
國 立 交 通 大 學 
 

電子物理研究所 

 

博 士 論 文 
 
 

表面吸附分子的轉動能態及量子點的電子

性質之研究 

 

Studies on the Rotational States of Adsorbed 
Molecules, and the Electronic Properties of 

Quantum Dots 
 
 
 
 

研究生：廖英彥 

指導教授：褚德三 

 

 
 

 

中華民國九十五年六月



表面吸附分子的轉動能態及量子點的電子性質之研究 

Studies on the Rotational States of Adsorbed Molecules, 

and the Electronic Properties of Quantum Dots 

  
 

研究生：廖英彥                Student：Ying-Yen Liao 

指導教授：褚德三                Advisor：Der-San Chuu 

 
 

國 立 交 通 大 學 

電 子 物 理 研 究 所 

博 士 論 文 

 
A Dissertation 

Submitted to Institute of Electrophysics 

College of Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

in 

Electrophysics 

June 2006 

Hsinchu, Taiwan, Republic of China 
 
 

中華民國九十五年六月 



 
 
 

i

表面吸附分子的轉動能態及量子點的電子性質

之研究 

 

研究生:廖英彥                  指導教授:褚德三 

 

 

國立交通大學電子物理研究所 
 

 

摘要 
 

在本論文中，我們研究吸附雙原子分子的轉動能態和量子點的物

理性質。在第一部份中，我們考慮高強度雷射場照射在受到角錐位能

井局限的吸附極性分子上，藉由改變位能井的禁制角度，我們觀察分

子從自由轉動過渡到禁制轉動的行為。同時，我們也進一步探討耦合

自由與吸附分子的轉動能態，發現其分子偏向與單一吸附分子的偏向

有相當不同的差異性，原因是來自於分子間偶極作用的影響。此外，

我們也計算了 von Neumann熵來定義耦合分子系統的糾纏程度，結果

發現糾纏會受到分子間距離、雷射脈衝強度與數目以及局限效應的影

響。 

    在第二部份中，我們探討量子點系統的自旋弛豫與電子傳輸的現

象。當量子點被製備在半導體平板內，我們發現由於聲子與自旋軌道

交互作用的影響，自旋弛豫會顯現出類似共振腔的行為；另外，為了

研究聲子在電子傳輸的效應，我們進一步考慮雙量子點元件處在一個

單一聲子的環境中，結果顯示傳輸行為強烈地受到庫倫或是聲子場的

影響。最後，我們也研究雙量子點在外加場作用下的電子傳輸現象，

由於電子能態與外加場交互作用，我們發現電流大小會受到提升或是

壓抑。 
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ABSTRACT 
 

    In this dissertation, we study the rotational states of adsorbed diatomic 
molecules and some physical properties of quantum dots. In part I, an adsorbed 
dipole molecule confined by a conical well is subject to strong laser fields. The 
crossover from field-free to hindered rotation motion is observed by varying the 
hindering angle. Moreover, the rotational states of coupled free and adsorbed 
molecules with dipolar interaction are further studied. It is shown that the 
orientation is significantly different from that of an isolated one due to the 
dipole-dipole interaction. In addition, the von Neumann entropy is calculated to 
characterize the degree of entanglement. It is also found that the entanglement can 
be influenced by the inter-molecule distance, the strength and number of laser 
pulses, and the confinement effect. 
    In part II, we investigate the spin relaxation and electron transport in quantum 
dot systems. When a quantum dot is embedded in a semiconductor slab, the spin 
relaxation rate shows peculiar behaviors due to the confined phonons. Second, to 
observe the phonon effect on the transport, we have also considered a double-dot 
device embedded in a single phonon environment. It is shown that the transport 
behavior is deeply influenced by the Coulomb or phonon field. Finally, the 
transport of a double-dot device irradiated by an external field is considered. The 
enhanced or suppressed current is found due to the interplay between the energy 
states and external field. 
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CHAPTER 1

INTRODUCTION

Nanoscience and nanotechnology have attracted a great deal of attention

ranging from atoms, molecules to quantum dots. The purpose lies in the prospect

of understanding matter and its transformations at the most rudimental level.

Further, possible novel devices are hopefully developed to control the quantum

states in the ultimate limit. It is known that single atom and molecule are the

building blocks of matter. An important feature is that some intrinsic phenomena

cannot simply be probed from an ensemble of atoms or molecules. In addition, the

effects of the environments are deeply affect the physical properties. For example,

consider one molecule adsorbed on the solid surface, the energy levels are different

from those of free rotors. The physical properties are sensitive to the adsorption

site local symmetry, adsorbed molecule configuration, and local potential. With

the advance of laser and scanning probe technologies, it further becomes possible

to manipulate and control it at the spatial limit.

In analogy to atomic properties, a quantum dot is a fabricated nanostructure

in which electrons have been confined in all three dimensions, typically with sizes

ranging from nanometers to a few microns. Quantum dots exhibit discrete, size-

dependent electric and optical properties. Due to the discrete nature of their
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energy levels, quantum dots are therefore regarded as artificial atoms. Moreover,

the electrons confined in the two coupled quantum dots can form an artificial

molecule. The coupling between different dots can be tuned by changing the gate

voltages or interdot distances. Unlike the natural atoms, however, the numbers of

excess electron embedded in these quantum dots are tunable. Besides, the artificial

atom can be coupled to the electron reservoirs. On can probe the electronic

states and then measure the transport properties of a quantum dot. Of particular

importance is the Coulomb blockade effect leading to single-electron transport.

This is because the Coulomb repulsion between the electrons on the dot results in

a considerable energy cost for adding an extra electron charge. When the charging

energy of a small quantum dot is needed, electron in the leads cannot transfer into

the dot until increasing the voltage provides this energy.

Since the interplay between molecules, environments, and external influences

reveals the fruitful physics, part I of this dissertation is devoted to the studies

on the rotational states of adsorbed diatomic molecules in laser fields. We will

discuss the related properties of single adsorbed molecule and then extend our

study to multi-rotor system. In part II, we will focus on the study of quantum

dot systems. Since the carrier-phonon interaction is one of the inherent effects

in solid-state structures, we will discuss the lattice relaxation process in a single

quantum dot. In addition, the transport properties of the coupled dot systems

are further considered in different cases.
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CHAPTER 2

INTRODUCTION TO PART I

Since Langmuir [1] first conceived that localized adsorption occurs on surfaces,

studies of the adsorption of atoms and molecules attract much attention. The his-

toric studies and concept of localized chemical bonding on surface sites firmly set

one principal milestone for surface science. Among massive researches, investiga-

tion on the rotational properties of adsorbed molecules is a central subject. Figure

2.1 illustrates schematically a picture of crystal surface in which hindrance and/or

modulation of the molecular motion may occur [2]. The adsorbed molecules show

different types of equilibrium adsorption configurations. As can be seen from Fig.

2.1, the diatomic molecules may be adsorbed on the surface vertically or hori-

zontally. Due to the molecule-surface interaction, the substrate can influence the

rotation of an adsorbed molecule (rotor).

The molecule-surface interaction is generally a complex problem which in-

volves the molecule-surface separation, the lateral motion along the surface, the

molecular rotation, the molecular vibration, and the electronic excitation. Due to

the differences in energy scale, one can separate the rotational degree of freedom

from others. Although it is greatly simplified, analytical expressions for the real-

istic surface hindering potentials are still unavailable. In order to clearly describe

3



the interaction between the adsorbed molecule and the surface, various models

were proposed to simulate the hindered rotational motions. One example is the

infinite conical-well model proposed by Gadzuk et al. [2, 3]. The important feature

of this model is that the adsorbed molecule is only allowed to rotate within the

well region. This model successfully provided a good insight into the rotations of

hindering molecules. However, its weakness is that, compared to the experimental

data, it is difficult to deduce more information about the molecule-surface interac-

tion strength from an infinite conical-well model. Therefore, a more realistic finite

hindering potential was considered by Shih et al. [4, 5]. It was found that the ro-

tational energy levels exhibit oscillatory behavior by varying the hindering angles.

This behavior is different from that of an infinite conical-well model. Besides, the

Stark shifts of the rotational states were also investigated [6, 7]. The theoretical

results derived from their model are in good agreements with the experiments

[8, 9, 10, 11].

With the rapid developments of laser technologies, mid toward far IR laser

field, which have potential applications ranging from nanoscale design, surface

processing, stereodynamics to chemical reactivity, are achievable to manipulate

the motions of molecules [12], i.e., molecular alignments and orientations. A pio-

neering work studied by Friedrich and Herschbach [13] is that the molecular align-

ment is responsible for the anisotropic polarizability induced by the non-resonant

laser pulses. When the duration of laser pulse is longer than the rotational period,
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the pendular states can be created adiabatically, and the molecular axis is aligned

parallel to the direction of field polarization [14, 15, 16]. As the laser pulse is

switched off, the molecule will go back to its initial condition and no longer be

observed again. If the duration of laser pulse is shorter than the rotational pe-

riod, the alignment occurs periodically in time (the non-adiabatic regime) [17, 18].

For molecular orientations, Henriksen [19] derived an analytical expression for the

wavepacket based on the Magnus expansion. According to the model, an ultra-

short laser pulse is able to generate a field-free orientation [20], i.e. it can impart a

kick, like impulsive excitation, to the molecule [21]. The dipole molecule will tend

to orient in the direction of laser polarization. To achieve an efficient orientation,

a tailored laser pulse can actually be produced through optimal control [22, 23].

In addition to single molecule, many molecular systems show peculiar behav-

ior in the presence of dipole-dipole interaction. For example, Rogalsky et al. [24]

presented neutron scattering linewidths of certain Hofmann clathrates. A line

broadening mechanism based on rotor-rotor coupling was proposed for the expla-

nation of the widths [25]. Furthermore, a novel physical realization of a quantum

computer via the electric dipole-dipole interaction was proposed by DeMille [26].

Shima and Nakayama [27] calculated the energy spectra and dielectric suscepti-

bilities in coupled-rotor systems. Nonadiabatic orientations of coupled quantum

rotors with dipolar interaction were also studied [28]. Recently, interacting mole-

cules mounted on the surfaces were also studied with the help of nanotechnology
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[29, 30, 31].

In this part we investigate the rotational motions of adsorbed dipole molecules

under strong laser fields. The surface potential is modeled as a conical well for

hindered rotors, and a dipole-field interaction is then included into the system.

The crossover from field-free to hindered rotation motions is studied by varying

some related parameters. Moreover, we further consider the dipole-dipole inter-

action in double-molecule system. The orientations and entanglement of coupled

(free and adsorbed) molecules are also discussed.

This part is organized as follows. In chapter 3, we study the rotational states

of a polar molecule vertically adsorbed on the surface and subjected to a strong

laser field. The molecular alignments and orientations are studied by varying

the degree of hindered potential well. We further investigate the orientations

of two coupled, free polar molecules irradiated by strong laser pulses in chapter

4. The degree of entanglement, characterized by the von Neumann entropy, is

also discussed. In chapter 5, we study the orientations of coupled adsorbed polar

molecules in a strong laser field. Entanglement induced by the dipolar interaction

is also calculated and analyzed for different hindering angles of conical wells.

Finally, we conclude our results and present future works in chapter 6.
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Figure 2.1: Schematic view of molecular adsorption systems. The adsorbed di-

atomic molecules at the left and the center show different adsorption configura-

tions, i.e. the vertical and horizontal, respectively. From Ref. [2].
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CHAPTER 3

AN ADSORBED DIPOLE MOLECULE IN LASER

FIELDS

With the developments laser technology, alignments and orientations of mole-

cules are important in the investigations of stereodynamics, surface catalysis,

molecular focusing, and nanoscale design [12]. The alignment scheme has been

demonstrated both in adiabatic and nonadiabatic regimes. A strong laser pulse

can adiabatically create pendular states, and the molecular axis is aligned in par-

allel to the direction of field polarization. The molecule goes back to its initial

condition after the laser pulse is switched off, and the alignment can no longer

be observed again [13, 16]. To achieve adiabatic alignment, the duration of laser

pulse must be longer than the rotational period. However, an ultrashort laser

pulse with several cycles is also observed to induce a field-free alignment provid-

ing the duration of laser pulse is smaller than the rotational period. In this limit,

the alignment occurs periodically in time as long as the coherence of the process

is preserved [17, 18]. On the other hand, a femtosecond laser pulse is found to

be able to generate field-free orientations [20]. The dipole molecule, kicked by an

impulsive pulse, will tend to orient in the direction of laser polarization.
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Recently, the rotational motion of a molecule interacting with a solid surface

has attracted increasing interest. It is known that molecules can be desorbed

by applying UV laser beam along the surface direction, and the quadrupole is a

measure of the rotational alignment [9, 10, 11]. To understand molecular-surface

interaction, Gadzuk and his co-workers [2, 3] proposed an infinite-conical-well

model, in which the adsorbed molecule is only allowed to rotate within the well

region. Shih et al. further proposed a finite-conical-well model to generalize the

study of a finite hindrance [4, 5]. Their results showed that the rotational states

of an adsorbed dipole molecule in an external electric field exhibit interesting

behaviors, and theoretical calculation of the quadrupole moment based on finite-

conical-well model is in agreement with the experimental data [7].

In order to explore the dynamical behavior of a molecule adsorbed on the

surface, we investigate the rotational motions of an adsorbed diatomic molecule

under an ultrashort laser pulse in this chapter. Different well-dependent signatures

between the alignments and orientations of the hindered molecule are discussed.

Besides, the crossover from field-free to hindered rotation is also studied.

3.1 Model of an adsorbed molecule

A diatomic molecule with a dipole moment µ is vertically adsorbed on the

surface. The Hamiltonian of such system is

H =
h̄2

2I
L2 + Vhin (θ, φ) , (3.1)
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where I is the molecular moment of inertia with respect to its center of rotation, L2

is the angular momentum operator, and Vhin (θ, φ) is the surface potential energy

to which the molecule is subjected. For convenience, we express the energy in

the unit of the molecular rotational constant B = h̄2/2I. Straightforwardly, the

Schrödinger equation for the molecular rotation in spherical coordinates can be

expressed as∙
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂2φ
+ l,m − Vhin(θ, φ)

¸
ψl,m(θ, φ) = 0, (3.2)

where l,m is the rotational energy and ψl,m is the corresponding eigenfunction.

In general, the dependence of the potential energy Vhin(θ, φ) on θ and φ is com-

plicated. Since calculations indicate that the dependence on φ is weaker than

that on θ, we reasonably assume that V (θ, φ) is independent of φ [32, 33, 34]. To

simulate the potential energy, the finite conical-well model [4, 5] is proposed (Fig.

3.1)

Vhin (θ) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ θ ≤ α,

V0, α < θ ≤ π,

, (3.3)

where V0 represents the barrier height. The eigenfunctions for this system can be

analytically written as

ψl,m (θ, φ) = Θl,m (cos θ)
exp (imφ)√

2π
, (3.4)

where

Θl,m (ξ) =

⎧⎪⎪⎨⎪⎪⎩
CI,l,mP(+1) (νl,m,m, ξ) , cosα < ξ ≤ 1,

CII,l,mP(−1)
¡
ν 0l,m,m, ξ

¢
, −1 ≤ ξ < cosα,

(3.5)
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with ξ = cos θ and the quantum numbers (l,m). Here CI,l,m and CII,l,m are the

normalizational constants. The functions P(±1) in above equations are defined as

P(±1) (νl,m,m, ξ) =
¡
1− ξ2

¢|m|/2
F

µ
|m|− νl,m, 1 + |m|+ νl,m, 1 + |m| ; 1∓ ξ

2

¶
,

(3.6)

where F (a, b, c; z) is the hypergeometric function [35]. In above equations, the

molecular rotational energy is expressed as

l,m = νl,m (νl,m + 1) , (3.7)

and ν 0l,m is defined as

ν 0l,m
¡
ν 0l,m + 1

¢
= νl,m (νl,m + 1)− V0. (3.8)

In order to determine νl,m, one has to match the boundary conditions at ξ = cosα.

As the potential well is infinite (V0 →∞), Eq. (3.5) reduces to

Θl,m (ξ) =

⎧⎪⎪⎨⎪⎪⎩
CI,l,mP(+1) (νl,m,m, ξ) , cosα < ξ ≤ 1,

0, −1 ≤ ξ < cosα.

. (3.9)

The corresponding rotational energy l,m is νl,m (νl,m + 1) determined by the bound-

ary condition,

P(+1) (νl,m,m, ξ = cosα) = 0. (3.10)

Note that the Eq. (3.9) and (3.10) are exactly the same as the results obtained

in Refs. [2, 3].
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3.2 Connection between theory and experiment

Certainly, using a simplified analytical potential is not state-of-the-art. Mole-

cule surface interaction potentials can nowadays be mapped out in great detail

by ab initio electronic structure methods. However, as can be seen in the works

[4, 5, 6, 7], the simplified model shows interesting results. Furthermore, qualitative

concepts and mechanisms can also be derived from the investigations. For exam-

ple, we can justify the model by the performance of calculations on the rotational

alignment of the desorbing molecules.

When a molecule desorbs from a solid surface, [9, 10, 11, 36, 37, 38, 39] the

quadrupole moment A20 (J) is a measure of the rotational alignment and is defined

as A20 (J) = hJ |(3J2z − J2) /J2| Ji [40]. In the classical limit, the value of A20 (J)

represents the ensemble average of (3 cos2 χ− 1) where χ is the angle between the

angular momentum vector J of the molecule and the surface normal. The value of

A20 (J) ranges from +2 to -1, where positive values present helicopter-like motion

(J vector prefers to parallel to the surface normal), negative values correspond

cartwheel-like motion (J vector prefers to perpendicular to the surface normal).

To compare with the possible observed data, we calculate the quadrupole

moment A20 (J) by the results obtained in our model of finite conical well. Ac-

cording to the sudden unhindrance approximation, the quadrupole moment of the

alignment distribution can be evaluated by the following equation:

A20 (J) =

P
m,L,m0 exp (− L,m0/kBT )

D
YJ,m

¯̄̄
3J2

z−J2

J2

¯̄̄
YJ,m

E ¯̄
YJ,m|ψL,m0

®¯̄2P
m,L,m0 exp (− L,m0/kBT )

¯̄
YJ,m|ψL,m0

®¯̄2 . (3.11)
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Figure 3.2 shows our calculated results compared with the experimental re-

sults of the rotational alignment in the photodesorption of CO from Cr2O3(0001)

[9, 10, 11]. The hindrance parameters we used here are V0 = 2000 and α = 120◦. It

was observed experimentally the quadrupole moment of desorbing CO changes its

sign from positive to negative with increasing rotational quantum number J . The-

oretically we could reproduce a positive quadrupole moment for small quantum

number J and thus corresponds to the helicopter-like desorbing, while a negative

quadrupole moment of desorbing CO can be obtained and thus corresponds to

the cartwheel-like desorbing for larger quantum number J . This result agrees

qualitatively with the experimental observations as can be noted from Fig. 3.2.

To see more profoundly that our calculated results can yield positive values

of quadrupole momentum for small angular momentum and negative values for

large J states, we examine the expectation value hYJ,m |(3J2z − J2) /J2|YJ,mi in

Eq. (3.11). For a specific quantum number J , this expectation value is positive

for high |m| values and is negative for low |m| values. In the summation of

Eq. (3.11), only the low-lying hindered-rotational states ψL,m0 dominate due to

the thermal factor. We calculated the overlapping factors
¯̄
YJ,m|ψL,m0

®¯̄2
between

the free-rotational states YJ,m and the low-lying hindered-rotational states ψL,m0.

Our results showed that, when J is small, the calculated values of
¯̄
YJ,m|ψL,m0

®¯̄2
for a specific L is larger for ψL,m0 states with larger |m| which correspond to

more horizontally-distributed wavefunctions. This makes the hindered molecule
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prefer to the helicopter-like desorption and yield a positive quadrupole moment.

On the contrary, when J is larger, the low-lying ψL,m0 states correspond smaller

|m| and then negative expectation values hYJ,m |(3J2z − J2) /J2|YJ,mi. Our results

also showed that, when J is larger, the calculated values of
¯̄
YJ,m|ψL,m0

®¯̄2
for a

specific L is larger for ψL,m0 states with smaller |m| which correspond to more

vertically-distributed wavefunctions. This makes the hindered molecule prefer to

the cartwheel-like desorption in larger J states and yield a negative quadrupole

moment.

3.3 An adsorbed molecule in a strong laser field

Consider now a laser pulse polarizing in z-direction interacts with the hindered

molecule. The model Hamiltonian can be written as

H = BL2 + Vhin(θ) +HI , (3.12)

where L2 and B are the angular momentum operator and rotational constant. For

the vertical absorbed configuration, the surface potential which was proposed by

Gadzuk [2, 3] can be written as

Vhin (θ) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ θ ≤ α

∞, α < θ ≤ π

, (3.13)

where α is the hindered angle of the conical well. In Eq. (3.12), HI describes the

interaction between the dipole moment (permanent and induced) and laser field:

HI = −µ · ε(t), (3.14)
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where µ is the dipole moment and ε is the electric field vector of the linearly

polarized laser. In the presence of an electric field, the dipole moment can be

expressed as [41, 42]

µ = µ0 +
1

2
αε+

1

6
βε2 +

1

24
γε3 + ..., (3.15)

where µ0 is the permanent dipole moment, α is the polarizability tensor, and β

and γ are the first and second hyperpolarizability tensors. We neglect the higher

order terms here, and subsequently the laser-molecule interaction is given by

HI = −µ0E (t) cos θ −
1

2
E2 (t) ((αk − α⊥) cos2 θ + α⊥), (3.16)

where the components of the polarizability αk and α⊥ are parallel and perpendic-

ular to the molecular axis, respectively. The laser field in our consideration is a

Gaussian shape centered at the time t0:

E (t) = E0e
− (t−t0)2

σ2 cos (ωt) , (3.17)

where E0 is the field strength, σ is the pulse duration, and ω is the laser frequency.

To solve time-dependent Schrödinger equation, the wavefunction is expressed

in terms of a series of eigenfunctions

Ψ(t) =
X

cl,m (t)ψl,m (θ, φ) , (3.18)

where cl,m (t) is time-dependent coefficients corresponding to the quantum num-

bers (l,m). As can be seen in the above section, the wavefunction for infinite
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conical-well model is given by

ψl,m (θ, φ) =

⎧⎪⎪⎨⎪⎪⎩
Al,mP

|m|
νl,m (cos θ)

exp(imφ)√
2π

, 0 ≤ θ ≤ α

0, α < θ ≤ π

, (3.19)

where Al,m is the normalization constant and P
|m|
νl,m is associated Legendre func-

tion of arbitrary order. After determining the coefficients cl,m (t), the orientation

hcos θi and alignment hcos2 θi can be carried out immediately.

We choose ICl as our model molecule, whose dipole moment µ = 1.24 Debye,

rotational constant B =0.114 cm−1, polarizability components αk ≈ 18 Å3 and

α⊥ ≈ 9 Å3. The peak intensity and frequency of laser pulse is about 5 × 1011

W/cm2 and 210 cm−1, respectively. For simplicity (zero-temperature case), the

rotor is assumed in ground state initially, i.e. c0,0 (t = 0) = 1. Besides, in order

to keep the simulations promising, the highest quantum number for numerical

calculations is l = 15, such that the results are convergent and the precision is to

the order of 10−7.

3.4 Results and discussion

The solid lines in the insets of Fig. 3.3 show the dependence of the alignment

on hindered angle α. For α = 60◦, sinusoidal-like behavior is presented, and the

alignment ranges from 0.63 to 0.91. As the hindered angle increases, the curves

become more and more complicated and gradually approach the free rotor limit

as shown in the insets of Fig. 3.3(b) (α = 120◦) and 3.3(c) (α = 180◦). This
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can be understood well by studying the populations |cl,m|2 of low-lying states. In

the regime of small hindered angle, there is little chance for electron to populate

in higher excited states since the shrinking of the conical-well angle causes the

increasing of energy spacings.

One also notes that the populations of a hindered molecule for α = 60◦ and

120◦, shown in Fig. 3.4(a) and (b), mainly compose of l = 0, 1 and 2 states, while

the population of a free rotor is composed of l = 0, 2, 4 states. The underlying

physics comes from the reason that

ψl0,m0 |cos2 θ|ψl,m

®
is non-zero for all l and

l0 values in the case of hindered rotation. But it is zero in free rotor limit except

for l = l0 or l = l0 ± 2. The dotted lines in the insets represent the first two main

contributions of the factors
P
l 6=l0


ψl0,m0 |cos2 θ|ψl,m

®
summed from low-lying states,

i.e. the sum of the largest two values of the off-diagonal term

ψl0,m0 |cos2 θ|ψl,m

®
.

As can be seen, the populations for small hindered angle are mainly distributed

on lower states since the main oscillation feature (e.g. the frequency) of the curve

(dotted lines) is quite similar to that from whole contributions (solid lines).

Let us now turn our attention to the case of orientation. After applying a

short pulse laser, the orientation hcos θi of a hindered molecule (α = 60◦) oscil-

lates sinusoidally with time as shown in Fig. 3.4(a). The value of hcos θi is always

positive because the rotational wavefunction is compressed heavily. As the hin-

dered angle α becomes larger, the oscillation frequency also decreases as shown

in Fig. 3.4(b). These signatures are quite close to that of the alignment. We

17



then conclude that even at larger hindered angle (α = 1200) the role of hindered

potential still overwhelms the laser pulse, otherwise, the value of hcos θi should

not always be positive.

Fig. 3.4(c) represents results of orientations in infinite (V0 =∞) or finite (V0 =

100) conical-well potential for α = 1750. Dashed and dotted lines correspond to

V0 = ∞ and 100, respectively. For the case of finite conical-well potential, the

wavefunction is expressed in terms of a series of the basis wavefunctions obtained

in Refs. [4, 5, 7]. As can be seen, the effect of laser pulse is obvious because

negative value appears. Comparing the results with the free orientation [20], the

angular distributions for finite well are more isotropic since the wave functions

can penetrate into the conical-barrier.

Further analysis shows that components of orientation hcos θi or alignment

hcos2 θi can be divided into two parts: diagonal and nondiagonal terms. The

nondiagonal term represents the variations of these curves such as those in the

insets of Fig. 3.3. These variations with time are determined by the phase differ-

ence coming from various energy levels. To see the contributions from diagonal

terms, we evaluate the time-averaged orientation and alignment. In this case, the

nondiagonal values will be averaged out, and only contributions from diagonal

terms exit. Fig. 3.5 shows the mean orientation and alignment as a function

of hindered angle. As α increases, the mean orientation decreases monotonically

from 1 to 0. This is because the mean orientation is determined by |cl,m|2 and
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ψl,m |cos θ|ψl,m

®
. For a larger angle α, the populations |cl,m|2 mainly compose

of l = 0, 2, 4 states. But the value

ψl,m |cos θ|ψl,m

®
is governed by the selection

rule: l = l0 + 1. Thus the net effect is the shrinking of the mean orientation in

large angle limit.

Contrary to orientation, the mean alignment shows a quite different feature.

The value of hcos2 θi first decreases as α increases. However, it reaches a minimum

point about for α = 1400. From the insets of Fig. 3.5, we know that the values

of
¡
ψl,m |cos2 θ|ψl,m

®¢
do not depend significantly on α. Therefore, the decrease

of hcos2 θi comes from the decreasing tendency of the population |cl=1,m|2, while

its increasing behavior is caused by other two populations |cl=0,m|2 and |cl=2,m|2.

Competition between these two effects results in a minimum point.
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Figure 3.1: Schematic view of the hindered rotor.
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Figure 3.2: Quadrupole moments for the desorption of CO from Cr2O3(0001) as

function of quantum number J . Filled circles: experimental data points.
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Figure 3.3: The populations of the states (l,m = 0) for different hindered angles:

(a) α = 600, (b) α = 1200, (c) α = 1800. The insets show the correspond-

ing alignments (solid lines) and the first two main contributions of the factorsP
l 6=l0


ψl0,m0 |cos2 θ|ψl,m

®
(dotted lines).
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Figure 3.4: The orientations hcos θi (solid lines) of a hindered molecule confined

by infinite conical-well for different hindered angles: (a) α = 600, (b) α = 1200,

(c) α = 1750. The dashed and dotted lines in (c) correspond to different potential

barrier height, i.e. V0 =∞ and 100, respectively.
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CHAPTER 4

COUPLED FREE MOLECULES IN LASER FIELDS

Recently, coupled-rotor- model attracts much interest because some physi-

cal properties such as dielectric response may display peculiar behaviors in the

presence of dipole-dipole interaction. In some materials, molecules are found

to show a free rotation. For example, NH3 groups behave like one-dimensional

quantum rotors in certain Hofmann clathrates [25]. In particular, a line broad-

ening mechanism is proposed based on rotor-rotor coupling. With the advances

of nanotechnology, one can investigate the quantum rotors which are mounted

on the surfaces [29, 30, 31]. From the laser spectroscopy, two individual fluo-

rescent molecules separated by several nanometers on the surface of an organic

crystal can be resolved. The coherent interactions between the dipole moments

associated with their optical transitions are found in the quantum optical mea-

surements. The strong dipole-dipole coupling produces entangled subradiant and

superradiant states in the two molecules system under laser radiation [30].

Many efforts have been devoted to generate entanglement in quantum-optic

and atomic systems. Although some studies have been investigated on quantum

rotors, these works are limited in the model of kicked tops [43, 44]. In this chapter,

we consider a more realistic system. A method is proposed to create entanglement
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between two coupled identical polar molecules separated in a distance of tens of

nanometers. Both molecules are assumed to be irradiated simultaneously by the

laser pulses. It is found that the entanglement induced by the dipole interaction

can be affected by controlling the inter-molecule distance, the field strength, and

the number of laser pulses. Moreover, the crossover from quantum to classical

limit is also discussed by varying the Planck constant.

4.1 Model of two coupled free molecules in a strong laser pulse

Consider now two diatomic polar molecules (e.g. NaI) separated in a dis-

tance of R. The molecule system is irradiated by half-cycle pulses. The total

Hamiltonian can be written as

H =
X
j=1,2

h̄2

2I
L2j + Udip +HI , (4.1)

where L2j and
h̄2

2I
(= B) are the angular momentum operator and rotational con-

stant, respectively. Udip is the dipole interaction between two molecules:

Udip =
[µ1 · µ2 − 3 (µ1 · beR) (µ2 · beR)]

R3
, (4.2)

where µ1 and µ2 are the dipole moments. The dipole moments of two molecules

are assumed, for simplicity, to be identical, i.e. µ1 = µ2 = µ0. The field-molecule

coupling HI can thus be expressed as

HI = −
X
i=1,2

µ0E (t, v) cos θi, (4.3)
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where θ1 and θ2 are angles between dipole moments and laser field. The laser field

is given by E (t, v) = E0f (t) cos (2πvt) ,where E0 is the field strength and v is the

frequency. The envelope function f (t) is assumed to be Gaussian shape centered

at the time t = t0 with duration σ, i.e. f (t) = e−(t−t0)
2/σ2

. Traditionally, a half-

cycle pulse is a strongly asymmetric monocycle pulse that consists of two parts: a

very short, strong pulse and a much long and weak tail of opposite electrical field.

The pulses E (t, v) used in the present work are actually not the exact half-cycle

pulses as defined in Ref. [45]. However, practical calculation shows that there

is almost no influence on our final result if a long and weak tail is introduced in

the pulses E (t, v) = E0f (t) cos (2πvt). Thus, it is reasonable to model a half-

cycle pulse by using the function E (t, v) in our calculation. In addition, the field

duration is considered to be much shorter than the molecular rotational period

in our work. Based on these conditions, an impulsive model can be employed

in this case [20, 21]. The time-dependent Schrödinger equation can be solved by

expanding the wave function Ψ in terms of a series of field-free spherical harmonic

functions Yl,m (θ, φ) as

|Ψi =
X

l1,m1;l2,m2

cl1,m1;l2,m2 (t) |Yl1,m1 (θ1, φ1)i |Yl2,m2 (θ2, φ2)i , (4.4)

where (θ1, φ1) and (θ2, φ2) are the coordinates of the first and second molecule re-

spectively. The time-dependent coefficients cl1,m1;l2,m2 (t) correspond to the quan-

tum numbers (l1,m1; l2,m2) and can be determined by solving Schrödinger equa-

tions numerically. In equation (4.4), the inter-molecule separation R is assumed to
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be fixed for simplicity, so that the total wavefunction has no spatial dependence.

Although the variation of R might be inevitable due to the influence of laser fields

or inter-molecule vibrations, however, recent experiments exhibited that the spa-

tial resolution in tens of nanometers for two individual molecules hindered on a

surface is practically possible [29, 30, 31]. In principle, the free orientation model

can be easily generalized to the hindered ones by replacing the spherical harmonic

functions with hindered wavefunctions.

4.2 Entanglement of two coupled free molecules

Let us now focus on the entanglement generated in our system. The cou-

pled molecules can be expressed as a pure bipartite system. The reduced density

operator for the first molecule is defined as

ρmol1 = Trmol2 |Ψi hΨ| . (4.5)

To study the degree of entanglement, the bases of molecule 1 is transformed to

make the reduced density matrix ρmol1 to be diagonal. The entangled state can

be represented by a biorthogonal expression with positive real coefficients λlm

which can be obtained by diagonalization of density matrix ρmol1. The degree of

entanglement for the coupled molecules can then be measured by von Neumann

entropy [46, 47]

Entropy = −
X
l,m

λl,mlognλl,m. (4.6)
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In our work, NaI molecule in the ground state with dipole moment 9.2 debyes and

rotational constant 0.12 cm−1 is used. The field strength is 3× 107 V/m and the

laser frequency is about 9×1011 s−1. The duration and center of the pulse are set

equal to 279 fs and 1200 fs. The main feature is that the ratio in magnitude of

the positive and negative peak value of the laser pulse is 5 : 1. Unless specified,

the parameters of the pulse are fixed throughout the chapter. The crossover from

non-entangled case to entangled one is studied based on the initial condition:

c0,0;0,0 (t = 0) = 1.

4.3 Results and discussion

After the coefficients cl1,m1;l2,m2 (t) are determined, the orientations hcos θ1i

and hcos θ2i can be evaluated immediately. Fig. 4.1 shows the orientations of the

first and second molecules after a single laser pulse is applied on both molecules.

For R = 3 × 10−8 m, the behavior of the first molecule is quite close to that of

a free rotor [20]. This is not surprising because the dipole interaction is weak

for this molecule separation. However, as two molecules get close enough (Fig.

4.1(b)), both molecules orient disorderly, and the periodic behavior disappears.

This is because the dipole interaction is increased as the distance between the

molecules is decreased, and the energy exchange between two molecules becomes

more frequently. The regular orientation caused by the laser pulse is inhibited by

the mutual interaction.
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The populations of some low-energy levels are shown in the lower panels of Fig.

4.1(a) and (b). The solid, dashed, and dotted lines represent the populations of the

states (1,0;0,0), (1,0;1,0), and (2,0;1,0), respectively. These states show different

degrees of periodic behavior at different distances. However, the populations of

some higher excited states, for example the (3,0;1,0) state in the inset of Fig.

4.1(b), display different degrees of irregularity. This manifests a fact that the

nonlinear effect, caused by the reduction of R, does not affect the regularity of

the low-lying states, and the origin of the irregularity is caused by the higher

excited states.

Consider now the molecules are irradiated by a series of laser pulses periodi-

cally. As shown in Fig. 4.2(a), if the period of the applied periodically laser pulse

T is equal to h̄/B , then both molecules behave disorderly no matter how the

distance R is varied. The chaotic behavior of the molecules can be ascribed to the

well-known ”kicked-rotor”problem. However, a series of regular-like orientations

marked by dotted and dashed lines are present in Fig. 4.2(b) if T is equal to

πh̄/B. For a free rotor under a single kick, this interesting phenomenon comes

from the situation as the magnitude of the orientation returns to its initial con-

dition (hcos θi = 0) after a certain period T [20]. Therefore, for two molecules

in weak interaction limit (R = 3 × 10−8 m), the wavepacket-like orientation is

similar to that of a single free rotor under the same laser period. The difference

is the suppression of the amplitudes at long time (dashed lines). It means that

30



the dipole force can generate some accidental phases to perturb the regularity of

the coupled system. The lower panel of Fig 4.2(b) exhibits that the suppression

of the regularity is quicker if the dipole force is stronger.

Fig. 4.3 shows the time-dependent entropy after one pulse passes through

this system. For inter-distance R = 5 × 10−8 m, the entropy increases slowly

from zero. For R = 1.5 × 10−8 m, on the contrary, the entropy grows rapidly

with the increasing of time because the dipole force is stronger. Notes that the

entropy only varies within a finite range at long time regime. This indicates that

the systems reaches a dynamic equilibrium state even though the dipole force is

still present.

Fig. 4.4(a) illustrates the variations of the entropy with respect to different

field strengths of the applied laser pulse as R is set equal to 1.5 × 10−8 m. For

the field strength E0 = 1.5× 107 V/m, an irregular-like behavior of the entropy is

obtained, and its value is not large enough for quantum information processing.

However, Fig. 4.4(b) shows that the degree of entanglement can be enhanced if

one increases the field strength. This can be understood well by studying the

relationship between the dipolar interaction and the field strength. If the effect of

dipole interaction overwhelms the laser field, most of the populations are distrib-

uted on the low-lying states. In this case, the entropy from Schmidt decomposition

is certainly small as shown in Fig. 4.4(a). On the other hand, if the field strength

plays a dominant role, the distribution of molecular states covers a wider range
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and the entropy is enhanced in this limit.

Next we detune the frequencies of the laser fields to study the behavior of

entanglement. Figure 4.5 illustrates the time evolution of the entropy with dif-

ferent ratios in magnitude of the positive and negative peak value of the laser

pulse as R is set equal to 1.5 × 10−8 m. The laser frequency is tuned to change

the ratio as shown in the inset by fixing other parameters. For the case of ratio

9 : 1, an irregular-like behavior is obtained with time-averaged value 0.51. If the

ratio is set equal to 1 : 1, the entanglement shows a nearly periodic behavior with

small averaged entropy. This result is very similar to the limiting case without

laser, and indicates that the entanglement depends sensitively on the ratio of the

laser pulse, i.e. the excitation is suppressed under the condition of 1 : 1 ratio.

Meanwhile, the dipole force only establishes periodic-like entropy.

Let us consider the first ten most contributive coefficients λl,m. The λl,m are

re-arranged and denoted as λp with p = 1, 2, 3.... For example, λ1 is the most

contributive coefficient. The insets of Fig. 4.5 show the ten coefficients (λp)

at short and long time regimes. In the case of the ratio 9 : 1 , the eigenvalue

λ1 dominates the contributions at short time regime(t = 50 ps). However, the

contributions are distributed more averagely between different levels as t = 800

ps regime. This means the system is in some sort of dynamic equilibrium in long

time limit, and entropy saturates to certain value. On the contrary, λ1 always

dominates the contributions for either short or long time regime in the case of the
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ratio 1 : 1 as shown in the lower inset of Fig. 4.5. From statistical point of view,

this somehow explains the suppressed and regular behaviors of the entanglement

(entropy).

Figure 4.6 shows the time evolutions of the populations of the eigenstates for

different ratio of pulse shapes. For 1 : 1 ratio, the pulse hardly excites the rotors

from the initial energy level (0, 0; 0, 0). Therefore, (0, 0; 0, 0) is still the mostly

populated level (the population value is nearly close to 1 ) as shown in the lower

panel of Fig. 4.6 while the pulse passes through. Similar to the ground state,

the populations of the higher levels (the inset of Fig. 4.6) also show the periodic

behavior. The periodic behavior is ascribed to the dipole interaction. Since the

small fluctuation of the population is dominated by the dipole interaction in the

case of symmetrical pulses. The magnitudes of the periodic fluctuations in higher

level populations are rather small with the periodic evolution of the entropy. On

the other hand, for 9 : 1 ratio the populations of the higher states show different

degrees of irregularity as shown in the upper panel of Fig. 4.6. This is because

a single asymmetrical pulse can generate high populations in the excited states

[20], i.e. a larger angle orientation. The larger angle orientation can cause a

largely fluctuated dipole interaction between the molecules. For this situation,

energy transfer by means of (mediated) dipole interaction generates the irregular

evolutions of the higher excited states which result in a randomly time-varying

entropy.
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We further study the entropy for different separation and dipole moment in

Fig. 4.7. The ratio is set equal to 9 : 1. If the separation is smaller (0.8 R),

the entropy grows faster. On the contrary, the entropy evolves slower for the

case of larger separation. This means that the system needs much more time to

approach the dynamic equilibrium. We also study the time evolution of entropy

by changing the dipole moment. Our result shows that a similar behavior of the

entropy exhibits, i.e. the strength of dipole interaction governs the behavior of

evolution.

By adjusting the laser parameters, one can vary the degree of the entangle-

ment. Figure 4.8 illustrates the time evolution of the entropy under single pulse

or double pulses with ratio 5 : 1. As can be seen, an irregular behavior of the

entropy is obtained, but their averaged values are different. For single kick, the

populations are first dominated by this laser pulse. Then, the dipole interaction

plays a key role to raise the entanglement in the system. In the case of double

pulses the finite populations is created by first pulse. As the second laser pulse

passes through, the populations will be redistributed to a wider range. Since the

populations are distributed more averagely in this case, the entropy is certainly

larger as shown by the solid line in Fig. 4.8. One can notes that the enhancement

of entropy is achieved by applying the second laser pulse. Consider the case that

time separation between these two pulses is set to be 5 times the center of the

laser peak. Here we emphasize that the time separation is not fixed and can be
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tuned to obtain different degree of entropy. Another way to control the degree of

entanglement in this system is to change the positive and negative ratios of the

laser pulse. Inset of Fig. 4.8 shows the time-averaged entropy with respect to

different ratios. We find that the entropy is more enhanced as the ratio is larger.

This means that the highly asymmetric laser pulse can generate larger entropy

under the same field strength.

To study the crossover behavior from quantum to classical limit in this system,

one can tune the fundamental Planck constant h̄0. Figure 4.9 shows the time

for entropy first exceeds the time-averaged value (arrow in the inset) versus the

different factor of Planck constant h̄0. As shown, the time grows rapidly with

the decreasing of the Planck constant h̄0. The inset in Fig. 4.9 shows a slowly

increasing of entropy with the evolution of time for h̄0 = 0.01h̄. Comparing this

with the result for h̄
0
= h̄, the ratio of the two times is roughly 100 : 1. This means

that the entropy evolves slowly, and the system needs a longer time to approach

dynamical equilibrium for a small h̄0. As expected, the time for classical limit

(h̄0 → 0) goes to infinity, satisfying that no entanglement exists between classical

objects.

For a more realistic molecular system, one can extend our model to hindered-

rotor system. The hindered rotor means that the polar diatomic molecule is

adsorbed on the surface with the confinement of surface potential. In other words,

one reasonably considers that two coupled polar molecules are adsorbed on the
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surface with the dipole interaction. Comparing hindered rotor with free one, the

rotation of a hindered rotor is similar to that for the free one, but the degree

of orientation is different. This is because that the surface potential confines

the rotation. Although this confinement may affect the property of the system,

according to our work in chapter 3, a free rotor and hindered rotor actually show

the same physics. In particular, a hindered rotor can be transformed into a free

one by changing the parameters of surface potential.
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Figure 4.1: Upper panels of Fig. 4.1(a) and (b) show the orientations of the

two molecules at different distances. Lower panels: The populations of the states

(l1,m1; l2,m2)=(1, 0; 0, 0) (solid lines), (2, 0; 1, 0) (dotted lines), (1, 0; 1, 0) (dashed

lines). The insets in (a) and (b) represent the population of state (3, 0; 1, 0) .
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Figure 4.2: The orientations of the first and second molecules under periodic

laser pulses with the periods T= (a) 1h̄/B, (b) πh̄/B ps. The upper and lower

panels of (a) and (b) correspond to the distances R = 3 × 10−8 and 2 × 10−8 m,

respectively.
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Figure 4.3: Time evolution of the entropy after applying single laser pulse for (a)

R = 5 × 10−8 m and (b) R = 1.5 × 10−8 m.
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Figure 4.4: Time evolution of the entropy for inter-molecule separation R = 1.5

× 10−8 m. The degree of entanglement can be enhanced if one increases the field

strength.
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Figure 4.5: Time evolution of the entropy after applying single laser pulse for

different ratios in magnitudes of the positive and negative peak value of the laser

pulse. The graphs show the irregular (periodic) behavior for ratio 9 : 1 (1 : 1).

The inset : the first ten contributive eigenvalues λp at short time (t = 50 ps) and

long time (t = 800 ps).
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Figure 4.6: Populations of the states (l1,m1; l2,m2) for different ratios. Upper

panel : (1, 0; 0, 0) (dashed line), (1, 0; 1, 0) (solid line), (2, 0; 1, 0) (dotted line).

Lower panel : (0, 0; 0, 0) (dashed line), (1, 0; 1, 0) (solid line), (1, 1; 1, 1) (dot-

ted line). The inset in the lower panel is the enlarged figure showing the states

(1, 0; 1, 0) (solid line), (1, 1; 1, 1) (dotted line), respectively.
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Figure 4.7: Time evolution of the entropy for different separation and dipole

moment under single pulse (ratio 9 : 1). The dotted curve shows the case of

R = 1.5 × 10−8 m and µ = 9.2 D. The dashed and solid curves correspond to (a)

0.8 R and 1.2 R, or (b) 1.2 µ and 0.8 µ, respectively.

43



0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ratio

E
nt

ro
py

m
ea

n

time [ps]

E
nt

ro
py

 
 

 

1 2 3 4 5 6 7 8 9

0.1

0.2

0.3

0.4

0.5

 

 

 

 

 

 

t
app

 

 

Figure 4.8: Time evolution of the entropy for fixed ratio 5 : 1 under single pulse

(dashed line) and double pulses (solid line). Time separation (tapp) between two

pulses is set to be 5 times the center of the laser peak. The inset : Dependence

of the time-averaged entropy on the pulse shape for inter-molecule separation

R = 1.5 × 10−8 m.
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Figure 4.9: The time with respect to different Planck constant h̄0 for fixed field

strength E0 = 3×107 V/m and inter-molecule separation R = 1.5 × 10−8 m. The

time is defined as the first time in entropy that exceeds the time-averaged value

(the arrow in the inset). The inset : the time-averaged value (dotted line), and

time evolution of the entropy for h̄0 = 0.01h̄ (solid line).
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CHAPTER 5

COUPLED ADSORBED MOLECULES IN LASER

FIELDS

In the complex surface systems, adsorbed molecules may not be isolated.

Several studies have shown that interesting behavior can occur due to the existence

of dipole-dipole interaction [24, 25, 26, 27, 28]. In addition, since the investigations

on entangled behavior of two coupled rotors are limited in the model of kicked

tops [43, 44], this inspires us to study the dynamical entanglement of adsorbed

molecules. According to our study in chapter 3, it is found that the orientations

of free coupled rotors somehow reflect the entropy of the system and thus relate to

the measurement of entanglement. Since the entanglement measurement is one of

the fundamental important issues in quantum information research, the study of

the entanglement and its measurement becomes an interesting problem. Moreover,

from the experimental point of view, it is still not clear how to keep two free rotors

with fixed distance. Therefore, this makes it more interesting to consider a more

realistic system and discuss the corresponding entanglement dynamics.

In this chapter, we investigate the rotational motions of a polar diatomic

molecule confined by a hindering conical-well. After applying a single strong laser
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pulse, the hindered rotor shows periodic behavior. Different signatures between

the finite-conical-well and infinite-conical-well model on orientations are pointed

out. Besides, the amplitudes of the oscillations are varied by applying different

widths of the pulse. Furthermore, we also consider two coupled identical polar

molecules adsorbed on the surface with the dipole-dipole interaction and a si-

multaneously ultra-short laser pulse shined upon them. It is found that both

the entanglement (the von Neumann entropy) and orientation show interesting

behaviors.

5.1 Single adsorbed molecule in a strong laser pulse

Consider now a dipolar molecule (e.g. NaI) adsorbed on the surface. The

rotation of the molecule is confined by the surface potential as shown in Fig.

5.1. An off-resonant laser field polarized in z-direction interacts with the hindered

rotor. Because the laser frequency is much lower than the frequencies of the lowest

vibrational and electronic transition, only the rotational excitations can occur in

our model. The excitations can be viewed as two photon transitions between

two different rotational states through a high intermediate virtual state [18]. The

Hamiltonian without the field-molecule interaction can be written as

H0 = BJ2 + Vhin(θ, φ), (5.1)

where B and J2 are rotational constant and angular momentum. Vhin denotes the

surface potential and confines the rotation of adsorbed molecule. For simplicity,
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the infinite-conical-well model Vhin(θ, φ) is considered here. According to the

previous studies, its dependence on φ is weaker than that on θ [32, 33, 34]. We

reasonably assume that the surface potential is independent of φ. Therefore, in

the vertical adsorbed configuration, the surface potential can be written as [3]

Vhin (θ) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ θ ≤ α

∞, α < θ ≤ π

, (5.2)

where α is the hindering angle of the conical well.

The Hamiltonian concerning the field-molecule interaction can be written as

Hd = −µE (t) cos θ, (5.3)

Hind = −1
2
E2 (t) ((αk − α⊥) cos2 θ + α⊥). (5.4)

The first termHd describes a permanent dipole moment µ coupling with an exter-

nal field, and θ is the angle between the molecular axis and the field. In this work

we choose a Gaussian pulse for our calculation, i.e. E (t) = E0e
−(t−t0)2/σ2

cos (2πνt) ,

where E0 is the field strength and ν is the laser frequency. The pulse is centered

at the time t0, and σ is the pulse duration. The second term Hind is a higher

order interaction, in which the external field couples with the induced molecular

polarization. The component of the polarizability αk (α⊥) is parallel (perpendicu-

lar) to the molecular axis. According to our parameters, the field-dipole-moment

interaction Hd is much greater than that of the field-induced-dipole-moment in-

teraction Hind in our model. This is because the strength of electric field used

here is unsufficient to enhance the higher order term. Actually the interaction
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Hind can play an important role in the case of high strength of electric field [18].

Therefore, the term (Hind) can be neglected reasonably based on our parameters.

Before solving the time-dependent Schrödinger equation (H0 +Hd), the eigen-

functions of the system (H0 = BJ2 + Vhin(θ)) must be introduced first. Following

Ref. [3], the eigenfunctions can be written as

ψlm (θ, φ) =

⎧⎪⎪⎨⎪⎪⎩
Al,mP

|m|
νl,m (cos θ)

exp(imφ)√
2π

, 0 ≤ θ ≤ α

0, α < θ ≤ π

, (5.5)

where Al,m is the normalization constant and P
|m|
νl,m is the associated Legendre

Function of arbitrary order with the corresponding quantum number (l,m). In

above equations, the molecular rotational energy can be expressed as

l,m = νl,m(νl,m + 1)B. (5.6)

In order to determine νl,m, one has to match the boundary condition

P |m|
νl,m

(cosα) = 0. (5.7)

To solve time-dependent Schrödinger equation, the wavefunction is expressed

in terms of a series of eigenfunctions:

Ψ (t) =
X
l

cl,m (t)ψl,m (θ, φ) , (5.8)

where cl,m (t) is time-dependent coefficient. The coefficient cl,m (t) can be obtained

from the different equations

ih̄ċl,m(t) = cl,m (t) l,m +
X
l0

cl0 ,m (t)

ψl,m |Hd|ψl

0
,m

®
. (5.9)
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After determining the coefficients cl,m (t), the orientation hcos θi can be carried out

immediately. We choose NaI as our model molecule, whose dipole moment µ = 9.2

Debye and rotational constant B =0.12 cm−1. For simplicity (zero-temperature

case), the rotor is assumed in ground state initially, i.e. c0,0 (t = 0) = 1. The field

strength is 3×107 V/m and the laser frequency is about 9×1011 s−1. The duration

and center of the pulse are set equal to 279 fs and 1200 fs. The main feature is

that the ratio in magnitude of the positive and negative peak value of this pulse is

5:1. Unless specified, the parameters of laser field are fixed throughout the paper.

Figure 5.2 illustrates the orientation hcos θi as a function of time for different

hindering angles and pulse durations. In both cases, the orientations display

periodic-like behavior. For the pulse duration (σ0 = σ), the orientation of small

hindering angle (α = 60◦) shows a relative large value but with small oscillatory

amplitude, while for α = 120◦ a large oscillatory amplitude with multi-frequency

(insets of Fig. 5.2) is obtained. Obviously, such a difference comes from the

quantum confinement effect. We further apply the laser pulses with different

widths by tuning the duration and center. If the pulse duration increases, the

amplitudes of the oscillations decrease and the orientations approach the initial

value as shown in the insets. The reason is that the mean orientation is suppressed

by the alternations of the electromagnetic field, i.e. the cancellation of negative

and positive orientations.

To see more clearly the effect of hindering potential, let us now consider the
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finite potential model

Vhin (θ) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ θ ≤ α

V0, α < θ ≤ π

, (5.10)

where V0 is the height of well. Following Refs. [4, 5], the rotational energy and

eigenfunctions can be determined by matching appropriate boundary condition.

Figure 5.3 shows the time-averaged orientation as a function of time for different

hindering potentials. For infinite potential (V0 =∞), the time-averaged orien-

tation decreases monotonically from 1 to 0 as the hindering angle is increased.

However, if the well is finite, the time-averaged orientation has a maximum point

at certain angle. This means if the open angle α decreases further, the contribution

from the penetrated wavefunction overwhelms the impenetrable one, rendering the

decreasing of the time-averaged orientation. We also compare the case of σ0 = σ

with that of σ0 = 5σ (inset of Fig. 5.3). It is found that, for larger duration

σ0 = 5σ, although the oscillatory amplitude is smaller (Fig. 5.2), the value of

time-averaged orientation is larger comparing to the case of σ0 = σ.

5.2 Two coupled adsorbed molecules in a strong laser pulse

As we mentioned above, the spatial resolution of two individual molecules

hindered on a surface in tens of nanometers is now possible [29, 30, 31]. We

further consider that two identical dipolar molecules (separated by a distance of

R , R is in an order of magnitude of 10−8 m) confined by the hindering wells. The

molecules are assumed to interact with each other via dipole-dipole interaction
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only. A polarized laser pulse is applied to interact with both molecules. The

Hamiltonian of the coupled system can be written as

Hc =
X
j=1,2

H0,j + Udip +HI , (5.11)

where H0,j is the Hamiltonian of single hindered rotor without the laser-dipole

interaction. The dipole interaction between two dipole moments µ1 and µ2 is

Udip = [µ1 · µ2 − 3 (µ1 · beR) (µ2 · beR)]/R3
= µ1µ2(sin θ1 cosφ1 sin θ2 cosφ2 + cos θ1 cos θ2

−2 sin θ1 sinφ1 sin θ2 sinφ2)/R3 (5.12)

where beR (= R/R) is assumed to be in the y-direction, and (θ1, φ1) and (θ2, φ2) are

the coordinates of first and second molecule respectively. For simplicity, we assume

the dipole moments of two molecules are identical, i.e., µ1 = µ2 = µ0. One might

argue that the higher order terms may also contribute to the results. According

to previous study [27], the next higher order term is about the order of r3/R4

with bond length r. If one compares the dipole-dipole interaction, (O(r2/R3)),

with the next higher order effect (the bond length r = 2.7 Å [48] and separation

R = 15 nm), it is found that the contribution from the next higher-order term

is only 2 percent of the dipole-dipole interaction. Therefore, it is reasonable to

include only the dipole interaction in our model. The field-molecule coupling HI

can then be expressed as

HI = −µ0E (t) cos θ1 cos (ωt)− µ0E (t) cos θ2 cos (ωt) , (5.13)
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where θ1 and θ2 are the angles between dipole moments and laser field. In above

equations, the time-dependent Schrödinger equation can be solved by expanding

the wave function in terms of a series of eigenfunctions

Ψc =
X

l1,m1;l2,m2

cl1,m1;l2,m2 (t)ψl1,m1
(θ1, φ1)ψl2,m2

(θ2, φ2) , (5.14)

where (θ1, φ1) and (θ2, φ2) are the coordinates for two molecules. cl1,m1;l2,m2 (t)

are the time-dependent coefficients and can be determined by solving Schrödinger

equations numerically. The initial state is set as ψ0,0ψ0,0 (c0,0;0,0 (t = 0) = 1).

In addition to the orientation, one can also analyze the entanglement induced

by the dipole interaction. Following the method in chapter 4, the wavefunction

of the coupled molecules can be expressed as a pure bipartite system (a compact

form of Eq. (5.14)): |Ψci =
P

l1,m1;l2,m2
cl1,m1;l2,m2 (t)

¯̄
ψl1,m1

® ¯̄
ψl2,m2

®
. The reduced

density operator for the first molecule is defined as

ρmol 1 = Trmol 2 |Ψci hΨc| . (5.15)

To obtain the entanglement of entropy, the bases of molecule 1 is transformed to

make the reduced density matrix ρmol 1 to be diagonal. The entangled state can

be represented by a biorthogonal expression with positive real coefficients λl,m.

The degree of entanglement for the coupled molecules can be measured by von

Neumann entropy [46, 47]

Entropy = −
X
l,m

λl,mlognλl,m. (5.16)
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Figure 5.4 shows the entropy and orientation evolves with time for fixed angle

α = 120◦ and inter-distance R = 1.5 × 10−8 m. Because of the presence of the

laser pulse, contributions to the energy exchange between two molecules come

from many excited states, resulting in an irregular-like behavior of the entropy

shown in the Fig. 5.4(a). Further analysis of the dynamics gives the fact that

the entropy grows monotonically from zero to certain finite value. This is because

the laser pulse dominates at initial stage. The strength of laser pulse is much

larger than that of dipole-dipole interaction. In addition, the duration is much

shorter than the characteristic time of the dipole interaction. After the laser pulse,

populations to the (rotational) excited states are formed (inset). The non-linear

dipole interaction then initiates the exchange process between the states until

certain ”dynamical equilibrium” is reached. One can conclude that the nonlinear

variations of populations confirm the feature shown in the inset. Moreover, the

orientations of the coupled molecules are also displayed in Fig. 5.4(b). Comparing

to the single molecule case, the irregular behavior is certainly from the non-linear

dipole interaction.

Figure 5.5 shows the time-averaged entropy for different hindering angles. As

the hindering angle increases, the time-averaged entropy increases monotonically.

This is because for larger angles more excited states can be obtained under the

same strength of the laser pulse, resulting in larger entropy. Notes that the mag-

nitude of orientation is high as the hindering angle is set equal to 30◦ (inset of Fig.
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5.5). This again verifies that narrow potential restricts the motion of the hindered

rotor. In this case, the dipole interaction is suppressed, causing the regular-like

behavior of the orientation. On the contrary, more excitations are populated such

that the orientation oscillates with irregularity at α = 150◦.

A few remarks about the experimental verifications of our model should be

addressed here. According to the results in chapter 4 and 5, it is found that the

orientations of the coupled rotors relate closely to the entropy. This indicates

that the orientations of coupled rotors somehow reflect the entropy of the system.

For the measurement of orientations, many experiments have been performed.

For example, the Coulomb explosion of the molecules using intense femtosecond

probe laser pulses and a time-of-flight mass spectrometer [49, 50, 51]. The degree

of orientation is determined by the measurement of fragment ions. Under proper

arrangements, the orientations of hindered rotors can also be measured by the

similar technologies. This may provide some indication of the entanglement.
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Figure 5.1: (a) Schematic view of single hindered rotor adsorbed on the surface.

(b) The corresponding infinite-conical-well model.
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Figure 5.2: The orientation hcos θi as a function of time for different hindering

angle α and pulse duration σ0. The insets show the corresponding populations

of the states (l,m = 0) for (a) α = 600 and (b) α = 1200 respectively. The

corresponding laser fields are shown in the upper inset.

57



30 60 90 120 150 180
0.0

0.2

0.4

0.6

0.8

1.0

30 60 90 120 150 180
0.0

0.2

0.4

0.6

0.8

1.0
σ'=5σ

 ∞

 V
0
=10

 V
0
=30

 V
0
=100

 V
0
=

 

 

 

<
co

sθ
>

m
ea

n

Hindering angle α

 

 

 

Figure 5.3: The mean orientation hcos θimean as a function of hindering angle for

fixed pulse duration (σ0 = σ) and different conical-well potentials V0 = 10, 30,

100. The inset shows the mean orientation hcos θimean in the case of V0 = 10 and

∞ by applying a pulse of σ0 = 5σ. The potential V0 is in units of the rotational

constant B.
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Figure 5.4: The entropy (a) and orientations hcos θ1i (hcos θ2i) (b) in infinite

conical-well for fixed angle α = 1200 and inter-distance R = 1.5 × 10−8 m.

The inset shows the populations (|cl1,m1;l2,m2 (t)|2) irregularly oscillate with time,

corresponding to the quantum number (l1,m1; l2,m2) = (1, 0; 0, 0) (black solid

curve), (1, 1; 0, 0) (red dashed curve), and (1, 0; 1, 0) (green dotted curve) respec-

tively. Although we only focus on several excited states here, the populations of

most states similarly remain irregular behavior.
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Figure 5.5: The time-averaged entropy as a function of the hindered angle in

infinite conical-well. The insets show the orientations of twomolecules for hindered

angles α = 300 and α = 1500 respectively. The inter-molecule separation is

R = 1.5 × 10−8 m.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this part of the thesis we have studied the rotational motion of a polar

diatomic molecule, which is confined by a hindering conical-well. It is shown

that an ultrashort laser pulse can induce alignment and orientation of a hindered

molecule. The hindered angle of the hindered potential well plays a key role on

the molecular alignment and orientation. Crossover from field-free rotation to

a hindered one can be observed by varying the hindered angle of the potential

well. At small hindered angle, both alignment and orientation show sinusoidal-

like behavior because of the suppression of higher excited states. However, mean

orientation decreases monotonically as the hindered angle is increased, while mean

alignment displays a minimum point at certain hindered angle. The reason is at-

tributed to the symmetry of wavefunction and can be explained well by analyzing

the coefficients of eigenstates.

As for coupled free rotors system, we have studied the orientations and en-

tanglement of two coupled polar molecules irradiated by strong laser pulses. The

behavior of the orientations is different from that of a free one. By varying the

period of a series of periodically applied laser pulse, transition from regular to

chaotic-like behavior may occur. To characterize the degree of entanglement, the
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von Neumann entropy is calculated. It is shown that the entanglement can be en-

hanced by increasing the strength of laser pulse or applying multi pulse. Further,

periodic-like entropy is found as a symmetrical-ratio pulse is shined, while a highly

asymmetrical pulse can induce highly irregular entropy. We also discussed the dif-

ference between the quantum and classical regime in this coupled-rotor system.

By varying the Planck constant, crossover from quantum to classical limit can be

seen from the von Neumann entropy. Prominent difference in entropy between

quantum and classical regime is the time that approaches dynamical equilibrium.

In particular, for classical limit, the system is expected to need infinite time for

dynamical equilibrium.

We have further studied the rotational dynamics of the adsorbed polar mole-

cules. It is found that the orientation of single hindered rotor shows a periodic

behavior. In particular, the amplitude of oscillation is sensitive to the degree of

alternation of the laser field. Crossover from field-free to hindered rotation is ob-

served by varying the hindering angle for different heights of conical-wells. On the

other hand, the orientations of coupled rotors show irregular behavior because of

the dipole-dipole interaction. Entanglement induced by the dipolar interaction is

also calculated for the coupled-rotor system, in which the time-averaged entropy

increases monotonically as the hindering angle is increased. The competition

between the confinement effect and dipole interaction is found to dominate the

behavior of the coupled-rotor system.
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Based on the results, some works can be continued in the future: the quantum

control of the rotational states. With the advances of laser technologies [52],

molecular dynamics can be controlled by applying the optimal control theory. The

optimal control investigation of a laser driven system can be viewed as a problem

of state-to-state control. The purpose is to calculate the shape of the laser pulse

which induces the maximum transfer of probability from the given initial state to

a chosen final state. Although the optimal control theory is extensively applied

to the recent works such as chemical reaction, to our best knowledge, the study

on adsorbed-molecule system still receives little attention. Therefore, steering a

quantum system of molecules adsorbed on the surface is believed to be important

in surface processes and reactions.
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CHAPTER 7

INTRODUCTION TO PART II

In the last two decades, nano-technologies have made it possible to fabricate

quantum dots with the dimensions at nanoscale. Quantum dot may be a good

choice for quantum electronics due to its zero dimensionality, quantized energy

levels, and long coherence times of spin states [53, 54]. Figure 7.1 (a) illustrates

a lateral quantum dot with six metal gates patterned on the surface of a two-

dimensional electron gas (2DEG) [55]. When a strong negative gate voltage is

applied to the gates, a small island for electrons, the quantum dot, is isolated

in the depleted region within the 2DEG. By operating and modifying the gate

voltages, the electron tunneling and the number of electrons confined in the dot

can be controlled. On the other hand, the structure of a vertical quantum dot is

shown in Fig. 7.1 (b). A quantum dot is fabricated in the center of the pillar and

sandwiched between two thin non-conducting barriers. To control the number of

electrons, the effective diameter of the dot can be squeezed through a negative

voltage applied to the side gate.

To well operate quantum electronics, keeping the spin state unchanged is an

important issue. In general, the spin-orbit coupling, which is one of the main

causes of spin relaxation is a relevant intrinsic interaction in nonmagnetic semi-
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conductors. It is known that there are two different types of spin-orbit coupling

as quantum dots are fabricated within semiconductors of a zincblende structure.

The first one is the Dresselhaus interaction, which is due to the bulk inversion

asymmetry of the lattice [56, 57, 58]. The polar bonds can cause electric fields

between the atoms and lead to spin orbit coupling in zincblende materials. The

second is the Rashba interaction caused by the structure inversion asymmetry

[59, 60]. The spin-orbit couplings mix the spin states with different orientations

in the Zeeman sublevels [61, 62, 63] and therefore make spin relaxation possible

in the presence of the electron-phonon interaction [64, 65, 66, 67, 68].

Electron-phonon interaction in electron transport has long been an important

topic [69, 70]. The emission of phonons was observed in transport experiments of

double quantum dots embedded in bulk materials [69]. With the advance of nan-

otechnologies, free-standing structures can now be fabricated. Due to the interplay

between the electrical and mechanical degrees of freedom, the electron transport

through the quantum dots is influenced under the environment of nanomechanical

vibrations. In contrast to the bulk material phonons, phonons of nanomechanical

vibrations are no longer mere a source of dissipation. The phonon spectrum in

the structures is split into discrete subbands, and the quantization effects con-

tribute greatly to the thermal conductivity [71, 72, 73]. Because of the boundary

conditions for the vibrational modes, the phonon-dispersion shows some singular

properties, such as the van Hove singularities. A 2DEG quantum dot embedded
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in a suspended phonon cavity has been fabricated in a recent experimental work

[74, 75]. Single electron tunneling around zero bias showed a complete suppres-

sion in the transport spectrum which is believed to be due to the excitation of

a localized phonon mode confined in the cavity leading to the formation of an

energy gap. This opens possible avenues to investigate the ultimate limit of single

electrons interacting with individual phonon modes.

In addition, it is known that the electronic and optical properties in quantum

devices are sensitive to the features of the quantum dots, which can be controlled

and operated through the flexible features [76, 77]. Recently, quantum dot sys-

tems in the presence of time-varying external fields manifest some interesting

effects ranging from photon-assisted tunneling [78] to electron pumping [79]. In a

recent experiment, the transport spectroscopy has been measured in coupled dou-

ble quantum dots under microwave fields [78]. The photon-assisted resonances

are found by a modulated gate voltage. The phenomenon involves the emission

or absorption of a microwave photon. For electron pumping, an open quantum

dot system without the voltage bias across it has been reported [79]. Because of

the presence of time-varying parameters, the confining potential in the quantum

dot can be influenced in the adiabatic regime. This results in an electric current

flowing through the quantum dot.

In this part we present the studies on spin relaxation and electron transport

in quantum dot systems. As a quantum dot is embedded inside a free-standing
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structure, a significant spin relaxation rate is found due to the confined phonons.

To study electron transport through a nano-system, a double-dot device embedded

in a single phonon environment is further discussed. The effects of Coulomb and

phonon fields can reflect the behavior of the transport. Furthermore, it is also

shown that the transport of the quantum device is influenced by the irradiation

of the external field.

This part is organized as follows. We investigate the phonon-induced spin

relaxation in a quantum dot embedded inside a semiconductor slab in chapter

8. The behavior of the scattering rates is examined under various conditions. In

chapter 9, electron transport through a double-dot device embedded in a single

phonon environment is studied. The effects of Coulomb and phonon fields on the

conductance are also discussed. Besides, we also consider the electron tunneling

through a three-level system in an asymmetric double-dot device in chapter 10.

Irradiating by an external field, a significant behavior in the current spectrum is

discussed. Finally, we conclude our results and present future works in chapter

11.
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Figure 7.1: Schematic views of a lateral (a) and vertical (b) quantum dots. From

Ref. [55].
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CHAPTER 8

SPIN RELAXATION IN A GAAS QUANTUM DOT

EMBEDDED INSIDE A SUSPENDED PHONON

CAVITY

The quantum dot may be a good choice for quantum electronics due to its zero

dimensionality, quantized energy levels, and long coherence times of spin states

[53, 54]. For example, the spin of an electron confined to a quantum dot can

form a qubit [80, 81]. However, some scattering processes will cause the change of

the spin states. One important process is related to the phonon-induced spin-flip

resulting from the spin-orbit interaction. This affects the time of spin purity in

the quantum dot. In order to keep the information unchanged, a long relaxation

time is required.

In general, the spin-orbit coupling, which is one of the main causes of spin

relaxation, is a relevant intrinsic interaction in nonmagnetic semiconductors. It is

known that there are two different types of spin-orbit coupling as quantum dots

are fabricated within semiconductors of a zincblende structure. The first one is

the Dresselhaus interaction, which is due to the bulk inversion asymmetry of the

lattice [56, 57, 58]. The second is the Rashba interaction caused by the structure
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inversion asymmetry [59, 60]. The spin-orbit couplings mix the spin states with

different orientations in the Zeeman sublevels [61, 62, 63] and therefore make spin

relaxation possible in the presence of the electron-phonon interaction.

Relaxation times of electron spins in a quantum dot have been measured

by electrical pump-probe experiments [82]. The triplet-to-singlet transition with

emission of phonons was found with corresponding spin relaxation times of about

200 µs. Recently, the spin relaxation time in a one-electron GaAs quantum dot was

measured by a similar electrical pump-probe technique [83, 84]. As the magnetic

field was applied parallel to the two-dimensional electron gas, the Zeeman splitting

of quantum dot was observed in dc transport spectroscopy. By monitoring the

relaxation of the spin, the relaxation time was found to have a lower bound of 50

µs at an in-plane field of 7.5 T [83].

On the theoretical side, spin relaxation between two spin-orbital mixed states

in semiconductor quantum dots has been studied recently. However, to the best

of our knowledge, all previous studies of spin relaxation concentrated on quantum

dots embedded in the bulk material, [64, 65, 66, 67, 68] whereas studies of spin

relaxation induced by confined phonons are still lacking. We therefore consider

a single quantum dot embedded inside a free-standing structure (semiconductor

slab), where the relevant characteristic is the two-dimensional phonon wavevector

for the acoustic-phonon spectrum as shown in Fig. 8.1 [74, 75, 85, 86, 87]. Since

the reduced dimension will enhance the deformation potential, we will mainly
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focus on the spin relaxation rate induced by the deformation potential [86, 87].

In this chapter we consider the parabolic quantum dot model with spin-orbit

interaction. Energy spectra of the quantum dot can be solved by using an exact

diagonalization method. We then apply the Fermi golden rule to calculate spin

relaxation rates for typical parameters. We discuss the dependence of the spin

relaxation rates on the size of the quantum dot, the phonon bath temperature,

and the width of the slab.

8.1 Model

8.1.1 Single particle in a quantum dot

We consider an isotropic quantum dot with an in-plane parabolic lateral con-

finement potential. An external magnetic field B is applied perpendicularly to the

surface of the quantum dot as shown in Fig. 8.1(a). The electronic Hamiltonian

of this system can be written as

He = H0 +Hso. (8.1)

The first term describes the electron Hamiltonian without the spin-orbit coupling,

H0 =
P2

2m∗ +
1

2
m∗ω20r

2 +
1

2
g∗µBBσz, (8.2)

where P = −ih̄∇ + (e/c)A is the kinetic momentum with vector potential A =

(B/2)(−y, x, 0) confined to the 2D plane. Here m∗ is the effective electron mass,

e is the electron charge, c is the velocity of light, ω0 is the characteristic confined
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frequency, g∗ is the bulk g-factor, µB is the Bohr magneton, and σz is a Pauli

matrix.

The Rashba and Dresselhaus interactions (Hso = HR +HD) are given by

HR =
λR
h̄
(σxPy − σyPx), (8.3)

HD =
λD
h̄
(−σxPx + σyPy). (8.4)

The coupling constants λR and λD determine the spin-orbit strengths, which de-

pend on the band-structure parameters of the material. Besides, the Rashba and

Dresselhaus terms are also associated to the perpendicular confinement field and

the confinement width in the z-direction, respectively.

For the electron Hamiltonian H0, the well-known Fock-Darwin states can be

easily obtained from

Ψn,l,σ =

√
2

r0

∙
n!

(n+ |l|)!
¸ 1

2

exp

µ
− r2

2r20

¶µ
r2

r20

¶ |l|
2

L|l|n

µ
r2

r20

¶
eilθ√
2π

χσ, (8.5)

with r0 = (h̄/mΩ)
1
2 . χσ represents the eigenfunction of σz and L

|l|
n is the general-

ized Laguerre polynomial given by the formula

L|l|n (z) =
nP

m=0

(−1)m
m!

µ
n+ |l|
n−m

¶
zm. (8.6)

The electron energy levels are

En,l,σ = h̄Ω (2n+ |l|+ 1) + h̄ωBl/2 + σEB, (8.7)

where n (= 0, 1, 2...) and l (= 0,±1,±2...) are the quantum numbers. The renor-

malized frequency is Ω =
p
ω20 + ω2B/4, with the cyclotron frequency ωB = eB/m∗
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and the characteristic confinement frequency ω0 limited by the effective quantum

dot lateral length l0 =
p
h̄/m∗ω0. Here, EB = gµBB/2 is the Zeeman splitting en-

ergy, and σ = ±1 refers to the electron-spin polarization along the z axis. To solve

the Schrödinger equation with (He = H0 +Hso), the (spin mixing) wave function

is expressed in terms of a series of eigenfunctions: Ψ (r, θ) =
P

cn,l,σΨn,l,σ for each

state . After exactly diagonalizing the electron Hamiltonian, the corresponding

eigenvalues E and the coefficient cn,l,σ can be obtained numerically.

8.1.2 Confined phonon in a semiconductor slab

Before calculating the spin relaxation rate, the confined phonon in the free-

standing structure must be introduced here. Following Refs. [85, 86], we consider

an infinite film with width a (Fig. 8.1). For the effect of the contact with the

semiconductor substrate, we neglect the distortion of the acoustic vibrations. Un-

der this consideration, one can ensure that the in-plane wavelength can be shorter

than the characteristic in-plane size of the solid slab. For simplicity, the elastic

properties of the slab are isotropic. Small elastic vibrations of a solid slab can

then be defined by a vector of relative displacement u (r, t). Under the isotropic

elastic continuum approximation, the displacement field u obeys the equation

∂2u

∂t2
= c2t∇2u+

¡
c2l − c2t

¢∇ (∇ · u) , (8.8)

where cl and ct are the velocities of longitudinal and transverse bulk acoustic

waves. To define a system of confined modes, Eq. (8.8) should be complemented
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by the boundary conditions at the slab surface z = ±a/2. Because of the confine-

ment, phonons will be quantized in subbands. For each in-plane component qk

of the in-plane wave vector there are infinitely many subbands. Since two types

of velocities of sound exist in the elastic medium, there are also two transversal

wavevectors ql and qt. In the following, we consider the deformation potential

only. This means there are two confined acoustic modes: dilatational waves and

flexural waves contribute, but shear waves are neglected because of their vanishing

interaction with the electrons for spin relaxation.

For dilatational waves, the parameters ql,n and qt,n can be determined from

the Rayleigh-Lamb equation

tan (qt,na/2)

tan (ql,na/2)
= − 4qkql,nqt,n

(q2k − q2t,n)
2
, (8.9)

with the dispersion relation

ωn,qk = c2l

q
q2k + q2l,n = c2t

q
q2k + q2t,n, (8.10)

where ωn,qk is the frequency of the dilatational wave in mode (n,qk). For the

antisymmetric flexual waves, the solutions ql,n and qt,n also can be determined by

solving the equation

tan (ql,na/2)

tan (qt,na/2)
= − 4qkql,nqt,n

(q2k − q2t,n)
2
, (8.11)

together with the dispersion relation, Eq. (8.10).
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8.1.3 Electron-phonon coupling and scattering rate

The electron-phonon interaction through the deformation is given by Hep =

Eadivu, where Ea is the deformation-potential coupling constant. The Hamil-

tonian can be written as

Hep =
X
qk,n
λ=d,f

Mλ(qk, n, z)(a+qk + aqk) exp(iqk · rk), (8.12)

where rk is the coordinate vector in the x-y plane and the functions Md and Mf

describe the intensity of the electron interactions with the dilatational and flexural

waves, and are given by

Md

¡
qk, n, z

¢
= Fd,n

s
h̄E2

a

2Aρωn,qk
(q2t,n − q2k)(q

2
l,n + q2k) sin(

aqt,n
2
) cos (ql,nz) , (8.13)

Mf

¡
qk, n, z

¢
= Ff,n

s
h̄E2

a

2Aρωn,qk
(q2t,n − q2k)(q

2
l,n + q2k) cos(

aqt,n
2
) sin (ql,nz) , (8.14)

where A is the area of the slab, ρ is the mass density, and Fd,n (Ff,n) is the

the normalization constants of the n-th eigenmode for the dilatational (flexural)

waves. Although the fluctuation of the dot (due to strain etc.) may affect the

spin-orbit and electron-phonon coupling, we, for simplicity, neglect the effect on

the scattering rate in this work.

We calculate the spin relaxation rates between the two lowest (spin mixing)

states from the Fermi golden rule [88]

Γ =
2π

h̄

X
qk,n
λ=d,f

|Mλ|2
¯̄
f
¯̄
eiqk·rk

¯̄
i
®¯̄2
(Nqk + 1)δ(∆E − h̄ωn,qk), (8.15)
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where the energy∆E (= Ei −Ef) is the energy difference between the first excited

|ii and ground |fi states. The energy spectrum for the case of the lateral length

l0 = 30 nm is also shown in Fig. 8.2. Nqk represents the Bose distribution of the

phonon at temperature T . For the sake of simplicity, we consider the quantum

dot to be located at z = 0 so that the function Mf for flexural waves plays no

role.

8.2 Results and discussion

Let us first focus on the dependence of the relaxation rates on the magnetic

field B for lateral length l0 = 30 nm. Unlike the situation in bulk system, an

enhanced spin relaxation rate occurs as shown in Fig. 8.3(a) (arrow 1 in the

upper inset). This phenomenon originates from the van Hove singularity that

corresponds to a minimum in the dispersion relation ωn,qk for finite qk. We further

plot the phonon group velocity (∂ωn,qk/∂qk) as a function of qk around the van

Hove singularity as shown in Fig. 8.3(b). There are three modes contributing

to the relaxation rate. In particular, a crossover from positive to negative group

velocity is observed for one mode. Because of the zero phonon group velocity, the

rate behaves sharply at that magnetic field. However in a real system the van Hove

singularity would be cut off or broadened because of the finite phonon lifetime.

Contrary to the enhanced rate, we find a suppression of the spin relaxation rate

(arrow 2) at small magnetic field (also seen in the lower inset). This comes from a
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vanishing divergence of the displacement field u. As can be seen from Eq. (8.13)

in detail, the deformation potential disappears at the condition of qk = qt (Fig.

8.3(c)), which causes a zero spin relaxation rate. Note that our results for the van

Hove singularity and the disappearance of the deformation potential are consistent

with what was found in Ref. [87]. Although the phonon model in our work is the

same, the dot part is different.

The relaxation rate for larger quantum dots exhibits a qualitatively different

behavior. As shown in Fig. 8.4, two van Hove singularities appear when varying

the magnetic field. Besides, one also finds two suppressions of the relaxation rate

(arrow) near the singularities. We have analyzed the energy spacing between the

two lowest states in the inset of Fig. 8.4. For small lateral size, the gap increases

monotonically (dashed line). On the contrary, energy spacing for larger quantum

dots shows a quite different feature. The value initially increases as B increases.

However, after it reaches a maximum point, the energy spacing decreases with

the increasing of the magnetic field B: although the Zeeman splitting increases

with increasing magnetic field, the spin-orbit interaction, on the contrary, tends to

reduce the energy spacing between the two lowest levels. When the magnetic field

is large enough, the spin-orbit effect overwhelms the Zeeman term and results in

a decreasing tendency. Therefore, if the magnetic field is increased high enough,

the dashed line (small quantum dot) also shows similar behavior. This agrees

well with the findings in Ref. [63]. From the inset, one recognizes that if the
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energy spacing exactly matches the specific phonon energy (dotted line), the van

Hove singularity will appear. For the case of a large lateral length, there are two

van Hove singularities and two suppressions of the relaxation rate (dashed-dotted

line).

In addition to the size of the dot that affects the spin relaxation rate, the

dependence of the relaxation rates on the magnetic field B for different temper-

atures is shown in Fig. 8.5. For higher temperature, the rate is larger than that

for lower temperature. This is because as the temperature increases, the phonon

distribution Nqk becomes larger. This enhances the electron-phonon scattering

and leads to a larger transition probability between the two levels.

Figure 8.6 shows the specific energy spacings where rates are enhanced and

suppressed as a function of the width. For the case of small widths, the enhanced

rates (black mark) and suppressed rates (red mark) can be clearly distinguished,

and their corresponding energy spacings are relative large. With the increasing of

the width, the energy spacing between the enhanced and suppressed rates decrease

monotonically. One can expect that if the width increases further, the system will

approach the bulk system. This means that the van Hove singularity and the

suppressed rate will be inhibited and eventually disappear.

If one varies the vertical position of the dot, the rate will change due to

different contributions from the dilatational and flexural waves. Accordingly, the

van Hove singularities resulting from flexural waves will also be altered. For
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example, the ratio of dilatational to flexural wave’s contribution is about 2.8:1

under the condition of B = 1 T and vertical position z = 25 nm. However, if ∆E

also changes, the contributions from two waves will also change. This is because

the parameters (qk,ql,n,qt,n) of dilatational and flexural waves independently satisfy

the dispersion relations. On the other hand, comparing the bulk phonons with

the confined ones, the phonon-induced rates are roughly similar when varying the

magnetic field. However, there are two peculiar characteristics for the confined

phonons. One feature is the van Hove singularity which results from a zero group

velocity such that an enhanced spin relaxation rate can occur. The second feature

is a vanishing divergence of the displacement field. This will cause a suppression

of spin relaxation rate, which is an advantage if considering the quantum dot spin

as a possible quantum bit candidate.
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Figure 8.1: (a) Schematic view of single quantum dot embedded in the semicon-

ductor slab with a width of a. (b) The side view shows a quantum dot is located

at z = 0.
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Figure 8.2: Energy spectrum for GaAs quantum dot versus the applied magnetic

field for the lateral length l0 = 30 nm. The spin-orbit couplings λR and λD are

set equal to 5× 10−13 and 16× 10−12 eV m, respectively.
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Figure 8.3: (a) Spin relaxation rate as a function of magnetic field for the lateral

length l0 = 30 nm, the width a = 130 nm, and temperature T=100 mK. The

spin-orbit couplings λR and λD are set equal to 5× 10−13 and 16× 10−12 eV m,

respectively. The insets further show the enlarged regions of arrow 1 (upper inset)

and arrow 2 (lower inset). (b) Three phonon group velocities vs the magnetic field.

(c) The values qk and qt vs the magnetic field.
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Figure 8.4: Spin relaxation rate for the lateral length l0 = 60 nm, width a = 130

nm, and temperature T=100mK. The spin-orbit couplings λR and λD are set equal

to 5 × 10−13 and 16 × 10−12 eV m, respectively. Two enhanced and suppressed

rates (arrow) occur. The inset shows the energy spacing ∆E vs the magnetic field

B for different lateral lengths: l0 = 30 nm (dashed line) and l0 = 60 nm (solid

line). Two horizontal lines in the inset indicate the corresponding energies for the

van Hove singularity (dotted line) and the suppression of the rate (dashed-dotted

line).
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Figure 8.5: Spin relaxation rates for different temperatures: T=10 mK (black

line) and T=1 K (red line). The inset shows the rates in the low field regime.
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Figure 8.6: Dependence of the specific energy spacings∆E for the enhanced (black

mark) and suppressed (red mark) rates on the width a. The lateral length of the

quantum dot is 30 nm. The Rashba constant is λR = 5 × 10−12 eVm and the

Dresselhaus constant is λD = 16× 10−12 eVm.
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CHAPTER 9

ELECTRON TRANSPORT THROUGH A DOUBLED

QUANTUM DOT SYSTEMWITH SINGLE PHONON

MODE

Recently, the transport properties of quantum dots show a range of interesting

and important phenomena including the Coulomb blockade, Kondo resonance and

interference effect [89, 90, 91, 92, 93, 94]. Conventionally, laterally defined double

quantum dots are fabricated from a two-dimensional electron gas (2DEG) in a

GaAs/AlGaAs heterostructure. By using gate technology, a quantum dot can

be defined in a small region. A basic quantum device, such as a single-electron

transistor, is composed of two leads and one or more quantum dots. The material

of the device can be a normal metal, superconductor, ferromagnetic material, or

semiconductor. The behavior of the transport is sensitive to the properties of the

quantum dots.

Many works have been devoted to understanding the processes that may cause

the nonlinear transport of quantum dot. One of the processes is related to the

phonon-assisted inelastic tunneling. The nonlinear electron transport, due to the

coupling between the quantum dot and the phonon degrees of freedom, through
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a double quantum dot device at low temperature was observed recently [69]. It

is found that this phonon-assisted inelastic tunneling is related to the emission of

phonon. Theoretical analysis shows that the interference effect of electron-phonon

interaction governs the intradot electron tunneling process [70].

Due to the interplay between the electrical and mechanical degrees of freedom,

the single-electron tunneling through the quantum dots is influenced under the en-

vironment of nanomechanical vibration. In contrast to the bulk material phonons

which can dephase electronic quantum states, phonons of nanomechanical vibra-

tion are no longer a mere source of dissipation. With the help of nanotechnologies,

controlling phonon properties becomes more possible such as free-standing struc-

tures. The phonon spectrum in the structures is split into discrete subbands, and

quantization effects contribute greatly to the thermal conductivity [71, 72, 73]. Be-

cause of boundary conditions for vibration modes, the phonon-dispersion shows

some singular properties such as the van Hove singularities, different from that

in the bulk material. A 2DEG quantum dot embedded in a suspended phonon

cavity has been exhibited in recent experimental works [74, 75]. The excitation of

a localized phonon mode confined in the cavity completely suppresses the single

electron tunneling in the transport spectrum. This has opened possible avenues to

investigate the ultimate limit of single electrons interacting with individual phonon

modes. Since the artificial mode spectrum of the phonon cavity is feasible, the

phonon field will practicably control and operate the transport of quantum device.

87



In this chapter we perform the analysis for a double quantum dot embedded

in a single-phonon environment. The electrons in the dots interact with single

phonon mode. The transport behavior of one dot influenced through Coulomb

or phonon field is studied as an excess electron stays in the other dot. Further-

more, a positive- or negative-shift in conductance is also discussed by varying the

separation between two dots.

9.1 Model

We consider a double quantum dot couples with a single-phonon mode as

shown in Fig. 9.1. Each dot is connected with two normal conducting leads. Two

quantum dots are separated by d. With split gate technology, the tunnel coupling

between two dots can be neglected. This means that the upper and lower half

parts of the device form two independent circuits. The energy levels of Dot α

are controlled by gate voltages, where α = 1, 2 indicate the upper and lower

quantum dots. Because two quantum dots are embedded into a single-phonon

environment, the electrons in the double-dot will interact with single phonon

mode corresponding to the coupling strength λα. To study the transport in the

lower half part of this device, we consider the transport of Dot 1 by tuning the

occupation of electron on the Dot 2. The system Hamiltonian under consideration

is written as

H = Hres +Hdot +Hc +HT +Hph +Hep. (9.1)
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The first term describes the electron reservoir contributions:

Hres =
X
k∈L,R

kc
†
kck, (9.2)

where ck(c
†
k) is the annihilation(creation) operator with wavevector k in the left

(L) and right (R) leads. The leads are independent and connected with Dot 1.

The second and third terms describe the dot contributions and the Coulomb

interaction between the electrons located in different dots:

Hdot +Hc =
X
α=1,2

αd
†
αdα + Ud†1d1d

†
2d2, (9.3)

where dα(d
†
α) is the annihilation(creation) operator in Dot α (= 1, 2), respec-

tively. For simplicity, we consider that each quantum dot has a single particle

energy level α in the Coulomb blockade regime. The strength U depends on the

distance between the centers of the dots. Note that the intradot Coulomb interac-

tion is assumed to be much larger than the source (drain) voltage and the interdot

Coulomb interaction. This would make the contribution of excited state negligible

within our range of parameters. We thus simply consider the transport properties

of single level [95, 96]. The electron-leads coupling can be written as

HT =
X
k∈L,R

(Vkc
†
kd1 +H.c.), (9.4)

with the tunneling matrix elements Vk. The last two terms describe the phonon

reservoir contribution and the electron-phonon coupling:

Hph +Hep = ω0a
†a+

X
α=1,2

d†αdα(λαa+H.c.), (9.5)
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where ω0 is the phonon frequency, λα is the coupling strength and a(a†) denotes

the phonon annihilation(creation) operator.

In order to study the electric current, the dot electron Green’s functions are

calculated. To diagonalize the Hamiltonian, a unitary transformation esHe−s is

performed, where

S = exp

"
−
X
α=1,2

d†αdα
ω0

(λαa− h.c.)
#
. (9.6)

After the transformation, the new Hamiltonian becomes

H =
X
k∈L,R

k,ηc
†
kck +

X
α=1,2

0
αd
†
αdα +∆d†1d1d

†
2d2

+
X
k∈L,R

Vkc
†
kd1 + h.c.+ ω0a

†a, (9.7)

where the states in the dots and the Coulomb energy are renormalized to 0
α =

α − |λα|2 /ω0 and ∆ = U − (λ1λ†2 + λ†1λ2)/ω0, respectively. In the weak coupling

limit, we neglect the effective phonon-mediated coupling between dots and leads.

Following the standard method [97], the retarded Green’s function of Dot 1

can be decoupled as

Gr
Dot 1 = G̃r

Dot 1(t)

X(t)X†(0)

®
ph
, (9.8)

where G̃r
Dot 1(t) is the Green’s function for the dressed electron in the Dot 1 and

X(t)X†(0)
®
ph
is the phonon correlation function due to the electron-phonon inter-

action.

X(t)X†(0)

®
ph
can be written as e−Φ(t), where Φ(t) = (|λ1|2 /ω20)[Nph(1−

eiω0t) + (Nph + 1)(1 − e−iω0t)] with the Bose distribution of phonon Nph. With

the help of the equation-of-motion approach, we neglect the contribution of the
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higher-order Green functions and subsequently the retarded Green’s function for

the dressed electron under the Fourier transform can be evaluated as

G̃r
Dot 1 (ω) =

1− hn2i
ω − 0

1 − Σr
+

hn2i
ω − 0

1 −∆− Σr
, (9.9)

where hn2i is the number of the electrons in the Dot 2 and Σr is the retarded

self-energy given by
P

k∈L,R V
∗
k Vk/(ω − k + iη) with η = 0+. In this work we

interest in the Coulomb blockade regime. The lowest order truncation is used for

the approach. Under this approximation, no Kondo problem is considered here.

For simplicity, we assume that the temperature is at zero temperature because

the temperature of the system is low compared to the phonon frequency. The

Green’s function can be written as

Gr
Dot 1(ω) = e

− |λ1|2
ω2

0

X
l

|λ1|2l
ω2l0

l!

∙
1− hn2i

ω − 0
1 − lω0 − Σr

+
hn2i

ω − 0
1 −∆− lω0 − Σr

¸
, (9.10)

Now let us analyze the relationship between the two couplings λ1 and λ2 for a

phonon mode with wave vector q. For simplicity, it is assumed that the electron

densities in the dots have the same profiles and distribute sharply around the dot

centers. Based on this assumption of identical profile, but spatially shifted electron

densities in the two dots, one can establish the relation between the two couplings

as, λ2 = λ1 exp[iqd], where d is the vector connecting the centers of Dot 1 and

Dot 2 [70, 98]. In the following, the corresponding parameters 0
1 = 1− |λ1|2 /ω0,

0
2 = 2 − |λ1|2 /ω0, and ∆ = U − 2 |λ1|2 cosqd/ω0 are considered.
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By employing Keldysh’s Green function method [99, 100], the electron current

flowing through Dot 1 can be calculated in term of the Green’s functions of Dot

1 as:

JDot 1 = −2e
h

Z
dω [fL(ω − µL)− fR(ω − µR)]

× ΓL(ω)ΓR(ω)

ΓL(ω) + ΓR(ω)
Im[Gr

Dot 1(ω)] (9.11)

where fL(ω − µL) and fR(ω − µR) are the Fermi distribution function for the

left lead 1 and right lead 1, respectively. Because a bias (V ) is applied on two

leads, the chemical potential difference can be determined by µL − µR = eV .

Where ΓL (ΓR) denotes the transition rate from Dot 1 to the left lead (right lead),

and ΓL(ΓR) = 2π
P

k∈L(R) V
∗
k Vkδ(ω − k). In this work, we neglect the energy

dependence of the transition rate in the wide-band limit and the symmetrical

case is considered, i.e. ΓL = ΓR = 0.1 ω0. From a recent experiment with a

free-standing phonon cavity, the typical phonon cavity energy is 100 µeV [75, 98].

We use the phonon frequency as an energy scale in the following. On the other

hand, based on recent experimental observations about single-electron tunneling

[54, 101, 102], the variation in electron numbers of a quantum dot (Dot 2) can

easily be controlled and achieved by the associated technologies. For the sake of

simplicity we would choose the condition ( 1 = 0) and focus on two situations:

hn2i = 0 (an empty Dot 2) and hn2i = 1 (a singly occupied Dot 2).
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9.2 Results and discussion

Now let us consider two quantum dots which are separated in a short dis-

tance. This implies that the Coulomb interaction is larger than−2 |λ1|2 cosqd/ω0.

Therefore, the phonon effect is negligible in this situation. The dotted curve in Fig.

9.2 shows the conductance of Dot 1 if no electron tunnels into Dot 2 (hn2i = 0).

The main peak is due to resonant tunneling, while the weaker peaks show the

phonon sidebands. The solid curve in Fig. 9.2 shows the conductance of Dot 1 if

an excess electron stays in the Dot 2 (hn2i = 1) . The conductance of Dot 1 shows

a positive shift U . Comparing the behavior of the shifts, we can expect that the

energy level of Dot 1 is raised by the Coulomb interaction as shown in the inset.

If two quantum dots are separated in a long distance, the contribution of the

Coulomb field will become very small. In such case, phonon field plays a bridge

for the two quantum dots. Here we set cosqd to 1, for example. As can be seen

in Fig. 9.3, the conductance of Dot 1 shows a negative shift of −2 |λ1|2 /ω0. This

indicates that the effect of electron-phonon interaction lowers the level of Dot 1

(inset).

Next we discuss the mechanisms of the shifts in this device. Two single-

electron transistors form two independent circuits. As an excess electron stays in

one dot, the other circuit will be drastically affected. If one electron tunnels in the

other dot, it will feel that there are two fields to influence the transport. One is the

Coulomb field, which is due to electron-electron interaction. The parameters of
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material and separation between two dots determine the strength. Because of the

Coulomb repulsion, the energy level of Dot 1 can be raised like the effect of the

Coulomb blockade. This direct interaction causes a positive-shift conductance.

Another is the phonon field which causes electron-phonon interaction. As two

electrons are coupled together to a single phonon, one can expect that one electron

does not directly interact with the other electron, but it will affect indirectly the

other electron by phonon field. This indirect interaction causes an equivalent

attractive interaction between the two electrons, and corresponds to the reduction

of the energy level of Dot 1 (in the condition of cosqd = 1). It is also clear

that the effective Coulomb strength ∆ is negative in this case. This negative

Coulomb interaction for electrons in the quantum dots leads to a negative-shift in

conductance.

For long separation regime, we analyze the separation dependence on conduc-

tance. For simplicity, we assume that the phase factor qd is set to 2nπ for initial

separation of two dots, where n is a fixed integer. If the separation increases,

the corresponding phase factor is equal to a real number (2nπ + x). Figure 9.4

illustrates Fermi energy at the resonant peak varies with the phase factor x for dif-

ferent electron occupations of Dot 2. As the separation increases, the conductance

displays a periodic behavior. We divide two regions by the value of Fermi energy

at resonant peak without an excess electron in the Dot 2 (dotted line). For upper

half part, the conductance shows different degrees of positive shifts, similar to the
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case of short separation regime. This results from the phase factor qd so that the

effective Coulomb potential is positive. In particular, if the phase factor occurs at

(2m+ 1)π with integer m, the conductances show the maximum positive shifts.

Oppositely, for lower half part, the conductances show different degrees of nega-

tive shifts. As previously mentioned, two electrons in the quantum dots attract

each other by phonon field. Of course, the minimum points will appear at the

positions as qd = 2mπ. One can note that there are some intersections of solid

and dotted curves. At these points, the conductance (solid curve) behaves like

that of hn2i = 0. This indicates that the occupation of an excess electron in the

Dot 2 plays no role as the phase factor is equal to (2m+ 1) π/2.

A few remarks about the differences between our model and recent experi-

ments [101] on the transport of one dot affected by the operation of the other dot

should be emphasized here. In these experiments, the double quantum dots have

no interdot tunneling, but are coupled by a floating interdot capacitor. Because

the capacitor plate enhances the Coulomb interaction, a single excess electron in

one dot can influence the transport of the other dot. However, in our model,

double quantum dots are coupled by two fields: Coulomb field and phonon field.

Second, a particular relationship between two fields is constructed in our work.

In short separation regime, the Coulomb repulsion dominates. Oppositely, the

phonon field determines the sign of the effective Coulomb strength, which reflects

the positive or negative shift in conductance. This is different from the above
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situation. Furthermore, the significant behavior manifested in the transport prop-

erties under the competition between two fields might be useful in the study of the

transport behavior of the multi-dot system. The degree of influence on transport

depends on the electron numbers and separations of the dots. For example, in long

separation regime, the transport of one dot is able to be affected by the electron

numbers of the other dots. By increasing the electron numbers of the other dots,

the conductance of one dot can show a shift behavior such that the transport

through this dot is suppressed. Of course, if the levels of the other dots are no

longer occupied, this circuit will be no change. In fact, we can simultaneously

control the transports of different dots through proper operations of the electron

numbers of the other dots. Therefore, these findings may be useful in the research

field of logic circuits by using the Coulomb or phonon field.
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Figure 9.1: Schematic view of double quantum dot embedded in a single phonon

environment. Two dots are connected with the leads respectively. The separation

between two quantum dots is d and the interdot tunneling is forbidden with split

gate technology.
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Figure 9.2: Short separation regime (∆ ≈ U): Linear conductance of Dot 1 (plot-

ted in units of e2/h) as a function of Fermi energy. The solid (dotted) curve shows

the conductance if an (no) excess electron stays in the Dot 2, corresponding to

the enhancement of resonant level (inset). The strength U is set to 5 ω0.
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Figure 9.3: Long separation regime (∆ ≈ −2 |λ1|2 /ω0): Linear conductance of dot

1 (plotted in units of e2/h) as a function of Fermi energy. The solid (dotted) curve

shows the conductance if an (no) excess electron stays in the Dot 2, corresponding

to the reduction of resonant level (inset). The coupling λ1 is set to 0.5 ω0.

99



0 2 4 6 8 10
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

F
er

m
i e

ne
rg

y 
[ω

0]

 
 

Phase factor x [π]

Figure 9.4: Fermi energy at the resonant peak as a function of phase factor for

long separation regime. The solid (dotted) curve shows the conductance if an (no)

excess electron stays in the Dot 2.
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CHAPTER 10

ELECTRON TRANSPORT THROUGH A DRIVEN

THREE-LEVEL DOUBLE DOT

Due to the zero dimensionality and quantized energy levels, transport proper-

ties of the electrons in quantum dots have been studied extensively [54, 53]. With

the advances of nanotechnologies, quantum dots can be laterally fabricated from

a two-dimensional electron gas in a heterostructure. With the combination of the

controlling gates, the leads and quantum dots can form a quantum device. The

electronic and optical properties are sensitive to the characteristics of the quan-

tum dots. Since the flexible characteristics are controllable, the study of external

influences on quantum dots has become an important issue. [76, 77].

Recently, quantum-dot systems in the presence of time-varying external fields

manifest some interesting effects ranging from photon-assisted tunneling [78] to

electron pumping [79]. In a recent experiment, the transport spectroscopy has

been measured in coupled double quantum dots under microwave fields [78]. The

photon-assisted resonances are found due to a modulated gate voltage. The phe-

nomenon involves the emission or absorption of a microwave photon.

On the theoretical side, electron tunneling through quantum dots under driving
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fields has been intensively addressed [100, 103, 104, 105, 106]. Many studies focus

on two-level system in single or double quantum dot. The transport property

is basically related to the energy difference between two levels. In the present

work we study the electron tunneling through a three-level system using the mas-

ter equation method. By applying an external field on the device, a significant

behavior is found in the current spectrum. Different from two-level system, the

transport depends on the relation among three levels and external field. We dis-

cuss the behavior of the current by varying some related parameters.

10.1 Model

We consider that a three-level system is defined in a double quantum dot

device as shown in Fig. 10.1. Because the magnitude of energy levels in the

quantum dots can be modulated with the help of nanotechnologies, the excited

states of the left dot are designed to be much lager than the first excited state of

the right dot, i.e., the size of the left dot is smaller. A continuous, near-resonant

field irradiates on the device and gives rise to the contribution of the first excited

state in the right dot. We reasonably concentrate on the transition between two

states in the right dot and neglect the excitation in the left dot. For the tunneling

between two dots, the electron is allowed to tunnel between two ground states, but

no tunneling between two excited states is allowed. This means that we consider

only the ground state in the left dot, the ground state and first excited state in
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the right dot in our model. Furthermore, we restrict that only one additional

electron is allowed on either the left or right dot in the Coulomb blockade regime

[107, 108]. Under consideration, the effective Hilbert space of the electronic system

can be defined by four states: empty, left, right, and excited states, corresponding

to |0i = |NL, NR, NEi, |Li = |NL + 1, NR, NEi, |Ri = |NL, NR + 1, NEi, and

|Ei = |NL, NR, NE + 1i, respectively. The total Hamiltonian of the system is

H = Hres +Hdot +HV +HT +Hep. (10.1)

The first term describes the electron reservoir contributions:

Hres =
X
k∈L

εLk c
†
kck +

X
k∈R

εRk d
†
kdk, (10.2)

where ck(c
†
k) is the annihilation (creation) operator in the left lead (L) with wave

vector k and dk(d
†
k) is the annihilation (creation) operator for the right lead (R).

The term Hdot describes the contributions of three states in the double dot:

Hdot = εLn̂L + εRn̂R + εEn̂E, (10.3)

where the energy levels εL, εR, and εE are corresponding to the ground state in

the left dot, the ground state and first excited state in the right dot, respectively.

The operators of three states are given by n̂L = |Li hL|, n̂R = |Ri hR|, and

n̂E = |Ei hE|. The dot-lead coupling can be written as

HV =
X
k

(V L
k c

†
kŝL + V R

k d†kŝR + V E
k d†kŝE +H.c.), (10.4)
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with the operators ŝL = |0i hL|, ŝR = |0i hR|, and ŝE = |0i hE|, and the tunneling

matrix elements V α
k for α (= L, R, and E). The term HT describes the tunneling

between the left dot and the right dot,

HT = Tc(P̂ + P̂ †), (10.5)

where the operator P̂ (P̂ †) is defined by |Li hR| (|Ri hL|) and the tunnel matrix

element Tc determines the strength of the tunneling process. In the dipole and

rotating-wave approximations, the last term Hep which describes the interaction

between electron and external field in the right dot can be expressed as,

Hep = −γ
2
(Q̂e−iωt + Q̂

†
eiωt), (10.6)

where γ is the Rabi frequency, ω is the field frequency, and the operator Q̂ (Q̂†)

denotes |Ei hR| (|Ri hE|). The Rabi frequency relates to the field strength and

the electric dipole moment for the transition |Ri↔ |Ei [109, 110].

An analytical expression for the stationary current can be solved from the mas-

ter equation [106]. One can obtain an equation of motion for the time-dependent

expectation values of the operators n̂L, n̂R, n̂E, P̂ , Q̂, and Ŝ where Ŝ denotes

|Ei hL|. After the Laplace transformation (e.g., nL(z) =
R∞
0

dte−zthn̂Lit), these

corresponding equations can be written as

nL(z) = −iTc
z
{P (z)− P

†
(z)}+ ΓL

z
{1/z − nL(z)

−nR(z)− nE(z)},
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nR(z) = i
Tc
z
{P (z)− P

†
(z)}+ i

γ

2z
{Q(z + iω)

−Q†
(z − iω)}− ΓR

z
nR(z),

nE(z) = −i γ
2z
{Q(z + iω)−Q

†
(z − iω)}− ΓR

z
nE(z),

P (z) = −i γ

2(z − i∆ε)
{nL(z)− nR(z)}− ΓR

2(z − i∆ε)
P (z)

−i γ

2(z − i∆ε)
S
†
(z),

Q(z) = −i γ

2(z − i∆R)
{nE(z − iω)− nR(z − iω)}

−i Tc
z − i∆R

S(z)− ΓR
z − i∆R

Q(z),

S(z) = −i Tc
z − i∆L

Q(z) + i
γ

2(z − i∆L)
P †(z − iω)

− ΓR
2(z − i∆L)

S(z), (10.7)

where the parameters are ∆ε = εL − εR, ∆L = εE − εL, and ∆R = εE − εR,

respectively. The tunneling rates between the reservoirs and dots are assumed to

be independent of energy, Γα = 2π
P

k |V α
k |2 δ(εα − ε

L/R
k ), with α (= L, R, and

E). We can solve the equation (10.7) algebraically and subsequently obtain the

stationary current (in units of e) from the tunneling between two dots

I = iTc
n
P − P

†
o
t→∞

. (10.8)

To simplify the parameters of the system, the tunneling rates are assumed to be

identical (ΓL = ΓR = ΓE). In this work the tunneling rate (Γ) and the charging

energy (εE − εR) in the right dot are set to be 8 µeV and 1 meV respectively.
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10.2 Results and discussion

We first consider the field frequency is in resonance (∆ω = ω−∆R = 0). The

current can be written as

I =
4T 2c Γ

12T 2c + 4(∆ε)2 + Γ2 + f(γ,∆ε,∆L)
, (10.9)

where f(γ,∆ε,∆L) is related to the three levels and external field. This function

f is directly dependent of the Rabi frequency. For a two-level system (γ = 0), the

current is

I =
4T 2c Γ

12T 2c + 4(∆ε)2 + Γ2
(10.10)

and shows a maximum response at ∆ε = 0 (see Fig. 10.2) [104]. However, as a

resonant field is applied to the device (γ = 5Γ), two symmetric peaks obviously

separate and occur in the current spectrum. Compared with the case of γ = 0,

the maximum current do not locate at the point (∆ε = 0). Further, we analyze

the components of the current in this device. For the right dot, the ground and

first excited states can contribute the transport as shown in Fig. 10.1. In the

stationary case, Eq. (10.8) is equivalent to the contributions of two states in the

right dot. The current can be re-written as

I = IR + IE, (10.11)

IR = Γ · nR, (10.12)

IE = Γ · nE, (10.13)
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where nR and nE is the populations in the right dot. From the inset, we find that

electron tunneling through two channels behaves similarly and equally contributes

the current.

In order to study the influence of the external field on the transport, in Fig.

10.3 we illustrate the curve of the Rabi-frequency-dependent current. For sim-

plicity, the conditions are chosen to be ∆ε = 0 and ∆ω = 0. The current can be

written as

I =
4T 2c Γ

12T 2c + Γ2 + f(γ)
, (10.14)

f (γ) = γ2
γ2 − 6T 2c + Γ2

γ2 + 2T 2c + Γ2
. (10.15)

If the Rabi frequency γ is zero, the current is 4T 2c Γ/(12T
2
c +Γ2) (red dotted line).

As the frequency γ increases, a crossover from enhanced behavior to suppressed

behavior in the transport spectrum is found. In addition, the current broadens

with increasing the tunneling coupling (lower inset). This is due to the competition

among the Rabi frequency γ, tunneling coupling Tc, and tunneling rate Γ (see

Eq. (10.15)). For small Rabi frequency regime, a negative function (f < 0)

causes an enhancement of the current. Two channels effectively contribute to

the transport (upper inset). On the contrary, a large Rabi frequency inhibits the

electron tunneling out of the right dot, thus, leading to a suppressed current.

In above results, a symmetric behavior manifests in the case of resonant field.

We also find an interesting behavior by detuning the field frequency. In Fig.

10.4, the current shows two asymmetric peaks. This is similar to the result of Ref.
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[111]. If the detuning is increased, the main (larger) peak will be close to the value

∆ε = 0 while another one is far away from the main peak and deeply suppressed.

This reflects the crossover from a three-level system to a two-level one. As can

be seen in Fig. 10.4, two components IR (red dashed curve) and IE (blue dotted

curve) contribute to the current, but the degrees of the contributions on the peaks

are different. The main and smaller peaks result from the large contributions of the

currents IR and IE respectively. One can expect that the external field establishes

a particular relationship among the states. The distributions of populations are

sensitive to the related parameters in the double dot system. Under the condition

∆ω 6= 0, compared to the symmetric current (Fig. 10.2), the electron transfer

among these states shows an unbalanced behavior such that two channels in the

right dot unequally contribute the peaks.

Figure 10.5 shows the dependence of the frequency on current for ∆ε = 0. A

symmetric and anti-resonant behavior appears in the transport spectrum. When

the Rabi frequency increases, the current is greatly suppressed and a maximum

response locates at the resonant frequency (∆ω = 0). For the situation that the

frequency of external field is far away from the resonant one, the current ap-

proaches to the situation without the Rabi frequency (red doted line), i.e. the

maximum value of the current in the two-level system. We further plot the pop-

ulations for small and large Rabi frequencies (inset). It is clearly shown that the

populations decrease with increasing the (Rabi) frequency. According to the phe-
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nomenon, the destructive electron transfer results in a suppressed current under

the special condition ∆ε = 0.

However, if we detune the energy difference between two ground states in

two dots, the current behaves differently. Figure 10.6 shows an asymmetric and

enhanced current occurs. The location of maximum current is no longer fixed due

to the unbalanced interplay between these states and driving field. As can be

seen in the inset of Fig. 10.6, the populations are enhanced with increasing the

Rabi frequency. Comparing with the result as shown in Fig. 10.5, this appearance

corresponds to the result of constructive electron transfer.
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Figure 10.1: Schematic view of a three-level system which consists of the ground

state in the left dot, the ground state and first excited state in the right dot in a

double quantum dot device. An external field irradiates on the device and leads

to the transition between two states in the right dot.
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Figure 10.2: Current as a function of energy difference ∆ε between two ground

states for different Rabi frequencies. The inset shows the currents IR (dashed

curve) and IE (dotted curve) for γ = 5Γ.
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Figure 10.3: Dependence of the current on Rabi frequency for the tunneling cou-

pling Tc = Γ, corresponding to the populations nR and nE (upper inset). The

red dotted line marks the maximum current for two-level system. The lower inset

shows the currents for different tunneling couplings. The conditions are fixed to

be ∆ε = 0 and ∆ω = 0.
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Figure 10.4: Current as a function of energy difference ∆ε for fixed non-resonant

field (∆ω = 5 Γ) and Rabi frequency (γ = 5 Γ). The total current I (black curve)

is composed of two channels in the right dot: the electron tunneling out through

the ground level IR (red dashed curve) and first excited level IE (blue dotted

curve).
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Figure 10.5: Current as a function of frequency difference ∆ω (= ω − ∆R) for

different Rabi frequencies and for fixed ∆ε = 0. The inset shows the populations

nR and nE for Rabi frequencies γ = 2Γ and γ = 10Γ.
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Figure 10.6: Current as a function of frequency difference ∆ω (= ω − ∆R) for

different Rabi frequencies and for fixed ∆ε = 5Γ. The inset shows the populations

nR and nE for Rabi frequencies γ = 2Γ and γ = 10Γ.
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CHAPTER 11

SUMMARY AND FUTURE WORK

In this part we have studied the phonon-induced spin relaxation in a two-

dimensional quantum dot embedded inside a semiconductor slab. An enhanced

relaxation rate is found due to the phonon van Hove singularities. Oppositely,

it is found that at certain magnetic fields one enters a regime with quite the

opposite characteristics, where a vanishing divergence of the displacement causes a

suppression of spin relaxation rates. For larger dots there are multiple singularities

and suppressions in the electron-phonon rates due to the interplay between spin-

orbit coupling and Zeeman interaction. Furthermore, a crossover from confined

to bulk-like systems is obtained by varying the width of the slab.

In the study on quantum transport, we have studied the electron transport

through a quantum dot in double quantum dots embedded in a single phonon

environment. By controlling the electron number in a quantum dot, the transport

behavior of the other quantum dot is affected through Coulomb or phonon field.

In long separation regime, the conductance shows a positive shift because the

Coulomb interaction dominates in this case. On the other hand, the transport

behavior drastically depends on the separation between two dots in long separation

regime. In particular, crossover from positive to negative shift in conductance is
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observed due to the phase factor.

In addition, we have studied the electron tunneling through a three-level sys-

tem in an asymmetric double quantum dot device irradiated by an external field.

The external field plays an important bridge between the two-level and the three-

level systems. When a resonant field irradiates on the device, the current shows

two symmetric peaks. In contrast, two asymmetric peaks display for the case of

non-resonant field. By analyzing the contributions of the states in the right dot,

we further find that the degrees of the contributions on the peaks are different. On

the other hand, we also study the frequency-dependent current by modulating the

energy difference between the ground states. It is clearly shown that a suppressed

(enhanced) behavior occurs due to the destructive (constructive) electron transfer

among the states. This allows us to control the transport of the device by tuning

some related parameters.

Based on the results, some works can be proceeded continuously in the fu-

ture: spin relaxation in different structures. In chapter 5, we examine the spin

relaxation rate in single quantum dot. In general, a quantum device can be com-

posed of one or more quantum dots. According to the recent studies, different

arrangements show some different physical properties. It is thus interesting to

study the spin relaxation in multi-dot systems. On the other hand, geometrical

confinement strongly alters the properties of the phonon system. Apart from the

semiconductor slab, we can consider single or more quantum dots embedded in
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different structures. For example, a quantum wire with quantum dots has been

achieved in the recent works [112]. Thus the effect of different quantum structures

on the spin relaxation is worth studying.
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