The witness WΦ2 is very robust against noise. The noise tolerance of WΦ2 is δΦ2 = 1/2,

and then WΦ2 is more robust than the witness WΦ, Eq. (2.82), with δΦ = 4/11 ≃ 0.3636.

In other word, WΦ2 based on two-qubit measurements for each party can detect more

states in the proximity of |Φ〉 and is finer than WΦ.

Let us consider the above example in another way. We define each pair of qubits as a

single ququat, and then the four-qubit GHZ state can be represented by

|Φ〉 =
1√
2
(|0〉 ⊗ |0〉 + |3〉 ⊗ |3〉),

where |2v + v′〉 = |vv′〉 for v, v′ = 0, 1. Therefore constructions of correlator operators for

a four-qubit GHZ state is equivalent to the ones for a two-ququat entangled sate of the

above form, and then one can observe that each vector in the orthonormal basis {|vv′〉F}

chosen in the second measurement setting is derived from a vector in the basis {|2v + v′〉}

which is transferred by a single-ququat Fourier transformation. In this situation, further
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two questions arise. What are the constructions of correlator operators for a N -ququat

entangled state of the form: |Φ〉 = (|0〉⊗N + |3〉⊗N)/
√

2? Are the witnesses based on

correlators finer than WΦ? The investigations on these questions are the future works.

We proceed to consider another situation where one party has three qubits and another

party has the rest of a four-qubit GHZ state. First, we follow the method just discussed

and substitute eight-level state vector |4v + 2v′ + v′′〉 for three-qubit one |vv′v′′〉 to express

|Φ〉 as

|Φ〉 =
1√
2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |7〉),

where the kets on the left-hand side of the tensor products in the above equation denote

single qubits and constitute an orthonormal basis {|0〉 , |1〉}, whereas the right-hand ones

are three-qubit elements of the orthonormal basis {|0〉 , |1〉 , ..., |7〉}. Then we give the

following correlator operators for states shown in this representation:

Ĉ0 = (0̂ − 1̂)0̂, Ĉ1 = (1̂ − 0̂)7̂, (2.112)

and the correlators are 〈Ĉ0〉 = 〈Ĉ1〉 = 1/2. When |Φ〉 is of another form:

|Φ〉 =
1√
2
(|0〉F2

⊗ |0′〉F8
+ |1〉F2

⊗ |1′〉F8
),

where

|v〉F2
=

1√
2
[|0〉 + (−1)v |1〉],

|0′〉F8
=

7∑

k=0

ck0 |k〉F8
, |1′〉F8

=
7∑

k=0

ck1 |k〉F8
,

|k〉F8
=

1√
8

7∑

k′=0

exp(−i2πk
d
k′) |k′〉 , (2.113)

ck0 and ck1 are complex numbers, and F8 〈1′|0′〉F8
= 0 , another set of operators can be
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easily derived from the knowledge of the state vector and are given by

Ĉ0F = (0̂ − 1̂)0̂′, Ĉ1F = (1̂ − 0̂)1̂′. (2.114)

Then our witness is

WΦ3 = 1 −
1∑

k=0

Ĉk + ĈkF , (2.115)

and fulfills the condition WΦ3 − 2W p
Φ ≥ 0 for detecting truly four-qubit entanglement.

The noise tolerance of WΦ3 is δΦ3 = 1/2 and is also superior to the one of WΦ.

2.5.4 Witnesses composed of the kernels of Bell inequalities for

qudits

In Sec. 2.4, we have shown that the kernels of different kinds of Bell inequalities for qudits

are composed of correlators which associate with necessary conditions of entangled qudits.

This fact motivates us to construct entanglement witnesses comprised of the kernels to

detect states close to a generalized Bell state. The constructions proposed provide a

connection between entanglement witnesses and Bell inequalities.

We introduce the witness operators

WΨq = αΨq1 − Ĉ
(d)
Ψq , (2.116)

for q = 1, 2, 3, where αΨq are some constants and Ĉ
(d)
Ψq are combinations of correlators

proposed in the previous section. A state is identified as an entanglement in the proximity

of |Ψ〉 if the corresponding expectation value of WΨq is negative. Although Ĉ
(d)
Ψ3 is not a

kernel of Bell inequalities, we shows its utility for entanglement detection and compare it

with the other ones. In addition, we also give a variant of WΨ2 denoted by WΨ2:f(α)=1.

The subscript f(α) = 1 of WΨ2:f(α)=1 indicates that the function f(α) in Eq. (2.64) is
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Table 2.1: Summaries of αΨq for WΨq and the parameters γΨq, which are utilized to prove
WΨq are witness operators.

d 3 4 5 6
αΨ1 1.755 2.047 2.216 2.328
αΨ2 1.755 1.954 2.093 2.199
αΨ2:f(α)=1 1.755 2.080 2.095 2.255
αΨ3 2.668 2.250 3.200 4.167
γΨ1 1.802 1.18 0.90 0.72
γΨ2 1.802 1.43 1.24 1.11

γΨ2:f(α)=1 1.802 2.18 1.83 2.11
γΨ3 1 1 1 1

set one, whereas WΨ2 uses the one for the CGLMP inequalities. However, WΨ2:f(α)=1

are not Bell inequalities. For proofs of WΨq, we use the same method as the ones in the

previous proofs to show the operators proposed are witnesses. The parameters for proving

WΨq − γΨqWp
Ψ > 0 and αΨq are given in Table 2.1.

We compare the witnesses proposed according to their robustness against noise and

summarize the corresponding noise tolerances δnoise = δΨq in Table 2.2. The table also in-

cludes noise tolerance for projector-based witness Wp
Ψ and WΨ4. For witnesses composed

of Bell kernels, the witness WΨ2 is more robust than WΨ1. For all witnesses considered,

Wp
Ψ is the most robust, and its noise tolerance goes one for large dimension of the gen-

eralized Bell state. When focusing on the constrain 〈Wp
Ψ〉 < 0 for a state of the form as

Eq. (2.97), one can obtain δp
Ψ = d/(d+1) for maintaining entangled qudits, which proves

the above statement. The superiority of Wp
Ψ relies on the whole knowledge of |Ψ〉 used

in the witness. However, in order to realize Wp
Ψ in Bell-type experiments, Wp

Ψ should be

decomposed into sets of observable that can be measured locally. To our knowledge, a

general method for decomposition of Wp
Ψ is still laking. For the purpose of performing

detections with fewer settings, WΨ4 possesses a highly tolerance to noise for detecting |Ψ〉

and is better than the other ones.
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Table 2.2: Summaries of the noise tolerance δΨq and δp
Ψ involved in robustness of the

entanglement witness operators WΨq and Wp
Ψ respectively.

d 3 4 5 6
δΨ1 0.389 0.289 0.231 0.192
δΨ2 0.389 0.326 0.281 0.247
δΨ2:f(α)=1 0.389 0.290 0.287 0.236
δΨ3 0.333 0.250 0.200 0.167
δΨ4 0.500 0.500 0.500 0.500
δp
Ψ 0.750 0.800 0.833 0.857

2.6 Conclusion

In summary, we introduce criteria of quantum correlations for many-qubit and two-qudit

entanglement. We show five known Bell inequalities for many qubits [13–15] and two

qudits [17, 18] and the general correlation functions for qudits [109] are composed of the

correlation conditions proposed. By correlators, two sets of Bell inequalities for bipartite

multi-level systems which requires fewer analyses of measured outcomes are also intro-

duced. In addition, we reveal the inequalities based on the geometry of spin vector [110]

are comprised of correlators. Through the conditions, we give entanglement witness oper-

ators for detecting truly many-qubit GHZ states and the first robust witness for detecting

a two-qudit Bell state. A robust witness for detecting entangled qudits composed of two

particles with unequal dimensions is proposed. We also give a robust witness for detecting

a four-qubit GHZ state which is shared by two parties. These witnesses require only two

local measurement settings when used in experiments. The kernels of Bell inequalities

are also used as witness operators for qudits, which exhibits connections between Bell

inequalities and entanglement witnesses.

Our formulations reveal N -point correlation functions for qubits are the sum of sets

of correlators. These correlators provide information about correlations between any two

subsystems ofN qubits, and the conditions involved could help to investigate the stabilizer

formalism [117] in a novel way, which will be discussed elsewhere. For entangled qudits,

especially, the strategy introduced provides a systematic way to analyze the correlation
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structure of measured outcomes in different physical systems [118] and then can be utilized

directly for present experiments [20–23].
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Chapter 3

Correlation conditions in the

stabilizer formalism

3.1 Introduction

The stabilizer formalism [3, 117] is an important method for studying the operations

in quantum mechanics and entanglement physics including entanglement detections [72]

and Bell inequalities [119, 120]. In what follows, instead of deriving correlators from

the state vector of an entangled state, we determine the correlation conditions imbedded

in a set of operators which is called stabilizer [117]. We will show that the correlators

introduced give us a new insight into stabilizers of stabilizer states, and the correlator

embedded in the stabilizer can be considered as a special class of the general ones. For a

given stabilizer of some stabilizer state, we can consider the stabilizer as a specification

of multipartite correlations between qubits, and furthermore via the proposed conditions

of correlations we can realize that the qubits are dependent on each other under different

measurement settings. Most importantly, correlations shown in different directions are the

manifestation of quantum entanglement. Thus one can describe the necessary characters

of quantum correlations concretely by the correlators in the stabilizers for the stabilizer

states.
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3.2 Stabilizer formalism

When using the stabilizer formalism to specify a quantum state |φ〉, the state is described

by a set of operators that have the eigenstate |φ〉 with the eigenvalue 1. This set of

operators is called the stabilizer which stabilize |φ〉. Then |φ〉 is called the stabilizer state.

For example, a N -qubit cluster state |LN 〉 [31] is stabilized by the group of stabilizer given

by

GLN
= 〈S1,LN

, S2,LN
, ..., SN,LN

〉 , (3.1)

where

S1,LN
= X1Z2, SN,LN

= ZN−1XN , Sk,LN
= Zk−1XkZk+1 (3.2)

for k = 2, 3, ..., N − 1, are the generators of the group.

Theorem 3. For some stabilizer state |φ〉, every operator gφ ∈ Gφ with the general

form, gφ = ±⊗m
k=1 V̂k, where V̂k ∈ {Z,X, Y }, can be specified by the correlator operators:

gφ = Ĉ0φ + Ĉ1φ, (3.3)

with

〈
Ĉ0φ

〉
> 0 and

〈
Ĉ1φ

〉
> 0, (3.4)

for |φ〉, which implies that some subsystem of n qubits for n < m is dependent on the one

composed of (m− n) qubits [121].

Proof. The Pauli operator V̂k can be expressed explicitly by V̂k =
∑1

vk=0(−1)vk v̂kk′ for

k′ ∈ {x, y, z} which denote the type of Pauli operator where v̂kk′ = |vk〉k′k′ 〈vk| and k

is used to number the qubits. Then, we have
⊗n

k=n′+1 V̂k = 0̂(n−n′) − 1̂(n−n′), where
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0̂(n−n′) (1̂(n−n′)) is the sum of all (n − n′)-qubit operators, ⊗n
k=n′+1v̂kk′, with even (odd)

∑n
k=n′+1 vk. With the substitution given above, gφ =

⊗m
k=1 V̂k can be expressed by

gφ =
n⊗

k=1

V̂k

m⊗

k=n+1

V̂k

= (0̂n − 1̂n)(0̂(m−n) − 1̂(m−n))

= (0̂n − 1̂n)0̂(m−n) + (1̂n − 0̂n)1̂(m−n), (3.5)

and for gφ = −⊗m
k=1 V̂k we have

gφ = (0̂n − 1̂n)1̂(m−n) + (1̂n − 0̂n)0̂(m−n). (3.6)

For gφ =
⊗m

k=1 V̂k, since

〈
1∑

v,v′=0

(−1)v+v′ v̂nv̂′
(m−n))

〉
=

〈
1∑

v,v′=0

v̂nv̂′
(m−n)

〉
= 1,

for |φ〉, it turns out that
〈
1̂n0̂(m−n) + 0̂n1̂(m−n))

〉
= 0 and

〈
0̂n0̂(m−n) + 1̂n1̂(m−n))

〉
= 1

for all n < m. If |φ〉 is not a product state, we have Tr(|φ〉 〈φ| v̂nv̂(m−n)) > 0 for v = 0, 1

and deduce that the correlators for the operator

Ĉ0φ = (0̂n − 1̂n)0̂(m−n), Ĉ1,φ = (1̂n − 0̂n)1̂(m−n). (3.7)

are all positive for |φ〉. For gφ = −⊗m
k=1 Vk, by the same approach proposed above, we

have positive values of correlators corresponding to the operators

Ĉ0φ = (0̂n − 1̂n)1̂(m−n), Ĉ1,φ = (1̂n − 0̂n)0̂(m−n). (3.8)

Hence, we know that the subsystem of n qubits is dependent on the one composed of

(m− n) qubits by the first theorem given in Sec. 2.2.

Given a m-qubit operator belonging to some stabilizer with the form like the one in
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the third theorem, it specifies the dependence characters between any two subsystems

with k qubits and (m− k) ones. Each operator gφ gives nφ sets of correlators where

nφ =

⌊m/2⌋∑

k=1

f(m, k)
m!

k!(m− k)!
, (3.9)

f(m, k) = 2−δ[k,⌊m/2⌋] for even m and f(m, k) = 1 for odd one. The number nφ has the

same form as the one of Eq. (2.8) for nc. Therefore, we can express gφ as:

gφ =
1

nφ

⌊m/2⌋∑

k=1

αmk∑

i=1

Ĉ0φ,ki + Ĉ1φ,ki (3.10)

where αmk = f(m, k)m!/[k!(m−k)!] and (Ĉ0φ,ki, Ĉ1φ,ki) denote the ith pair which belongs

to the sets of correlator operators for specifying the correlation of dependence between

any two subsystems with k qubits and (m− k) ones respectively.

Through the third theorem, we could view the group of stabilizer as the set which con-

tains all correlators for specifying the dependence between qubits of the N -qubit system

under different measurement directions. In what follows, we will discuss the correlators

derived from the stabilizer under a given measurement setting.

(a) Cluster state. First, lest us consider a concrete example involved the following

generators of the six-qubit cluster state: S1,L6 = X1Z2 , S3,L6 = Z2X3Z4, and S5,L6 =

Z4X5Z6. S1,L6 shows that the first qubit is dependent of the second one. S3,L6 identifies

the correlations: [2|3, 4], [3|2, 4], and [4|2, 3] , and S5,L6 identifies the ones: [4|5, 6], [5|4, 6],

and [6|4, 5] . We know that the six-qubit system possesses the multipartite correlation

by these information featured in correlators. However, when measuring qubits under

the setting where the odd (even)-number qubits are measured along x (z) direction, the

correlation conditions given by the generators S1,L6, S3,L6, and S5,L6 are incomplete. From

an observation, we know that the measured directions involved in the products of the

generators are the same as the ones of the generators, and we could acquire more criteria

of correlations from these products of generators. For instance, S1,L6S3,L6 = X1X3Z4 let
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us know the condition for {[1, 3, 4]}, S1,L6S5,L6 = X1Z2Z4X5Z6 for {[1, 2, 4, 5, 6]}, and

S3,L6S5,L6 = Z2X3X5Z6 for {[2, 3, 5, 6]}. Hence a complete condition of correlations can

be provided from the subgroup of the stabilizer generated by S1,L6, S3,L6 , and S5,L6 :

GL6,1 = 〈S1,L6 , S3,L6, S5,L6〉, if disregarding the identify operator, i.e.,

G̃L6,1 = {X1X3Z4, X1Z2Z4X5Z6, Z2X3X5Z6, X1X3X5Z6, X1Z2, Z2X3Z4, Z4X5Z6}. (3.11)

Similarly, under another measurement setting where the odd (even)-number qubits are

measured along z (x) direction, the set of operators

G̃L6,2 = {Z1X2Z3Z5X6, Z3X4X6, Z1X2X4X6, Z1X2X4Z5, Z5X6, Z1X2Z3, Z3X4Z5}, (3.12)

generated by S2,L6 = Z1X2Z3, S4,L6 = Z3X4Z5, S6,L6 = Z5X6, also gives an identification

of multipartite correlation of |L6〉. Furthermore, for the N -qubit cluster state, both the

subgroups GLN ,1 = 〈Sk,LN
: for all odd k〉 and GLN ,2 = 〈Sk,LN

: for all even k〉 give com-

plete descriptions of N -qubit correlation of |φd〉 by G̃LN ,1 and G̃LN ,2, under two different

measurement settings.

(b) Greenberger-Horne-Zeilinger (GHZ) state [113]. An N -qubit GHZ state is specified

by the stabilizer

GGHZN
= 〈S1,GHZN

, Sk,GHZN
: for k = 2, ..., N〉 , (3.13)

where

S1,GHZN
=

N⊗

k=1

Xk, Sk,GHZN
= Zk−1Zk, (3.14)

for k = 2, ..., N . Let us discuss S1,GHZN
first. By Theorem 3 and the related discussions,

we know that there are nGHZN
sets of correlators to describe the correlations between

subsystems with {[1, 2, ..., N ]}, where nGHZN
is defined by Eq. (3.10). The feature of truly
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multipartite correlation is shown via these correlators under the x-direction measurements.

On the other hand, the operators gGHZN
produced by generators Sk,GHZN

for k ≥ 2

specify two kinds of criterion of correlation including the dependence between each qubit,

[i, j], and the correlations between subsystems with {[1, 2, ..., m]} where m is even. To

investigate the correlation between the k1th and k2th qubits for k2 > k1, we can utilize

the product of the generators,
∏k2−1

k1+1 Sk,GHZN
, to have the operator Zk1Zk2 and know

that these qubits are dependent. For the second type of criterion, it is given by
⊗

k∈Te
Zk

where Te denotes the set which contains even number of qubits. For example, we have the

same correlators as S1,GHZN
by

∏N/2
k=1 S2k,GHZN

=
⊗N

k=1Zk where N is even. Thus, under

two local measurement settings, a complete knowledge of correlation between qubits is

included in G̃GHZN ,1 = {S1,GHZN
} and the set of operators G̃ GHZN ,2 that is derived from the

subgroup of stabilizer, GGHZN ,2 = 〈Sk,GHZN
: for k = 2, ..., N〉, and in which the identity

operator is disregarded.

(c) Graph state. A N -qubit graph state [122], |RN〉, is specified by a graph described

in terms of N vertices and some edges connecting them and is defined explicitly by the

stabilizing operators:

Sk,RN
|RN〉 = |RN 〉 , (3.15)

where

Sk,RN
= Xk

⊗

i∈Nk

Zi (3.16)

and Nk denotes the set of vertices i for which vertices k and i are adjacent. Through

Theorem 3, we realize that the vertex k is dependent on the ones in the neighborhood Nk.

Furthermore, we can identify the correlation between two vertices that are not adjacent

via the correlators. For instance, a four-qubit box-cluster state is specified by the following
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stabilizing operators:

S1,R4 = X1Z2Z4, S2,R4 = X2Z1Z3, S3,R4 = X3Z2Z4, S4,R4 = X4Z1Z3. (3.17)

Although the first qubit and the third one are not adjacent, we can identify that they

are dependent via S1,R4S3,R4 = X1X3. Similarly, the second qubit and the fourth one are

correlated by S2,R4S4,R4 = X2X4. Therefore, the sets

G̃R4,1 = {X1Z2Z4, X3Z2Z4, X1X3}, G̃R4,2 = {X2Z1Z3, X4Z1Z3, X2X4}, (3.18)

can describe the correlation inherent in the state |RN〉 under two different measurement

settings.

3.3 Entanglement witnesses for stabilizer states

When designing a witness operator to detect some multi-qubit entangled state without

using the whole knowledge of which, it is crucial to feature the key characters of multi-

party correlation imbedded in the entanglement. The proposed approach for correlators

attains this aim. The sets of correlators can be considered as the necessary conditions

of quantum correlations of entanglement imbedded in states to be generated. Thus, we

can take a linear combination of the derived correlator operators that have been the

identification of |φ〉 to give a multi-qbut witness operator:

Wφ = αφ1 − Ĉφ, (3.19)

where

Ĉφ =
∑

k

ck(Ĉ0φ,k + Ĉ1φ,k), (3.20)
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Table 3.1: Kernels of entanglement witnesses. For φ : LN and R4 the sum of correlators
Ĉ1(2)k denotes the kth stabilizing operators belonging to G̃φ,1(2) with (γ1(2) − 1) elements,
and γ1(2) is given by γ1(2) = 2nq1(2) where nq1(2) is the number of generators which create

G̃φ,1(2).

Wφ Ĉφ αφ

WLN
γ2

∑γ1−1
k=1 Ĉ1k + γ1

∑γ2−1
k=1 Ĉ2k 3γ1γ2/2 − γ1 − γ2

WGHZN
γ2

∑γ1−1
k=1 Ĉ1k + γ1

∑γ2−1
k=1 Ĉ2k 3γ1γ2/2 − γ1 − γ2

WR4 γ2

∑γ1−1
k=1 Ĉ1k + γ1

∑γ2−1
k=1 Ĉ2k 3γ1γ2/2 − γ1 − γ2

αφ, and ck’s are constants. If Tr(Wφρ) < 0, the state ρ is identified as a genuine multipar-

tite entanglement. Therefore, making a utilization of the correlators for the multipartite

entangled states proposed above, we construct the corresponding entanglement witnesses

and detail the kernels in Table 3.1. Note that the witnesses for N -qubit GHZ states

are of the same form as the one of the witnesses given in Sec. 2.5.1. The proofs of the

entanglement witnesses are shown in Appendix B.

We reminder that each stabilizing operator is composed of correlator operators with

the structure as Eq. (3.7) or Eq. (3.8) and hence the witnesses for stabilizer states fit the

general definition shown in Eq. (3.19). When comparing WLN
and WGHZN

with the ones

of Ref. [72], they possess the same structures, which means that one can cast new light

on the stabilizer entanglement witnesses [72] via the concrete and analytical conditions of

correlations based on correlators.

3.4 Correlator-beased Bell inequalities for many-qubit

graph states

Combinations of partial or all operators in the stabilizer are central to entanglement

detections. Very recently, Gühne et al. [119] derived a family of Bell inequalities for graph

states. Since their method is general for different interesting graphs, the kernels of the

proposed Bell inequalities are composed of 2N−1 operators of the stabilizer (excluding the

identity operator), and they show that each graph state there is an inequality maximally
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violated only by that state. Their results imply that combinations of all of the correlator

operators could help to tell the nonlocal properties of the graph states from the classical

correlations. In addition, since all operators that involves conditions for dependence in

the stabilizer have been used, each particle requires three measurement settings. It is

possible to utilize partial necessary conditions of correlation imbedded in graph states

to construct Bell inequalities. For example, the subgroup of stabilizer of start and cycle

subgraphs involved two local measurement settings for each particle can be utilized for

Bell inequalities [120].
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Chapter 4

Entanglement detection via the

condition of quantum correlation

4.1 Method

In addition to detections of stabilizer states, the correlations proposed can also be utilized

to detect states with non-local stabilizers. We use the correlator operators involved in

the necessary condition of quantum correlation to construct entanglement witnesses for

detecting genuine multi-partite entanglement about the generalized GHZ state with two

local measurement settings, and three-qubit W states and four-qubit singlet states [123]

with only three settings. More recently, it has been shown that four qubit singlet state is

very useful for quantum secret sharing [45]. Through our method, 15 local measurement

settings required for the entanglement witnesses by Ref. [70] can be reduced greatly. In

what follows, we give a theorem based on the same concept as the one of Theorems 1 and

2 to detect the states mentioned above.

For a N -qubit system, the kernel of our strategy for identifying correlation between a

specific subsystem, say A, and another one, say B, under some local measurement setting,
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Ml, relies on the sets of correlators with the following forms:

〈
Ĉ

(l)
0

〉
= P (vA0, vB0) − P (vA1, vB0),

〈
Ĉ

(l)
1

〉
= P (vA1, vB1) − P (vA0, vB1), (4.1)

where P (vAi, vBj) is the joint probability for obtaining the measured outcomes vAi for the

A subsystem and vBj for the B one. By the values of the correlators for an experimental

output state, we could identify correlations between outcomes of measurements for the

subsystems.

Theorem 4. If the results of measurements reveal that
〈
Ĉ

(l)
0

〉
and

〈
Ĉ

(l)
1

〉
are all positive

or all negative, i.e.,
〈
Ĉ

(l)
0

〉 〈
Ĉ

(l)
1

〉
> 0, then the outcomes of measurements performed on

the A subsystem are correlated with the ones performed on the B subsystem [73].

Proof. If theA subsystem is independent of theB one, we recast P (vAi, vBj) as P (vAi)P (vBj),

where P ( vAi) and P (vBj) denote the marginal probabilities for obtaining results vAi and

vBj respectively. Then, we have

C
(l)
0,n = [P (vA0) − P (vA1)]P (vB0), C

(l)
1,n = [P (vA1) − P (vA0)]P (vA1). (4.2)

Since P (vA1), P (vB0) ≥ 0, we conclude that C
(l)
0 C

(l)
1 ≤ 0. Therefore, C

(l)
0 C

(l)
1 > 0 implies

that the measured outcomes performed on the A subsystem are dependent with the one

performed on the B subsystem.

4.2 Generalized GHZ states

We start showing the strategy with the help of Theorem 4 to derive correlation conditions

for the generalized four-qubit GHZ state:

|Φ(θ, φ)〉 = cos(θ) |0000〉z + eiφ sin(θ) |1111〉z , (4.3)

for 0 < θ < π/4 and 0 ≤ φ < π/2, where |v1v2v3v4〉z = ⊗4
k=1 |v〉kz for v ∈ {0, 1} and

|v〉kz corresponds to an eigenstate of σz with eigenvalue (−1)v for the party k. Firstly, to
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describe the correlation between a specific party and others of the four-qubit system, we

give four sets of correlator operators:

Ĉ
(z)
0,nz = (0̂nz − 1̂nz) ⊗ 0̂mz ⊗ 0̂pz ⊗ 0̂qz, Ĉ

(z)
1,nz = (1̂nz − 0̂nz) ⊗ 1̂mz ⊗ 1̂pz ⊗ 1̂qz, (4.4)

for n = 1, ..., 4, where v̂nz = |v〉nznz 〈v| and n, m, p, and q denote four different parties un-

der the local measurement setting, M4z = (Z,Z, Z, Z). In order to have compact forms, in

what follows, symbols of tensor product will be omitted from correlator operators. Then,

for some experimental output state, the expectation values of the Hermitian operators

Ĉ
(z)
0,n and Ĉ

(z)
1,n are expressed in the following correlators in terms of joint probabilities:

〈
Ĉ

(z)
0,n

〉
= P (vn = 0, v = 0) − P (vn = 1, v = 0),

〈
Ĉ

(z)
1,n

〉
= P (vn = 1, v = 3) − P (vn = 0, v = 3), (4.5)

where v =
∑4

i=1,i6=n vi. By Theorem 4, we know that if results of measurements reveal

that
〈
Ĉ

(z)
0,n

〉 〈
Ĉ

(z)
1,n

〉
> 0, the outcomes of measurements performed on the nth party are

correlated with the ones performed on the rest. If the nth party is independent of the

rest, we have

〈
Ĉ

(z)
0,n

〉
= [P (vn = 0) − P (vn = 1)]P (v = 0),

〈
Ĉ

(z)
1,n

〉
= [P (vn = 1) − P (vn = 0)]P (v = 3),

and realize that
〈
Ĉ

(z)
0,n

〉〈
Ĉ

(z)
1,n

〉
≤ 0.

For a pure generalized four-qubit GHZ state, |Φ(θ, φ)〉, we have

C
(z)
0,n,Φ(θ,φ) = cos2(θ), C

(z)
1,n,Φ(θ,φ) = sin2(θ), (4.6)

and hence C
(z)
0,n,Φ(θ,φ)C

(z)
1,n,Φ(θ,φ) > 0, which describes the outcomes of measurements are cor-

related. Then the condition, C
(z)
0,nC

(z)
1,n > 0, is a necessary condition of the pure generalized

four-qubit GHZ state.
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Further, we construct the following correlator operators to identify correlations be-

tween a specific group, which is composed of the nth and mth parties, and another :

Ĉ
(z)
0,nm = (0̂nz0̂mz − 1̂nz1̂mz)0̂pz0̂qz, Ĉ

(z)
1,nm = (1̂nz1̂mz − 0̂nz0̂mz)1̂pz1̂qz, (4.7)

for n,m = 1, ..., 4 and n 6= m. Moreover, we can express the expectation values of the

Hermitian operators Ĉ
(z)
0,nm and Ĉ

(z)
1,nm in terms of joint probabilities for some output state:

〈
Ĉ

(z)
0,nm

〉
= P (vnm = 0, v′ = 0) − P (vnm = 2, v′ = 0),

〈
Ĉ

(z)
1,nm

〉
= P (vnm = 2, v′ = 2) − P (vnm = 0, v′ = 2), (4.8)

where vnm = vn + vm and v′ =
∑4

i=1,i6=n 6=m vi. Theorem 4 shows that if the subsystem

composed of the nth and the mth parties is uncorrelated with another one, the measured

outcomes must satisfy
〈
Ĉ

(z)
0,nm

〉 〈
Ĉ

(z)
1,nm

〉
≤ 0 . On the other hand,

〈
Ĉ

(z)
0,nm

〉〈
Ĉ

(z)
1,nm

〉
> 0

indicates that they are dependent.

It is clear that, for a pure generalized four-qubit GHZ state, we have

〈
Ĉ

(z)
0,nm

〉
= cos2(θ),

〈
Ĉ

(z)
1,nm

〉
= sin2(θ), (4.9)

and hence
〈
Ĉ

(z)
0,nm

〉〈
Ĉ

(z)
1,nm

〉
> 0. Thus we know that the subsystem composed of the nth

and themth parties are correlated with another. Therefore, the condition,
〈
Ĉ

(z)
0,nm

〉〈
Ĉ

(z)
1,nm

〉
>

0, is also a necessary condition of the state |Φ(θ, φ)〉.

After introducing two correlation conditions for the pure generalized GHZ state under

M4z, let us progress towards the third one for correlation. Under the local measurement

setting, M4x = (X,X,X,X), we formulate four sets of correlators which correspond to

the following operators for identifying correlations between the nth party and others:

Ĉ
(x)
0,n = (0̂nx − 1̂nx) ⊗ Ê, Ĉ

(x)
1,n = (1̂nx − 0̂nx) ⊗ Ô, (4.10)
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where

Ê = (0̂mx0̂px0̂qx + 0̂mx1̂px1̂qx + 1̂mx0̂px1̂qx + 1̂mx1̂px0̂qx), (4.11)

Ô = (1̂mx1̂px1̂qx + 1̂mx0̂px0̂qx + 0̂mx1̂px0̂qx + 0̂mx0̂px1̂qx). (4.12)

From the expectation values of Ĉ
(x)
0,n and Ĉ

(x)
1,n for some state and Theorem 4, we could

know the correlation behavior of the system, i.e., for a system in which the nth party

is uncorrelated with the rest under M4x, the outcomes of measurements must satisfy the

condition: C
(x)
0,nC

(x)
1,n ≤ 0.

For the pure state, |Φ(θ, φ)〉, the expectation values of Ĉ
(x)
k,n is given by

〈
Ĉ

(x)
0,n

〉
=

〈
Ĉ

(x)
1,n

〉
= sin(2θ) cos(φ)/2, (4.13)

and ensure that there are correlations between measured outcomes under the local mea-

surement setting, M4x. Thus the condition, C
(x)
0,nC

(x)
1,n > 0, is necessary for the pure

generalized four-qubit GHZ state.

Entanglement imbedded in the pure generalized four-qubit GHZ state manifests itself

via necessary conditions of correlations presented above under two local measurement

settings. Therefore we combine all of the correlator operators involved in the necessary

conditions:

ĈΦ = Ĉ(z) + Ĉ(x),

where

Ĉ(z) =

1∑

j=0

(

4∑

n=1

Ĉ
(z)
j,n +

4∑

m=2

Ĉ
(z)
j,1m)

= 8(0̂1z0̂2z0̂3z0̂4z + 1̂1z1̂2z1̂3z1̂4z) − 1, (4.14)

Ĉ(x) =

4∑

n=1

1∑

k=0

Ĉ
(x)
k,n

= 4X1X2X3X4, (4.15)
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Table 4.1: Summaries of numerical results of αΦ(θ, φ) for WΦ(θ, φ), the parameters, γΦ,
which are utilized to prove WΦ(θ, φ) and δ noise,Φ involved in robustness of the proposed
witness operator for detecting truly multipartite entanglement. Three different cases for
the state |Φ(θ, φ)〉 corresponding to WΦ(θ, φ) have been demonstrated.

(θ, φ) (π
4
, π

6
) ( π

4.9
, 0) ( π

3.7
, π

9
)

αΦ 9.01 9.21 8.92
γΦ 6.54 6.44 6.86
δΦ 0.139 0.150 0.169

and then utilize the operator ĈΦ to construct witness operator for detections of truly

multipartite entanglement. Three example are shown as follows. The witness operator:

WΦ(θ, φ) = αΦ(θ, φ)1 − ĈΦ, (4.16)

where αΦ(θ, φ) is some constant, detects genuine multipartite entanglement for the cases,

(θ, φ): (π/4, π/6) , (π/4.9, 0), and (π/3.7, π/9). Table 4.1 gives a summary of αΦ(θ, φ) for

these cases.

In order to prove that WΦ(θ, φ) is a entanglement witness for detecting genuine mul-

tipartite entanglement, we have to show the following comparison between

Wp
Φ(θ, φ) = αp

Φ1 − |Φ(θ, φ)〉 〈Φ(θ, φ)| , (4.17)

and WΦ(θ, φ) [72]: if a state ρ satisfies Tr(WΦ(θ, φ)ρ) < 0, it also satisfies Tr(Wp
Φ(θ, φ)ρ) <

0, i.e., WΦ(θ, φ) − γΦWp
Φ(θ, φ) ≥ 0, where γΦ(θ, φ) is some positive constant. Through

the method given by Bourennane et al. [70], we derive the operator Wp
Φ(θ, φ) and have

αp
Φ = cos2(θ) for 0 < θ ≤ π/4 and αp

Φ = sin2(θ) for π/4 ≤ θ < π/2. Table 4.1 summarizes

the parameters γΦ utilized to prove that the proposed operators are indeed entanglement

witnesses for detecting truly multipartite entanglement.

In addition, we are concerned with the robustness to noise for the witness WΦ(θ, φ).

The robustness of WΦ(θ, φ) depends on the noise tolerance: pnoise < δnoise, is such that
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Table 4.2: Expectation values of three proposed entanglement witnesses including
WΦ(π

4
, π

6
), WΦ( π

4.9
, 0), and WΦ( π

3.7
, π

9
) for the pure states |Φ〉:

∣∣Φ(π
4
, π

6
)
〉
,
∣∣Φ( π

4.9
, 0)

〉
, and∣∣Φ( π

3.7
, π

9
)
〉
.

|Φ〉
∣∣Φ(π

4
, π

6
)
〉 ∣∣Φ( π

4.9
, 0)

〉 ∣∣Φ( π
3.7
, π

9
)
〉

Tr(WΦ(π
4
, π

6
)|Φ〉〈Φ|) −1.45 −1.83 −1.72

Tr(WΦ( π
4.9
, 0)|Φ〉〈Φ|) −1.25 −1.63 −1.52

Tr(WΦ( π
3.7
, π

9
)|Φ〉〈Φ|) −1.55 −1.92 −1.81

ρ = pnoise/21 + (1 − p noise) |Φ(θ, φ)〉 〈Φ(θ, φ)| , is identified as a genuine multipartite en-

tanglement. Three cases for the robustness to noise for the witness WΦ(θ, φ) have been

summarized in Table 4.1.

Further, we show the expectation values of the proposed entanglement witnesses for

different pure states by Table 4.2. From comparison with the results we know that a

aim state, say |Φ(θ′, φ′)〉, does not always give the smallest expectation value of the

corresponding witness operator, WΦ(θ′, φ′). One can identify with the operator WΦ(θ′, φ′)

that an experimental output ρ is truly multipartite entanglement if Tr(WΦ(θ′, φ′)ρ) < 0.

Further, if Tr(WΦ(θ′, φ′)ρ) < Tr(WΦ(θ′, φ′)|Φ(θ′, φ′)〉〈Φ(θ′, φ′)|), the state ρ is not in the

state |Φ(θ′, φ′)〉 class.

The novel approach to derive ĈΦ shown above can be applied to the cases for arbitrary

number of qubits straightforwardly. One can formulate sets of correlator operators to

identify correlations between two subsystems under two local measurement settings and

then construct the witness operators further.

4.3 Four-qubit singlet state

Very recently, four-party quantum secret sharing has been demonstrated via the re-

source of four photon entanglement [45], which is called the four-qubit singlet state [123].

Through the same method for the witness of a generalized four-qubit GHZ state, we give

a novel entanglement witness to detect the four-qubit singlet state.
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The four-qubit singlet state is expressed as the following form:

|Ψ4〉 =
1√
3

[
|0011〉z + |1100〉z −

1

2
(|0110〉z + |1001〉z + |0101〉z + |1010〉z)

]
. (4.18)

Under the local measurement setting, M4z, we formulate eight sets of criteria for identi-

fying quantum correlation between a specific party and others: the first type of identifi-

cations include the following four sets of correlators:

Ĉ
(z)
0,m = 0̂1z0̂2z1̂3z1̂4z −Xm(0̂1z0̂2z1̂3z1̂4z)Xm,

Ĉ
(z)
1,m = 1̂1z1̂2z0̂3z0̂4z −Xm(1̂1z1̂2z0̂3z0̂4z)Xm, (4.19)

where Xm = σx is performed on the mth party for m = 1, ..., 4. Then, the second type

criteria are formulated as:

Ĉ
(z)
0n,k =

[
0̂(2n+1)z1̂(2n+2)z −Xk(0̂(2n+1)z 1̂(2n+2)z)Xk

] [
0̂(2n⊕3)z 1̂(2n⊕4)z + 1̂(2n⊕3)z0̂(2n⊕4)z

]
,

Ĉ
(z)
1n,k =

[
1̂(2n+1)z0̂(2n+2)z −Xk(1̂(2n+1)z 0̂(2n+2)z)Xk

] [
0̂(2n⊕3)z 1̂(2n⊕4)z + 1̂(2n⊕3)z0̂(2n⊕4)z

]
,

(4.20)

where k = (2n + 1), (2n + 2) for n = 0, 1; and the symbol ⊕ behaves as the addition of

modulo 4 for n = 1 and as an ordinary addition for n = 0. The expectation values of the

operators Ĉ
(z)
l,m and Ĉ

(z)
ln,k for the pure four-qubit singlet state can be evaluated directly

and are given by C
(z)
l,m,Ψ4

= 1/3 and C
(z)
ln,k,Ψ4

= 1/6 for l = 0, 1.

Through Theorem 4, it is easy to see that the conditions involved in the expectation

values of Ĉ
(z)
l,m and Ĉ

(z)
ln,k:

〈
Ĉ

(z)
0,m

〉〈
Ĉ

(z)
1,m

〉
> 0,

〈
Ĉ

(z)
0n,k

〉 〈
Ĉ

(z)
1n,k

〉
> 0, (4.21)

are necessary for the pure four-qubit singlet state.

For invariance of the wave function presented in the eigenbasis of σx (σy), in analogy,
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we can construct 8 sets of Hermitian operators,

(Ĉ
(x(y))
0,m , Ĉ

(x(y))
1,m ) and (Ĉ

(x(y))
0n,k , Ĉ

(x(y))
1n,k ), (4.22)

via the replacement of the index z in above hermitian operators by the index x (y)

and constructing the operators in the eigenbasis of σx(y). The expectation values of the

above operators are all positive for the state |Ψ4〉, and so we have the following necessary

conditions of the state |Ψ4〉:

〈
Ĉ

x(y)
0,m

〉 〈
Ĉ

(x(y))
1,m

〉
> 0 and

〈
Ĉ

(x(y))
0n,k

〉 〈
Ĉ

(x(y))
1n,k

〉
> 0, (4.23)

Then, we combine all of the correlator operators proposed above:

ĈΨ4 = Ĉ
(x)
Ψ4

+ Ĉ
(y)
Ψ4

+ Ĉ
(z)
Ψ4
, (4.24)

where

Ĉ
(i)
Ψ4

=
1∑

l=0

[
5

4∑

m=1

Ĉ
(i)
l,m +

1∑

n=0

2n+2∑

k=2n+1

Ĉ
(i)
ln,k

]
, (4.25)

for i = x, y, z, and present a entanglement witness to detect the four-qubit singlet state.

The following witness operator detects truly multipartite entanglement for states close to

the state |Ψ4〉:

WΨ4 = αΨ41 − ĈΨ4 , (4.26)

where αΨ4 = 36.5.

We use the method utilized for WΦ(θ, φ) to prove WΨ4 is a entanglement witness.

First, we seek the witness operator Wp
Ψ4

. Through Ref. [70], the operator is given by:

Wp
Ψ4

=
3

4
1 − |Ψ4〉 〈Ψ4| . (4.27)
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Then, we have to show that if a state ρ satisfies Tr(WΨ4ρ) < 0, it also satisfies Tr(Wp
Ψ4
ρ) <

0. We find that γΨ4 = 30 is such that WΨ4 − γΨ4Wp
Ψ4

≥ 0.

The sets of correlator operators Ĉ
(x)
Ψ4

, Ĉ
(y)
Ψ4

, and Ĉ
(z)
Ψ4

note that only three local measure-

ment settings are used in the witness operator WΨ4 . The number of local measurement

settings is smaller than the required one, 15 local measurement settings, in Ref. [70].

Moreover, the robustness of the witness WΨ4 is specified by δΨ4 = 15/88 ≃ 0.1705. This

result satisfies the experimental requirement of robustness in Ref. [70].

4.4 Three-qubit W state

Let us proceed to study the correlations imbedded in the three-qubit W state:

|W3〉 =
1√
3
(|001〉z + |010〉z + |100〉z), (4.28)

When |W3〉 is shown in this representation, the following correlator operators are utilized

to show that the nth qubit is dependent on the other ones:

Ĉ
(z)
0n = (0̂nz − 1̂nz) ⊗ (0̂mz ⊗ 1̂qz + 1̂mz ⊗ 0̂qz),

Ĉ
(z)
1n = (1̂nz − 0̂nz) ⊗ (0̂mz ⊗ 0̂qz), (4.29)

for n = 1, 2, 3. For the pure state |W3〉, it is clear that
〈
Ĉ

(z)
0n

〉
= 2/3 and

〈
Ĉ

(z)
1n

〉
=

1/3, and, through Theorem 4, we are convinced that the nth qubit is dependent on the

subsystem composed of the mth and qth ones, i.e., all three qubits of the system are

dependent on each other. Furthermore, |W3〉 can also be expressed by

|W3〉 =
1

2

√
3

2
(|000〉x + |111〉x)+

1

2
√

6
(|001〉x + |010〉x−|011〉x+ |100〉x−|101〉x−|110〉x),

(4.30)
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where |v〉nx = (|0〉nz + (−1)v |1〉nz)/
√

2 for v ∈ {0, 1}. Thus, we give the following

correlator operators to show all qubits of the system are dependent on each other:

Ĉ
(x)
0n = (0̂nx − 1̂nx)0̂mx0̂px, Ĉ

(x)
1n = (1̂nx − 0̂nx)1̂mx1̂px, (4.31)

with C0xn = C1xn = 1/3. Similarly, the operators given by

Ĉ
(y)
0n = (0̂ny − 1̂ny)0̂my0̂py, Ĉ

(y)
1n = (1̂ny − 0̂ny)1̂my1̂py, (4.32)

where |v〉ny = (|0〉nz + (−1)vi |1〉nz)/
√

2, also provide
〈
Ĉ

(y)
0n

〉
=

〈
Ĉ

(y)
1n

〉
= 1/3, and by

which we can feature the correlation character of |W3〉 in the correlator operators Ĉ
(y)
0n

and Ĉ
(y)
1n . In conclusion, the sets of correlators (

〈
Ĉ

(z)
0n

〉
,
〈
Ĉ

(z)
1n

〉
), (

〈
Ĉ

(x)
0n

〉
,
〈
Ĉ

(x)
1n

〉
), and

(
〈
Ĉ

(y)
0n

〉
,
〈
Ĉ

(y)
1n

〉
) can be the essential properties of the state |W3〉. When using the oper-

ator

ĈW3 = Ĉ
(x)
W3

+ Ĉ
(y)
W3

+ Ĉ
(z)
W3
, (4.33)

where

Ĉ
(i)
W3

=

1∑

l=0

3∑

m=1

Ĉ
(i)
lm, (4.34)

for i = x, y, z, to construct a witness for detecting states close to |W3〉, we have the

operator

WW3 = αW31 − ĈW3, (4.35)

where αW3 = 5.6, which can be shown to be a witness by the fact WW3 − 6Wp
W3

≥ 0,

where [70]
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Wp
W3

=
2

3
1 − |W3〉 〈W3| . (4.36)

WW3 is robust against noise and has a noise tolerance δΨ4 = 0.2631.

4.5 Conclusion

We illustrate the utility of the conditions of correlations proposed by detections of three

different types of entangled states that cannot be described by local stabilizers. With the

help of Theorem 4, we give the corresponding entanglement witnesses that require fewer

local measurement settings when used in experiments. This chapter and the previous two

chapters show that the criteria of quantum correlation proposed do not only help to reveal

correlation structures of many-qubit and two-qudit entanglement but also can be utilized

to construct entanglement witnesses with highly noise tolerance. In the next chapter, we

progress to introduce a general condition of correlation for many-qudit entanglement.
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Chapter 5

Phase-dependent criterion for

many-qudit entanglement

5.1 Motivation

While the entanglement of bipartite qudits is still under intensive study [17], the many-

qudit entanglement has attracted increasing attention for its distinct features [18, 19].

The GHZ argument [19] and the generic Bell inequalities [18] for many qudits provide

a refutation of locality and realism. Measurements of some specific observables involved

higher-order correlation functions play important roles to reveal the quantum nonlocality

[17–19]. In this situation, it is natural to ask whether product of observables in a specific

direction of measurement can provide information about dependence of entangled qudits.

Can one obtain necessary conditions of correlation of entangled qudits from the general

correlation function? Furthermore, the question of whether one can detect truly multi-

partite quantum correlations with fewer measurements is crucial to both entanglement

physics and the quantum information processing.

In this chapter, we introduce a novel pahse-deoendent condition of correlations for

many-qudit entanglement. We reveal that the correlation functions utilized in the GHZ

argument [19] and the generic Bell inequalities [18] are comprised of phase-dependen
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criterion of correlations. We construct entanglement witness operators with highly ro-

bustness for detecting truly many-qudit entanglement. All of the witnesses presented can

be realized with fewer experimental efforts and can be applied to present experiments for

entangled qudits [20–23] directly. Especially, the criteria introduced in the previous three

chapters are special cases of the pahse-dependent condition of correlations.

5.2 Basic idea

In each run of Bell-type experiments for revealing correlations inherent in a multi-level

multipartite system, a set of local measurement setting, denoted by Ml = (V1, V2, ..., VN)

is chosen and single-qudit measurements of observable Vi for i = 1, ..., N are taken

on the N particles in parallel. After measurements, one can acquire a set of results

v[N] = (v1, v2, ..., vN) where vi is an element of the set {0, 1, ..., d− 1}. If sufficient runs of

such measurements have been made under a chosen local measurement setting, the cor-

relation between experimental outcomes can be revealed through the analytical analysis

of experimental records.

To investigate the correlations between two sets of results {v[m]} and {v[n]} for the

subsystem ofm particles and the one of n particles, in what follows, we will present a novel

method to attain this aim. The formulation of our strategy to investigate correlations

between any two subsystems consists of two parts. Firstly, we introduce the following

condition that holds for any physical systems:

λ∑

k=1

Ak = 0, (5.1)

where

Ak =
∑

i

γikP (v[m]ik), (5.2)

γik is a complex number with a unit norm, and P (v[m]ik) denotes the joint probability to
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get the result v[m]ik for the subsystem composed of m particles. The number of sets λ

relies on {Ak} designed. It is worth noting the above condition implies that all the Ak’s

are not in the same phase. Then, we give correlation polynomials of the form

Ck =
∑

i

γikP (v[m]ik, v[n]k), (5.3)

and the dependency of one subsystem on another one can be described by the following

theorem:

Theorem 5. If the arguments of all Ck’s are the selfsame, then the outcomes of mea-

surement for the two subsystems are dependent [124].

Proof. If the two subsystems are independent, the joint probability P (v[m]ik, v[n]k) must

be a product of two individual ones: P (v[m]ik)P (v[n]k), and then Ck is recast as

Ck = P (v[n]k)Ak. (5.4)

Since the phases of Ak’s are not all identical, the arguments of Ck’s must be different,

whereas a contradiction reveals the dependency of one subsystem on another one.

We call Ck’s correlators for their utility. Since entanglement is the physical property

that manifests itself via different local measurement settings, according to the knowledge

of the entangled qudits to be created we can construct more sets of correlators under

the condition of dependence and different local measurement settings. Then we utilize

them to analyze the experimental outputs. Determination of the value of |
∑

k Ck| could

be one possible means for identifying correlations embedded in entangled qudits. It is

clear that |
∑

k AkP (v[n]k)| ≤ 1 for independent subsystems, whereas we could feature the

correlation of entangled qudits to be created in the criterion |∑k Ck| = 1 under several

local measurement settings. From which, we will see that truly many-qudit entanglement

can be detected in a systematic way. In what follows, we will present two types of {Ck}

associated with different designation of {Ak}.
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5.3 Many-qudit Bell inequalities

Let us give a concrete example to illustrate the first kind of correlators. For a three-qudit

GHZ state with the state vector:

|Ψ3×d〉 =
1√
d

d−1∑

v=0

|v〉⊗3 , (5.5)

where {|v〉} is a complete set of orthonormal basis, we can use the correlators correspond-

ing to the following operators to specify the correlation between the ith qudit and the

subsystem composed of the jth and the qth ones of the state |Ψ3×d〉:

Ĉ
(n)
k =

d−1∑

vi=0

ωn(vi+k)v̂if ⊗ v̂[jq]f , (5.6)

for k = 0, 1, ..., d− 1, where n is some positive integer, ω = exp(i2π/d), v̂if = |vi〉ff 〈vi|,

v̂[jq]f =
∑

vj ,vq
v̂jf ⊗ v̂qf , |vi〉f = 1√

d

∑d−1
v=0 w

−viv |v〉, vj + vq
.
= k , and

.
= denotes equality

modulo d. Since C
(n)
kQ = 〈Ψ3×d| Ĉ(n)

k |Ψ3×d〉 = 1/d for all k’s and partitions of the systems:

[1|23], [2|13], and [3|12]. Then a linear combination of Ĉ
(n)
k ’s can be consider as a means

of identification of the state |Ψ3×d〉 and we have

d−1∑

k=0

Ĉ
(n)
k = V̂ n

1f ⊗ V̂ n
2f ⊗ V̂ n

3f (5.7)

where

V̂if =

d−1∑

vi=0

ωvi v̂if . (5.8)

Furthermore, more operators of correlators under different local measurement settings

can be introduced to specify the dependence of qudits, and the sum of these operators
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can be the following ones:

V̂ n
if ⊗ V̂ n

jf ⊗ V̂ n
qF , V̂

n
if ⊗ V̂ n

jF ⊗ V̂ n
qF , V̂

n
iF ⊗ V̂ n

jF ⊗ V̂ n
qF , (5.9)

where

V̂iF =

d−1∑

vi=0

ωvi v̂iF (5.10)

and the eigenstates of the observable are of the form |vi〉F = 1√
d

∑d−1
vi=0w

−v(vi+1/2) |vi〉. In

addition to the operators involved correlators discussed above, their Hermitian conjugates

also work in the same way for correlation.

The generalized GHZ state can be featured in correlators under different local mea-

surement settings. Each set of correlators is one necessary condition of a GHZ state.

Then, one can combine all of the operators of correlators as a single identification to dis-

tinguish the quantum correlations imbedded in the generalized GHZ state and the ones

predicted by local realistic theories. It is remarkable that the kernel of the generic Bell

inequalities for three qudits [18] represented by the observable

B̂3 =
1

23

d−1∑

n=1

3⊗

i=1

(V̂if + ωn/2V̂iF ) + H.c., (5.11)

is composed of operators of correlators associated with necessary conditions of the GHZ

state. ForN -qudit Bell inequalities, through a direct calculation, we rephrase the expected

value of the N -qudit Bell kernel B̂N [18] for the N -qudit GHZ state by the following
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polynomial of correlators:

BNQ =
1

2N−1

2N−1∑

l=1

d−1∑

n=1

d−1∑

k=0

C
(n)
lkQ, (5.12)

where l’s denote local measurement settings and C
(n)
lkQ’s fulfill the specifications of correla-

tors. In particular, since C
(n)
lkQ = 1/d for all the parameters involved and for any partitions

of the N qudits considered, the correlation properties of the generalized N -qudit GHZ

state have been shown concretely. For example, the operator V̂0 =
⊗N

i=1 V̂
n
if is one of the

elements of B̂N and can be represented by
∑d−1

k=0 Ĉ
(n)
k , where Ĉ

(n)
k = ωnkv̂[m]f

⊗N
i=m+1 V̂

n
if ,

v̂[m]f =
∑

v1,...,vm
⊗m

i=1v̂if , and
∑m

i=1 vi
.
= k. Since C

(n)
kQ = 1/d for all k’s, we realize that the

subsystem comprised of the first m qudits is dependent on the one composed of the rest.

This result holds for any partitions of the system, which provide the information about

correlations between any two subsystems with m qudits and (N −m) ones respectively

by nc sets of correlators, where nc =
∑⌊N/2⌋

m=1 f(N,m) m!
m!(N−m)!

, f(N,m) = 2−δ[m,⌊N/2⌋] for

N even, and f(N,m) = 1 for N odd, i.e., the definition (2.8).

The following operator will be shown useful studying the generalized GHZ state:

V̂iy =
d−1∑

vi=0

ωvi+p/2 |(vi − 1)mod vi〉 〈vi|

=

d−1∑

vi=0

ωvi+pv̂iy, (5.13)

where v̂iy = |vi〉ff 〈vi|, {|vi〉y} is the set of orthonormal eigenbasis of V̂iy, p = 0 for d odd,

and p = 1 for d even. Tensor products of V̂if and V̂ky can be used to reveal the correlations

embedded in a N -qudit entanglement. The operators

V̂i =

N⊗

k=1;k 6=i

V̂kf ⊗ V̂ d−1
if , (5.14)
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for i = 1, ..., N can be decomposed into operators of correlators like V̂0, and each correlator

is −1/d. The operators V̂i’s are the central part of the GHZ contradictions for many

qudits [19]. Through the conditions of correlations, one can realize that the utility of each

operator is to specify the quantum correlations between qudits and to show the properties

of dependence of the generalized N -qudit GHZ state under N + 1 local measurement

settings.

5.4 Entanglement witnesses for many-qudit entan-

gled states

We proceed to introduce the second type of correlators and give several entanglement wit-

ness operators which need only two local measurement settings. The correlators proposed

in the second and the third chapters are classified to this type. The witness operators

proposed are of the form: Wφ = αφ1 − Ĉφ, where αφ is some constant and Ĉφ is a linear

combination of operators of correlators associated with the necessary conditions of the

many-qudit state |φ〉. If measured outcomes show that Tr(Wφρ) < 0, an experimental

output state ρ is identified as a truly multipartite entanglement which is close to the

aim state |φ〉. Moreover, we also show that the proposed witnesses are robust to noise.

The robustness of Wφ is determined by the noise tolerance: pnoise < δnoise, is such that

ρ = pnoise1/d
n + (1 − pnoise) |φ〉 〈φ| is identified as a genuine many-qudit entanglement.

The proof for showing that the proposed operators are entanglement witnesses and the

robustness of the witness operators are shown in Appendix C.

(a) Two-qudit singlet state. Firstly, we will show how to detect states close a two-qudit

singlet state of the state vector:

|s〉 =
1√
d

d−1∑

v=0

(−1)v |v〉 ⊗ |d− v − 1〉 . (5.15)

For the first local measurement setting, the correlators are given via the operators,
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Ĉ
(u)
k = [k̂ − U(k̂)] ⊗ v̂2, (5.16)

for k = 0, ..., d − 1 and u = 1, ..., βd, where v2 = d − 1 − k, U is a injective map s.t.

U(k̂) 7→ k̂′ and k′ 6= k, and each {U(k̂)} is numbered by u. Then there are βd sets of

{Ĉ(u)
k }. Let us take d = 3 for example. We have two sets of correlator operators, i.e.,

β3 = 2, given by

{Ĉ(1)
0 = (0̂ − 1̂) ⊗ 2̂, Ĉ

(1)
1 = (1̂ − 2̂) ⊗ 1̂, Ĉ

(1)
2 = (2̂ − 0̂) ⊗ 0̂},

{Ĉ(2)
0 = (0̂ − 2̂) ⊗ 2̂, Ĉ

(2)
1 = (1̂ − 0̂) ⊗ 1̂, Ĉ

(2)
2 = (2̂ − 1̂) ⊗ 0̂}.

For general d, βd can be determined analytically by the definition (2.10) of γd. Since

C
(u)
kQ = 1/d for all k’s and u’s, the properties of dependence have be shown. For the

second local measurement setting, operators of correlators are defined by Ĉ
(u)
rk = [k̂r −

U(k̂r)] ⊗ v̂2k, where v2 + k
.
= 0, the projector k̂r’s correspond to elements of a complete

set of orthonormal basis vectors {|k〉r} and

|k〉r =
1√
d

d−1∑

v=0

(−1)k+vwv |v〉 . (5.17)

Through a simple calculation, we have the correlators C
(u)
rkQ = 1/d for all the parameters

considered.

The kernel of our entanglement witness for detecting states close to a generalized

singlet state consists of Ĉ
(u)
k ’s and Ĉ

(u)
rk ’s and is defined explicitly by

Ĉs =
∑

u,k

Ĉ
(u)
k + Ĉ

(u)
rk . (5.18)

The witness operator Ws composed of Ĉs can be utilized to detect arbitrarily high-

dimensional singlet state with only two local measurement settings, and in particular
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it is highly robust against to noise, independent of the number of dimensions of quantum

system.

(b) Four-ququat supersingelt state. Let us progress towards another entanglement

witness operator for detecting a four-ququat supersingelt state [69] with the state vector

|S〉 =
1√
24

∑

(v1v2v3v4)∈G

(−1)t |v1v2v3v4〉 , (5.19)

where G is the set which includes all permutations of the series (0123) and t is the number

required to transpose pairs s.t. the series (v1v2v3v4) is arranged to (0123). The characters

of the state |S〉 can be described by correlations between two subsystems of two ququats,

and then we introduce the following operators to feature these properties:

Ĉ
(u)
k[ij|pq] = [k̂[ij] − U(k̂[ij])] ⊗ k̂′[pq], (5.20)

for k = 0, ..., 5 and u = 1, ..., β6, where 0̂[ij] = 0̂1̂ + 1̂0̂, 1̂[ij] = 0̂2̂ + 2̂0̂, 2̂[ij] = 0̂3̂ + 3̂0̂,

3̂[ij] = 1̂2̂+2̂1̂, 4̂[ij] = 1̂3̂+3̂1̂, 5̂[ij] = 2̂3̂+3̂2̂, and k+k′ = 5. For the four-lateral rotationally

invariance of the supersinglet state [69], we have the following operators which are similar

to Ĉ
(u)
k[ij|pq]’s:

Ĉ
(u)
fk[ij|pq] = [k̂[ij]f − U(k̂[ij]f)] ⊗ k̂′[pq]f , (5.21)

where k̂[ij]f =
∑

vivj
v̂if ⊗ v̂jf has the same definition as k̂[ij]. It is clear that C

(u)
k[ij|pq] =

C
(u)
fk[ij|pq] = 1/6. Then we have the central part of the witness

ĈS =
∑

u,k

∑

{[ij|pq]}
Ĉ

(u)
k[ij|pq] + Ĉ

(u)
fk[ij|pq], (5.22)

where {[·]} denotes the set include different kinds of partitions of the four ququats and

the number of elements of which is defined by nc (2.8).

(c) Four-level four-qubit GHZ state. The next illustration of the criterion proposed is
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given by an entanglement witness for a four-level four-partical GHZ state

|Ψ4×4〉 =
1

2

3∑

v=0

|v〉⊗4 . (5.23)

The witness consists of the operators of correlator as the following:

Ĉ
(u)
k[i|jpq] = [k̂ − U(k̂)] ⊗ k̂[jpq], Ĉ

(u)
k[ij|pq] = [k̂[ij] − U(k̂[ij])] ⊗ k̂[pq], (5.24)

Ĉ
(u)
fk[i|jpq] = [k̂f − U(k̂f )] ⊗ k̂′[jpq]f , Ĉ

(u)
fk[ij|pq] = [k̂[ij]f − U(k̂[ij]f)] ⊗ k̂′[pq]f , (5.25)

for k = 0, 1, 2, 3 and u = 1, ..., β4, where k̂[jpq] = k̂ ⊗ k̂ ⊗ k̂, k̂[pq] = k̂ ⊗ k̂, k̂′[jpq]f =

∑
jpq v̂jf ⊗ v̂pf ⊗ v̂qf with vj + vp + vq = k′, k̂[ij]f =

∑
ij v̂if ⊗ v̂jf with vi + vj = k,

k̂′[pq]f =
∑

pq v̂pf ⊗ v̂qf with vp + vq = k′, and k + k′
.
= 0. Then we have the kernel

ĈΨ =
∑

u,k

∑

{[i|jpq]}
3Ĉ

(u)
k[i|jpq] + 2Ĉ

(u)
fk[i|jpq] +

∑

u,k

∑

{[ij|pq]}
3Ĉ

(u)
k[ij|pq] + 2Ĉ

(u)
fk[ij|pq]. (5.26)

(d) Many-qutrit GHZ states. The previous two examples show that via correlators the

genuine four-party correlation of quantum states can be tested by two local measurement

settings. This approach can be applied to cases involved more correlated qudits. For

instance, to detect many-qutrit (d = 3) GHZ states of the representation:

|ΨN×3〉 =
1√
3

2∑

v=0

|v〉⊗N (5.27)

for N = 3, 4, ..., 7, WΦN
’s are comprised of operators that describe correlations between

any two subsystems and given by

ĈΨN×3
=

∑

u,k

∑

{[m|m̄]}
3Ĉ

(u)
k[m|m̄] + 2Ĉ

(u)
fk[m|m̄], (5.28)

where m and m̄ signify subsystems with m qutrits and N − m ones respectively, and

Ĉ
(u)
k[m|m̄] and Ĉ

(u)
fk[m|m̄] are in terms of the eigenbasis {|v〉} and {|v〉f} respectively and

denote correlator operators for specifying correlations between the subsystem m and m̄.
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It is remarkable that these witnesses are very robust against to noise, independent of the

number of qutrits.

5.5 Conclusion and outlook

We develop a phase-dependent condition of many-particle correlation for qudits. From

which, we proposed novel entanglement witness operators with highly robustness for many

qudits. These witnesses detect genuine entanglement close to two-qudit singlet, many-

qudit GHZ, and supersinglet states [69]. They need only two local measurement settings

when utilized in the present experiments. In particular, we reveal the essential elements

of the GHZ paradoxes [19] and the generic Bell inequalities [18] for many qudits are

comprised of the phase-dependent condition of correlations.

The framework of this work also helps to investigate the correlations of random vari-

ables, e.g., to define a new coefficient of correlation between random variables in the

probability theory [125]. For two-bit cases, the new correlation coefficient is defined as

C(V1, V2) =
1∑

v1,v2=0

(−1)M2(v1+v2)
H(v1, v2), (5.29)

where H(v1, v2) = − log4 p(v1, v2), with −1 ≤ C(V1, V2) ≤ 1. If it is equal to zero, then

V1 and V2 are said to be uncorrelated. Unlike the conventional one [125], there is no need

to consider marginal probabilities. Further applications in statistics will be discussed in

detail elsewhere.
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Chapter 6

Entanglement purification

6.1 Background and motivation

The IBM [74, 75] and the Oxford [74–76] protocols are essential to entanglement purifi-

cation for entangled-qubit pairs (see the introduction in Sec. 1.3). By using the IBM

protocol, Alice and Bob can asymptotically regain the desired pure state, but they have

to consume operation time in twirling the state in between each purification LOCC oper-

ation into a Werner state [126] whose fidelity relative to the desired pure state is always

greater than 1/2. Compared with the IBM protocol, the Oxford protocol can provide

higher output yield, defined as the purified pairs per impure input pair, especially when

the initial fidelity with respect to the desired pure state of the input state is close to 1/2.

In particular, the Oxford protocol is capable of purifying any state whose average fidelity

with respect to at least one maximally entangled pure state is greater than 1/2 and can be

directly applied to purify states which are not necessarily of the Werner form. However,

since the Oxford protocol occasionally may purify a pure state other than the desired one,

i.e., it could yield two possible pure states, depending on the initial mixed state, Alice and

Bob then are suggested to take efforts additional to the purification LOCC operations to

transform the pure state with greatest component (> 1/2) in the input mixed state into

the desired state; such action also costs operation time in the additional local unitary op-
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erations and classical communications to identify the mixed state and thus consumes some

pairs before the standard purification LOCC operations. The output yields induced by

the IBM and Oxford protocols are rather poor, but can be increased somewhat provided

both protocols are combined with hashing protocols, as described in Refs. [74, 75]. So far,

there have been modified protocols dedicated to increasing the yield of an entanglement

purification procedure, e.g., see Refs. [127–129].

Surveying on these modified methods, one finds that while inducing greater yields, they

at the same time require more local unitary operations and classical communications in

the reordering schemes and hashing protocols [74, 75] that are combined in the standard

purification protocols. So, when comparing the performances of two protocols, say A and

B, we can say protocol A performs better than B either when the yield of protocol A

is greater than that of protocol B if both protocols cost equal operation times, or when

protocol A requires less operation time than protocol B provided they induced equal yields.

Instead of focusing on increasing the yield, in this chapter we are intended to propose an

idea of establishing entanglement purification protocols in which the required operations

are the fewest, when compared with the standard IBM and Oxford protocols. These

protocols can purify a desired pure state by using the standard LOCC operations alone.

When using these protocols, the mixed state to be purified needs not be transformed into

the Werner state nor be reordered so that its fidelity with respect to the desired pure state

is the largest. Furthermore, the protocols presented in this chapter in fact can provide

better yields than that induced by the Oxford protocol [130].

6.2 Basic idea of entanglement purification

The standard purification LOCC operation considered in this chapter, as shown in Fig.

6.1, should be mentioned first. In each purification LOCC operation, Alice and Bob first

perform local operations by operators U and U∗, which will be defined latter, respectively.

Then Alice and Bob each performs a quantum control-not operation. They then measure
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U 

U 

U* 

U* 

A B 

Figure 6.1: The standard purification LOCC operations including the local controlled-
NOT operation, single qubit measurement, and local unitary operation in each party.
Note that the classical communication is not shown in this figure.

the target qubits in the computational basis, and if the outcomes, communicated via

classical channel, coincide they keep the control pair for the next step and discard the

target pair. If the outcomes do not coincide, both pairs are discarded. In the purification

LOCC operation, the state to be purified needs not be of a Werner form. We express the

mixed state in the Bell basis {|Φ+〉, |Ψ−〉 , |Ψ+〉, |Φ−〉}:

∣∣Φ±〉
=

1√
2
(|00〉 ± |11〉),

∣∣Ψ±〉
=

1√
2
(|01〉 ± |10〉), (6.1)

where |0〉 and |1〉 form the computational basis of the two-dimensional space belonging

to the EPR pairs. Let {a0, b0, c0, d0} be the average initial diagonal elements of the

density operator representing the mixed state before the protocol is begun with, and {ar,

br, cr, dr} be the average diagonal elements of the surviving state after the r-th step. It

can be shown that a purification LOCC operation in fact is relative to a nonlinear map,

where the diagonal entries of the surviving state after the LOCC operation are nonlinear

functions of those before the operation. Therefore the purification protocol considered in

this work is composed of consecutive nonlinear maps of the Bell-diagonal elements used

to transform an initial state asymptotically to a desired pure state. Suppose the state

|Φ+〉 〈Φ+| is the desired one to be purified through the purification, we then are willing
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to map step by step the initial state {a0, b0, c0, d0}, where one of the elements should be

greater than 1/2, to converge to the desired attractor {1, 0, 0, 0} as the step number r is

sufficiently large. But the intrinsic property of the nonlinear map reveals that the desired

attractor is not the only one, as can be seen in the article of Macchiavello [131], who has

given the analytical convergence in the recurrence scheme of the QPA protocol.

The interesting nonlinear behavior of the recurrence scheme in a distillation protocol is

dominantly influenced by the local unitary operations operators U and U∗ applied by Alice

and Bob in the purification LOCC operation. Generalized expression for U , controlled by

two phases θ and φ, is given by

U(θ, φ) =




cos( θ

2
) −e−iφ sin( θ

2
)

eiφ sin( θ
2
) cos( θ

2
)



 . (6.2)

It is clear that distinct choices of θ and φ will lead to different destinations of the protocol.

For example, in using the original QPA protocol, Alice and Bob choose θ = φ = π/2 ,

i.e., they apply the operator

U(
π

2
,
π

2
) =

1√
2




1 −i

i 1



 . (6.3)

In this case, one will have a map {ar−1, br−1, cr−1, dr−1} → {ar, br, cr, dr} according to

the following relations:

ar =
a2

r−1 + b2r−1

pr−1

, br =
2cr−1dr−1

pr−1

,

cr =
c2r−1 + d2

r−1

pr−1

, dr =
2ar−1br−1

pr−1

, for θ = φ = π/2, (6.4)

where pr−1 = (ar−1+br−1)
2+(cr−1+dr−1)

2 is the probability in the rth step that Alice and
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Bob obtain coinciding outcomes in the measurements on the target pairs (so only pr−1/2

of the pairs before the rth step is surviving after the step). Let us define the domains

Da = {a ∈ (0.5, 1]; a+ b+ c+ d = 1},

Db = {b ∈ (0.5, 1]; a+ b+ c+ d = 1},

Dc = {c ∈ (0.5, 1]; a + b+ c + d = 1},

Dd = {d ∈ (0.5, 1]; a + b+ c+ d = 1},

Dab = Da ∪ Db ,

Dcd = Dc ∪ Dd ,

Dabcd = Da ∪ Db ∪ Dc ∪ Dd. (6.5)

In what follows we will consider the case that an initial mixed state to be purified is

in the applicable Dabcd because any state ρ ∈ Dabcd is distillable. It has been proved

[131] that, for the Oxford protocol, an initial state in the domain Dab will eventually

be mapped to converge to the attractor {1, 0, 0, 0} representing the desired pure state

|Φ+〉 〈Φ+|. While if the initial state is in the domain Dcd, then it will be mapped to

approach another attractor {0, 0, 1, 0}, or the pure state |Ψ+〉 〈Ψ+|. In the end, according

to Ref. [76], using the QPA protocol, Alice and Bob will regain the desired pure state from

any state ρ ∈ Dabcd provided they first take efforts additional to the standard purification

LOCC operations to transform the pure state |Ψ+〉 〈Ψ+|, or |Φ−〉 〈Φ−|, into the desired

state |Φ+〉 〈Φ+| if the input state is in the domain Dcd. Meanwhile, such efforts also

have meaningful implication as if the QPA is considered to be combined with the hashing

protocol [74, 75] to improve its output yield. These tedious transformations cannot be

avoided even when the input state is already in the domain Dab, because Alice and Bob

initially do not have an idea about whether the input state is exactly in the domain Dab

or Dcd. For example, if the input state has the element c0 = 0.7, then Alice and Bob

should transform the state |Ψ+〉 〈Ψ+| into |Φ+〉 〈Φ+| before the purification procedure so

that the mixed state in turn will have the element a0 = 0.7.
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As another example, if Alice and Bob choose θ = π/2 and φ = 0, then they have the

operator

U(π/2, 0) = XH =
1√
2




1 −1

1 1



 , (6.6)

where X is quantum NOT gate and H is the Hadamard transformation. Accordingly, in

this case, the recurrence scheme is described by

ar =
a2

r−1 + c2r−1

pr−1

, br =
2br−1dr−1

pr−1

,

cr =
b2r−1 + d2

r−1

pr−1
, dr =

2ar−1cr−1

pr−1
, for θ = π/2, φ = 0, (6.7)

where pr−1 = (ar−1+cr−1)
2+(br−1+dr−1)

2. It should be mentioned here that the relations

(6.7) can also be resulted from the utility of Hadamard transformation only, i.e., U = H,

but this transformation does not belong to the SU(2) operator defined in (6.2). Although

the analytical convergency in the recurrence scheme (6.7) has not yet been proved, we

find that an initial state in some domain Du ⊂ Dabcd, which is not yet defined, will be

mapped to approach the periodic attractor representing a state interchanging step by

step between {0.5, 0, 0, 0.5} and {0.5, 0, 0.5, 0}, while a state in the domain Dc
u, where

Dc
u∪Du = Dabcd, will be mapped to converge to the fixed attractor {1, 0, 0, 0}, as wanted.

For example, one can easily check to see that the initial state {0.1, 0.2, 0.6, 0.1} will be

mapped to converge to the fixed attractor but the initial state {0.2, 0.1, 0.6, 0.1}, on the

other hand, will be mapped to approach the mentioned periodic attractor. So a protocol

in which the operator XH is used, unlike the QPA protocol, will not guarantee to purify

pure maximally entangled pairs.
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6.3 Entanglement purification with a two-map pro-

tocol

In this work, we call a protocol a one-map protocol if Alice and Bob each uses only one

single local operator in all the purification LOCC operations, such as the IBM and Ox-

ford protocols. From the above examples we realize that if only the standard purification

LOCC operations are implemented, all one-map protocols will encounter the same situa-

tion that there is always another attractor in addition to the desired one, {1, 0, 0, 0}, for

a state ρ ∈ Dabcd to be mapped to converge to. This situation thus becomes the ultimate

limitation for the one-map algorithm. Therefore, in this work, we will present a viewpoint

of hybrid maps for a purification protocol and show the fixed state {1, 0, 0, 0} can be the

only attractor for an initial state ρ ∈ Dabcd to be mapped to approach. The simple idea

can be interpreted briefly. If we have known a one-map protocol, say, controlled by θ1

and φ1, in which a state ρ belonging to some defined domain D1(⊂ Dabcd) can be mapped

to approach the fixed attractor {1, 0, 0, 0}, then all we have to do is to find another map,

controlled by θ0 and φ0, in which a state ρ ∈ Dabcd will be mapped on to a subdomain

of the defined D1. This kind of protocol is what we call a two-map protocol, which can

ensure Alice and Bob to regain the desired pure state |Φ+〉 〈Φ+| all by using the standard

purification LOCC operations.

For the idea we have just presented, the most difficult task is the definition of the

domain D1. Fortunately, Macchiavello [131] has defined the domain D1 for the QPA

protocol, in which D1 = Dab, as defined in (6.5). Therefore the QPA protocol is so far

the most convenient one-map protocol to be improved by our idea. As to the one-map

protocol described in (6.7), on the contrast, no definition of the corresponding D1 have

been proved. A concrete example of our idea, however, will utilize these two one-map

protocols. That is, in this example the option θ1 = π/2 and φ1 = π/2 will be chosen

and accordingly the choice θ0 = π/2 and φ0 = 0 follows. We begin with the derivation of

(1 − 2ar) and (1 − 2cr) for θ0 = π/2 and φ0 = 0. According to (6.7), we have
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1 − 2ar =
(1 − 2ar−1)(1 − 2cr−1)

pr−1
, 1 − 2cr =

(1 − 2br−1)(1 − 2dr−1)

pr−1
, (6.8)

for arbitrary positive integer r. It is now clear to find that, since pr−1 > 0, when a0 > 1/2

or c0 > 1/2, then after the first purification LOCC operation we have a1 > 1/2, while as

b0 > 1/2 or d0 > 1/2, then we in turn have c1 > 1/2, which consequently implies a2 > 1/2

after the second purification LOCC operation. As a result, we know by now that using

the one-map protocol (6.7), we can always in two steps map an initial state ρ ∈ Dabcd

on to the domain Da, which is exactly a subdomain of D1(= Dab) for the standard QPA

protocol. Now, we have come to the two-map protocols we wish to present in this work.

Using this two-map protocol (symbolized by TM1), Alice and Bob have an agreement that

in the first two steps of the purification procedure, they will apply the operators U(π/2, 0)

and U∗(π/2, 0) , respectively, to map a state ρ ∈ Dabcd on to the domain Da = {a ∈ (0.5,

1], a+ b+ c+ d = 1}, and then they will apply the standard QPA operators U(π/2, π/2)

and U∗(π/2, π/2) to purify the surviving state to the desired state |Φ+〉 〈Φ+| in the rest

purification LOCC operations. Interestingly, an alternative two-map protocol (symbolized

by TM2) can be used as well, in which the operators U(π/2, 0) and U∗(π/2, 0) are applied

only at the second purification LOCC operation, since after the first LOCC operation,

in which the QPA operators U(π/2, π/2) and U∗(π/2, π/2) are used, the state has been

mapped on to the domain Dac [131].

Apparently, our protocols TM1 and TM2 are composed of only the standard pu-

rification LOCC operations, without using any additional local operations and classical

communications in transforming the mixed state into a Werner state, as needed in the

IBM protocol, or transforming one of the Bell states whose fidelity is the largest into the

desired pure state |Φ+〉 in advance of the Oxford operations. Therefore the fewest opera-

tions are required in our purification algorithms, as compared with the IBM and Oxford

protocols. Furthermore, when comparing the output yields and the fidelities (or purities)
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Figure 6.2: The variations of the yield and the comparing purity (in the inserted diagram)
at ten times of the recurrence method.
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produced by the IBM, the Oxford, and our two-map protocols, we find the protocol TM1

can provide better yields and fidelities than the Oxford protocol (which performs better

than the IBM protocol), while the protocol TM2 can perform almost equally to the Oxford

protocol, although this is not the primary purpose of this work. In our numerical simu-

lations, the yield, or the fraction of the surviving pairs, defined by Yr = p0p1...pr−1(2
−r),

where r denotes the iteration number, was first computed up to r = 10 for each input

state to be purified. The variations of the yield as functions of the initial fidelity a0 are

shown in Fig. 6.2, in which (and also in the following figures) each yield (and each purity)

was the average value computed over ten thousand random states possessing the same

initial fidelity. The corresponding purities after the ten iterations are also shown in Fig.

6.2. It is shown that although, after the ten iterations, the resulted purities produced by

using the Oxford, TM1, and TM2 are high, the yields of them are rather poor, especially

when the initial fidelity is close to 1/2.

The yield, however, can be further improved by combining the recurrence method with

the hashing protocol [74, 75] as long as the purity is high enough (e.g. higher than 0.8107

for a Werner state) when the recurrence scheme is performed in only a few iterations. In

Fig. 6.3 we show the yields Y5 and the correspond purities a5 produced by the Oxford

and the TM1 protocols after five iterations, respectively. This figure shows that when the

initial fidelities are greater than some specific values near 1/2 for both cases (of course the

specific fidelities can be lowered if the iteration is increased), the hashing protocols then

are applicable after the five iterations in running the recurrence schemes. Fig. 6.3 shows

that after the five iterations, the surviving fraction Y5,TM1 and the corresponding purity

a5,TM1, produced by the the TM1 protocol are slightly higher than the surviving fraction

Y5,Ox and the purity a5,Ox, which are resulted from using the Oxford protocol. The slight

differences in Y5 and a5, however, can induce significant difference between the improved

yields when the hashing protocol is switched on after the five iterations. The evidence

can be seen in Fig. 6.4, in which both the improved yields Y ′
5,TM1 and Y ′

5,Ox and the ratio

of the improved yields (Y ′
5,TM1/Y

′
5,Ox) as functions of the initial fidelity are shown; the
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improved yield is defined by Y ′
r = Yr(1−S(ρr)), where S(ρr) is the von Neumann entropy

of the surviving mixed state ρr. It is clearly shown in Fig. 6.4 that the ratio Y ′
5,TM1/Y

′
5,Ox

becomes greater as the initial fidelity is closer to 1/2.

6.4 Conclusion

In the recurrence scheme of a one-map entanglement purification protocol, the nonlinear

behavior of the four Bell-diagonal elements of the density matrix representing the mixed

state to be purified reveals that there is always another attractor other than the desired

fixed attractor. This indicates that not all the distillable input state can be purified to the

desired maximally entangled pure state all by the standard purification LOCC operations

in a one-map protocol. Therefore some tedious efforts additional to the purification LOCC

operations are needed in using the typical IBM and Oxford protocols to purify a desired

pure state from any distillable state. The proposed two-map purification protocols TM1

and TM2, on the contrast, can guarantee that all the distillable input states can be

purified to the desired pure state all by the standard purification LOCC operations. That

an entanglement purification can be accomplished all by the standard purification LOCC

operations is crucially important to a significant improvement for the purification process.

By such improvement, we then do not have to identify the mixed state and consequently

do not consume any pairs before the purification LOCC operations. The proposed two-

map protocols perform better than the one-map IBM and Oxford protocols in the sense

that they require the least operation times in yielding a same amount of useful EPR pairs.

Surprisingly, the protocol TM1 is found able to induce higher yields and purities than the

Oxford protocol. This is crucially important as the hashing protocol is combined with

the recurrence algorithm to improve the output yield. The proposed two-map protocols,

however, like the standard IBM and Oxford protocols, should be implemented if the

initial state possesses a fidelity very close to 1/2 only after enhancing the state’s fidelity.

For example, it has been shown [132] that only inseparable two-qubit state with “free”
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entanglement, however small, can be distillable to a pure form by using local filtering

[133, 134] to enhance the state’s fidelity first. An interaction with the environment [135]

can even be allowed to enhance the fidelity of a quantum teleportation. The fidelity

enhancement, however, is not an issue to be concerned with in this work.
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Chapter 7

Quantum error-correcting codes and

entanglement purification

7.1 Introduction

The five-qubit quantum error-correcting code (QECC) that protects a qubit of information

against general one-qubit errors is one of special interests for quantum computations. It

has been proven to be the best and smallest block code [78]. It is also a perfect non-

degenerate code because it saturates the quantum Hamming bound [136] and thus is

capable of correcting all one-qubit errors with minimum number of extra qubits. Laflamme

et al. [77] and Bennett et al. [74] independently showed the first five-qubit QECCs. Recent

developments of most QECCs are attributed to the stabilizer formalism [117, 137, 138].

In the work of Laflamme et al. [77], the five-qubit error correction is described to perform

in a rather simple procedure. The initial one-qubit information, as accompanied with

four extra qubits in the state |0〉, is encoded by a circuit representing a sequence of

single-qubit Pauli operations and two-qubit controlled Pauli operations. Then, after the

interaction of environment that causes generic one-qubit errors, the polluted five-qubit

state is decoded by running the same encoder circuit in a reverse order. Eventually,

the tensor product state of the four extra qubits is measured in the computational basis
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(|0〉 and |1〉) to decide the corresponding final Pauli operation for recovering the original

state of the information carried qubit. By computer search, Braunstein and Smolin [139]

found a simplified encoder circuit which can encode the one-qubit information in 24 laser

pulses. For the stabilizer code, however, the initial one-qubit information is encoded by

the actions of all the operators belonging to the group generated by the stabilizers. The

encoded five-qubit state is then allowed to be affected by generic one-qubit errors followed

by measurements of the stabilizer observables to detect and correct the qubit on which the

error has occurred. The fiv-qubit stabilizer code has been experimentally implemented

using nuclear magnetic resonance by Knill et al. [140].

The five-qubit QECC introduced by Bennett et al. [74] was derived from a restricted

one-way entanglement purification protocol (1-EPP) which purifies one good Bell state

from a noisy block of five Bell states. The entanglement purification protocol (EPP) allows

Alice and Bob to perform local unitary transformations and measurements and even allows

them to coordinate their actions through one-way or two-way classical communication.

It, however, does not allow Alice and Bob to perform non-local actions nor to transmit

fresh quantum states from one to the other. An EPP involving two-way communication

is called a two-way EPP (2-EPP), in which both Alice and Bob need to know the results

of measurement from each other. Typical 2-EPPs include the IBM protocol [75] and the

Oxford protocol [76], which also belong to the recurrence method. On the other hand,

a one-way EPP (1-EPP) requires only Alice to send her measurement result through

classical channel to Bob, who when combining it with his own result can decide a following

action to perform. Thus, the 1-EPP can produce pure maximally entangled pairs which

are separated both in space and in time. The hashing protocol [74] and the breeding

protocol [75] are examples of the 1-EPP. In fact, it can be shown that the Bennett et al.

protocol is equivalent to the error correction of Laflamme et al. However, the QECC of

Bennett et al. can be well derived so that it requires a simpler circuit for both encoding

and decoding than the original one reported by Laflamme et al.. Bennett et al. suggested

to use a Monte Carlo search program for deriving the QECC.
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In realistic situations, to reduce the number of two-qubit gates necessary in the

encoder-decoder circuit is significantly important for reliable five-qubit QECCs because

two-qubit operations could be the more difficult ones to be implemented in a physical

apparatus [51]. This work thus is motivated to derive five-qubit, single-error correc-

tions which can be performed by using the least number of two-qubit operations in their

encoder-decoder networks [141]. The QECC presented as an example herein is derived

analytically from the restricted 1-EPP proposed by Bennett et al. [74] and its encoder-

decoder circuit contains only six controlled-NOT (CNOT) gates and three single-qubit

operations. The restricted 1-EPP therefore is depicted first in the next section. In the

third section, we describe the systematic method for deriving 1-EPP in detail. A concrete

example for the simplest quantum gate array then will be given to show the capacity

of the present method. In fourth section, we present the coding circuit which is con-

verted directly from the 1-EPP and compare its efficiency with those of several existent

encoder-decoder circuits. A conclusion is given in the final section.

7.2 The 5-EPR-pair single-error-correcting code

Suppose there exists a finite block-size 1-EPP which distills one good pair of spins in

a specific Bell state from a block of five pairs, and no more than one of the five pairs

is subjected to noise. When this 1-EPP is combined with a teleportation protocol, two

parties, Alice and Bob, can transmit quantum states reliably from one to the other. The

combination of the 1-EPP and teleportation protocol therefore is equivalent to a QECC.

The 1-EPP considered herein is schematically depicted in Fig. 7.1. Suppose Alice is the

encoder, Bob the decoder, and the Bell state Φ+ = (|00〉 + |11〉)/
√

2 is the good state to

be purified. Alice and Bob are supposed to be provided with five pairs of spins in the

state Φ+ by a quantum source (QS). However, they actually share five Bell states in which

generic errors have or have not occurred on at most one Bell state due to the presence of

noise NB in the quantum channel via which the pairs are transmitted. The noise models
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Figure 7.1: The 1-EPP with notations used in the context. Alice performs U1 and m and
then sends her classical result (vA) to Bob. Bob performs U2 and m, and then combines

his own result (vB) and Alice’s to control a final operation U
(i)
3 .
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are assumed to be one-sided [74] and can cause the good Bell state Φ+ to become one of

the incorrect Bell states

Φ− =
1√
2
(|00〉 − |11〉),Ψ± =

1√
2
(|01〉 ± |10〉). (7.1)

The good Bell state Φ+ can become one of the erroneous Bell states expressed in (1) if

it is subjected to either a phase error (Φ+ → Φ−), an amplitude error (Φ+ → Ψ+), or

both (Φ+ → Ψ−) [78, 142]. When performing the 1-EPP, Alice and Bob have a total

of 16 error syndromes to deal with. The collection of error syndromes includes the case

that none of the five pairs has been subjected to errors and the 15 cases in which one

of the five pairs has been subjected to one of the three types of error. The strategy of

Alice and Bob is to perform a sequence of unilateral and bilateral unitary operations (as

shown in Fig. 7.1, U1 and U2 performed by Alice and Bob, respectively) to transform the

collection of the 16 error syndromes to another collection that can provide information

about the errors subjected by their particles. Suppose the state of the first pair in the

block is to be recovered. After performing the sequence of their operations (U1 and U2

respectively), Alice and Bob, should then perform local measurements on their respective

halves of the second to fifth pairs. Alice sends her result via classical channels to Bob

who then performs the Pauli operation U3 to recover the original state of the first pair

conditionally on both Alice’s and his results. The ultimate requirement of these results

of final measurement is that each and every of them should be distinguishable from the

others. In other words, there should be 16 distinct measurements obtained from the

aforementioned transformation of the error syndrome. The main issue now is that the

sequence of unilateral and bilateral unitary operations performed by the two parties to

transform the error syndrome should be well designed so the requirement just mentioned

can be fulfilled.

To arrange the sequence of operations, basic concepts of linear algebra are used. The
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Table 7.1: The correspondence among the error syndrome e
(i)
r (E

(i)
r ), the codeword w(i)

(W (i)), the measurement result v(i), and the Pauli operation U
(i)
3 controlled by the mea-

surement result in the restricted 1-EPP (five-qubit QECC) applying the encoder-decoder
circuit shown in Fig. 7.3.2 (Fig. 7.4)

i e
(i)
r , E

(i)
r w(i), W (i) v(i) U

(i)
3

0 00 00 00 00 00 00 00 00 00 00 0000 I
1 10 00 00 00 00 11 00 00 01 01 0011 σy

2 01 00 00 00 00 01 00 01 01 00 0110 σx

3 11 00 00 00 00 10 00 01 00 01 0101 σz

4 00 10 00 00 00 00 01 00 00 01 1001 I
5 00 01 00 00 00 00 11 01 01 00 1110 I
6 00 11 00 00 00 00 10 01 01 01 0111 I
7 00 00 10 00 00 11 01 10 01 01 1011 σy

8 00 00 01 00 00 00 00 01 00 00 0100 I
9 00 00 11 00 00 11 01 11 01 01 1111 σy

10 00 00 00 10 00 10 01 00 10 00 1000 σz

11 00 00 00 01 00 00 00 00 01 00 0010 I
12 00 00 00 11 00 10 01 00 11 00 1010 σz

13 00 00 00 00 10 00 00 00 00 01 0001 I
14 00 00 00 00 01 01 11 01 00 10 1100 σx

15 00 00 00 00 11 01 11 01 00 11 1101 σx

four Bell states Φ± and Ψ± are first labeled by two classical bits, namely,

Φ+ = 00,Φ− = 10,Ψ+ = 01,Ψ− = 11. (7.2)

The right, low-order or amplitude bit identifies the Φ/Ψ property of the Bell state, while

the left, high-order or phase bit identifies the +/− property. Note that the combined

result of the local measurements obtained by Alice and Bob on a Bell state is revealed

by the Bell state’s low or amplitude bit. In the representation of the high-low bits,

each error syndrome thus is expressed as a ten-bit codeword, e.g., the error syndrome

Φ+Ψ−Φ+Φ+Φ+ is written as 00 11 00 00 00. Codewords of the error syndrome, denoted

by e
(i)
r , i = 0, 1, ..., 15, are listed in Table 7.1. The effect of the sequence of unilateral

and bilateral unitary operations performed by Alice and Bob is to map the codewords e
(i)
r

onto another collection of ten-bit codewords w(i). If both the codewords e
(i)
r and w(i) are
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written as column vectors in the ten-dimensional Boolean-valued (∈ {0, 1}) space, then

the mapping e
(i)
r → w(i) can be simply expressed by a matrix equation

w(i) = Me(i)r , (7.3)

provided that the mapping is confined to w(0) = e
(0)
r (= 00 00 00 00 00). The four error

syndromes, e
(3k)
r , e

(3k−1)
r , e

(3k−2)
r , and e

(0)
r , corresponding to a common erroneous pair,

form a group and are characterized by

e(3k−2)
r ⊕ e(3k−1)

r = e(3k)
r , k = 1, 2, ..., 5, (7.4)

where k enumerates the erroneous pair and ⊕ is the addition modulo 2. Accordingly, the

16 codewords w(i) should be subdivided into five corresponding groups, each of which has

w(3k), w(3k−1), w(3k−2), and w(0), and holds the relation

w(3k−2) ⊕ w(3k−1) = w(3k), k = 1, 2, ..., 5. (7.5)

Therefore the matrix M can be simply expressed by a 10 × 10 matrix, such as

M =
[
w(1)w(2)w(4)w(5)w(7)w(8)w(10)w(11)w(13)w(14)

]
, (7.6)

in accordance with the arrangement of error syndromes listed in Table 7.1. The first two

rows of M represent the states of the pair to be recovered, and the 4th, 6th, 8th,and

10th rows represent the low bits of the second to fifth Bell states and thus construct the

four-bit codewords for the measurement results v(i). The measurement result v(i) of course

is also characterized by

v(3k−2) ⊕ v(3k−1) = v(3k), k = 1, 2, ..., 5, (7.7)

in accordance with relations (7.4) and (7.5). In the language of linear algebra, the action of
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the sequence of unilateral and bilateral unitary operations that accounts for the mapping

e
(i)
r → w(i) is to perform a sequence of elementary row operations on the 10× 10 identity

matrix 1 to reduce it to the matrix M. In this spirit, Bennett et al. [74] have undertaken

a Monte Carlo numerical search program to find out suitable solutions for matrix M and

their corresponding encoder-decoder networks. Basically, the approach implemented by

Bennett et al. is a tedious numerical method of trial and error performing the transfor-

mation 1 → M subjected to a forward sequence of local operations. In this work, we

will present an analytical method for creating M implemented in the present QECC. The

present method will be described in detail in the next section.

7.3 Analytical technique for simplification of the encoder-

decoder circuit for a perfect five-qubit error cor-

rection

7.3.1 Theory

The unilateral and bilateral unitary operations performed in the 1-EPP in fact are their

own inverse transformations, so if the sequence of operations is run in the reverse order,

then the inverse transformations M → 1 is accomplished. In the spirit of inverse trans-

formation, it thus allows us to derive all appropriate versions of M and the corresponding

encoder-decoder networks by following an analytical way. More importantly, for a de-

rived M, rearranging the sequence of row operations on the same inverse transformation

M → 1 will help in constructing its simplest encoder-decoder circuit.

An elementary row operation corresponds to a basic unilateral or bilateral unitary

operation. In the present protocol, Alice and Bob are confined to perform only three

basic unitary operations because these operations are necessary and sufficient for the

elementary row operations needed to achieve the mapping M → 1, and vice versa. These
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basic operations are: (1) a bilateral CNOT (BXOR), which performs the bit change (xS,

yS)(xT , yT ) → (xS ⊕ xT , yS)(xT , yS ⊕ yT ), where the subscripts S and T denote the

source and target pairs, respectively; (2) a bilateral π/2−rotation By, which performs (x,

y) → (y, x); and (3) a composite operation σxBx, which performs (x, y) → (x, x ⊕ y).

The unitary Pauli operation σx performs a π-rotation of Alice or Bob’s spin about the

x−axis, while the bilateral operation Bx (By) performs a π/2−rotation of both Alice and

Bob’s spins about the x (y)−axis. The unilateral operations are defined as those operators

performed by Alice or Bob but not both. The bilateral operations are represented by a

tensor product of one part of Bob and the same part of Alice. Note that the bilateral

CNOT is performed such that the source qubits of Alice and Bob belong to a common

pair, and the target qubits belong to another common pair.

The information obtained through local measurements and one-way communications

can only deduce the low bit of a Bell pair, and the original state of the first Bell pair

can only be recovered by the low-bit information. Then, for a successful 1-EPP, or its

equivalent QECC, each and every measurement result v(i) is required to be distinguishable

from the others, so the collection of v(i) in fact should contain all elements in the 4-

dimensional Boolean-valued space. To perform the aforementioned inverse transformation

M → 1, the codewords of measurement result are first arranged according to relations
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(7.7) and the matrix M can be assumed as

M =





a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0 0 1 0 0 1 0 1 1 0

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

0 1 0 1 1 0 0 0 1 0

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

1 0 0 1 0 1 1 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 1 1 1 0 1 0 0 0 1





. (7.8)

It should be noted that the arrangement of the results of measurements shown in the above

matrix is only one of the possible choices. By performing a sequence of row operations

corresponding to the basic unitary operations, the assumed matrix M (7.8) actually is

allowed to be reduced to one of all the alternatives akin to the identity matrix 1, and a

suitable encoder-decoder circuit is constructed accordingly. The alternatives akin to the

identity 1 are those obtained by 1− permuting column vectors within one of the five sets

of two column vectors (x(3k−2) and x(3k−1), k = 1, 2, ..., 5), or 2− adding one column to

the other within each of the groups, or 3− performing both actions. For example, an
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alternative could be

1akin =





1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0





. (7.9)

When the derivation of M is done, the alternative akin to 1 is then converted back to

the identity 1 by well rearranging its columns and the derived M is adjusted via the

same column changes, in order to conform equation (7.3). The procedure of reducing

the matrix M to the alternative akin to the identity 1 is similar to the Gauss-Jordan

elimination method for solving systems of linear equations. During the procedure of row

operations, all the unknowns appearing in the assumed matrix M (7.8) are given or solved

according to the structure of the alternative akin to 1. Details of the derivation can be

found in Ref. [143].
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7.3.2 A systematic scenario example

There are so many solutions for the assumed M which are all suitable for the 1-EPP,

however, only one of them has been adjusted and presented as:

M1 =





a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0 0 1 1 1 0 1 0 0 1

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

0 1 0 1 0 1 0 0 0 1

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

1 1 0 1 1 0 0 1 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 0 1 0 1 0 0 0 1 0





. (7.10)

Let us show the systematic scenario for accomplishing the transformation M1→ 1 by one

of the simplest networks. The matrix M1 can be rephrased as

M1 =





m11 m12 · · · m15

m21 m22 · · · m25

...
...

...

m51 m52 · · · m55





,

where the matrix elements mαβ denote the 2 × 2 matrices:

m11 =




a1 a2

b1 b2



 , m21 =




c1 c2

0 0



 , ..., (7.11)

and so forth. The next step of our method is a procedure of elementary row operations

on the matrix M1 (7.10) subjected to a suitable sequence of the basic operations. When
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the assumed matrix M1 is transformed into the identity matrix 1 under the series of

row operations, the unknowns ar, br, ..., fr will be solved stepwise in accordance with

the structure of 1. It is easy to show that a sequence of row operations can do the

transformation on two Bell states α and β in a group enumerated by γ, namely,




mαγ

mβγ



 →




I

0



 , (7.12)

provided that det(mαγ) = 1 and det(mβγ) = 0. Here I denotes the 2 × 2 identity matrix.

For example, the consecutive transformation




mαγ

mβγ



 =





1 0

1 1

0 1

0 0





→





1 0

1 1

0 0

0 1





→





1 0

0 1

0 0

0 1





→





1 0

0 1

0 0

0 0





can be accomplished if the operation By is first performed on Bell state β, then a σxBx is

performed on Bell state α followed by a BXOR performed on both states, as Bell state α

being the source and Bell state β being the target. It can be found in what follows that

the unknowns assumed in the matrix M1 either will be given based on the requirement

for the transformation described in (7.13), or will be determined according to the unique

structure of the identity matrix 1.

In the first stage of row operations, we are confined to performing a transformation

of the matrix M1 (7.11) such that m44 → I and m4k, mk4 → 0, for k = 1, 2, 3, and 5,

according to the structure of 1. Let det(m44) = 1 and det(m14) = ... = det(m54) = 0,

which imply

a7b8 ⊕ a8b7 = 0, c8 = 0, e7 = 1; c7, d7, d8, e8, f7, f8 ∈ {0, 1}. (7.13)

Clearly, there are totally 640 solutions for the unknowns appearing in (7.10) to be con-
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sidered in this stage. (10 for the condition a7b8 ⊕ a8b7 = 0, 2 for each of the 6 arbitrary

Boolean valued unknowns, and thus totally 10 × 26 = 640 solutions) To illustrate the

simplest way of creating Boolean functions, however, only one among these 640 cases is

considered. Let us consider the case in which

a7 = 1, b7 = a8 = b8 = c7 = d7 = d8 = e8 = f7 = f8 = 0. (7.14)

Then, by performing the operations shown in Fig. 7.2(a), we have the transformation

M1 → M′
1
,

M′
1

=





a1 a2 a3 a4 a5 a6 0 0 a9 a10

1 1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1

d1 d2 d3 d4 d5 d6 0 0 d9 d10

0 1 0 1 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

f1 f2 f3 f4 f5 f6 0 0 f9 f10

1 0 1 0 1 0 0 0 1 0





=





m′
11 m′

12 m′
13 0 m′

14

m′
21 m′

22 m′
23 0 m′

25

m′
31 m′

32 m′
33 0 m′

35

0 0 0 I 0

m′
51 m′

52 m′
53 0 m′

55





, (7.15)
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in which we have chosen the following setting for the unknowns:

b1 = 1, b2 = 1, b3 = 0, b4 = 0, b5 = 1, b6 = b9 = 0, b10 = 1,

c1 = 0, c2 = c3 = 0, c4 = 1, c5 = c6 = c9 = 0, c10 = 1,

e1 = e2 = e3 = e4 = e5 = e6 = e9 = e10 = 0. (7.16)

Let us proceed to apply the second series of operations, as depicted in the Fig. 7.2(b),

to perform the transformations m′
22 → I and m′

2k, m
′
k2 → 0, for k = 1, 3, and 5. As a

result, we have

d1 = f1 = d2 = f2 = 0, d3 = d4 = f3 = f4 = 0, d5 = 1, d6 = 0 = f5 = f6 = 0,

d9 = f9 = d10 = 0, f10 = 1, a3 = a4 = 0. (7.17)

Note that according to the requirements det(m′
2k)=0 and det(m′

k2)=0, a3 = a4 = 0 is

only one of the suitable choices and d3 = d4 = 0 is the only choice. Therefore, the M′
1

is

117



CHAPTER 7. QUANTUM ERROR-CORRECTING CODES AND
ENTANGLEMENT PURIFICATION

Source 

Target  

BXOR 

Bilateral      Rotation 

Composite          Rotation  

(a) (b) 

(c) 

Figure 7.2: The three quantum gate arrays performed in the stage of row operations: (a)
for M1 → M′

1
; (b) for M′

1
→ M′′

1
; and (c) for M′′

1
→ 1.
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transformed into M′′
1
:

M′′
1

=





a1 a2 0 0 a5 a6 0 0 a9 a10

1 1 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1





=





m′′
11 0 m′′

13 0 m′′
14

0 I 0 0 0

m′′
31 0 m′′

33 0 m′′
35

0 0 0 I 0

m′′
51 0 m′′

53 0 m′′
55





. (7.18)

Finally, if the matrix M′′
1

is transformed through additional two BXOR and one σxBx

operations, as shown in Fig. 7.2(c), it results to the identity matrix 1. In this stage,

we have set the rest of the unknowns to be one of the alternatives: a1 = 1, a2 = 0, a5 =

1, a6 = 0, a9 = 0, and a10 = 0. The whole sequence of basic operations, as shown in Fig.

7.3, is obtained by combining the three sub-sequences as shown in Figs. 7.2(a)-(c). It

will transform the matrix M1 into the identity matrix 1. This circuit is the simplest one
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Figure 7.3: The gate array for the transformation M1 → 1. The basic unitary operations
are performed in the order from left to right, while if they are performed from right to
left, then the inverse transformation M1 → 1 is accomplished.

since it involves only six BXORs, and the corresponding matrix reads

M1 =





1 0 0 0 1 0 1 0 0 0

1 1 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1

0 0 1 1 1 0 1 0 0 1

0 0 0 0 1 0 0 0 0 0

0 1 0 1 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 0

1 1 0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1

1 0 1 0 1 0 0 0 1 0





. (7.19)

Performed by this circuit, the correspondence between the error syndromes e
(i)
r and the

combined measurement results v
(i)
r is also listed in Table 7.1. Referring to Table 7.1, or

the matrix M1, when Bob obtains the measurement result v(2)(= 0110), for example, he

knows the pair to be purified is in the state Ψ+(= 01) and thus simply performs the Pauli

operation U
(2)
3 = σx to recover it to the good state Φ+.
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7.4 The encoder-decoder circuit for a perfect five-

qubit error correction

The 1-EPP depicted above can be directly converted to a five-qubit QECC whose encoder-

decoder circuit has the same configuration as the one shown in Fig. 7.4 [141]. However, in

the language of QECC, the classical high-low or phase-amplitude bits used to code the Bell

state in the 1-EPP are now used to code operators belonging to the Pauli group, namely,

I = 00, σx = 01, σz = 10, σy = 11. When acting on a single qubit, the Pauli operator

produces either no error (by I), a bit flip error (by σx), a phase flip error (by σz), or a bit-

phase flip error (by σy). Therefore, such a code is convenient because the codewords e
(i)
r

are now replaced by E
(i)
r , which represent the 16 error syndromes described by five-Pauli-

operartor tensor products. Furthermore, the transformation described by the matrix

equation (7.3) is now replaced by the similarity transformation of operators described

as: W (i) = UE
(i)
r U+, where U (U+) represents the sequence of the basic operations

performed in the decoder (encoder) circuit. Clearly, both the encoder and decoder circuits

have exactly the same quantum gate arrangement but they should be run in opposite

orders. In order to perform the transformation mentioned above, this time the single-

qubit Hadamard transformation: H = H+ = (σx + σz)/
√

2, is used to perform the bit

change H(x, y)H+ → (y, x), the single-qubit transformation: Q = Q+ = (σy + σz)/
√

2, is

used to perform Q(x, y)Q+ → (x, x⊕y), and the two-qubit CNOT gate is used to perform

(CNOT)(xS , yS)(xT , yT )(CNOT)+ → (xS ⊕xT , yS)(xT , yS ⊕ yT ), respectively. That is, in

the five-qubit QECC to be presented the basic single- and two-qubit operations needed

to be implemented are H, Q, and CNOT.

For the present five-qubit QECC, the correspondence between the codewords W (i) and

E
(i)
r is exactly the same as that between the derived matrix M1 given in (7.9) and the

identity 1. The QECC is performed as follows. If a state |φ〉 = α |0〉 + β |1〉 is to be

protected in a quantum computation, it is first accompanied with four extra qubits in the

state |0〉. Then the five-qubit state |φ〉 |0〉 |0〉 |0〉 |0〉 is encoded by the performance of U+.
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(a) The operation of encoder circuit 

(b) The operation of decoder circuit 
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Figure 7.4: The perfect five-qubit error correction. (a) The initial tensor prod-
uct state is encoded to an entangled state |φE〉 . (b) After suffering from the single-

qubit error, the state E
(i)
r |φE〉 is then decoded, resulting in the final tensor product

state(U
(i)
3 |φ〉) |a′b′c′d′〉 . Here, P = HQ, P+ = QH . (c) The encoder circuit from (a) is

rewritten in terms of the gate primitives of an ion-trap quantum computer.
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After the encoded state is subjected to E
(i)
r , the erroneous state then is decoded by the

implementation of U . The resulting state turns out to be

∣∣φ(i)
r

〉
= UE(i)

r U+(|φ〉 |0〉 |0〉 |0〉 |0〉)

= W (i)(|φ〉 |0〉 |0〉 |0〉 |0〉)

= (U
(i)
3 |φ〉) |a′〉 |b′〉 |c′〉 |d′〉 , (7.20)

where U
(i)
3 is the single-qubit Pauli operation acting on the first qubit and is dependent on

the measurement result on the four extra qubits. When the extra qubits are measured in

the computational basis, the measurement result v(i) = a′b′c′d′ is obtained. Eventually, the

corresponding Pauli operation U
(i)
3 is performed on the remaining qubit, which is in the

state U
(i)
3 |φ〉 , to recover the initial state |φ〉 . The procedure of performing the five-qubit

QECC is quite simple, same as the one reported by Laflamme et al. [77], and is displayed

schematically in Fig. 7.4. The present QECC is equivalent to the aforementioned 1-EPP,

which adopts the circuit shown in Fig. 7.4, so Table 7.1 is also useful to it. As a result,

when referring to Table 7.1 again, if the measurement result v(2) = 0110 is read, then

U
(2)
3 = σx is performed to recover the initial state |φ〉 = α |0〉 + β |1〉 . The encoder-

decoder circuit required to perform the present QECC, as shown in Figs. 7.4(a) and (b),

is rather simple; it contains nine operations, in which only six CNOTs are required. As

a matter of fact, this circuit is one of the simplest ones derived so far. The other best

known circuit is the one presented by Braunstein and Smolin [139] and its corresponding
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matrix is

MBS =





1 0 1 0 1 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0 1

1 0 1 0 0 0 1 0 0 0

1 0 1 1 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 1 0 1 0 1

0 0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 1 0 1 1





. (7.21)

The efficiency of a coding scheme can be characterized by the shortness of the encoder-

decoder circuit. The shortness criterion is based on the fewest total operations or the

fewest CNOT operations [74]. The total operations include one-qubit rotations and

CNOTs. It is equivalent to determine the minimum experimental efforts for implementing

the shortest coding circuit on a quantum computer. The number of laser pulses required

to perform a encoder-decoder circuit is a reasonable measure of the efficiency for ion-trap

computers [139, 144]. To count the number of laser pulses, the encoder circuit from Fig.

7.4(a) is rewritten in terms of the gate primitives of an ion-trap quantum computer and

shown in Fig. 7.4(c). It is interesting to observe that two pairs of CNOTs (the 2nd and

3rd and the 4th and 5th ones) in the present circuit can be combined as two three qubit

gates and can be implemented as single element. Besides, the functions of operators U

and V implemented on an ion-trap quantum computer are equivalent to the ones of op-

erators H and Q respectively. Since each single-qubit operation requires one laser pulse,

the two-qubit gate needs three pulses, and the three-qubit gate requires four laser pulses,

the present circuit also requires only 24 laser pulses if it is implemented on an ion-trap

quantum computer, same as the Braunstein and Smolin circuit. The numbers of total
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Table 7.2: Three efficiency criteria and the corresponding costs for four circuits have
been presented. Circuit 1 is given by Bennett et al. (Fig. 18 in Ref. [74]) and is
unoptimized. The optimized circuit of Bennett et al., denoted by Circuit 2, mentioned in
Ref. [74] consists of six two-qubit controlled-NOT gates only. Since the number of laser
pulses depends on the detailed structure of the circuit, it is not shown here for laking the
detailed information. Circuit 3 is the simplification of the coding circuit of Laflamme et

al. proposed by Braunstein and Smolin (Fig. 1 in Ref. [139]). One can find that the
original caicuit of Laflamme et al. (Fig. 1 in Ref. [77]) is more complicated and requires
41 laser pulses. Circuit 4 denotes the simpest circuit has been found by computer search
(Fig. 3 in Ref. [139]) and by the systematic method presented in this work.

Criteria Circuit 1 Circuit 2 Circuit 3 Circuit 4
Total number of operations 12 11 10 9

Number of CNOT 7 6 7 6
Number of laser pulse 35 * 26 24

operations, CNOTs, and laser pulses for the circuits presented by Bennett et al. [74] and

Braunstein and Smolin [139] have also been summarized in Table 7.2.

7.5 Conclusion

This chapter has presented a rather simple encoder-decoder circuit to perform the five-

qubit, single-error correction protocol. The QECC derived herein is converted directly

from the restricted 1-EPP depicted above, so a major part of this work is dedicated

to the depiction of the 1-EPP. The present encoder-decoder circuit is the simplest one

corresponding to the derived matrix M1 given in (7.20), which is derived via an analytical

approach [143]. This analytical approach, as shown, can help in deriving not only the

suitable matrix M for the five-qubit QECC but also the simplest version of encoder-

decoder circuit corresponding to the derived matrix. However, many possible matrices

M suitable for the QECC remained to be discovered analytically and thus, so many

candidates of encoder-decoder circuit that require only six CNOTs. The simplest circuit

that is even simpler than the present one and the Braunstein and Smolin circuit [139]

might not be found from these candidates. However, a more convinced proof which could

be a numerical approach based on the analytical approach introduced in Ref. [143] is
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required in the future work.

126



Chapter 8

Generation of many-qubit

entanglement via conditional

measurements on cavity photons

8.1 Introduction

The regulation methods of quantum information processing [29, 30, 37] rely on sharing

maximally entangled pairs between distant parties. As it is well known, the entangled

pairs may become undesired mixed states due to inevitable interactions with environments

[145]. For this reason, great attentions have been focused on the agreement of entangle-

ment purification [74–76], experimental schemes of entanglement distillation [146], and

the decoherence mechanisms of qubits in a reservoir [147].

The environment may play an active role on the formation of the nonlocal effect under

well considerations. Many investigations [148] have been devoted to the considerations

of the reservoir-induced entanglement between two remote qubits. Many schemes have

been proposed to enhance the entanglement fidelity by manipulating a third system which

interacts with two remote qubits [149–152]. We propose a scheme to generate (or purify)

multi-particle entanglement between dot-like single quantum well (QW) excitons inside
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Figure 8.1: (a) The quantum devices with three dot-like quantum wells embedded in a
microcavity which is constructed by a ZnTe medium and two Au mirrors. This device can
be prepared by the MBE, the e-beam lithography, and the conventional semiconductor
processing. (b) Initial state preparation for W state generation. (c) Evolution of the QWs
and cavity field for a specific time period. (d) Detection of cavity field for determining
the number of the cavity photon. Procedures (b)-(d) are repeated until finishing the
entanglement generation.

a single-mode microcavity as depicted in Fig. 8.1(a) [153, 154]. The whole procedure, as

shown in Fig. 8.1(b)-(d), can be performed by optical initialization, manipulation, and

read-out of exciton state. In the present scheme, the logical state |1〉i in the ith QW

is coded by the presence of an exciton, while the logical state |0〉i represents the crystal

ground state with no electron and hole. To analyze the dynamics of the many-exciton

entanglement, a series of conditional measurements are taken on the cavity field state

by means of the electro-optic effect. First of all, we demonstrate how double-exciton

Bell state can be generated via conditional measurements. Then, we discuss the cause

of multi-exciton W state, and propose a general formulation of entanglement generation.

Finally, application to quantum teleportation is pointed out, and may be achieved with

current technologies.

In the QW-cavity system, we assume that the lateral size of the QWs are sufficiently
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larger than the Bohr radius of excitons but smaller than the wavelength of the photon

field. The dipole-dipole interactions and other nonlinear interactions therefore can be

neglected. Under the rotating wave approximation, the n QWs and the cavity field are

described by the Hamiltonian

Hn =

n∑

i=1

~γi(bσ
+
i + b†σ−

i ) +

n∑

i=1

ωi

2
σz

i + ωbb
†b, (8.1)

where γi denotes the coupling between the ith QW with an excitation energy ωi and

the photon with an energy ωb, b
† (b) is the creation (annihilation) operator of the cavity

field, and σ+
i (σi) represents the creation (annihilation) operator of the excitons in the ith

QW. If the cavity mode is assumed further to be resonant with the excitons and equally

interact with each QW, i.e. ωi = ωb = ω and γi = γ, Eq. (8.1) can be reduced to a simple

form in the interaction picture:

Hn(I) =

n∑

i=1

γ(bσ+ + b†σ−), (8.2)

where ~ = 1 has be set and σ± =
∑i=n

i=1 σ
±
i .

8.2 Bell states generation

Plenio et al. [149] have shown that a maximally entangled state, or called Bell state, for

two atoms can be created through a leaky cavity via continuously measurements of the

vacuum cavity field state |0〉c. Here we investigate further how the measured photons

affect the Bell state generation especially when the photon number is greater than zero.

Suppose we start with the initial state |ψ0〉 |0〉c = |1〉2 |0〉1 |0〉c = |10〉 |0〉c, and then a

pulse with (Q−1) photons is injected into the microcavity. The total number of quantum

count of the system is Q. As the (Q − 1) photons have been injected into the cavity,

the total system will evolve with time, and if the system evolves without interruption,

it will go into a QW1-QW2-cavity field entangled state. If a measurement on the cavity
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field state is taken at some instant, the detector would count (Q − 1), (Q − 2), or Q

photons. Since the Bell state involves a single excitation, if the cavity mode stays in state

|Q− 1〉c we can infer that the double-QW will evolve into a maximal entangled state via

the quantum jump approach [155]. After measuring the cavity field state, injecting the

subsequent (Q−1) photons into the cavity is necessary for the sake of keeping the photon

in its state. We then let the whole system evolve for another period of time τ . Again, we

proceed to measure the cavity photon to make sure whether it is (Q − 1) or not. If the

cavity photon remains in the (Q − 1)-photon state, the repetition continues; if not, the

whole procedure should be started over.

The time evolution of the n QWs subsystems under N times of successful repetitions

is described by the operator:

U(τ)N =
[

c

〈
Q− 1|e−iHn(I)τ |Q− 1

〉
c

]N
. (8.3)

The conditional operator U(τ) can be explicitly evaluated

U(τ) = cos
(√

(2Q− 1)σ+σ− − (Q− 1)σzγτ
)
, (8.4)

where σz =
∑i=n

i=1 σ
z
i . In deriving the above result we have utilized the expansion for the

time evolution operator e−iHn(I) and the algebra [σ+, σ−] = σz. One also notes that both

σ+σ− and σz commute with the translational operator, which transfers |φ1〉 = |01〉 to the

state |φ2〉 = |10〉 as n = 2 has been set, so for two-qubit case the operator U(τ) can be

decomposed by the eigenstates of the translation operator

|Ll〉 =
1√
2

2∑

h=1

ei 2πl
n

(h−1) |φh〉 , (8.5)

with l = 0, 1. Thus we get the conditional operator in the diagonal form:

U(τ) = cos(
√

4Q− 2γτ) |L0〉 〈L0| + |L1〉 〈L1| . (8.6)
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Furthermore, the probability of success for measuring (Q − 1) photons after N times of

repetitions, P (N, n = 2), and the fidelities FL0(N, 2) and FL1(N, 2) with respect to |L0〉

and |L1〉 can be worked analytically

For a general case of γτ and Q, P (N, 2) approaches to the value of 1/2 in the limit of

large N ; meanwhile the subsystem goes in to the QW1-QW2 maximally entangled state:

|L1〉 = (|01〉 − |10〉)/
√

2. On the other hand, one can also find a suitable condition such

that the probability goes to unity. In this case, the system will not evolve with time,

which is similar to the Zeno paradox with finite duration between two measurements.

8.3 Multi-qubit W state

We may directly follow the scheme based on continues measurements to achieve the multi-

particle entanglement generation. In what follows we will show that the multi-particle en-

tangled state indeed can be produced via conditional and constant measurements. More-

over, the W-type maximally entanglement can be generated in the multi-QWs system.

Suppose the whole system is initially prepared in the state |ψ0〉 |1〉c = |1〉n |0〉n−1 ... |0〉1 |1〉c =

|10...0〉 |1〉c. We follow the same formalism for two-particle entanglement, but Q = 2 is set

in this case. The conditional propagator U(τ) =c 〈1| e−iHn(I) |1〉c that governs the progress

of the n dot-like single QWs is given by

U(τ) = cos
(√

3σ+σ− − σzγτ
)
, (8.7)

which is derived from Eq. (8.4) for Q = 2. The set of the eigenbasis for the translational

operator is expressed as

|Ll〉 =
1√
2

n∑

h=1

ei 2πl
n

(h−1) |φh〉 , (8.8)

where |φh〉 = |1〉h
⊗n

i=1,i6=h |0〉i and l = 0, 1, 2, ..., n−1, is exerted to represent U(τ) in the
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Figure 8.2: The variations of fidelity FN,n and the purification yield YN,n(in the inserted
diagram) for cases n = 3(�), 6(∇), and 9(△), and for two different kinds of initial states:
ρ = p1 + (1 − np) |L0〉 〈L0| (dash) and |ψ0〉 (solid), in which the evolution time of each
case, τ3 = π/(

√
10γ), τ6 = π/(

√
22γ), and τ9 = π/(4

√
2γ) has been set.
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diagonal form:

U(τ) = cos(
√

4n− 2γτ) |L0〉 〈L0| + cos(
√
n− 2γτ)

n−1∑

l=1

|Ll〉 〈Ll| . (8.9)

Here, |L0〉 is just the W-type entangled state:

|L0〉 = |W 〉 =
1√
n

(|0...01〉 + |0...10〉 + ...+ |10...0〉 . (8.10)

The probability of success for N conditional measurements and the fidelity of the QWs

with respect to the W state at the N -th stage can also be obtained

Fig. 8.2 shows the variations of the probability P (N, n) and the purification yield

Y (N, n), defined by Y (N, n) =
∏N

i=0 P (i, n), for the cases of n = 3, 6, and 9 with two dif-

ferent kinds of initial states. The fidelity increases with the number of the measurements,

the probability, however, decreases more rapidly. Although, the yield Y (N, n) actually

decreases with the increasing of N , even at one step the whole particles can be entangled

in the W-type state. In addition to the entanglement generation, present scheme can also

be applied to entanglement purification. If the initial state is a mixed one with a single

excitation and is expressed as the form: ρ = p1 + (1 − np) |L0〉 〈L0|, where p is the noise

intensity, it can be purified into a pure state. The purification yield and the fidelity are

shown in Fig. 8.2 for the case p = 0.5.

To discuss our formulation further, let us consider the Q = 1 case. If we take condi-

tional and constant measurements on the photon state |0〉c and let the initial state of the

whole system situate in |ψ0〉 |0〉c = |10...0〉 |0〉c, the operator U(τ)N = cosN
(√

σ+σ−γτ
)

can be diagonalized into the following form

U(τ)N =
[
cosN(

√
nγτ) − 1

]
|W 〉 〈W | + 1, (8.11)

where 1 is the identity operator. The probability of success under the process can then
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be written as

P (N, n) =
1

n

[
(n− 1) + cos2N(

√
nγτ)

]
, (8.12)

and the fidelity for obtaining the W state is

FW (N, n) =
cos2N (

√
nγτ)

(n− 1) + cos2N(
√
nγτ)

. (8.13)

For a generic setting of γτ and large N , the QWs is indeed in the final state:

|L〉 =
1√

n(n− 1)
[(n− 1) |10...0〉 − |010...0〉 ..− |0...01〉]. (8.14)

When n = 2 and Q = 1, the above formulation reduced to the Bell state [149]. However,

for n ≥ 3 the multi-QWs W state cannot be generated in this system if we continuously

monitor the cavity vacuum.

Fig. 8.1(b)-(d) depict the implementation procedure of the three-qubit W state gen-

eration for demonstrating our proposed scheme discussed above. Firstly, three dot-like

single quantum wells are in ground states, and then one is excited by an excitation pulse.

A resonant photon with vertical linear polarization generated via a quartz plate is injected

into the cavity which is constructed by ZnTe with both Au films. Meanwhile, through

the pulse E field [156], the linear polarization of injected photon is rotated from vertical

to horizontal via the Electro-optic effect in ZnTe [157] (Fig. 8.1(b)). After a sufficient

evolution time with dot-like single quantum wells, as shown in Fig. 8.1(c), the photon in

cavity could be leaked out the cavity by a pulse E field with suitable timing and detected

by a single photon avalanche diode for checking whether the number of the cavity photon

is desired, as shown in Fig. 8.1(d). This procedure would be repeated until finishing the

purification.
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8.4 Quantum teleportation

Experiments of teleportation have already been realized in several different physical

systems. See the introduction in the first chapter. In solid state systems, however,

experimental demonstration of teleportation in charge qubits is still lacking, and only few

theoretical schemes are proposed [158]. Here, we demonstrate that present device can

also be applied to quantum teleportation via superradiance [159].

Consider now two QWs embedded inside the cavity. First of all, controlling the ori-

entation or the band gap of the excitons in QWs via the external field such that only

QW-1 can interact with the cavity photon. After injecting one photon into the cavity,

singlet entangled state can be created between QW-1 and the photon with appropriate

evolution time τ . One then switches off the cavity effect such that the photon may leak

out of the cavity. Meanwhile, a pulse laser is applied to QW-2 to create an unknown

state α |1〉2 + β |0〉2, which is to be teleported. In this case, the total wave function of the

system can be written as

|Ψ〉 =
1√
2
(|0〉c |1〉1 − |1〉c |0〉1) ⊗ (α |1〉2 + β |0〉2)

= |0〉c ⊗ (
α√
2
|T1〉12) + |1〉c ⊗ (

−β√
2
|T−1〉12)

+ (α |1〉c + β |0〉c) ⊗
|S0〉12

2
+ (−α |1〉c + β |0〉c) ⊗

|T0〉12
2

. (8.15)

where |T1〉 = |1〉1 |1〉2, |T−1〉 = |0〉1 |0〉2, |S0〉12 = (|1〉1 |0〉2 − |1〉2 |0〉1)/
√

2 , and |T0〉12 =

(|1〉1 |0〉2 + |1〉2 |0〉1)/
√

2.

If both the QWs are now tuned to be resonant with each other, common photon

reservoir will drive the system to decay collectively with four possibilities for the detector’s

results: zero photon, two photons, one photon via the superradiant channel, or one photon

via the subradiant channel [160]. If the measurement outcome is a single photon with a

suppressed decay rate, the teleportation is achieved automatically. As for the result of one

photon with enhanced decay rate, all we have to do is to perform a phase-gate operation
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on the cavity photon state to complete the teleportation.

Since decay time is a statistical average, one might ask how to distinguish between sub-

and superradiant photons via the decay time in one single shot? We would like to point

out that because of the collective decay, the momentum of the emitted photon
−→
k depends

on the separation of the two QWs −→r , i.e.
−→
k · −→r = 0 or π corresponds to the emission of

super- or sub-radiant photon, respectively [160]. Therefore, sub- and super-radiance can

be distinguished by placing detectors at appropriate angles. The teleportation can then

be tested by repeating this scheme over many cycles and probing the state of the cavity

(one or no photon) after each cycle.

In usual teleportation scheme, one has to perform Hadamard and CNOT transforma-

tions on one of the entangled particles and the teleported quantum state. After that, the

information from the joint measurements of the two particles has to be sent to the other

entangled particle in order to allow proper unitary operations. In our proposal, however,

the Hadamard and CNOT transformations are omitted and the joint measurements are

performed naturally by collective decay. This kind of “one-pass”teleportation is similar

to S. Bose’s proposal [161], where the teleportation between two trapped atoms in two

independent cavities is achieved by the leaked cavity photons impinging on a 50-50 beam

splitter. Just like S. Bose’s protocol, our probabilistic proposal can be modified to telepor-

tation with insurance, so that in the cases when the protocol is unsuccessful the original

teleported state is not destroyed, but mapped onto another reserve QW [162].
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Chapter 9

Quantum search algorithm

9.1 Quantum search problem

To solve a search problem associated a unsorted database, the remarkable Grover’s quan-

tum algorithm [57, 58] provides a quadratic speedup over its classical counterpart. The

search problem can be described as follows: for a given function f , there is one unknown

element in the set {0, 1, ..., N − 1} that satisfies f(x) = −1, say x = τ , whereas the other

N − 1 ones give f(x) = 1. How many times of evaluations of f are required to determine

the element τ for f(τ) = −1? Through a conventional algorithm, one needs O(N) trials

to achieve this aim. How about the utility of quantum algorithm? The search problem

can be rephrased in the quantum mechanical language: for a given unitary operator Iτ ,

that is sometimes called the oracle operator, and a set of state vectors (orthonormal ba-

sis): {|0〉 , |1〉 , ..., |N − 1〉}, Iτ |x〉 = |x〉 for all states in the set except Iτ |x〉 = − |x〉 for

x = τ . How many queries of Iτ are required to determine |τ〉? By Grover’s algorithm

[57, 58], one needs only O(
√
N) quantum mechanical steps to find the marked state |τ〉

out. The first step of Grover’s algorithm is to prepare a superposition state of all elements:

|s〉 = 1/
√
N

N−1∑
x=0

|x〉 . Then apply the Grover kernel G = −IηIτ to |s〉, where Iη is an uni-

tary operator and contains no bias against the marked state. After about m = π
√
N/4

repetitions, i.e., Gm |s〉, the probability to get |τ〉 is close to one if N is large. Since every
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single G involves one query of Iτ , O(
√
N) searching steps are required for a quantum

search task. In what follows, we will investigate on the certain quantum search and the

phase-error tolerance of Grover’s algorithm. In the next chapter, we will demonstrate the

one-way quantum computation experimentally by solving a quantum search problem.

9.2 Quantum searching with certainty

Grover’s algorithm provides a high probability in finding the object only for a largeN . The

probability will be lower as N decreases. Grover [163], however, also proposed that the

Walsh-Hadamard transformation used in the original version can be replaced by almost

any arbitrary unitary operator and the phase angles of rotation can be arbitrarily used

as well, instead of the original π-angles. The utility of the arbitrary phase angles in fact

can provide the possibility for finding the marked item with certainty, no matter whether

N is large or not, if these angles obey a so-called matching condition.

Some typical literatures concerning with the matching condition will be mentioned

here. Long et al. [164, 165] have derived the relation φ = θ, where φ and θ are the

phases used in the algorithm, using an SO(3) picture. Høyer [166] , on the other hand,

has proved a relation tan(φ/2) = tan(θ/2)(1− 2/N), and claimed that the relation φ = θ

is an approximation to this case. Recently, a more general matching condition has been

derived by Long et al. [167] , also using the SO(3) picture . In the last article, however,

only the certainty for finding the marked state is ensured. In fact a phase angle appearing

in the amplitude of the final state after searching will remain. If the final state should

be necessary for a future application, i.e., if it should interact with other states, this

phase angle will be important for quantum interferences, but it can not be given in the

SO(3) representation. We therefore intend to derive the matching condition in the SU(2)

picture. In addition, we will also give a more concise formula for evaluating the number

of the iterations needed in the searching and deduce the final state in a complete form

as eiδ |τ〉, where |τ〉 is the marked state. The optimal choice of the phase angles will be
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discussed, too [168].

Suppose in a two-dimensional, complex Hilbert space we have a marked state |τ〉 to

be searched by successively operating a Grover’s kernel G on an arbitrary initial state |s〉.

The Grover kernel is a product of two unitary operators Iτ and Iη, given by

Iτ = I + (eiφ − 1) |τ〉 〈τ | , (9.1)

Iη = I + (eiθ − 1)U |η〉 〈η|U−1 ,

where U is an arbitrary unitary operator, |η〉 is another unit vector in the space, and φ

and θ are two phase angles. It should be noted that the phases φ and θ actually are the

differences φ = φ2 − φ1 and θ = θ2 − θ1, where φ2, φ1, θ2, and θ1, as depicted in Refs.

[169, 170], denote the rotating angles to |τ〉, the vector orthogonal to |τ〉, U |η〉, and the

vector orthogonal to U |η〉, respectively. The Grover kernel can be expressed in a matrix

form as long as an orthonormal set of basis vectors is designated, so we simply choose

|I〉 = |τ〉 and |II〉 = (U |η〉 − Uτη |τ〉)/l , (9.2)

where Uτη = 〈τ |U |η〉 and l = (1−|Uτη|2)1/2. Letting Uτη = sin(β)eiα, we can write, from

(9.2),

U |η〉 = sin(β)eiα |I〉 + cos(β) |II〉 , (9.3)

and the Grover kernel can now be written

G = − IηIτ

= −




eiφ(1 + (eiθ − 1) sin2(β)) (eiθ − 1) sin(β) cos(β)eiα

eiφ(eiθ − 1) sin(β) cos(β)e−iα 1 + (eiθ − 1) cos2(β)



 . (9.4)

In the searching process, the Grover kernel is successively operated on the initial state

|s〉. We wish that after, say, m iterations the operation the final state will be orthogonal
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to the basis vector |II〉 so that the probability for finding the marked state |τ〉 will exactly

be unity. Alternatively, in mathematical expression, we wish to fulfill the requirement

〈II|Gm |s〉 = 0 , (9.5)

since then

|〈τ |Gm |s〉| = |〈I|Gm |s〉| = 1 . (9.6)

The eigenvalues of the Grover kernel G are

λ1,2 = −ei(φ+θ
2

±w) , (9.7)

where the angle w is defined by

cos(w) = cos(
φ− θ

2
) − 2 sin(

φ

2
) sin(

θ

2
) sin2(β) . (9.8)

The normalized eigenvectors associated with these eigenvalues are computed:

|g1〉 =




e−i φ

2 eiα cos(x)

sin(x)



 , |g2〉 =




− sin(x)

ei φ
2 e−iα cos(x)



 . (9.9)

In expression (9.9), the angle x is defined by

sin(x) = sin(
θ

2
) sin(2β)/

√
lm,
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where

lm = (sin(w) + sin(
φ− θ

2
) + 2 cos(

φ

2
) sin(

θ

2
) sin2(β))2 + (sin(

θ

2
) sin(2β))2

= 2 sin(w)(sin(w) + sin(
φ− θ

2
) + 2 cos(

φ

2
) sin(

θ

2
) sin2(β)).

The matrix Gm can be simply expressed by Gm = λm
1 |g1〉 〈g1| + λm

2 |g2〉 〈g2|, so we have

Gm = (−1)meim(φ+θ
2

)




eimw cos2(x) + e−imw sin2(x) e−i φ

2 eiαi sin(mw) sin(2x)

ei φ
2 e−iαi sin(mw) sin(2x) eimw sin2(x) + e−imw cos2(x)



 .

(9.10)

The initial state |s〉 in this work is considered to be an arbitrary unit vector in the

space and is given by

|s〉 = sin(β0) |I〉 + cos(β0)e
iu |II〉 . (9.11)

The requirement (9.5) implies that both the real and imagine parts of the term 〈II|Gm |s〉

are zero, so, as substituting (9.10) and (9.11) into (9.5), one will eventually obtain the

two equations:

− sin(mw) sin(
φ

2
− α− u) sin(2x) sin(β0) + cos(mw) cos(β0) = 0, (9.12)

sin(mw) cos(
φ

2
− α− u) sin(2x) sin(β0) − sin(mw) cos(2x) cos(β0) = 0. (9.13)

Equation (9.13), by the definition of the angle x, will reduce to the matching condition

(sin(
φ− θ

2
)+2 cos(

φ

2
) sin(

θ

2
) sin2(β)) cos(β0) = sin(

θ

2
) sin(2β) cos(

φ

2
−α−u) sin(β0), (9.14)
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which is identical to the relation derived by Long et al. [167]:

tan(
φ

2
) = tan(

θ

2
)(

cos(2β) + sin(2β) tan(β0) cos(α + u)

1 − tan(β0) tan( θ
2
) sin(2β) sin(α + u)

). (9.15)

Equation (9.12), under the satisfaction of the matching condition (9.14), or (9.15), will

reduce to a concise formula for evaluating the number of iterations m:

cos(mw + sin−1(sin(β0) sin(
φ

2
− α− u))) = 0. (9.16)

By equation (9.16), one can compute the number m

m = ⌈f⌉ , (9.17)

where ⌈ ⌉ denotes the smallest integer greater than the quantity in it, and the function f

is given by

f =
π
2
− sin−1(sin(β0) sin(φ

2
− α− u))

cos−1(cos(φ−θ
2

) − 2 sin(φ
2
) sin( θ

2
) sin2(β))

. (9.18)

It can also be shown that if the matching condition is fulfilled, then after m searching

iterations the final state will be

Gm |s〉 = eiδ |τ〉 = ei[m(π+ φ+θ
2

)+Ω] |τ〉 , (9.19)

where the angle Ω is defined by

Ω = tan−1(cot(
φ

2
− α− u)). (9.20)

The phase angle appearing in the amplitude of the final state will be important for quan-

tum interferences if possibly the state should interact with other states in a future appli-

cation, so we would had better remain it as the present form.
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The matching condition (9.14), or (9.15), relates the angles φ, θ, β, β0 , and α+ u for

finding a marked state with certainty. If β, β0 and α+ u are designated, then φ = φ(θ) is

deduced by the matching condition. As φ(θ) is determined, we then can evaluate by (9.18)

the value of f = f(φ(θ), θ) and consequently decide by (9.17) the number of iterations

m. The functions φ(θ) and f(θ) for some particular designations of β, β0 and α + u

have been shown in Figs. 9.1 and 9.2. These examples have schematically depicted that

theoretically we can establish a tabulated chart of possible choices between all of the

phases for finding a marked state with certainty. It is worth noticing that as α + u = 0

and β = β0, the matching condition recovers φ = θ automatically since then eq. (9.13)

becomes an identity, and accordingly one has

f =
π
2
− sin−1(sin(φ

2
) sin(β))

2 sin−1(sin(φ
2
) sin(β))

, for φ = θ. (9.21)

This is the case discussed in Ref. [165]; an example can be read by the straight line of

unity slope for β=β0=10−4 and the corresponding f vs θ variation in Fig. 9.1. It can

also be shown that the matching condition (9.14) will recover the relation considered by

Høyer [166]:

tan(
φ

2
) = tan(

θ

2
) cos(2β), for cos(φ/2 − α− u) = 0. (9.22)

In Figs.9.1 and 9.2 we have shown by the cross marks some particular examples of this

special case.

Observing Figs 9.1 and 9.2, one realizes that for every designation of β, β0 and α+ u,

the optimal choices for φ and θ is letting φ = θ = π, since then the corresponding f is

minimum under the fact df/dθ = (∂f/∂φ)(dφ/dθ) + ∂f/∂θ = 0, for φ = θ = π. We thus

denote the optimal value of m by

mop = ⌈min(f)⌉ =

⌈ π
2
− sin−1(sin(β0) cos(α + u))

2β

⌉
. (9.23)
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Figure 9.1: Variations of φ(θ) (solid) and f(θ) (broken), for α + u = 0, β0 = 10−4, and
β = 10−4 (1), 10−2 (2), 0.5 (3) and 0.7 (4), respectively. The cross marks denote the
special case of Høyer [166], while the entire cirles correspond to the optimal choices of φop

and θop for α + u = 0, β0 = 10−4 and β = 0.7. The solid straight line 1 corresponds the
case φ = θ, while the solid curve 2 is only approximately close to the former.
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Figure 9.2: Variations of φ(θ) (solid) and f(θ) (broken), for α + u = 0.1, β0 = 0.1, and
β = 10−4 (1), 10−2 (2), 0.5 (3) and 0.7 (4), respectively. The cross marks denote the
special case of Høye [166]. The solid curves 1 and 2 are very close, and both of them are
only approximately close to the line φ = θ.
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With the choice of mop, however, one need to modify the phases θ and φ(θ) to depart from

π so that the matching condition is satisfied again. For example, if α+ u = 0, β0 = 10−4

and β = 0.7 are designated, then the minimum value of f will be min(f) = 0.56 . So we

choose mop = 1 and the modified phases are θop = (1 ± 0.490)π and φop = (1 ± 0.889)π,

respectively. This example has been shown by the marked entire circles in Fig.1. It is

worth noticing again that under the choice of mop the modified φ and θ for the special

case considered by Long [165] will be

φop = θop = ⌈min(f)⌉ = 2 sin−1(
sin( π

4mop+2
)

sin(β)
),

where

mop =

⌈ π
2
− β

2β

⌉
.

This is in fact a special case in which the phases φop and θop can be given by a closed-form

formula.

9.3 An improved phase error tolerance in quantum

search algorithm

Grover’s quantum search algorithm [57, 58] is achieved by applying Grover kernel on an

uniform superposition state, which is obtained by applying Walsh-Hadamard transforma-

tion on a initial state, in a specific operating steps such that the probability amplitude of

marked state is amplified to a desired one. Grover’s kernel is composed of phase rotations

and Walsh-Hadamard transformations. The phase rotations include two kinds of opera-

tions : π-inversion of the marked state and π-inversion of the initial state. It has shown

that the phases, π, can be replaced by two angles, φ and θ, under the phase matching

criterion, which is the necessary condition for quantum searching with certainty. In other
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words, the relation between φ and θ will affect the degree of success of quantum search

algorithm. There have been several studies concern with the effect of imperfect phase

rotations. In their paper [164], Long et al. have found that the tolerated angle differ-

ence between two phase rotations, δ, due to systematic errors in phase inversions, with a

given expected degree of success Pmax, is about 2/
√
NPmax , where N is the size of the

database. Høyer [166] has shown that after some number of iterations of Grover kernel,

depending on N and unperturbed θ, it will give a solution with error probability O(1/N)

under a tolerated phase difference δ ∽ O(1/
√
N). The same result is also redrived by

Biham et al. [171]. On the other hand, a near conclusion, δ ∽ O(1/N2/3), is presented

by Pablo-Norman and Ruiz-Altaba [172].

The result of Long et al. [164] is based on the approximate Grover kernel and an

assumption: large N and small δ et al.. However, we found that the main inaccurancy

comes from the approximate Grover kernel. Since all parameters in Grover kernel con-

nect with each other exquisitely, any reduction to the structure of Grover’s kernel would

destroy this penetrative relation, so accumulative errors emerge from the iterations to a

quantum search. Although this assumption lead their study to a proper result, it cannot

be applied to general cases, e.g. any set of two angles in phase rotations satisfies phase

matching condition [167, 168] . In what follows, we will get rid of the approximation

to Grover kernel, then derive an improved criterion for tolerated error in phase rotation

and the required number of qubits for preparing a database. Besides, a concise formula

for evaluating minimum number of iterations to achieve a maximum probability will also

be acquired. By this formula then evaluating the actual maximum probability, one can

realize the derived criterion for tolerated error is near exactly [173].

Let the operator U is Walsh-Hadamard transformation W , the orthonormal set is

|I〉 = |τ〉 and |τ⊥〉 = (W |η〉 −Wτη |τ〉)/l , (9.24)
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where Wτη = 〈τ |W |η〉 and l = (1 − |Wτη|2)1/2. Furthermore, let Wτη = sin(β), we have

|s〉 = W |η〉 = sin(β) |τ〉 + cos(β) |τ⊥〉 , (9.25)

and the Grover kernel can now be written

G = − IηIτ

= −




eiφ(1 + (eiθ − 1) sin2(β)) (eiθ − 1) sin(β) cos(β)

eiφ(eiθ − 1) sin(β) cos(β) 1 + (eiθ − 1) cos2(β)



 . (9.26)

After m number of iterations, the operator Gm can be expressed as

Gm = (−1)meim(φ+θ
2

)




eimw cos2(x) + e−imw sin2(x) e−i φ

2 i sin(mw) sin(2x)

ei φ
2 i sin(mw) sin(2x) eimw sin2(x) + e−imw cos2(x)



 .

(9.27)

Then the probability of finding a marked state is

P = 1 − |〈τ |Gm |s〉|2 (9.28)

= 1 − (cos(mw) cos(β) − sin(mw) sin(
φ

2
) sin(2x) sin(β))2

− sin2(mw)(cos(
φ

2
) sin(2x) sin(β) − cos(2x) cos(β))2.

Moreover, by the equation ∂P/∂(cos(mw)) = 0, the minimum number of iterations for

obtaining the maximum probability, Pmax(cos(mminw)), is evaluated,

mmin(β, φ, θ) =
cos−1(

√
b−2a
2b

)

w
, (9.29)
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where

a = sin(2x) cos(2β) + cos(2x) cos(
φ

2
) sin(2β),

b = (2 + sin2(2x) + (3 sin2(2x) − 2) cos(4β) − 2 sin2(2x) cos(φ) sin2(2β))

+2 sin(4x) cos(
φ

2
) sin(4β).

For a sure-success search problem, the phase condition, φ = θ, provided iterations,

mmin = (π/2 − sin−1(sin(φ/2) sin(β))/w, is required. However, when effects of imperfect

phase inversions are considered, the search is not certain, then the new condition to phase

error, said δ = φ− θ, and the size of database would be rederived in order to accomplish

the search with a reduced maximum probability. Now, we suppose the database is large,

i.e., if sin(β) ≪ 1, and a phase error δ is small, where |δ| ≪ 1, one will have the following

approximation, viz.,

cos(w) = cos(
δ

2
) − 2 sin(

θ

2
+
δ

2
) sin(

θ

2
) sin2(β)

≈ 1 − (
δ2

8
+ 2β2 sin2(

θ

2
)),

sin(w) = (1 − cos2(w))1/2

≈ (δ2 + 16β2 sin2( θ
2
))1/2

2
,

sin(2x) =
4β sin( θ

2
)

(δ2 + 16β2 sin2( θ
2
))1/2

.

The probability P (9.28) then has the approximation

P ≈ 1 − cos2(mw) cos2(β) − sin2(mw) cos2(2x) (9.30)

= sin2(mw) sin2(2x),

with a maximum value, by letting sin2(mw) = 1,

Pmax ≈ sin2(2x) =
16β2 sin2( θ

2
)

δ2 + 16β2 sin2( θ
2
)

(9.31)
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Figure 9.3: Variations of exact vaule of Pmax (n)(cross marks), 16β2 sin2( θ

2
)/(δ2 +

16β2 sin2( θ
2
)) (solid), and 4β2/(δ2+4β2) (dash) for θ = π, δ = 0.01 where β = sin−1(2−n/2).
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Figure 9.4: Variations of exact vaule of Pmax (n)(cross marks), 16β2 sin2( θ
2
)/(δ2 +

16β2 sin2( θ
2
)) (solid), and 4β2/(δ2 + 4β2) (dash) for θ = π, δ = 0.001 where β =

sin−1(2−n/2).
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The function (9.31) for two desiginations, δ = 0.01 and δ = 0.001, are depicted in Fig.

9.3 and Fig. 9.4 respectively.

Observing Fig. 9.3 and Fig. 9.4, one realizes the function (9.31) depicted by solid line

coincides with the exact value, obtained by Eq. (9.28) and Eq. (9.29), shown by cross

marks. On the contrary, the result of Long et al.,

Pmax ≈ 4β2 sin2( θ
2
)

δ2 + 4β2 sin2( θ
2
)
, (9.32)

is an underestimation depicted by dash lines.

9.4 On a family of quantum search algorithms robust

against phase imperfections

Even in the case of large N , where high success rate in finding the marked state is expected

by using the standard Grover’s algorithm, inevitable noises including decoherence and

gate inaccuracies can significantly affect the efficiency of the algorithm. To overcome

such demerit we therefore should either apply the fault-tolerant computation [174] to

reduce gate imperfections and decoherence, or limit the size of the quantum database

to depress the effect of the uncertainty of the phase inversion operations. In another

way, we can also, if possible, consider implementing a modified algorithm which is itself

robust against phase imperfections and or decoherence. Recently, Hu [175] introduced an

interesting family of algorithms for the quantum search. Although these algorithms are

more complicated than the standard Grover’s algorithm, they can be proved to be robust

against imperfect phase inversions, so the limitation of the size of database can be greatly

relieved. In what follows we therefore intend to analyze the algorithms introduced by Hu

[175] in detail then show the robustness of the family in resisting the effect of imperfect

phase inversions [176, 177].

If we denote the phase inversion of marked state Iτ = 1+(eiφ−1) |τ〉 〈τ | and the phase
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inversion of the initial state Is = 1+(eiθ −1) |s〉 〈s| , then the generalized Grover operator

is given by G = IsIτ and in n iteration the unit probability for finding the marked state,

viz., |〈τ |Gn |s〉|2 = 1, is ensured if φ = θ. Instead of applying Gn on the initial state

|s〉, Hu [175] presented and utilized the operators A2n =(I†sI
†
τIsIτ )

n and A2n+1 = GA2n to

accomplish a quantum search with certainty, and named the former the even member and

the latter the odd member of the family {An,n = 1, 2, ...} because they require even (2n)

and odd (2n+1 ) oracle calls in computation, respectively. The arrangement I†sI
†
τIsIτ will

be shown to have cancellation effect on phase errors in each iteration of the algorithm A2n

and A2n+1 and as a whole can ensure the robustness against imperfect phase inversion.

Consider a two-dimensional Hilbert space spanned by the marked state |τ〉 and the

state |τ⊥〉, which is orthogonal to |τ〉 . The initial state, as a uniform superposition of

all states, then can be express by |s〉 = W |0〉 = sin(β) |τ〉 + cos(β) |τ⊥〉, where sin(β) ≡
√
M/N andM is the number of the target states. The eigenvalues of the operator I†sI

†
τIsIτ

are λ1,2 = cos(ω) ± i sin(ω) and the corresponding eigenvectors are computed

|λ1〉 = cos(x) |τ〉 + i sin(x)ei(φ
2
−γ) |τ⊥〉 ,

|λ2〉 = i sin(x)e−i(φ
2
−γ) |τ〉 + cos(x) |τ⊥〉 , (9.33)

where the rotation x and the related parameters are defined by

tan(x) =
2r sin(φ

2
) sin( θ

2
) sin(2β)

sin(ω) + sin2( θ
2
) sin(φ) sin2(2β)

, (9.34)

cos(ω) = 1 − 2 sin2(
θ

2
) sin2(

φ

2
) sin2(2β), (9.35)

reiγ = cos(
θ

2
) + i sin(

θ

2
) cos(2β). (9.36)

Then in n iterations of the operator of I†sI
†
τIsIτ we will have A2n =(I†sI

†
τIsIτ )

n =

λn
1 |λ1〉 〈λ1| + λn

2 |λ2〉 〈λ2|, which can be expressed in the following matrix form:

A2n =




cos(nw) + i sin(nw) cos(2x) sin(2x) sin(nw)e−i(φ

2
−γ)

− sin(2x) sin(nw)ei(φ
2
−γ) cos(nw) − i sin(nw) cos(2x)



 , (9.37)
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where sin(2x) and cos(2x) can be computed in use of the definition (9.34) and given by

sin(2x) = (
1 − sin2( θ

2
) sin2(2β)

1 − sin2( θ
2
) sin2(φ

2
) sin2(2β)

)1/2, (9.38)

cos(2x) =
sin( θ

2
) cos(φ

2
) sin(2β)

(1 − sin2( θ
2
) sin2(φ

2
) sin2(2β))1/2

. (9.39)

When the quantum search is carried out by using the even member A2n, the component

of the final state after n iterations of (I†sI
†
τIsIτ ) in the basis state |τ⊥〉 is expressed by

〈τ⊥|A2n |s〉 = REe + iIMe, and accordingly the exact success rate in finding the marked

state |τ〉 then is given by

p = 1 − |〈τ⊥|A2n |s〉|2 = 1 − (RE2
e + IM2

e ), (9.40)

where

REe = cos(nω) cos(β) − sin(nω) sin(2x) cos(
φ

2
− γ) sin(β), (9.41)

IMe = − sin(nω) sin(β)

(1 − sin2( θ
2
) sin2(φ

2
sin2(2β)))1/2

sin(
θ + φ

2
). (9.42)

It is clear that when IMe = 0, one obtains the n-independent phase matching condition,

φ = −θ, for A2n, and the success rate then becomes

p = 1 −RE2
e = 1 − cos2(nω − α), (9.43)

where α = sin−1(sin(β) cos(φ/2 + γ)). The 100% success rate for the search problem can

be achieved as by letting cos(nω−α) = 0. For a search with certainty, since n is a positive

integer, one therefore has to expect the iteration number given by

ne(θ, β) = ⌈fe(θ, β)⌉ , (9.44)
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and the function fe(θ, β) is given by

fe(θ, β) =
π
2

+ α(θ, β)

ω(θ, β)
. (9.45)

Given β, the function fe has its minimal value as θ = π (and φ = −π thereby), as if

minimal oracle calls are demanded in the computation, we should have the optimal phase

θop associated with

fe(θop, β) = ⌈fe(π, β)⌉ . (9.46)

For example, if given β = 1, we have ⌈fe(π, 1)⌉ = 1, and the optimal phase angle θop =

π±1.304 follows in the algorithm using the even member A2n. In usual operation, however,

the quantum database is large, i.e., sin(β) ≪ 1, and the phase θ = π and φ = −π are

fixed, then the required iterations are estimated by n ∼ π/8β and by (9.46) the maximal

success rate will be approximately evaluated

pmax ∼ 1 − β2, for θ = π,

which is the same result obtained as if the standard Grover algorithm is implemented.

That is, as the phase θ = π is fixed, the present algorithm (A2n) is equivalent to the

standard algorithm (Gm) with even oracle calls required in the computation. Nevertheless,

since in a real operation, imperfections in the phase inversions are inevitable. In what

follows, we will show that the present algorithm is robust against small phase imperfections

in a quantum computation and provides a maximal success rate that is similar to the one

given above.

In the absence of decoherence and error correction, we considered constant phase

errors causing the phase φ and θ to be φ = π + φe and θ = π + θe, where |φe| ≪ 1 and

|θe| ≪ 1. By introducing the constant phase imperfections, one then have the following
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approximations, when β ≪ 1,

sin(2x) ∼ 1 − 1

2
β2φ2

e, cos(2x) ∼ βφe,

cos(
φ

2
− γ) ∼ −1 +

1

8
(θe − φe)

2, sin(
φ

2
− γ) ∼ 1

2
(θe − φe),

ω ∼ 4β(1 − 1

8
(θ2

e + φ2
e) +

4

3
β2).

Then, since the errors are unknown in advance of the computation, the iteration number

is also considered to be n ∼ π/8β, and we thus have cos(nω) ∼ π(θ2
e + φ2

e)/16 − 2πβ2/3

and sin(nω) ∼ 1. The approximation of REe and IMe accordingly are evaluate by

REe ∼ β +
π

16
(θ2

e + φ2
e) −

2

3
πβ2, (9.47)

IMe ∼ − 1

2
β(θe + φe).

The maximal success rate, in uses of expression (9.40)-(9.42), now is approximately derived

by

pmax ∼ 1 − β2 − (H.O.T.), (9.48)

where H.O.T. represents high order terms higher than second-degree in the small param-

eters β, θe and φe. Expression (9.48) clearly tells that the reduction of the probability due

to the introduction of the phase errors in fact can almost be neglected. Then, through it,

we can see that the present algorithm is robust against systematic phase imperfections.

The analysis of the algorithm using the odd member A2n+1 can be undertaken by the

same procedure as in analyzing the even member. In this case, we have

pmax = 1 − (RE2
o + IM2

o ), (9.49)
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where

REo = cos(nw)[cos(
θ − φ

2
) − 4 sin(

θ

2
) sin(

φ

2
) sin2(β)] cos(β)

+ sin(nw){cos(2x)[sin(
θ − φ

2
) − 4 sin(

θ

2
) sin(

φ

2
) sin2(β)] cosβ

− sin(2x)[cos(γ +
θ

2
) + 4 sin(γ) sin(

θ

2
) cos2(β)] sinβ},

IMo = cos(β) sin(
θ − φ

2
)(cos(nw) − sin(nw)

cos(2x) sin(φ
2
)

cos(φ
2
)

). (9.50)

Letting IMo = 0, one has the phase matching condition, φ = θ, for A2n+1. The 100%

success rate then can be ensured when the iteration steps at no(θ, β) = ⌈fo(θ, β)⌉, where

fo(θ, β)

=

π
2
− cos−1(

cos(β)(1−4 sin2( θ
2
) sin2(β))

√
1−sin4( θ

2
) sin2(2β)√

1−sin2( θ
2
) sin2(2β)

)

ω(θ, β)
. (9.51)

Note that in this case the inequality 1 − 4 sin(θ/2)2 ≥ 0 should be demanded since then

the meaningful requirement fo ≥ 0 can then be fulfilled. Given β, the function fo(θ, β)

also has its minimal value at θ = π (then φ = π), as the optimal choice of the phase θop

should be estimated by

fo(θop, β) = ⌈fo(θ, β)⌉ , (9.52)

when minimal oracle calls are demanded in a search with certainty. For β = 1, the choice

of the phase should be θop = φop = π±1.870, for example. The standard Grover algorithm

with odd oracle calls can be recovered when θ = φ = π is fixed. In usual operations, when

phase imperfections are introduced, i.e., as θ = π+ θo and φ = π+φo, where both θo and

φo are small errors in the phases, they also produce almost negligible reductions in the

success rate as given by an expression like Eq. (9.48).
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9.5 Hamiltonian and measuring time for analog quan-

tum search

Several researchers have proposed other ways to solve the quantum search problem, such

as the analog analogue version of the Grover’s algorithm [178–180] and the adiabatic

evolution to quantum search [181–183]. The former is to be considered in this work.

It is proposed that the quantum search computation can be accomplished by controlled

Hamiltonian time evolution of a system, obeying the Schrödinger equation

i
d |Ψ(t)〉
dt

= H |Ψ(t)〉 , (9.53)

where the constant ~ = 1 is imposed for convenience. Farhi and Gutmann [178] presented

the time-independent Hamiltonian Hfg = Efg(|w〉 〈w| + |s〉 〈s|), where |w〉 is the marked

state and |s〉 denotes the initial state. Later, Fenner [179] proposed another Hamiltonian

Hf = Ef i(|w〉 〈s| − |s〉 〈w|). Recently, Bae and Kwon [180] further derived a generalized

quantum search Hamiltonian

Hg = Efg(|w〉 〈w| + |s〉 〈s|) + Ef (e
iφ |w〉 〈s| + e−iφ |s〉 〈w|), (9.54)

where φ is an additional phase to the Fenner Hamiltonian. Unlike the Grover algorithm,

which operates on a state in discrete time, a quantum search Hamiltonian leads to the

evolution of a state in continuous time, so the 100% probability for finding the marked

state can be guaranteed in the absence of all kinds of imperfection occurring in a quantum

operation. Both the Hamiltonian Hfg and Hf can help to find the marked state with 100%

success. However, Bae and Kwon [180] addressed that the generalized HamiltonianHg can

accomplish the search with certainty only when φ = nπ is imposed, where n is arbitrary

integer. In this work, however, we will show that the generalized Hamiltonian Hg can be

derived by an analytical method, which is distinct to the one implemented by Bae and

Kwon [180], and the same method will lead to arbitrary chosen phase φ, depending on
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when the measurement on the system is undertaken and how large the system energy gap

is provided. Since Hamiltonian-controlled system is considered, the energy-time relation

will play an essential role in the problem. Therefore, the evaluation of the measuring

time for the quantum search becomes crucially important. In this study, we will derive

the general Hamiltonian for the time-controlled quantum search system first. Then the

exact time for measuring the marked state will be deduced. Finally, the role played by

the phase φ in the quantum search will be discussed, and both the measuring time and

the system energy gap as variations with φ will be given [184].

Suppose that a two-dimensional, complex Hilbert space is spanned by the orthonormal

set |w〉, which is the marked state, and |w⊥〉 , which denotes the unmarked one. An

initial state |s〉 = |Ψ(0)〉 is designed to evolve under a time-independent quantum search

Hamiltonian given by

H = E1 |E1〉 〈E1| + E2 |E2〉 〈E2| , (9.55)

where E1 and E2 are two eigenenergies of the quantum system, E1 > E2, and |E1〉 and

|E2〉 are the corresponding eigenstates satisfying the completeness condition |E1〉 〈E1| +

|E2〉 〈E2| = 1. The eigenstates can be assumed by

|E1〉 = eiα cos(x) |w〉 + sin(x) |w⊥〉 ,

|E2〉 = − sin(x) |w〉 + e−iα cos(x) |w⊥〉 . (9.56)

where x and α are two parameters to be determined later based on the required maximal

probability for measuring the marked state. By the assumptions given in (9.56), the

Hamiltonian can be written in the matrix form

H =




Ep + Eo cos(2x) Eosin(2x)eiα

Eosin(2x)e−iα Ep − Eo cos(2x)



 . (9.57)

where Ep = (E1+E2)/2 is the mean of eigenenergies and Eo = (E1−E2)/2 represents half
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of the system energy gap. The major advantage of using the controlled Hamiltonian time

evolution is that the marked state can always be searched with certainty in the absence

of quantum imperfections. The crucial key of the present problem in turn is to decide

when to measure the marked state by the probability of unity. So in what follows we will

in detail deduce the relation between all the unknown appearing in the system and then

evaluate the exact measuring time for finding the marked state with certainty.

The time evolution of the initial state is given by |Ψ(t)〉 = e−iHt |s〉. Therefore, the

probability of finding the marked state will be P =
∣∣〈w| e−iHt |s〉

∣∣2 = 1−
∣∣〈w⊥| e−iHt |s〉

∣∣2.

Without loss of generality, let us consider the problem of searching one target from N

unsorted items. The general form of the initial state considered in this study is given by

|s〉 = eiu sin(β) |w〉 + cos(β) |w⊥〉 , (9.58)

where sin(β) ≡ 1/
√
N and u denotes the relative phase between the two components in

the initial state. Note that the relative phase u may arise from a phase decoherence or

an intended design during the preparation of the initial state. Now, because of e−iHt =

e−iE1t |E1〉 〈E1| + e−iE2t |E2〉 〈E2|, using the expressions given in (56) and (58), we can

deduce

〈w⊥| e−iHt |s〉 = e−iEpt((cos(β) cos(Eot) − sin(α− u) sin(2x) sin(β) sin(Eot))

+i(cos(2x) cos(β) − cos(α− u) sin(2x) sin(β)) sin(Eot)). (9.59)

To accomplish the quantum search with maximal probability, the time-independent term

(cos(2x) cos(β) − cos(α − u) sin(2x) sin(β)) in (9.59) must vanish and thus the unknown

x can be determined by

cos(2x) =
sin(β) cos(α− u)

cos(γ)
, or sin(2x) =

cos(β)

cos(γ)
, (9.60)

where γ is defined by sin(γ) = sin(β) sin(α− u) . The probability for finding the marked
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state then becomes

P = 1 −
∣∣〈w⊥| e−iHt |s〉

∣∣2

= 1 − cos2(β)

cos2(γ)
cos2(E0t+ γ). (9.61)

Usually, if the size of database N is large, then γ ≪ 1 and the marked state |w〉 will

be measured at t = π/(2Eo) by a probability p = 1 − tan2 γ ∼ 1, according to (9.61).

Expression (9.61) also indicates that, by letting cos2(E0t + γ) = 0, we can measure the

marked state with unit probability, no matter how large N is, at the time instants

tj =
(2j − 1)π/2 − sin−1(sin(β) sin(α− u))

Eo
, j = 1, 2, .... (9.62)

In what follows, let us only focus on the first instant t1 = (π/2 − sin−1(sin(β) sin(α −

u)))/Eo. It is clear that a larger Eo, or equivalently a larger system energy gap, will

lead to a shorter time for measuring the marked state with certainty. Meanwhile, as can

be seen in (9.61), the probability for measuring the marked state varies with time as a

periodic function whose frequency is the Bohr frequency Eo/π, so a larger Eo will also

result in a more difficult control on the measuring time. In other words, the measuring

time should be controlled more precisely for a higher Bohr frequency in the state evolution

since then a small error in the measuring time will cost a serious drop of the probability.

However, the energy gap Eo depends on the size of database N , as will be mentioned

later.

With the relations shown in (9.60), the present Hamiltonian now can be written by

H =




Ep + Eo

sin(β) cos(α−u)
cos(γ)

Eo
cos(β)
cos(γ)

eiα

Eo
cos(β)
cos(γ)

e−iα Ep − Eo
sin(β) cos(α−u)

cos(γ)



 , (9.63)

which is represented in terms of the energies Ep and Eo and the phase α. Alternatively,

161



CHAPTER 9. QUANTUM SEARCH ALGORITHM

if we let

Efg =
(Ep − Eo

sin(β) cos(α−u)
cos(γ)

)

cos2(β)
,

Efe
i(φ−u) =

Eo

cos(γ)
ei(α−u) − Efg sin(β), (9.64)

or inversely,

Ep = Efg + Ef cos(φ− u) sin(β),

Eo = ((Ef cos(φ− u) + Efg sin(β))2

+E2
f sin2(φ− u) cos2(β))

1
2 , (9.65)

then the Hamiltonian can also be expressed by

H =




Efg(1 + sin2(β)) + 2Ef cos(φ− u) sin(β) eiu(Efe

i(φ−u) + Efg sin(β)) cos(β)

e−iu(Efe
−i(φ−u) + Efg sin(β)) cos(β) Efg cos2(β)



 ,

(9.66)

which in turn is represented in terms of the energies Efg and Ef and the phase φ. The

Hamiltonian shown in (9.66) in fact can be expressed as Hg = Efg(|w〉 〈w| + |s〉 〈s|) +

Ef(e
iφ |w〉 〈s| + e−iφ |s〉 〈w|), which is exactly of the same form as the Bae and Kwon

HamiltonianHg shown in (9.54). However, Bae and Kwon [180] only consider the case u =

0 . In both the presentations (9.63) and (9.66) of the Hamiltonian H , the corresponding

measuring time for finding the marked state |w〉 with certainty is at

t1 =
π
2
− sin−1(sin(β) sin(α− u))

Eo

=

π
2
− sin−1(

Ef sin(β) sin(φ−u)

((Ef cos(φ−u)+Efg sin(β))2+E2
f sin2(φ−u))

1
2
)

((Ef cos(φ− u) + Efg sin(β))2 + E2
f sin2(φ− u) cos2(β))

1
2

. (9.67)

Equation (9.67) indicates that when the phase difference α − u, or φ− u, is imposed

and the energy gap Eo or the energies Ef and Efg are provided, the measurement at
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the end of a search should be undertaken at the instant t1. To discuss further, we first

consider the case u = 0, i.e., the case where neither phase decoherence nor intended

relative phase is introduced in the preparation of the initial state |s〉. If φ = nπ, or

α = nπ, is imposed, then the present Hamiltonian reduces to that considered by Bae and

Kwon [180] to serve for a search with certainty when the measurement is undertaken at

t1 = π/(2Eo) = π/(2|(−1)nEf + Efg sin(β)|). If Ef = 0, or if Eo = Efg sin(β) and α = 0,

is imposed, then the present Hamiltonian reduces to the Farhi and Gutmann Hamiltonian

Hfg, which serves for a search with certainty at t1 = π/(2Eo) = π/(2Efg sin β). Further,

when Efg = 0 and φ = π/2, or Ep = 0 and α = π/2 is chosen, the present Hamiltonian

will reduce to the Fenner Hamiltonian Hf associated with the measuring time t1 = (π −

2β)/(2Eo) = (π − 2β)/(2Ef cos β). In general, the phase φ, or α, in fact can be imposed

arbitrary for a search with certainty as the condition u = 0 is imposed.

However, if inevitable phase decoherence in the preparation of the initial state |s〉 is

considered, then the phase u must be assumed to be arbitrary. Accordingly, the proba-

bility for finding the marked state will not be unity at all. For example, if following Bae

and Kwon [180] by letting t1 = π/(2Eo), then we only have a probability for finding the

marked state given by

p = 1 − cos2(β) sin2(β) sin2(u)

1 − sin2(β) sin2(u)
. (9.68)

It is easy to show that the probability shown in (9.68) is always greater than or equal to the

lower bound pmin = 1−sin2(β) = 1−1/N . Of course, if the nonzero phase u is introduced

by an intended design, not an inevitable phase decoherence, then a search with certainty

can be accomplished for an arbitrary φ, or α, when associated with the measuring time

shown in (9.67). For example, if u = π/2 is the phase designated, the ideal measuring time

should be t1 = (π − 2β)/(2Eo), which is the same as the Fenner’s t1. Again if the phase

decoherence is introduced into the system and changes the phase from π/2 to an undesired

u, then one eventually obtains a poor probability p = 1 − (1 + sin2(u)− 2 sin(u)) sin2(β).
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Figure 9.5: The variation of p̄(β) for cases of Bae-Kwon(solid), Farhi-Gutmann(solid),
and Fenner(broken) at the specific measuring times, t1,BK = t1,FG = π/(2Eo) and t1,F =
(π − 2β)/(2Eo).

Moreover if the phase error occurs randomly in a quantum database, then we cannot be

sure when to take a measurement, and the probability for finding the marked state even

drops off seriously in some cases. For investigating the effect of the random uncontrollable

parameter u on p at a fixed measuring time, we average over all possible values of p(β, u)

about all arbitrary values of phase parameter u. Fig. 9.5 shows the variation of the mean

probability p̄ with β for cases of Bae-Kwon, Farhi-Gutmann and Fenner at the specific

measuring times, t1,BK = t1,FG = π/(2Eo) and t1,F = (π − 2β)/(2Eo), those Hamiltonian

suggest in such a case. The same character of their proposals is that p̄ is sensitive to

a phase decoherence as the database is small. The mean success probabilities of Bae-

Kwon and Farhi-Gutmann are the same and always greater than the one of Fenner. Then

the Hamiltonians presented by Bae and Kwon, and Farhi and Gutmann are more robust

against the phase decoherence than the one proposed by Fenner especially for low values

of N .

Now we proceed to give a brief review on the comparison between Efg and Ef , which

has been discussed in Ref. [185], and to recall the implication behind the analog quantum
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search first presented by Farhi and Gutmann [178]. Suppose there is a (N − 1)-fold

degeneracy in a quantum system and its Hamiltonian is read as H0 = E |w〉 〈w|, then

our assignment is to find the unknown state |w〉. Since one does not yet know what |w〉

is, it is natural to add a well known Hamiltonian, HD = E |s〉 〈s|, such that the initial

state of the system |s〉 can be drove into |w〉. The total Hamiltonian therefore becomes

H = H0 +HD = E(|w〉 〈w|+ |s〉 〈s|), which is just the Hamiltonian of Farhi and Gutmann

[178] Hfg. It can be simplified under the large database limit,

Hfg ≈ E(|w〉 〈w| + |s〉 〈s|) + E sin(β)(|w〉 〈s| + |s〉 〈w|). (9.69)

From it one can realize that the driving Hamiltonian induces transitions between |w〉 and

|s〉 with a mixing amplitude O(E sin(β)), which causes |s〉 to evolve to |w〉. By Eq. (9.65),

thus it is rational to assume Ef ∼ Efg sin(β), and therefore the energy gap Eo should be

proportional to sin β , or 1/
√
N . The measuring time then is easily found to be t1 ∝

√
N

from Eq. (9.67). However, if consider the case Ef ≫ Efg, like the extreme situation

considered by Fenner [179], then we encounter with Eo ∼ Ef cos(φ− u) and accordingly

the measuring time t1 is independent of the size of database N . Therefore, in an usual

case the assumption Ef ∼ Efg sin(β) is reasonable.

An interesting phenomenon occurs when the critical condition Ef = Efg sin(β) is

considered. Fig. 9.6 shows the variations of t1 and Eo with the phase difference φ− u in

such a case. It is observed that when φ−u = ±π the energy gap Eo becomes zero and then

the eigenstates of the quantum search system correspond to the common eigenvalue E =

E1 = E2 and become degenerate. In such case, the Hamiltonian becomes proportional

to the identity 1(= |w〉 〈w| + |w⊥〉 〈w⊥|). Therefore, the initial state |s〉 does not evolve

at all and the probability for finding the marked state |w〉 indeed is the initial one, viz.,

p = sin2(β) = 1/N , which can also be deduced using Eq. (61). In other words, the

quantum search system is totally useless as long as φ − u = ±π is imposed under the

critical condition Ef = Efg sin(β). When φ − u 6= ±π, both t1 and Eo are finite, as
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Figure 9.6: Variations of t1(φ − u) (broken) and Eo(φ − u) (solid), for β = 0.085 (1),
β = 0.031 (2), and β = 0.0055 (3).
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can be seen from Fig. 9.6, and therefore the quantum search system becomes efficient

again and is capable of finding the marked state with certainty, especially when the phase

difference is imposed around φ− u = 0. As a conclusion, for an efficient, useful quantum

search system, the critical condition mentioned above should be avoided and in fact the

reasonable condition Ef ∼ Efg sin(β) is recommended to be imposed.
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Chapter 10

Experimental generation of

hyperentangled photons and

experimental realization of one-way

quantum computing

10.1 Introduction

Cluster states have recently received enormous attentions in the field of quantum infor-

mation and are important for one-way universal quantum computing [31–33]. Moreover,

with highly robustness they are also essential for quantum error correction codes and

quantum communication protocols [187, 188]. Many efforts have been stepped toward

generating and characterizing cluster states in linear optics [52, 53, 99, 189–192]. Recently

the principal feasibility of one-way quantum computing model has been experimentally

demonstrated through 4-photon cluster state successfully [52, 53, 62].

In this chapter we show an experimental realization of one-way quantum computing

with a 2-photon 4-qubit cluster state. We develop and employ a bright cluster state

source which produces a 2-photon state entangled both in polarization and spacial modes.
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The Grover’s search algorithm is demonstrated with highly performences. The genuine

four-partite entanglement and high fidelity of better than 88% for this cluster state are

characterized and verified by measurement of an optimal entanglement witness with two

local measurement settings. Inheriting the intrinsic two-photon character, compare with

the one using multi-photon, our scheme promises a brighter source in quantum computing

by more than 4 orders of magnitude, which offers a significantly high efficiency for optical

quantum computing. It thus provides a simple and fascinating alternative to complement

the usual multi-photon cluster state [54].

10.2 Photon source for polarization entanglement

First, we will give an introduction to the photon source used for creation of polarization

entangled photons. We use parametrically driven nonlinear media to generate nonclassical

light via a type-I spontaneous parametric down-conversion (SPDC) process [98]. Photons

from the pump beam are converted into two photons that emitted from the beta-barium

borate (BBO) crystal along different directions. The emitted photons, say signal and idler

photons respectively, satisfy phase matching conditions:

~ωp = ~ωs + ~ωi, (10.1)

for energy conservation, where ωp, ωs, and ωi denote the frequencies of the pump, signal,

and idler respectively, and

~kp = ~ks + ~ki, (10.2)

for momentum conservation, where kp, ks, and ki represent the respective wave vectors.

Since the constrain of phase matching conditions, the signal and idler photon emitted from

the crystal on opposite sides of concentric cones centered on the direction of the pump

beam. The signal and idler photons possess the same polarization but are orthogonal
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(from B1)  
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(from B2)  

B1 B2 

Type I 

Phase-matching  

Figure 10.1: Polarization photon source with two-crystal geometry BBO crystals

to that of the pump beam. This process can be described by the following interaction

Hamiltonian

HI = ~γa†sa
†
i + H.c., (10.3)

where γ ∝ ηpχ
(2), ηp denotes the amplitude of the classical coherent field and χ(2) is the

second-order nonlinear susceptibility of the BBO crystal, and a†s and a†i represent the

creation operators of the signal and idler beams respectively.

We use the nonlinear media with two-crystal geometry as shown in Fig. 10.1 to create

polarization photons [98]. The BBO crystals with the type-I phase-matching condition are

adjacent and relatively thin, and they are oriented with their optic axes aligned in perpen-

dicular planes. With the type-I phase-matching, a pump beam with vertical polarization

will produce horizontally polarized photon pairs, and this process of down conversion oc-

curs only in the first crystal (see Fig. 10.2). Using a horizontally polarized pump beam,

down conversion process will only in the second crystal and vertically polarized photon

pairs are created (see Fig. 10.3).

If a geometry condition of the two BBO crystals is imposed on the system [98]:

θc
L

D
≪ 1, (10.4)

where θc is the opening angle of the cone, D is the pump beam diameter, and L is the
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Figure 10.2: Polarization photons emitted from the first BBO crystal

crystal thickness, the high spatial overlap of the cones of down conversion produced by

a 45◦ pump beam will induce a coherent two-down-conversion process. This implies that

the emitted pair of photons with the spatial modes that are indistinguishable for the two

crystals is in the state

|Φ(φ)〉 =
1√
2
(|H〉1 |H〉2 + eiφ |V 〉1 |V 〉2), (10.5)

where H and V denote horizontal and vertical polarization, respectively, and the sub-

scripts 1 and 2 denote two distinct spatial modes. The relative phase between horizontal

and vertical components of the state vector can be adjusted by (a) tilting the BBO crys-

tals, by (b) using birefringent crystal on one of the output beams for phase shift, or by (c)

changing the relate phase between the vertical and horizontal components of the pump

beam.

10.3 Experimental generation of two-photon four-qubit

hyperentaled states

To experimentally realize the single-element quantum search on a one-way quantum com-

puter, we use the technique developed in previous experiments [102] with a type-I SPDC
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Figure 10.3: Polarization photons emitted from the second BBO crystal

source [98] to generate a two-photon four-qubit cluster state that is equivalent to the

four-qubit box cluster state up to a local transformation, that is depicted in Fig. 10.4.

By pumping a two-crystal structured BBO by a ultraviolet (UV) pulse in a double

pass configuration, one polarization entangled photon pair is generated by a type-I SPDC

source with two possibilities in the forward direction and in the backward direction,

respectively, to perform the preparation of 2-photon 4-qubit cluster state. The UV pulsed

laser with a central wavelength of 355 nm has pulse duration of 5 ps, a repetition rate of

80 MHz, and an average pumping power of 200mW. Two quarter-wave plates (QWPs)

are tilted along their optic axis to vary relative phases between polarization components

to attain two desired possibilities for entangle pair creation. Concave mirror and prism

are mounted on translation stages to optimize interference and overlapping on two beam

splitters (BS1,2) or two polarizing beam splitters (PBS1,2) for achieving the target cluster

state. Half-wave plates (HWPs) together with polarizing beam splitters (PBS) and 8

single-photon detectors (D1-D8) are used for polarization analysis of the output state.

Finally, we observe a cluster state generation rate of about 1.2× 104 per second behind 3

nm filters (IF) of central wavelength 710 nm.

A pulse of UV light passes twice through two contiguous BBO with optic axes aligned

in perpendicular planes to produce one polarization entangled photon pair, with one
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Figure 10.4: Schematic of experimental setup.
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possibility in the forward direction of generating a state

|F 〉 =
1√
2
(|H〉A |H〉B + |V 〉A |V 〉B) |L〉A |L〉B , (10.6)

on spacial (path) modes LA,B, and another possibility in the backward direction of pro-

ducing a state

|B〉 =
1√
2
(|H〉A |H〉B − |V 〉A |V 〉B) |R〉A |R〉B , (10.7)

on spacial modes RA,B, where |H〉 (|V 〉) stands for photons with horizontal (vertical)

polarization. The states |F 〉 and |B〉 can be a coherent superposition |F 〉+eiθ |B〉 through

perfect temporal overlaps of modes RA and LA and of modes RB and LB. By properly

adjusting the distance between the concave mirror and the crystal, so that θ = 0, the

generated state is exactly the desired 2-photon 4-qubit cluster state

|C4〉 =
1

2

(
|0000〉1234 + |0011〉1234 + |1100〉1234 − |1111〉1234

)
, (10.8)

if we identify photon A to be qubits 2,3 and photon B to be qubits 1,4 and encode logical

qubits as |H(V )〉B ↔ |0(1)〉1 , |H(V )〉A ↔ |0(1)〉2, |L(R)〉A ↔ |0(1)〉3, |L(R)〉B ↔ |0(1)〉4.

We observe a cluster state generation rate about 1.2×104 per second for 200mw UV pump,

which is 4 order of magnitude more than the usual 4-photon cluster state production

[52, 53, 190], and the lower bound for fidelity of experimental generations of |C4〉 is

F ≥ 0.883 ± 0.002 [54], that is better than the ones in [52, 53, 190] where fidelities are

about 0.63 [52, 53] and 0.74 [190], respectively. The lower bound for fidelity is determined

through an optimal entanglement witness with the following form:

W = 2I − 1

2
(X1X2Z4 +X1X2Z3 + Z2X3X4 + Z1X3X4 + Z1Z2 + Z3Z4), (10.9)

and by F > 1
2
(1−〈W〉exp) [72]. The experimental values of the observables of the witness
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Observable Value Observable Value
X1X2Z4 0.9070 ± 0.0036 Z2X3X4 0.9071 ± 0.0037
X1X2Z3 0.9076 ± 0.0035 Z1X3X4 0.8911 ± 0.0040
Z3Z4 0.9812 ± 0.0016 Z1Z2 0.9372 ± 0.0030

Table 10.1: Experimental values of all the observable on the cluster state |C4〉 for the
entanglement witness W measurement. Each experimental value corresponds to measure
in an average time of 1 sec and considers the Poissonian counting statistics of the raw
detection events for the experimental errors.

is shown in Table 10.1. It is worth noting that W is equivalent to the witness WR4 under

a swap between operators 2 and 3 and a exchange of X and Z. See (3.18).

10.4 Experimental demonstration of quantum search

algorithm with an one-way quantum computer

10.4.1 One-way quantum computation

If we have a four-element database, {|00〉 , |01〉 , |10〉 , |11〉}, and in which only one item

satisfying Ijk |jk〉 = − |jk〉 , j, k ∈ {0, 1} and otherwise Ijk| |j′k′〉 = |j′k′〉 , j′ 6= j, k′ 6=

k where Ijk is the oracle operator corresponding to the database, one can utilize the

quantum logic circuit depicted in Fig. 10.5 to search |jk〉 with certainty and then identify

Ijk by just querying one oracle. The oracle operator can be designed by four settings:

(α, β) = (π, π), (π, 0), (0, π), (0, 0), that correspond to I00, I01, I10, and I11 respectively.

For instance, if (α, β) = (π, π) is set in the quantum logic circuit and the superposition

state of the four elements |s〉 = |+〉 |+〉, where |+〉 = (|0〉 + |1〉)/
√

2, is prepared as the

input of the circuit, the output state will be |00〉.

One-way quantum computer can simulate the quantum logic circuit for sigle-element

quantum search. To simulate a computation task on a one-way quantum computer,

one has to prepare a cluster state with a specific type of entangled feature associated

with the computation. A cluster state can be schematically described by an array of

nodes (vertexes) connected with lines. Each node is initially in the state of |+〉. Every
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Figure 10.5: Quantum circuit for realization of quantum search algorithm.

connected line between nodes experiences a controlled-phase (CPhase) gates acting as

|j〉 |k〉 → (−1)jk |j〉 |k〉.The scenario of one-way implementation consists four steps as

follows:

1. Prepare a 4-qubit box cluster state:

|R4〉 =
1

2
(|0〉1 |0〉2 |+〉3 |+〉4 + |0〉1 |1〉2 |−〉3 |−〉4

+ |1〉1 |0〉2 |−〉3 |−〉4 + |1〉1 |1〉2 |+〉3 |+〉4), (10.10)

where |−〉 = (|0〉 − |1〉)/
√

2 and the subindex denotes the number of particle. It is

schematically represented in Fig. 10.6.

2. Take local measurements on the second and the third qubits in the bases B2(α) =

{|α+〉 , |α−〉} and B3(β) = {|β+〉 , |β−〉} respectively, where |α(β)±〉 = (|0〉±eiα(β) |1〉)/
√

2.

The outcome of measurement |α(β)+〉 is denoted by s2(3) = 0 and |α(β)−〉 is denoted by

s2(3) = 1. The state of the remaining subsystem composed of the first and the third qubits

is then equivalent to the output state of the quantum circuit shown in Fig. 10.7 when

|+〉 |+〉 is fed as an input.

3. Take local measurements on the first and the fourth qubits in the bases {|π+〉 , |π−〉},
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B2(!) 

B3(!) 

1 2 

3 4 

Measure along basis Readout 

Figure 10.6: Box cluster state.

Rz(-!) H Z H 

Rz(-!) H Z H 

Figure 10.7: Quantum circuit involved an action of oracle for quantum search.
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Rz(-!) H Z H 

Rz(-!) H Z H 

Figure 10.8: Quantum circuit composed of four local operations for the step 3 in one way
realization.

which is equivalent to apply local operations depicted in Fig. 10.8 below to the output

state of the circuit in the step 2. Similarly, the outcome of measurement corresponding

to the state |α+〉1(4) is denoted by s1(4) = 0 and |α−〉1(4) is denoted by s1(4) = 1.

4. Refer to (s3 + s4 = s34, s1 + s2 = s12), one then can identify the oracle, Ijk, where

j = s34 and k = s12.

10.4.2 Experimental realization of one-way quantum search

The state |C4〉 is very useful for our experimental demonstration because |C4〉 is equivalent

to the four-qubit box cluster state up to four-qubit local unitary operations. To give a

concrete demonstration, we experimentally mark the element |00〉 in qubits 2, 3 and make

the final readout measurements on qubits 1, 4 all along basis B(π). By noting the fact that

the state Eq. (10.8) differs from the box cluster state up to a H transformation on every

qubit and a swap between qubits 2 and 3, this amounts to measure along the {|V 〉 , |H〉}

basis for the polarization in each output arm after PBS1 and PBS2. The output of the

algorithm is two bits (s3 ⊕ s4, s1 ⊕ s2) in lab basis by feed-forwarding outcomes of qubits

2,3. The experimental result of this example is shown in Fig. 10.9.
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Figure 10.9: A successful identification probability of (96.1±0.2)% is achieved determinis-
tically with feed-forward, while it is (24.9±0.4)% without feed-forward. This depicts that
our source of cluster state is ideally suited for such a sort of algorithm’s implementation.

10.5 Conclusion

We have developed a scheme for preparation of a two-photon four-qubit cluster state.

With such a source, we have designed and demonstrated the first proof-of-principle ex-

perimental realization of one-way quantum computing. The excellent quality of the state

with fidelity better than 88% is characterized by an optimal witness without using of

a full state tomography. Moreover, high count rates of the state creation enable more

efficient quantum computing by 4 orders of magnitude than previous methods. We have

thus achieved implementation of Grover’s algorithm with a successful probability of about

96%. In addition, non-trivial two-qubit quantum gates such as the CPhase gate are im-

plemented with high fidelities through the approach developed. Refer to [54] for detailed

discussions.
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Chapter 11

Summary and Outlook

11.1 Summary

In this thesis we have presented novel approaches to correlation structure of multipartite

entanglement, entanglement detection, entanglement generation, entanglement purifica-

tion, quantum error corrections, quantum search algorithm, and, furthermore, experimen-

tal advance towards one-way quantum computation. Our research has covered several im-

portant subjects involved in the field of quantum information and quantum computation

and mainly associates with the key processes of quantum information processing.

Through the correlation criteria of multipartite entanglement, one can construct robust

entanglement witness operators to detect many-qubit stabilizer, four-qubit singlet, three-

qubit W, generalized many-qubit GHZ, two-qudit Bell, two-qudit singlet, four-ququat

supersinglet, many-qudit GHZ states with fewer local measurement settings. The entan-

gled states under study are all important for entanglement-based quantum information

processing. In addition to detections of entanglement, the criteria proposed help to an-

alyze the correlation structures of Bell inequalities and to find their connections with

entanglement witness operators.

An idea of hybrid maps is proposed to establish standard entanglement purification

protocols which guarantee to purify any distillable state to a desired maximally entangled
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pure state all by the standard purification local operations and classical communications.

The protocols proposed in this work, in which two state transformations are used, perform

better than the IBM and Oxford protocols in the sense that they require fewer operation

times in yielding a same amount of the desired pure state. One of the proposed protocols

in this work can even lead to a higher improved output yield when it is combined with

the hashing protocol, as compared with the combined algorithm consisting of the Oxford

and the hashing protocol.

Simpler encoding and decoding networks are necessary for more reliable quantum

error-correcting codes. The simplification of the encoder-decoder circuit for a perfect five-

qubit quantum error-correcting code can be derived analytically if the quantum error-

correcting code is converted from its equivalent one-way entanglement purification proto-

col. In our study, the analytical method to simplify the encoder-decoder circuit is intro-

duced and a circuit that is as simple as the existent simplest circuits is presented as an

example. The encoder-decoder circuit presented here involves nine single- and two-qubit

unitary operations, only six of which are controlled-NOT gates.

A study on the cause of multi-particle entanglement is also presented in this thesis.

We show how dot-like single quantum well excitons, which are coupled to single-mode

cavity photon, evolve into maximally entangled state as a series of conditional measure-

ments are taken on the cavity field state. Generation of multi-particle entangled states is

derived analytically. Application to quantum teleportation is also pointed out, and may

be achieved with current technologies.

We have analyzed the quantum search algorithm in detail. First, a general quantum

search algorithm with arbitrary unitary transformations and an arbitrary initial state is

considered in this work. To search a marked state with certainty, we have derived, using

an SU(2) representation: (1) the matching condition relating the phase rotations in the

algorithm, (2) a concise formula for evaluating the required number of iterations for the

search, and (3) the final state after the search, with a complex phase in its amplitude.

Moreover, the optimal choices and modifications of the phase angles in the Grover kernel
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are also studied. As the matching condition in Grover search algorithm is transgressed

due to inevitable errors in phase inversions, it gives a reduction in maximum probability

of success. With a given degree of maximum success, we have derived the generalized

and improved criterion for tolerated error and corresponding size of quantum database

under the inevitable gate imperfections. The vanished inaccuracy to this condition has

also been shown. A concise formula for evaluating minimum number of iterations is also

presented. Furthermore, a family of algorithms is recently addressed for sure-success

quantum search problems. When the phase inversion operations of these algorithms are

identical to those of the standard Grover algorithm, we found that this family of algorithms

is of robustness against inevitable phase imperfections. Finally, an analog analogue of

Grover’s quantum search algorithm was studied. A generalized Hamiltonian driving the

evolution of quantum state in the analog search system was derived. Equations relating

all parameters considered in the present problem were given according to the required

maximal probability for finding the marked state. By these equations, both the measuring

time and the system energy gap suitable for a quantum search with or without certainty

can thus be evaluated. It was shown that in an efficient quantum search computation,

the measuring time should be proportional to the square root of the size of database.

We perform the first experimental realization of one-way quantum computation on

a 2-photon four-qubit cluster state that is entangled both in polarization and spatial

modes. Through solving a quantum search problem, the experiment illustrates a high-

speed quantum computation in one-way realization. The experimental demonstration

shows the hyper-entangled cluster states can provide an ideal source for rapidly and

precisely optical quantum information processing.

11.2 Outlook

Distinct correlation properties of entanglement pay the way for novel models of informa-

tion and computation and reveal the fundamental features of quantum phenomenon. We
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have seen in the thesis that the correlation criteria proposed provide a way to analyze

the correlation structure of multipartite entanglement. In our preliminary result, the cri-

teria can be used to construct Bell inequalities for three four-level systems, which shows

that there may exist a family of Bell inequalities for many qudits where each member is

comprised of correlators. Furthermore, how to detect genuine multipartite entanglement

that are inherent in many-qudit singlet and valence-bound solid states is still open. These

entangled states are crucial for quantum information and computation. Then one of our

future works is to design a method based on correlators to investigate on the structures

of these states. As for entanglement purification, improvement of purification yield will

be the next topic. Since the standard protocol for purifying entangled qubit pairs relies

on successful controlled-NOT operations and on certain results of measurements, desig-

nations of new models that can be achieved deterministically or in a more deterministic

way will be helpful for raising the yield of purification. The number of controlled-NOT

gates also affects the complexity of an encoder-decoder circuit to perform the five-qubit,

single-error correction protocol. The simplest circuit consists of six controlled-NOT gates

and three single-qubit operations presented in this thesis and proposed by Braunstein

and Smolin might not be improved further. A more convincible proof will be given in

the future work. As for generation of entangled pairs or multipartite entangled qubits,

preparation of remote entangled states by controlling a media system with a high gen-

eration of yield is crucial. How to control the third quantum system in an experiment

reliably as the case discussed in the thesis will be investigated elsewhere. For generating

entangled photons with SPDC sources, investigations on the quality of entangled photons

and coincidence detections are also the future topics for entanglement generations.

Quantum correlations provide novel ways of communications with high security, e.g.,

the Ekert protocol for key distribution. However, it is worth discussing whether entangle-

ment is necessary for quantum communication. In Ref. [193], it has shown that the Ekert

protocol [29] based on maximally entangled qubits is equivalent to the scheme of Bennett

and Brassard [34] using on nonorthogonal states. It implies that in some quantum commu-
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nication tasks utilization of entanglement is not the only method for reliable achievement

[194]. Since entanglement can be replaced by separable quantum systems, the processes

required for entangled states, e.g., entanglement purification, can be replaced by simple

single-qubit operations. We propose an example for quantum secret sharing to discuss

it further. With a simple protocol proposed, we show that secret sharing tasks can be

performed without assistance of entanglement.

A sender, called Sophie, wants to share a confidential message with her friends Alice

and Bob. Instead of giving the whole message to Alice and Bob, Sophie splits the message

into two pieces and prepares to send each individual one to Alice and Bob respectively.

The hope of Sophie is that her confidential message can be determined faithfully only

when Alice and Bob combine their individual pieces. For protecting the security of the

message from selfish actions of any eavesdroppers or dishonest party, Sophie realizes that

she cannot send the individual messages to Alice and Bob directly without invoking any

secret-sharing protocols.

Quantum mechanics specifies that quantum states can exist in multiple eigenstates

simultaneously, i.e., superposition, and measurement of a variable will yield one of the

eigenvalues corresponding to the observable with a specific probability and makes a col-

lapse of the state vector. Furthermore, quantum states can not be cloned perfectly, and

through unitary operations, they can be transformed coherently. An utilization of these

quantum mechanical features of physical states and associated operations is sufficient to

realize our protocol. In the scenario of quantum secret sharing, Sophie wants Alice to

possess a state |sa〉 and Bob to possess another one |sb〉. Each party has no information

about the state of the other party, and Alice and Bob can share the state |sa〉 ⊗ |sb〉

only when they combine their own states |sa〉 and |sb〉. Let us assume that sa(b) ∈ {0, 1}

and {|0〉 , |1〉} are eigenstates of Pauli matrix σz . A quantum state can be changed from

|0〉a ⊗ |0〉b to |sa〉 ⊗ |sb〉 by applying unitary transformations to |0〉a ⊗ |0〉b :

|sa〉 ⊗ |sb〉 = UDUC |0〉a ⊗ |0〉b , (11.1)

184



CHAPTER 11. SUMMARY AND OUTLOOK

where UC and UD are unitary operators. It is worth noting two points involved in the

state evolution:

(1) If a specific UC is chosen by Sophie for the state transformation, the operator UD

should be consequently fixed for |sa〉 ⊗ |sb〉.

(2) We assume that Alice and Bob know that |sa〉 ⊗ |sb〉 evolves from |0〉a ⊗ |0〉b.

However, since they have no information about both |sa〉 and |sb〉 before secret sharing,

giving them only the operator UC or UD cannot help them to figure |sa〉 ⊗ |sb〉 out with

certainty unless one provides them both UC and UD.

With these two facts, a simple protocol is designed to satisfy the needs of Sophie.

Firstly, Sophie can randomly choose a UC from a set of operators and apply it to |0〉a ⊗

|0〉b, and then she send each individual qubit to Alice and Bob. It is clear that UC is

unknown to both Alice and Bob. When both of Alice and Bob have received the qubits,

according the operator UC chosen, Sophie announce which UD should be used by Alice

and Bob. In an ideal situation where any eavesdropper and cheat are excluded from

considerations, Alice and Bob can reconstruct the state |sa〉 and |sb〉 with certainty if

they follow Sophie’s instruction for UD. When considering eavesdropping, if any selfish

actions of eavesdroppers or dishonest party change Sophie’s preparation UC |0〉a ⊗ |0〉b
in transit, the subsequent operation UD shall not transfer the qubits to |sa〉 ⊗ |sb〉 and

then the message can not be reconstructed with certainty. This effect on the secret states

can be utilized to expose eavesdroppers. For instance, in our protocol |0〉a ⊗ |1〉b and

|1〉a⊗|0〉b represent the logical bits 0 and 1 respectively, whereas the states |0〉a⊗|0〉b and

|1〉a ⊗ |1〉b are used to detect eavesdroppers, which means that Sophie shall be aware of

eavesdroppers when she find that the result of combination of Alice and Bob is |0〉a ⊗|0〉b
or |1〉a ⊗ |1〉b and is not consistent with her designation of |sa〉 ⊗ |sb〉.

With the idea introduced above, the quantum secret-sharing protocol is specified by

six steps:

S1. Sophie randomly choose two local unitary operators Ca and Cb, where Ca, Cb ∈
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{X+, X−, Y+, Y−} and

X+ =
1√
2




1 1

1 −1



 , X− =
1√
2




−1 1

1 1



 ,

Y+ =
1√
2




1 i

i 1



 , Y− =
1√
2




i 1

1 i



 , (11.2)

and applies Ca and Cb to the states |0〉a and |0〉b respectively, i.e., she prepares a product

state |Ψ〉 = |Ψa〉 ⊗ |Ψb〉, where
∣∣Ψa(b)

〉
= Ca(b) |0〉a(b).

S2. Sophie sends the qubits |Ψa〉 and |Ψb〉 to Alice and Bob respectively.

S3. Through classical communication, Sophie confirms that both parties have received

the qubits.

S4. Sophie announce which kinds of operators, say Da and Db, should be used by

Alice and Bob to reconstruct a secret state |s〉 = |sa〉⊗|sb〉 . The set of operators (Ca, Cb)

chosen in S1 restricts the choices of local operators in this step. If Ca(b) ∈ {U+, U−}

where U = X or Y , Da(b), the operator applied by Alice (Bob), should also be in the set

of operator {U+, U−}. The type + or − for U+ and U− depends on the choice of Sophie.

When Sophie has made her decision, she broadcast the choices of Da and Db in public.

The designation of (sa, sb) depends on Sophie’s message for sharing. To share a logical

bit 0 or 1 with Alice and Bob, her designation is (sa = 0, sb = 1) or (sa = 1, sb = 0)

respectively. Furthermore, Sophie can design (sa = 0, sb = 0) or (sa = 0, sb = 1) to

examine whether Alice and Bob inform her of their results faithfully (refer to S6).

S5. First, Alice and Bob have to transform their qubits by Da and Db respectively.

When the transformations are performed, they measure their qubits in the respective

orthonormal bases {|0〉a , |1〉a} and {|0〉b , |1〉b} and eventually get the output states |s′a〉

and |s′b〉. In an ideal situation without eavesdropping, they have s′a = sa and s′b = sb with

certainty. Then, they combine their results of measurement and have s′as
′
b.

S6. Alice and Bob identify whether their combined message is even: s′as
′
b ∈ {00, 11}

or odd: s′as
′
b ∈ {01, 10}. If the message is even, both of them should inform Sophie of this
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result via classical communication. If s′as
′
b = 01(10), they share a bit 0 (1) with Sophie

and keep a secret.

With the above protocol, quantum secret sharing can be achieved without entangle-

ment. A detailed discussion of the security of the proposed protocol will be given elsewhere

[195]. In addition to quantum communication, it has been shown that sophisticated quan-

tum search can be performed without entanglement and the quantum interference alone

suffices to reduce the complexity of query requirement [196]. The experimental demon-

strations by optical implementation is reported in Ref. [197]. It would be interesting and

important to find other quantum mechanical procedures that require no entanglement

source or generate no multipartite correlations of quantum states at any time step.
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Tightness of Bell inequalities

Every tight Bell inequality fulfills the following conditions [115]:

Condition 1. All the generators of the convex polytope must belong either to the

half-space or to the hyperplane.

Condition 2. There must be 4d(d− 1) linear independent generators among the ones

that belong to the hyperplane.

On the other hand, non-tight Bell inequalities satisfy only the first condition. Then,

we will examine the proposed Bell inequality by these conditions for tightness. Since

we have proven that the proposed Bell inequality fulfills the first condition in the third

section. Then we proceed to consider the second condition for the Bell inequality. All the

generators of the convex polytope are written as

G =
∣∣∣v(1)

1 , v
(1)
2

〉
⊕

∣∣∣v(1)
1 , v

(2)
2

〉
⊕

∣∣∣v(2)
1 , v

(1)
2

〉
⊕

∣∣∣v(2)
1 , v

(2)
2

〉
, (A.1)

which can also be represented as the following form by the defined variables shown in Eq.

(2.57):

∣∣∣v(1)
1 , χ11 − v

(1)
1

〉
⊕

∣∣∣v(1)
1 ,−χ12 − v

(1)
1

〉

⊕
∣∣∣v(1)

1 − χ11 − χ21 − 1, χ11 − v
(1)
1

〉

⊕
∣∣∣v(1)

1 + χ12 + χ22,−χ12 − v
(1)
1

〉
, (A.2)
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where
∣∣∣ṽ(r)

1 , ṽ
(t)
2

〉
=

∣∣∣ṽ(r)
1 mod d

〉
⊗

∣∣∣ṽ(t)
2 mod d

〉
. The generators which satisfy C

(d)
Ψ1,LR = 2

are the ones with the variables belonging to the class (i) discussed after Eq. (2.59) in the

third section. Thus, the generators contained in the hyperplane are shown as:

|v,−v〉 ⊕ |v,−v〉 ⊕ |v − 1,−v〉 ⊕ |v − 1,−v〉 , (A.3)

|v,−v〉 ⊕ |v,−v〉 ⊕ |v,−v〉 ⊕ |v,−v〉 , (A.4)

|v,−v〉 ⊕ |v, 1 − v〉 ⊕ |v − 1,−v〉 ⊕ |v − 1,−v〉 , (A.5)

|v,−1 − v〉 ⊕ |v,−v〉 ⊕ |v,−1 − v〉 ⊕ |v,−v〉 , (A.6)

for v ∈ {0, 1, ..., d − 1}. The total number of linear independent generators is 4d which

is smaller than 4d(d − 1) involved in the condition of tightness. Then the proposed

Bell inequality is non-tight. Through a similar method shown above, one can prove the

inequality: C ′(d)
Ψ2,LR ≤ 2, is non-tight.
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Appendix B

Entanglement witnesses of statbilizer

states

In order to prove that Wφ is a witness for detecting truly multipartite entanglement, we

show a comparison between Wφ and Wp
φ : if a state ρ satisfies Tr(Wφρ) < 0, it also satisfies

Tr(Wp
φρ) < 0, i.e., Wφ − γφWp

φ ≥ 0 where γφ is some positive constant [72]. The related

parameters utilized to prove the witness operators have been summarized in the following

table.

Table B.1: The parameters involved in the proofs of entanglement witnesses and their
robustness to noise. Robustness of entanglement witnesses. The robustness to noise can
be determined by the noise tolerance: pnoise < δnoise, is such that ρ = p noise/2

N1 + (1 −
pnoise) |φ〉 〈φ|, where pnoise describes the noise fraction, is identified as a truly multipartite
entanglement.

Wφ δnoise γφ αp
φ

WLN
(4 − ( 3

2
√

2
)δ[⌈N

2
⌉−1,⌊N

2
⌋]( 4

2N/2 ))
−1 γ1γ2 1/2

WGHZN
(3 − 4

2n )−1 γ1γ2 1/2
WR4 1/3 γ1γ2 1/2
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Appendix C

Entanglement witnesses of entangled

qudits

To prove that Wφ is a witness, we have to show the following comparison between Wφ

and Wp
φ : if a state ρ satisfies Tr(Wφρ) < 0, it also satisfies Tr(Wp

φρ) < 0, i.e., Wφ −

γφWp
φ ≥ 0 where γφ is some positive constant [72]. The table shown below summarizes the

related parameters utilized to prove that the proposed operators are indeed entanglement

witnesses for detecting many-qudit entanglement

Table C.1: Summaries of αφ for Wφ, the parameters αp
φ and γφ, which are utilized to prove

Wφ, and δnoise involved in robustness of the entanglement witness operator proposed.
.

|φ〉 |s〉 |S〉 |Ψ4×4〉 |ΨN×3〉
αφ 0.5

〈
Ĉs

〉
0.806

〈
ĈS

〉
0.6

〈
ĈΨ

〉
0.6

〈
ĈΦN

〉

αp
φ 1/d 1/4 1/4 1/3

γφ −1.55 −1.92 −1.81
N−2∑
k=0

2k

δnoise 0.5 0.194 0.4 0.4
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[38] M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

[39] D. Boschi et al., Phys. Rev. Lett. 80, 1121 (1998).

[40] D. Bouwmeester et al., Nature 390, 575 (1997).

194



BIBLIOGRAPHY

[41] A. Furusawa et al., Science 282, 706 (1998).

[42] M. A. Nielsen et al., Nature 396, 52 (1998).

[43] Z. Zhao et al., Nature 430, 54 (2004).

[44] Q. Zhang et al., Nat. Phys. 2, 678 (2006).

[45] S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, Phys. Rev. Lett. 98,

020503 (2007).

[46] R. Ursin et al., Nat. Phys. 3, 481 (2007).

[47] B. C. Jacobs, T. B. Pittman, and J. D. Franson, Phys. Rev. A 66, 052307 (2002).

[48] H.J. Briegel, W. Dür1, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5392 (1998).

[49] L, M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).

[50] D. Deuthsch, Proc. R. Soc. London Ser. A 425, 73 (1989).

[51] A. Barenco et al., Phys. Rev. A 52, 3457 (1995).

[52] P. Walther et al., Nature 434, 169 (2005).

[53] R. Prevedel et al., Nature 445, 65 (2007).

[54] K. Chen et al., Phys. Rev. Lett. 99, 120503 (2007).

[55] D. Deutsch and R. Jozsa, Proc. R. Soc. London Ser. A 439, 553 (1992).

[56] P. W. Shor, in Proceedings of 35th Annual Symposium on Foundation of Computer

Science, (IEEE ,Los Alamitos, CA, 1994).

[57] L. K. Grover, in Proceedings of 28th Annual ACM Symposium on the Theory of

Computation, (ACM Press, New York, 1996)

[58] L. K. Grover, Phys. Rev. Lett. 79, 325(1997).

195



BIBLIOGRAPHY

[59] C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, SIAM J. Comput. 26,1510

(1997).

[60] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Fortsch. Phys.-Prog. Phys., 46, 493

(1998).

[61] C. Zalka, Phys. Rev. A, 60, 2746 (1999).

[62] M.S. Tame et al., Phys. Rev. Lett. 98, 140501 (2007).

[63] C. Y. Lu et al., Phys. Rev. Lett. 99, 250504 (2007); B. P. Lanyon et al., ibid 99,

250505 (2007).

[64] H. B.-Pasquinucci and A. Peres, Phys. Rev. Lett. 85, 3313 (2000).

[65] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902

(2002).

[66] D. Bruß and C. Macchiavello, Phys. Rev. Lett. 88, 127901 (2002).

[67] M. Fitzi, N. Gisin, and U. Maurer, Phys. Rev. Lett. 87, 217901 (2001).
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