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Abstract

The present thesis shows the result of theoretical and experimental study on the physics
of entanglement and quantum information processing. We propose a systematic approach
to analyze the correlation structures of multipartite entanglement and detect genuine
quantum correlations inherent in multipartite multi-level systems. In addition, we intro-
duce novel proposals for entanglement generation, entanglement purification, quantum
error corrections, and quantumisearch algorithm. These theoretical methods and results
are both significant for studying the fundamental feature of quantum mechanics and for
exploiting the field of quantum information:.

The experimental work has developed’and exploited a source of two-photon four
quantum-bit entanglement to realize one-way quantum computing. With the bright source
which produces a two-photon state entangled both in polarization and spatial modes, we
implemented a highly efficient quantum search algorithm. The experimental result demon-
strates that such hyperentangled states could serve as a building block of rapid and precise

optical quantum computation.

i



2 2
N Ej'

BRGHIE T B E MR ARG E LA RS a4 T8 235 0 F it
WXRR c NIRRT R A EB R TIAAT » T £ X5
ARETERHHPEAREALE  REZRBBHUBRHRGARENER
P 0 BRSNS LE -

R AT KB EPTR AT 635 F 6 Pan Jian-Wei #43% > 1A # i
ANEBRAZETFEMNGAR  RRPZEE EZO T RN L0 > LT
B MIE A BT R &E > THRTH THEH R AL LT
R REREE

RERHERZEEATARENE FEMARN T T2 - THIRR
BHERAREAL REAMEELSZ AL RER FHFEANIT LA ETH
RO EAREENBE  BRAEZZOHAMT R —ERARBEEZSB o

KRB EREXIZAEB YIRS > A2 /8 Loyt Bh 48 i
TEHEMAREE REAMTUREAT —BAERZYARE > bz b o
BEZERF LM FHEE A AGEIE o

RUNECR—FAARIE LSRN B HMEAEZERB RS E - RAHH
SRR ATFLARFTALNIET > FhEREANNH A EEZ NG
RPAAZ BB K IE ik 0 iR E T35S 4R ey 0 Mg AR
RO EABE EENEE  RRHREF R AR R F L EZTHNMERAR
A AR LM BB BB EIR R A B
FlAE ) SRR L EMIRA TSR EALH RS > ER AT HT
Rk BRRHAEEHARAEALMHAOERE PHERET TN AR &
M EZ IR RN T A $#RH Chen Kai W EHABEENT R
AR REFF S ERMAE > LR ERWTRIMEANY R - ERIE S
% BRQBAEVETIRSE ) RARH Zhang Qiang HEHABIEFHERE
S T R R R R T LE G ATRMANSSHE > EETH
2 FhEPELZERALA ) REH Alexander Goebel .5 3b LA B M 60 F ik
TRABREARAZEREZEARN TR REZRH S ALY BEE
T ETEHeE4¥  Chen Yu-Ao 14 > Chen Shuai 1# 4 » Alois Mair 184
Yuan Zhen-Sheng 1§+ > WBI L LR % B HE B LA o & Z R # Tobias
Brandes ## M BEMARA LA THEZER  REZRHHKRFE ZHITAE
EEHIZAFRIEH TR 5] R ER AL TR B L33 -

REBHARTEGBIRSEE L 5502 - B 2 4& -~ R4~ R
KR~ EEEE L - MBEB R LB LRE > 23 RERH AR
- ey eh s E e > HREE S AR E L A L

K% BREREBRBRE K~ R - R bl Rk o UREE
EXEE AALIOIFREZITRLEAR IO RTIA - LB L H
% 04 2 6T Y25 Bh i@ £ 00 BR &P

iii

’

-



Contents

2.4

2.5

1 Introduction 1
1.1 Entanglement, EPR paradox, and Bell’s theorem . . . . .. ... .. ... 1
1.2 Entanglement and quantum information processing . . . . ... ... ... 3
1.3 Entanglement detections, purifications, and quantum error corrections . . . 6
1.4 Experimental generations'of quantum eantanglement . . . . . . . . . . . .. 8
1.5 Outline of the Thesis &, . 00 0w 0 L o0 9

2 Entanglement and correlation conditions 12
2.1 Introduction . . . . . . . lmmerl L L 12
2.2 Correlation condition and entanglement detection . . . . . ... ... ... 14
2.3 Quantum correlations imbedded in entangled states . . . . . . . .. .. .. 21

2.3.1 Correlation structures of many-qubit GHZ states . . . . .. .. .. 21

2.3.2  Correlation conditions for bipartite arbitrary-dimensional Bell states 24

Correlators embedded in Bell inequalities . . . . . . . . ... ... ... .. 29
2.4.1 Bell inequalities for many qubits . . . . . . . .. ... ... ... .. 29
2.4.2 Bell inequalities for two qudits . . . . . . . . ... ... 31
Correlators imbedded in entanglement witness operators . . . . . . .. .. 39
2.5.1 Detections of genuine many-qubit GHZ states . . . . . ... .. .. 40
2.5.2 Inequalities based on the geometry of spin vectors . . . . . . .. .. 41
2.5.3 Detecting entangled qudits with two local measurement settings . . 46
2.5.4  Witnesses composed of the kernels of Bell inequalities for qudits . . 53

v



CONTENTS

2.6 Conclusion . . . . . . .

3 Correlation conditions in the stabilizer formalism
3.1 Imtroduction . . . . . . . ..
3.2 Stabilizer formalism . . . . . .. ...
3.3 Entanglement witnesses for stabilizer states . . . . . ... ... ... ...

3.4 Correlator-beased Bell inequalities for many-qubit graph states . . . . . . .

4 Entanglement detection via the condition of quantum correlation
4.1 Method . . . . . ..
4.2 Generalized GHZ states . . . . . . . . . . ...
4.3 Four-qubit singlet state . . . . . . . ... oo
4.4 Three-qubit W state . . &% 0 L

4.5 Conclusion . . . . . .= 0 s e s s,

5 Phase-dependent criterion for‘many-qudit entanglement
5.1 Motivation . . . . . . . Tl L
5.2 Basicidea . . . . . .
5.3 Many-qudit Bell inequalities . . . . . . . .. .. ... oL,
5.4 Entanglement witnesses for many-qudit entangled states . . . . . . .. ..

5.5 Conclusion and outlook . . . . . . . . ... .

6 Entanglement purification
6.1 Background and motivation . . . . .. ... ... L.
6.2 Basic idea of entanglement purification . . . . . . ... .00 0000
6.3 Entanglement purification with a two-map protocol . . . . . . . . . .. ..

6.4 Conclusion . . . . . . . .

7 Quantum error-correcting codes and entanglement purification

7.1 Introduction . . . . . . . . .

57
o7
58
63
64

66
66
67
72
75
7

78
78
79
81
84
88

89
89
90
95
101

103



CONTENTS

7.2 The 5-EPR-pair single-error-correcting code . . . . . . .. .. .. ... .. 105

7.3 Analytical technique for simplification of the encoder-decoder circuit for a

perfect five-qubit error correction . . . . .. ... ... L. 110
7.3.1 Theory . . . . . . 110
7.3.2 A systematic scenario example . . . . . ... ..o 114
7.4 The encoder-decoder circuit for a perfect five-qubit error correction . . . . 121
7.5 Conclusion . . . . . . . .. 125

8 Generation of many-qubit entanglement via conditional measurements

on cavity photons 127
8.1 Imtroduction . . . . . a3 Lsmmeene e .o 127
8.2 Bell states generation® s o v o LD L L L 129
8.3 Multi-qubit W state = . o . S 131
8.4 Quantum teleportation “@iw . . . L oL L 135
9 Quantum search algorithm 137
9.1 Quantum search problem . . . . . . .. ..o 137
9.2 Quantum searching with certainty . . . . . . . . ... ... 138
9.3 An improved phase error tolerance in quantum search algorithm . . . . . . 146

9.4 On a family of quantum search algorithms robust against phase imperfections152

9.5 Hamiltonian and measuring time for analog quantum search . . . . . . .. 158

10 Experimental generation of hyperentangled photons and experimental

realization of one-way quantum computing 168
10.1 Introduction . . . . . . . . .. 168
10.2 Photon source for polarization entanglement . . . . . . . .. .. ... ... 169
10.3 Experimental generation of two-photon four-qubit hyperentaled states . . . 171

vi



CONTENTS

10.4 Experimental demonstration of quantum search algorithm with an one-way
quantum computer . . . . . ..o Lo Lo e e e e e
10.4.1 One-way quantum computation . . . . . . ... .. ... .. ....
10.4.2 Experimental realization of one-way quantum search . . . . . . ..

10.5 Conclusion . . . . . . . . e,

11 Summary and Outlook
11.1 Summary . . . . . ..

11.2 Outlook . . . . . s,

A Tightness of Bell inequalities

B Entanglement witnesses of statbilizer states

C Entanglement witnesses-of entangled qudits

Vil

180
180
182

188

190

191



List of Figures

6.1

6.2

6.3

6.4

7.1

7.2

7.3

The standard purification LOCC operations including the local controlled-
NOT operation, single qubit measurement, and local unitary operation in
each party. Note that the classical communication is not shown in this figure. 91
The variations of the yield and the comparing purity (in the inserted dia-
gram) at ten times of the:recurrence method. . . . . . . . . . . ... .. .. 97
The variations of the yield and‘the comparing purity (in the inserted dia-
gram) at five times of‘the recurténce. method. . . . . .. . ... ... ... 98
The variations of the improved yields ¥, and Yy 5, and the comparing

ratio (Y ran/Ys.0.) (in the inserted diagram). . . .. ... ... ... ... 100

The 1-EPP with notations used in the context. Alice performs U; and
m and then sends her classical result (v4) to Bob. Bob performs U, and
m, and then combines his own result (vg) and Alice’s to control a final
operation Uéi) ................................... 106
The three quantum gate arrays performed in the stage of row operations:
(a) for My — Mj; (b) for Mj — MY; and (¢) for M{ — 1. . . .. ... .. 118
The gate array for the transformation M; — 1. The basic unitary op-
erations are performed in the order from left to right, while if they are
performed from right to left, then the inverse transformation My — 1 is

accomplished. . . . . . . ... 120

viil



LIST OF FIGURES

7.4

8.1

8.2

9.1

The perfect five-qubit error correction. (a) The initial tensor product state
is encoded to an entangled state |¢g) . (b) After suffering from the single-
qubit error, the state EY |¢g) is then decoded, resulting in the final tensor
product state(U?Ei) |9)) |[d'b'dd) . Here, P = HQ, PT = QH. (c) The en-
coder circuit from (a) is rewritten in terms of the gate primitives of an

ion-trap quantum computer. . . . . . ... Lo

(a) The quantum devices with three dot-like quantum wells embedded in a
microcavity which is constructed by a ZnTe medium and two Au mirrors.
This device can be prepared by the MBE, the e-beam lithography, and the
conventional semiconductor processing. (b) Initial state preparation for
W state generation. (c¢) Evolution of the QWs and cavity field for a spe-
cific time period. (d) Detection of cavity.field for determining the number
of the cavity photon. =Procedures (b)-(d) are repeated until finishing the
entanglement generation. ... L S L L L L L Lo
The variations of fidelity Fy;, and the purification yield Yy, (in the inserted
diagram) for cases n = 3(0J),6(V), and 9(A), and for two different kinds
of initial states: p = pl + (1 — np) |Lo) (Lo| (dash) and |¢)g) (solid), in
which the evolution time of each case, 73 = 7/(v/107), 76 = 7/(v/227), and
o =7/(4v2y) has beenset. . . . . ... ... ... ...

Variations of ¢(6) (solid) and f(6) (broken), for a+u = 0, Gy = 107*, and
B =10"" (1), 1072 (2), 0.5 (3) and 0.7 (4), respectively. The cross marks
denote the special case of Hgyer [166], while the entire cirles correspond to
the optimal choices of ¢, and 6,, for a +u =0, 3y = 107* and 3 = 0.7.
The solid straight line 1 corresponds the case ¢ = 6, while the solid curve

2 is only approximately close to the former. . . . . . ... . ... ... ..

1X



LIST OF FIGURES

9.2

9.3

9.4

9.5

9.6

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

10.9

Variations of ¢(€) (solid) and f(@) (broken), for « +u = 0.1, Gy = 0.1, and
B =10"* (1), 1072 (2), 0.5 (3) and 0.7 (4), respectively. The cross marks
denote the special case of Hgye [166]. The solid curves 1 and 2 are very
close, and both of them are only approximately close to the line ¢ = 6. . . 145
Variations of exact vaule of Pyay (n)(cross marks), 1662 sin®(4)/(624163%sin?(£))
(solid), and 4/3? /(6% +43?) (dash) for § = 7, § = 0.01 where 3 = sin~'(27"/2).150
Variations of exact vaule of Pyax (n)(cross marks), 164? sin®(%)/(62+163%sin*(%))
(solid), and 43?/(62+43?) (dash) for § = 7, § = 0.001 where 3 = sin~!(27/2).151
The variation of p(53) for cases of Bae-Kwon(solid), Farhi-Gutmann(solid),
and Fenner(broken) at the specific measuring times, ¢, px = tire¢ =
7/(2E,) and t; p = (1 — 20)/(2E,). . . . . ... 164
Variations of t1(¢ — u) (hroken) and E,(¢ — u) (solid), for 5 = 0.085 (1),

B =0.031(2), and B =0.0055 (B): " 5 n . 166
Polarization photon sdurceswith two-crystal geometry BBO crystals . . . . 170
Polarization photons emitted from the fitst BBO crystal . . . . . ... .. 171
Polarization photons emitted from the second BBO crystal . . . . . . . .. 172
Schematic of experimental setup. . . . . . . .. ... ... L. 173
Quantum circuit for realization of quantum search algorithm. . . . . . . . . 176
Box cluster state. . . . . . . ... L 177
Quantum circuit involved an action of oracle for quantum search. . . . . . 177

Quantum circuit composed of four local operations for the step 3 in one
way realization. . . . . . ... 178
A successful identification probability of (96.140.2)% is achieved determin-
istically with feed-forward, while it is (24.9 4 0.4)% without feed-forward.
This depicts that our source of cluster state is ideally suited for such a sort

of algorithm’s implementation. . . . . . . . . .. ... ... ... ..... 179



Chapter 1

Introduction

1.1 Entanglement, EPR paradox, and Bell’s theorem

Entanglement is one of fundamental pillars . the field of quantum information [1-4].
The remarkable properties of entanglement go essentially beyond the classical correlation
constrained by two plausible assumptions, namely locality and realism (local realism)
[5, 6]. The assumption of realism states that physical properties of objects have definite
values which exist independently of their observation, and the one of locality says that
in a causally disconnected manner a measurement of a system does not influence the
result of measurement of another system at spacelike separation. Local realism is the
essence of the view of Einstein, Podolsky, and Rosen (EPR) [7] on elements of reality.
EPR considered that any element of reality must be described by any complete physical
theory, and by local realism that was sufficient for the reality of a physical quantity, they
showed that quantum mechanics is incomplete. The criterion of EPR is applied to a
composite quantum system comprised of two distant particles with a wave function of the
form [8]: ¥ = §(xy — 21 — 0)0(p1 + p2), where 0 denotes a modified delta function, that
is normalizable and possesses an arbitrary high-narrow peak, and zq is a large distance
that is much larger than the range of interaction between particles 1 and 2. From the

description of the wave function ¥, one knows that the total momentum of the system is
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close to zero and the relative distance of the particles is close to xy. If one measures x,,
one then can predict with certainty the value of x; without having any actual influence
on particle 1. Then, according to the criterion of EPR, x; corresponds to an element
of physical reality. Furthermore, if one measures p,, one can predict with certainty the
value of p; without having any actual influence on particle 1. Therefore, according to the
criterion of EPR, p; corresponds to an element of physical reality. However, Heisenberg
uncertainty principle precludes one from knowing position and momentum simultaneously.
Thus EPR considered that quantum mechanics was an incomplete theory.

After EPR’s article, Bohr published a response [9] where he gave the principle of
complementarity and argued that the two particles in the situation considered by EPR
are always parts of one quantum system and the measurement performed on the first
system determines the possible predictions that can be made for the second particle. In
addition to Bohr’s reply, Schrédinger [L0} claimed that, since the composed system is
describe by a single wave function, thetwo remote particles can influence each other
nonlocally. In 1951 Bohm [l11].introduced spin-entangled systems and gave a simpler
example of the dilemma of EPR. The model of Bohm has become the most studied one
for the so-called EPR paradox.

The EPR paradox remained a philosophical discussion until Bell [5] in 1964 introduce
quantitative criteria for the existence of any local-realistic theory. Bell derived corre-
lation inequalities to show that there is an upper limit to the correlation predicted by
local-realistic theories whereas the upper bound can be violated by correlations imbedded
in entangled states. The inequalities advocated by Bell are experimental testable. Exper-
iments with entangled pairs have confirmed correlations predicted by quantum mechanics
and then show Einstein locality are incompatible with quantum correlations as the proof
given in Bell’s theorem [12].

By the inspiration of Bell’s theorem, the so-called Bell inequalities [5, 13-16] for
two-level systems have been proposed to experimentally invalidate the point of view of

EPR and to show that quantum mechanics is not locally realistic. Furthermore, while
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entanglement for quantum two-level systems (qubits) is still under intensive study, en-
tangled quantum multi-level systems (qudits) attract much attention for their nonlocal
characters [17-21] and advantages in quantum information processing [22-24]. It has been
shown that entangled qudit pair can maximally violate the Clauser-Horne-Shimony-Holt
(CHSH) inequality [13] and the corresponding violation continues to survive in the limit
of infinite dimension [25]. Using the method of linear programming to give necessary and
sufficient conditions [26], numerical calculations have demonstrated that contradiction
between local realism and quantum mechanics increases with the dimension. Latter, this
contradiction has been confirm analytically in [17, 27]. Collins et al. [17] have reformu-
lated Bell inequalities to construct a large family of multi-level inequalities in terms of
a novel constraint for local-realistic theories called Collins-Gisin-Linden-Massar-Popescu
(CGLMP) inequality. Recently, Sem; Lee, and Kim (SLK) [18] presented generic Bell
inequalities and their variants for arbitrary high-dimensional systems through the gener-

alized Greenberger, Horne and-Zeilinger (GHZ) nonlocality [28].

1.2 Entanglement and quantum information process-
ing

For the aspect of quantum information processing, the nonlocal features of quantum corre-
lations enable people to perform high-security and novel quantum communication [29, 30].
Moreover, it promotes a novel model of universal quantum computation [31-33]. Quantum
communication could be consider as the first application of quantum mechanics, that is
based on entanglement, no-cloning theorem, and quantum superposition. Quantum com-
munication involves transmissions of quantum states form one place to another. In 1984,
the first quantum-cryptography protocol has been proposed by Bennett and Brassard [34].
The essence of their scheme is the fact that unknown quantum states cannot be cloned.
In 1991, the first application of quantum non-locality is introduced by Ekert [29]. In the

protocol of Ekert, maximally entangled pairs are utilized for transmission of quantum
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key and the corresponding security is guaranteed by the distinct features of entanglement
cooperating with Bell’s theorem. These novel encryption schemes provide a fundamental
improvements compared to conventional ones. In 1993, quantum teleportation was ex-
posed by Bennett et al. [30] in a momentous article entitled ” Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky-Rosen channels” . With share
maximally entangled pairs together with two classical bits of communication as specified
in their protocol, unknown quantum states can be transferred from one place to another
without any intermediate location. Quantum teleportation is also central to a number of
quantum computation protocols [35, 36]. In addition to the above quantum protocols,
super dense coding [37] and quantum secret sharing [38] are based on resources of entan-
gled states for quantum information processing. The former illustrates that two bits of
information can be transmitted frem sender to receiver by sending only a single qubit.
Quantum secret sharing does not only give asprocedure required for the goal of secret
sharing but also provides a way to detect the presence of an eavesdropper. Many-qubit
entanglement are necessary for+performing-some.specific types of protocol of quantum
secret sharing.

Experimental demonstrations of single-qubit teleportation have been implemented
with different physical systems [39-43] . Recently, teleportation of two-qubit composed
systems has been experimentally realized with photonic qubits successfully [44]. As for
quantum secret sharing, in Re. [45] four-party secret sharing with four-photon singlet
states has been experimentally preformed. On the other hand, in order to achieve the aim
of long-distance entanglement-based communication, up to now experiments have demon-
strated over distances of up to 144 km using polarization-entangled photons via free-space
links through the atmosphere. In Re. [46], the violation of CHSH-type [13] Bell inequality
shows the distinct features of entanglement observed 144 km apart and then the Ekert
protocol for quantum key distribution has been demonstrated successfully. However, to
dissolve the problems about limitation communication distance further, quantum relays

[47] and quantum memories [48, 49], i.e., quantum repeaters, are needed.
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Entanglement is also a resource for universal quantum computing. One-way quan-
tum computation [31-33] is performed with a certain multipartite entangled source, a
cluster state [31], and local measurements on the constituents, and then it is also called
measurement-based quantum computation. Before the model of one-way quantum com-
putation is introduced, a quantum computer including the mathematical model and the
corresponding experimental realizations is designed for logic circuit [50] of universal quan-
tum gates [51] that require highly controlled interactions between selected qubits. It has
been proven that one-way quantum computer can simulate any quantum logic circuit
[32]. Three experiments have created four-photon cluster states and then demonstrated
quantum one-way computation by performing quantum search algorithm [52-54]. Quan-
tum mechanical algorithms involves utilization of quantum effects and have become very
popular in the field of computationsseience because they can speed up a computation over
classical algorithms. Famous examples include Deutsch-Josza algorithm [55], the factoriz-
ing algorithm discovered by Shor [56], and the quatitum search algorithm well-develpoed
by Grover [57, 58]. If there is anrunsorted database containing N items, and out of which
only one marked item satisfies a given condition, then using Grover’s algorithm one will
find the object in O(v/N) quantum mechanical steps instead of O(N) classical steps. It
has been shown that Grover’s original algorithm is optimal [59-61]. Through four-photon
cluster states, Deutsch-Josza quantum algorithm [55], that is a quantum method to iden-
tify whether a given function is constant or balanced, has also been experimentally realized
in the one-way approach [62]. Besides, the compiled version of Shor’s quantum factoring
algorithm has been demonstrated by using photonic qubits [63].

In addition to qubits for quantum information protocols discussed above, qudits are
very useful for several different kinds of quantum communication tasks. It has been shown
that quantum key distribution with higher alphabets is more secure than that based on
qubits [64-66]. The coin-flipping and the Byzantine agreement problems can be solved by
making use of qutrits (quantum three-level systems) [67]. Entangled qutrits can be used

to solve two-party communication complexity problem [68]. N-party N-level supersinglet
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states can help to solve the problems which have no solution using classical method:

N-strangers, secret sharing, and liar detection problems [69].

1.3 Entanglement detections, purifications, and quan

tum error corrections

Quantum communication protocols for tasks such as quantum key distributions [29], quan-
tum teleportation [30], and quantum super dense coding [37] rely on the transmission of
maximally entangled qubit pairs over quantum channels between a sender (Alice) and a
receiver (Bob). The quantum channel, however, is always noisy due to the interaction
with the environment and even possibly the measurement controlled by an eavesdropper.
Therefore, the pairs shared by Alice and Bob axe no longer of the desired pure ones to
begin with a quantum processifig. The resource in the noisy channel then can be viewed
as a mixed state, or equivalently, an ensemble of pure states with definite random proba-
bilities. The fidelity of the pure states in the ensemble are random so should be unknown
to Alice and Bob. Accordingly, first, Alice and Bob need to find efficient experimen-
tal methods to detect whether a experimental output is indeed entangled. Then, they
could take an action of entanglement purification to regain, at least asymptotically, the
desired maximally entangled pure state if the mixed state is distillable. This aim can be
achieved by Alice and Bob, using consecutive local operations and classical communica-
tions (LOCC). Above processes are also necessary for many-party protocols of quantum
communication, e.g., experimental achievement of open-destination teleportation [43]. In
addition to the importance of entanglement detections for quantum communication, de-
tecting genuine many-qubit correlations of multipartite entanglement is also crucial for
performing faithful measurement-based quantum computation [31-33].

Since Bell inequalities can be consider as a means to feature quantum correlations in
the corresponding violations, it is natural to think that Bell inequalities are useful for

entanglement detections. However, there are two difficulties in utilizing Bell inequalities
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for entanglement detections. One involves experimental difficulty and another is about
limits of their intrinsic utilities. First, for detecting N-qubit entangled states, the number
of local measurement settings (see the definition in the second chapter) required increases
with exponentially with N [14-16]. Second, Bell inequalities cannot always detect an
entangled state with some specific characters of quantum correlation, e.g., detections of
genuine multipartite entanglement [70]. To resolve these problems, entanglement wit-
nesses are introduced to detect entanglement [71]. Entanglement witness operators rely
on an use of the whole or partial knowledge of an entangled state to be created, which
are designed for distinguishing entangled states from separable ones. Furthermore, entan-
glement witnesses can be designed for detecting genuine multipartite entanglement [70],
and some witnesses for truly multipartite entanglement require fewer local measurement
settings [72, 73] when used in experiments:

The first entanglement purification protocol’ (the IBM protocol) was developed by
Bennett et al. [74, 75] in achieving a faithful quantum teleportation. Soon later, an
improved protocol entitled “QuantumePrivacy Amplification” (QPA, or the Oxford pro-
tocol) was addressed by Deutsch et al. {[76] in" consideration of the security of a quantum
cryptography over noisy channels. Both the IBM and Oxford protocols are capable of pu-
rifying a desired maximally entangled pure state from every distillable mixed state whose
components are not learned by Alice and Bob initially.

It is worth noting that Bennett et al. [74] have presented the equivalence between
the entanglement purification protocol based on one-way classical communication, that
is different from the IBM protocol with two-way classical communication, and the five-
qubit quantum error-correcting code [77, 78]. Quantum states can be encoded into qubits
through quantum error-correcting codes [79, 80]. With an introduction of redundancy,
the encoded data can tolerate little errors which are due to decoherence in some individ-
ual qubits. Then, quantum error-correcting codes play a crucial role in scalable quantum
computation and communication to preserve the gain in computational time and in secu-

rity.
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The experimental purification of entangled qubits of IBM protocol has been demon-
strated by using entangled-photon source [81]. In addition to the IBM and Oxford pro-
tocols, further extensions cover purifications of many-qubit W [82] and graph states [83]

and multi-level GHZ states [84].

1.4 Experimental generations of quantum entangle-
ment

For the aspect of generating entanglement in real physical systems, many different archi-
tectures and schemes have been proposed. An entanglement can be generated in atom-
[85-87] and ion-trap systems [88], superconducting charge [89, 90| and flux [91] qubit
systems. However, in order to perform quantum information processing, in addition to
entanglement generations there are sevetal criteria for measuring how good physical sys-
tems are. To realize quantume computation, the requirements of the physical systems
involve scalability, isolation, initialization, measurement, and controllably interactions for
universal quantum gates [92]. To achieve quantum communication, the physical systems
carrying information are expected to transmit between remote places [93, 94]. Accord-
ing to these reasons, optical quantum systems [36, 93-96] are important candidates for
quantum information processing and then become leading approaches over the past few
years. Many experimental achievements of tasks of quantum information processing are
attained with optical quantum systems.

Polarization-entangled photons emitted by the process of spontaneous parametric
down-conversion (SPDC) [97, 98] in a nonlinear crystal has been widely utilized to ana-
lyze quantum correlation and to experimentally demonstrate quantum computation and
quantum communication, e.g., the experimental realizations of the quantum protocol
mentioned above [39-41, 43-46, 52-54, 62, 63, 81|, entanglement of six photons in graph
states [99], and test of non-local realism [100]. These experiments are designed to process

information encoded in qubits.
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Recently, due to the advantages and distinct characteristics of qudits as mentioned
above, many researches have paid attention to generations of hyperentanglement. Or-
bital angular momentum entangled photons generated from the SPDC process have been
experimentally realized and provide a resource to study quantum correlation inherent
in multilevel systems [20]. Using this kind of entangled source, violation of three-level
Bell inequalities has been experimentally confirmed and quantum key distribution with
qutrits has also been demonstrated [23]. In addition to the polarization and orbital angu-
lar momentum of photons, utilizing accessible degrees of freedom including path modes
[54, 101, 102], enery time, time bin [103-105], and every degree of freedom [106], one
can produce hyperentanged photon sources. Since a hyperentangled state is in a larger
Hilbert space, this feature can be used to perform 100% efficient complete Bell-state anal-
ysis with only linear elements [107]sto purify entanglement [101], and to realize all versus
nothing test of quantum mechanics [102}. An experimental CGLMP test for energy-time
entangled qutrits has been reported in Re. [105].=The experimental scheme for deter-
ministic and efficient quantum communieation based on hyperentanglement has also been
proposed [108]. In particular, experimental realization of one-way quantum computing

with two-photon four-qubit hyperentangled states has been reported in Re. [54].

1.5 Outline of the Thesis

We have proposed several novel ideas and proposals for quantum information processing
and experimentally demonstrated one important element of quantum computation dur-
ing the time of my Ph. D. studies. Our research mainly concentrates on entanglement
detection, on entanglement generation, on entanglement purification, on quantum error
corrections, on quantum search algorithm, and on the experimental creation of four-qubit
hyperentangled states and realization of one-way quantum computation. We investigate
into several key subjects involved in almost the whole process of quantum information pro-

cessing. We start with a study into the properties of correlations inherent in multipartite
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entangled states and then provide a new insight into entanglement detections including
Bell inequalities, entanglement witness operators, and the connections between them. We
improve the purification protocols of entanglement and then design a new efficient one.
Furthermore, we give an analytic and systematic way to construct quantum circuits for
both entanglement purification and quantum error corrections. For entanglement genera-
tion, we propose a scheme for generating a many-qubit entangled state with translational
symmetry. We also analyze the quantum search algorithm in detail and experimentally
perform a quantum search by one-way realization successfully. A summary is given as

follows.

Chapter 2 Quantum correlations imbedded in many-qubit and two-qudit entangled states
are described by novel criteria of ,correlation for dependent systems. Correlation
structures of Bell inequalities andsentanglement witness operators are in terms of
correlation criteria proposeds Several-tobust and efficient Bell inequalities and en-

tanglement witnesses are-also introduced.

Chapter 3 We apply the correlation‘criteria‘to the stabilizer formalism and discuss the
entanglement of stabilizer states in a new point of view. Entanglement witnesses for
stabilizer-entangled states that required only two local measurement settings when

used in experiments are given.

Chapter 4 Entanglement witnesses for detecting several different kinds of many-qubit

entangled states that are useful for quantum information processing are proposed.

Chapter 5 General correlation criteria for many-qudit entanglement are introduced.
We reveal the essential elements of the GHZ paradoxes and the generic Bell inequal-
ities for many qudits are comprised of the criteria introduced. Several witnesses for

multipartite entangled qudits are proposed.

Chapter 6 Standard entanglement purification protocols based on hybrid maps are pro-

posed to purify any distillable state to a desired maximally entangled pure state.

10
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Chapter 7 An analytical method to simplify the encoder-decoder circuit for a perfect
five-qubit quantum error correcting code that is converted from its equivalent one-

way entanglement purification protocol is introduced.

Chapter 8 We study how dot-like single quantum well excitons, which are coupled to
single-mode cavity photon, evolve into maximally entangled state as a series of

conditional measurements are taken on the cavity field state.

Chapter 9 Detailed analyses of the constructions of quantum search algorithm are pre-
sented in this chapter. We focus on the accuracy and noise tolerance of the quantum

algorithm.

Chapter 10 We experimentally develop a two-photon cluster state source entangled both
in polarization and spatial medes. We alserutilize the created hyperentangled qubit
source to give a experimental demomnstration-of one-way quantum computation. A

quantum search task is performediin an one-way realization.

Chapter 11 We summarize the main.zesults in the thesis and give an outlook.

11



Chapter 2

Entanglement and correlation

conditions

2.1 Introduction

Bell inequalities are results about. local realism, and then violations of which by entan-
gled states can be considered as a meansto feature the distinct properties of quantum
correlations. In this situation, three main questions arise: (i) Is there a necessary condi-
tion of quantum correlation associated with some entangled state in the kernels of Bell
inequalities? While Bell inequalities are based on the local realistic theories, we wonder
whether their kernels can provide conditions of correlation for entangled states. (ii) What
is the connection between the correlation structures of Bell inequalities for qubits and the
ones for qudits? Can it be utilized to analyze the correlation properties of both entangled
qudits and many-qubit entanglement? (iii) What is the connection between the correla-
tion structures of Bell inequalities and entanglement witnesses? Can the kernels of Bell
inequalities be used to construct entanglement witnesses for qudits?

The goal of this chapter is threefold. First, we introduce necessary conditions of
correlation for many-qubit and two-qudit entanglement. Second, we reveal that the Bell

inequalities for many qubits introduced by Clauser-Horne-Shimony-Holt (CHSH) [13],

12
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Mermin [14], and Seevinck-Svetlichny [15], and the Collins-Gisin-Linden-Massar-Popescu
(CGLMP) [17] and Son-Lee-Kim (SLK) [18] inequalities for bipartite arbitrarily high-
dimensional systems are composed of the correlation conditions proposed. The general
correlation functions of the CHSH inequality proposed by Fu [109] are also shown to
consist of conditions of correlation. Bell inequalities based on correlation criteria for
qudits are introduced. In addition, we show that the Durkin-Simon inequalities [110] for
many-qubit entanglement can be rephrased in terms of correlation criteria. Third, we
use the criteria to construct the first entanglement witness operator for detecting a two-
qudit Bell state. In particular, this witness needs only two local measurement settings
(see below) when used in experiments and is very robust against noise, independent of
the number of levels. Further, two novel and robust witnesses for qudits are proposed.
The conditions of correlations for Bell inequalities are also utilized to construct witness
operators for qudits. In short, the condition presented is common among Bell inequalities
for qudits and many qubits. The construetions introduced show connections between Bell
inequalities and entanglement witnésses.

This chapter is organized as follows.'We start in Sec. 2.2 by revisiting the scenario of
a many-party Bell-type experiment for identifying the correlations between outcomes of
measurements. Then we present the basic idea of the condition of correlation and intro-
duce the dependence criterion for many-qubit and two-qudit correlations. Since many-
qubit GHZ and two-qudit Bell states are very useful for quantum information processing
and under intensive study in entanglement physics, in Sec. 2.3 we proposed different kinds
of correlation conditions to analyze their correlation characters. In Sec. 2.4, we show the
criteria of correlations introduced in Sec. 2.3 are the kernels of the Bell inequalities that
have been presented. We also introduce Bell inequalities based on the conditions of quan-
tum correlations for qudits. In Sec. 2.5 we give a novel entanglement witness operator for
detecting states close to a two-qudit Bell state. We also consider entanglement detections
of two given multilevel entangled states. In addition, we give witness operators for N-

qubit GHZ states and analyze the structure of the inequalities beased on the geometry of

13
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spin vectors by the conditions proposed. Then a conclusion follows. Finally, in Appendix
A we give a proof to show the tightness of the Bell inequalities for qudits proposed in Sec.
2.4.

2.2 Correlation condition and entanglement detec-
tion

In a N-party Bell-type experiment, measurements on each spatially-separated particle are
assumed to be performed with two distinct results (d distinct results for d-level Bell-type
experiments) from two different observables. In each run of the experiment, each party
chooses one observable for a simultaneous measurement on the particle in parallel. Let
us denote the local measurement getting by M = (V;, V5, ..., Vy), where V represents the
observable chosen by the ith party.! Aftér‘measurements, a set of results, (v1,ve, ..., Ux),
where v; € {0,1} (v; € {0,1,..5d — 1} for d-level Bell-type experiments), is acquired. If
sufficient runs of such measureménts have been. made under the chosen local measurement
setting, the correlation between experimental outcomes can be revealed through analytical
analyses of experimental records. In analogy, experiments for bipartite multilevel systems
work in the same way as mentioned above.

For quantum mechanical representation, we introduce an operator of the form
Vi=> (=), (2.1)

where 0; = |v;)y,y, (vi| and {|v;),, } is a complete set of orthonormal basis vectors for the
observable V;. Each N -product operator of the form Vi=4 ®z]il Vi can be represented

explicitly by

VE=Cf + G, (2.2)

14
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where
CS_ = (ﬁm - 1m) ® ﬁma CAT_ = (im - ﬁm) ® ima (23)
and
0,, = Z é@z for ivz =0,
V1yeeryUm =1 =1
1,, = Z é@l for ivl =1,
V1yeeryUm =1 . =1
0, = Z ®ﬁifor szz,
VUm—1,---,UN t=m+1 i=m+1
N N
L= > X difor d_ v=1 (2.5)
VUm—1,---,UN t=m+1 i=m+1

and = denotes equality modulus two. Expectation values of V* for some physical states,
denoted by <Vi), are typically called N-point correlation functions. Here we will give
a new insight into <Vi> via their elements C’Oi and C’li Determining the expectation
values of Ci¥ and C can provide information about correlation between the subsystems
composed of the first m qubits and the rest of the system.

Theorem 1. If measured outcomes show that expectation values of operators satisfy
(CF) > 0 and (CF) > 0, or, (CF) < 0 and (Cf) < 0, the outcomes of measurements
performed on the subsystem of the first m qubits are correlated with the ones performed

on the subsystem of the last N — m qubits [111].

Proof. 1f the subsystems are independent, we have the following relations

and
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Since (0,,) + (1,,,) = 1, (0) > 0, and (1) > 0 for any physical systems, it turns out
that (CH)(CF) < 0 and (C7)(CT) < 0. Thus a contradiction reveals the dependency of

one subsystem on another one. O

Then (V*) is not just a N-point correlation function but a general one composed of
<C’5—L’1> that gives n,. conditions of dependence for correlations between any two subsystems

with m qubits and N — m ones, where

LN/2] A
= ; TN B o (2.8)

f(N, k) = 279=IN2]l for even N, 0[] denotes Kronecker delta symbol, and f(N, k) = 1
for odd one. Take N = 3 for example. A correlation function (‘71\72\73> involves three
conditions, i.e., n. = 3, to describe’correlations between subsystems including the fol-
lowing classifications, {[1,2,3]} [1]2,8] [2|1,3], and [3|1,2], where [i|7, k] denotes the
correlation between the ith qubit and the'subsystem composed of the j th and kth ones.
For N qubits, we use the denotation {{1;2;~... N} or {[m,m]} to represent n. differ-
ent kinds of partitions for correlation, and we sometimes use the notations CA'Oi[mm} and

C:I:

1 om0 emphasizing the correlations between two specific subsystems denoted by m and

m respectively.
By the same idea of constructing CA'Oi’1 for qubits, we introduce the following sets of

operators for two-qudit correlations:
G = k= TE)] @ Uk), (2.9)

for k = 0,1,....d — 1 and ¢ = 1,...,74, where T and U are injective maps such that
T(k)— k', U(k) — K, and k' # k, and each set {T(k)} composed of T'(k)’s is numbered

by g. Take d = 3 for example, we have two sets of {T'(k)} and hence the sets of operators

16
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{C*,ﬁ‘”} could be

where U (l%) = k is used in this example. For d = 2, we get the sets of operators for qubits
introduced above: C\Y = Cif and C\V = &t for U(k) = k, or €V = ¢ and ¢V = Cf
for U(k) = k" and k" # k. Then it is clear that the number of sets {C’,ﬁq)} depends on the
number of {T'(k)}. For general d, we have 74 sets of {C’,iq)}, where vo = 1,93 =2, 74 =9,
v5 = 44, v¢ = 285, and

3= (-2 [+ (@~ s (210)

for d > 7. The correlation between outcomes of. measurements performed on two remote
qudits can be revealed by the help of the following theorem.
Theorem 2. If measured outeomes show each.expectation value <C’,§q)) in the gth set

{<é,§‘”>} is positive or each one is negative, the outcomes of measurements performed on

the first qudit are correlated with the ones performed on the second qudit [112].

Proof. 1f the subsystems are independent, one can recast ( . ng)> as

(C) = (k) = (T(RN)U(R)), (2.11)

Since 37, (k) = S2(T'(k)) = 1 and (U(k)) > 0, <C’,§q)> > 0 for all £’s is impossible for
independent subsystems. Then a contradiction indicates the dependency of the first qudit

on the second one. O

With the above two theorems, one can feature a many-qubit or two-qudit entangled
state in sets of correlation conditions proposed under different local measurement set-

tings. These conditions can be considered as necessary ones for the entangled state under

17
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study. We call the expectation values (C’,ﬁq)) and (é’gtl) correlators due to their utilities for
correlations. We give three concrete examples to illustrate how correlators work for ana-
lyzations of the correlation structures of given states and the basic idea of entanglement
detections based on correlators:

(a) A two-qubit pure entangled state in the following representation:

|p) = sin(€) |00) + cos(€) [11) (2.12)

for 0 < € < w/4, where |vjv9) = |v1) ® |v9) and |v;) is the eigenstate of Pauli-operator o,
with eigenvalue (—1)¥ | can be described by correlators that correspond to the operators
Coz = CF = (0—1)0 and C, = Cf = (1 — 0)1. By a direct calculation, one obtains
the correlators (Coz) = sin®(€) and (Chg)= cos?(€) for the state |¢), which reveals the
correlation properties when observed in thelocal measurement setting M, = (Z, Z) where

Z = o0,. The state |¢) can also-be shown i another representation, e.g.,
[¢) = a(]00) x + [11) ) + b(101) + [10)), (2.13)

where a = [cos(f) + sin(f)]/2, b = [cos(f) —sin(#)]/2, and |v;) y is an eigenstate of Pauli-
operator o, with an eigenvalue (—1)%. This representation provides the information of
probability distribution for {|v;v2)} when measured in the setting M, = (X, X) where
X = o,. From which, one can construct correlators, and the characters of correlation
can be described by (Cox) = (Cox) = sin(2€)/2 where Cox = Cf = (0 — 1)0 and
Cox = CF = (1 — )i,

(b) The probability distribution for |¢) when measured with the setting M, is the

same as the one of the following mixture of product states:
pe = sin®(€) |00) (00| + cos*(&) |11) (11]. (2.14)

Then we have the correlators (Coz), , = sin’*(€) and (Ch2), , = cos?(¢) and know outcomes

18
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of measurements for these particles are dependent. When the state py is represented in
the basis {|v1v2)  }, the probability for observing an element in {|v1v2) 5y (v1v2|} of py is
1/4, which implies that these two particles are independent. This fact can be shown by
the correlators (Cox) = (Cix) = 0.

From the above examples, one has »7,_ , E,lf:(](éifﬂ > D ex.z Ei:0<ékl>p¢- From
which, it is worth noting that determining a sum of correlators associated with two dif-
ferent local measurement settings can help us to distinguish the entangled state |¢) from
the separable state p,. This idea and approach can be applied to detections of truly
many-qubit entanglement and bipartite entangled qudits. For any many-qubit system

composed of two independent parts, outcomes of measurements should satisfy

= [((0,n) — (L) )06ORME(1 )| < 1 (2.15)

for any measurement settings €hosen. Whereas, for some specific entangled states, one
can feature properties of entanglement to-be-ereated in | Zk<élj:[mﬁ1}>| = 1 for several local
measurement settings chosen and ¢ensider which as necessary conditions for the entangled
state. Furthermore, we could give all conditions of correlations [m, m| associated with any
two subsystems of the many-qubit entangled state under study. Thus we can use these
conditions of genuine many-qubit entanglement to rule out biseparable correlations. For

two independent qudits observed under any measurement settings, a sum of correlators

should follow the criteria

(e

k

< D1k = (TR KU

< 1 (2.16)

Then entanglement conditions \ZMC’,@)\ = 1 for all local measurement settings con-
sidered can be very useful to detect entangled qudit pairs. Using the idea introduced
above can promote constructions of many-qubit and two-qudit entanglement witness op-

erators that require only two local measurement settings. Even though the conditions
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‘Zk<élj:[mﬁ1}>| = 1 and |Zk(é’£q))| = 1 cannot be satisfied by all entangled states con-
sidered, the above approach still can be applied to entanglement detections if more local
measurement settings are used. See the case discussed in the second subsection of Sec.
2.5.

(c) The state vector of a two-qubit singlet state is represented by

1

¥ =75

(101) — [10)). (2.17)

S5

Ve {1V =2V = X}and V, € {V}") = —(Z + X)/V2,V}?) = (Z — X)/V/2}, we
have four different local measurement settings M = (V;, V3) to give four sets of correlators.
The operators of correlators are as follows: C\? = Cif = (0 — 1)0,C™ = ¢ = (1 -
01 for (rt) € {(11),(21),(22)} and C?e= Cr = (0 — D1, = &7 = (1 - 0)0
where the superscripts (rt) medn an gbgervable ‘71(7) and another one ‘72@) are chosen

for measurements. The correlators can be easily calculated, and then we have (C’ért)> =

<C’Yt)) =1/ 2v/2. When collecting all-of theeorrelator operators proposed above, one gets

2
M

_ pOp L7 e g, (2.18)

Local-realistic theories predict that B < 2, which is called the CHSH inequality [13],
whereas the entangled state [¢) predicted by quantum mechanics provides a violation by
S (CUDY = 2/2. Tt is remarkable that the kernel of the CHSH inequality [13] is com-
posed of necessary conditions of the state [¢) in terms of the correlators (( Aén)>, <C’£N)>).

In what follows, we will use correlators to analyze the most studied many-qubit and
two-qudit entangled states: the N-qubit GHZ state [113] and the two-qudit Bell state.
The correlators proposed are necessary for states to be the entanglement under study and
play important roles in identifying quantum correlations including ruling out biseparable

correlations and ones predicted by local-realistic theories.
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2.3 Quantum correlations imbedded in entangled states

2.3.1 Correlation structures of many-qubit GHZ states

The three-qubit GHZ state is first discussed in the GHZ argument [113] which provides
important insights into tripartite entanglement. Entanglement embedded in a three-qubit
GHZ state has been shown very useful to investigate both noncontextual variables and
Bell-EPR theorems [114]. In addition to the three-qubit GHZ state, the generalized N-
qubit GHZ sates have attracted much attentions. Many Bell inequalities for many qubits
[14-16] have been shown to be violated by N-qubit GHZ states. Furthermore, six-atom
[85] and six-photon [99] GHZ states have been demonstrated experimentally.

In this subsection, we utilize three different types of correlators to specify the features

of N-qubit correlation of a N-qubit ' GHZ statéswhich is of the state vector:

1

) 7

(]0)2N 4+ 1)@V, (2.19)

The classification of correlator depends.on-which kind a local measurement setting is
chosen and how many settings are used in Bell-type experiments. These correlators will
be utilized to subsequent investigations on entanglement detections.

Specification 1. Firstly, we introduce alternative dichotomous observable for qubits by

Y+X YV -X

VkG{X,Y},VNG{ \/§ , \/§ },

(2.20)

for k =1,2,..., N — 1, where Ydenotes the Pauli-operator ,. Since each party has two
choices to perform measurements, there are 2%V possible sets of local measurement settings.

Then we give the following operators of correlators
Cor =1Cy, Cu =Y, (2.21)
for | = 1,2,...,2", where [ is used to number 2V different measurement settings and ~,
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are constants.

By a direct calculation, we have the correlators

R R -1 na(na2+1)/2
<Col>:<C1l>:%( ;\/5 ) (2.22)

where n, denotes the number of V; = Y and Vy = (Y — X)/v/2 chosen in a setting
numbered . If we assign 7; = (—1)"2("2*1/2 then each correlator has the same sign and
becomes (Cy) = (Cy)) = 1/2v/2.

Specification 2. The observable of each particle designed for measurement is given by

Vi e {X,Y}, (2.23)

for k = 1,2,...,N. Although thete are 2V possible settings of local measurements, we
focus only on settings in whichZthere arel'even number of Y ’s chosen for measurements.

For odd N and 2n Y’s where nis odd,we introduce correlator operators of the form

CA’OI = CA’O_a CA’ll = CA’l_a (224)

for i = 1,2,...,2871 — 1. For even N and 2n Y’s where n is even, the operators of

correlators are given by

Coa=Cy,Cy=Cf, (2.25)

for | =1,2,...,2Y~1. For a N-qubit GHZ state, the correlators proposed are all the same:

(2.26)

Specification 3. In this specification, we use only two local measurement settings to
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feature correlation structure in correlators:
M,={Z2 ..} M, ={X,X, ... X} (2.27)

When a N-qubit GHZ state is measured under the setting M, , correlations between some
subsystem composed of m qubits and the rest can be described by correlators correspond-

ing to the operators:
CA’OZ[m,ﬁl} = (OmZ - 1mZ)0ﬁ1Z7 CA’IZ[m,ﬁl} = (1mZ - OmZ)1ﬁ1Z7 (228)

where Omm)z = ®i6m(ﬁ1) 0; for all v; = 0, 1)z = ®iem(ﬁl) v; for all v; = 1, and m and
m denote the subsystems comprised of m and N —m qubits respectively. For instance, to

detect three-qubit GHZ state the correlator operators have the explicit representations:
Cozipg = (0; = 15)0,04, Gz i) = (d5=0;)1,k,

where the set of subscripts (ipq) is‘used. to.aumber qubits. For each set of correlator, we

have

R A 1
(Cozimm)) = (C1zimm)) = > (2.29)

For the sets of correlators constructed under the setting M,, their constructions are

similar to the ones of (C’oz[m‘ﬁﬂ, c, Zlm|m]) and represented by

~

Coxfmim] = Colmpmy Crxmim] = Cilmim)- (2.30)

where the operators CA’ar[m‘ﬁl]

and CA’fr[m‘ﬁl] are of the forms as Eq. (2.3). Take three-qubit

operators of correlators for example, they are of the forms:

COX[i,pq} = (Oz - ii)(opoq + ipiq)a ClX[i,pq} = (iz - Oi)(opiq + ipoq)-
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The correlators corresponding to the above operators can be easily calculated and given

by

A 1

(Coxtmum)) = (CiXfmm) = 3 (2.31)

2.3.2 Correlation conditions for bipartite arbitrary-dimensional

Bell states

We proceed to introduce correlators to study the correlation structure of a bipartite

arbitrary-dimensional Bell state:

1 d—1
W) = 7 ; V) @ |v) . (2.32)

The constructions of correlators are based: on the-basic idea shown in the introduction
and mainly in the second theorem. The generalized Bell state plays an important role
both in violations of Bell inequalities for two qudits [17, 18] and in quantum communi-
cation protocols [24]. Experiments have ‘demonstrated generalized Bell states for d = 3
successfully and even used for further applications [23].

Specification 1. The correlator operators presented in this specification can be formu-

lated by the following general form
G, 0y = (o7 - o) @ 8, (2.33)

where the superscripts, (rt), (r), and (¢), mean that the measurement f/l(r) numbered r

and the one ‘72@) numbered ¢ have been selected from two choices by each party. Four
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designations of (’UY), vim, vét)) associated four local measurement settings are given by

() = kv =1 — k0P = k),
(UF) =d—k— 17U1(2) = _kvvél) = k)?

(0 = ko™ =d — k= 1,08 = k), (2.34)

forh=1,2and k =0,1,...,d—1, where = denotes equality modulo d . The set of operators
{CA’,EM)} is a special case of the general one {C’,gq)} discussed in the second theorem, and
for each measurement setting {éli"”} involves one set of correlation condition rather than
~4 conditions for {C\?}.

To evaluate the correlators concretely, we choose specific sets of complete orthonormal

basis {|'U](-h)>vl(h)} for projectors {@](.h) = |vj(~h)>vg;L)v_<h) (vj(»h)|} and operators {f/j(h)}, where
J Yl J

d—
1 27w
‘v](-h)>v(h) = Zexp[l 5 (v; (k) 4 n PN oy | (2.35)
0

and n§h) are local parameters that manifest-ohservable Vj(h). For a set of local parameters

given by
Y =0, =1/4,n® =1/2,n% = —1/4, (2.36)

the joint probabilities for obtaining a set of measured outcome (v§ ,v2 ") for the state |¥)

is [17]
(0 @ oy = L (2.37)
! 2 2d3 sin®( 2 (v(t) + n(r))’
where v = v{” 4 00 and n) = p{"” + nY. Therefore, the correlators (C\"”) can be
calculated analytically, and then we arrive at
At 1 s 3m
(C7) = g lesc?() — esc®()). (2.38)
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Since <é’,§rt)) > 0 for all £’s with any finite value of d, we ensure that outcomes of mea-
surements performed on particles of a state | V) are dependent under four different local

measurement settings.

Specification 2. We can generalize the designations (vy), vi(r), vét)) introduced in the

above specification to more general cases. The correlator operators are given by
Er0 — (60— 5) @ o0 239)

We propose the following designation as the kernel of the second specification of correla-

tion:

W =k —a, v =k +a+ 1,07 =k),
W =k —a—1,0/® &2k + agull=F),

W = &+ a, oM =% s 1, e k), (2.40)

for h=1,2,k=0,1,...d— 1, andia =0, ..., |df2— 1].

The sets of projectors {f;](-h) =

U(.h)> o <v](-h)’} for the first qudit and the second
Vit'V;

J
one are defined by two specific sets of complete orthonormal basis { v](-h)> (h)}, where
V.
J

, 1 270, h
CONSES expli=—(vi" +ni")] v},
1322 2mv
h ; ‘ !
’Ué )>V2(h) = 8 v=0 exP[ZT(_Ué ) + né ))] ‘/U> ) (241)

and the set of local parameters {ng-h)} chosen is the same as the one used in the first

specification. We have the correlators

(1+4a)m 3+ 4da)m

(e = 2 fese? ST csc2[(T]}, (2.42)

) = 2@

which are positive for all k’s and a’s considered. For a given «, we have one necessary
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condition of the generalized Bell state. Thus one can feature the quantum correlations
embedded in the bipartite d-level Bell state in 4|d/2] sets of correlators and hence have
4|d/2| necessary conditions.

Specification 3. There is a specific relation between the projector v§ and 0 A/(T via
the variable « introduced in the second specification. Then it is natural to consider a

generalization about sets of correlators containing two variables. For this motivation, we

introduce correlators of the form

0&2 _ (@gr) _ ) ) ® vé )7 (2.43)
where
0 =9 — k" = p— ko = k), (2.44)

for k=0,1,...,d — 1, and n and yu are introduced variables. Let the projectors {@](-h)} are
the same as the one introduced in+the first specification, refer to Eq. (2.35) and definitions

before which. Then the probability for getting a set of result (v1 , (t)) i

1 sin [w(v(”) + ()]

A () A(T’)
. 2.45
From which we have the correlators:
(Cy = (7 ® 0) — (1 ® 0), (2.46)

for all £’s, and for each local measurement setting chosen, all of the correlators <C’,§22)

satisfy either of the conditions:

(Co0y >0, for k=0,1,....,d -1, (2.47)
(C0y <0, for k=0,1,....d—1, (2.48)
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i.e., the criteria of dependence.

Specification 4. In the previous three specifications, we use four local measurement
settings to investigate correlations. Whereas we will give correlators under two measure-
ment settings in this specification. For the first setting, our operators of correlators are

of the form:
CO =k -Tk) @k, (2.49)

for k=0,1,...,d—1and ¢ =1, ..., 4, where k = |k) (k|. The above formulation of {C’,ﬁq)}
follows the same definition as the one introduced in the second theorem, and note that
we have applied U (/%) = k to the present specification.

For the second measurement setting,swerchoose a specific complete set of orthonormal

basis vectors {|v;) } where

1 & 21w
(Vi) g, = 5 Z p(—i=—- ) [ ) (2.50)
v=0
to represent correlator operators, and then we give the following operators of correlators
Co = [k = T(k)] ® b, (2.51)

for k=0,1,...,d—1and g =1, ..., y4, where 0; = |vj)Fij (vj] and vy + k = 0. By a direct

calculation, one has the correlators
() (a)y _ 1
() ={Chr) = 5 (2.52)

for all £’s and ¢’s, which satisfies the condition of dependence.
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2.4 Correlators embedded in Bell inequalities

Entanglement manifests itself via correlations in different directions of measurements. In
the previous section, we feature quantum correlations of the genuine many-qubit GHZ
states and the two-qudit Bell state in the correlators under different local measurement
settings. These correlators can be considered as necessary conditions of the states under
study. In addition to the CHSH inequality discussed in Sec. 2.2, further, we will reveal

that four Bell inequalities that have been presented are composed of correlators.

2.4.1 Bell inequalities for many qubits
Seevinck-Svetlichny inequality

In the first specification for the N-qubit GHZstate, we give 2V sets of correlators corre-
sponding 2V local measurement settings to describe the correlation structure of a GHZ
state. It is worth noting that each set of eorrelator (C’oz, C’ll) provides information about
correlations between any two subsystems of the N-qubit state and give n. sets of necessary
conditions of a generalized GHZ state.” Each correlator has the same value whatever a
partition is chosen, i.e., <é'0l[m,m]> = (C’Ol[mmp = 2%/5, for I =1,...,2" and for all different
partitions involved in {[m,m]} , which describes the properties of genuine multipartite
entanglement. A N-qubit genuine multipartite entanglement cannot be created without
participation of all of the N particles. It is an interesting question whether one can use
these correlators associated characters of many-qubit correlation to rule out correlations
predicted by local-realistic theories.

Using a linear combination of the correlators

~

Cp1 = Z(é’oz> + (Cy) (2.53)

l

could be a means of the identification of a N-qubit GHZ state, which helps to approach

the question mentioned above. Recently, Seevinck and Svetlichny [15] introduce a new
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type of hidden variable theory by studying partial separability. The hypothesis of partial
separability says that each subsystem of a N-particle decaying ensemble forms extended
systems which are uncorrelated to each other [15]. Then, for a subsystem with m particles
which is uncorrelated with the one with N — m elements, the hypothesis of partial sep-
arability can be represented through a factorizable expression for joint probability given

by

P(’Ul,’l}g, ...,UN)

_ / P01, 03, s U NGOty Ormszs s v N (),

where p and ¢ are probabilities conditioned to the hidden variable A with probability
measure dp.

For systems constrained by théthypothesis-of partial separability, Seevinck and Svetlichny
[15] have proved that local realistietheories prediet Cs1 by Co11r < 2N=1 which is smaller
than 2V~1/2 that a truly N-qubit GHZ State can achieve. In addition, they also showed
that for any N-particle systems with:the partition [k'|k : 1, ..., N; k # k'], i.e. biseparable,
the sum of correlators gives the bound Cg; < 2¥~1. Thus from their results, we realize
that the many-particle correlations of a N-qubit GHZ state and C'g; cannot be mimicked
by biseparable states and cannot be reproduced by systems governed by the hypothesis

of partial separability.

Mermin inequality

A linear combination of correlator operators proposed in the second specification for a

N-qubit GHZ state, C’M => é’Ol + C’ll, can be rephrased in the following form:

Cip = & Q)X +iYi) + R (X5 — V) | (2.54)

where { X, Y;} denotes the set of observable {X,Y} for the k th particle. It is remark-

able that Cy, is an alternative form of the operator introduced by Mermin [14] for Bell
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inequality. For a N -qubit GHZ state, quantum correlations provide Cgy = (C’¢2) = N1,
Mermin showed that correlations predicted by quantum mechanics are stronger than the
ones predicted by local-realistic theories by the following inequalities [14]: Caprr < 2V/2,
for even N, and Cpgpr < 20V"D/2 for odd N.

A N-qubit GHZ state is the eigenstate of Cpo with the maximum eigenvalue 2V~
Then a N-qubit GHZ state gives a maximal violation of the Mermin inequality. In addition
to this fact, through the correlators proposed, we gain an insight into the structure of
Cao. In particular, by an analytical analysis of the elements of Cs, one can realize that
the correlation conditions that are necessary for states to be a N-qubit GHZ state are

embedded in Cgs. From which, we could know how property of quantum correlations

manifests itself via correlations in different measurement settings in a concrete way.

2.4.2 Bell inequalities for two qudits
Correlator-based Bell inequalities

We combine all of the correlator “operators introduced in the first specification for the

state |W),

oy =>4, (2.55)

rt.k

and use its expectation value C\(I,dl) = (CA’\(I,dl)) to be a single identification of the correlation
properties of entangled qudits. Then it is interesting to investigate what is the maximal

values of Cfl,dl) that can be provided by classical correlations under local-realistic theories.
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The expectation value C\(I,dl) for any physical systems can be represented as:

c® = P 4oV =0) = P 4ol =
+PWY + 0 =0) - P!V 40 =
+P(v§2) + v§2) =0)— P(», @ 4 v(z) :

+P(v§2) + vél) =—-1)— P(yy @ 4 4

where P(-) denotes a joint probability for getting a set of result (vg

(2.56)

) vl vy ) which satisfies a

condition shown in the bracket. In order to have a compact form of C’\(I,l for a convenient

discussion, we define the following variables:

X11:U§)+U +d11,
xi2 = —ot) — ol 4 dy,

X22=U§)+U +d22,

X1 = —U?) — Uél) — Tk dath

(2.57)

where d,; denotes a multiple of d and y,; € {—1,0} for r,t = 1,2. In particular, the sum

of the variables satisfies the constrain:

2
ZXT’ti_

rit=1

With the defined variables, C\m) is written as

2
C\(Ildl) = Z P(Xrt = 0) - P(Xrt = _1)

rit=1

(2.58)

(2.59)

Next, we proceed to consider the extreme values of C’\(I,dl) under the local-realistic theories.

The all possible sets of (x11, X12, X22, X21) Which fulfill the constraint of the sum of the

variables are as the following: (i) three of the variables are 0 and the rest is —1. (ii)

all of the variables are —1. The first class can be applied to arbitrary d, whereas the
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second one is only applicable for d = 3 . Thus, we have C\(I,diLR = 2 for the class (i) and
C'\(If’l)LR = —4 for (ii), which mean that for all the generators of the convex polytope for
C\(Ildl),LR the value of C\(I,diLR is equal or less than 2. Therefore, in the regime governed by
local-realistic theories, the value of C\(I/dl),LR is bounded by 2, i.e., C\(I/dl),LR <2.

For a generalized Bell state, the summation of all of the correlators can be calculated
analytically and we have

(C4) = soslesc?(5) = e (o)) (2.60)
which is an increasing function of d. For example, if d = 3, one has (CA’\(I,?’I)) ~ 2.87293, and
in the limit of large d, we obtain, limd_>oo<é\(1,d1)> = (16/37)? ~ 2.88202. From the above
results, we realize that <é’fl,df ) > C\(I/dl),LR' Therefore, the quantum correlations are stronger
than the ones predicted by the local-realisti¢ theories. With this fact, the derived kernel
C'\(I,dl) can be utilized to tell quantum correlations from classical ones.

From a geometric point of view, we haveexamined our Bell-type inequality by the
work of Masanes about tightness”of Bell inequalities [115]. The result shows that the
inequality is non-tight, i.e., it is not an optimal detector of non-local-realistic correlation.
The detailed proof and discussions are given in Appendix A.

We proceed to consider another Bell inequality which consists of only the sets of cor-
relators C’,iz) = <C’,§Z)) for a = 0 presented in the second specification for the generalized

Bell states. The kernel of our Bell inequality is of the form

d rt
CiIEZ) - chgo)

rt.k

= Pl =0l =0) = Py’ — ol = 1)
—I—P(véz) — v%l) =0) — P(véz) — v%l) =-1)
—I—P(véz) — vf) =0) — P(véz) — vf) =1)

+P — 0P =1) — P! — ol = 0). (2.61)
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Using the following substitutions,

X11 = U§l) - Uél) + dlla

X12 = —v%” + U§2) + d12,

Xo22 = ng) - Uéz) + d22,

Yo1 = =02 + o) — 1 4 dyy, (2.62)

C&Eg) is expressed by

2

O3 = P =0) = Py = —1), (2.63)
rit=1
with the constraint Zi,tzl Xrt = —LayThen, by the same method as the approach for

determining the extreme values ¢f C\(pdl),LRa one has C&EZ?LR < 2. Whereas, for a generalized
Bell state, the expectation values of €A% aré (CLNY = [csc?(X) — csc?(35)]/(24%) and are
greater than the local-realistic upper boundfor arbitrary d.

The above Bell inequality is non-fight. The proof for showing its tightness is similar to
the one for C\(I,diLR < 2, refer to Appendix A. In addition, although the values of maximal
quantum violation are slightly smaller than the CGLMP inequalities [17], the total number
of joint probabilities required by each of the presented correlation functions C’,igt) is only
2d, which is much smaller than that in Fu’s general correlation function [109], which is
about O(d?) (refer to the following discussions). Moreover, the factors for violations of
Bell inequalities are larger than the ones for SLK inequalities [18] for d > 2 (see below).
Another feature of the sum of all correlators is its robustness to noise. If a generalized Bell
state is suffered from white noise and turns into a mixed one, say p, with a noise fraction
Proise, the value of (C’&E?) for the state p becomes (C’&E?) , = (1 — pmisc)<é$§)>. If the
criterion, <C’$;l)) p > 2, 1€, Proise < 1 —2/ <é;j;”), is imposed on the system, one ensures
that the mixed state still exhibits quantum correlations in outcomes of measurements.

For instance, to maintain the quantum correlation for the limit of large d, the system
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must have ppise < 0.30604.

CGLMP inequality

In the second specification of the state |¥), we have proposed 4|d/2] sets of correlators to
describe the structure of correlation. We use a linear combination of all of these correlators
to detect quantum correlations. Since each correlator is a function of «, a combination of

correlator operators could be of the form:

Cir =Y fla)Cy, (2.64)

a,r,tk

where f(«) denotes a coefficient of combination which is function of a. If we let f(a) be

fla)y=1— -"— (2.65)

the summation of all of the cortelators O,S;f) becomes the kernel of the CGLMP inequality
[17]:

ld/2—1] 2 d-1

Ciy = Cyy + Z >N - %mgx (2.66)
rt=1 k=0

where C&Eg) is the kernel of correlator-based Bell inequality defined by Eq. (2.61). Es-
pecially, note that for d = 2,3 the CGLMP inequalities are the correlator-based Bell
inequalities. The local realistic constraint proposed by Collins et al. [17] specifies that
correlations have to satisfy the condition: C\(I,dz)’LR < 2. On the other hand, by Eq. (2.42),
quantum correlations of a generalized Bell state gives a violation of the CGLMP inequality
for arbitrary high-dimensional systems. Thus, through the related discussions in the sec-
ond specification for | V), we realize that the CGLMP inequality is composed of correlators

for correlations.
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It is worth representing Eq, (2.66) in the following form:

C‘(deg =) 4 02 _ o) 4 o) (2.67)
where
ld/2—1] d—1 %
C(Tt) = Z Zgrt(]- - ﬁ)cliz)a (268)
a=0 k=0

€11 = €99 = €12 = 1, and g9y = —1. The representation of C\(I,dg in Eq. (2.67) takes the
same simple form as the kernel of the CHSH inequality [13], and the linear combinations
of correlators, C"" are just the general correlation functions of the CHSH inequality
for arbitrarily high-dimensional systems, introduced by Fu [109]. Each C* provides
|d/2] sets of correlators for ideutifying.correlations and then consists of 2d|d/2] joint

probabilities.

SLK inequality

Following a way similar to the one for constructing the kernel of the CGLMP inequality, we
take a linear combination of the operators of correlators proposed in the third specification

for the generalized Bell state and give an operator of the form

~(d T ~(rt
o= > [, (2.69)
n,1,7,t,k
where £ (n, 1) is a coefficient of combination and depends on a local measurement chosen
and a set of variables (), u). Let us give a concrete example to show above formulation

by the following summation of correlators:

d—1 d—1
> 9" n) Y Poy =n— kv =k), (2.70)
n=0 k=0
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where

9" () = i sin[2(v +n + vy )m{cot[(v +n + vy )w/d] — cot[(v + n + vpe)7]}, (2.71)

for v+n+ vy #0, v, and v,; are constants, and

g ) = 5(d 1) (27)

for v 4+ n + v,y = 0. It is worth noting that [116]
9" () =0, (2.73)

for v + v, # 0, which indicates that the sumlof positive g™ (n)’s and negative ones is

zero and implies that one can always have:the following relation:

d—1 d—1
S g > P = n — kT = k)
n=0 k=0

=3 £ [P 20—kl = k) = PP = p— kol = B)] . (@274)
.1,k

If we choose the same measurement settings as the ones mentioned in the third speci-
fication and let nl 2 =0, nl 2 = 1/2 (refer to Eqgs. (2.35) and (2.45)), v = v11 = 0, voe = 1,
and vyy = v = 1/2, one obtains Zn L™ = (1 —d)/2 and g(0)") = (d —1)/2 for
h = 1,2. Thus, one arrives at the exact forms of f(")(n, u) for r = t = h that are given
by £ (0, u) = 1/2. Furthermore, with Eq. (2.71) we have g(n)*? = g()?" = 0, which
means that there are only two local measurement settings involved in the kernel. Thus

( A\(I,d3> = C\(I,d?z is of the following explicit form:

QL

2 -1 d-1
3 PO = kol = k)~ PO == kol = )] (275)

h=1 p=1 0

Q

d)
Cyy =

[\3|P—‘
Il

e
Il
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For a generalized Bell state, the values of correlators <é’,§22)) = P(vgh) = —k,véh) =

k) — P(UYL) = u—k, véh) = k) strictly satisfy the criteria (2.47) by the facts (CA’IEZZ)> =1/d

for all parameters considered.
In the operator representation, C\(I,dg can be represented in the form
d-1 N
RV + w2V ) + He, (2.76)

1 j=1

~(d
Cy3 =

S
I

where V() = Zi;é w'?™ and w = exp(i27/d). Furthermore, in the next section we will
show C'\(I,dgz can be used to construct entanglement witness operators to detect states close
to |W).

One also can utilize C’&,dg to detect a state under a local unitary transformation of one
of the qudits of |¥). For example, thé'state [ly) = (I®S,) |T), where S, is a phase shift

operator such that S, |v) = w”*4u), lis detected. by the following operator:

CY = (I1©5,)C8 (185N

1 . .
= 3 > W RV @)+ He.. (2.77)

Furthermore, if v = 1/4 is chosen and other parameters involved in ¢g"(n) are set as

the previous ones, the expectation value (C*fl,dgg = ngu can be represented in terms of

correlators:
d—1 d—1
d 1) . 1 1) . 1
O, = D2 g P =~k 0l = k) = PO = = ko = k)]
p=1 k=0
2 d-2 d-1
+> g (P =d =1k’ = k)

where in the last line the summation of local measurement setting does not include
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(r,t) = (1,1). Since g (1) # 0 for all r’s and t’s, four measurement settings are required
for realizing CA’\(I,dg)V. For generalized GHZ states, the sum of correlators is C\(I,dg) = C\(I,dgy =
d—1. Son et al. [18] have shown that local-realistic theories predict the value of ngu by
d 1 T s

g < 713 cot( ) — cot(z2)] — 1. (2.79)
for arbitrarily high-dimensional systems, which is called the SLK inequality. The SLK
inequality is shown to be violated by the generalized Bell state by a factor:
csl 3
lim — ¥ = @W ~ 1.1781, (2.80)
4700 Cyz, 1R
for large limit of d, which is smaller than the ones for the CGLMP [17] (~ 1.4849) and

the correlator-based (~ 1.4410) Bell inequalities.

2.5 Correlators imbedded: in' entanglement witness
operators

Using partial or complete knowledge of a state to be created is an usual way to construct
an entanglement witness operator for identifying an experimental output state. Choice of
correlation criteria used to feature entanglement affects the effort for realizing identifica-
tions of quantum correlations. Thereby, how to feature the state under study in criteria
that can describe the central part of correlation properties of entanglement and can be
realized efficiently is a crucial task. In what follows, we will show the correlation con-
ditions in terms of correlators are useful for performing entanglement detections. Since
operators of correlators are locally measurable, these witnesses can be performed with
Bell-type experiments and require only two local measurement settings. Furthermore, we

reveal known inequalities of entanglement are composed of correlators.
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2.5.1 Detections of genuine many-qubit GHZ states

Since correlators proposed in the third specification for the many-qubit GHZ state consists
of conditions of many-qubit correlations, we use them to detect genuine multipartite

entanglement. Since we know that

N

(Crxfmpm]) =1

]~

Z(ékz[m\m}> =

1
k=0

B
Il

0

from the previous results, the strategy of entanglement detection follows the basic idea
shown in the examples (a), (b), and related discussions in Sec. 2.2. The central part of

our witness is a linear combination of correlator operators:

A ~

Cq) = C4 Z (COZ[m‘ﬁl}_'_CA’lZ[mlﬁl])

{[mlsm]}
+ c Z (Coxfanim] = C1ximlial)
{[mlm)}
= [2VTHOPN 4 1%) LA e 2V = 1) XN, (2.81)

where ¢, and ¢, are constants, and 1'denotes an identity matrix with 2V dimensions.

From which, we give the following entanglement witness operator

Wq> = Oécp]_ — é@, (282)

where g is some constant. With a well choice of (¢, c;, ag), if Tr(Wsp) < 0 for some
experimental output state p, the state p is identified as a truly multipartite entanglement
close to a N-qubit GHZ state.

To determine whether an operator Wg is a witness, firstly we compare Wg with a

project-based witness operator of the form:

We = agl —|2) (2], (2.83)
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where af, = max)yep| (X|®) |, and B denotes the set of biseparable states. The overlap
af, can be determined through the general method proposed by Bourennane et al. [70],
and thereby ag = 1/2 is obtained. If measured outcomes show that Tr(V3;p) < 0, the
state p is identified as an entanglement close to |®). Thus we have to show if the state
p satisfies Tr(Wsp) < 0, it also satisfies Tr(W5p) < 0, i.e., We — voWg > 0 where 7o
is some positive constant [72]. Second, we concern the robustness of an operator which
satisfies the above condition. The robustness to noise can be determined by the noise
tolerance: Ppoise < 0 noise, 1S such that |®) suffered from white noise with a noise fraction
Pnoise 18 identified as a truly multipartite entanglement. When taking above two points

— 2N_1,O{c1> — ?)czcm/2 — Cy — Cm) and Yo = CzCy fOI'

into consideration, we have (¢, = 2, ¢,
achieving a noise tolerance dg = (3 — 4/2V)~1.

We find that the witnesses W proposed possess the same structures of the one given
by Ref. [72] based on the stabilizer formalism {117}, which means that one could investi-

gate the stabilizer entanglemefit witnesses [72] via concrete and analytical conditions of

correlations based on correlators.

2.5.2 Inequalities based on the geometry of spin vectors

Before investigating the structure of inequalities of entanglement proposed by Dukin and
Simon [110], we will discuss the multi-qubit entangled states involved in the violations of
the inequalities. First, let us investigate the correlation structure of a two-qubit entan-

glement imbedded in the eigenstate of dot product of two spins:

D@ — S; - S,

= Xi0Xo0+YIQY,+ 7, ® Zy, (2.84)

where S = { Xy, Yi, Zx}. In the following the symbol of tensor product will be omit-
ted from the equations for simplicity. We focus on the eigenstate with the extreme

(means mazimal or minimal ) eigenvalue of D@ i.e., the singlet state |Dy) = |1). Since
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D® |Dy) = — |Dy), where DY = X, X5, D = Y1Y3, and DY = 7,75, each D con-
tributes equally towards the minimal eigenvalue of D® which is —3. For the state | Ds)
with the operators DI” = Cif + Cf, we have the correlators (CF) = (Cf) = —1/2 that
satisfy the condition of dependence, and we are convinced that the qubits of the singlet
state are dependent on each other.

We give another example by considering the structure of the entangled pair with the
form:

1

|Q2> = \/5

(101) +14[10)), (2.85)

which is also the eigenvector with the maximal eigenvalue of the z -direction component

of the cross product between two spins:

Q2z = (Sz XSl)z

= VX — X Ya. (2.86)

It is clear that @2271 = Y, X5 and Q2z,2 ="2 XY, are comprised of correlator operators.
The necessary conditions of quantum correlation of |Qs) are specified by (CiF) = (Cf) =
1/2 for Q.1 = Cf +Cf and (Cy) = (C7) = 1/2 for Qa5 = Cy + Cy, which proves the
above statement.

For three-qubit cases, first, we consider an entanglement of the eigenstate with extreme

eigenvalues of the following operator composed of cross and dot product of spins:

D(g) = Sg . (82 X Sl)

= 12 X3 = Y125 X3+ X 125Y3 — 21 XoY3 + Y1 XoZ3 — X Y5 Z3. (2.87)

We denote every element of D® by lA)l(?’) forl =1,2,...,6 according to the order shown in

the above equation, e.g. 15%3) = 7Z1Y2 X3, 1553) = —Y17,X3 et al.. The state represented
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by the following form

1 . .
|D3) = ﬁqon) — e7"/3110) — /2 ]101)), (2.88)

is the eigenstate with the maximum eigenvalue 2v/3 of D®) and gives (ﬁl(g)) =1/V/3 for
all I’s.

We can utilize ﬁl(g) to describe the characters of entanglement of the state |Ds) by
the first theorem. Every operator belonging to {f)l(?’) :1=1,..,6} possesses three types
of detections of quantum correlation according to the partitions of the system {[1,2,3]}.
Let us take 15%3) for example, for the state |Ds), we have the following correlators with

positive values to show the dependence of qubits:

<éo+[1|2,3]> = (V3 -1)/6, <CA'1+[1|2,3]> = (V3+1)/6,
<CA’8E2|1,3]> = <CA’E2|1,3]> = 1/2\/5;

~

<C(—]E3|1,2]> = <Cfi3|1’2]> = 1/2\/§
Moreover, for f)é?’) = —Y1Z5X3, we have

<éo_[1|2,3]> = <éi1|2,3]> = 1/2\/§7

(Copng) = (V3= 1)/6,(Clyp ) = (V3+1)/6,

<CA'0_[3|1,2]> = <éi3|1,2]> = 1/2\/§a

which also show the character of dependent qubits. We have shown that the other four
sets of correlators also fulfill the condition of correlation. Hence we could consider the
criteria involved in the correlators of {151(3) : 1 =1,..,6} as the necessary conditions for
the state |D3) and specify the structure of quantum correlation under six settings of local
measurements. Therefore we reveal that the observable D®) = Zle 151(3) consists of the
conditions of multipartite entanglement for its eigenstate |Ds) through the conditions of

quantum correlations introduced.
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Let us proceed with another three-qubit entangled state of the form:
1
|@s) = 5(011) — ]101) — V2(110)), (2.89)

which is the eigenstate of the z-component of cross product of three spins:

Qi’)z = [Ss X (Sg x Sl)]za

= X1Z22X3— 21 X0 X3 — Z1Y5Y3 + Y1 245Y5, (2.90)

corresponding to the maximal eigenvalue 2v/2. The structure of the state |Q3) can be
specified by the correlators involved in the operators Q3271 = X1 4,X3, Q3272 = —71X,X3,
ngg, = —71Y5Y3, and Q3Z,4 = Y,Z,Y5;. For example, Q3271 contains the necessary condi-

tions of |D3) due to the fact that

~

(Copjz3) = <él[1|2,3]> =1/2v/2,

~

(Coppa) = (V2 — 1) /4Gy =(/24 1) /4,

~

(Coppa) = <él[3|1,2]> =1/2V2,

and for Q3272 = — 71X, X3 we can obtain more necessary ones by the following correlators:

~

(Copjeg) = (V2= 1)/4,(Chppjag) = (V2 +1)/4,

~

(Copzna) = <él[2|1,3]> = 1/2\/§,

~

(Coppa) = <él[3|1,2]> = 1/2\/5,

Therefore, ng is a linear combination of the operators which can be utilized to feature
the sate |@3).

The N-qubit entangled state |Dy) can be derived from the following observable:

A

D™ =Sy -Qu_1, (2.91)
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where

QN—l = SN—l X (S2 X Sl), (292)

and |Dy) is the eigenstate of D) with the extreme eigenvalue. From the cases which
have been considered for N = 2,...,11, we find that D®) consists of correlator opera-
tors for the state |Dy) and every pair of correlators satisfies the proposed condition of
correlation. Furthermore, through the numerical results we know that the correlation be-
tween subsystems of qubits for all classifications {[1, 2, ..., N]} can be shown through the
operators ﬁl(N) which constitutes the operator DW) = > ﬁl(N) and details the N-qubit
dependence in n, ways (see Eq. (2.8)). Therefore, we have a complete information of the
structures of D) and |Dy) includings thesxelation between them, and thereby one can
view the spin observable DW) aga meangrofiidentification of truly mulit-qubit quantum
correlations embedded in the state |Dy). ‘It is interesting to investigate the difference
between fully separable states and | Dj)rthrough D™ For fully separable states, Durkin
and Simon [110] have shown that [(D®))pgl-<1. Whereas |Dy) for N = 2, ..., 11 provide
maximal violation of the above dot-type inequalities.

In addition to do-type inequalities, Qy gives the cross-type inequalities by || Qx||rs < 1
for fully separable states. Maximum values of ||Qy|| and also the maximal violation of the
inequality could be found by determining the maximum eigenvalues of the components
of Qu e.g. Qn.. Our numerical results show that the genuine multi-qubit correlation of
the state |@Qy) for N = 2, ..., 11 can be described by the proposed condition of correlation
imbedded in the operators Q ~z, and the sum of all of the correlators is greater than one

and violates the upper bound of the cross-type inequality for fully separable states.
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2.5.3 Detecting entangled qudits with two local measurement
settings
Two-qudit Bell state

It is an important and interesting question whether one can construct an entanglement
witness operator to detect a truly many-qudit entanglement without using much experi-
mental effort. Instead of investigating this subject, we will show one can detect multi-level
entanglement for states in the proximity of a d-level Bell state with two local measurement
settings, which is preliminary to the previous question.

We use the correlators introduced in the fourth specification of |¥) to construct an

entanglement witness operator with a highly robustness, and with the fact that

the basic idea relies on the stratégy intreducedsin examples (a), (b), and related discussions

in Sec. 2.2. The kernel of our withess:is of the form:

Cys=C + Cp, (2.93)

where

»
I

>

S

= > qalk— % )@k, (2.94)

= > k- — ) @ k. (2.95)

k=0 k'=0,k' £k
Note that the representation of the projector k’s in C is different from the one in Cp.
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Then our witness operator is
Was = agal — Cuy, (2.96)

where ays = 74 and 1 denotes an identify operator with d? dimensions. If a state p shows
Tr Waap) < 0, p is identified as an entanglement close to the state |¥). Especially, the
witness Wy is very robust. The robustness of Wy, is determined by the noise tolerance:

Proise < 0 noise, 1S such that
pP= pnoise]-/d2 + (1 — pnoise) |\I/> <\If| (297)

is identified as an entanglement. The witness Wy, tolerates noise if ppise < 1/2, inde-
pendent of the number of levels.
Next, we will show that the operator Wy, is a witness. In order to achieve this aim,

we compare Wy, with a project-based witness operator of the form:
Wy = ay1 - [¥) (], (2.98)

where oy, = 1/d [70]. If measured outcomes show that Tr(W}p) < 0, the state p is
identified as an entanglement close to |¥). Then one has to show if p satisfies Tr(Wyyp) <
0, it also satisfies Tr(Wgp) < 0, ie., Was — yeuWy > 0 where 7y is some positive
constant. Let us consider the operator W = Wy, — dy,/(d — 1)W). To diagonalize W,

we propose a complete basis {|¥g,)}, where

d—1
1
|Wpo) = 7 Z exp(i2mkv’/d) |v') @ |v' +v) (2.99)
v'=0

for k,v = 0,1,...,d — 1, where the addition of v' and v is modulo d. Since both of Wy,

and Wy, are diagonal in this basis, W is also diagonal. The diagonal elements of W in
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this basis can be calculated analytically, and then we have

d

N V) = ——
< kv|W| kv> d—l%l’

(2.100)

for k> 1 and v > 1, and (W, | W |Wy,) = 0 otherwise. This proves our claim.

Entangled state comprised of subsystems with different dimensions

We proceed to give another witness to detect an entangled sate composed of a qutrit and

a ququat (quantum four-level system) of the state vector:

1

l€) 7

(10) ®10) + (1) ® 1) + |2) ® |3)). (2.101)

where the kets on the left-hand side of tensor products denote single qutrits and form an
orthonormal basis: {|0),|1) |2)}, and the kets on the right-hand side of tensor products
are ququants described by an -orthenormal basis {{0),|1),2),|3)}. When [e) is in the
above representation, one can easily derive two'set of correlator operators to describe

correlations from the knowledge of the state vector:

1,69 =2-1)3 (2.102)

Each correlator proposed above is <é,§q)> = 1/3. Similarly, by the knowledge of the state

vector given by

l€) = %(\OM R0+ Mp @ 1) +12)p @120 p), (2.103)
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where

0, = 2—%(3 0b + 110 — 1205 + 135,
1) = §1(=3+ V3) 1)+ 2V3[2) + 3+ V3) 3,
2)5 = (3 +V3) 0 + 2312, + (<34 VE)3),], (2.104)

and |v) . are defined by Eq. (2.50), we give the second type of correlator operators:

e =2-1)72. (2.105)

Each correlator is (C’,ﬁ?) = 1/3. Therefore, our witness consists of all of the correlator

operators introduced above is
W, = a.l - C., (2.106)

where a, = 2 and C, = quk CA'liq) + C’,g?
We proceed to prove the operator W, is a witness. To attain this aim, we have to

compare W, with the following projector-based witness
W =gl — |e) (e, (2.107)

where o? = 1/3 [70]. With the whole knowledge of |€), the witness WP can be used to
identify a state p as the one close to |e) if Tr(WPp) < 0. We find that W, —3WP > 0 and
from which we deduce that if Tr(W.p) < 0 then Tr(WWPp) < 0 also applies to p. Thus W,
is an entanglement witness operator. In addition, W, is very robust against noise. When
a pure state |e) is suffered from white noise, the mixed sate is identified as entanglement

if the noise fraction is less than 0.5.
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Four-qubit GHZ state shared by two parties

In the previous cases of entanglement detections for qubits, each party of a system has
access to perform measurements on only one qubit. It is natural to ask how to design
a strategy of detections of genuine multipartite entanglement if each party has access to
measure more than one qubits in a Bell-type experiment. For instance, how to construct
an entanglement witness operator for detecting a four-qubit GHZ state which is shared
by two parties? Since more information about nonlocal properties of the GHZ state can
be acquired via measurements, it is interesting to investigate the difference between the
new witness and the previous one.

We will present a witness which requires only two local measurements to attain the aim
mentioned above. First, let us assume two individual pairs of qubits of a four-qubit GHZ
state are shared by two parties respectively, and-then each party can perform two-qubit
measurements on the qubits. For the first mmeasurement setting, we use the correlator
operators introduced in the third specification forthe generalized GHZ state: éOZ[m,m]

and élZ[mel}’ i.e.,
Cozimm) = (00 — 11)00, Oy zjm.m = (11 — 00)11. (2.108)

A four-qubit GHZ state of the form

1

) 7

(100) ® |00) + |11) ® |11)),

gives <éoz[m,m]> = (é1z[m,m}> = 1/2. For the second measurement setting, we propose

the operators

CA’OF[m,ﬁﬂ = (Omr — 1mr)Omr, é’lF[m,m} = (Imr — Omp)lmp. (2.109)
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where

Oy = 5100} -+ [10) ) (<(00] +5 {10]),

1
Lamyr = 5(101)p +[11)£) (#{01] +£ (11]),
! 2mn
> expl—i 4”” (2k + K] |kk' (2.110)

k,k'=0

|UUI>F =

ngo = 0, ng1 = 1, nyp = 3, and ny; = 2. The correlators are <C’0F[m7ﬁl]> = (C’lp[m,m}) =1/2.

Thus our witness is

1
Wao =1 — Z Crzm,m] + CkFim,m)- (2.111)

k=0

Since a comparison between We, and the projector-based witness Wy satisfies Wao —
2W3 > 0, Wes is a witness for deteetinig-truly four-qubit entanglement for states close to
| D).

The witness Wes is very robust against-noise. Fhe noise tolerance of Was is dg2 = 1/2,
and then Ws, is more robust than the witness We, Eq. (2.82), with d¢ = 4/11 ~ 0.3636.
In other word, Wso based on two-qubit measurements for each party can detect more
states in the proximity of |®) and is finer than Ws.

Let us consider the above example in another way. We define each pair of qubits as a

single ququat, and then the four-qubit GHZ state can be represented by

1

) 7

(10) ©10) + 3) @ 13)),

where |2v +v") = |vv’) for v,v" = 0, 1. Therefore constructions of correlator operators for
a four-qubit GHZ state is equivalent to the ones for a two-ququat entangled sate of the
above form, and then one can observe that each vector in the orthonormal basis {|vv’) .}
chosen in the second measurement setting is derived from a vector in the basis {|2v + v') }

which is transferred by a single-ququat Fourier transformation. In this situation, further
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two questions arise. What are the constructions of correlator operators for a N-ququat
entangled state of the form: |®) = (|0)*" + [3)®")/v/2? Are the witnesses based on
correlators finer than We? The investigations on these questions are the future works.
We proceed to consider another situation where one party has three qubits and another
party has the rest of a four-qubit GHZ state. First, we follow the method just discussed
and substitute eight-level state vector |[4v + 2v" 4+ v”) for three-qubit one |[vv'v”) to express

|®) as

Loy (0)+ 1) ©m).

) = =

where the kets on the left-hand side of the tensor products in the above equation denote
single qubits and constitute an orthonormal hasis {|0), |1)}, whereas the right-hand ones
are three-qubit elements of theJjorthonormalibasis {|0),|1),...,|7)}. Then we give the

following correlator operators for ‘states shown in this representation:

Co=(0-

©>
—>
SN—
O>
Q

i, (2.112)

and the correlators are (Cy) = (C}) = 1/2. When |®) is of another form:

|®) = (|0> ® 1005 + 115 © 1) g),

%\

where

1 v
V) F, = ﬁ[lm + (=171,

7

‘0/>Fg = cho LA chl )y »

k=0
7
1 21k
kY, = — ex Z—k k 2.113
hn = 5 2o oplitg KK, 2.113)

cro and cpy are complex numbers, and g (1'/0") , = 0 , another set of operators can be
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easily derived from the knowledge of the state vector and are given by
Cop = (0—1)0,Crp = (1 —0)1". (2.114)
Then our witness is

1
Was =1 Ci+ Cip, (2.115)
k=0

and fulfills the condition Wes — 2Wy > 0 for detecting truly four-qubit entanglement.

The noise tolerance of Wes is de3 = 1/2 and is also superior to the one of We.

2.5.4 Witnesses composed of the kernels of Bell inequalities for
qudits

In Sec. 2.4, we have shown that the kernels of different kinds of Bell inequalities for qudits
are composed of correlators which associate with necessary conditions of entangled qudits.
This fact motivates us to construct entanglement witnesses comprised of the kernels to
detect states close to a generalized Bell state. The constructions proposed provide a
connection between entanglement witnesses and Bell inequalities.

We introduce the witness operators

~

Wy = aggl — Ci, (2.116)

for ¢ = 1,2,3, where oy, are some constants and é&,d; are combinations of correlators
proposed in the previous section. A state is identified as an entanglement in the proximity
of |¥) if the corresponding expectation value of Wy, is negative. Although C'\(I,dgz is not a
kernel of Bell inequalities, we shows its utility for entanglement detection and compare it
with the other ones. In addition, we also give a variant of Wyo denoted by Wio. f(a)=1-

The subscript f(a) = 1 of Wya.5(a)=1 indicates that the function f(a) in Eq. (2.64) is
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Table 2.1: Summaries of oy, for Wy, and the parameters vg,, which are utilized to prove
Wy, are witness operators.

d 3 4 5 6
w1 1.755 2.047 2216 2.328
we 1.755 1.954 2.093 2.199
Qpafy=1 1755 2.080 2.095 2.255
s 2.668 2.250 3.200 4.167
Yo 1.802 1.18 0.90 0.72
Yoz 1.802 143 124 1.11

o= 1802 218 1.83 211

o3 1 1 1 1

set one, whereas Wy, uses the one for the CGLMP inequalities. However, Wys. f(a)=1
are not Bell inequalities. For proofs of Wy,, we use the same method as the ones in the
previous proofs to show the operators proposed are witnesses. The parameters for proving
Wy, — Yoy > 0 and ay, are given in Table 2.1.

We compare the witnesses proposed according to their robustness against noise and
summarize the corresponding 1oise tolérances 0nqise-= 0w, in Table 2.2. The table also in-
cludes noise tolerance for projectorsbased witness Wy, and Wy,. For witnesses composed
of Bell kernels, the witness Wy, is more robust than Wgy,. For all witnesses considered,
Wy is the most robust, and its noise tolerance goes one for large dimension of the gen-
eralized Bell state. When focusing on the constrain (W}) < 0 for a state of the form as
Eq. (2.97), one can obtain dy, = d/(d+ 1) for maintaining entangled qudits, which proves
the above statement. The superiority of WY relies on the whole knowledge of |¥) used
in the witness. However, in order to realize Wy, in Bell-type experiments, W, should be
decomposed into sets of observable that can be measured locally. To our knowledge, a
general method for decomposition of WY is still laking. For the purpose of performing
detections with fewer settings, Wy4 possesses a highly tolerance to noise for detecting | V)

and is better than the other ones.
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Table 2.2: Summaries of the noise tolerance dy, and 4}, involved in robustness of the
entanglement witness operators Wy, and Wy respectively.

d 3 1 5 6
Sun 0.389 0.289 0231 0.192
S 0.380 0.326 0.281 0.247
Swafy=t 0.389 0.290 0.287 0.236
Sus 0.333 0.250 0.200 0.167
Su 0.500 0.500 0.500 0.500
5 0.750 0.800 0.833 0.857

2.6 Conclusion

In summary, we introduce criteria of quantum correlations for many-qubit and two-qudit
entanglement. We show five known Bell inequalities for many qubits [13-15] and two
qudits [17, 18] and the general correlation’ functions for qudits [109] are composed of the
correlation conditions proposed = By correlators, two sets of Bell inequalities for bipartite
multi-level systems which requires fewer analyses 6f measured outcomes are also intro-
duced. In addition, we reveal the inequalities based on the geometry of spin vector [110]
are comprised of correlators. Through the conditions, we give entanglement witness oper-
ators for detecting truly many-qubit GHZ states and the first robust witness for detecting
a two-qudit Bell state. A robust witness for detecting entangled qudits composed of two
particles with unequal dimensions is proposed. We also give a robust witness for detecting
a four-qubit GHZ state which is shared by two parties. These witnesses require only two
local measurement settings when used in experiments. The kernels of Bell inequalities
are also used as witness operators for qudits, which exhibits connections between Bell
inequalities and entanglement witnesses.

Our formulations reveal N-point correlation functions for qubits are the sum of sets
of correlators. These correlators provide information about correlations between any two
subsystems of N qubits, and the conditions involved could help to investigate the stabilizer
formalism [117] in a novel way, which will be discussed elsewhere. For entangled qudits,

especially, the strategy introduced provides a systematic way to analyze the correlation
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structure of measured outcomes in different physical systems [118] and then can be utilized

directly for present experiments [20-23].
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Chapter 3

Correlation conditions in the

stabilizer formalism

3.1 Introduction

The stabilizer formalism [3, 17} is an impertant’ method for studying the operations
in quantum mechanics and entanglement-physics including entanglement detections [72]
and Bell inequalities [119, 120]. In what follows, instead of deriving correlators from
the state vector of an entangled state, we determine the correlation conditions imbedded
in a set of operators which is called stabilizer [117]. We will show that the correlators
introduced give us a new insight into stabilizers of stabilizer states, and the correlator
embedded in the stabilizer can be considered as a special class of the general ones. For a
given stabilizer of some stabilizer state, we can consider the stabilizer as a specification
of multipartite correlations between qubits, and furthermore via the proposed conditions
of correlations we can realize that the qubits are dependent on each other under different
measurement settings. Most importantly, correlations shown in different directions are the
manifestation of quantum entanglement. Thus one can describe the necessary characters
of quantum correlations concretely by the correlators in the stabilizers for the stabilizer

states.
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3.2 Stabilizer formalism

When using the stabilizer formalism to specify a quantum state |¢), the state is described
by a set of operators that have the eigenstate |¢) with the eigenvalue 1. This set of
operators is called the stabilizer which stabilize |¢). Then |¢) is called the stabilizer state.
For example, a N-qubit cluster state |Ly) [31] is stabilized by the group of stabilizer given
by

Gry = (S1.0n, 52 Ly s s SNLx ) » (3.1)
where
Sioy = X122, SN0y = ZN-18N, Sk Ly Z0Zk-1 XKLkt (3.2)

for k=2,3,..., N — 1, are the generators of the group.
Theorem 3. For some stabiliger.state |@), every operator g, € G, with the general

form, g, = £+ Q- ‘A/k, where Vj, € {Z, XX}, can be specified by the correlator operators:
9o = Cog + Cy, (3.3)
with
<60¢,> > 0 and <61¢,> >0, (3.4)

for |¢), which implies that some subsystem of n qubits for n < m is dependent on the one

composed of (m —n) qubits [121].

Proof. The Pauli operator Vi can be expressed explicitly by Vi = Zikzo(—l)”k@kk/ for
k" € {z,y, 2} which denote the type of Pauli operator where Oy = |vg) .. (vi| and k

is used to number the qubits. Then, we have @ _ , +1 f/k = f)(n_n/) - i(n_n/), where
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~

0(n—n) (i(n_n/)) is the sum of all (n — n')-qubit operators, ®j_,, 0k, With even (odd)

S 41 vk With the substitution given above, g4 = R, f/k can be expressed by

9 = ®‘7k ® Vi
k=1 k=n+1

A

and for g, = — @7, Vi we have

~

9o = (ﬁn — j_n)l(m_n) + (j_n — Gn)ﬁ(m_n). (36)

For g, = @, Vi, since

1 1
< S (Cap >> ) < 5 > i
v,v/=0

v,v/=0

for |¢), it turns out that <inf)(m_n) U5 ﬁni(m_n))> = 0 and <f)nf)(m_n) + ini(m_n))> =1
for all n < m. If |¢) is not a productistate;we have Tr(|p) (¢| Vv, V(m—n)) > 0 for v =10,1

and deduce that the correlators for the operator
CA’O(i’ = (6” - in)ﬁ(m—n)7 él,qb = (in - On)i(m—n) (37)

are all positive for |¢). For g5 = —Q);-, Vi, by the same approach proposed above, we

have positive values of correlators corresponding to the operators
Coo = (0n, — 1)1 (mn), Crp = (1 — 0,)00n_1). (3.8)

Hence, we know that the subsystem of n qubits is dependent on the one composed of

(m — n) qubits by the first theorem given in Sec. 2.2. O

Given a m-qubit operator belonging to some stabilizer with the form like the one in
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the third theorem, it specifies the dependence characters between any two subsystems

with k qubits and (m — k) ones. Each operator g, gives ng sets of correlators where

m/2] |
=3 fom D) o =0 (3.9)

f(m, k) = 273%Im/2] for even m and f(m, k) = 1 for odd one. The number n4 has the
same form as the one of Eq. (2.8) for n.. Therefore, we can express g, as:

1 Lm/2] amp

9o = — Z Z éOd),ki + éld),ki (3.10)

where ay,, = f(m, k)m!/[k!(m —Ek)!] and (CA’OWM-, CA’1¢,;“-) denote the ith pair which belongs
to the sets of correlator operators_for specifying the correlation of dependence between
any two subsystems with & qubits andi(m — k) omnes respectively.

Through the third theoremywe could view the group of stabilizer as the set which con-
tains all correlators for specifying: the dependence-between qubits of the N-qubit system
under different measurement directions.In what follows, we will discuss the correlators
derived from the stabilizer under a given measurement setting.

(a) Cluster state. First, lest us consider a concrete example involved the following
generators of the six-qubit cluster state: Sy, = X122, S35, = Z2X324, and S5 1, =
Z4X5Z¢. Si1, shows that the first qubit is dependent of the second one. Ss 1, identifies
the correlations: [2]3,4], [3]2,4], and [4|2,3] , and S5 1, identifies the ones: [4]5, 6], [5]4, 6],
and [6]4,5] . We know that the six-qubit system possesses the multipartite correlation
by these information featured in correlators. However, when measuring qubits under
the setting where the odd (even)-number qubits are measured along x (z) direction, the
correlation conditions given by the generators Sy 1, S3 1, and Ss 1, are incomplete. From
an observation, we know that the measured directions involved in the products of the
generators are the same as the ones of the generators, and we could acquire more criteria

of correlations from these products of generators. For instance, S1 1,53, = X1X352Z, let
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us know the condition for {[1,3,4]}, S1,1,5 .1, = X1222,X5Z¢ for {[1,2,4,5,6]}, and
S3.0655.1s = Z2X3X57Z¢ for {[2,3,5,6]}. Hence a complete condition of correlations can
be provided from the subgroup of the stabilizer generated by Si 1, Ssrs , and Ssr,:

Gre1 = (S1.L¢» 5316 S5.14) if disregarding the identify operator, i.e.,

éLg,l = {X1X3Z47 XIZ2Z4X5Z67 Z2X3X5Z67 X1X3X5Z67 X1Z27 Z2X3Z47 Z4X5Z6}’ (311)

Similarly, under another measurement setting where the odd (even)-number qubits are

measured along z (x) direction, the set of operators

Gre2 = {Z21X2 7375 X, ZsXaXe, 1 X2 X4 X6, Z1 X2 X425, Z5 X, Z1 X273, Z3XaZs}, (3.12)

generated by Sy 1, = Z1 X223, Syig = Z3X4Z5, S6.1, = Z5Xe, also gives an identification
of multipartite correlation of | Lg). Furthermore, for the NV -qubit cluster state, both the
subgroups G 1 = (S, : forall oddk)and G o = (Si 1, : for all even k) give com-
plete descriptions of N-qubit corvelation of |¢g) by G, 1 and G, 2, under two different
measurement settings.

(b) Greenberger-Horne-Zeilinger (GHZ) state [113]. An N-qubit GHZ state is specified

by the stabilizer

Geuzy = (S1,6Hzy s Skanzy @ for k=2,...,N), (3.13)
where
N
S1,GHzZy = ®Xk7 Sk.euzy = Zk-12k; (3.14)
k=1

for k =2,...,N. Let us discuss S1 guz, first. By Theorem 3 and the related discussions,
we know that there are ngpuyz, sets of correlators to describe the correlations between

subsystems with {[1, 2, ..., N|}, where nguz, is defined by Eq. (3.10). The feature of truly
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multipartite correlation is shown via these correlators under the z-direction measurements.
On the other hand, the operators gguz, produced by generators Sy guz, for k > 2
specify two kinds of criterion of correlation including the dependence between each qubit,
[i, 7], and the correlations between subsystems with {[1,2,...,m]} where m is even. To
investigate the correlation between the kith and koth qubits for ky > ki, we can utilize
the product of the generators, Hif;i Sk,cHzy, to have the operator Z, Zj, and know
that these qubits are dependent. For the second type of criterion, it is given by ®keTe Zy,
where T, denotes the set which contains even number of qubits. For example, we have the
same correlators as Sy guz, by H]k\l ? Sok.GHZy = ®fj:1 Z,, where N is even. Thus, under
two local measurement settings, a complete knowledge of correlation between qubits is
included in éGHZ v = {S1.cuz, } and the set of operators G GHzy 2 that is derived from the
subgroup of stabilizer, Ggnzy 2 =.(Skcrzy * for k= 2,..., N), and in which the identity
operator is disregarded.

(c) Graph state. A N-qubit graph state [122], |[Ry), is specified by a graph described
in terms of N vertices and some edges conmecting them and is defined explicitly by the

stabilizing operators:

Sk.ry | BN) = |RN), (3.15)
where
Sk,ry = Xk ® Z; (3.16)
1EN

and N, denotes the set of vertices ¢ for which vertices k and ¢ are adjacent. Through
Theorem 3, we realize that the vertex k is dependent on the ones in the neighborhood Nj.
Furthermore, we can identify the correlation between two vertices that are not adjacent

via the correlators. For instance, a four-qubit box-cluster state is specified by the following
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stabilizing operators:
St,ry = X12924, S0 Ry = X22123, S3.ry, = X3ZoZa, Sapy = XaZ1Z3. (3.17)

Although the first qubit and the third one are not adjacent, we can identify that they
are dependent via 51 g, S3 g, = X1 X3. Similarly, the second qubit and the fourth one are

correlated by Ss r,S4 r, = X2X4. Therefore, the sets
éR4,1 = {XIZ2Z47 X3Z2Z47 X1X3}7 éR4,2 = {XQZ123, X4leg, X2X4}, (318)

can describe the correlation inherent in the state |Ry) under two different measurement

settings.

3.3 Entanglement witnesses for stabilizer states

When designing a witness operator to detect some multi-qubit entangled state without
using the whole knowledge of which, it is crucial to feature the key characters of multi-
party correlation imbedded in the entanglement. The proposed approach for correlators
attains this aim. The sets of correlators can be considered as the necessary conditions
of quantum correlations of entanglement imbedded in states to be generated. Thus, we
can take a linear combination of the derived correlator operators that have been the

identification of |¢) to give a multi-qbut witness operator:
W¢ = Oé¢]. — é(z,, (319)
where

é¢ = Z Ck(éo¢7k + C’lqﬂg), (3.20)
k
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Table 3.1: Kernels of entanglement witnesses. For ¢ : Ly and R4 the sum of correlators
Cl(g denotes the k" stablhzmg operators belonging to G¢> 1(2) With (71 — 1) elements,

and 7y is given by 7y;(2) = 2"4*® where ng(9) is the number of generators which create
é<¢>71(2)

W Co g

Wiy V2 Zk 1 Clk Tl o 31/2—m -1

Waenzy 72 L+ P CZk 3M72/2 =1 — 72

Wa, X0 Cu+nds) 3ny/2—n — 7

ay, and ¢’s are constants. If Tr(Wyp) < 0, the state p is identified as a genuine multipar-
tite entanglement. Therefore, making a utilization of the correlators for the multipartite
entangled states proposed above, we construct the corresponding entanglement witnesses
and detail the kernels in Table 3.1. Note that the witnesses for N-qubit GHZ states
are of the same form as the one of the witnesses given in Sec. 2.5.1. The proofs of the
entanglement witnesses are shown in Appendix B.

We reminder that each stabilizing operator is composed of correlator operators with
the structure as Eq. (3.7) or Edq. (3.8)-and-hence the witnesses for stabilizer states fit the
general definition shown in Eq. (3.19).7When'comparing Wy, and Weanz, with the ones
of Ref. [72], they possess the same structures, which means that one can cast new light
on the stabilizer entanglement witnesses [72] via the concrete and analytical conditions of

correlations based on correlators.

3.4 Correlator-beased Bell inequalities for many-qubit
graph states

Combinations of partial or all operators in the stabilizer are central to entanglement
detections. Very recently, Giihne et al. [119] derived a family of Bell inequalities for graph
states. Since their method is general for different interesting graphs, the kernels of the
proposed Bell inequalities are composed of 2 —1 operators of the stabilizer (excluding the

identity operator), and they show that each graph state there is an inequality maximally
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violated only by that state. Their results imply that combinations of all of the correlator
operators could help to tell the nonlocal properties of the graph states from the classical
correlations. In addition, since all operators that involves conditions for dependence in
the stabilizer have been used, each particle requires three measurement settings. It is
possible to utilize partial necessary conditions of correlation imbedded in graph states
to construct Bell inequalities. For example, the subgroup of stabilizer of start and cycle
subgraphs involved two local measurement settings for each particle can be utilized for

Bell inequalities [120].
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Chapter 4

Entanglement detection via the

condition of quantum correlation

4.1 Method

In addition to detections of stabilizer states, the correlations proposed can also be utilized
to detect states with non-local stabilizers:*We use the correlator operators involved in
the necessary condition of quantum correlation to construct entanglement witnesses for
detecting genuine multi-partite entanglement about the generalized GHZ state with two
local measurement settings, and three-qubit W states and four-qubit singlet states [123]
with only three settings. More recently, it has been shown that four qubit singlet state is
very useful for quantum secret sharing [45]. Through our method, 15 local measurement
settings required for the entanglement witnesses by Ref. [70] can be reduced greatly. In
what follows, we give a theorem based on the same concept as the one of Theorems 1 and
2 to detect the states mentioned above.

For a N-qubit system, the kernel of our strategy for identifying correlation between a

specific subsystem, say A, and another one, say B, under some local measurement setting,
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M;, relies on the sets of correlators with the following forms:

<C(l > P(vao0,vBo) — P(vVa1, Vno), <é > P(va1,vB1) — P(vVao, vB1), (4.1)

where P(vy;,vp;) is the joint probability for obtaining the measured outcomes v 4; for the
A subsystem and vp; for the B one. By the values of the correlators for an experimental
output state, we could identify correlations between outcomes of measurements for the
subsystems.

Theorem 4. If the results of measurements reveal that <C > and <C'( > are all positive
or all negative, i.e., <C’0 > <C’1 > > 0, then the outcomes of measurements performed on

the A subsystem are correlated with the ones performed on the B subsystem [73].

Proof. 1f the A subsystem is independetit'6f the B one, we recast P(v4;, vgj) as P(va;)P(vg;),
where P( v4;) and P(vp;) denote the marginal probabilities for obtaining results v4; and

vp; respectively. Then, we have
Com = [P(vao) = P(var)] Plupo). C1, = [BVa1) = P(vao)l P(var). (42)

Since P(va1), P(vpo) > 0, we conclude that C C < 0. Therefore, C C > 0 implies
that the measured outcomes performed on the A subsystem are dependent with the one

performed on the B subsystem. O

4.2 Generalized GHZ states

We start showing the strategy with the help of Theorem 4 to derive correlation conditions

for the generalized four-qubit GHZ state:
|®(6, ¢)) = cos(6) [0000), + e sin(f) [1111),, (4.3)

for 0 < 0 < w/4 and 0 < ¢ < /2, where |vjvv304), = ®}_; v),, for v € {0,1} and

|v),. corresponds to an eigenstate of o, with eigenvalue (—1)" for the party k. Firstly, to
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describe the correlation between a specific party and others of the four-qubit system, we

give four sets of correlator operators:

A~ ~ A~

)

forn =1,...,4, where 0,, = |v), .. (v| and n, m, p, and g denote four different parties un-
der the local measurement setting, My, = (Z, Z, Z, Z). In order to have compact forms, in
what follows, symbols of tensor product will be omitted from correlator operators. Then,
for some experimental output state, the expectation values of the Hermitian operators

CA’SZ,)L and CA’fZ,)L are expressed in the following correlators in terms of joint probabilities:

>:P(vn:1,v=3)—P(vn:0,v:3), (4.5)

where v = Zﬁ:l,i 4n Vi By Theorem 4. -we know that if results of measurements reveal
that <éézr)b> <éfzr)b> > (, the outcomes of measurements performed on the nth party are
correlated with the ones performed on the rest. If the nth party is independent of the

rest, we have

(CE)) = [P(v,=0) = P(u, = D]P(v=0),

and realize that <6(§Z,)L> <6£Z,)L> <0.

For a pure generalized four-qubit GHZ state, |®(6, ¢)), we have
C(g;zr)z,‘i’((%aﬁ) - COSz(e)v Cii,@(a,(p) = sinz(ﬁ), (4.6)

and hence C*)

0.1,8(0,0) sz) ) > 0, which describes the outcomes of measurements are cor-

7n7¢(67¢
related. Then the condition, C’éz,)Lsz,)L > 0, is a necessary condition of the pure generalized

four-qubit GHZ state.
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Further, we construct the following correlator operators to identify correlations be-

tween a specific group, which is composed of the nth and mth parties, and another:

N A~ A

C(gi)Lm = (Onzémz - 1nzimz)0pzoqza é’ffyzm = (1nzimz - Onzomz)ipzlqza (47)

for n,m = 1,...,4 and n # m. Moreover, we can express the expectation values of the

Hermitian operators CA’éZ,)Lm and C\?) in terms of joint probabilities for some output state:

1,nm

<6£2m> = P(Unm = Oavl = 0) - P('Unm = 2,V, = O),
<5}fgm> = P(pn =2,V =2) — P(vy = 0,7 = 2), (4.8)

where v, = v, + v,, and v = Z?Zl ihngm Vi Theorem 4 shows that if the subsystem

composed of the nth and the mthyparties is uncorrelated with another one, the measured
outcomes must satisfy <6(§Z,)Lm> <6{ng> < (. On the other hand, <5(§")Lm> <5£2m> >0
indicates that they are dependent.

It is clear that, for a pure generalized four-qubit GHZ state, we have
(CEh) = cost(0), (CF,,) = sin?(0), (4.9)

and hence < ééZ,)Lm> <é (=)

1,nm

> > (0. Thus we know that the subsystem composed of the nth
and the mth parties are correlated with another. Therefore, the condition, <(7(§Z,’Lm> <6£Z,)Lm> >
0, is also a necessary condition of the state |®(6, ¢)).

After introducing two correlation conditions for the pure generalized GHZ state under
My, let us progress towards the third one for correlation. Under the local measurement
setting, My, = (X, X, X, X), we formulate four sets of correlators which correspond to

the following operators for identifying correlations between the nth party and others:

~ A~ A

CS) = (0 — 1) @ B,C) = (1, — 0,,) @ O, (4.10)
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where

~

E = (010,202 + Omelpelge + LmzOpeloe + LmalpeOga); (4.11)
o) + + .+

= (Iymelpelee + ImeOpeOge OO Lge)- (4.12)

From the expectation values of C’é and C’ for some state and Theorem 4, we could
know the correlation behavior of the system, i.e., for a system in which the nth party
is uncorrelated with the rest under M,,, the outcomes of measurements must satisfy the

condition: C’ C'ln <0.

For the pure state, |®(6, ¢)), the expectation values of CA'IEIT)L is given by

<6§€2> = <é§52> = sin(26) cos(@) /2, (4.13)

and ensure that there are correlations between measured outcomes under the local mea-
surement setting, M,,. Thus“the condition; Cémrszxrz > (0, is necessary for the pure
generalized four-qubit GHZ state.

Entanglement imbedded in the pure generalized four-qubit GHZ state manifests itself
via necessary conditions of correlations presented above under two local measurement

settings. Therefore we combine all of the correlator operators involved in the necessary

conditions:

Cop = OO 4 (@

1
00 = e

= 80 02z03z04z+11z12z13z14z)—1, (4.14)
o = Y3
n=1 k=0
= 4X1X2X3X4, (415)
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Table 4.1: Summaries of numerical results of ag (6, @) for Ws (0, ¢), the parameters, s,
which are utilized to prove Wg (0, ¢) and § noise,¢ involved in robustness of the proposed
witness operator for detecting truly multipartite entanglement. Three different cases for
the state |®(0, ¢)) corresponding to Ws (6, ¢) have been demonstrated.

0,¢) (3.8 ({50 (%7
as 9.0l 921 892
vo 654 644  6.86
5  0.139 0.150  0.169

and then utilize the operator Cs to construct witness operator for detections of truly

multipartite entanglement. Three example are shown as follows. The witness operator:

W<I>(97 ¢) = a¢(97 ¢)1 - é@a (416)

where ag(0, ¢) is some constant, detects genuine.multipartite entanglement for the cases,
0,0): (r/4,7/6), (7/4.9,0), and (5/3.7,7/9). Table 4.1 gives a summary of ag (6, ¢) for
these cases.

In order to prove that We(6, ¢) is a entanglement witness for detecting genuine mul-

tipartite entanglement, we have to show the following comparison between

We(0,0) = agl —[®(0,6)) (2(0, )], (4.17)

and We (0, ¢) [72]: if a state p satisfies Tr(Wa (0, ¢)p) < 0, it also satisfies Tr(W5 (6, ¢)p) <
0, i.e., Wo(0,9) — voW5(0,6) > 0, where v5(0, ¢) is some positive constant. Through
the method given by Bourennane et al. [70], we derive the operator Wi (6, ¢) and have
ab = cos?(0) for 0 < 6 < 7/4 and o}, = sin?(f) for 7/4 < 6 < 7/2. Table 4.1 summarizes
the parameters v utilized to prove that the proposed operators are indeed entanglement
witnesses for detecting truly multipartite entanglement.

In addition, we are concerned with the robustness to noise for the witness Wy (6, ¢).

The robustness of We (6, ¢) depends on the noise tolerance: ppoise < Onoise; 1S such that
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Table 4.2: Expectation values of three proposed entanglement witnesses including
Wa (75, 0), and We(5%, %) for the pure states [®): |®(F, %)), [®(55,0)), and

[©) 2(5.3)) [2({5.0)) [®(GF.5))
Te(Wa (T, 2)[)(D]) —1.45 ~1.83 —1.72
Tr(Wa(Z5,0)|@)(B))  —1.25 ~1.63 ~1.52
Te(We (2, T)|[®)(®])  —1.55 ~1.92 ~181

P = Pnoise/21 + (1 — D noise) |P(0, 9)) (P(0, ¢)], is identified as a genuine multipartite en-
tanglement. Three cases for the robustness to noise for the witness Weg (6, ¢) have been
summarized in Table 4.1.

Further, we show the expectation values of the proposed entanglement witnesses for
different pure states by Table 4.2. From.comparison with the results we know that a
aim state, say |P(¢,¢')), does ot always.give the smallest expectation value of the
corresponding witness operator; We (€, ¢').-Onecan identify with the operator Ws (¢, ¢')
that an experimental output p4s trulysaultipartite entanglement if Tr(Ws (6, ¢')p) < 0.
Further, if TrOWs (6, ¢')p) < Tr(Wa(8', ¢')| 20" ¢')) (P(¢, ¢')|), the state p is not in the
state |P(¢', ¢')) class.

The novel approach to derive C'» shown above can be applied to the cases for arbitrary
number of qubits straightforwardly. One can formulate sets of correlator operators to
identify correlations between two subsystems under two local measurement settings and

then construct the witness operators further.

4.3 Four-qubit singlet state

Very recently, four-party quantum secret sharing has been demonstrated via the re-
source of four photon entanglement [45], which is called the four-qubit singlet state [123].
Through the same method for the witness of a generalized four-qubit GHZ state, we give

a novel entanglement witness to detect the four-qubit singlet state.
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The four-qubit singlet state is expressed as the following form:

1 1
W, = 7 0011), + [1100), — 5(|0110), + [1001), +[0101), +[1010),) | . (4.18)

Under the local measurement setting, M,., we formulate eight sets of criteria for identi-
fying quantum correlation between a specific party and others: the first type of identifi-

cations include the following four sets of correlators:

C(g?n = 612622132 4z — Xm(01262zi3zi4z)Xm7
C’fz = i1,212,203,204,2 — Xm(11212Z63Z64Z)Xm, (419)

where X,, = o0, is performed on the mthiparty for m = 1,...,4. Then, the second type

criteria are formulated as:

C(gz),k = [6(2n+1)zi(2n+2)z - Xk(0(2n+1)zi(2n+2)z)Xk] [©(2n®3)zi(2n®4)z + i(2n@3)z0(2n€94)z} ’
sz),k = [1(2n+1)zo(2n+2)z - Xk(i(2n+1)zo(2n+2)z)Xk] [0(2n®3)zi(2n®4)z + i(2n@3)z0(2n€94)z} 5
(4.20)

where k = (2n+ 1), (2n + 2) for n = 0,1; and the symbol & behaves as the addition of
modulo 4 for n = 1 and as an ordinary addition for n = 0. The expectation values of the

operators O and C’l(;?k for the pure four-qubit singlet state can be evaluated directly

L,m

and are given by C’l(,z) =1/3 and Cl(;,)h% =1/6 for 1 =0,1.

m, Wy

Through Theorem 4, it is easy to see that the conditions involved in the expectation
values of C’l(z and éz(;,)k:

(CE(CEY > 0. CELY (CE) >0, (4.21)

are necessary for the pure four-qubit singlet state.

For invariance of the wave function presented in the eigenbasis of o, (0,), in analogy,
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we can construct 8 sets of Hermitian operators,
(CED Oy and (CEW), CEWy, (4.22)

via the replacement of the index z in above hermitian operators by the index z (y)
and constructing the operators in the eigenbasis of 0,(,). The expectation values of the
above operators are all positive for the state |¥,), and so we have the following necessary

conditions of the state |Uy):
(Colh) (CEWY) > 0 and (YY) (CED) >0, (4.23)

Then, we combine all of the correlatof eperators proposed above:

Coy = C) 4 O 1 O (1.24)
where
4 1 4 ' 2n+2
CO =" 15> Cin+ Z S (4.25)
=0 m=1 n=0 k=2n+1

for i = x,y, z, and present a entanglement witness to detect the four-qubit singlet state.
The following witness operator detects truly multipartite entanglement for states close to

the state |Wy):
W\p4 = Oé\p41 — C/\’\Ij4, (426)

where oy, = 36.5.
We use the method utilized for We (6, ¢) to prove Wy, is a entanglement witness.

First, we seek the witness operator Wy, . Through Ref. [70], the operator is given by:

3
W, = 21— W) (0] (4.27)
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Then, we have to show that if a state p satisfies Tr(Wy, p) < 0, it also satisfies Tr(Wg, p) <
0. We find that g, = 30 is such that Wy, — y¢, W5, > 0.

The sets of correlator operators CA'\(IZ), C’fl,yz, and CA’\(I,? note that only three local measure-
ment settings are used in the witness operator Wy,. The number of local measurement
settings is smaller than the required one, 15 local measurement settings, in Ref. [70].

Moreover, the robustness of the witness Wy, is specified by dy, = 15/88 ~ 0.1705. This

result satisfies the experimental requirement of robustness in Ref. [70].

4.4 Three-qubit W state

Let us proceed to study the correlations imbedded in the three-qubit W state:

1

[W3) = 73

(1001), + 010}, + [160)2); (4.28)

When |W3) is shown in this representation; the following correlator operators are utilized

to show that the nth qubit is dependent on the other ones:

A ~ ~ A

c® = (1,, —0,.) ® 0

O

C = (0ps = 102) @ Oz @ 1gs + 1y © 042),
mz ®

g2); (4.29)

for n = 1,2,3. For the pure state |I¥3), it is clear that <CA’(SZ)> = 2/3 and <CA'£Z)> =
1/3, and, through Theorem 4, we are convinced that the nth qubit is dependent on the
subsystem composed of the mth and gth ones, i.e., all three qubits of the system are

dependent on each other. Furthermore, |W3) can also be expressed by

1 /3 1
1% :—\ﬁ 000), +[111),) +—=(|001), +]010), —[011), +|100), —|101), —[110),),
[Ws) = 54/ 301000}, +[111),) + 725 (1001), +[010), — [011), +[100), — |101), — |110),)

(4.30)
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where [v) = (|0),. + (=1)?|1),.)/v2 for v € {0,1}. Thus, we give the following

correlator operators to show all qubits of the system are dependent on each other:

—>

C(gy) (Ony - iw)omyopy’ C(y) = (iny - Ony)imy (4-32)

Py

where [v), = (|0),. + (=1)"i[1),.)/v2, also provide <CA’O(Z)> = <CA’£Z)> = 1/3, and by
which we can feature the correlation character of |W3) in the correlator operators CA’SZ)
and C1Y). In conclusion, the sets of correlators (<C’0(Z)> : <C’£fl)>), (<C’éi)> : <C’£fl)>), and
(<C’(§Z)> , <CA’£;Z)>) can be the essential properties of the state |W3). When using the oper-

ator
CA’W = C’(x) + C’(y) + é(z) 4.33
3 W3 W3 Ws» ( . )

where

1 3
i =S, (4.34)

for i = x,y, 2, to construct a witness for detecting states close to |W3), we have the

operator
WW3 = OéW31 — éwa, (435)

where oy, = 5.6, which can be shown to be a witness by the fact Wy, — 6)/\/{,)[,3 > 0,

where [70]
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2
WXI/)V:; = 51 — |[Wa) (Ws]. (4.36)

Wiy, is robust against noise and has a noise tolerance dy, = 0.2631.

4.5 Conclusion

We illustrate the utility of the conditions of correlations proposed by detections of three
different types of entangled states that cannot be described by local stabilizers. With the
help of Theorem 4, we give the corresponding entanglement witnesses that require fewer
local measurement settings when used in expériments. This chapter and the previous two
chapters show that the criteria of quantum -correlation proposed do not only help to reveal
correlation structures of many-qubit and two-qudit entanglement but also can be utilized
to construct entanglement witnesses with highly noise tolerance. In the next chapter, we

progress to introduce a general condition of correlation for many-qudit entanglement.
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Phase-dependent criterion for

many-qudit entanglement

5.1 Motivation

While the entanglement of bipartite qudits is still under intensive study [17], the many-
qudit entanglement has attracted increasing attention for its distinct features [18, 19].
The GHZ argument [19] and the generic Bell inequalities [18] for many qudits provide
a refutation of locality and realism. Measurements of some specific observables involved
higher-order correlation functions play important roles to reveal the quantum nonlocality
[17-19]. In this situation, it is natural to ask whether product of observables in a specific
direction of measurement can provide information about dependence of entangled qudits.
Can one obtain necessary conditions of correlation of entangled qudits from the general
correlation function? Furthermore, the question of whether one can detect truly multi-
partite quantum correlations with fewer measurements is crucial to both entanglement
physics and the quantum information processing.

In this chapter, we introduce a novel pahse-deoendent condition of correlations for
many-qudit entanglement. We reveal that the correlation functions utilized in the GHZ

argument [19] and the generic Bell inequalities [18] are comprised of phase-dependen
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criterion of correlations. We construct entanglement witness operators with highly ro-
bustness for detecting truly many-qudit entanglement. All of the witnesses presented can
be realized with fewer experimental efforts and can be applied to present experiments for
entangled qudits [20-23] directly. Especially, the criteria introduced in the previous three

chapters are special cases of the pahse-dependent condition of correlations.

5.2 Basic idea

In each run of Bell-type experiments for revealing correlations inherent in a multi-level
multipartite system, a set of local measurement setting, denoted by M; = (Vi, Vs, ..., Viv)
is chosen and single-qudit measurements of observable V; for ¢ = 1,..., N are taken
on the N particles in parallel. .After measurements, one can acquire a set of results
vin] = (V1, V2, ..., vy) where v; is'an elemént' of the set {0, 1,...,d — 1}. If sufficient runs of
such measurements have been made under a.chosen local measurement setting, the cor-
relation between experimental otiteomes can be revealed through the analytical analysis
of experimental records.

To investigate the correlations between two sets of results {vim} and {vjy} for the
subsystem of m particles and the one of n particles, in what follows, we will present a novel
method to attain this aim. The formulation of our strategy to investigate correlations
between any two subsystems consists of two parts. Firstly, we introduce the following

condition that holds for any physical systems:

A
k=1

where
A, = Z’YikP(V[m}ik), (5-2)

)

ik is a complex number with a unit norm, and P(V[m);x) denotes the joint probability to
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get the result vpy); for the subsystem composed of m particles. The number of sets A
relies on {Ay} designed. It is worth noting the above condition implies that all the Ay’s

are not in the same phase. Then, we give correlation polynomials of the form

Cy = Z Vit P (Vim]ik s Vinlk); (5.3)

and the dependency of one subsystem on another one can be described by the following
theorem:
Theorem 5. If the arguments of all C}’s are the selfsame, then the outcomes of mea-

surement for the two subsystems are dependent [124].

Proof. 1f the two subsystems are independent, the joint probability P(Vimik, Vinx) must

be a product of two individual ones: P (vmjig) > (Vinx), and then C}, is recast as
Ck = P(V[n}k)Ak. (54)

Since the phases of Aj’s are not all identical, the arguments of Cj’s must be different,

whereas a contradiction reveals the dependency of one subsystem on another one. O

We call C}’s correlators for their utility. Since entanglement is the physical property
that manifests itself via different local measurement settings, according to the knowledge
of the entangled qudits to be created we can construct more sets of correlators under
the condition of dependence and different local measurement settings. Then we utilize
them to analyze the experimental outputs. Determination of the value of | )", C| could
be one possible means for identifying correlations embedded in entangled qudits. It is
clear that | Y, AxP (V)| < 1 for independent subsystems, whereas we could feature the
correlation of entangled qudits to be created in the criterion | >, Ckx| = 1 under several
local measurement settings. From which, we will see that truly many-qudit entanglement
can be detected in a systematic way. In what follows, we will present two types of {Cy}

associated with different designation of {A}.

80



CHAPTER 5. PHASE-DEPENDENT CRITERION FOR MANY-QUDIT
ENTANGLEMENT

5.3 Many-qudit Bell inequalities

Let us give a concrete example to illustrate the first kind of correlators. For a three-qudit

GHZ state with the state vector:
d—

7_

Waxa) = [0)%%, (5.5)

where {|v)} is a complete set of orthonormal basis, we can use the correlators correspond-
ing to the following operators to specify the correlation between the ith qudit and the

subsystem composed of the jth and the gth ones of the state |W3y4):

d—1
O =3 w0 g, @ gy, (5.6)

Ui:(]
for k =0,1,...,d — 1, where n is some positive integer, w = exp(i27/d), iy = [vi);; (vil,
Vljqlf = Zvj’vq Vjf ® gy, |vl) f Zv Ow_”“’ lv), v; + v, =k , and = denotes equality
modulo d. Since C'IEQ = (U3y4] Ck |W3yq) = 1/d for all k’s and partitions of the systems:

1123], [2|13], and [3|12]. Then a linear combination of C™’s can be consider as a means
[ b

of identification of the state |3y 4) and we have

d—1
> G =V e VeV (5-1)
k=0

where

,f = Zw“v,f (58)

’l)z—

Furthermore, more operators of correlators under different local measurement settings

can be introduced to specify the dependence of qudits, and the sum of these operators
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can be the following ones:

O V@V Vi®ViE@ Vi Vip®@Vip® Vi, (5.9)
where
d—1
Vie = ) wiip (5.10)
v;=0

and the eigenstates of the observable are of the form |v;) . = % Zi::lo w2 |y;) . In
addition to the operators involved gorrelators discussed above, their Hermitian conjugates
also work in the same way for correlation.

The generalized GHZ staté-can be featured in ¢orrelators under different local mea-
surement settings. Each set of .correlators'is one necessary condition of a GHZ state.
Then, one can combine all of the operators of correlators as a single identification to dis-
tinguish the quantum correlations imbedded in the generalized GHZ state and the ones
predicted by local realistic theories. It is remarkable that the kernel of the generic Bell

inequalities for three qudits [18] represented by the observable

QL

~ 1

By =

-1 3
(Vis +w™?*Vip) + Hec., (5.11)

1 i=1

3
Il

is composed of operators of correlators associated with necessary conditions of the GHZ
state. For N-qudit Bell inequalities, through a direct calculation, we rephrase the expected

value of the N-qudit Bell kernel By [18] for the N-qudit GHZ state by the following
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polynomial of correlators:

2N-1 4-1 d—1

1 n
Brg = 551 > 2.2 Cilay (5.12)

=1 n=1 k=0

where [’s denote local measurement settings and C’l(,;%’s fulfill the specifications of correla-
tors. In particular, since Cz(:c)g = 1/d for all the parameters involved and for any partitions
of the N qudits considered, the correlation properties of the generalized N-qudit GHZ
state have been shown concretely. For example, the operator Vo = ®£\L1 ‘A/;? is one of the

elements of By and can be represented by S°0_) ™ where C!" = W0 QN XA/;?,

-----

subsystem comprised of the first m qudits.is dependent on the one composed of the rest.
This result holds for any partitiens of the.system, which provide the information about

correlations between any two subsystems with m qudits and (N — m) ones respectively

by n. sets of correlators, wheré n, = Z}nN:/fJ f(N; m)ﬁlm),, f(N,m) = 270m.IN/2] for
N even, and f(N,m) =1 for N 6dd;.i.e., the.definition (2.8).

The following operator will be shown useful studying the generalized GHZ state:

-1
Viy = Z WU P2 |(v; — )mod v;) (v

v;=0
d—1
_ Z WO, (5.13)
v;=0
where iy = [v;) ;¢ (vil, {|vi),} is the set of orthonormal eigenbasis of Viy, p = 0 for d odd,

and p = 1 for d even. Tensor products of V, s and ka can be used to reveal the correlations

embedded in a N-qudit entanglement. The operators

N
;= ® Ver ® Vicfc—l, (5.14)
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fori =1,..., N can be decomposed into operators of correlators like Vp, and each correlator
is —1/d. The operators Vi’s are the central part of the GHZ contradictions for many
qudits [19]. Through the conditions of correlations, one can realize that the utility of each
operator is to specify the quantum correlations between qudits and to show the properties
of dependence of the generalized N-qudit GHZ state under N + 1 local measurement

settings.

5.4 Entanglement witnesses for many-qudit entan-
gled states

We proceed to introduce the second type of correlators and give several entanglement wit-
ness operators which need only two local mmeasurement settings. The correlators proposed
in the second and the third chapters are ¢lassified to this type. The witness operators
proposed are of the form: Wy = a1 — C’¢, where v, is some constant and é¢ is a linear
combination of operators of correlatorsrassociated with the necessary conditions of the
many-qudit state |¢). If measured outcomes show that Tr(W,p) < 0, an experimental
output state p is identified as a truly multipartite entanglement which is close to the
aim state |¢). Moreover, we also show that the proposed witnesses are robust to noise.
The robustness of W, is determined by the noise tolerance: ppoise < Onoise, is such that
P = Dnoisel/d" + (1 — Proise) |@) (@] is identified as a genuine many-qudit entanglement.
The proof for showing that the proposed operators are entanglement witnesses and the
robustness of the witness operators are shown in Appendix C.

(a) Two-qudit singlet state. Firstly, we will show how to detect states close a two-qudit

singlet state of the state vector:

T
L

|s) = (-1 v)®@|d—v—1). (5.15)

Sl-

S
Il
o

For the first local measurement setting, the correlators are given via the operators,
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CM = [k — U(K)] b, (5.16)

for k =10,...d—1and u = 1,..., 84, where v, = d — 1 — k, U is a injective map s.t.
U(k) — K and k' # k, and each {U(k)} is numbered by u. Then there are (; sets of
{C*,ﬁ“)} Let us take d = 3 for example. We have two sets of correlator operators, i.e.,

(B3 = 2, given by

For general d, (; can be determiined amalytically. by the definition (2.10) of ~4. Since
C’,Sg = 1/d for all k’s and u’s; the properties of dependence have be shown. For the
second local measurement setting, operatorsiof correlators are defined by CA’%) = [l%r —
U (]%T)] ® U9k, where vy + k = 0, the projector lAfr’s correspond to elements of a complete

set of orthonormal basis vectors {|k) } and

QL
—_

k), =

T

(=) |v) . (5.17)

S
Q

(]

|

o

Through a simple calculation, we have the correlators C’T,(% = 1/d for all the parameters
considered.
The kernel of our entanglement witness for detecting states close to a generalized

singlet state consists of C’,g")’s and C’ﬁz)’s and is defined explicitly by
=Y M+, (5.18)
u,k

The witness operator W, composed of C, can be utilized to detect arbitrarily high-

dimensional singlet state with only two local measurement settings, and in particular
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it is highly robust against to noise, independent of the number of dimensions of quantum
system.
(b) Four-ququat supersingelt state. Let us progress towards another entanglement

witness operator for detecting a four-ququat supersingelt state [69] with the state vector

1 t
|s>=ﬁ > (=) rvavsuy) (5.19)

(vivav3va)EG

where G is the set which includes all permutations of the series (0123) and ¢ is the number
required to transpose pairs s.t. the series (vyvov3v4) is arranged to (0123). The characters
of the state |.S) can be described by correlations between two subsystems of two ququats,
and then we introduce the following operators to feature these properties:

oW

k[ijlpq] —

= (k) — U (ki) 8 Kipar (5.20)

for k =0,....,5 and u = 1, ..., B, where O[ij} = 01+ 10, 1[ij] = 02 + 20, Q[,ﬂ = 03 + 30,
3[iﬂ = 12421, Zl[ij] = 13431, 5[2-]-] = 23432, and k+k’ = 5. For the four-lateral rotationally
invariance of the supersinglet state [69], we have the following operators which are similar

toC’

ZJ Ipq]

Aw : .
where l%[ij]f = Zvivj U;r ® 0,5 has the same definition as /Af[,ﬂ. It is clear that C’
)

fklijlpg] —

ZJ lpa] —

= 1/6. Then we have the central part of the witness

. @ w
CS_Z Z Ck[w\pq fk[w\pq (5.22)

w,k {[ij]pql}

where {[-]} denotes the set include different kinds of partitions of the four ququats and
the number of elements of which is defined by n. (2.8).

(¢) Four-level four-qubit GHZ state. The next illustration of the criterion proposed is
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given by an entanglement witness for a four-level four-partical GHZ state

3

(W) = %Z )& (5.23)

v=0

The witness consists of the operators of correlator as the following;:

Chi o = 1 = U(R)) @ kijng, Cht) o = i) — U k)] © ki, (5.24)

lipg] — k[ij|pq]

Chitiina = by = UE) @ ki CS5li = Wty — Uk )] @ ki (5.25)

for k = 0,1,2,3 and u = 1,..., B4, where kyjpy = k@ k @k, kpg = k@ k, k.
S ina Vi ® Bpp @ Vgp With v; + v, + v, = K, kyjp = X, 0 ® 05y with v; +v; = k,

kqu]f Y pq Oy ® Dy With v, + vy =Jysandsk + &' = 0. Then we have the kernel

(u) (u
C‘I’ - Z Z 30 \Jpq] + 2Ofk[1|1pq] - Z Z 3Ck[zy\pq + 20 fklijlpgl® (5'26)

u,k {[iljpql} u,k: {[ijlpq]}

(d) Many-qutrit GHZ states. “The previous twe examples show that via correlators the
genuine four-party correlation of quantum states can be tested by two local measurement
settings. This approach can be applied to cases involved more correlated qudits. For

instance, to detect many-qutrit (d = 3) GHZ states of the representation:

|Wnxs) = \/— Z |v)® (5.27)

for N = 3,4,...,7, Ws, s are comprised of operators that describe correlations between

any two subsystems and given by

Cuyys = Z Z 3Oy + 2050 (5.28)

where m and m signify subsystems with m qutrits and N — m ones respectively, and

AW

k[m|m]

and C’ m are in terms of the eigenbasis {|v)} and {|v),} respectively and

k[m|m

denote correlator operators for specifying correlations between the subsystem m and m.
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It is remarkable that these witnesses are very robust against to noise, independent of the

number of qutrits.

5.5 Conclusion and outlook

We develop a phase-dependent condition of many-particle correlation for qudits. From
which, we proposed novel entanglement witness operators with highly robustness for many
qudits. These witnesses detect genuine entanglement close to two-qudit singlet, many-
qudit GHZ, and supersinglet states [69]. They need only two local measurement settings
when utilized in the present experiments. In particular, we reveal the essential elements
of the GHZ paradoxes [19] and theygeneriesBell inequalities [18] for many qudits are
comprised of the phase-dependent condition of correlations.

The framework of this work also helpsto investigate the correlations of random vari-
ables, e.g., to define a new coefficient of correlation between random variables in the

probability theory [125]. For two-bit casesythe new correlation coefficient is defined as

1

C(‘/iu‘/é) = Z (—1)M2(U1+UQ)H(U1,1)2), (529)
v1,v2=0
where H(vy,v) = —log, p(vy,v9), with —1 < C(V4,V,) < 1. If it is equal to zero, then

V1 and V; are said to be uncorrelated. Unlike the conventional one [125], there is no need
to consider marginal probabilities. Further applications in statistics will be discussed in

detail elsewhere.
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Chapter 6

Entanglement purification

6.1 Background and, motivation

The IBM [74, 75] and the Oxford [74-76] protocols are essential to entanglement purifi-
cation for entangled-qubit paits, (see the introduction in Sec. 1.3). By using the IBM
protocol, Alice and Bob can asymptotically regain the desired pure state, but they have
to consume operation time in twirling the state in between each purification LOCC oper-
ation into a Werner state [126] whose fidelity relative to the desired pure state is always
greater than 1/2. Compared with the IBM protocol, the Oxford protocol can provide
higher output yield, defined as the purified pairs per impure input pair, especially when
the initial fidelity with respect to the desired pure state of the input state is close to 1/2.
In particular, the Oxford protocol is capable of purifying any state whose average fidelity
with respect to at least one maximally entangled pure state is greater than 1/2 and can be
directly applied to purify states which are not necessarily of the Werner form. However,
since the Oxford protocol occasionally may purify a pure state other than the desired one,
i.e., it could yield two possible pure states, depending on the initial mixed state, Alice and
Bob then are suggested to take efforts additional to the purification LOCC operations to
transform the pure state with greatest component (> 1/2) in the input mixed state into

the desired state; such action also costs operation time in the additional local unitary op-
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erations and classical communications to identify the mixed state and thus consumes some
pairs before the standard purification LOCC operations. The output yields induced by
the IBM and Oxford protocols are rather poor, but can be increased somewhat provided
both protocols are combined with hashing protocols, as described in Refs. [74, 75]. So far,
there have been modified protocols dedicated to increasing the yield of an entanglement
purification procedure, e.g., see Refs. [127-129].

Surveying on these modified methods, one finds that while inducing greater yields, they
at the same time require more local unitary operations and classical communications in
the reordering schemes and hashing protocols [74, 75] that are combined in the standard
purification protocols. So, when comparing the performances of two protocols, say A and
B, we can say protocol A performs hetter, than B either when the yield of protocol A
is greater than that of protocol B if both-pretocels cost equal operation times, or when
protocol A requires less operation time than protocol B provided they induced equal yields.
Instead of focusing on increasing the yield,in-this ehapter we are intended to propose an
idea of establishing entanglement putification protocols in which the required operations
are the fewest, when compared with the standard IBM and Oxford protocols. These
protocols can purify a desired pure state by using the standard LOCC operations alone.
When using these protocols, the mixed state to be purified needs not be transformed into
the Werner state nor be reordered so that its fidelity with respect to the desired pure state
is the largest. Furthermore, the protocols presented in this chapter in fact can provide

better yields than that induced by the Oxford protocol [130].

6.2 Basic idea of entanglement purification

The standard purification LOCC operation considered in this chapter, as shown in Fig.
6.1, should be mentioned first. In each purification LOCC operation, Alice and Bob first
perform local operations by operators U and U*, which will be defined latter, respectively.

Then Alice and Bob each performs a quantum control-not operation. They then measure
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U

_____________________________

_____________________________

Figure 6.1: The standard purification LOCC operations including the local controlled-
NOT operation, single qubit measurement, and local unitary operation in each party.
Note that the classical communication is not shown in this figure.

the target qubits in the computationals basis, and if the outcomes, communicated via
classical channel, coincide they keep thejeontrolpair for the next step and discard the
target pair. If the outcomes do-not coincide; both pairs are discarded. In the purification

LOCC operation, the state to be purified-needs not be of a Werner form. We express the
mixed state in the Bell basis {|®™), j ) , [ [d7)}:

|®F) = —(|00) + [11)),

(101) = |10)), (6.1)

7 7

where |0) and |1) form the computational basis of the two-dimensional space belonging
to the EPR pairs. Let {ag, bo, co, do} be the average initial diagonal elements of the
density operator representing the mixed state before the protocol is begun with, and {a,.,
by, c., d.} be the average diagonal elements of the surviving state after the r-th step. It
can be shown that a purification LOCC operation in fact is relative to a nonlinear map,
where the diagonal entries of the surviving state after the LOCC operation are nonlinear
functions of those before the operation. Therefore the purification protocol considered in
this work is composed of consecutive nonlinear maps of the Bell-diagonal elements used
to transform an initial state asymptotically to a desired pure state. Suppose the state

|®T) (®F| is the desired one to be purified through the purification, we then are willing
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to map step by step the initial state {ag, bo, co, do}, where one of the elements should be
greater than 1/2, to converge to the desired attractor {1, 0, 0, 0} as the step number 7 is
sufficiently large. But the intrinsic property of the nonlinear map reveals that the desired
attractor is not the only one, as can be seen in the article of Macchiavello [131], who has
given the analytical convergence in the recurrence scheme of the QPA protocol.

The interesting nonlinear behavior of the recurrence scheme in a distillation protocol is
dominantly influenced by the local unitary operations operators U and U* applied by Alice
and Bob in the purification LOCC operation. Generalized expression for U, controlled by

two phases # and ¢, is given by
(6.2)

It is clear that distinct choices of 0 and ¢ will lead to different destinations of the protocol.
For example, in using the origmal QPA protocol, ‘Alice and Bob choose § = ¢ = 7/2 |

i.e., they apply the operator

UGS =—| . (6.3)

In this case, one will have a map {a,_1, b,_1,¢,_1, d.—1} — {a,, b., ¢, d.} according to

the following relations:

a?_, +b? 2¢,_1d,_
a, = —r=lT 01 gj
Dr—1 DPr—1
2 2
L +de 2a,_1b,_
¢ = =t 81 g Zro19ro1 for 6 = ¢ = /2, (6.4)
Pr—1 Pr—1

where p,_y = (a,_1+b,_1)*+(c,_1+d,_1)? is the probability in the rth step that Alice and
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Bob obtain coinciding outcomes in the measurements on the target pairs (so only p,_1/2

of the pairs before the rth step is surviving after the step). Let us define the domains

D, = {a€ (05, 1]; a+b+c+d=1},
Dy, = {be (05, 1; a+b+c+d=1},
D. = {ce€ (05, 1]; a+b+c+d=1},
D; = {de (05, 1]; a+b+c+d=1},
Dy = D,UDy,
Dy = D.UDy,

Duweda = D,UD,UD.UDy. (6.5)

In what follows we will consider the case that an initial mixed state to be purified is
in the applicable Dg,.q because any state p € Dgs.q is distillable. It has been proved
[131] that, for the Oxford protocol; an-initial state in the domain D,, will eventually
be mapped to converge to the atbractor {1;0,0,0} representing the desired pure state
|®F) (@F|. While if the initial state is in the domain D4, then it will be mapped to
approach another attractor {0,0, 1,0}, or the pure state |[¥™) (U*|. In the end, according
to Ref. [76], using the QPA protocol, Alice and Bob will regain the desired pure state from
any state p € Dypeq provided they first take efforts additional to the standard purification
LOCC operations to transform the pure state |¥+) (U*|, or |®7) (®~|, into the desired
state |®T) (®T| if the input state is in the domain D.,. Meanwhile, such efforts also
have meaningful implication as if the QPA is considered to be combined with the hashing
protocol [74, 75] to improve its output yield. These tedious transformations cannot be
avoided even when the input state is already in the domain D,,, because Alice and Bob
initially do not have an idea about whether the input state is exactly in the domain D,
or D.y. For example, if the input state has the element ¢y = 0.7, then Alice and Bob
should transform the state |¥+) (U] into |®T) (®T| before the purification procedure so

that the mixed state in turn will have the element ag = 0.7.
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As another example, if Alice and Bob choose §# = 7/2 and ¢ = 0, then they have the
operator
U(r/2,0) = XH —— b (6.6)
7/2,0) = =— , )
V2 1 1
where X is quantum NOT gate and H is the Hadamard transformation. Accordingly, in

this case, the recurrence scheme is described by

0 = a§_1+c§_1 b — 2b,_1d,—q
T pr_l ) T pr_l )
b:_, +d? 2a,_1Cp_
¢ = %,dr: %, for § = 7/2,¢ =0, (6.7)

where p, 1 = (a,_1+¢,_1)?+ (b, 4+ d._pPaltsshould be mentioned here that the relations
(6.7) can also be resulted from-thewtility of"'Hadamard transformation only, i.e., U = H,
but this transformation does not belong to-the,SU(2) operator defined in (6.2). Although
the analytical convergency in the‘recurrence-scheme (6.7) has not yet been proved, we
find that an initial state in some domain D, C Dgypeq, which is not yet defined, will be
mapped to approach the periodic attractor representing a state interchanging step by
step between {0.5, 0, 0, 0.5} and {0.5, 0, 0.5, 0}, while a state in the domain D¢, where
DEUD,, = Dapea, Will be mapped to converge to the fixed attractor {1, 0, 0, 0}, as wanted.
For example, one can easily check to see that the initial state {0.1, 0.2, 0.6, 0.1} will be
mapped to converge to the fixed attractor but the initial state {0.2, 0.1, 0.6, 0.1}, on the
other hand, will be mapped to approach the mentioned periodic attractor. So a protocol
in which the operator XH is used, unlike the QPA protocol, will not guarantee to purify

pure maximally entangled pairs.
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6.3 Entanglement purification with a two-map pro-
tocol

In this work, we call a protocol a one-map protocol if Alice and Bob each uses only one
single local operator in all the purification LOCC operations, such as the IBM and Ox-
ford protocols. From the above examples we realize that if only the standard purification
LOCC operations are implemented, all one-map protocols will encounter the same situa-
tion that there is always another attractor in addition to the desired one, {1, 0, 0, 0}, for
a state p € Dypeq to be mapped to converge to. This situation thus becomes the ultimate
limitation for the one-map algorithm. Therefore, in this work, we will present a viewpoint
of hybrid maps for a purification protocol and show the fixed state {1, 0, 0, 0} can be the
only attractor for an initial statep € Dgeaeto bemapped to approach. The simple idea
can be interpreted briefly. If we thave known a-one-map protocol, say, controlled by 6,
and ¢, in which a state p belonging:tg-some-defined domain D;(C Dgpeq) can be mapped
to approach the fixed attractor {17050, 0}, then‘all we have to do is to find another map,
controlled by 6y and ¢, in which a state p € Dyq will be mapped on to a subdomain
of the defined D;. This kind of protocol is what we call a two-map protocol, which can
ensure Alice and Bob to regain the desired pure state |®*) (®7| all by using the standard
purification LOCC operations.

For the idea we have just presented, the most difficult task is the definition of the
domain D;. Fortunately, Macchiavello [131] has defined the domain D; for the QPA
protocol, in which D; = Dy, as defined in (6.5). Therefore the QPA protocol is so far
the most convenient one-map protocol to be improved by our idea. As to the one-map
protocol described in (6.7), on the contrast, no definition of the corresponding D; have
been proved. A concrete example of our idea, however, will utilize these two one-map
protocols. That is, in this example the option #; = 7/2 and ¢; = 7/2 will be chosen
and accordingly the choice 6y = 7/2 and ¢y = 0 follows. We begin with the derivation of
(1 —2a,) and (1 — 2¢,) for 6y = 7/2 and ¢y = 0. According to (6.7), we have
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1 — 2a,_1)(1 — 2, 1— 2b,_1)(1 — 2d,._
| —9q, = UZ20) =20 1y, | ( ), (6.8)
Pr—1 Pr—

for arbitrary positive integer r. It is now clear to find that, since p,_; > 0, when ag > 1/2
or ¢g > 1/2, then after the first purification LOCC operation we have a; > 1/2, while as
by > 1/2 or dy > 1/2, then we in turn have ¢; > 1/2, which consequently implies ay > 1/2
after the second purification LOCC operation. As a result, we know by now that using
the one-map protocol (6.7), we can always in two steps map an initial state p € Dgpeq
on to the domain D,, which is exactly a subdomain of D;(= Dy,) for the standard QPA
protocol. Now, we have come to the two-map protocols we wish to present in this work.
Using this two-map protocol (symhbolized by TMi), Alice and Bob have an agreement that
in the first two steps of the purification procedure; they will apply the operators U(m/2,0)
and U*(7w/2,0) , respectively, to map astate p € Dapeq on to the domain D, = {a € (0.5,
1], a+ b+ c+d =1}, and then they will apply the standard QPA operators U(w/2, 7/2)
and U*(7/2,m/2) to purify the surviving state to the desired state |®) (®*| in the rest
purification LOCC operations. Interestingly, an alternative two-map protocol (symbolized
by TM2) can be used as well, in which the operators U(7/2,0) and U*(7/2,0) are applied
only at the second purification LOCC operation, since after the first LOCC operation,
in which the QPA operators U(w/2,7/2) and U*(7w/2,7/2) are used, the state has been
mapped on to the domain D,. [131].

Apparently, our protocols TM1 and TM2 are composed of only the standard pu-
rification LOCC operations, without using any additional local operations and classical
communications in transforming the mixed state into a Werner state, as needed in the
IBM protocol, or transforming one of the Bell states whose fidelity is the largest into the
desired pure state |®T) in advance of the Oxford operations. Therefore the fewest opera-
tions are required in our purification algorithms, as compared with the IBM and Oxford

protocols. Furthermore, when comparing the output yields and the fidelities (or purities)
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Figure 6.2: The variations of the yield and the comparing purity (in the inserted diagram)
at ten times of the recurrence method.
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at five times of the recurrence method.
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produced by the IBM, the Oxford, and our two-map protocols, we find the protocol TM1
can provide better yields and fidelities than the Oxford protocol (which performs better
than the IBM protocol), while the protocol TM2 can perform almost equally to the Oxford
protocol, although this is not the primary purpose of this work. In our numerical simu-
lations, the yield, or the fraction of the surviving pairs, defined by Y, = pop1...p,—1(27"),
where 7 denotes the iteration number, was first computed up to » = 10 for each input
state to be purified. The variations of the yield as functions of the initial fidelity aq are
shown in Fig. 6.2, in which (and also in the following figures) each yield (and each purity)
was the average value computed over ten thousand random states possessing the same
initial fidelity. The corresponding purities after the ten iterations are also shown in Fig.
6.2. It is shown that although, after the ten iterations, the resulted purities produced by
using the Oxford, TM1, and TM2 are highs the yields of them are rather poor, especially
when the initial fidelity is closé:to-1/2.

The yield, however, can be furtherimproved by eombining the recurrence method with
the hashing protocol [74, 75] as longas the purity is high enough (e.g. higher than 0.8107
for a Werner state) when the recurrence scheme is performed in only a few iterations. In
Fig. 6.3 we show the yields Y; and the correspond purities as produced by the Oxford
and the TM1 protocols after five iterations, respectively. This figure shows that when the
initial fidelities are greater than some specific values near 1/2 for both cases (of course the
specific fidelities can be lowered if the iteration is increased), the hashing protocols then
are applicable after the five iterations in running the recurrence schemes. Fig. 6.3 shows
that after the five iterations, the surviving fraction Y5 ras and the corresponding purity
as i, produced by the the TM1 protocol are slightly higher than the surviving fraction
Y5 .0, and the purity as o,, which are resulted from using the Oxford protocol. The slight
differences in Y; and as, however, can induce significant difference between the improved
yields when the hashing protocol is switched on after the five iterations. The evidence
can be seen in Fig. 6.4, in which both the improved yields Yj 1,,, and Y; 5, and the ratio

of the improved yields (Y5 7y1/Y50,) as functions of the initial fidelity are shown; the
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ratio (Y3 ran/Y50.) (in the inserted diagram).
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improved yield is defined by Y = Y,.(1—.S(p,)), where S(p,) is the von Neumann entropy
of the surviving mixed state p,. It is clearly shown in Fig. 6.4 that the ratio Yy 7,,,/Y5 0,

becomes greater as the initial fidelity is closer to 1/2.

6.4 Conclusion

In the recurrence scheme of a one-map entanglement purification protocol, the nonlinear
behavior of the four Bell-diagonal elements of the density matrix representing the mixed
state to be purified reveals that there is always another attractor other than the desired
fixed attractor. This indicates that not all the distillable input state can be purified to the
desired maximally entangled pure state’all bysthe standard purification LOCC operations
in a one-map protocol. Therefore sometedious.efforts additional to the purification LOCC
operations are needed in using-the typical IBM and Oxford protocols to purify a desired
pure state from any distillable state. The proposed two-map purification protocols TM1
and TM2, on the contrast, can guaramtee that all the distillable input states can be
purified to the desired pure state all by the standard purification LOCC operations. That
an entanglement purification can be accomplished all by the standard purification LOCC
operations is crucially important to a significant improvement for the purification process.
By such improvement, we then do not have to identify the mixed state and consequently
do not consume any pairs before the purification LOCC operations. The proposed two-
map protocols perform better than the one-map IBM and Oxford protocols in the sense
that they require the least operation times in yielding a same amount of useful EPR pairs.
Surprisingly, the protocol TM1 is found able to induce higher yields and purities than the
Oxford protocol. This is crucially important as the hashing protocol is combined with
the recurrence algorithm to improve the output yield. The proposed two-map protocols,
however, like the standard IBM and Oxford protocols, should be implemented if the
initial state possesses a fidelity very close to 1/2 only after enhancing the state’s fidelity.

For example, it has been shown [132] that only inseparable two-qubit state with “free”
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entanglement, however small, can be distillable to a pure form by using local filtering
[133, 134] to enhance the state’s fidelity first. An interaction with the environment [135]
can even be allowed to enhance the fidelity of a quantum teleportation. The fidelity

enhancement, however, is not an issue to be concerned with in this work.
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Chapter 7

Quantum error-correcting codes and

entanglement purification

7.1 Introduction

The five-qubit quantum error-correcting code (QECC) that protects a qubit of information
against general one-qubit errors is one of special interests for quantum computations. It
has been proven to be the best and smallest block code [78]. It is also a perfect non-
degenerate code because it saturates the quantum Hamming bound [136] and thus is
capable of correcting all one-qubit errors with minimum number of extra qubits. Laflamme
et al. [77] and Bennett et al. [74] independently showed the first five-qubit QECCs. Recent
developments of most QECCs are attributed to the stabilizer formalism [117, 137, 138].
In the work of Laflamme et al. [77], the five-qubit error correction is described to perform
in a rather simple procedure. The initial one-qubit information, as accompanied with
four extra qubits in the state |0), is encoded by a circuit representing a sequence of
single-qubit Pauli operations and two-qubit controlled Pauli operations. Then, after the
interaction of environment that causes generic one-qubit errors, the polluted five-qubit
state is decoded by running the same encoder circuit in a reverse order. Eventually,

the tensor product state of the four extra qubits is measured in the computational basis
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(|0) and |1)) to decide the corresponding final Pauli operation for recovering the original
state of the information carried qubit. By computer search, Braunstein and Smolin [139]
found a simplified encoder circuit which can encode the one-qubit information in 24 laser
pulses. For the stabilizer code, however, the initial one-qubit information is encoded by
the actions of all the operators belonging to the group generated by the stabilizers. The
encoded five-qubit state is then allowed to be affected by generic one-qubit errors followed
by measurements of the stabilizer observables to detect and correct the qubit on which the
error has occurred. The fiv-qubit stabilizer code has been experimentally implemented
using nuclear magnetic resonance by Knill et al. [140].

The five-qubit QECC introduced by Bennett et al. [74] was derived from a restricted
one-way entanglement purification protocol (1-EPP) which purifies one good Bell state
from a noisy block of five Bell statés. The-entanglément purification protocol (EPP) allows
Alice and Bob to perform local initary transformations and measurements and even allows
them to coordinate their actions through-one-way or two-way classical communication.
It, however, does not allow Alice and Bob to perform non-local actions nor to transmit
fresh quantum states from one to the other. An EPP involving two-way communication
is called a two-way EPP (2-EPP), in which both Alice and Bob need to know the results
of measurement from each other. Typical 2-EPPs include the IBM protocol [75] and the
Oxford protocol [76], which also belong to the recurrence method. On the other hand,
a one-way EPP (1-EPP) requires only Alice to send her measurement result through
classical channel to Bob, who when combining it with his own result can decide a following
action to perform. Thus, the 1-EPP can produce pure maximally entangled pairs which
are separated both in space and in time. The hashing protocol [74] and the breeding
protocol [75] are examples of the 1-EPP. In fact, it can be shown that the Bennett et al.
protocol is equivalent to the error correction of Laflamme et al. However, the QECC of
Bennett et al. can be well derived so that it requires a simpler circuit for both encoding
and decoding than the original one reported by Laflamme et al.. Bennett et al. suggested

to use a Monte Carlo search program for deriving the QECC.
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In realistic situations, to reduce the number of two-qubit gates necessary in the
encoder-decoder circuit is significantly important for reliable five-qubit QECCs because
two-qubit operations could be the more difficult ones to be implemented in a physical
apparatus [51]. This work thus is motivated to derive five-qubit, single-error correc-
tions which can be performed by using the least number of two-qubit operations in their
encoder-decoder networks [141]. The QECC presented as an example herein is derived
analytically from the restricted 1-EPP proposed by Bennett et al. [74] and its encoder-
decoder circuit contains only six controlled-NOT (CNOT) gates and three single-qubit
operations. The restricted 1-EPP therefore is depicted first in the next section. In the
third section, we describe the systematic method for deriving 1-EPP in detail. A concrete
example for the simplest quantum gate array then will be given to show the capacity
of the present method. In fourth sectiomns we present the coding circuit which is con-
verted directly from the 1-EPP and compare its efficiency with those of several existent

encoder-decoder circuits. A conclusion’is given in the final section.

7.2 The 5-EPR-pair single-error-correcting code

Suppose there exists a finite block-size 1-EPP which distills one good pair of spins in
a specific Bell state from a block of five pairs, and no more than one of the five pairs
is subjected to noise. When this 1-EPP is combined with a teleportation protocol, two
parties, Alice and Bob, can transmit quantum states reliably from one to the other. The
combination of the 1-EPP and teleportation protocol therefore is equivalent to a QECC.
The 1-EPP considered herein is schematically depicted in Fig. 7.1. Suppose Alice is the
encoder, Bob the decoder, and the Bell state ®+ = (|00) + |11))/+/2 is the good state to
be purified. Alice and Bob are supposed to be provided with five pairs of spins in the
state ®T by a quantum source (QS). However, they actually share five Bell states in which
generic errors have or have not occurred on at most one Bell state due to the presence of

noise Np in the quantum channel via which the pairs are transmitted. The noise models

105



CHAPTER 7. QUANTUM ERROR-CORRECTING CODES AND
ENTANGLEMENT PURIFICATION

Alice

: the channel for the 1% pairs of entangled qubits

: the channel for the 274~ 5% pairs of entangled qubits

Figure 7.1: The 1-EPP with notations used in the context. Alice performs U; and m and
then sends her classical result (v4) to Bob. Bob performs U, and m, and then combines

his own result (vp) and Alice’s to control a final operation Uéi).
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are assumed to be one-sided [74] and can cause the good Bell state ®* to become one of

the incorrect Bell states

_ 1

V2

1

® NG

(J00) — [11)), U* (01) = [10)). (7.1)

The good Bell state @t can become one of the erroneous Bell states expressed in (1) if
it is subjected to either a phase error (®* — ®7), an amplitude error (d+ — ¥T) or
both (T — W) [78, 142]. When performing the 1-EPP, Alice and Bob have a total
of 16 error syndromes to deal with. The collection of error syndromes includes the case
that none of the five pairs has been subjected to errors and the 15 cases in which one
of the five pairs has been subjected to one of the three types of error. The strategy of
Alice and Bob is to perform a sequence of unilateral and bilateral unitary operations (as
shown in Fig. 7.1, U; and U, performed by Alice and Bob, respectively) to transform the
collection of the 16 error syndtomes to‘another collection that can provide information
about the errors subjected by their particles. Suppose the state of the first pair in the
block is to be recovered. After performing the sequence of their operations (U; and Us
respectively), Alice and Bob, should then perform local measurements on their respective
halves of the second to fifth pairs. Alice sends her result via classical channels to Bob
who then performs the Pauli operation Us to recover the original state of the first pair
conditionally on both Alice’s and his results. The ultimate requirement of these results
of final measurement is that each and every of them should be distinguishable from the
others. In other words, there should be 16 distinct measurements obtained from the
aforementioned transformation of the error syndrome. The main issue now is that the
sequence of unilateral and bilateral unitary operations performed by the two parties to
transform the error syndrome should be well designed so the requirement just mentioned
can be fulfilled.

To arrange the sequence of operations, basic concepts of linear algebra are used. The

107



CHAPTER 7. QUANTUM ERROR-CORRECTING CODES AND
ENTANGLEMENT PURIFICATION

Table 7.1: The correspondence among the error syndrome el (Er(i)), the codeword w(®

(W®), the measurement result v, and the Pauli operation Uél) controlled by the mea-
surement result in the restricted 1-EPP (five-qubit QECC) applying the encoder-decoder

circuit shown in Fig. 7.3.2 (Fig. 7.4)

i EON Q) w® W v® Uéi)
0 0000000000 0000000000 0000 I
1 10 00 00 00 00 11 00 00 01 01 0011 oy
2 0100000000 0100010100 0110 oy
3 1100000000 1000010001 0101 o,
4 0010000000 0001000001 1001 I
5 0001000000 0011010100 1110 I
6 0011000000 0010010101 oO111 [
7 0000100000 1101100101 1011 oy
& 0000010000 0000010000 0100 I
9 0000110000 1101110101 1111 oy
10 0000 00 10 00 10 01 00 10 00.%21000% . o,
11 00 00 00 01 00 00 00 00 0100 0010 ~“F
12 000000 11 00 10 01 00-21 00 11010 o,
13 00 00 00 00 10 00 00 00=00-01 0001+ [
14 0000000001 01110F00 10 13100 o,
15 0000000011 O011101:00 1 <t10l70,

four Bell states ®* and U* are first labeled by two classical bits, namely,

dt =00, =10, " =01, = 11.

(7.2)

The right, low-order or amplitude bit identifies the ® /WU property of the Bell state, while
the left, high-order or phase bit identifies the 4+/— property. Note that the combined
result of the local measurements obtained by Alice and Bob on a Bell state is revealed
by the Bell state’s low or amplitude bit. In the representation of the high-low bits,
each error syndrome thus is expressed as a ten-bit codeword, e.g., the error syndrome
OTU~PTPTOT is written as 00 11 00 00 00. Codewords of the error syndrome, denoted
by efni), it = 0,1,...,15, are listed in Table 7.1. The effect of the sequence of unilateral

and bilateral unitary operations performed by Alice and Bob is to map the codewords el

onto another collection of ten-bit codewords w®. If both the codewords ey) and w® are
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written as column vectors in the ten-dimensional Boolean-valued (€ {0, 1}) space, then

the mapping e&i) — w® can be simply expressed by a matrix equation

w® = Mel, (7.3)

provided that the mapping is confined to w(® = e&o)(: 00 00 00 00 00). The four error

(3k)  (3k—1)  (3k—2) )

0 . .
syndromes, e, ey , € , and eq(n , corresponding to a common erroneous pair,

form a group and are characterized by

eBh=2) gy oBh-1) — o)) | — 1 9

r Y ) )

.5, (7.4)

where k enumerates the erroneous pait'and' @ is the addition modulo 2. Accordingly, the
16 codewords w® should be subdivided into five corresponding groups, each of which has

wBk) | qBE=1) yBk=2) "and w(X, and holds the relation

w2 @ B = BF S 5 (7.5)
Therefore the matrix M can be simply expressed by a 10 x 10 matrix, such as

M = [w(l)w(z)w(4)w(5)wmw(S)w(lo)w(n)w(w)w(m)} ’ (7.6)

in accordance with the arrangement of error syndromes listed in Table 7.1. The first two
rows of M represent the states of the pair to be recovered, and the 4th, 6th, 8th,and
10th rows represent the low bits of the second to fifth Bell states and thus construct the
four-bit codewords for the measurement results v, The measurement result v of course

is also characterized by
pB3E=2) g Rl — Bk =1 2 .5, (7.7)

in accordance with relations (7.4) and (7.5). In the language of linear algebra, the action of
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the sequence of unilateral and bilateral unitary operations that accounts for the mapping
efni) — w® is to perform a sequence of elementary row operations on the 10 x 10 identity
matrix 1 to reduce it to the matrix M. In this spirit, Bennett et al. [74] have undertaken
a Monte Carlo numerical search program to find out suitable solutions for matrix M and
their corresponding encoder-decoder networks. Basically, the approach implemented by
Bennett et al. is a tedious numerical method of trial and error performing the transfor-
mation 1 — M subjected to a forward sequence of local operations. In this work, we

will present an analytical method for creating M implemented in the present QECC. The

present method will be described in detail in the next section.

7.3 Analytical technigque for simplification of the encoder-
decoder circuit_for a perfect five-qubit error cor-

rection

7.3.1 Theory

The unilateral and bilateral unitary operations performed in the 1-EPP in fact are their
own inverse transformations, so if the sequence of operations is run in the reverse order,
then the inverse transformations M — 1 is accomplished. In the spirit of inverse trans-
formation, it thus allows us to derive all appropriate versions of M and the corresponding
encoder-decoder networks by following an analytical way. More importantly, for a de-
rived M, rearranging the sequence of row operations on the same inverse transformation
M — 1 will help in constructing its simplest encoder-decoder circuit.

An elementary row operation corresponds to a basic unilateral or bilateral unitary
operation. In the present protocol, Alice and Bob are confined to perform only three
basic unitary operations because these operations are necessary and sufficient for the

elementary row operations needed to achieve the mapping M — 1, and vice versa. These
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basic operations are: (1) a bilateral CNOT (BXOR), which performs the bit change (zg,
ys)(zr,yr) — (xs ® zr, ys)(xr,ys © yr), where the subscripts S and T' denote the
source and target pairs, respectively; (2) a bilateral 7/2—rotation B,,, which performs (z,
y) — (y,x); and (3) a composite operation o, B,, which performs (z, y) — (z,z @ y).
The unitary Pauli operation o, performs a m-rotation of Alice or Bob’s spin about the
xr—axis, while the bilateral operation B, (B,) performs a 7/2—rotation of both Alice and
Bob’s spins about the x (y)—axis. The unilateral operations are defined as those operators
performed by Alice or Bob but not both. The bilateral operations are represented by a
tensor product of one part of Bob and the same part of Alice. Note that the bilateral
CNOT is performed such that the source qubits of Alice and Bob belong to a common
pair, and the target qubits belong to another common pair.

The information obtained thxough leeal measurements and one-way communications
can only deduce the low bit of a;Bell pair:“and the original state of the first Bell pair
can only be recovered by the low-bit-information.” Then, for a successful 1-EPP, or its
equivalent QECC, each and every measurement result v is required to be distinguishable
from the others, so the collection of v in fact should contain all elements in the 4-
dimensional Boolean-valued space. To perform the aforementioned inverse transformation

M — 1, the codewords of measurement result are first arranged according to relations
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(7.7) and the matrix M can be assumed as

- ay a2 a3 a4 a5 Gg a7 4aAg A9 aio
by by b3 by bs bs b7 bs by bio
€1 C C3 €4 C5 Cg Cr Cg Cog Cio
o 0o 1 0 0 1 0 1 1 0

M di dy dy dy ds de dr ds dy dio (78)

0o 1.0 1 1 0 0 0 1 O
€1 €2 €3 €4 €5 € €y €g €9 €10
1 0 0 1 0 1 1 0 0 O
fo o fs fo fs fo frofs foo fio
1 1 1 1 040 070, 1

It should be noted that the arrangement of the results of measurements shown in the above

matrix is only one of the possible choices: "By performing a sequence of row operations

corresponding to the basic unitary operations; the assumed matrix M (7.8) actually is

allowed to be reduced to one of all the alternatives akin to the identity matrix 1, and a

suitable encoder-decoder circuit is constructed accordingly. The alternatives akin to the

identity 1 are those obtained by 1— permuting column vectors within one of the five sets

of two column vectors (=2 and 2%~V k = 1,2,...,5), or 2— adding one column to

the other within each of the groups, or 3— performing both actions. For example, an
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alternative could be

—_
—_ =

o O

o O

o o o o o
o o o O
(e

(e

(@]

(@]

1akin — (79)

o o o o o o o o o
o o o o o o o o
o o o o o o o
o o o o o o
o o o o =
o o o o o o=

_ o o o o o o
o o o = o o o o o
_e o O O o o o o o
@,

When the derivation of M is done, the alternative: akin to 1 is then converted back to
the identity 1 by well rearranging 'itS-columns and the derived M is adjusted via the
same column changes, in order to/¢enform equation (7.3). The procedure of reducing
the matrix M to the alternative akin to the identity 1 is similar to the Gauss-Jordan
elimination method for solving systems of linear equations. During the procedure of row
operations, all the unknowns appearing in the assumed matrix M (7.8) are given or solved
according to the structure of the alternative akin to 1. Details of the derivation can be

found in Ref. [143].
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7.3.2 A systematic scenario example

There are so many solutions for the assumed M which are all suitable for the 1-EPP,

however, only one of them has been adjusted and presented as:

ap az az a4 a5 Gag Gy 4aAg Qa9 Qig
by by b3 by by bs by bs by big
€1 C2 C3 €4 C3 Cg Cr Cg Cg Cio
o 0 1 1.1 0 1 0 0 1
M, = di dy d3 dy d5 dg d7 ds dy dig (7.10)
o 1.0 1 0 1 0 0 0 1
€1 €2 €3 €4 €5 €6 _LCpgL8 €9 €0
1 1 0 1 0 Oped 0. 0
fv o fs fa Sswle fods o S
i 1 0 1 0+« 0:0_-0_.1/-0

Let us show the systematic scenario for aceomplishing the transformation M;— 1 by one

of the simplest networks. The matrix M; can be rephrased as

my; Ma2 mis

Moy Mg mas
Ml ==

ms1  Ms2 M55

where the matrix elements m,s denote the 2 x 2 matrices:

ay Qg 1 C2
y M2 = PR

0 O

(7.11)

my; =

by by

and so forth. The next step of our method is a procedure of elementary row operations

on the matrix Mj (7.10) subjected to a suitable sequence of the basic operations. When
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the assumed matrix M;j is transformed into the identity matrix 1 under the series of
row operations, the unknowns a,, b,, ..., f, will be solved stepwise in accordance with
the structure of 1. It is easy to show that a sequence of row operations can do the
transformation on two Bell states a and 3 in a group enumerated by -, namely,

My I
— (7.12)

mm 0

provided that det(m,,) = 1 and det(mg,) = 0. Here I denotes the 2 x 2 identity matrix.

For example, the consecutive transformation

10 1.0 10 10

My 11 1 4 01 01
= — — N

Mg, 01 00 0 0 00

00 0~1 0 1 00

can be accomplished if the operation”B, isfirst performed on Bell state 3, then a 0,B, is
performed on Bell state a followed by a BXOR performed on both states, as Bell state «
being the source and Bell state 3 being the target. It can be found in what follows that
the unknowns assumed in the matrix M; either will be given based on the requirement
for the transformation described in (7.13), or will be determined according to the unique
structure of the identity matrix 1.

In the first stage of row operations, we are confined to performing a transformation
of the matrix My (7.11) such that mys — I and myx, mgy — 0, for £ = 1, 2, 3, and 5,
according to the structure of 1. Let det(m4s) = 1 and det(my) = ... = det(msy) = 0,

which imply

CL7b8 S a8b7 = 07 Cg = 07 €7 = 17 Cr, d77 d87 €8, f77 f8 € {07 1} (713)

Clearly, there are totally 640 solutions for the unknowns appearing in (7.10) to be con-
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sidered in this stage. (10 for the condition azbs @ agb; = 0, 2 for each of the 6 arbitrary
Boolean valued unknowns, and thus totally 10 x 2° = 640 solutions) To illustrate the
simplest way of creating Boolean functions, however, only one among these 640 cases is

considered. Let us consider the case in which

0,7:1,b7:a8:b8:C7:d7:d8:68:f7:f8:0. (714)

Then, by performing the operations shown in Fig. 7.2(a), we have the transformation

My — My,

[ ar ay az ay as ag 0 0 a9 ap 1
1 1 0 0 1,400040 0 1
0 0 1 01,000 0 O
0 0 0 0 0 00 0=:1

M, = dy dy ds dy ds deg 7070 do- dip

0 1 0 1 074000 1
0o 0o 00 0 0100 O
o 00 0 0 0010 O
fo fofs o fs fo6 00 fo fio

1010 1 0001 0

_ my my, myg 0omy, -
My My Moz 0 mi

= | ms may maz 0 myy | (7.15)
0 0 0o I 0

mg My, Mg 0 mygs |
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in which we have chosen the following setting for the unknowns:

bl:1762:1>b3:0ab4:O>b5:labGZbQZOabl():la
c1=0,c0=c3=0,c4=1,c5 =c6 =c9=0,c10=1,

61262263264265266269261020. (716)

Let us proceed to apply the second series of operations, as depicted in the Fig. 7.2(b),
to perform the transformations mb, — I and mj,, m), — 0, for k = 1, 3, and 5. As a

result, we have

di=fi=dy=fo=0,ds=dy=f3=f1=0,ds=1,ds =0= f5 = fs =0,

dy = fo = dio =0, f10 = kyas=a3=,0. (7.17)

Note that according to the requitements det(m’, )=0 and det(m},)=0, a3 = a4 = 0 is

only one of the suitable choicesiand ds=7dz=10 is-the only choice. Therefore, the M] is
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@
A—HF—@ I
H—e
(@) (b)
BXOR
Source
A—e 5> Target
® Bilateral By Rotation
@ 5
(c) Composite o B, Rotation
A

Figure 7.2: The three quantum gate arrays performed in the stage of row operations: (a)
for My — MY; (b) for M} — MY; and (c) for Mj — 1.
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transformed into MY:

ap az 0 0 a5 ag 0 0 a9 aqg
1 1 001 0 O0O0 O 1
0o 0100 O0O0O0OTO0O O
0o 0010 0O0O0O0 O
M = 0o 0001 0 O0O0O0 O
0 1. 00 0 1 0 0 0
0 000 0 01 0 0
0o 000 0 0 O01 0 O
1 0001 0O0O0T1T O
| 00 00 050 0050, 1 |
_ miy 0 miy 20 mi -
0 I 0 %0 0
= | mg 0 mgg O g |- (7.18)
0o 0 0 I O
| m5; 0 mgy 0 mg; |

Finally, if the matrix MY is transformed through additional two BXOR and one o, B,
operations, as shown in Fig. 7.2(c), it results to the identity matrix 1. In this stage,
we have set the rest of the unknowns to be one of the alternatives: a; = 1,as = 0,a5 =
1,a6 = 0,a9 = 0, and a1y = 0. The whole sequence of basic operations, as shown in Fig.
7.3, is obtained by combining the three sub-sequences as shown in Figs. 7.2(a)-(c). It

will transform the matrix M; into the identity matrix 1. This circuit is the simplest one
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S

Ml

"

Figure 7.3: The gate array for the transformation M; — 1. The basic unitary operations
are performed in the order from left to right, while if they are performed from right to
left, then the inverse transformation M; — 1 is accomplished.

since it involves only six BXORs, and,thecorresponding matrix reads

11

M,

I
o o o o

0

0
1

1

0

0

1000101000

it
1

(7.19)

Performed by this circuit, the correspondence between the error syndromes e and the

combined measurement results v\ is also listed in Table 7.1. Referring to Table 7.1, or

the matrix My, when Bob obtains the measurement result v® (= 0110), for example, he

knows the pair to be purified is in the state ¥ (= 01) and thus simply performs the Pauli

operation U?EQ) = 0, to recover it to the good state ®.
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7.4 'The encoder-decoder circuit for a perfect five-

qubit error correction

The 1-EPP depicted above can be directly converted to a five-qubit QECC whose encoder-
decoder circuit has the same configuration as the one shown in Fig. 7.4 [141]. However, in
the language of QECC, the classical high-low or phase-amplitude bits used to code the Bell
state in the 1-EPP are now used to code operators belonging to the Pauli group, namely,
I =000, =01,0, = 10,0, = 11. When acting on a single qubit, the Pauli operator
produces either no error (by I), a bit flip error (by o,), a phase flip error (by o), or a bit-
phase flip error (by o,). Therefore, such a code is convenient because the codewords e&i)
are now replaced by ET@, which represent the 16 error syndromes described by five-Pauli-
operartor tensor products. Futthermore,- the. transformation described by the matrix
equation (7.3) is now replaced by the similarity transformation of operators described
as: WO = Uy *, where U (U%) represents-the sequence of the basic operations
performed in the decoder (encoder) ¢irenit: Clearly, both the encoder and decoder circuits
have exactly the same quantum gate arrangement but they should be run in opposite
orders. In order to perform the transformation mentioned above, this time the single-
qubit Hadamard transformation: H = H* = (o, + 0.)/v/2, is used to perform the bit
change H(x,y)H* — (y,z), the single-qubit transformation: Q = Q* = (0, +0.)/V?2, is
used to perform Q(z,y)Q" — (z,x@y), and the two-qubit CNOT gate is used to perform
(CNOT)(zs, ys)(zr, yr)(CNOT)t — (x5 @ x7, ys)(xr, ys ®yr), respectively. That is, in
the five-qubit QECC to be presented the basic single- and two-qubit operations needed
to be implemented are H, (), and CNOT.

For the present five-qubit QECC, the correspondence between the codewords W® and
EY is exactly the same as that between the derived matrix M; given in (7.9) and the
identity 1. The QECC is performed as follows. If a state |¢) = a|0) + G|1) is to be
protected in a quantum computation, it is first accompanied with four extra qubits in the

state |0). Then the five-qubit state |¢) |0) |0) |0) |0) is encoded by the performance of U™.
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(a) The operation of encoder circuit
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(c) The operation of encoder circuit
for 1on-trap quantum computers

Figure 7.4: The perfect five-qubit error correction. (a) The initial tensor prod-
uct state is encoded to an entangled state |¢g). (b) After suffering from the single-

qubit error, the state EY |pg) is then decoded, resulting in the final tensor product
state(UéZ) |p)) |a’b'dd) . Here, P = HQ, PT™ = QH. (c) The encoder circuit from (a) is

rewritten in terms of the gate primitives of an ion-trap quantum computer.
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After the encoded state is subjected to ET@, the erroneous state then is decoded by the

implementation of U. The resulting state turns out to be

6y = UEPUT(|¢)]0)|0) |0)]0))
= W9(|g)[0)]0) |0) |0))

= (U o)) 1) V) ) ) (7.20)

where Uéi) is the single-qubit Pauli operation acting on the first qubit and is dependent on
the measurement result on the four extra qubits. When the extra qubits are measured in
the computational basis, the measurement result v = a/t/¢d’ is obtained. Eventually, the
corresponding Pauli operation U?fi) is performed on the remaining qubit, which is in the
state Uéi) |¢) , to recover the initial’state |¢) . The procedure of performing the five-qubit
QECC is quite simple, same as-the one reported, by-Laflamme et al. [77], and is displayed
schematically in Fig. 7.4. The present QECC is equivalent to the aforementioned 1-EPP,
which adopts the circuit shown m Fig. 7.4, so Table 7.1 is also useful to it. As a result,
when referring to Table 7.1 again, if ‘the measurement result v® = 0110 is read, then
U = o, is performed to recover the initial state |¢) = «|0) + 8|1). The encoder-
decoder circuit required to perform the present QECC, as shown in Figs. 7.4(a) and (b),
is rather simple; it contains nine operations, in which only six CNOTSs are required. As
a matter of fact, this circuit is one of the simplest ones derived so far. The other best

known circuit is the one presented by Braunstein and Smolin [139] and its corresponding
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matrix is

[ 101010O00O0O0O0 |
0101010000
001010O0O0O0
01 11100001

M e — 1010001000 (7.21)

1011011000
0000O0OO0OT1TO0TO0O
000101O01O01
0010101 10

i 00101032011 :

The efficiency of a coding scheme can becharacterized by the shortness of the encoder-
decoder circuit. The shortness criterionyis=hased on the fewest total operations or the
fewest CNOT operations [74]. The.total eperations include one-qubit rotations and
CNOTs. It is equivalent to determine the minimum experimental efforts for implementing
the shortest coding circuit on a quantum computer. The number of laser pulses required
to perform a encoder-decoder circuit is a reasonable measure of the efficiency for ion-trap
computers [139, 144]. To count the number of laser pulses, the encoder circuit from Fig.
7.4(a) is rewritten in terms of the gate primitives of an ion-trap quantum computer and
shown in Fig. 7.4(c). It is interesting to observe that two pairs of CNOTSs (the 2nd and
3rd and the 4th and 5th ones) in the present circuit can be combined as two three qubit
gates and can be implemented as single element. Besides, the functions of operators U
and V' implemented on an ion-trap quantum computer are equivalent to the ones of op-
erators H and () respectively. Since each single-qubit operation requires one laser pulse,
the two-qubit gate needs three pulses, and the three-qubit gate requires four laser pulses,
the present circuit also requires only 24 laser pulses if it is implemented on an ion-trap

quantum computer, same as the Braunstein and Smolin circuit. The numbers of total
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Table 7.2: Three efficiency criteria and the corresponding costs for four circuits have
been presented. Circuit 1 is given by Bennett et al. (Fig. 18 in Ref. [74]) and is
unoptimized. The optimized circuit of Bennett et al., denoted by Circuit 2, mentioned in
Ref. [74] consists of six two-qubit controlled-NOT gates only. Since the number of laser
pulses depends on the detailed structure of the circuit, it is not shown here for laking the
detailed information. Circuit 3 is the simplification of the coding circuit of Laflamme et
al. proposed by Braunstein and Smolin (Fig. 1 in Ref. [139]). One can find that the
original caicuit of Laflamme et al. (Fig. 1 in Ref. [77]) is more complicated and requires
41 laser pulses. Circuit 4 denotes the simpest circuit has been found by computer search
(Fig. 3 in Ref. [139]) and by the systematic method presented in this work.

Criteria Circuit 1 Circuit 2 Circuit 3 Circuit 4
Total number of operations 12 11 10 9
Number of CNOT 7 6 7 6
Number of laser pulse 35 * 26 24

operations, CNOTSs, and laser pulsesforithescircuits presented by Bennett et al. [74] and

Braunstein and Smolin [139] have also,béensummarized in Table 7.2.

7.5 Conclusion

This chapter has presented a rather simple encoder-decoder circuit to perform the five-
qubit, single-error correction protocol. The QECC derived herein is converted directly
from the restricted 1-EPP depicted above, so a major part of this work is dedicated
to the depiction of the 1-EPP. The present encoder-decoder circuit is the simplest one
corresponding to the derived matrix M; given in (7.20), which is derived via an analytical
approach [143]. This analytical approach, as shown, can help in deriving not only the
suitable matrix M for the five-qubit QECC but also the simplest version of encoder-
decoder circuit corresponding to the derived matrix. However, many possible matrices
M suitable for the QECC remained to be discovered analytically and thus, so many
candidates of encoder-decoder circuit that require only six CNOTs. The simplest circuit
that is even simpler than the present one and the Braunstein and Smolin circuit [139]
might not be found from these candidates. However, a more convinced proof which could

be a numerical approach based on the analytical approach introduced in Ref. [143] is
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required in the future work.
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Chapter 8

Generation of many-qubit
entanglement via conditional

measurements ongecavity photons

8.1 Introduction

The regulation methods of quantum information processing [29, 30, 37| rely on sharing
maximally entangled pairs between distant parties. As it is well known, the entangled
pairs may become undesired mixed states due to inevitable interactions with environments
[145]. For this reason, great attentions have been focused on the agreement of entangle-
ment purification [74-76], experimental schemes of entanglement distillation [146], and
the decoherence mechanisms of qubits in a reservoir [147].

The environment may play an active role on the formation of the nonlocal effect under
well considerations. Many investigations [148] have been devoted to the considerations
of the reservoir-induced entanglement between two remote qubits. Many schemes have
been proposed to enhance the entanglement fidelity by manipulating a third system which
interacts with two remote qubits [149-152]. We propose a scheme to generate (or purify)

multi-particle entanglement between dot-like single quantum well (QW) excitons inside
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dot-like single
S+ microcavity Injected photon field

Excitation pulse
quant'gm well Au \1 ‘
= =
W\

Pulse E field

(a) (b)

©) (d)

Figure 8.1: (a) The quantum dev1ces with three dot-like quantum wells embedded in a
microcavity which is constructed by a Z]hTe- medlum and two Au mirrors. This device can
be prepared by the MBE, theze-beam hthography, and the conventional semiconductor
processing. (b) Initial state preparation‘for W-s Westate generation. (c) Evolution of the QWs
and cavity field for a specific time perlod (d) Detectlon of cavity field for determining
the number of the cavity photon.. Procedures ('b are repeated until finishing the
entanglement generation.

a single-mode microcavity as depicted in Fig. 8.1(a) [153, 154]. The whole procedure, as
shown in Fig. 8.1(b)-(d), can be performed by optical initialization, manipulation, and
read-out of exciton state. In the present scheme, the logical state 1), in the ith QW
is coded by the presence of an exciton, while the logical state |0), represents the crystal
ground state with no electron and hole. To analyze the dynamics of the many-exciton
entanglement, a series of conditional measurements are taken on the cavity field state
by means of the electro-optic effect. First of all, we demonstrate how double-exciton
Bell state can be generated via conditional measurements. Then, we discuss the cause
of multi-exciton W state, and propose a general formulation of entanglement generation.
Finally, application to quantum teleportation is pointed out, and may be achieved with
current technologies.

In the QW-cavity system, we assume that the lateral size of the QWs are sufficiently
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larger than the Bohr radius of excitons but smaller than the wavelength of the photon
field. The dipole-dipole interactions and other nonlinear interactions therefore can be
neglected. Under the rotating wave approximation, the n QWs and the cavity field are

described by the Hamiltonian

H, = Z hry;(bo™ + blo; ) + Z 5 0i + wyb'h, (8.1)
i=1

i=1

where 7; denotes the coupling between the ith QW with an excitation energy w; and
the photon with an energy wy, b (b) is the creation (annihilation) operator of the cavity
field, and ;" (0;) represents the creation (annihilation) operator of the excitons in the ith
QW. If the cavity mode is assumed further to be resonant with the excitons and equally
interact with each QW, i.e. w; = wp'= w and = v, Eq. (8.1) can be reduced to a simple

form in the interaction picture:

Hn(]) = Z’y(b0'+ + bTO'_), (82)
i=1

where /i = 1 has be set and o* = 31=" 0.

8.2 Bell states generation

Plenio et al. [149] have shown that a maximally entangled state, or called Bell state, for
two atoms can be created through a leaky cavity via continuously measurements of the
vacuum cavity field state |0),. Here we investigate further how the measured photons
affect the Bell state generation especially when the photon number is greater than zero.

Suppose we start with the initial state [¢g) |0), = [1),]0),]0), = |10)|0)., and then a

pulse with (@) — 1) photons is injected into the microcavity. The total number of quantum
count of the system is (). As the (@) — 1) photons have been injected into the cavity,

the total system will evolve with time, and if the system evolves without interruption,

it will go into a QW1-QW2-cavity field entangled state. If a measurement on the cavity
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field state is taken at some instant, the detector would count (@ — 1), (Q — 2), or @
photons. Since the Bell state involves a single excitation, if the cavity mode stays in state
|@ — 1), we can infer that the double-QW will evolve into a maximal entangled state via
the quantum jump approach [155]. After measuring the cavity field state, injecting the
subsequent (@ — 1) photons into the cavity is necessary for the sake of keeping the photon
in its state. We then let the whole system evolve for another period of time 7. Again, we
proceed to measure the cavity photon to make sure whether it is (Q — 1) or not. If the
cavity photon remains in the (¢} — 1)-photon state, the repetition continues; if not, the
whole procedure should be started over.

The time evolution of the n QWs subsystems under N times of successful repetitions

is described by the operator:

UMY = [(Q— 1e @ |Q—1)]". (83)

The conditional operator U(7) can beé explicitly evaluated

U(T) = cos <\/(2Q —1l)oto™ — (Q — 1)0277') : (8.4)

where 0° = sz o?. In deriving the above result we have utilized the expansion for the
time evolution operator e~*n() and the algebra [0+, 0] = ¢*. One also notes that both
oto~ and 0® commute with the translational operator, which transfers |¢;) = |01) to the
state |¢o) = |10) as n = 2 has been set, so for two-qubit case the operator U(7) can be

decomposed by the eigenstates of the translation operator

2
1 ‘om
L) = — Z e D |y (8.5)
with [ = 0,1. Thus we get the conditional operator in the diagonal form:
U(7) = cos(\/4Q — 2vT1) |Lo) (Lo| + |L1) (L1 . (8.6)
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Furthermore, the probability of success for measuring (¢ — 1) photons after N times of
repetitions, P(N,n = 2), and the fidelities F7,(/V,2) and Fp,(V,2) with respect to |Lg)
and |L;) can be worked analytically

For a general case of y7 and @, P(N,2) approaches to the value of 1/2 in the limit of
large N ; meanwhile the subsystem goes in to the QW1-QW2 maximally entangled state:
|L1) = (J01) — |10))/+/2. On the other hand, one can also find a suitable condition such
that the probability goes to unity. In this case, the system will not evolve with time,

which is similar to the Zeno paradox with finite duration between two measurements.

8.3 Multi-qubit W state

We may directly follow the scheme based on continues measurements to achieve the multi-

particle entanglement generation. In what follows we will show that the multi-particle en-

tangled state indeed can be produced via conditional and constant measurements. More-

over, the W-type maximally entanglement can be generated in the multi-QWs system.
Suppose the whole system is initially prepared in the state [1g) 1), = |1),,10),, ; -.-10); 1), =

|10...0) |1),. We follow the same formalism for two-particle entanglement, but @ = 2 is set

in this case. The conditional propagator U(7) =, (1] e~*®) |1)_that governs the progress

of the n dot-like single QWs is given by
U(T) = cos <\/ 3oto™ — 0277) : (8.7)

which is derived from Eq. (8.4) for Q = 2. The set of the eigenbasis for the translational

operator is expressed as

R
L) = —= > e gy (8.8)
h=1

where |¢p) = [1), @i, 2, 10); and [ = 0,1,2,...,n— 1, is exerted to represent U(7) in the
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Figure 8.2: The variations of fidelity Fy, and the purification yield Yy ,(in the inserted
diagram) for cases n = 3(0J),6(V), and 9(A), and for two different kinds of initial states:
p = pl+ (1 —np)|Ly) (Lo| (dash) and |¢y) (solid), in which the evolution time of each
case, 73 = 7/(vV/107), 76 = 7/(v/227), and 19 = m/(4v/27) has been set.
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diagonal form:
n—1
U(7) = cos(V4n — 2y1) | Lo) (Lo| 4+ cos(v/'n — 2yt Z | L) ( (8.9)
I=1

Here, |Lg) is just the W-type entangled state:

10,01 4 10..10) + ...+ ]10...0) . (8.10)

| Lo) = [W) = NG

The probability of success for N conditional measurements and the fidelity of the QWs
with respect to the W state at the N-th stage can also be obtained

Fig. 8.2 shows the variations of the probability P(N,n) and the purification yield
Y (N, n), defined by Y (N,n) = Hﬁio P(@m),.for the cases of n = 3,6, and 9 with two dif-
ferent kinds of initial states. Thefidelitysineréases with the number of the measurements,
the probability, however, decreases more rapidly. Although, the yield Y (N, n) actually
decreases with the increasing of /N, even-atrone step the whole particles can be entangled
in the W-type state. In addition to the entanglement generation, present scheme can also
be applied to entanglement purification. If the initial state is a mixed one with a single
excitation and is expressed as the form: p = pl + (1 — np) | Lo) (Lo|, where p is the noise
intensity, it can be purified into a pure state. The purification yield and the fidelity are
shown in Fig. 8.2 for the case p = 0.5.

To discuss our formulation further, let us consider the () = 1 case. If we take condi-
tional and constant measurements on the photon state |0), and let the initial state of the
whole system situate in [¢g) |0), = [10...0) |0),, the operator U(r)Y = cos” (WVT)

can be diagonalized into the following form
U(r)Y = [cos™ (vnyT) — 1] W) (W] + 1, (8.11)

where 1 is the identity operator. The probability of success under the process can then
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be written as

P(N,n) == [(n—1) 4 cos®™ (v/ny7)] (8.12)

S|

and the fidelity for obtaining the W state is

cos®™ (v/n7)

Fw (N = . 8.13
w(N,n) (n —1) + cos?N (y/ny) (8.13)
For a generic setting of v7 and large N, the QWs is indeed in the final state:
1
|L) = ——=[(n — 1) |10...0) — |010...0) .. — |0...01}]. (8.14)
n(n —1)

When n = 2 and ) = 1, the above formulatien réduced to the Bell state [149]. However,
for n > 3 the multi-QWs W state-cannot be'generated in this system if we continuously
monitor the cavity vacuum.

Fig. 8.1(b)-(d) depict the implementationprocedure of the three-qubit W state gen-
eration for demonstrating our proposed scheme discussed above. Firstly, three dot-like
single quantum wells are in ground states, and then one is excited by an excitation pulse.
A resonant photon with vertical linear polarization generated via a quartz plate is injected
into the cavity which is constructed by ZnTe with both Au films. Meanwhile, through
the pulse E field [156], the linear polarization of injected photon is rotated from vertical
to horizontal via the Electro-optic effect in ZnTe [157] (Fig. 8.1(b)). After a sufficient
evolution time with dot-like single quantum wells, as shown in Fig. 8.1(c), the photon in
cavity could be leaked out the cavity by a pulse F field with suitable timing and detected
by a single photon avalanche diode for checking whether the number of the cavity photon
is desired, as shown in Fig. 8.1(d). This procedure would be repeated until finishing the

purification.
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8.4 Quantum teleportation

Experiments of teleportation have already been realized in several different physical
systems. See the introduction in the first chapter. In solid state systems, however,
experimental demonstration of teleportation in charge qubits is still lacking, and only few
theoretical schemes are proposed [158]. Here, we demonstrate that present device can
also be applied to quantum teleportation via superradiance [159].

Consider now two QWs embedded inside the cavity. First of all, controlling the ori-
entation or the band gap of the excitons in QWs via the external field such that only
QW-1 can interact with the cavity photon. After injecting one photon into the cavity,
singlet entangled state can be created between QW-1 and the photon with appropriate
evolution time 7. One then switc¢hes off-the eavity effect such that the photon may leak
out of the cavity. Meanwhile “a pulse laser is applied to QW-2 to create an unknown
state v |1), + (3 ]0),, which is to-be teleported.—In this case, the total wave function of the

system can be written as

W) = 000, = D0 ® (al), + 510),)
_ o b
=00 (5 M)+ 1), @ (S5 [T
o)+ 81000 @ 22 4 (a, + 510, & TV (8.15)

where [T7) = [1); [1),, [T=1) = [0);[0)y, [So)12 = (1)1 |0); — [1), |O>1)/\/§ , and [Tp)1e =
(11), 10), + 1), 10),)/V2.

If both the QWs are now tuned to be resonant with each other, common photon
reservoir will drive the system to decay collectively with four possibilities for the detector’s
results: zero photon, two photons, one photon via the superradiant channel, or one photon
via the subradiant channel [160]. If the measurement outcome is a single photon with a
suppressed decay rate, the teleportation is achieved automatically. As for the result of one

photon with enhanced decay rate, all we have to do is to perform a phase-gate operation
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on the cavity photon state to complete the teleportation.

Since decay time is a statistical average, one might ask how to distinguish between sub-
and superradiant photons via the decay time in one single shot? We would like to point
out that because of the collective decay, the momentum of the emitted photon ? depends
on the separation of the two QWs 77, i.e. ? 7 =0 or 7 corresponds to the emission of
super- or sub-radiant photon, respectively [160]. Therefore, sub- and super-radiance can
be distinguished by placing detectors at appropriate angles. The teleportation can then
be tested by repeating this scheme over many cycles and probing the state of the cavity
(one or no photon) after each cycle.

In usual teleportation scheme, one has to perform Hadamard and CNOT transforma-
tions on one of the entangled particles and the teleported quantum state. After that, the
information from the joint measurements;of the two particles has to be sent to the other
entangled particle in order to allow proper whitary operations. In our proposal, however,
the Hadamard and CNOT transformations-ate omitted and the joint measurements are
performed naturally by collective decay. Thiskind of “one-pass”teleportation is similar
to S. Bose’s proposal [161], where the teleportation between two trapped atoms in two
independent cavities is achieved by the leaked cavity photons impinging on a 50-50 beam
splitter. Just like S. Bose’s protocol, our probabilistic proposal can be modified to telepor-
tation with insurance, so that in the cases when the protocol is unsuccessful the original

teleported state is not destroyed, but mapped onto another reserve QW [162].
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Chapter 9

Quantum search algorithm

9.1 Quantum search, problem

To solve a search problem associated a unsorted:database, the remarkable Grover’s quan-
tum algorithm [57, 58] providés a quadratic speedup over its classical counterpart. The
search problem can be described®as follows: for-a-given function f, there is one unknown
element in the set {0,1,..., N — 1} that satisfies f(x) = —1, say = = 7, whereas the other
N — 1 ones give f(z) = 1. How many times of evaluations of f are required to determine
the element 7 for f(7) = —17 Through a conventional algorithm, one needs O(N) trials
to achieve this aim. How about the utility of quantum algorithm? The search problem
can be rephrased in the quantum mechanical language: for a given unitary operator I,
that is sometimes called the oracle operator, and a set of state vectors (orthonormal ba-
sis): {]0),|1),....,|N = 1)}, I |x) = |z) for all states in the set except I, |r) = — |z) for
x = 7. How many queries of I, are required to determine |7)? By Grover’s algorithm
[57, 58], one needs only O(v/N) quantum mechanical steps to find the marked state |7)
out. The first step of Grover’s algorithm is to prepare a superposition state of all elements:
|s) =1/VN Nz_l |z) . Then apply the Grover kernel G = —1I,I; to |s), where I, is an uni-
tary operatoi_;nd contains no bias against the marked state. After about m = v/ N /4

repetitions, i.e., G™ |s), the probability to get |7) is close to one if N is large. Since every
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single G involves one query of I, O(v/N) searching steps are required for a quantum
search task. In what follows, we will investigate on the certain quantum search and the
phase-error tolerance of Grover’s algorithm. In the next chapter, we will demonstrate the

one-way quantum computation experimentally by solving a quantum search problem.

9.2 Quantum searching with certainty

Grover’s algorithm provides a high probability in finding the object only for a large N. The
probability will be lower as N decreases. Grover [163], however, also proposed that the
Walsh-Hadamard transformation used in the original version can be replaced by almost
any arbitrary unitary operator and the phase angles of rotation can be arbitrarily used
as well, instead of the original m-angles. The utility of the arbitrary phase angles in fact
can provide the possibility for finding the marked item with certainty, no matter whether
N is large or not, if these angles ohey-a:so-called matching condition.

Some typical literatures concerning with the:matching condition will be mentioned
here. Long et al. [164, 165] have derived the relation ¢ = 6, where ¢ and 6 are the
phases used in the algorithm, using an SO(3) picture. Hgyer [166] , on the other hand,
has proved a relation tan(¢/2) = tan(6/2)(1 —2/N), and claimed that the relation ¢ = 6
is an approximation to this case. Recently, a more general matching condition has been
derived by Long et al. [167] , also using the SO(3) picture . In the last article, however,
only the certainty for finding the marked state is ensured. In fact a phase angle appearing
in the amplitude of the final state after searching will remain. If the final state should
be necessary for a future application, i.e., if it should interact with other states, this
phase angle will be important for quantum interferences, but it can not be given in the
SO(3) representation. We therefore intend to derive the matching condition in the SU(2)
picture. In addition, we will also give a more concise formula for evaluating the number
of the iterations needed in the searching and deduce the final state in a complete form

as € |7), where |7) is the marked state. The optimal choice of the phase angles will be
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discussed, too [168].
Suppose in a two-dimensional, complex Hilbert space we have a marked state |7) to
be searched by successively operating a Grover’s kernel G on an arbitrary initial state |s).

The Grover kernel is a product of two unitary operators I. and I,, given by

I, = I+ (% —1)|7) (7], (9.1)

L = I+’ =1Uln) (U,

where U is an arbitrary unitary operator, |n) is another unit vector in the space, and ¢
and @ are two phase angles. It should be noted that the phases ¢ and 6 actually are the
differences ¢ = ¢9 — ¢ and 6 = 6, — 6, where ¢s, @1, 05, and 6;, as depicted in Refs.
[169, 170], denote the rotating anglés to |7), the vector orthogonal to |7), U |n), and the
vector orthogonal to U |n), respectively.|The Grover kernel can be expressed in a matrix

form as long as an orthonormal set of basis vectors-is designated, so we simply choose
1) = |7) and |11) = (U |n) = Usgfr)/I"; (9-2)

where Uy, = (7| U |n) and | = (1 — |U,|*)"/2. Letting U,, = sin(8)e'®, we can write, from

(9.2),
Un) = sin(B)e"™ |I) + cos(B) |I1) , (9.3)

and the Grover kernel can now be written

G = - LI
(14 (e —1)sin®(B)) (e — 1)sin(B) cos(B)e™

_ | | | . (9.4)
e (e — 1) sin(B) cos(B)e™™ 1+ (e — 1) cos?(3)

In the searching process, the Grover kernel is successively operated on the initial state

|s). We wish that after, say, m iterations the operation the final state will be orthogonal
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to the basis vector |I1) so that the probability for finding the marked state |7) will exactly

be unity. Alternatively, in mathematical expression, we wish to fulfill the requirement

(IT|G™|s) =0 |

since then

(T G™ [s)] = [{I]G™ |s)| = 1.

The eigenvalues of the Grover kernel G are

(b8
(= 4w
)\172 = —6( 2 ) ,

where the angle w is defined by

¢ — 0
2

) — 2sin(§) sin(g) sin?(3) .

cos(w) = cos(

The normalized eigenvectors associated with these eigenvalues are computed:

e~i% e cos(z) — sin(x)
lg1) = g2) = Y
sin(x) e'ze " cos(x)

In expression (9.9), the angle z is defined by

sin(z) = sin(g) sin(28)/v/ I,
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where

lm = (sin(w)+ sin((b ; 9) +2 cos(g) sin(g) sin?(3))* + (sin(g) sin(203))?
= 2sin(w)(sin(w) + sin(¢ )42 cos(g) sin(g) sin?(3)).

The matrix G™ can be simply expressed by G™ = A7 |g1) (1] + AJ* |g2) (92|, so we have

e | €™ cos2(z) + em ™ sin®(z) e '8 e sin(mw) sin(2x)
Gm = (_1>mezm(T)

e'f e sin(mw)sin(2z) ™ sin?(x) + e~ ™ cos?(z)

(9.10)

The initial state |s) in this work isseonsidered to be an arbitrary unit vector in the

space and is given by

|s) = sin(Bo) [1) + cos(Bo)e™ |IT) . (9.11)

The requirement (9.5) implies that both the real and imagine parts of the term (17| G™ |s)
are zero, so, as substituting (9.10) and (9.11) into (9.5), one will eventually obtain the

two equations:
— sin(muw) sin(g — a — u) sin(2z) sin(fy) + cos(mw) cos(Fy) = 0, (9.12)

sin(mw) 005(5 — a — u) sin(2z) sin(fy) — sin(mw) cos(2z) cos(Fy) = 0. (9.13)
Equation (9.13), by the definition of the angle x, will reduce to the matching condition

b —0

(sin( 5

)42 cos(g) sin(g) sin2(3)) cos(fo) = sin(g) sin(28) cos(%—oz—u) sin(f), (9.14)
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which is identical to the relation derived by Long et al. [167]:

o, N 0. cos(23) + sin(20) tan(f) cos(a + u)
tan(§) =t (2)(1 — tan(f) tan(%) sin(23) sin(a + u)

). (9.15)

Equation (9.12), under the satisfaction of the matching condition (9.14), or (9.15), will

reduce to a concise formula for evaluating the number of iterations m:
cos(muw + sin~ ' (sin () sin(% —a—u)))=0. (9.16)
By equation (9.16), one can compute the number m

m=T[f], (9.17)

where [ | denotes the smallest integer greater thanthe quantity in it, and the function f

is given by

7 —sin” (sin(B) sm(— ~ s w))

= oo (cos( ) — 25in(2) sin() i (3)) (9.18)

It can also be shown that if the matching condition is fulfilled, then after m searching

iterations the final state will be

G"s) = ¢ |r) = Il |y (9.19)
where the angle ) is defined by

Q= tan_l(cot(g —a—u)). (9.20)

The phase angle appearing in the amplitude of the final state will be important for quan-
tum interferences if possibly the state should interact with other states in a future appli-

cation, so we would had better remain it as the present form.
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The matching condition (9.14), or (9.15), relates the angles ¢, 0, (3, 3y , and o+ u for
finding a marked state with certainty. If 3, 5y and a4 u are designated, then ¢ = ¢(0) is
deduced by the matching condition. As ¢() is determined, we then can evaluate by (9.18)
the value of f = f(¢(0), ) and consequently decide by (9.17) the number of iterations
m. The functions ¢(f) and f(#) for some particular designations of 3, Gy and «a + u
have been shown in Figs. 9.1 and 9.2. These examples have schematically depicted that
theoretically we can establish a tabulated chart of possible choices between all of the
phases for finding a marked state with certainty. It is worth noticing that as o +u =0
and 0 = fy, the matching condition recovers ¢ = 6 automatically since then eq. (9.13)

becomes an identity, and accordingly one has

T sjn_l(sin(;g) sin( ))7 for ¢ — 0. (9.21)

2sin~* (sin(£) sin(3))
This is the case discussed in Ref. [165]; an example can be read by the straight line of
unity slope for 3=3,=10"* and+the corresponding f vs @ variation in Fig. 9.1. It can

also be shown that the matching condition'(9.14) will recover the relation considered by

Hoyer [166]:
tan(g) = tan(g) cos(203), for cos(¢/2 —a —u) =0. (9.22)

In Figs.9.1 and 9.2 we have shown by the cross marks some particular examples of this
special case.

Observing Figs 9.1 and 9.2, one realizes that for every designation of 3, 5y and o + u,
the optimal choices for ¢ and 6 is letting ¢ = 6 = m, since then the corresponding f is
minimum under the fact df /d0 = (0f/0¢)(d¢/dO) + 0f /00 = 0, for p = 0 = 7. We thus

denote the optimal value of m by

5 —sin”! (sin(f) cos(a + U))w ' (9.23)

oy = ()] = | 8
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Figure 9.1: Variations of ¢(#) (solid) and f(#) (broken), for a +u = 0, By = 1074, and
B =10"* (1), 1072 (2), 0.5 (3) and 0.7 (4), respectively. The cross marks denote the
special case of Hgyer [166], while the entire cirles correspond to the optimal choices of ¢,
and 6,, for « +u =0, By = 107* and 3 = 0.7. The solid straight line 1 corresponds the
case ¢ = 0, while the solid curve 2 is only approximately close to the former.
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Figure 9.2: Variations of ¢(#) (solid) and f(#) (broken), for a« +u = 0.1, §y = 0.1, and
B =10"* (1), 1072 (2), 0.5 (3) and 0.7 (4), respectively. The cross marks denote the
special case of Hgye [166]. The solid curves 1 and 2 are very close, and both of them are
only approximately close to the line ¢ = 6.
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With the choice of m,,, however, one need to modify the phases § and ¢(6) to depart from
7 so that the matching condition is satisfied again. For example, if o +u = 0, 5y = 1074
and # = 0.7 are designated, then the minimum value of f will be min(f) = 0.56 . So we
choose m,, = 1 and the modified phases are 6,, = (1 £ 0.490)7 and ¢,, = (1 £ 0.889)m,
respectively. This example has been shown by the marked entire circles in Fig.1. It is
worth noticing again that under the choice of m,, the modified ¢ and 6 for the special

case considered by Long [165] will be

sin Ty T2 ) )
)

Gop = Oop = [min(f)] = 2 sin~*( ()

where

_[5-5
m(”"hﬁ W

This is in fact a special case in which the phases ¢,, and 0,, can be given by a closed-form

formula.

9.3 An improved phase error tolerance in quantum
search algorithm

Grover’s quantum search algorithm [57, 58] is achieved by applying Grover kernel on an
uniform superposition state, which is obtained by applying Walsh-Hadamard transforma-
tion on a initial state, in a specific operating steps such that the probability amplitude of
marked state is amplified to a desired one. Grover’s kernel is composed of phase rotations
and Walsh-Hadamard transformations. The phase rotations include two kinds of opera-
tions : m-inversion of the marked state and m-inversion of the initial state. It has shown
that the phases, 7, can be replaced by two angles, ¢ and 6, under the phase matching

criterion, which is the necessary condition for quantum searching with certainty. In other
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words, the relation between ¢ and 6 will affect the degree of success of quantum search
algorithm. There have been several studies concern with the effect of imperfect phase
rotations. In their paper [164], Long et al. have found that the tolerated angle differ-
ence between two phase rotations, d, due to systematic errors in phase inversions, with a
given expected degree of success Py, is about 2/v/ NP, , where N is the size of the
database. Hgyer [166] has shown that after some number of iterations of Grover kernel,
depending on N and unperturbed 6, it will give a solution with error probability O(1/N)
under a tolerated phase difference § «~ O(1/v/N). The same result is also redrived by
Biham et al. [171]. On the other hand, a near conclusion, § «~ O(1/N?/3), is presented
by Pablo-Norman and Ruiz-Altaba [172].

The result of Long et al. [164] is based on the approximate Grover kernel and an
assumption: large N and small § et al=Howevéer, we found that the main inaccurancy
comes from the approximate Grover kernel:-Since-all parameters in Grover kernel con-
nect with each other exquisitely, any reduction to the structure of Grover’s kernel would
destroy this penetrative relation, soraccumulative errors emerge from the iterations to a
quantum search. Although this assumption lead their study to a proper result, it cannot
be applied to general cases, e.g. any set of two angles in phase rotations satisfies phase
matching condition [167, 168] . In what follows, we will get rid of the approximation
to Grover kernel, then derive an improved criterion for tolerated error in phase rotation
and the required number of qubits for preparing a database. Besides, a concise formula
for evaluating minimum number of iterations to achieve a maximum probability will also
be acquired. By this formula then evaluating the actual maximum probability, one can
realize the derived criterion for tolerated error is near exactly [173].

Let the operator U is Walsh-Hadamard transformation W, the orthonormal set is

1) = |7} and [7.) = (W |n) = Wiy [7))/1 . (9.24)
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where Wy, = (7| W |n) and | = (1 — [W,,|*)"/2. Furthermore, let W, = sin(f3), we have

|s) = Wn) = sin(B) [7) + cos(B) [71) (9.25)

and the Grover kernel can now be written

G = —-1,I;
e?(1+ (e — 1)sin?(B)) (e — 1) sin(B) cos(B) (9.26)
e?(e? — 1) sin(B) cos(3) 1+ (e — 1) cos?(3)

After m number of iterations, the operator G™ can be expressed as
e | €M co8(x) + e T sin (7) e~ sin(mw) sin(2x)
Gm = (_1>mezm(7) )
€' 21 sin(mw) sin(2@) e gin?(z) + e~ cos?(z)
(9.27)
Then the probability of finding a marked state is
P = 1-[|(r|G™|s)] (9.28)

= 1 — (cos(mw) cos(f) — sin(mw) sin(§) sin(2z) sin(3))?

— sin%mw)(cos(%) sin(2z) sin() — cos(2z) cos(3))%.

Moreover, by the equation 9P/d(cos(mw)) = 0, the minimum number of iterations for

obtaining the maximum probability, Pyax(cos(mmmw)), is evaluated,

17 [b—2
cos™*( 2b“)

Mumin (5, ¢,0) = — (9.29)
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where

a = sin(2z)cos(20) + cos(2x) cos(g) sin(273),
b = (2+sin?(2z) + (3sin?(2z) — 2) cos(43) — 2sin?(2x) cos(¢) sin®(20))

+2sin(4x) cos(g) sin(403).

For a sure-success search problem, the phase condition, ¢ = 6, provided iterations,
Mumin = (7/2 — sin™!(sin(¢/2) sin(3)) /w, is required. However, when effects of imperfect
phase inversions are considered, the search is not certain, then the new condition to phase
error, said 0 = ¢ — 6, and the size of database would be rederived in order to accomplish
the search with a reduced maximum probability. Now, we suppose the database is large,
ie., if sin() < 1, and a phase erret ¢ is small, swhere |§| < 1, one will have the following
approximation, viz.,

cos(w) = cos(g) -2 sin(g + g) sin(g) sin®(/3)

1— (% + 232 sinz(g)),

Q

sin(w) = (1 — cos?(w))Y/?
- (6% + 1632 sinz(g))1/2
2 Y
0
sin(2z) = 45 sin(3)

(02 + 1652 sinz(g))l/T
The probability P (9.28) then has the approximation
P =~ 1— cos*(mw)cos*(f) — sin®(mw) cos®(2z) (9.30)
= sin®(mw) sin®(22),
with a maximum value, by letting sin?(mw) = 1,

1643%sin?(2)
Pmax = Sl 2 2 - 2 931
sin”(2z) 52 + 1632 sirﬂ(%) ( )
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1.0 %
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0.6 1

max

0.4 -

0.2 -

0.0 - T - T - . . . .
0 5 10 15 20 25 30

Figure 9.3: Variations of exact vaule of Ppa. (n)(cross marks), 164%sin®(%)/(6* +
16%sin®(%)) (solid), and 43%/(62+4(3?) (dash) for § = 7, § = 0.01 where 8 = sin™' (27/2).
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1.0

0.8 -

0.6 -

max

0.4 4

0.2 1

0.0 +——7T—

Figure 9.4: Variations of exact vaule of Ppa. (n)(cross marks), 164%sin®(%)/(6* +
163%sin?(%)) (solid), and 432/(0% + 48?) (dash) for § = 7, § = 0.001 where g =
sin_1(2_"f2).
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The function (9.31) for two desiginations, § = 0.01 and 6 = 0.001, are depicted in Fig.
9.3 and Fig. 9.4 respectively.

Observing Fig. 9.3 and Fig. 9.4, one realizes the function (9.31) depicted by solid line
coincides with the exact value, obtained by Eq. (9.28) and Eq. (9.29), shown by cross

marks. On the contrary, the result of Long et al.,

43%sin?(%)

~ 2

Pmax ~ . I
02 + 432 sz(g)

(9.32)

is an underestimation depicted by dash lines.

9.4 On a family of quantum search algorithms robust
against phase-imperfections

Even in the case of large N, whére high*success rate in finding the marked state is expected
by using the standard Grover’s algerithm, inevitable noises including decoherence and
gate inaccuracies can significantly affect the efficiency of the algorithm. To overcome
such demerit we therefore should either apply the fault-tolerant computation [174] to
reduce gate imperfections and decoherence, or limit the size of the quantum database
to depress the effect of the uncertainty of the phase inversion operations. In another
way, we can also, if possible, consider implementing a modified algorithm which is itself
robust against phase imperfections and or decoherence. Recently, Hu [175] introduced an
interesting family of algorithms for the quantum search. Although these algorithms are
more complicated than the standard Grover’s algorithm, they can be proved to be robust
against imperfect phase inversions, so the limitation of the size of database can be greatly
relieved. In what follows we therefore intend to analyze the algorithms introduced by Hu
[175] in detail then show the robustness of the family in resisting the effect of imperfect
phase inversions [176, 177].

If we denote the phase inversion of marked state I, = 1+ (¢** —1) |7) (7| and the phase
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inversion of the initial state I, = 1+ (¢ — 1) |s) (s|, then the generalized Grover operator
is given by G' = I,I. and in n iteration the unit probability for finding the marked state,
viz., (| G"|s)|* = 1, is ensured if ¢ = 0. Instead of applying G” on the initial state
|s), Hu [175] presented and utilized the operators Ay, =(ITI1I,I,)" and Ay, 1 = G Ay, to
accomplish a quantum search with certainty, and named the former the even member and
the latter the odd member of the family {A, n = 1,2, ...} because they require even (2n)
and odd (2n+1 ) oracle calls in computation, respectively. The arrangement ITI11 I, will
be shown to have cancellation effect on phase errors in each iteration of the algorithm As,
and As,,1 and as a whole can ensure the robustness against imperfect phase inversion.
Consider a two-dimensional Hilbert space spanned by the marked state |7) and the
state |71 ), which is orthogonal to |7),. The initial state, as a uniform superposition of
all states, then can be express by'|s) =1/0). ="sin(3) |7) + cos(5) |71), where sin(5) =
\/W and M is the number of the target statess The eigenvalues of the operator ITI11,1,

are A\; o = cos(w) £ isin(w) and the icotresponding eigenvectors are computed

A1) = cos(z) |T) + isin(:)s)ei(%_"’) I7T1),

o) = isin(z)e @ |7) + cos() |71) (9.33)

where the rotation x and the related parameters are defined by

2r sin(2) sin(%) sin(28)

() = o) + sin?(2) sin(o) sin(2) (9-34)
. 92 0, . 9 (b . 92

cos(w) =1 — 2sin (5) sin (5) sin“(243), (9.35)

re’’ = cos(g) + isin(g) cos(20). (9.36)

Then in n iterations of the operator of [IITI.I, we will have Ay, =(III1I,I)" =

ATIAL) (A1) + A5 [A2) (A2, which can be expressed in the following matrix form:

cos(nw) + ¢sin(nw) cos(2x sin(2z) sin(nw e_"(g_”
A, — (nw) ( )-¢( ) (2z) sin(nw) | (0.37)
— sin(22) sin(nw)e’2™"  cos(nw) — isin(nw) cos(2x)
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where sin(2z) and cos(2z) can be computed in use of the definition (9.34) and given by

sin(2) — — sin®(%) sin®(23) 12
(20) = (1~ sm( Toin?(3)sin2@25)) (9:38)
_ sin(%) cos(£) sin(23)
COS(QZE) - (1 sin ( ) 11’12(%)811'1 (25))1/2 (939)

When the quantum search is carried out by using the even member As,, the component
of the final state after n iterations of (ITI1I,I.) in the basis state |7, ) is expressed by
(11| Ay |8) = RE, + il M., and accordingly the exact success rate in finding the marked

state |7) then is given by
p=1—[(ri| Ag |8)]* = 1 = (RE} + IM), (9.40)
where

RE, = cos(nw) cos(f) — sin(nw)sin(2%) cos(g — ) sin(f), (9.41)

0+ o
2

IMe == : 281020 (nw2) Sin@2) sin(
(1 —sin®(§) sin® (5 sin® (26))) /2

). (9.42)

It is clear that when I M, = 0, one obtains the n-independent phase matching condition,

¢ = —0, for A,,, and the success rate then becomes

p=1—-RE?=1—cos’(nw — a), (9.43)

where o = sin™!(sin(3) cos(¢/2 + 7)). The 100% success rate for the search problem can
be achieved as by letting cos(nw —a) = 0. For a search with certainty, since n is a positive

integer, one therefore has to expect the iteration number given by

ne(8, ) = [fe(0,0)], (9.44)
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and the function f.(6, 3) is given by

5 + a0, 5)
o(0,8) =2 : 9.45
0.9 = 10 (9.45)
Given (3, the function f. has its minimal value as § = 7 (and ¢ = —m thereby), as if

minimal oracle calls are demanded in the computation, we should have the optimal phase

0,y associated with

fe(Oop, B) = [fe(m, B)] - (9.46)

For example, if given § = 1, we have [f.(m, 1)] = 1, and the optimal phase angle 6,, =
m41.304 follows in the algorithm using’the even member A,,. In usual operation, however,
the quantum database is large,4.e.; sin(}) <, 1, and the phase § = 7 and ¢ = —7 are
fixed, then the required iterations are estimated by n ~ 7 /83 and by (9.46) the maximal

success rate will be approximately. evaluated

Pmax ™~ 1 _627 for 9:71',

which is the same result obtained as if the standard Grover algorithm is implemented.
That is, as the phase § = m is fixed, the present algorithm (As,) is equivalent to the
standard algorithm (G™) with even oracle calls required in the computation. Nevertheless,
since in a real operation, imperfections in the phase inversions are inevitable. In what
follows, we will show that the present algorithm is robust against small phase imperfections
in a quantum computation and provides a maximal success rate that is similar to the one
given above.

In the absence of decoherence and error correction, we considered constant phase
errors causing the phase ¢ and 6 to be ¢ = 7+ ¢. and 0 = 7 + 6., where |¢.| < 1 and

|0.] < 1. By introducing the constant phase imperfections, one then have the following
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approximations, when 3 < 1,

sin(2z) ~ 1 — %ﬁQ 2 cos(21) ~ B,

¢ 1 s . O 1
cos(§ —y)~—-14 5(96 — Pe) ,sm(§ —7) ~ 5(96 — Pe),
W AB(1— S8+ ) + 5 ).

Then, since the errors are unknown in advance of the computation, the iteration number
is also considered to be n ~ 7/83, and we thus have cos(nw) ~ 7(0% + ¢2)/16 — 273?/3

and sin(nw) ~ 1. The approximation of RE, and I M, accordingly are evaluate by

2
RE, ~ (4 7602+ 62) = S, (9.47)

]Me ~ = %6(96 + (be)-

The maximal success rate, in uses of expression (9.40)-(9.42), now is approximately derived

by

where H.O.T. represents high order terms higher than second-degree in the small param-
eters (3, 0. and ¢.. Expression (9.48) clearly tells that the reduction of the probability due
to the introduction of the phase errors in fact can almost be neglected. Then, through it,
we can see that the present algorithm is robust against systematic phase imperfections.
The analysis of the algorithm using the odd member A,,; can be undertaken by the

same procedure as in analyzing the even member. In this case, we have

Pmax = 1- (RES + ]Moz)a (949)
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where

RE, = cos(nw)[cos(H;

+ sin(nw){cos(2x)[sin(

) sin’(3)] cos(i3)
(b) —4 sm(g) sin( ¢) sin?(3)] cos 3

— sin(2z)[cos(y + g) + 4 sin(7) sin(g) cos?(3)] sin B},

— cos(2z) sin (2
0 ¢)(cos(nw) — sin(nw Lﬁ)(z’)

2

¢) 4s1n(2) sin(
0 —

¢
2

IM, = cos(f)sin(

ool (9.50)

Letting IM, = 0, one has the phase matching condition, ¢ = 6, for Ag,. 1. The 100%

success rate then can be ensured when the iteration steps at n,(0, 3) = [ f,(0, 3)|, where

fo(0,5)

T _1,cos(B)(1—4 sm2( Ysin?(5)) 1—sin4(g) sin?(23)
o 2 oS ( \/1 —sin? g sin?(23) ) (9 51)
N w(0,5) ' '

Note that in this case the inequalitii L —4sin(0/2)? > 0 should be demanded since then
the meaningful requirement f, >0 ean then-be fulfilled. Given 3, the function f,(6, /)
also has its minimal value at § = 7 (then ¢ = ), as the optimal choice of the phase 6,,

should be estimated by

fo(eolhﬁ) = [fo(eaﬁ)—l ) (952)

when minimal oracle calls are demanded in a search with certainty. For § = 1, the choice
of the phase should be 0,, = ¢,, = T£1.870, for example. The standard Grover algorithm
with odd oracle calls can be recovered when # = ¢ = 7 is fixed. In usual operations, when
phase imperfections are introduced, i.e., as ¢ = 7+ 6, and ¢ = 7™+ ¢,, where both 6, and
¢, are small errors in the phases, they also produce almost negligible reductions in the

success rate as given by an expression like Eq. (9.48).
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9.5 Hamiltonian and measuring time for analog quan-
tum search

Several researchers have proposed other ways to solve the quantum search problem, such
as the analog analogue version of the Grover’s algorithm [178-180] and the adiabatic
evolution to quantum search [181-183]. The former is to be considered in this work.
It is proposed that the quantum search computation can be accomplished by controlled
Hamiltonian time evolution of a system, obeying the Schrodinger equation

AW (D)
dt

= H|U(t)), (9.53)

where the constant 7 = 1 is imposed for convenience. Farhi and Gutmann [178] presented
the time-independent Hamiltonian Hyy = £ (Jw) {w| + |s) (s]), where |w) is the marked
state and |s) denotes the initial state, Later, Fenner [179] proposed another Hamiltonian
Hy = Eri(Jw) (s| — |s) (w]). Recently; Bae and Kwon [180] further derived a generalized

quantum search Hamiltonian

Hy = Egy(|w) (w] + |s) (s]) + Ey (e [w) (s + €7 |s) (w]), (9.54)

where ¢ is an additional phase to the Fenner Hamiltonian. Unlike the Grover algorithm,
which operates on a state in discrete time, a quantum search Hamiltonian leads to the
evolution of a state in continuous time, so the 100% probability for finding the marked
state can be guaranteed in the absence of all kinds of imperfection occurring in a quantum
operation. Both the Hamiltonian H, and H can help to find the marked state with 100%
success. However, Bae and Kwon [180] addressed that the generalized Hamiltonian H, can
accomplish the search with certainty only when ¢ = nr is imposed, where n is arbitrary
integer. In this work, however, we will show that the generalized Hamiltonian H, can be
derived by an analytical method, which is distinct to the one implemented by Bae and

Kwon [180], and the same method will lead to arbitrary chosen phase ¢, depending on
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when the measurement on the system is undertaken and how large the system energy gap
is provided. Since Hamiltonian-controlled system is considered, the energy-time relation
will play an essential role in the problem. Therefore, the evaluation of the measuring
time for the quantum search becomes crucially important. In this study, we will derive
the general Hamiltonian for the time-controlled quantum search system first. Then the
exact time for measuring the marked state will be deduced. Finally, the role played by
the phase ¢ in the quantum search will be discussed, and both the measuring time and
the system energy gap as variations with ¢ will be given [184].

Suppose that a two-dimensional, complex Hilbert space is spanned by the orthonormal
set |w), which is the marked state, and |w,), which denotes the unmarked one. An
initial state |s) = |¥(0)) is designed to.evolve under a time-independent quantum search

Hamiltonian given by

H == E1 ‘E1> <E1| + E2 |E2> <E2| g (955)

where E and E, are two eigenenergies ‘of the quantum system, F; > Fs, and |F;) and
|Ey) are the corresponding eigenstates satisfying the completeness condition |E;) (E1| +

|Ey) (Eo| = 1. The eigenstates can be assumed by

|Ey) = € cos(z) |w) + sin(z) |w, ),

|Ey) = —sin(z) |w) + e " cos(x) |w, ) . (9.56)

where  and « are two parameters to be determined later based on the required maximal
probability for measuring the marked state. By the assumptions given in (9.56), the

Hamiltonian can be written in the matrix form

E,+ E,cos(2z)  E,sin(2x)e™
H= | . (9.57)
E,sin(2zx)e ™ E, — E,cos(2x)

where E, = (E;+ E»)/2 is the mean of eigenenergies and E, = (E; — E»)/2 represents half
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of the system energy gap. The major advantage of using the controlled Hamiltonian time
evolution is that the marked state can always be searched with certainty in the absence
of quantum imperfections. The crucial key of the present problem in turn is to decide
when to measure the marked state by the probability of unity. So in what follows we will
in detail deduce the relation between all the unknown appearing in the system and then
evaluate the exact measuring time for finding the marked state with certainty.

The time evolution of the initial state is given by |U(t)) = e~*#t|s). Therefore, the
probability of finding the marked state will be P = |(w]e~"*|s) }2 =1—[(w,|e"]s) }2.
Without loss of generality, let us consider the problem of searching one target from N

unsorted items. The general form of the initial state considered in this study is given by
|s) = e™sin(B) |w) + cos(B)fwy ), (9.58)

where sin(f) = 1/v N and u denotes the relative phase between the two components in
the initial state. Note that the relative phase # may arise from a phase decoherence or
an intended design during the preparation 'of the initial state. Now, because of e~ =

e B | By) (Ey| + e 2t |Ey) (Fy|, using the expressions given in (56) and (58), we can

deduce

(wi|e ™|s) = e "Fr'((cos(B) cos(E,t) — sin(a — u) sin(2z) sin(3) sin(E,t))

+i(cos(2z) cos(B) — cos(a — u) sin(2z) sin(B)) sin(E,t)). (9.59)
To accomplish the quantum search with maximal probability, the time-independent term

(cos(2x) cos(f) — cos(av — u) sin(2z) sin(F)) in (9.59) must vanish and thus the unknown

x can be determined by

sin(3) cos(a — u)
cos(7)

cos(2zx) = , or sin(2z) = : (9.60)
where 7 is defined by sin(y) = sin(8) sin(aw — u) . The probability for finding the marked
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state then becomes

P o= 1—|(wi|es)[
2
= 1—%@0052(E0t+7). (9.61)

Usually, if the size of database N is large, then v < 1 and the marked state |w) will
be measured at t = 7/(2E,) by a probability p = 1 — tan?~ ~ 1, according to (9.61).
Expression (9.61) also indicates that, by letting cos?(Egt + ) = 0, we can measure the
marked state with unit probability, no matter how large N is, at the time instants

(25 — 1)m/2 — sin~*(sin(B) sin(a — u))

tj: E

L i=1,2, ... (9.62)

In what follows, let us only focfis on thefirst mstant ¢, = (7/2 — sin™*(sin(3) sin(a —
u)))/E,. It is clear that a larger E,, or equivalently a larger system energy gap, will
lead to a shorter time for measuring thermarked state with certainty. Meanwhile, as can
be seen in (9.61), the probability forumeasuring the marked state varies with time as a
periodic function whose frequency is the Bohr frequency E,/7, so a larger E, will also
result in a more difficult control on the measuring time. In other words, the measuring
time should be controlled more precisely for a higher Bohr frequency in the state evolution
since then a small error in the measuring time will cost a serious drop of the probability.
However, the energy gap E, depends on the size of database N, as will be mentioned
later.

With the relations shown in (9.60), the present Hamiltonian now can be written by

sin(3) cos(a—u) cos(B) i
H— EP + Lo cos(v) K, cos(7y) € (963)
cos(B) —ia _ sin(8) cos(a—u)
O cos(v) € Ep EO cos(7)

which is represented in terms of the energies £, and E, and the phase a. Alternatively,
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if we let
b, o (B B
fo. = cos?(3) ’
Epeitow = o el — B, sin(f), (9.64)
cos(7) g

or inversely,

E, = Ejp+ Eycos(¢ — u)sin(f),

E, = ((Ejcos(¢ —u)+ Eggsin(8))’

[NIES

+E7sin*(¢ — u) cos*(6))?, (9.65)

then the Hamiltonian can also be exptressed by

E;y(1 + sin?(B)) + 28;€0s(¢ — w)sin(B) =e™(Ese'® + Ey,sin(8)) cos(5)
e~ (Epe07Y + By, stn())cos(B) E}g4cos?(53)

(9.66)

which in turn is represented in terms of the energies E;, and £y and the phase ¢. The
Hamiltonian shown in (9.66) in fact can be expressed as H, = Ey, (|w) (w| + |s) (s]|) +
E;(e|w) (s| + e |s) (w|), which is exactly of the same form as the Bae and Kwon
Hamiltonian H, shown in (9.54). However, Bae and Kwon [180] only consider the case u =
0 . In both the presentations (9.63) and (9.66) of the Hamiltonian H, the corresponding
measuring time for finding the marked state |w) with certainty is at

Z — sin~ ' (sin(0) sin(a — u))

E,

T sin_l( Ey sin(B) sin(¢p—u) )

_ 2 (B cos(¢—u)+Eyg sin(8))>+E2 sin2(¢—u)) 2 (0.67)
((Eycos(¢ —u) + Epysin(3))2 + EZsin®(¢ — u) cos?(3))2 '

tlz

Equation (9.67) indicates that when the phase difference a — u, or ¢ — u, is imposed

and the energy gap FE, or the energies F; and FEy, are provided, the measurement at
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the end of a search should be undertaken at the instant ¢;. To discuss further, we first
consider the case u = 0, i.e., the case where neither phase decoherence nor intended
relative phase is introduced in the preparation of the initial state |s). If ¢ = nm, or
a = nm, is imposed, then the present Hamiltonian reduces to that considered by Bae and
Kwon [180] to serve for a search with certainty when the measurement is undertaken at
tv=7/(2E,) = 7/(2|(=1)"E; + Efysin(5)]). If Ef =0, or if £, = E;sin(f) and a = 0,
is imposed, then the present Hamiltonian reduces to the Farhi and Gutmann Hamiltonian
Hy,, which serves for a search with certainty at ¢, = 7/(2E,) = 7/(2E;,sin 3). Further,
when Ef, = 0 and ¢ = 7/2, or £, = 0 and o = 7/2 is chosen, the present Hamiltonian
will reduce to the Fenner Hamiltonian Hy associated with the measuring time t; = (7 —
20)/(2E,) = (7 — 20)/(2Ef cos #). In_general, the phase ¢, or «, in fact can be imposed
arbitrary for a search with certainty as the-condition v = 0 is imposed.

However, if inevitable phase decoherence’in the.preparation of the initial state |s) is
considered, then the phase u must be‘assumed to be arbitrary. Accordingly, the proba-
bility for finding the marked state will not beuinity at all. For example, if following Bae
and Kwon [180] by letting ¢; = 7/(2E,), then we only have a probability for finding the
marked state given by

_ cos’(B) sin®(B) sin®(u) .

p=1 1 — sin?(3) sin®(u)

(9.68)

It is easy to show that the probability shown in (9.68) is always greater than or equal to the
lower bound p,;, = 1 —sin?(3) = 1—1/N. Of course, if the nonzero phase u is introduced
by an intended design, not an inevitable phase decoherence, then a search with certainty
can be accomplished for an arbitrary ¢, or «, when associated with the measuring time
shown in (9.67). For example, if u = 7/2 is the phase designated, the ideal measuring time
should be t; = (7 — 23)/(2E,), which is the same as the Fenner’s ¢;. Again if the phase
decoherence is introduced into the system and changes the phase from /2 to an undesired

u, then one eventually obtains a poor probability p = 1 — (1 + sin®(u) — 2sin(u)) sin?(3).
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Figure 9.5: The variation of p(() for, cases of Bae-Kwon(solid), Farhi-Gutmann(solid),
and Fenner(broken) at the specifie’measuring times, 1 g = t1,p¢ = 7/(2E,) and t, p =

(m—26)/(2E,).
Moreover if the phase error océurs randomly in a guantum database, then we cannot be
sure when to take a measurement, and the probability for finding the marked state even
drops off seriously in some cases. For investigating the effect of the random uncontrollable
parameter u on p at a fixed measuring time, we average over all possible values of p((3, u)
about all arbitrary values of phase parameter u. Fig. 9.5 shows the variation of the mean
probability p with § for cases of Bae-Kwon, Farhi-Gutmann and Fenner at the specific
measuring times, t1 px = t1 p¢ = 7/(2E,) and t; p = (7 — 203)/(2E,), those Hamiltonian
suggest in such a case. The same character of their proposals is that p is sensitive to
a phase decoherence as the database is small. The mean success probabilities of Bae-
Kwon and Farhi-Gutmann are the same and always greater than the one of Fenner. Then
the Hamiltonians presented by Bae and Kwon, and Farhi and Gutmann are more robust
against the phase decoherence than the one proposed by Fenner especially for low values
of N.

Now we proceed to give a brief review on the comparison between Ey, and Ey, which

has been discussed in Ref. [185], and to recall the implication behind the analog quantum
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search first presented by Farhi and Gutmann [178]. Suppose there is a (N — 1)-fold
degeneracy in a quantum system and its Hamiltonian is read as Hy = F |w) (w|, then
our assignment is to find the unknown state |w). Since one does not yet know what |w)
is, it is natural to add a well known Hamiltonian, Hp = E'|s) (s, such that the initial
state of the system |s) can be drove into |w). The total Hamiltonian therefore becomes
H = Hy+ Hp = E(|w) (w|+|s) (s]), which is just the Hamiltonian of Farhi and Gutmann

[178] Hy,. It can be simplified under the large database limit,

Hyg = E(Jw) (w| + |s) (s]) + E'sin(B)(Jw) (s] + [s) (w]). (9.69)

From it one can realize that the driving Hamiltonian induces transitions between |w) and
|s) with a mixing amplitude O(E sifi(B)), whichieauses |s) to evolve to |w). By Eq. (9.65),
thus it is rational to assume Ep e~ Eygsin(3); and therefore the energy gap E, should be
proportional to sin 3 , or 1/ v/N. The measuring time then is easily found to be t; x V' N
from Eq. (9.67). However, if consider the case.'E; > Ey,, like the extreme situation
considered by Fenner [179], then we encounter with E, ~ Efcos(¢ — u) and accordingly
the measuring time ¢ is independent of the size of database N. Therefore, in an usual
case the assumption Ef ~ Ey,sin(f3) is reasonable.

An interesting phenomenon occurs when the critical condition Ef = Ey,sin(f) is
considered. Fig. 9.6 shows the variations of ¢; and F, with the phase difference ¢ — v in
such a case. It is observed that when ¢ —u = +7 the energy gap F, becomes zero and then
the eigenstates of the quantum search system correspond to the common eigenvalue £ =
E, = F5 and become degenerate. In such case, the Hamiltonian becomes proportional
to the identity 1(= |w) (w| + |wy) (w,|). Therefore, the initial state |s) does not evolve
at all and the probability for finding the marked state |w) indeed is the initial one, viz.,
p = sin?(3) = 1/N, which can also be deduced using Eq. (61). In other words, the
quantum search system is totally useless as long as ¢ — u = 47 is imposed under the

critical condition Ey = Eygsin(3). When ¢ — u # £, both ¢; and E, are finite, as
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Figure 9.6: Variations of ¢;(¢ — u) (broken) and E,(¢ — u) (solid), for § = 0.085 (1),
B =0.031 (2), and 8 = 0.0055 (3).
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can be seen from Fig. 9.6, and therefore the quantum search system becomes efficient
again and is capable of finding the marked state with certainty, especially when the phase
difference is imposed around ¢ — u = 0. As a conclusion, for an efficient, useful quantum
search system, the critical condition mentioned above should be avoided and in fact the

reasonable condition Ey ~ Ey,sin(f3) is recommended to be imposed.
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Chapter 10

Experimental generation of
hyperentangled photons and
experimental realization of one-way

quantum computing

10.1 Introduction

Cluster states have recently received enormous attentions in the field of quantum infor-
mation and are important for one-way universal quantum computing [31-33]. Moreover,
with highly robustness they are also essential for quantum error correction codes and
quantum communication protocols [187, 188]. Many efforts have been stepped toward
generating and characterizing cluster states in linear optics [52, 53, 99, 189-192]. Recently
the principal feasibility of one-way quantum computing model has been experimentally
demonstrated through 4-photon cluster state successfully [52, 53, 62].

In this chapter we show an experimental realization of one-way quantum computing
with a 2-photon 4-qubit cluster state. We develop and employ a bright cluster state

source which produces a 2-photon state entangled both in polarization and spacial modes.

168



CHAPTER 10. EXPERIMENTAL GENERATION OF HYPERENTANGLED
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The Grover’s search algorithm is demonstrated with highly performences. The genuine
four-partite entanglement and high fidelity of better than 88% for this cluster state are
characterized and verified by measurement of an optimal entanglement witness with two
local measurement settings. Inheriting the intrinsic two-photon character, compare with
the one using multi-photon, our scheme promises a brighter source in quantum computing
by more than 4 orders of magnitude, which offers a significantly high efficiency for optical
quantum computing. It thus provides a simple and fascinating alternative to complement

the usual multi-photon cluster state [54].

10.2 Photon source for polarization entanglement

First, we will give an introductionto the photon.source used for creation of polarization
entangled photons. We use parametrically driven nonlinear media to generate nonclassical
light via a type-I spontaneous parametrie’down-conversion (SPDC) process [98]. Photons
from the pump beam are converted.into two photons that emitted from the beta-barium
borate (BBO) crystal along different directions. The emitted photons, say signal and idler

photons respectively, satisfy phase matching conditions:
sy = Fuoy + i, (10.1)

for energy conservation, where w,, w,, and w; denote the frequencies of the pump, signal,

and idler respectively, and
hk, = hk, + hk;, (10.2)

for momentum conservation, where k,, ks, and k; represent the respective wave vectors.
Since the constrain of phase matching conditions, the signal and idler photon emitted from
the crystal on opposite sides of concentric cones centered on the direction of the pump

beam. The signal and idler photons possess the same polarization but are orthogonal
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Type |

Phase-matching H-polarized

(from B1)

V-polarized
(from B2)

B1 B2

Figure 10.1: Polarization photon source with two-crystal geometry BBO crystals

to that of the pump beam. This process can be described by the following interaction

Hamiltonian
H; = ryalal + He., ‘ (10.3)

where v npx(z), 1, denotes the amplitude of the ¢lassical coherent field and Y@ is the
second-order nonlinear susceptibility of the BBO crystal, and a! and aj represent the
creation operators of the signal and idler beams respectively.

We use the nonlinear media with two-crystal geometry as shown in Fig. 10.1 to create
polarization photons [98]. The BBO crystals with the type-I phase-matching condition are
adjacent and relatively thin, and they are oriented with their optic axes aligned in perpen-
dicular planes. With the type-I phase-matching, a pump beam with vertical polarization
will produce horizontally polarized photon pairs, and this process of down conversion oc-
curs only in the first crystal (see Fig. 10.2). Using a horizontally polarized pump beam,
down conversion process will only in the second crystal and vertically polarized photon
pairs are created (see Fig. 10.3).

If a geometry condition of the two BBO crystals is imposed on the system [98]:

L
0.~ < 1, 10.4
Z < (104)

where 6. is the opening angle of the cone, D is the pump beam diameter, and L is the
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Type |

Phase-matching H-polarized

(from B1)

Bl
Figure 10.2: Polarization photons emitted from the first BBO crystal

crystal thickness, the high spatial overlap of the cones of down conversion produced by
a 45° pump beam will induce a coherenti two-down-conversion process. This implies that
the emitted pair of photons with the spatialimodes that are indistinguishable for the two

crystals is in the state

1

\/§(|H>1 [ H)y + 0 [V )0)s (10.5)

[2(0))

where H and V' denote horizontal and vertical polarization, respectively, and the sub-
scripts 1 and 2 denote two distinct spatial modes. The relative phase between horizontal
and vertical components of the state vector can be adjusted by (a) tilting the BBO crys-
tals, by (b) using birefringent crystal on one of the output beams for phase shift, or by (c)
changing the relate phase between the vertical and horizontal components of the pump

beam.

10.3 Experimental generation of two-photon four-qubit
hyperentaled states

To experimentally realize the single-element quantum search on a one-way quantum com-

puter, we use the technique developed in previous experiments [102] with a type-I SPDC
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Type |
Phase-matching

________________ V-polarized
2! = ___________ (from B2)

B2

Figure 10.3: Polarization photons emitted from the second BBO crystal

source [98] to generate a two-photon four-qubit cluster state that is equivalent to the
four-qubit box cluster state up to afdoeal trangformation, that is depicted in Fig. 10.4.

By pumping a two-crystal strudtuted BBO by a ultraviolet (UV) pulse in a double
pass configuration, one polarization entangled photdn pair is generated by a type-I SPDC
source with two possibilities in’ the'forward difection and in the backward direction,
respectively, to perform the preparation of 2-photon 4-qubit cluster state. The UV pulsed
laser with a central wavelength of 355 nm has pulse duration of 5 ps, a repetition rate of
80 MHz, and an average pumping power of 200mW. Two quarter-wave plates (QWPs)
are tilted along their optic axis to vary relative phases between polarization components
to attain two desired possibilities for entangle pair creation. Concave mirror and prism
are mounted on translation stages to optimize interference and overlapping on two beam
splitters (BS;2) or two polarizing beam splitters (PBS; ») for achieving the target cluster
state. Half-wave plates (HWPs) together with polarizing beam splitters (PBS) and 8
single-photon detectors (D1-D8) are used for polarization analysis of the output state.
Finally, we observe a cluster state generation rate of about 1.2 x 10* per second behind 3
nm filters (IF) of central wavelength 710 nm.

A pulse of UV light passes twice through two contiguous BBO with optic axes aligned

in perpendicular planes to produce one polarization entangled photon pair, with one
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Figure 10.4: Schematic of experimental setup.
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possibility in the forward direction of generating a state

1

) 7

(H) 4 [ H) g+ IV)a V) L) 4 L) g s (10.6)

on spacial (path) modes L, g, and another possibility in the backward direction of pro-

ducing a state

1

1B) 7

(H) 4 [H) g = IV)alV)p) [R) 4| R) 5 (10.7)

on spacial modes R4 p, where |H) (|V)) stands for photons with horizontal (vertical)
polarization. The states |F') and |B) can be a coherent superposition |F) +¢? | B) through
perfect temporal overlaps of modes R4.and L 4 and of modes Rp and Lg. By properly
adjusting the distance between the concave:mirror and the crystal, so that § = 0, the

generated state is exactly the desired.2-photon 4-quibit cluster state

‘C4> = (|0000>1234 + ‘0011>1234 + |1100>1234 - ‘1111>1234)’ (108)

N —

if we identify photon A to be qubits 2,3 and photon B to be qubits 1,4 and encode logical
qubits as [H (V)5 < [0(1)1 , [H(V))a < [0(1))a, [L(R))a < [0(1)s, IL(R)) 5 > [0(1)}a:
We observe a cluster state generation rate about 1.2 x 10* per second for 200mw UV pump,
which is 4 order of magnitude more than the usual 4-photon cluster state production
[52, 53, 190], and the lower bound for fidelity of experimental generations of |Cy) is
F > 0.883 £ 0.002 [54], that is better than the ones in [52, 53, 190] where fidelities are
about 0.63 [52, 53] and 0.74 [190], respectively. The lower bound for fidelity is determined

through an optimal entanglement witness with the following form:
1
W =2I — §(X1X2Z4 + X0 XoZ3 + Zo X3 Xy + 71 X3 Xy + Z1 75 + Z3Zy), (10.9)

and by F > 1(1— (W)exp) [72]. The experimental values of the observables of the witness
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Observable Value Observable Value
X1 XoZy 09070 £0.0036  Z,X3X,  0.9071 £ 0.0037
X1 X275 09076 £0.0035  Z;X3X,  0.8911 &+ 0.0040
YAV 0.9812 4+ 0.0016 AVA: 0.9372 4+ 0.0030

Table 10.1: Experimental values of all the observable on the cluster state |Cy) for the
entanglement witness YW measurement. Each experimental value corresponds to measure
in an average time of 1 sec and considers the Poissonian counting statistics of the raw
detection events for the experimental errors.

is shown in Table 10.1. It is worth noting that W is equivalent to the witness Wpg, under

a swap between operators 2 and 3 and a exchange of X and Z. See (3.18).

10.4 Experimental demonstration of quantum search

algorithm with an ene-way quantum computer

10.4.1 One-way quantum computation

If we have a four-element database, {]00)%101),|10),|11)}, and in which only one item
satisfying L [jk) = —|jk), 7,k € {0,1} and otherwise L;||j'k") = |j'k'),j" # 7,k #
k where I, is the oracle operator corresponding to the database, one can utilize the
quantum logic circuit depicted in Fig. 10.5 to search |jk) with certainty and then identify
I;;; by just querying one oracle. The oracle operator can be designed by four settings:
(o, B) = (m,7),(m,0),(0,7),(0,0), that correspond to Iny, In1, I10, and I3; respectively.
For instance, if (a, 3) = (m,m) is set in the quantum logic circuit and the superposition
state of the four elements |s) = |+)|+), where |+) = (]0) + [1))/v/2, is prepared as the
input of the circuit, the output state will be |00).

One-way quantum computer can simulate the quantum logic circuit for sigle-element
quantum search. To simulate a computation task on a one-way quantum computer,
one has to prepare a cluster state with a specific type of entangled feature associated
with the computation. A cluster state can be schematically described by an array of

nodes (vertexes) connected with lines. Each node is initially in the state of |+). Every
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*) R (o) H Z - H
H=¥-R(-)TT H Z — H
Oracle Inversion-about-mean

encoding operation

Figure 10.5: Quantum circuit’for realization of quantum search algorithm.

connected line between nodes -experiences a controlled-phase (CPhase) gates acting as
1) |k) — (=1)"" |5} |k).The scenario of-one-way implementation consists four steps as
follows:

1. Prepare a 4-qubit box cluster state:

|Ra) = %(|0>1 10)2 [+)3 1404 + 1001 1o |=)5 =04

FD 11005 1=)5 1=)a + 111 1)y [+)5 [+)4), (10.10)

where |—) = (]0) — |1))/v2 and the subindex denotes the number of particle. It is
schematically represented in Fig. 10.6.

2. Take local measurements on the second and the third qubits in the bases By(«) =
{lay),|a_)} and Bs(8) = {|B.),]8-)} respectively, where |a(3)+) = (]0) e @) |1))/v/2.
The outcome of measurement |a(3)) is denoted by sy3) = 0 and |«(3)—) is denoted by
sa3) = 1. The state of the remaining subsystem composed of the first and the third qubits
is then equivalent to the output state of the quantum circuit shown in Fig. 10.7 when
|+) [+) is fed as an input.

3. Take local measurements on the first and the fourth qubits in the bases {|7}) ,|7_)},
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Measure along basis Readout
2 1
B,(a)
B3(5)
3 4

Figure 10.6: Box cluster state.

Figure 10.7: Quantum circuit involved an action of oracle for quantum search.

177



CHAPTER 10. EXPERIMENTAL GENERATION OF HYPERENTANGLED
PHOTONS AND EXPERIMENTAL REALIZATION OF ONE-WAY QUANTUM
COMPUTING

+) - - Z — H =

+) — Z — H =

Figure 10.8: Quantum circuit composed of four local operations for the step 3 in one way
realization.

which is equivalent to apply local eperations depicted in Fig. 10.8 below to the output
state of the circuit in the step-2. Similarly, .the otitcome of measurement corresponding
to the state |y ), is denoted:By sy ="0 and |oz_>1(4) is denoted by s1(4) = 1.

4. Refer to (s3 + s4 = s34, 51 + 82 = s12), one'then can identify the oracle, I;;,, where

j = S34 and k = S12.

10.4.2 Experimental realization of one-way quantum search

The state |Cy) is very useful for our experimental demonstration because |Cy) is equivalent
to the four-qubit box cluster state up to four-qubit local unitary operations. To give a
concrete demonstration, we experimentally mark the element |00) in qubits 2,3 and make
the final readout measurements on qubits 1,4 all along basis B(m). By noting the fact that
the state Eq. (10.8) differs from the box cluster state up to a H transformation on every
qubit and a swap between qubits 2 and 3, this amounts to measure along the {|V),|H)}
basis for the polarization in each output arm after PBS; and PBS;. The output of the
algorithm is two bits (s3 @ s4, 51 @ $2) in lab basis by feed-forwarding outcomes of qubits

2,3. The experimental result of this example is shown in Fig. 10.9.
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(o, B)=(m,m)
10 Tagged database element 00
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Identification probability
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00 01 10 11 00 01 10 11
With feed-forward Without feed-forward

Figure 10.9: A successful identifiéation ‘Hrbbabili’c”}% of (96.1£0.2)% is achieved determinis-
tically with feed-forward, while-it is (24.94:0:4)% without feed-forward. This depicts that
our source of cluster state is ideally suited for sucha sort of algorithm’s implementation.

10.5 Conclusion

We have developed a scheme for preparation of a two-photon four-qubit cluster state.
With such a source, we have designed and demonstrated the first proof-of-principle ex-
perimental realization of one-way quantum computing. The excellent quality of the state
with fidelity better than 88% is characterized by an optimal witness without using of
a full state tomography. Moreover, high count rates of the state creation enable more
efficient quantum computing by 4 orders of magnitude than previous methods. We have
thus achieved implementation of Grover’s algorithm with a successful probability of about
96%. In addition, non-trivial two-qubit quantum gates such as the CPhase gate are im-
plemented with high fidelities through the approach developed. Refer to [54] for detailed

discussions.
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Chapter 11

Summary and Outlook

11.1 Summary

In this thesis we have presented novel approaches te correlation structure of multipartite
entanglement, entanglement detection, entanglement generation, entanglement purifica-
tion, quantum error corrections, quantumsearch algorithm, and, furthermore, experimen-
tal advance towards one-way quantum computation. Our research has covered several im-
portant subjects involved in the field of quantum information and quantum computation
and mainly associates with the key processes of quantum information processing.

Through the correlation criteria of multipartite entanglement, one can construct robust
entanglement witness operators to detect many-qubit stabilizer, four-qubit singlet, three-
qubit W, generalized many-qubit GHZ, two-qudit Bell, two-qudit singlet, four-ququat
supersinglet, many-qudit GHZ states with fewer local measurement settings. The entan-
gled states under study are all important for entanglement-based quantum information
processing. In addition to detections of entanglement, the criteria proposed help to an-
alyze the correlation structures of Bell inequalities and to find their connections with
entanglement witness operators.

An idea of hybrid maps is proposed to establish standard entanglement purification

protocols which guarantee to purify any distillable state to a desired maximally entangled
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pure state all by the standard purification local operations and classical communications.
The protocols proposed in this work, in which two state transformations are used, perform
better than the IBM and Oxford protocols in the sense that they require fewer operation
times in yielding a same amount of the desired pure state. One of the proposed protocols
in this work can even lead to a higher improved output yield when it is combined with
the hashing protocol, as compared with the combined algorithm consisting of the Oxford
and the hashing protocol.

Simpler encoding and decoding networks are necessary for more reliable quantum
error-correcting codes. The simplification of the encoder-decoder circuit for a perfect five-
qubit quantum error-correcting code can be derived analytically if the quantum error-
correcting code is converted from its equivalentione-way entanglement purification proto-
col. In our study, the analytical method-te simplify the encoder-decoder circuit is intro-
duced and a circuit that is as simple as‘the existent simplest circuits is presented as an
example. The encoder-decoder circuit'presented here involves nine single- and two-qubit
unitary operations, only six of which are ‘controlled-NOT gates.

A study on the cause of multi-particle entanglement is also presented in this thesis.
We show how dot-like single quantum well excitons, which are coupled to single-mode
cavity photon, evolve into maximally entangled state as a series of conditional measure-
ments are taken on the cavity field state. Generation of multi-particle entangled states is
derived analytically. Application to quantum teleportation is also pointed out, and may
be achieved with current technologies.

We have analyzed the quantum search algorithm in detail. First, a general quantum
search algorithm with arbitrary unitary transformations and an arbitrary initial state is
considered in this work. To search a marked state with certainty, we have derived, using
an SU(2) representation: (1) the matching condition relating the phase rotations in the
algorithm, (2) a concise formula for evaluating the required number of iterations for the
search, and (3) the final state after the search, with a complex phase in its amplitude.

Moreover, the optimal choices and modifications of the phase angles in the Grover kernel
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are also studied. As the matching condition in Grover search algorithm is transgressed
due to inevitable errors in phase inversions, it gives a reduction in maximum probability
of success. With a given degree of maximum success, we have derived the generalized
and improved criterion for tolerated error and corresponding size of quantum database
under the inevitable gate imperfections. The vanished inaccuracy to this condition has
also been shown. A concise formula for evaluating minimum number of iterations is also
presented. Furthermore, a family of algorithms is recently addressed for sure-success
quantum search problems. When the phase inversion operations of these algorithms are
identical to those of the standard Grover algorithm, we found that this family of algorithms
is of robustness against inevitable phase imperfections. Finally, an analog analogue of
Grover’s quantum search algorithm was studied. A generalized Hamiltonian driving the
evolution of quantum state in the analog search system was derived. Equations relating
all parameters considered in the present problem were given according to the required
maximal probability for finding the marked state. By these equations, both the measuring
time and the system energy gap suitable for ‘a quantum search with or without certainty
can thus be evaluated. It was shown that in an efficient quantum search computation,
the measuring time should be proportional to the square root of the size of database.
We perform the first experimental realization of one-way quantum computation on
a 2-photon four-qubit cluster state that is entangled both in polarization and spatial
modes. Through solving a quantum search problem, the experiment illustrates a high-
speed quantum computation in one-way realization. The experimental demonstration
shows the hyper-entangled cluster states can provide an ideal source for rapidly and

precisely optical quantum information processing.

11.2 Outlook

Distinct correlation properties of entanglement pay the way for novel models of informa-

tion and computation and reveal the fundamental features of quantum phenomenon. We
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have seen in the thesis that the correlation criteria proposed provide a way to analyze
the correlation structure of multipartite entanglement. In our preliminary result, the cri-
teria can be used to construct Bell inequalities for three four-level systems, which shows
that there may exist a family of Bell inequalities for many qudits where each member is
comprised of correlators. Furthermore, how to detect genuine multipartite entanglement
that are inherent in many-qudit singlet and valence-bound solid states is still open. These
entangled states are crucial for quantum information and computation. Then one of our
future works is to design a method based on correlators to investigate on the structures
of these states. As for entanglement purification, improvement of purification yield will
be the next topic. Since the standard protocol for purifying entangled qubit pairs relies
on successful controlled-NOT operations and on certain results of measurements, desig-
nations of new models that can be achieved ‘deterministically or in a more deterministic
way will be helpful for raising“the yield-of purification. The number of controlled-NOT
gates also affects the complexity-of an encoder-decoder circuit to perform the five-qubit,
single-error correction protocol. The simplest circuit consists of six controlled-NOT gates
and three single-qubit operations presented in this thesis and proposed by Braunstein
and Smolin might not be improved further. A more convincible proof will be given in
the future work. As for generation of entangled pairs or multipartite entangled qubits,
preparation of remote entangled states by controlling a media system with a high gen-
eration of yield is crucial. How to control the third quantum system in an experiment
reliably as the case discussed in the thesis will be investigated elsewhere. For generating
entangled photons with SPDC sources, investigations on the quality of entangled photons
and coincidence detections are also the future topics for entanglement generations.
Quantum correlations provide novel ways of communications with high security, e.g.,
the Ekert protocol for key distribution. However, it is worth discussing whether entangle-
ment is necessary for quantum communication. In Ref. [193], it has shown that the Ekert
protocol [29] based on maximally entangled qubits is equivalent to the scheme of Bennett

and Brassard [34] using on nonorthogonal states. It implies that in some quantum commu-
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nication tasks utilization of entanglement is not the only method for reliable achievement
[194]. Since entanglement can be replaced by separable quantum systems, the processes
required for entangled states, e.g., entanglement purification, can be replaced by simple
single-qubit operations. We propose an example for quantum secret sharing to discuss
it further. With a simple protocol proposed, we show that secret sharing tasks can be
performed without assistance of entanglement.

A sender, called Sophie, wants to share a confidential message with her friends Alice
and Bob. Instead of giving the whole message to Alice and Bob, Sophie splits the message
into two pieces and prepares to send each individual one to Alice and Bob respectively.
The hope of Sophie is that her confidential message can be determined faithfully only
when Alice and Bob combine theirtindividual pieces. For protecting the security of the
message from selfish actions of any eavesdroppers or dishonest party, Sophie realizes that
she cannot send the individual®messages to Alice and Bob directly without invoking any
secret-sharing protocols.

Quantum mechanics specifies that ‘quantum states can exist in multiple eigenstates
simultaneously, i.e., superposition, and measurement of a variable will yield one of the
eigenvalues corresponding to the observable with a specific probability and makes a col-
lapse of the state vector. Furthermore, quantum states can not be cloned perfectly, and
through unitary operations, they can be transformed coherently. An utilization of these
quantum mechanical features of physical states and associated operations is sufficient to
realize our protocol. In the scenario of quantum secret sharing, Sophie wants Alice to
possess a state |s,) and Bob to possess another one |s;). Fach party has no information
about the state of the other party, and Alice and Bob can share the state [s,) ® |sp)
only when they combine their own states |s,) and |sp). Let us assume that sqe) € {0,1}
and {|0),|1)} are eigenstates of Pauli matrix ¢,. A quantum state can be changed from

|0), ®10), to |s.) ® |sp) by applying unitary transformations to |0), ® |0), :

[5a) @ [s6) = UpUsc [0}, ®10) (1L.1)
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where Ug and Up are unitary operators. It is worth noting two points involved in the
state evolution:

(1) If a specific Ug is chosen by Sophie for the state transformation, the operator Up
should be consequently fixed for |s,) ® |sp).

(2) We assume that Alice and Bob know that |s,) ® |s,) evolves from |0), ® |0),.
However, since they have no information about both |s,) and |s;) before secret sharing,
giving them only the operator Ugs or Up cannot help them to figure |s,) ® |s;) out with
certainty unless one provides them both Us and Up.

With these two facts, a simple protocol is designed to satisfy the needs of Sophie.
Firstly, Sophie can randomly choose a Uc from a set of operators and apply it to |0), ®
|0),, and then she send each individual qubit to Alice and Bob. It is clear that Uc is
unknown to both Alice and Bob. Whenboth of Alice and Bob have received the qubits,
according the operator Us chosen, Sophie announce which Up should be used by Alice
and Bob. In an ideal situationswhere any eavesdropper and cheat are excluded from
considerations, Alice and Bob can reconstruct the state |s,) and |s,) with certainty if
they follow Sophie’s instruction for Up. When considering eavesdropping, if any selfish
actions of eavesdroppers or dishonest party change Sophie’s preparation Uc |0), ® [0),
in transit, the subsequent operation Up shall not transfer the qubits to |s,) ® |sp) and
then the message can not be reconstructed with certainty. This effect on the secret states
can be utilized to expose eavesdroppers. For instance, in our protocol |0), ® |1), and
|1),®|0), represent the logical bits 0 and 1 respectively, whereas the states |0), ©10), and
|1), ® |1), are used to detect eavesdroppers, which means that Sophie shall be aware of
eavesdroppers when she find that the result of combination of Alice and Bob is |0), ®(0),
or |[1), ®[1), and is not consistent with her designation of |s,) ® |s).

With the idea introduced above, the quantum secret-sharing protocol is specified by
six steps:

S1. Sophie randomly choose two local unitary operators C, and C,, where C,, C, €
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and applies C, and C, to the states |0), and |0), respectively, i.e., she prepares a product
state |¥) = |¥,) ® |¥,), where ‘\If 1) = Ca |0) alb)-

S2. Sophie sends the qubits |¥,) and |¥;) to Alice and Bob respectively.

S3. Through classical communication, Sophie confirms that both parties have received
the qubits.

S4. Sophie announce which kinds of operators, say D, and D,, should be used by
Alice and Bob to reconstruct a'secret 'state Js)-= |sz) @ |sp) . The set of operators (C,, Cy)
chosen in S1 restricts the choicés of local operators in this step. If Copy € {Us,U_}
where U = X or Y, Dy, the operator applied by Alice (Bob), should also be in the set
of operator {U,,U_}. The type + or — for U, and U_ depends on the choice of Sophie.
When Sophie has made her decision, she broadcast the choices of D, and D, in public.
The designation of (s,, s,) depends on Sophie’s message for sharing. To share a logical
bit 0 or 1 with Alice and Bob, her designation is (s, = 0,5, = 1) or (s, = 1,8, = 0)
respectively. Furthermore, Sophie can design (s, = 0,s, = 0) or (s, = 0,5, = 1) to
examine whether Alice and Bob inform her of their results faithfully (refer to S6).

S5. First, Alice and Bob have to transform their qubits by D, and D, respectively.
When the transformations are performed, they measure their qubits in the respective
orthonormal bases {|0),,[1),} and {|0),,|1),} and eventually get the output states |s,)
and |s;). In an ideal situation without eavesdropping, they have s/, = s, and s} = s, with
certainty. Then, they combine their results of measurement and have s,sj.

S6. Alice and Bob identify whether their combined message is even: s/s; € {00,11}

or odd: s)s; € {01,10}. If the message is even, both of them should inform Sophie of this
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result via classical communication. If s/s; = 01(10), they share a bit 0 (1) with Sophie
and keep a secret.

With the above protocol, quantum secret sharing can be achieved without entangle-
ment. A detailed discussion of the security of the proposed protocol will be given elsewhere
[195]. In addition to quantum communication, it has been shown that sophisticated quan-
tum search can be performed without entanglement and the quantum interference alone
suffices to reduce the complexity of query requirement [196]. The experimental demon-
strations by optical implementation is reported in Ref. [197]. It would be interesting and
important to find other quantum mechanical procedures that require no entanglement

source or generate no multipartite correlations of quantum states at any time step.

187



Appendix A

Tightness of Bell inequalities

Every tight Bell inequality fulfills the following conditions [115]:

Condition 1. All the generators of the convex polytope must belong either to the
half-space or to the hyperplane.

Condition 2. There must bedd(d = 1)-linear independent generators among the ones
that belong to the hyperplane.

On the other hand, non-tight Bell inequalities satisfy only the first condition. Then,
we will examine the proposed Bell inequality by these conditions for tightness. Since
we have proven that the proposed Bell inequality fulfills the first condition in the third
section. Then we proceed to consider the second condition for the Bell inequality. All the

generators of the convex polytope are written as

)vl U > )vl , U >@‘v1 ,v2 >@‘v1 ,v2 >, (A1)

which can also be represented as the following form by the defined variables shown in Eq.

(2.57):

‘Ugl),Xn - Ul > )Ul y —X12 — U§1)>
@ ‘v§l) —X11 — X2t — L, x11 — U§l)>
D Ml) + X12 + X22, —X12 — U§I)> ) (A.2)
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(r) ~@)

- _ d)
where ‘vl , Uy > =

17§t)mod d>. The generators which satisfy C’\(I,LLR =2

5"'mod d> ®

are the ones with the variables belonging to the class (i) discussed after Eq. (2.59) in the

third section. Thus, the generators contained in the hyperplane are shown as:

v, —v) B |v,—v) B |lv—1,—v) B |v—1,—0v), (A.3)
v, —v) @ v, —v) @ |v, —v) @ |v, —v), (A.4)
v, =) B v, 1 —v)B|lv—1,—v) D |v—1,—-v), (A.5)
v, =1 —v) @ |v,—v) ® v, -1 —v) B |v, —v), (A.6)

for v € {0,1,...,d — 1}. The total number of linear independent generators is 4d which
is smaller than 4d(d — 1) involved+in the ‘condition of tightness. Then the proposed
Bell inequality is non-tight. Through a similar method shown above, one can prove the

inequality: C’ (d)\pg’LR < 2, is non-tight.

189



Appendix B

Entanglement witnesses of statbilizer

states

In order to prove that W is azwitness for detecting truly multipartite entanglement, we
show a comparison between W, and W};: if‘a'state p satisfies Tr(Wyp) < 0, it also satisfies
Tr(Wip) <0, ie.,, Wy — 7,5 > 0'where7s is some positive constant [72]. The related
parameters utilized to prove the witness operators have been summarized in the following
table.

Table B.1: The parameters involved in the proofs of entanglement witnesses and their
robustness to noise. Robustness of entanglement witnesses. The robustness to noise can
be determined by the noise tolerance: pueise < Onoise; i such that p = p peise/2V1 + (1 —

Pnoise) |@) (@, where ppoise describes the noise fraction, is identified as a truly multipartite
entanglement.

Wd> Onoise Yo Oéz
NN -

Wiy (4 - (2\%)6”2] 1’L2“(21§/2)) Loy 12

Wanzy B—50)"" T2 1/2

Wk, 1/3 My2 1/2
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Entanglement witnesses of entangled

qudits

To prove that Wy is a witness, we have to show the following comparison between W,
and WP if a state p satisfies Te(Wgp)<-0; it ‘also satisfies Tr(Wip) < 0, ie., Wy —
7¢W£ > 0 where v, is some positive constant:[72]. The table shown below summarizes the
related parameters utilized to prove that the proposed operators are indeed entanglement
witnesses for detecting many-qudit entanglement

Table C.1: Summaries of a, for W, the parameters ozg and 7,4, which are utilized to prove
W, and dpeise involved in robustness of the entanglement witness operator proposed.

o) |Z> > |S<> > |‘I’Zx4>> |‘I’<Nx3> >

as  0.5(C 0.806 { C'g 0.6 {Cy 0.6(Cs,

ozg 1/d 1/4 1/4 1/3
N—-2

Y —1.55 —-1.92 —1.81 > ok
k=0

Onoise 0.5 0.194 0.4 0.4
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