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Student : Ying-Yen Liao Advisor : Der-San Chuu

Institute of Electrophysics
National Chiao Tung University

ABSTRACT

In this dissertation, we study therrotational states of adsorbed diatomic
molecules and some physical-properties of-guantum dots. In part I, an adsorbed
dipole molecule confined by a conical well is subject to strong laser fields. The
crossover from field-free to hindered: rotation motion is observed by varying the
hindering angle. Moreover, the ‘rotational states of coupled free and adsorbed
molecules with dipolar interaction are further studied. It is shown that the
orientation is significantly different from that of an isolated one due to the
dipole-dipole interaction. In addition, the von Neumann entropy is calculated to
characterize the degree of entanglement. It is also found that the entanglement can
be influenced by the inter-molecule distance, the strength and number of laser
pulses, and the confinement effect.

In part 11, we investigate the spin relaxation and electron transport in quantum
dot systems. When a quantum dot is embedded in a semiconductor slab, the spin
relaxation rate shows peculiar behaviors due to the confined phonons. Second, to
observe the phonon effect on the transport, we have also considered a double-dot
device embedded in a single phonon environment. It is shown that the transport
behavior is deeply influenced by the Coulomb or phonon field. Finally, the
transport of a double-dot device irradiated by an external field is considered. The
enhanced or suppressed current is found due to the interplay between the energy
states and external field.
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CHAPTER 1

INTRODUCTION

Nanoscience and nanotechnology have attracted a great deal of attention
ranging from atoms, molecules to quantum dots. The purpose lies in the prospect
of understanding matter and its transformations at the most rudimental level.
Further, possible novel devices are hopefully developed to control the quantum
states in the ultimate limit. It is known that single atom and molecule are the
building blocks of matter. An impertant feature is that some intrinsic phenomena
cannot simply be probed from an ensembleiof atoms or molecules. In addition, the
effects of the environments are‘deeply. affect the physical properties. For example,
consider one molecule adsorbed on the solid surface, the energy levels are different
from those of free rotors. The physical properties are sensitive to the adsorption
site local symmetry, adsorbed molecule configuration, and local potential. With
the advance of laser and scanning probe technologies, it further becomes possible
to manipulate and control it at the spatial limit.

In analogy to atomic properties, a quantum dot is a fabricated nanostructure
in which electrons have been confined in all three dimensions, typically with sizes
ranging from nanometers to a few microns. Quantum dots exhibit discrete, size-

dependent electric and optical properties. Due to the discrete nature of their



energy levels, quantum dots are therefore regarded as artificial atoms. Moreover,
the electrons confined in the two coupled quantum dots can form an artificial
molecule. The coupling between different dots can be tuned by changing the gate
voltages or interdot distances. Unlike the natural atoms, however, the numbers of
excess electron embedded in these quantum dots are tunable. Besides, the artificial
atom can be coupled to the electron reservoirs. On can probe the electronic
states and then measure the transport properties of a quantum dot. Of particular
importance is the Coulomb blockade effect leading to single-electron transport.
This is because the Coulomb repulsion between the electrons on the dot results in
a considerable energy cost for adding an extra electron charge. When the charging
energy of a small quantum dot is:needed, electron in the leads cannot transfer into
the dot until increasing the voltage provides this energy.

Since the interplay between moléculesyenvironments, and external influences
reveals the fruitful physics, part 1"of this dissertation is devoted to the studies
on the rotational states of adsorbed diatomic molecules in laser fields. We will
discuss the related properties of single adsorbed molecule and then extend our
study to multi-rotor system. In part II, we will focus on the study of quantum
dot systems. Since the carrier-phonon interaction is one of the inherent effects
in solid-state structures, we will discuss the lattice relaxation process in a single
quantum dot. In addition, the transport properties of the coupled dot systems

are further considered in different cases.



CHAPTER 2

INTRODUCTION TO PART I

Since Langmuir [1] first conceived that localized adsorption occurs on surfaces,
studies of the adsorption of atoms and molecules attract much attention. The his-
toric studies and concept of localized chemical bonding on surface sites firmly set
one principal milestone for surface science. Among massive researches, investiga-
tion on the rotational properties of adsorbed molecules is a central subject. Figure
2.1 illustrates schematically a picturé of erystal surface in which hindrance and/or
modulation of the molecular motion may oceur, [2]. The adsorbed molecules show
different types of equilibrium adsorption configurations. As can be seen from Fig.
2.1, the diatomic molecules may* be.adsorbed.on the surface vertically or hori-
zontally. Due to the molecule-surface interaction, the substrate can influence the

rotation of an adsorbed molecule (rotor).

The molecule-surface interaction is generally a complex problem which in-
volves the molecule-surface separation, the lateral motion along the surface, the
molecular rotation, the molecular vibration, and the electronic excitation. Due to
the differences in energy scale, one can separate the rotational degree of freedom
from others. Although it is greatly simplified, analytical expressions for the real-
istic surface hindering potentials are still unavailable. In order to clearly describe

3



the interaction between the adsorbed molecule and the surface, various models
were proposed to simulate the hindered rotational motions. One example is the
infinite conical-well model proposed by Gadzuk et al. [2, 3]. The important feature
of this model is that the adsorbed molecule is only allowed to rotate within the
well region. This model successfully provided a good insight into the rotations of
hindering molecules. However, its weakness is that, compared to the experimental
data, it is difficult to deduce more information about the molecule-surface interac-
tion strength from an infinite conical-well model. Therefore, a more realistic finite
hindering potential was considered by Shih et al. [4, 5]. It was found that the ro-
tational energy levels exhibit oscillatory behavior by varying the hindering angles.
This behavior is different from that of an infinite conical-well model. Besides, the
Stark shifts of the rotational states were also investigated [6, 7]. The theoretical
results derived from their model are inrgood agreements with the experiments

8, 9, 10, 11].

With the rapid developments of laser technologies, mid toward far IR laser
field, which have potential applications ranging from nanoscale design, surface
processing, stereodynamics to chemical reactivity, are achievable to manipulate
the motions of molecules [12], i.e., molecular alignments and orientations. A pio-
neering work studied by Friedrich and Herschbach [13] is that the molecular align-
ment is responsible for the anisotropic polarizability induced by the non-resonant
laser pulses. When the duration of laser pulse is longer than the rotational period,

4



the pendular states can be created adiabatically, and the molecular axis is aligned
parallel to the direction of field polarization [14, 15, 16]. As the laser pulse is
switched off, the molecule will go back to its initial condition and no longer be
observed again. If the duration of laser pulse is shorter than the rotational pe-
riod, the alignment occurs periodically in time (the non-adiabatic regime) [17, 18].
For molecular orientations, Henriksen [19] derived an analytical expression for the
wavepacket based on the Magnus expansion. According to the model, an ultra-
short laser pulse is able to generate a field-free orientation [20], i.e. it can impart a
kick, like impulsive excitation, to the molecule [21]. The dipole molecule will tend
to orient in the direction of laser polarization. To achieve an efficient orientation,

a tailored laser pulse can actually-be produced through optimal control [22, 23].

In addition to single molecule, many molecular systems show peculiar behav-
ior in the presence of dipole-dipole interaction.- For example, Rogalsky et al. [24]
presented neutron scattering linewidths of certain Hofmann clathrates. A line
broadening mechanism based on rotor-rotor coupling was proposed for the expla-
nation of the widths [25]. Furthermore, a novel physical realization of a quantum
computer via the electric dipole-dipole interaction was proposed by DeMille [26].
Shima and Nakayama [27] calculated the energy spectra and dielectric suscepti-
bilities in coupled-rotor systems. Nonadiabatic orientations of coupled quantum
rotors with dipolar interaction were also studied [28]. Recently, interacting mole-
cules mounted on the surfaces were also studied with the help of nanotechnology

)



[29, 30, 31].

In this part we investigate the rotational motions of adsorbed dipole molecules
under strong laser fields. The surface potential is modeled as a conical well for
hindered rotors, and a dipole-field interaction is then included into the system.
The crossover from field-free to hindered rotation motions is studied by varying
some related parameters. Moreover, we further consider the dipole-dipole inter-
action in double-molecule system. The orientations and entanglement of coupled
(free and adsorbed) molecules are also discussed.

This part is organized as follows. In chapter 3, we study the rotational states
of a polar molecule vertically adsorbed on the surface and subjected to a strong
laser field. The molecular alignments and orientations are studied by varying
the degree of hindered potential-well.  We further investigate the orientations
of two coupled, free polar molecules irradiated by strong laser pulses in chapter
4. The degree of entanglement, characterized by the von Neumann entropy, is
also discussed. In chapter 5, we study the orientations of coupled adsorbed polar
molecules in a strong laser field. Entanglement induced by the dipolar interaction
is also calculated and analyzed for different hindering angles of conical wells.

Finally, we conclude our results and present future works in chapter 6.



Figure 2.1: Schematic view of molecular adsorption systems. The adsorbed di-
atomic molecules at the left and the center show different adsorption configura-

tions, i.e. the vertical and horizontal, respectively. From Ref. [2].



CHAPTER 3

AN ADSORBED DIPOLE MOLECULE IN LASER

FIELDS

With the developments laser technology, alignments and orientations of mole-
cules are important in the investigations of stereodynamics, surface catalysis,
molecular focusing, and nanoscale design [12]. The alignment scheme has been
demonstrated both in adiabatic and nonadiabatic regimes. A strong laser pulse
can adiabatically create pendular states; and the molecular axis is aligned in par-
allel to the direction of field polarization. The molecule goes back to its initial
condition after the laser pulse is‘switched off,-and the alignment can no longer
be observed again [13, 16]. To achieve adiabatic alignment, the duration of laser
pulse must be longer than the rotational period. However, an ultrashort laser
pulse with several cycles is also observed to induce a field-free alignment provid-
ing the duration of laser pulse is smaller than the rotational period. In this limit,
the alignment occurs periodically in time as long as the coherence of the process
is preserved [17, 18]. On the other hand, a femtosecond laser pulse is found to
be able to generate field-free orientations [20]. The dipole molecule, kicked by an
impulsive pulse, will tend to orient in the direction of laser polarization.
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Recently, the rotational motion of a molecule interacting with a solid surface
has attracted increasing interest. It is known that molecules can be desorbed
by applying UV laser beam along the surface direction, and the quadrupole is a
measure of the rotational alignment [9, 10, 11]. To understand molecular-surface
interaction, Gadzuk and his co-workers [2, 3] proposed an infinite-conical-well
model, in which the adsorbed molecule is only allowed to rotate within the well
region. Shih et al. further proposed a finite-conical-well model to generalize the
study of a finite hindrance [4, 5]. Their results showed that the rotational states
of an adsorbed dipole molecule in an external electric field exhibit interesting
behaviors, and theoretical calculation of the quadrupole moment based on finite-
conical-well model is in agreement with the experimental data [7].

In order to explore the dynamical behavior of a molecule adsorbed on the
surface, we investigate the rotational metions of an adsorbed diatomic molecule
under an ultrashort laser pulse in this.chapter. Different well-dependent signatures
between the alignments and orientations of the hindered molecule are discussed.

Besides, the crossover from field-free to hindered rotation is also studied.

3.1 Model of an adsorbed molecule

A diatomic molecule with a dipole moment p is vertically adsorbed on the

surface. The Hamiltonian of such system is

2
H = %LQ + Viin (0, 9) , (3.1)



where [ is the molecular moment of inertia with respect to its center of rotation, >
is the angular momentum operator, and Vj;, (0, ¢) is the surface potential energy
to which the molecule is subjected. For convenience, we express the energy in
the unit of the molecular rotational constant B = h?/2I. Straightforwardly, the
Schrodinger equation for the molecular rotation in spherical coordinates can be
expressed as

1 2<- QQH 1 0
sinf a6 > 90’ T sin? 6 920

+ €m — Vhin<97 ¢) 1/’z,m(97 ¢) =0, (32)

where €, is the rotational energy and 1, ,, is the corresponding eigenfunction.
In general, the dependence of the potential energy V3, (0, ¢) on 6§ and ¢ is com-
plicated. Since calculations indicate that the dependence on ¢ is weaker than
that on 6, we reasonably assunie that V(@ ¢) is independent of ¢ [32, 33, 34]. To
simulate the potential energy, the finite'conical-well model [4, 5] is proposed (Fig.

3.1)

0, 0<60<aq,
Viin (0) = , (3.3)

Vo, a<fd<m,

where Vj represents the barrier height. The eigenfunctions for this system can be

analytically written as

P (6,0) = Or (cos0) %\/;l:@, (3.4)

where

Cl,l,mp(—I—l) (Vl,mu m, 5) ;  cosa< 5 < 17
Orm () = (3.5)
CrimP-1) (Vim,m,f) , —1<&<cosa,

10



with £ = cosf and the quantum numbers (I,m). Here Ci;,, and Ci1,,, are the

normalizational constants. The functions P4y in above equations are defined as

m 1
Py (i m, €) = (1 - €3)" F (|m| Vi L4 ] 4 Vi 14 [ %5) ,
(3.6)

where F (a,b,c;z) is the hypergeometric function [35]. In above equations, the

molecular rotational energy is expressed as
€m = Vi (Vim + 1), (3.7)
and v, is defined as
Vi (Vi 1) =thign Winiet 1) — V. (3.8)

In order to determine v ,,, one-has to match the boundary conditions at £ = cos a.

As the potential well is infinite (¥, — oo); Eq. (3.5) reduces to

C(I,l,m,P(+1) (Vl,ma m, g) , cosa < 5 < 17
Oum (§) = : (3.9)
0, -1 < ¢ <cosa.

The corresponding rotational energy €, is v, (V1. + 1) determined by the bound-
ary condition,

Py (Vim, m, § = cosa) = 0. (3.10)

Note that the Eq. (3.9) and (3.10) are exactly the same as the results obtained
in Refs. [2, 3].
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3.2 Connection between theory and experiment

Certainly, using a simplified analytical potential is not state-of-the-art. Mole-
cule surface interaction potentials can nowadays be mapped out in great detail
by ab initio electronic structure methods. However, as can be seen in the works
[4, 5, 6, 7], the simplified model shows interesting results. Furthermore, qualitative
concepts and mechanisms can also be derived from the investigations. For exam-
ple, we can justify the model by the performance of calculations on the rotational
alignment of the desorbing molecules.

When a molecule desorbs from a solid surface, [9, 10, 11, 36, 37, 38, 39] the
quadrupole moment A2 (J) is a measure of the rotational alignment and is defined
as A2 (J) = (J|(33% — J?) /3?| J) [40]._In the classical limit, the value of AZ(J)
represents the ensemble average 6f (3 cos® x'= 1) where y is the angle between the
angular momentum vector J of the molecule-and the surface normal. The value of
A2 (J) ranges from +2 to -1, where positive values present helicopter-like motion
(J vector prefers to parallel to the surface normal), negative values correspond
cartwheel-like motion (J vector prefers to perpendicular to the surface normal).

To compare with the possible observed data, we calculate the quadrupole
moment A2 (J) by the results obtained in our model of finite conical well. Ac-
cording to the sudden unhindrance approximation, the quadrupole moment of the

alignment distribution can be evaluated by the following equation:

Zm,L,m’ exp (_EL,m’/kBT) <YJ,m )3\]%_;\]2 YJ,m> |<YJ,m‘wL,m/>|2
Zm,L,m/ exp (_eLym'/kBT) ‘<YJ,m’wL,m’> }2 ‘

12

A5 () =

(3.11)



Figure 3.2 shows our calculated results compared with the experimental re-
sults of the rotational alignment in the photodesorption of CO from CryO3(0001)
[9, 10, 11]. The hindrance parameters we used here are V5 = 2000 and ov = 120°. It
was observed experimentally the quadrupole moment of desorbing CO changes its
sign from positive to negative with increasing rotational quantum number J. The-
oretically we could reproduce a positive quadrupole moment for small quantum
number J and thus corresponds to the helicopter-like desorbing, while a negative
quadrupole moment of desorbing CO can be obtained and thus corresponds to
the cartwheel-like desorbing for larger quantum number J. This result agrees

qualitatively with the experimental observations as can be noted from Fig. 3.2.

To see more profoundly that our ealculated results can yield positive values
of quadrupole momentum forismall angular-momentum and negative values for
large J states, we examine the expectationvalue (Y7, |(33% — J%) /J?|Y,,,) in
Eq. (3.11). For a specific quantum number J, this expectation value is positive
for high |m| values and is negative for low |m| values. In the summation of
Eq. (3.11), only the low-lying hindered-rotational states 1, dominate due to

the thermal factor. We calculated the overlapping factors ‘<YJ7m|77Z) ij,> ? between

the free-rotational states Y, and the low-lying hindered-rotational states v ..

Our results showed that, when J is small, the calculated values of |<YJ7m|w L7m,> 2

for a specific L is larger for ¢, states with larger |m| which correspond to
more horizontally-distributed wavefunctions. This makes the hindered molecule

13



prefer to the helicopter-like desorption and yield a positive quadrupole moment.
On the contrary, when J is larger, the low-lying ¢ .., states correspond smaller
|m| and then negative expectation values (Y}, [(33% — J?) /3% Y),). Our results

2
for a

also showed that, when J is larger, the calculated values of |<Yj’m"(/} L,m,>
specific L is larger for 1y ., states with smaller |m| which correspond to more
vertically-distributed wavefunctions. This makes the hindered molecule prefer to
the cartwheel-like desorption in larger J states and yield a negative quadrupole

moment.

3.3 An adsorbed molecule in a strong laser field

Consider now a laser pulse polarizing in z-direction interacts with the hindered

molecule. The model Hamiltonian.can be written as

H = BIA+V:(0) 4°Hy, (3.12)
where L? and B are the angular momentum operator and rotational constant. For
the vertical absorbed configuration, the surface potential which was proposed by
Gadzuk [2, 3] can be written as

Viin (0) = o (3.13)
0o, a<f<7

where « is the hindered angle of the conical well. In Eq. (3.12), H; describes the

interaction between the dipole moment (permanent and induced) and laser field:

Hy = —ji-2(t), (3.14)
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where ji is the dipole moment and € is the electric field vector of the linearly
polarized laser. In the presence of an electric field, the dipole moment can be

expressed as [41, 42]

L L | R 1
u:u0+§a5—|—6652+ﬂ7§3+..., (3.15)

where (i, is the permanent dipole moment, « is the polarizability tensor, and S
and ~ are the first and second hyperpolarizability tensors. We neglect the higher

order terms here, and subsequently the laser-molecule interaction is given by

1
H; = —pugE (t) cosf — §E2 () ((a) — ar) cos® 0 + ), (3.16)

where the components of the polarizability ; and o are parallel and perpendic-
ular to the molecular axis, respectively. The laser-field in our consideration is a

Gaussian shape centered at the time #:

t2i)?

E(t) = Epe” o2 cos (wt), (3.17)

where FEj is the field strength, o is the pulse duration, and w is the laser frequency.
To solve time-dependent Schridinger equation, the wavefunction is expressed

in terms of a series of eigenfunctions

() = cim () Uy, (0,0) (3.18)

where ¢, (t) is time-dependent coefficients corresponding to the quantum num-
bers (I,m). As can be seen in the above section, the wavefunction for infinite
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conical-well model is given by

Al P, (cos0) 22429 - 0 <9 < o
Uy (0,0) = van 7 (3.19)

0, a<f<m

where A, is the normalization constant and Pl?l,,'l is associated Legendre func-
tion of arbitrary order. After determining the coefficients ¢, (t), the orientation
(cosf) and alignment (cos? @) can be carried out immediately.

We choose ICI as our model molecule, whose dipole moment ;1 = 1.24 Debye,
rotational constant B =0.114 cm™!, polarizability components a; =~ 18 A3 and
o, ~ 9 A% The peak intensity and frequency of laser pulse is about 5 x 10!
W/cm? and 210 cm™!, respectively.sor siiplicity (zero-temperature case), the
rotor is assumed in ground stdte initially;/i:e.s.cop.(t = 0) = 1. Besides, in order
to keep the simulations promising, thé highest quantum number for numerical

calculations is [ = 15, such that the results are econvergent and the precision is to

the order of 107,

3.4 Results and discussion

The solid lines in the insets of Fig. 3.3 show the dependence of the alignment
on hindered angle a. For @ = 60°, sinusoidal-like behavior is presented, and the
alignment ranges from 0.63 to 0.91. As the hindered angle increases, the curves
become more and more complicated and gradually approach the free rotor limit
as shown in the insets of Fig. 3.3(b) (v = 120°) and 3.3(c) (o = 180°). This
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can be understood well by studying the populations |Cl,m’2 of low-lying states. In
the regime of small hindered angle, there is little chance for electron to populate
in higher excited states since the shrinking of the conical-well angle causes the

increasing of energy spacings.

One also notes that the populations of a hindered molecule for o = 60° and
120°, shown in Fig. 3.4(a) and (b), mainly compose of [ = 0, 1 and 2 states, while
the population of a free rotor is composed of [ = 0, 2,4 states. The underlying
physics comes from the reason that <¢l,7m, |cos? 0 ¢z,m> is non-zero for all [ and
I values in the case of hindered rotation. But it is zero in free rotor limit except
for | =1 or | = 1" + 2. The dotted lines, in,the insets represent the first two main
contributions of the factors ;l:, (16082 6[ 1) ) summed from low-lying states,
i.e. the sum of the largest twozvalues of the off-diagonal term (v . |cos® 6| wz,m>'
As can be seen, the populations_for ‘Ssmall hindered angle are mainly distributed

on lower states since the main oscillation feature (e.g. the frequency) of the curve

(dotted lines) is quite similar to that from whole contributions (solid lines).

Let us now turn our attention to the case of orientation. After applying a
short pulse laser, the orientation (cos) of a hindered molecule (o = 60°) oscil-
lates sinusoidally with time as shown in Fig. 3.4(a). The value of (cos#) is always
positive because the rotational wavefunction is compressed heavily. As the hin-
dered angle o becomes larger, the oscillation frequency also decreases as shown
in Fig. 3.4(b). These signatures are quite close to that of the alignment. We
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then conclude that even at larger hindered angle (v = 120°) the role of hindered
potential still overwhelms the laser pulse, otherwise, the value of (cosf) should

not always be positive.

Fig. 3.4(c) represents results of orientations in infinite (V{ = co) or finite (V5 =
100) conical-well potential for o = 175°. Dashed and dotted lines correspond to
Vo = oo and 100, respectively. For the case of finite conical-well potential, the
wavefunction is expressed in terms of a series of the basis wavefunctions obtained
in Refs. [4, 5, 7. As can be seen, the effect of laser pulse is obvious because
negative value appears. Comparing the results with the free orientation [20], the
angular distributions for finite well are anore isotropic since the wave functions

can penetrate into the conical-barrier.

Further analysis shows that compenents of orientation (cos) or alignment
(cos? ) can be divided into two'parts: diagonal and nondiagonal terms. The
nondiagonal term represents the variations of these curves such as those in the
insets of Fig. 3.3. These variations with time are determined by the phase differ-
ence coming from various energy levels. To see the contributions from diagonal
terms, we evaluate the time-averaged orientation and alignment. In this case, the
nondiagonal values will be averaged out, and only contributions from diagonal
terms exit. Fig. 3.5 shows the mean orientation and alignment as a function
of hindered angle. As « increases, the mean orientation decreases monotonically
from 1 to 0. This is because the mean orientation is determined by |¢;,,|* and
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(1)1 lcos 0] ¢, ). For a larger angle a, the populations |c1m|? mainly compose
of | = 0,2, 4 states. But the value <1/’z,m |cos §] ¢57m> is governed by the selection
rule: [ =1’ + 1. Thus the net effect is the shrinking of the mean orientation in
large angle limit.

Contrary to orientation, the mean alignment shows a quite different feature.
The value of (cos? #) first decreases as « increases. However, it reaches a minimum
point about for o = 140°. From the insets of Fig. 3.5, we know that the values
of ((¢y,, [cos® 0| ¢l7m>) do not depend significantly on a. Therefore, the decrease
of (cos®#) comes from the decreasing tendency of the population |1 |, while
its increasing behavior is caused by other two populations |cl:0,m|2 and |cl:2,m|2.

Competition between these two effects results in a minimum point.
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Figure 3.1: Schematic view of the hindered rotor.
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Figure 3.2: Quadrupole moments for the desorption of CO from CryO3(0001) as

function of quantum number J. Filled circles: experimental data points.
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CHAPTER 4

COUPLED FREE MOLECULES IN LASER FIELDS

Recently, coupled-rotor- model attracts much interest because some physi-
cal properties such as dielectric response may display peculiar behaviors in the
presence of dipole-dipole interaction. In some materials, molecules are found
to show a free rotation. For example, NH3 groups behave like one-dimensional
quantum rotors in certain Hofmann clathrates [25]. In particular, a line broad-
ening mechanism is proposed based'on rotor-rotor coupling. With the advances
of nanotechnology, one can investigate-the quantum rotors which are mounted
on the surfaces [29, 30, 31]. “From 'the laser spectroscopy, two individual fluo-
rescent molecules separated by several nanometers on the surface of an organic
crystal can be resolved. The coherent interactions between the dipole moments
associated with their optical transitions are found in the quantum optical mea-
surements. The strong dipole-dipole coupling produces entangled subradiant and
superradiant states in the two molecules system under laser radiation [30].

Many efforts have been devoted to generate entanglement in quantum-optic
and atomic systems. Although some studies have been investigated on quantum
rotors, these works are limited in the model of kicked tops [43, 44]. In this chapter,
we consider a more realistic system. A method is proposed to create entanglement
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between two coupled identical polar molecules separated in a distance of tens of
nanometers. Both molecules are assumed to be irradiated simultaneously by the
laser pulses. It is found that the entanglement induced by the dipole interaction
can be affected by controlling the inter-molecule distance, the field strength, and
the number of laser pulses. Moreover, the crossover from quantum to classical

limit is also discussed by varying the Planck constant.

4.1 Model of two coupled free molecules in a strong laser pulse

Consider now two diatomic polar molecules (e.g. Nal) separated in a dis-
tance of R. The molecule system is irradiated by half-cycle pulses. The total

Hamiltonian can be written as

h2
H= Z ﬂLi + Ugip +2H7, (4.1)
j=1.2

where L7 and g‘—j (= B) are the angularimomentum operator and rotational con-

stant, respectively. Ug;;, is the dipole interaction between two molecules:

fir - fHy — 3 (fiy - €r) (fiy - €
[ 1 2 (ég R)( 2 R)]7 (42)

Udip =

where /i; and ji, are the dipole moments. The dipole moments of two molecules
are assumed, for simplicity, to be identical, i.e. 1y = py = p,. The field-molecule
coupling H; can thus be expressed as

Hy=—- Z poE (t,v) cos b, (4.3)

i=1,2

26



where 0, and 5 are angles between dipole moments and laser field. The laser field
is given by F (t,v) = Eof (t) cos (2mvt) ,where Ej is the field strength and v is the
frequency. The envelope function f (t) is assumed to be Gaussian shape centered
at the time ¢ = to with duration o, i.e. f () = e~ %)°/°* Traditionally, a half-
cycle pulse is a strongly asymmetric monocycle pulse that consists of two parts: a
very short, strong pulse and a much long and weak tail of opposite electrical field.
The pulses F (t,v) used in the present work are actually not the exact half-cycle
pulses as defined in Ref. [45]. However, practical calculation shows that there
is almost no influence on our final result if a long and weak tail is introduced in
the pulses F (t,v) = FEof (t) cos (2mvt). Thus, it is reasonable to model a half-
cycle pulse by using the function# (¢, v) in ourcalculation. In addition, the field
duration is considered to be much shorterthan the molecular rotational period
in our work. Based on these"conditions; an impulsive model can be employed
in this case [20, 21]. The time-dependent; Schrodinger equation can be solved by
expanding the wave function ¥ in terms of a series of field-free spherical harmonic

functions Y, (0, ¢) as

|\Ij> = Z Cly,mailz,ma (t) |Y21,m1 (‘917 ¢1)> ‘Yiz,mz (‘927 ¢2)> ) (4‘4)

l1,ma;l2,m2

where (01, ¢;) and (62, ¢,) are the coordinates of the first and second molecule re-
spectively. The time-dependent coefficients ¢;; jmy.1,.m, (t) correspond to the quan-
tum numbers (1, m1; 2, my) and can be determined by solving Schrédinger equa-
tions numerically. In equation (4.4), the inter-molecule separation R is assumed to
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be fixed for simplicity, so that the total wavefunction has no spatial dependence.
Although the variation of R might be inevitable due to the influence of laser fields
or inter-molecule vibrations, however, recent experiments exhibited that the spa-
tial resolution in tens of nanometers for two individual molecules hindered on a
surface is practically possible [29, 30, 31]. In principle, the free orientation model
can be easily generalized to the hindered ones by replacing the spherical harmonic

functions with hindered wavefunctions.

4.2 Entanglement of two coupled free molecules

Let us now focus on the entanglement generated in our system. The cou-
pled molecules can be expressed‘as a pure bipartite system. The reduced density

operator for the first molecule-is'defined as

pmoll T Trrn012 |\IJ> <\Ij| . (45)

To study the degree of entanglement, the bases of molecule 1 is transformed to
make the reduced density matrix p,,,; to be diagonal. The entangled state can
be represented by a biorthogonal expression with positive real coefficients A,
which can be obtained by diagonalization of density matrix p_,;. The degree of
entanglement for the coupled molecules can then be measured by von Neumann

entropy [46, 47]

Entropy = — Z ALm10gu At m.- (4.6)

I,m
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In our work, Nal molecule in the ground state with dipole moment 9.2 debyes and
rotational constant 0.12 cm™! is used. The field strength is 3 x 107 V/m and the
laser frequency is about 9 x 10'* s71. The duration and center of the pulse are set
equal to 279 fs and 1200 fs. The main feature is that the ratio in magnitude of
the positive and negative peak value of the laser pulse is 5 : 1. Unless specified,
the parameters of the pulse are fixed throughout the chapter. The crossover from

non-entangled case to entangled one is studied based on the initial condition:

€0,0;0,0 (t == 0) =1.

4.3 Results and discussion

After the coefficients ¢, yigu,.ms (1) are determined, the orientations (cos6,)
and (cos @) can be evaluated immediately. Fig. 4.1 shows the orientations of the
first and second molecules after a single laser pulse is applied on both molecules.
For R = 3 x 10~® m, the behavior of the first molecule is quite close to that of
a free rotor [20]. This is not surprising because the dipole interaction is weak
for this molecule separation. However, as two molecules get close enough (Fig.
4.1(b)), both molecules orient disorderly, and the periodic behavior disappears.
This is because the dipole interaction is increased as the distance between the
molecules is decreased, and the energy exchange between two molecules becomes
more frequently. The regular orientation caused by the laser pulse is inhibited by
the mutual interaction.
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The populations of some low-energy levels are shown in the lower panels of Fig.
4.1(a) and (b). The solid, dashed, and dotted lines represent the populations of the
states (1,0;0,0), (1,0;1,0), and (2,0;1,0), respectively. These states show different
degrees of periodic behavior at different distances. However, the populations of
some higher excited states, for example the (3,0;1,0) state in the inset of Fig.
4.1(b), display different degrees of irregularity. This manifests a fact that the
nonlinear effect, caused by the reduction of R, does not affect the regularity of
the low-lying states, and the origin of the irregularity is caused by the higher

excited states.

Consider now the molecules aré‘irradiateéd,by a series of laser pulses periodi-
cally. As shown in Fig. 4.2(a)if the period of the-applied periodically laser pulse
T is equal to i/B , then both melecules behave disorderly no matter how the
distance R is varied. The chaotic behavior of the molecules can be ascribed to the
well-known ”kicked-rotor” problem. However, a series of regular-like orientations
marked by dotted and dashed lines are present in Fig. 4.2(b) if T' is equal to
wh/B. For a free rotor under a single kick, this interesting phenomenon comes
from the situation as the magnitude of the orientation returns to its initial con-
dition ({cosf) = 0) after a certain period 7' [20]. Therefore, for two molecules
in weak interaction limit (R = 3 x 1078 m), the wavepacket-like orientation is
similar to that of a single free rotor under the same laser period. The difference
is the suppression of the amplitudes at long time (dashed lines). It means that
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the dipole force can generate some accidental phases to perturb the regularity of
the coupled system. The lower panel of Fig 4.2(b) exhibits that the suppression

of the regularity is quicker if the dipole force is stronger.

Fig. 4.3 shows the time-dependent entropy after one pulse passes through
this system. For inter-distance R = 5 x 10~® m, the entropy increases slowly
from zero. For R = 1.5 x 1078 m, on the contrary, the entropy grows rapidly
with the increasing of time because the dipole force is stronger. Notes that the
entropy only varies within a finite range at long time regime. This indicates that
the systems reaches a dynamic equilibrium state even though the dipole force is

still present.

Fig. 4.4(a) illustrates the wariations of the entropy with respect to different
field strengths of the applied laser pulse as R is set equal to 1.5 x 1078 m. For
the field strength Ey = 1.5 x 107 V/m, an irrégular-like behavior of the entropy is
obtained, and its value is not large enough for quantum information processing.
However, Fig. 4.4(b) shows that the degree of entanglement can be enhanced if
one increases the field strength. This can be understood well by studying the
relationship between the dipolar interaction and the field strength. If the effect of
dipole interaction overwhelms the laser field, most of the populations are distrib-
uted on the low-lying states. In this case, the entropy from Schmidt decomposition
is certainly small as shown in Fig. 4.4(a). On the other hand, if the field strength
plays a dominant role, the distribution of molecular states covers a wider range
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and the entropy is enhanced in this limit.

Next we detune the frequencies of the laser fields to study the behavior of
entanglement. Figure 4.5 illustrates the time evolution of the entropy with dif-
ferent ratios in magnitude of the positive and negative peak value of the laser
pulse as R is set equal to 1.5 x 107® m. The laser frequency is tuned to change
the ratio as shown in the inset by fixing other parameters. For the case of ratio
9 : 1, an irregular-like behavior is obtained with time-averaged value 0.51. If the
ratio is set equal to 1 : 1, the entanglement shows a nearly periodic behavior with
small averaged entropy. This result is very similar to the limiting case without
laser, and indicates that the entanglement,depends sensitively on the ratio of the
laser pulse, i.e. the excitationsis suppressed:under the condition of 1 : 1 ratio.

Meanwhile, the dipole force only establishes periodic-like entropy.

Let us consider the first ten most. contributive coefficients )\ ,,. The );,, are
re-arranged and denoted as A\, with p =1,2,3.... For example, \; is the most
contributive coefficient. The insets of Fig. 4.5 show the ten coefficients (\;)
at short and long time regimes. In the case of the ratio 9 : 1 , the eigenvalue
A1 dominates the contributions at short time regime(t = 50 ps). However, the
contributions are distributed more averagely between different levels as t = 800
ps regime. This means the system is in some sort of dynamic equilibrium in long
time limit, and entropy saturates to certain value. On the contrary, \; always
dominates the contributions for either short or long time regime in the case of the
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ratio 1 : 1 as shown in the lower inset of Fig. 4.5. From statistical point of view,

this somehow explains the suppressed and regular behaviors of the entanglement

(entropy).

Figure 4.6 shows the time evolutions of the populations of the eigenstates for
different ratio of pulse shapes. For 1 : 1 ratio, the pulse hardly excites the rotors
from the initial energy level (0,0;0,0). Therefore, (0,0;0,0) is still the mostly
populated level (the population value is nearly close to 1 ) as shown in the lower
panel of Fig. 4.6 while the pulse passes through. Similar to the ground state,
the populations of the higher levels (the inset of Fig. 4.6) also show the periodic
behavior. The periodic behavior istascribed te the dipole interaction. Since the
small fluctuation of the population is dominated by the dipole interaction in the
case of symmetrical pulses. The magnitudes of the periodic fluctuations in higher
level populations are rather smallwith the periodic evolution of the entropy. On
the other hand, for 9 : 1 ratio the populations of the higher states show different
degrees of irregularity as shown in the upper panel of Fig. 4.6. This is because
a single asymmetrical pulse can generate high populations in the excited states
[20], i.e. a larger angle orientation. The larger angle orientation can cause a
largely fluctuated dipole interaction between the molecules. For this situation,
energy transfer by means of (mediated) dipole interaction generates the irregular
evolutions of the higher excited states which result in a randomly time-varying
entropy.
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We further study the entropy for different separation and dipole moment in
Fig. 4.7. The ratio is set equal to 9 : 1. If the separation is smaller (0.8 R),
the entropy grows faster. On the contrary, the entropy evolves slower for the
case of larger separation. This means that the system needs much more time to
approach the dynamic equilibrium. We also study the time evolution of entropy
by changing the dipole moment. Our result shows that a similar behavior of the
entropy exhibits, i.e. the strength of dipole interaction governs the behavior of

evolution.

By adjusting the laser parameters, one can vary the degree of the entangle-
ment. Figure 4.8 illustrates the time evolution of the entropy under single pulse
or double pulses with ratio 5= 1. | As can be seen, an irregular behavior of the
entropy is obtained, but their;averaged values are different. For single kick, the
populations are first dominated by this laser pulse. Then, the dipole interaction
plays a key role to raise the entanglement in the system. In the case of double
pulses the finite populations is created by first pulse. As the second laser pulse
passes through, the populations will be redistributed to a wider range. Since the
populations are distributed more averagely in this case, the entropy is certainly
larger as shown by the solid line in Fig. 4.8. One can notes that the enhancement
of entropy is achieved by applying the second laser pulse. Consider the case that
time separation between these two pulses is set to be 5 times the center of the
laser peak. Here we emphasize that the time separation is not fixed and can be
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tuned to obtain different degree of entropy. Another way to control the degree of
entanglement in this system is to change the positive and negative ratios of the
laser pulse. Inset of Fig. 4.8 shows the time-averaged entropy with respect to
different ratios. We find that the entropy is more enhanced as the ratio is larger.
This means that the highly asymmetric laser pulse can generate larger entropy

under the same field strength.

To study the crossover behavior from quantum to classical limit in this system,
one can tune the fundamental Planck constant %'. Figure 4.9 shows the time
for entropy first exceeds the time-averaged value (arrow in the inset) versus the
different factor of Planck constant 7/...As shown, the time grows rapidly with
the decreasing of the Planck constant!fi’. The inset in Fig. 4.9 shows a slowly
increasing of entropy with the evolution-of time for 7' = 0.014. Comparing this
with the result for i’ = f, the ratio of the two times is roughly 100 : 1. This means
that the entropy evolves slowly, and the system needs a longer time to approach
dynamical equilibrium for a small #’. As expected, the time for classical limit
(W' — 0) goes to infinity, satisfying that no entanglement exists between classical

objects.

For a more realistic molecular system, one can extend our model to hindered-
rotor system. The hindered rotor means that the polar diatomic molecule is
adsorbed on the surface with the confinement of surface potential. In other words,
one reasonably considers that two coupled polar molecules are adsorbed on the
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surface with the dipole interaction. Comparing hindered rotor with free one, the
rotation of a hindered rotor is similar to that for the free one, but the degree
of orientation is different. This is because that the surface potential confines
the rotation. Although this confinement may affect the property of the system,
according to our work in chapter 3, a free rotor and hindered rotor actually show
the same physics. In particular, a hindered rotor can be transformed into a free

one by changing the parameters of surface potential.
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Figure 4.1:

two molecules at different distances. Lower panels: The populations of the states
(I1,mq; e, m2)=(1,0;0,0) (solid lines), (2,0;1,0) (dotted lines), (1,0;1,0) (dashed

lines). The insets in (a) and (b) represent the population of state (3,0;1,0).
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Figure 4.2: The orientations of the first and second molecules under periodic
laser pulses with the periods T= (a) 14/B, (b) wh/B ps. The upper and lower

panels of (a) and (b) correspond to the distances R =3 x 1078 and 2 x 107 m,

respectively.
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Figure 4.3: Time evolution of the entropy after applying single laser pulse for (a)
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x 1078 m. The degree of entanglement can be enhanced if one increases the field

strength.
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Figure 4.5: Time evolution of the entropy after applying single laser pulse for
different ratios in magnitudes of the positive and negative peak value of the laser
pulse. The graphs show the irregular (periodic) behavior for ratio 9 : 1 (1 : 1).
The inset : the first ten contributive eigenvalues A, at short time (¢t = 50 ps) and
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CHAPTER 5

COUPLED ADSORBED MOLECULES IN LASER

FIELDS

In the complex surface systems, adsorbed molecules may not be isolated.
Several studies have shown that interesting behavior can occur due to the existence
of dipole-dipole interaction [24, 25, 26, 27, 28]. In addition, since the investigations
on entangled behavior of two coupled rotors, are limited in the model of kicked
tops [43, 44], this inspires us t0 study the dynamical entanglement of adsorbed
molecules. According to our study in chapter 3, it'is found that the orientations
of free coupled rotors somehow reflect the entropy of the system and thus relate to
the measurement of entanglement. Since the entanglement measurement is one of
the fundamental important issues in quantum information research, the study of
the entanglement and its measurement becomes an interesting problem. Moreover,
from the experimental point of view, it is still not clear how to keep two free rotors
with fixed distance. Therefore, this makes it more interesting to consider a more

realistic system and discuss the corresponding entanglement dynamics.

In this chapter, we investigate the rotational motions of a polar diatomic
molecule confined by a hindering conical-well. After applying a single strong laser
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pulse, the hindered rotor shows periodic behavior. Different signatures between
the finite-conical-well and infinite-conical-well model on orientations are pointed
out. Besides, the amplitudes of the oscillations are varied by applying different
widths of the pulse. Furthermore, we also consider two coupled identical polar
molecules adsorbed on the surface with the dipole-dipole interaction and a si-
multaneously ultra-short laser pulse shined upon them. It is found that both
the entanglement (the von Neumann entropy) and orientation show interesting

behaviors.

5.1 Single adsorbed molecule in a strong laser pulse

Consider now a dipolar moleeule (e.g. Nal) adsorbed on the surface. The
rotation of the molecule is confined by the surface potential as shown in Fig.
5.1. An off-resonant laser field polarized-imz=direction interacts with the hindered
rotor. Because the laser frequency 1s'much lower than the frequencies of the lowest
vibrational and electronic transition, only the rotational excitations can occur in
our model. The excitations can be viewed as two photon transitions between
two different rotational states through a high intermediate virtual state [18]. The

Hamiltonian without the field-molecule interaction can be written as

HO = BJ2 + Vhin(ev ¢)7 (51)

where B and J? are rotational constant and angular momentum. V};, denotes the
surface potential and confines the rotation of adsorbed molecule. For simplicity,
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the infinite-conical-well model V};,(0,¢) is considered here. According to the
previous studies, its dependence on ¢ is weaker than that on 6 [32, 33, 34]. We
reasonably assume that the surface potential is independent of ¢. Therefore, in

the vertical adsorbed configuration, the surface potential can be written as [3]

0, 0<O0<a«
Viin (0) = , (5.2)

oo, a<f<mw

where « is the hindering angle of the conical well.

The Hamiltonian concerning the field-molecule interaction can be written as
Hy = —pE (t)cosb, (5.3)

Hig — —%E2 (6 (@200, ) cos? 0 + . ). (5.4)

The first term H,; describes a permanent dipole.moment y coupling with an exter-
nal field, and @ is the angle between the'molecular axis and the field. In this work
we choose a Gaussian pulse for our ¢alculation; . E (t) = Ege~(710)°/7" cos (2mut)
where FEj is the field strength and v is the laser frequency. The pulse is centered
at the time ty, and o is the pulse duration. The second term H;,, is a higher
order interaction, in which the external field couples with the induced molecular
polarization. The component of the polarizability ay (a1 ) is parallel (perpendicu-
lar) to the molecular axis. According to our parameters, the field-dipole-moment
interaction Hy is much greater than that of the field-induced-dipole-moment in-
teraction H;,; in our model. This is because the strength of electric field used
here is unsufficient to enhance the higher order term. Actually the interaction
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H;nq can play an important role in the case of high strength of electric field [18].
Therefore, the term (H;,4) can be neglected reasonably based on our parameters.

Before solving the time-dependent Schrodinger equation (Hy 4+ Hy), the eigen-
functions of the system (Hy = BJ? + Vj,;,(#)) must be introduced first. Following

Ref. [3], the eigenfunctions can be written as

A; Pl‘,:n‘ (cos®) exp(imd) << q
1M ,m \/_ﬂ. ) = -~
wlm (97 ¢) = 2 ) (55)

0, a<0<m
where A;,, is the normalization constant and Py|l ,L is the associated Legendre
Function of arbitrary order with the corresponding quantum number (I,m). In

above equations, the molecular rotational energy can be expressed as
Epy = Vil Aln s 1)B. (5.6)

In order to determine v;,,, one hasyto-match the boundary condition
lejﬁn (cosar) = 0. (5.7)

To solve time-dependent Schrodinger equation, the wavefunction is expressed

in terms of a series of eigenfunctions:

chm ¢lm ) ) ) (58)

where ¢, (t) is time-dependent coefficient. The coefficient ¢; ,,, () can be obtained

from the different equations

ihél,m(t) = Cm () €1m + Z &' m () <¢z,m | Hgl ¢l’,m> . (5.9)
v
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After determining the coefficients ¢; ,, (t), the orientation (cos #) can be carried out
immediately. We choose Nal as our model molecule, whose dipole moment p = 9.2
Debye and rotational constant B =0.12 cm™!. For simplicity (zero-temperature
case), the rotor is assumed in ground state initially, i.e. cgo (¢ = 0) = 1. The field
strength is 3 x 107 V/m and the laser frequency is about 9 x 10! s7*. The duration
and center of the pulse are set equal to 279 fs and 1200 fs. The main feature is
that the ratio in magnitude of the positive and negative peak value of this pulse is

5:1. Unless specified, the parameters of laser field are fixed throughout the paper.

Figure 5.2 illustrates the orientation (cos#) as a function of time for different
hindering angles and pulse durations.,,In_both cases, the orientations display
periodic-like behavior. For thespulse-duration (¢/ = o), the orientation of small
hindering angle (« = 60°) shows a relative large value but with small oscillatory
amplitude, while for o = 120° aslarge oscillatory-amplitude with multi-frequency
(insets of Fig. 5.2) is obtained. Obviously, such a difference comes from the
quantum confinement effect. We further apply the laser pulses with different
widths by tuning the duration and center. If the pulse duration increases, the
amplitudes of the oscillations decrease and the orientations approach the initial
value as shown in the insets. The reason is that the mean orientation is suppressed

by the alternations of the electromagnetic field, i.e. the cancellation of negative

and positive orientations.

To see more clearly the effect of hindering potential, let us now consider the
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finite potential model

Viin (0) = o (5.10)
Vo, a<f<n

where Vj is the height of well. Following Refs. [4, 5], the rotational energy and
eigenfunctions can be determined by matching appropriate boundary condition.
Figure 5.3 shows the time-averaged orientation as a function of time for different
hindering potentials. For infinite potential (V5 = o0), the time-averaged orien-
tation decreases monotonically from 1 to 0 as the hindering angle is increased.
However, if the well is finite, the time-averaged orientation has a maximum point
at certain angle. This means if the open angle o decreases further, the contribution
from the penetrated wavefunction everwhelms'the impenetrable one, rendering the
decreasing of the time-averaged orientation. We ‘also compare the case of 0/ = o
with that of ¢/ = 50 (inset of Fig.'*5.3). It is/found that, for larger duration
o' = bo, although the oscillatory” amplitude is smaller (Fig. 5.2), the value of

time-averaged orientation is larger comparing to the case of ¢/ = o.

5.2 'Two coupled adsorbed molecules in a strong laser pulse

As we mentioned above, the spatial resolution of two individual molecules
hindered on a surface in tens of nanometers is now possible [29, 30, 31]. We
further consider that two identical dipolar molecules (separated by a distance of
R, R isin an order of magnitude of 108 m) confined by the hindering wells. The
molecules are assumed to interact with each other via dipole-dipole interaction
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only. A polarized laser pulse is applied to interact with both molecules. The

Hamiltonian of the coupled system can be written as

H,= " Hoj+ Usp+ Hi, (5.11)

§=1,2

where Hj; is the Hamiltonian of single hindered rotor without the laser-dipole

interaction. The dipole interaction between two dipole moments p; and p, is

Usip = iy - fy — 3 ([iy - €r) (s -@R)]/R3
= iy fio(sin B cos ¢, sin O3 cos ¢y + cos O cos Oy

—2sin 0; sin ¢; sin O sin ¢y ) / R (5.12)

where €5 (= R/R) is assumed to be in thery-direction, and (6y, ¢,) and (6, ¢,) are
the coordinates of first and second molecule respectively. For simplicity, we assume
the dipole moments of two molecules are identicali.e., 11y = py = 14y. One might
argue that the higher order terms.may also contribute to the results. According
to previous study [27], the next higher order term is about the order of r3/R*
with bond length r. If one compares the dipole-dipole interaction, (O(r?/R?)),
with the next higher order effect (the bond length r = 2.7 A [48] and separation
R = 15 nm), it is found that the contribution from the next higher-order term
is only 2 percent of the dipole-dipole interaction. Therefore, it is reasonable to
include only the dipole interaction in our model. The field-molecule coupling H;

can then be expressed as

H; = —poE (t) cos 0 cos (wt) — pugE (t) cos 05 cos (wt) (5.13)
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where 6; and 0, are the angles between dipole moments and laser field. In above
equations, the time-dependent Schrodinger equation can be solved by expanding
the wave function in terms of a series of eigenfunctions
Vo= Y Chmtme () Uiy (00,00) Yy (02.65) . (5.14)
l1,ma;l2,m2
where (01, ¢,) and (02, ¢,) are the coordinates for two molecules. ¢, myiip.ms (£)
are the time-dependent coefficients and can be determined by solving Schrodinger
equations numerically. The initial state is set as 1 o1 o (o000 (t = 0) = 1).
In addition to the orientation, one can also analyze the entanglement induced
by the dipole interaction. Following the method in chapter 4, the wavefunction
of the coupled molecules can be egxpressed as‘apure bipartite system (a compact

form of Eq. (5.14)): [Ve) = > i iitaums Clasinisioms (L) %1, 1) |V, ) The reduced

density operator for the first moleculesisidefimed as
Pmol 1 = Trlnol 2 |\Ilc> <\ch| . (515)

To obtain the entanglement of entropy, the bases of molecule 1 is transformed to
make the reduced density matrix p,,,, ; to be diagonal. The entangled state can
be represented by a biorthogonal expression with positive real coefficients A; .
The degree of entanglement for the coupled molecules can be measured by von
Neumann entropy [46, 47]

Entropy = — Z ALm1og Ap .- (5.16)

Il,m
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Figure 5.4 shows the entropy and orientation evolves with time for fixed angle
a = 120° and inter-distance R = 1.5 x 1078 m. Because of the presence of the
laser pulse, contributions to the energy exchange between two molecules come
from many excited states, resulting in an irregular-like behavior of the entropy
shown in the Fig. 5.4(a). Further analysis of the dynamics gives the fact that
the entropy grows monotonically from zero to certain finite value. This is because
the laser pulse dominates at initial stage. The strength of laser pulse is much
larger than that of dipole-dipole interaction. In addition, the duration is much
shorter than the characteristic time of the dipole interaction. After the laser pulse,
populations to the (rotational) excited states are formed (inset). The non-linear
dipole interaction then initiates.the exchange process between the states until
certain ”dynamical equilibrium?” iis reached.*One ¢an conclude that the nonlinear
variations of populations confirm the featureishown in the inset. Moreover, the
orientations of the coupled molecules arealso displayed in Fig. 5.4(b). Comparing
to the single molecule case, the irregular behavior is certainly from the non-linear

dipole interaction.

Figure 5.5 shows the time-averaged entropy for different hindering angles. As
the hindering angle increases, the time-averaged entropy increases monotonically.
This is because for larger angles more excited states can be obtained under the
same strength of the laser pulse, resulting in larger entropy. Notes that the mag-
nitude of orientation is high as the hindering angle is set equal to 30° (inset of Fig.
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5.5). This again verifies that narrow potential restricts the motion of the hindered
rotor. In this case, the dipole interaction is suppressed, causing the regular-like
behavior of the orientation. On the contrary, more excitations are populated such
that the orientation oscillates with irregularity at o = 150°.

A few remarks about the experimental verifications of our model should be
addressed here. According to the results in chapter 4 and 5, it is found that the
orientations of the coupled rotors relate closely to the entropy. This indicates
that the orientations of coupled rotors somehow reflect the entropy of the system.
For the measurement of orientations, many experiments have been performed.
For example, the Coulomb explosion of the molecules using intense femtosecond
probe laser pulses and a time-of-flight mass spectrometer [49, 50, 51]. The degree
of orientation is determined by the measurement of fragment ions. Under proper
arrangements, the orientations of hinderedrrotors can also be measured by the

similar technologies. This may providésome indication of the entanglement.
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Figure 5.1: (a) Schematic view of single hindered rotor adsorbed on the surface.

(b) The corresponding infinite-conical-well model.
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of the states (I, m =0) for (a) a = 60° and (b) a = 120° respectively. The

corresponding laser fields are shown in the upper inset.
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most states similarly remain irregular behavior.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this part of the thesis we have studied the rotational motion of a polar
diatomic molecule, which is confined by a hindering conical-well. It is shown
that an ultrashort laser pulse can induce alignment and orientation of a hindered
molecule. The hindered angle of the hindered potential well plays a key role on
the molecular alignment and orientation. Crossover from field-free rotation to
a hindered one can be observed hy'varying'the hindered angle of the potential
well. At small hindered angle; both-alignment and orientation show sinusoidal-
like behavior because of the suppression of higher excited states. However, mean
orientation decreases monotonically-as the hindered angle is increased, while mean
alignment displays a minimum point at certain hindered angle. The reason is at-
tributed to the symmetry of wavefunction and can be explained well by analyzing

the coefficients of eigenstates.

As for coupled free rotors system, we have studied the orientations and en-
tanglement of two coupled polar molecules irradiated by strong laser pulses. The
behavior of the orientations is different from that of a free one. By varying the
period of a series of periodically applied laser pulse, transition from regular to
chaotic-like behavior may occur. To characterize the degree of entanglement, the
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von Neumann entropy is calculated. It is shown that the entanglement can be en-
hanced by increasing the strength of laser pulse or applying multi pulse. Further,
periodic-like entropy is found as a symmetrical-ratio pulse is shined, while a highly
asymmetrical pulse can induce highly irregular entropy. We also discussed the dif-
ference between the quantum and classical regime in this coupled-rotor system.
By varying the Planck constant, crossover from quantum to classical limit can be
seen from the von Neumann entropy. Prominent difference in entropy between
quantum and classical regime is the time that approaches dynamical equilibrium.
In particular, for classical limit, the system is expected to need infinite time for

dynamical equilibrium.

We have further studied the rotational dynamics of the adsorbed polar mole-
cules. It is found that the orientation-of single hindered rotor shows a periodic
behavior. In particular, the amplitude of oscillation is sensitive to the degree of
alternation of the laser field. Crossover from field-free to hindered rotation is ob-
served by varying the hindering angle for different heights of conical-wells. On the
other hand, the orientations of coupled rotors show irregular behavior because of
the dipole-dipole interaction. Entanglement induced by the dipolar interaction is
also calculated for the coupled-rotor system, in which the time-averaged entropy
increases monotonically as the hindering angle is increased. The competition
between the confinement effect and dipole interaction is found to dominate the
behavior of the coupled-rotor system.
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Based on the results, some works can be continued in the future: the quantum
control of the rotational states. With the advances of laser technologies [52],
molecular dynamics can be controlled by applying the optimal control theory. The
optimal control investigation of a laser driven system can be viewed as a problem
of state-to-state control. The purpose is to calculate the shape of the laser pulse
which induces the maximum transfer of probability from the given initial state to
a chosen final state. Although the optimal control theory is extensively applied
to the recent works such as chemical reaction, to our best knowledge, the study
on adsorbed-molecule system still receives little attention. Therefore, steering a
quantum system of molecules adsorbed on the surface is believed to be important

in surface processes and reactions:
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CHAPTER 7

INTRODUCTION TO PART II

In the last two decades, nano-technologies have made it possible to fabricate
quantum dots with the dimensions at nanoscale. Quantum dot may be a good
choice for quantum electronics due to its zero dimensionality, quantized energy
levels, and long coherence times of spin states [53, 54]. Figure 7.1 (a) illustrates
a lateral quantum dot with six metal gates patterned on the surface of a two-
dimensional electron gas (2DEG).{535]. " Wheén a strong negative gate voltage is
applied to the gates, a small dsland for| electrons. the quantum dot, is isolated
in the depleted region within-the 2DEG. By operating and modifying the gate
voltages, the electron tunneling and.the number of electrons confined in the dot
can be controlled. On the other hand, the structure of a vertical quantum dot is
shown in Fig. 7.1 (b). A quantum dot is fabricated in the center of the pillar and
sandwiched between two thin non-conducting barriers. To control the number of
electrons, the effective diameter of the dot can be squeezed through a negative
voltage applied to the side gate.

To well operate quantum electronics, keeping the spin state unchanged is an
important issue. In general, the spin-orbit coupling, which is one of the main
causes of spin relaxation is a relevant intrinsic interaction in nonmagnetic semi-
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conductors. It is known that there are two different types of spin-orbit coupling
as quantum dots are fabricated within semiconductors of a zincblende structure.
The first one is the Dresselhaus interaction, which is due to the bulk inversion
asymmetry of the lattice [56, 57, 58]. The polar bonds can cause electric fields
between the atoms and lead to spin orbit coupling in zincblende materials. The
second is the Rashba interaction caused by the structure inversion asymmetry
[59, 60]. The spin-orbit couplings mix the spin states with different orientations
in the Zeeman sublevels [61, 62, 63] and therefore make spin relaxation possible

in the presence of the electron-phonon interaction [64, 65, 66, 67, 68].

Electron-phonon interaction in electron transport has long been an important
topic [69, 70]. The emission of-phonons-was observed in transport experiments of
double quantum dots embedded in bulk materials {69]. With the advance of nan-
otechnologies, free-standing structures can new be fabricated. Due to the interplay
between the electrical and mechanical degrees of freedom, the electron transport
through the quantum dots is influenced under the environment of nanomechanical
vibrations. In contrast to the bulk material phonons, phonons of nanomechanical
vibrations are no longer mere a source of dissipation. The phonon spectrum in
the structures is split into discrete subbands, and the quantization effects con-
tribute greatly to the thermal conductivity [71, 72, 73]. Because of the boundary
conditions for the vibrational modes, the phonon-dispersion shows some singular
properties, such as the van Hove singularities. A 2DEG quantum dot embedded
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in a suspended phonon cavity has been fabricated in a recent experimental work
[74, 75]. Single electron tunneling around zero bias showed a complete suppres-
sion in the transport spectrum which is believed to be due to the excitation of
a localized phonon mode confined in the cavity leading to the formation of an
energy gap. This opens possible avenues to investigate the ultimate limit of single

electrons interacting with individual phonon modes.

In addition, it is known that the electronic and optical properties in quantum
devices are sensitive to the features of the quantum dots, which can be controlled
and operated through the flexible features [76, 77]. Recently, quantum dot sys-
tems in the presence of time-varying, external fields manifest some interesting
effects ranging from photon-assisted tunneling [78] to electron pumping [79]. In a
recent experiment, the transport spectroscopy has been measured in coupled dou-
ble quantum dots under microwave ‘fields [78]: . The photon-assisted resonances
are found by a modulated gate voltage. The phenomenon involves the emission
or absorption of a microwave photon. For electron pumping, an open quantum
dot system without the voltage bias across it has been reported [79]. Because of
the presence of time-varying parameters, the confining potential in the quantum
dot can be influenced in the adiabatic regime. This results in an electric current

flowing through the quantum dot.

In this part we present the studies on spin relaxation and electron transport
in quantum dot systems. As a quantum dot is embedded inside a free-standing
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structure, a significant spin relaxation rate is found due to the confined phonons.
To study electron transport through a nano-system, a double-dot device embedded
in a single phonon environment is further discussed. The effects of Coulomb and
phonon fields can reflect the behavior of the transport. Furthermore, it is also
shown that the transport of the quantum device is influenced by the irradiation
of the external field.

This part is organized as follows. We investigate the phonon-induced spin
relaxation in a quantum dot embedded inside a semiconductor slab in chapter
8. The behavior of the scattering rates is examined under various conditions. In
chapter 9, electron transport through a double-dot device embedded in a single
phonon environment is studied. The effects of Coulomb and phonon fields on the
conductance are also discussed. Besides, we also consider the electron tunneling
through a three-level system in an asymmetric double-dot device in chapter 10.
Irradiating by an external field, a significant behavior in the current spectrum is
discussed. Finally, we conclude our results and present future works in chapter

11.
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Figure 7.1: Schematic views of a lateral (a) and vertical (b) quantum dots. From

Ref. [55].
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CHAPTER 8

SPIN RELAXATION IN A GAAS QUANTUM DOT
EMBEDDED INSIDE A SUSPENDED PHONON

CAVITY

The quantum dot may be a good choice for quantum electronics due to its zero
dimensionality, quantized energy levels, and long coherence times of spin states
[53, 54]. For example, the spin of’an electton confined to a quantum dot can
form a qubit [80, 81]. Howevery some scatfering processes will cause the change of
the spin states. One important process-is related to the phonon-induced spin-flip
resulting from the spin-orbit interaction. This ‘affects the time of spin purity in
the quantum dot. In order to keep the information unchanged, a long relaxation
time is required.

In general, the spin-orbit coupling, which is one of the main causes of spin
relaxation, is a relevant intrinsic interaction in nonmagnetic semiconductors. It is
known that there are two different types of spin-orbit coupling as quantum dots
are fabricated within semiconductors of a zincblende structure. The first one is
the Dresselhaus interaction, which is due to the bulk inversion asymmetry of the
lattice [56, 57, 58]. The second is the Rashba interaction caused by the structure
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inversion asymmetry [59, 60]. The spin-orbit couplings mix the spin states with
different orientations in the Zeeman sublevels [61, 62, 63] and therefore make spin

relaxation possible in the presence of the electron-phonon interaction.

Relaxation times of electron spins in a quantum dot have been measured
by electrical pump-probe experiments [82]. The triplet-to-singlet transition with
emission of phonons was found with corresponding spin relaxation times of about
200 ps. Recently, the spin relaxation time in a one-electron GaAs quantum dot was
measured by a similar electrical pump-probe technique [83, 84]. As the magnetic
field was applied parallel to the two-dimensional electron gas, the Zeeman splitting
of quantum dot was observed in dc tramsport spectroscopy. By monitoring the
relaxation of the spin, the relaxation time was found to have a lower bound of 50

ps at an in-plane field of 7.5 T [83].

On the theoretical side, spin relaxation between two spin-orbital mixed states
in semiconductor quantum dots has been studied recently. However, to the best
of our knowledge, all previous studies of spin relaxation concentrated on quantum
dots embedded in the bulk material, [64, 65, 66, 67, 68] whereas studies of spin
relaxation induced by confined phonons are still lacking. We therefore consider
a single quantum dot embedded inside a free-standing structure (semiconductor
slab), where the relevant characteristic is the two-dimensional phonon wavevector
for the acoustic-phonon spectrum as shown in Fig. 8.1 [74, 75, 85, 86, 87]. Since
the reduced dimension will enhance the deformation potential, we will mainly
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focus on the spin relaxation rate induced by the deformation potential [86, 87].
In this chapter we consider the parabolic quantum dot model with spin-orbit
interaction. Energy spectra of the quantum dot can be solved by using an exact
diagonalization method. We then apply the Fermi golden rule to calculate spin
relaxation rates for typical parameters. We discuss the dependence of the spin

relaxation rates on the size of the quantum dot, the phonon bath temperature,

and the width of the slab.

8.1 Model

8.1.1 Single particle in a quantum dot

We consider an isotropic quantum.dot with an in-plane parabolic lateral con-
finement potential. An external magnetic field B is:applied perpendicularly to the
surface of the quantum dot as shewn'in Fig. 8:1(a). The electronic Hamiltonian

of this system can be written as
H.,= Hy+ H,,. (8.1)

The first term describes the electron Hamiltonian without the spin-orbit coupling,

P2 1 1
+ =m*wir® + =g*ugBo., (8.2)

Hy =
2m* 2 2

where P = —ihV + (e/c)A is the kinetic momentum with vector potential A =
(B/2)(—y,z,0) confined to the 2D plane. Here m* is the effective electron mass,
e is the electron charge, c is the velocity of light, wq is the characteristic confined
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frequency, g* is the bulk g-factor, up is the Bohr magneton, and o, is a Pauli
matrix.

The Rashba and Dresselhaus interactions (Hs, = Hr + Hp) are given by

AR

Hp = 7(0—30Py —0,P;), (8.3)
AD
Hp = 7(—0&«1% +0,P,). (8.4)

The coupling constants Az and Ap determine the spin-orbit strengths, which de-
pend on the band-structure parameters of the material. Besides, the Rashba and
Dresselhaus terms are also associated to the perpendicular confinement field and
the confinement width in the z-direction, respectively.

For the electron Hamiltonian.#g, the well:known Fock-Darwin states can be

easily obtained from

1 1] .

V2 n p 72 r2\ez r2\ it

U0 =22 | — | Sexpi ) (D : 8.5
. To l(n—i— |l\)'1 p( 2r§> <r§> " (7‘3) N (8.5)

with 7o = (A/mQ)z. y, represents the eigenfunction of o, and L!is the general-

ized Laguerre polynomial given by the formula

Lz = 3o EU (”*”')zm. 56)

= m! \n—m

The electron energy levels are
En,l,o = hQ2 (27”L—|— |l|+1)+hw31/2+0EB, (87)

where n (=0,1,2...) and | (=0,+1,£2...) are the quantum numbers. The renor-
malized frequency is 2 = y/wg + w% /4, with the cyclotron frequency wp = eB/m*
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and the characteristic confinement frequency wq limited by the effective quantum
dot lateral length [y = \/m. Here, Ep = guupB/2 is the Zeeman splitting en-
ergy, and o = *1 refers to the electron-spin polarization along the z axis. To solve
the Schrodinger equation with (H, = Hy + H,,), the (spin mixing) wave function
is expressed in terms of a series of eigenfunctions: Wy (r,6) = > ¢p 10 VYnio for each
state £. After exactly diagonalizing the electron Hamiltonian, the corresponding

eigenvalues £, and the coefficient ¢, ;, can be obtained numerically.

8.1.2 Confined phonon in a semiconductor slab

Before calculating the spin relaxation rate, the confined phonon in the free-
standing structure must be introdueed here. Following Refs. [85, 86], we consider
an infinite film with width a {Fig. 8.1). For the-effect of the contact with the
semiconductor substrate, we neglect the-distortion. of the acoustic vibrations. Un-
der this consideration, one can ensure that the in-plane wavelength can be shorter
than the characteristic in-plane size of the solid slab. For simplicity, the elastic
properties of the slab are isotropic. Small elastic vibrations of a solid slab can
then be defined by a vector of relative displacement u (r,¢). Under the isotropic

elastic continuum approximation, the displacement field U obeys the equation

0*u
yr i GVu+ (¢ —¢)V(V-u), (8.8)
where ¢; and ¢; are the velocities of longitudinal and transverse bulk acoustic

waves. To define a system of confined modes, Eq. (8.8) should be complemented
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by the boundary conditions at the slab surface z = +a/2. Because of the confine-
ment, phonons will be quantized in subbands. For each in-plane component g
of the in-plane wave vector there are infinitely many subbands. Since two types
of velocities of sound exist in the elastic medium, there are also two transversal
wavevectors ¢; and ¢;. In the following, we consider the deformation potential
only. This means there are two confined acoustic modes: dilatational waves and
flexural waves contribute, but shear waves are neglected because of their vanishing

interaction with the electrons for spin relaxation.

For dilatational waves, the parameters ¢;,, and ¢, can be determined from

the Rayleigh-Lamb equation

tan (qond/2) 2| A4 Bindin (8.9)
tan kg wa/2) Aaj = @)%

with the dispersion relation

W = Cl2\/ qﬁ +a7, = C?\/ Qﬁ + s (8.10)

where w, g, is the frequency of the dilatational wave in mode (n,q)). For the
antisymmetric flexual waves, the solutions ¢, and ¢, also can be determined by

solving the equation

tan (QZ,na/z) _ _ 4Q\|Ql,nqt,n (8 11)

tan (gna/2)  (qf — i)

together with the dispersion relation, Eq. (8.10).
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8.1.3 Electron-phonon coupling and scattering rate

The electron-phonon interaction through the deformation is given by H,, =
E.divu, where FE, is the deformation-potential coupling constant. The Hamil-
tonian can be written as

He, = Z M/\(qH,n, Z)(CL;FH + aq”)exp(iq” . I’H), (8.12)

qH 5T
A=d,f

where r|| is the coordinate vector in the z-y plane and the functions M, and M;
describe the intensity of the electron interactions with the dilatational and flexural

waves, and are given by

hEZ agtn
My (qp,n, 2) = Fypn W(Cf q”)(ql .+ q”) sin(—=) cos (q.n.2), (8.13)
)
hE? agen
My (q),n,2) = Fin m(q — qi (g7, + gj) cos(—= o) sin(@nz), (8.14)

where A is the area of the slaby p.is the mass density, and Fy, (Fy,) is the
the normalization constants of the n-th eigenmode for the dilatational (flexural)
waves. Although the fluctuation of the dot (due to strain etc.) may affect the
spin-orbit and electron-phonon coupling, we, for simplicity, neglect the effect on
the scattering rate in this work.

We calculate the spin relaxation rates between the two lowest (spin mixing)
states from the Fermi golden rule [88]

r— 2; > ML |(f [ 1] i) ]* (N, + 1)8(AE — hwn g, ), (8.15)

qj,n
A=d,f
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where the energy AE (= E; — Ey) is the energy difference between the first excited
|i) and ground |f) states. The energy spectrum for the case of the lateral length
lp = 30 nm is also shown in Fig. 8.2. N, represents the Bose distribution of the
phonon at temperature T'. For the sake of simplicity, we consider the quantum
dot to be located at z = 0 so that the function M, for flexural waves plays no

role.

8.2 Results and discussion

Let us first focus on the dependence of the relaxation rates on the magnetic
field B for lateral length [y = 304nm. Unlike the situation in bulk system, an
enhanced spin relaxation rate-occurs as shown in Fig. 8.3(a) (arrow 1 in the
upper inset). This phenomenon originates from the van Hove singularity that
corresponds to a minimum in the dispersionrelation wy, 4, for finite ¢. We further
plot the phonon group velocity (Owy,q/0q)) as a function of ¢ around the van
Hove singularity as shown in Fig. 8.3(b). There are three modes contributing
to the relaxation rate. In particular, a crossover from positive to negative group
velocity is observed for one mode. Because of the zero phonon group velocity, the
rate behaves sharply at that magnetic field. However in a real system the van Hove
singularity would be cut off or broadened because of the finite phonon lifetime.
Contrary to the enhanced rate, we find a suppression of the spin relaxation rate
(arrow 2) at small magnetic field (also seen in the lower inset). This comes from a
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vanishing divergence of the displacement field u. As can be seen from Eq. (8.13)
in detail, the deformation potential disappears at the condition of ¢ = ¢; (Fig.
8.3(c)), which causes a zero spin relaxation rate. Note that our results for the van
Hove singularity and the disappearance of the deformation potential are consistent
with what was found in Ref. [87]. Although the phonon model in our work is the

same, the dot part is different.

The relaxation rate for larger quantum dots exhibits a qualitatively different
behavior. As shown in Fig. 8.4, two van Hove singularities appear when varying
the magnetic field. Besides, one also finds two suppressions of the relaxation rate
(arrow) near the singularities. Weshave analyzed the energy spacing between the
two lowest states in the inset of Fig. 8:4. ‘For:small lateral size, the gap increases
monotonically (dashed line). On the eontrary, energy spacing for larger quantum
dots shows a quite different feature.-The value initially increases as B increases.
However, after it reaches a maximum point, the energy spacing decreases with
the increasing of the magnetic field B: although the Zeeman splitting increases
with increasing magnetic field, the spin-orbit interaction, on the contrary, tends to
reduce the energy spacing between the two lowest levels. When the magnetic field
is large enough, the spin-orbit effect overwhelms the Zeeman term and results in
a decreasing tendency. Therefore, if the magnetic field is increased high enough,
the dashed line (small quantum dot) also shows similar behavior. This agrees
well with the findings in Ref. [63]. From the inset, one recognizes that if the
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energy spacing exactly matches the specific phonon energy (dotted line), the van
Hove singularity will appear. For the case of a large lateral length, there are two
van Hove singularities and two suppressions of the relaxation rate (dashed-dotted

line).

In addition to the size of the dot that affects the spin relaxation rate, the
dependence of the relaxation rates on the magnetic field B for different temper-
atures is shown in Fig. 8.5. For higher temperature, the rate is larger than that
for lower temperature. This is because as the temperature increases, the phonon

distribution N,

g, becomes larger. This enhances the electron-phonon scattering

and leads to a larger transition probability between the two levels.

Figure 8.6 shows the specific eénergy spacings: where rates are enhanced and
suppressed as a function of the width. For the case'of small widths, the enhanced
rates (black mark) and suppressed rates (red mark) can be clearly distinguished,
and their corresponding energy spacings are relative large. With the increasing of
the width, the energy spacing between the enhanced and suppressed rates decrease
monotonically. One can expect that if the width increases further, the system will
approach the bulk system. This means that the van Hove singularity and the

suppressed rate will be inhibited and eventually disappear.

If one varies the vertical position of the dot, the rate will change due to
different contributions from the dilatational and flexural waves. Accordingly, the
van Hove singularities resulting from flexural waves will also be altered. For
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example, the ratio of dilatational to flexural wave’s contribution is about 2.8:1
under the condition of B =1 T and vertical position z = 25 nm. However, if AE
also changes, the contributions from two waves will also change. This is because
the parameters (q|,¢,5,q:,,) of dilatational and flexural waves independently satisfy
the dispersion relations. On the other hand, comparing the bulk phonons with
the confined ones, the phonon-induced rates are roughly similar when varying the
magnetic field. However, there are two peculiar characteristics for the confined
phonons. One feature is the van Hove singularity which results from a zero group
velocity such that an enhanced spin relaxation rate can occur. The second feature
is a vanishing divergence of the displacement field. This will cause a suppression
of spin relaxation rate, which is an advantage if'‘considering the quantum dot spin

as a possible quantum bit candidate.

79



(b)

FENE-

Figure 8.1: (a) Schematic view of single quantum dot embedded in the semicon-

ductor slab with a width of a. (b) The side view shows a quantum dot is located

at z = 0.
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Figure 8.2: Energy spectrum for GaAs quantum dot versus the applied magnetic
field for the lateral length [y = 30 nm. The spin-orbit couplings Az and Ap are

set equal to 5 x 10713 and 16 x 1072 eV m, respectively.
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Figure 8.3: (a) Spin relaxation rate as a function of magnetic field for the lateral
length [ = 30 nm, the width ¢ = 130 nm, and temperature 7=100 mK. The
spin-orbit couplings Az and \p are set equal to 5 x 10713 and 16 x 10712 eV m,
respectively. The insets further show the enlarged regions of arrow 1 (upper inset)
and arrow 2 (lower inset). (b) Three phonon group velocities vs the magnetic field.

(c) The values g and ¢; vs the magnetic field.
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Figure 8.4: Spin relaxation rate for the lateral length [y = 60 nm, width a = 130
nm, and temperature T'=100 mK. The spin-orbit couplings Az and Ap are set equal
to 5 x 10713 and 16 x 107'2 eV m, respectively. Two enhanced and suppressed
rates (arrow) occur. The inset shows the energy spacing AF vs the magnetic field
B for different lateral lengths: Iy = 30 nm (dashed line) and ly = 60 nm (solid
line). Two horizontal lines in the inset indicate the corresponding energies for the
van Hove singularity (dotted line) and the suppression of the rate (dashed-dotted

line).
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Figure 8.5: Spin relaxation rates for different temperatures: 7T=10 mK (black

line) and T=1 K (red line). The inset shows the rates in the low field regime.
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Figure 8.6: Dependence of the specific energy spacings AE for the enhanced (black
mark) and suppressed (red mark) rates on the width a. The lateral length of the
quantum dot is 30 nm. The Rashba constant is Az = 5 x 107!2 eVm and the

Dresselhaus constant is A\p = 16 x 107'2 eVm.
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CHAPTER 9

ELECTRON TRANSPORT THROUGH A DOUBLED
QUANTUM DOT SYSTEM WITH SINGLE PHONON

MODE

Recently, the transport properties of quantum dots show a range of interesting
and important phenomena including the Coulomb blockade, Kondo resonance and
interference effect [89, 90, 91, 92, 93;94].“Conventionally, laterally defined double
quantum dots are fabricated from/ a two-dimensional electron gas (2DEG) in a
GaAs/AlGaAs heterostructure.. By using gate technology, a quantum dot can
be defined in a small region. A hasic quantunr device, such as a single-electron
transistor, is composed of two leads and one or more quantum dots. The material
of the device can be a normal metal, superconductor, ferromagnetic material, or
semiconductor. The behavior of the transport is sensitive to the properties of the
quantum dots.

Many works have been devoted to understanding the processes that may cause
the nonlinear transport of quantum dot. One of the processes is related to the
phonon-assisted inelastic tunneling. The nonlinear electron transport, due to the
coupling between the quantum dot and the phonon degrees of freedom, through
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a double quantum dot device at low temperature was observed recently [69]. It
is found that this phonon-assisted inelastic tunneling is related to the emission of
phonon. Theoretical analysis shows that the interference effect of electron-phonon

interaction governs the intradot electron tunneling process [70].

Due to the interplay between the electrical and mechanical degrees of freedom,
the single-electron tunneling through the quantum dots is influenced under the en-
vironment of nanomechanical vibration. In contrast to the bulk material phonons
which can dephase electronic quantum states, phonons of nanomechanical vibra-
tion are no longer a mere source of dissipation. With the help of nanotechnologies,
controlling phonon properties becemnies more possible such as free-standing struc-
tures. The phonon spectrum in the structures is split into discrete subbands, and
quantization effects contribute greatlyto the thermal conductivity [71, 72, 73]. Be-
cause of boundary conditions for'¥ibration-modes, the phonon-dispersion shows
some singular properties such as the van Hove singularities, different from that
in the bulk material. A 2DEG quantum dot embedded in a suspended phonon
cavity has been exhibited in recent experimental works [74, 75]. The excitation of
a localized phonon mode confined in the cavity completely suppresses the single
electron tunneling in the transport spectrum. This has opened possible avenues to
investigate the ultimate limit of single electrons interacting with individual phonon
modes. Since the artificial mode spectrum of the phonon cavity is feasible, the
phonon field will practicably control and operate the transport of quantum device.
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In this chapter we perform the analysis for a double quantum dot embedded
in a single-phonon environment. The electrons in the dots interact with single
phonon mode. The transport behavior of one dot influenced through Coulomb
or phonon field is studied as an excess electron stays in the other dot. Further-
more, a positive- or negative-shift in conductance is also discussed by varying the

separation between two dots.

9.1 Model

We consider a double quantum dot couples with a single-phonon mode as
shown in Fig. 9.1. Each dot is connected with two normal conducting leads. Two
quantum dots are separated by:d. With split gate:technology, the tunnel coupling
between two dots can be neglected. This means that the upper and lower half
parts of the device form two independent circuits. The energy levels of Dot «
are controlled by gate voltages, where a = 1,2 indicate the upper and lower
quantum dots. Because two quantum dots are embedded into a single-phonon
environment, the electrons in the double-dot will interact with single phonon
mode corresponding to the coupling strength \,. To study the transport in the
lower half part of this device, we consider the transport of Dot 1 by tuning the
occupation of electron on the Dot 2. The system Hamiltonian under consideration

i1s written as

H=H, s+ Hj +H.+ Hp+ Hy, + Hep. (9.1)

88



The first term describes the electron reservoir contributions:

H,.o = Z ekchk, (9.2)

keL.R

where ¢(cl) is the annihilation(creation) operator with wavevector k in the left
(L) and right (R) leads. The leads are independent and connected with Dot 1.
The second and third terms describe the dot contributions and the Coulomb

interaction between the electrons located in different dots:

Hyor + He = Y eadlydo + Ud}dydidy, (9.3)

a=1,2

where d,(d}) is the annihilation(creation) operator in Dot a (= 1,2), respec-
tively. For simplicity, we consider that.each quantum dot has a single particle
energy level €, in the Coulomb:blockade régime, The strength U depends on the
distance between the centers of the dots.-Note that;the intradot Coulomb interac-
tion is assumed to be much larger than the souree:(drain) voltage and the interdot
Coulomb interaction. This would make the contribution of excited state negligible
within our range of parameters. We thus simply consider the transport properties

of single level [95, 96]. The electron-leads coupling can be written as

Hy = Y (Vicldy + Hec.), (9.4)

keL,R

with the tunneling matrix elements Vj. The last two terms describe the phonon

reservoir contribution and the electron-phonon coupling:

Hyp + Hep = woala+ Y~ dida(Maa + H.e.), (9.5)

a=1,2
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where wy is the phonon frequency, )\, is the coupling strength and a(a') denotes
the phonon annihilation(creation) operator.

In order to study the electric current, the dot electron Green’s functions are
calculated. To diagonalize the Hamiltonian, a unitary transformation e®*He™* is

performed, where

;
S =exp|— Z doda (Aaa —h.c.)| . (9.6)

w
a=12 X0

After the transformation, the new Hamiltonian becomes

H = ) anchat Y edida+ Adididid,

keL,R a=1,2
+ Z chzdl + h.c. + wea'a, (9.7)
keL,R

where the states in the dots and the Coulomb energy are renormalized to €, =
€a — [ Aal® Jwo and A = U — (XpME AL Ag) /o, respectively. In the weak coupling
limit, we neglect the effective phonon=meédiated coupling between dots and leads.

Following the standard method [97]; the retarded Green’s function of Dot 1

can be decoupled as

Por 1 = Gho 1 (1) (X (1) XT(0)),, (9-8)

where G, () is the Green’s function for the dressed electron in the Dot 1 and
(X(t)X1(0) >ph is the phonon correlation function due to the electron-phonon inter-

action. <X(t)XT(O)>p can be written as e=®® where ®(t) = (|\]* /w2)[Npn(1 —

h
e™ot) + (Npp + 1)(1 — e~™0!)] with the Bose distribution of phonon N,;. With

the help of the equation-of-motion approach, we neglect the contribution of the
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higher-order Green functions and subsequently the retarded Green’s function for

the dressed electron under the Fourier transform can be evaluated as

. 1 —(ng) n (n2)

where (ny) is the number of the electrons in the Dot 2 and 3" is the retarded
self-energy given by >, ; » Vi'Vi/(w — € + in) with n = 07. In this work we
interest in the Coulomb blockade regime. The lowest order truncation is used for
the approach. Under this approximation, no Kondo problem is considered here.
For simplicity, we assume that the temperature is at zero temperature because
the temperature of the system is low compared to the phonon frequency. The

Green’s function can be written as

FSREE 10
i 1 2
I = % Al
Dot 1(w) - l w2l [w—e’l—lwo—z’“
(n2)
1
+w—e/1—A—lw0—E7" ’ (9.10)

Now let us analyze the relationship between the two couplings A; and As for a
phonon mode with wave vector . For simplicity, it is assumed that the electron
densities in the dots have the same profiles and distribute sharply around the dot
centers. Based on this assumption of identical profile, but spatially shifted electron
densities in the two dots, one can establish the relation between the two couplings
as, Ay = A; exp[iqd], where d is the vector connecting the centers of Dot 1 and
Dot 2 [70, 98]. In the following, the corresponding parameters €, = e; — |A\1|* /wo,
€y = €3 — |\1|* Jwo, and A = U — 2|\;|* cos qd/wy are considered.
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By employing Keldysh’s Green function method [99, 100], the electron current
flowing through Dot 1 can be calculated in term of the Green’s functions of Dot

1 as:

T =~ [ dwflw— )~ falo — )
FL(W)FR(LU)

I'p(w) + Tr(w) Im[Gp; 1 (W) (9.11)

where fr(w — p;) and fr(w — pp) are the Fermi distribution function for the
left lead 1 and right lead 1, respectively. Because a bias (V') is applied on two
leads, the chemical potential difference can be determined by p; — pup = eV.
Where I';, (I'g) denotes the tramsition rate from Dot 1 to the left lead (right lead),
and I'1(T'r) = 27320 p) ViVad(w =€) In this work, we neglect the energy
dependence of the transition rate im.the wide-band limit and the symmetrical
case is considered, i.e. I'y = I'r = 0.1 wg. From a recent experiment with a
free-standing phonon cavity, the typical phonon cavity energy is 100 peV [75, 98].
We use the phonon frequency as an energy scale in the following. On the other
hand, based on recent experimental observations about single-electron tunneling
[54, 101, 102], the variation in electron numbers of a quantum dot (Dot 2) can
easily be controlled and achieved by the associated technologies. For the sake of
simplicity we would choose the condition (¢; = 0) and focus on two situations:
(ns) = 0 (an empty Dot 2) and (ne) = 1 (a singly occupied Dot 2).
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9.2 Results and discussion

Now let us consider two quantum dots which are separated in a short dis-
tance. This implies that the Coulomb interaction is larger than —2 |A;|* cos qd /wg.
Therefore, the phonon effect is negligible in this situation. The dotted curve in Fig.
9.2 shows the conductance of Dot 1 if no electron tunnels into Dot 2 ({ng) = 0).
The main peak is due to resonant tunneling, while the weaker peaks show the
phonon sidebands. The solid curve in Fig. 9.2 shows the conductance of Dot 1 if
an excess electron stays in the Dot 2 ((ns) = 1) . The conductance of Dot 1 shows
a positive shift U. Comparing the behavior of the shifts, we can expect that the

energy level of Dot 1 is raised by the,Coulomb interaction as shown in the inset.

If two quantum dots are separated m a long distance, the contribution of the
Coulomb field will become vety small.“In such case, phonon field plays a bridge
for the two quantum dots. Here‘we set cosqd to 1, for example. As can be seen
in Fig. 9.3, the conductance of Dot 1 shows a negative shift of —2 |\;|* /wo. This
indicates that the effect of electron-phonon interaction lowers the level of Dot 1
(inset).

Next we discuss the mechanisms of the shifts in this device. Two single-
electron transistors form two independent circuits. As an excess electron stays in
one dot, the other circuit will be drastically affected. If one electron tunnels in the
other dot, it will feel that there are two fields to influence the transport. One is the

Coulomb field, which is due to electron-electron interaction. The parameters of
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material and separation between two dots determine the strength. Because of the
Coulomb repulsion, the energy level of Dot 1 can be raised like the effect of the
Coulomb blockade. This direct interaction causes a positive-shift conductance.
Another is the phonon field which causes electron-phonon interaction. As two
electrons are coupled together to a single phonon, one can expect that one electron
does not directly interact with the other electron, but it will affect indirectly the
other electron by phonon field. This indirect interaction causes an equivalent
attractive interaction between the two electrons, and corresponds to the reduction
of the energy level of Dot 1 (in the condition of cosqd = 1). It is also clear
that the effective Coulomb strength A is negative in this case. This negative
Coulomb interaction for electronsiin the quantum dots leads to a negative-shift in

conductance.

For long separation regime, we analyze the separation dependence on conduc-
tance. For simplicity, we assume that the phase factor qd is set to 2nm for initial
separation of two dots, where n is a fixed integer. If the separation increases,
the corresponding phase factor is equal to a real number (2nw + X). Figure 9.4
illustrates Fermi energy at the resonant peak varies with the phase factor x for dif-
ferent electron occupations of Dot 2. As the separation increases, the conductance
displays a periodic behavior. We divide two regions by the value of Fermi energy
at resonant peak without an excess electron in the Dot 2 (dotted line). For upper
half part, the conductance shows different degrees of positive shifts, similar to the
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case of short separation regime. This results from the phase factor qd so that the
effective Coulomb potential is positive. In particular, if the phase factor occurs at
(2m + 1) m with integer m, the conductances show the maximum positive shifts.
Oppositely, for lower half part, the conductances show different degrees of nega-
tive shifts. As previously mentioned, two electrons in the quantum dots attract
each other by phonon field. Of course, the minimum points will appear at the
positions as qd = 2mm. One can note that there are some intersections of solid
and dotted curves. At these points, the conductance (solid curve) behaves like
that of (ny) = 0. This indicates that the occupation of an excess electron in the

Dot 2 plays no role as the phase factor is equal to (2m + 1) w/2.

A few remarks about the sdifferences between: our model and recent experi-
ments [101] on the transport of one.det affected by the operation of the other dot
should be emphasized here. In these experiments, the double quantum dots have
no interdot tunneling, but are coupled by a floating interdot capacitor. Because
the capacitor plate enhances the Coulomb interaction, a single excess electron in
one dot can influence the transport of the other dot. However, in our model,
double quantum dots are coupled by two fields: Coulomb field and phonon field.
Second, a particular relationship between two fields is constructed in our work.
In short separation regime, the Coulomb repulsion dominates. Oppositely, the
phonon field determines the sign of the effective Coulomb strength, which reflects
the positive or negative shift in conductance. This is different from the above
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situation. Furthermore, the significant behavior manifested in the transport prop-
erties under the competition between two fields might be useful in the study of the
transport behavior of the multi-dot system. The degree of influence on transport
depends on the electron numbers and separations of the dots. For example, in long
separation regime, the transport of one dot is able to be affected by the electron
numbers of the other dots. By increasing the electron numbers of the other dots,
the conductance of one dot can show a shift behavior such that the transport
through this dot is suppressed. Of course, if the levels of the other dots are no
longer occupied, this circuit will be no change. In fact, we can simultaneously
control the transports of different dots through proper operations of the electron
numbers of the other dots. Therefore, these findings may be useful in the research

field of logic circuits by using the-Coulomb-or phonon field.
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Figure 9.1: Schematic view of'double-quantim dot embedded in a single phonon
environment. Two dots are connéeted.with-the leads respectively. The separation
between two quantum dots is d and the interdot tunneling is forbidden with split

gate technology.
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Figure 9.2: Short separation regime (A a U): Linear conductance of Dot 1 (plot-
ted in units of €2 /h) as a function of Fermi energy. The solid (dotted) curve shows
the conductance if an (no) excess electron stays in the Dot 2, corresponding to

the enhancement of resonant level (inset). The strength U is set to 5 wy.
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Figure 9.3: Long separation regime (A ~ —2 |\;|* /wo): Linear conductance of dot
1 (plotted in units of €2 /h) as a function of Fermi energy. The solid (dotted) curve
shows the conductance if an (no) excess electron stays in the Dot 2, corresponding

to the reduction of resonant level (inset). The coupling )\ is set to 0.5 wy.
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Figure 9.4: Fermi energy at the resonant peak as a function of phase factor for
long separation regime. The solid (dotted) curve shows the conductance if an (no)

excess electron stays in the Dot 2.
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CHAPTER 10

ELECTRON TRANSPORT THROUGH A DRIVEN

THREE-LEVEL DOUBLE DOT

Due to the zero dimensionality and quantized energy levels, transport proper-
ties of the electrons in quantum dots have been studied extensively [54, 53]. With
the advances of nanotechnologies, quantum dots can be laterally fabricated from
a two-dimensional electron gas in a heterestructure. With the combination of the
controlling gates, the leads and quantum dots can form a quantum device. The
electronic and optical properties are sensitive to the characteristics of the quan-
tum dots. Since the flexible characteristics are controllable, the study of external

influences on quantum dots has become an important issue. [76, 77].

Recently, quantum-dot systems in the presence of time-varying external fields
manifest some interesting effects ranging from photon-assisted tunneling [78] to
electron pumping [79]. In a recent experiment, the transport spectroscopy has
been measured in coupled double quantum dots under microwave fields [78]. The
photon-assisted resonances are found due to a modulated gate voltage. The phe-

nomenon involves the emission or absorption of a microwave photon.

On the theoretical side, electron tunneling through quantum dots under driving
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fields has been intensively addressed [100, 103, 104, 105, 106]. Many studies focus
on two-level system in single or double quantum dot. The transport property
is basically related to the energy difference between two levels. In the present
work we study the electron tunneling through a three-level system using the mas-
ter equation method. By applying an external field on the device, a significant
behavior is found in the current spectrum. Different from two-level system, the
transport depends on the relation among three levels and external field. We dis-

cuss the behavior of the current by varying some related parameters.

10.1 Model

We consider that a three-level system is defined in a double quantum dot
device as shown in Fig. 10.L . Becatuise the magnitude of energy levels in the
quantum dots can be modulated swith _the help of nanotechnologies, the excited
states of the left dot are designed to be much lager than the first excited state of
the right dot, i.e., the size of the left dot is smaller. A continuous, near-resonant
field irradiates on the device and gives rise to the contribution of the first excited
state in the right dot. We reasonably concentrate on the transition between two
states in the right dot and neglect the excitation in the left dot. For the tunneling
between two dots, the electron is allowed to tunnel between two ground states, but
no tunneling between two excited states is allowed. This means that we consider
only the ground state in the left dot, the ground state and first excited state in
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the right dot in our model. Furthermore, we restrict that only one additional
electron is allowed on either the left or right dot in the Coulomb blockade regime
[107, 108]. Under consideration, the effective Hilbert space of the electronic system
can be defined by four states: empty, left, right, and excited states, corresponding
to |0) = |Np,Ng,Ng), |L) = |[Np +1,Ng,Ng), |R) = |Np,Ng+1,Ng), and

|E) = |Np, Ng, Ng + 1), respectively. The total Hamiltonian of the system is
H=H, s+ Hj + Hy + Hp + H,),. (10.1)
The first term describes the electron reservoir contributions:
H,.. = Z 5£C,chk + Z 5de,1dk, (10.2)
KeL keR
where ¢(cl) is the annihilation (creation) operator, in the left lead (L) with wave

vector k and dy(d}) is the annihilation-(creation) 6perator for the right lead (R).

The term Hy,; describes the contributions of three states in the double dot:
Hyo = epny, + ernr + €png, (10.3)

where the energy levels €, e, and g are corresponding to the ground state in
the left dot, the ground state and first excited state in the right dot, respectively.

The operators of three states are given by np = |L) (L], ag = |R) (R|, and

~

ng = |F) (E|. The dot-lead coupling can be written as

Hy =Y (Vels, + Vifldisn + ViPdlse + He), (10.4)
k
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with the operators §;, = |0) (L], $g = |0) (R|, and $g = |0) (E|, and the tunneling
matrix elements V,* for o (= L, R, and E). The term Hr describes the tunneling

between the left dot and the right dot,

A A

Hyp =T.(P+ P"), (10.5)

where the operator P (P1) is defined by |L) (R| (|R) (L|) and the tunnel matrix
element 7, determines the strength of the tunneling process. In the dipole and
rotating-wave approximations, the last term H,., which describes the interaction

between electron and external field in the right dot can be expressed as,

Hep = — (@i Q). (10.6)

where « is the Rabi frequency; wiis the field frequency, and the operator Q (QT)
denotes |E) (R| (|R) (E|). The Rabi frequency relates to the field strength and
the electric dipole moment for the transition'|R) < |E) [109, 110].

An analytical expression for the stationary current can be solved from the mas-
ter equation [106]. One can obtain an equation of motion for the time-dependent
expectation values of the operators ny, ng, ng, p, Q, and S where S denotes
|E) (L|. After the Laplace transformation (e.g., ny(z) = [;° dte™**(i)), these

corresponding equations can be written as

m(s) = = {P() — P2} 4 {1z~ ()

—ng(z) —nge(2)},
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nr(z) = z%{P(z) — PT(z)} + ZQ—Z{Q(Z’ + iw)
~Q'(: — i)}~ Lun(z),

np(2) = ~is{Q(e + ) - Q'(= — iw)} - F—ZRnE(z),

I'r

P() = iz tnle) = nw()} - 5o tRs P()
. Y t
—st (Z),
Qz) = —zm{n];(z —iw) —ngr(z —iw)}
. T, I'n
= ZARS<Z) - iARQ(z)’
. T . Y .
S(z) = —zmQ(z) + szT(z — W)
LFr
o= z’AL)S(z)’ (107

where the parameters are Aec = ey = ég, AL ='cp — e, and AR = ¢g — e,
respectively. The tunneling rates between the reservoirs and dots are assumed to
be independent of energy, I', = 27 ), Ve 6(eq — eé/R), with « (= L, R, and
E). We can solve the equation (10.7) algebraically and subsequently obtain the

stationary current (in units of e) from the tunneling between two dots

[=iT, {P . PT} . (10.8)

t—00

To simplify the parameters of the system, the tunneling rates are assumed to be
identical (I', = I'r = I'g). In this work the tunneling rate (I') and the charging
energy (¢g — €g) in the right dot are set to be 8 ueV and 1 meV respectively.
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10.2 Results and discussion

We first consider the field frequency is in resonance (Aw = w— AR = 0). The

current can be written as

AT2T

! B AR 17+ 77, A, ALY (10.9)

where f(v, Ae, AL) is related to the three levels and external field. This function
f is directly dependent of the Rabi frequency. For a two-level system (v = 0), the

current is

AT2T

T 1272 + 4(Ae)2 12 (10.10)

and shows a maximum response at Aey= ). (see Fig. 10.2) [104]. However, as a
resonant field is applied to thesdevicer (5 = 51'), two symmetric peaks obviously
separate and occur in the curtent spectrum. Compared with the case of v = 0,
the maximum current do not locate ‘at the point (Ae = 0). Further, we analyze
the components of the current in this device. For the right dot, the ground and
first excited states can contribute the transport as shown in Fig. 10.1. In the
stationary case, Eq. (10.8) is equivalent to the contributions of two states in the

right dot. The current can be re-written as

I =1Ip+Ig, (10.11)
IR :F'TLR, (1012)

106



where nr and ng is the populations in the right dot. From the inset, we find that
electron tunneling through two channels behaves similarly and equally contributes
the current.

In order to study the influence of the external field on the transport, in Fig.
10.3 we illustrate the curve of the Rabi-frequency-dependent current. For sim-

plicity, the conditions are chosen to be Ae = 0 and Aw = 0. The current can be

written as
AT2T
- c 10.14
1272 + T2 + f(v)’ (10.14)
2 2 2
10 gt e (10.15)

s
If the Rabi frequency 7 is zero, the¢urrent i§ 472T" /(1272 4 T'?) (red dotted line).
As the frequency v increases, a crossover: from. enhanced behavior to suppressed
behavior in the transport spec¢trum 'is“found. In addition, the current broadens
with increasing the tunneling coupling (lowerinset). This is due to the competition
among the Rabi frequency +, tunneling coupling 7., and tunneling rate I' (see
Eq. (10.15)). For small Rabi frequency regime, a negative function (f < 0)
causes an enhancement of the current. Two channels effectively contribute to
the transport (upper inset). On the contrary, a large Rabi frequency inhibits the
electron tunneling out of the right dot, thus, leading to a suppressed current.

In above results, a symmetric behavior manifests in the case of resonant field.
We also find an interesting behavior by detuning the field frequency. In Fig.
10.4, the current shows two asymmetric peaks. This is similar to the result of Ref.
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[111]. If the detuning is increased, the main (larger) peak will be close to the value
Ae = 0 while another one is far away from the main peak and deeply suppressed.
This reflects the crossover from a three-level system to a two-level one. As can
be seen in Fig. 10.4, two components I (red dashed curve) and Iz (blue dotted
curve) contribute to the current, but the degrees of the contributions on the peaks
are different. The main and smaller peaks result from the large contributions of the
currents Ir and [ respectively. One can expect that the external field establishes
a particular relationship among the states. The distributions of populations are
sensitive to the related parameters in the double dot system. Under the condition
Aw # 0, compared to the symmetric current (Fig. 10.2), the electron transfer
among these states shows an unbalanced behavior such that two channels in the

right dot unequally contribute:the peaks.

Figure 10.5 shows the dependenge of the frequency on current for Ae = 0. A
symmetric and anti-resonant behavior appears in the transport spectrum. When
the Rabi frequency increases, the current is greatly suppressed and a maximum
response locates at the resonant frequency (Aw = 0). For the situation that the
frequency of external field is far away from the resonant one, the current ap-
proaches to the situation without the Rabi frequency (red doted line), i.e. the
maximum value of the current in the two-level system. We further plot the pop-
ulations for small and large Rabi frequencies (inset). It is clearly shown that the
populations decrease with increasing the (Rabi) frequency. According to the phe-
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nomenon, the destructive electron transfer results in a suppressed current under
the special condition Ae = 0.

However, if we detune the energy difference between two ground states in
two dots, the current behaves differently. Figure 10.6 shows an asymmetric and
enhanced current occurs. The location of maximum current is no longer fixed due
to the unbalanced interplay between these states and driving field. As can be
seen in the inset of Fig. 10.6, the populations are enhanced with increasing the
Rabi frequency. Comparing with the result as shown in Fig. 10.5, this appearance

corresponds to the result of constructive electron transfer.
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Figure 10.1: Schematic view of a three-level gystem which consists of the ground
state in the left dot, the ground state and first excited state in the right dot in a
double quantum dot device. An external field irradiates on the device and leads

to the transition between two states in the right dot.
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Figure 10.2: Current as a function of energy difference Ae between two ground

states for different Rabi frequencies. The inset shows the currents Iy (dashed

curve) and Iy (dotted curve) for v = 5T
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Figure 10.3: Dependence of the current on'Rabi frequency for the tunneling cou-
pling 7. = I', corresponding to the populations nr and ng (upper inset). The
red dotted line marks the maximum current for two-level system. The lower inset

shows the currents for different tunneling couplings. The conditions are fixed to

be Ae =0 and Aw = 0.
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Figure 10.4: Current as a function of energy difference Ac for fixed non-resonant
field (Aw = 5 T') and Rabi frequency (v = 5T'). The total current I (black curve)
is composed of two channels in the right dot: the electron tunneling out through

the ground level Iy (red dashed curve) and first excited level Ir (blue dotted

curve).
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Figure 10.5: Current as a function of frequency difference Aw (= w — AR) for
different Rabi frequencies and for fixed Ae = 0. The inset shows the populations

ng and ng for Rabi frequencies v = 2I" and v = 10T".
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CHAPTER 11

SUMMARY AND FUTURE WORK

In this part we have studied the phonon-induced spin relaxation in a two-
dimensional quantum dot embedded inside a semiconductor slab. An enhanced
relaxation rate is found due to the phonon van Hove singularities. Oppositely,
it is found that at certain magnetic fields one enters a regime with quite the
opposite characteristics, where a vanishing divergence of the displacement causes a
suppression of spin relaxation rates.«For larger dots there are multiple singularities
and suppressions in the electron-phonon rates:due to the interplay between spin-
orbit coupling and Zeeman interaction.” Furthermore, a crossover from confined
to bulk-like systems is obtained by warying the width of the slab.

In the study on quantum transport, we have studied the electron transport
through a quantum dot in double quantum dots embedded in a single phonon
environment. By controlling the electron number in a quantum dot, the transport
behavior of the other quantum dot is affected through Coulomb or phonon field.
In long separation regime, the conductance shows a positive shift because the
Coulomb interaction dominates in this case. On the other hand, the transport
behavior drastically depends on the separation between two dots in long separation
regime. In particular, crossover from positive to negative shift in conductance is
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observed due to the phase factor.

In addition, we have studied the electron tunneling through a three-level sys-
tem in an asymmetric double quantum dot device irradiated by an external field.
The external field plays an important bridge between the two-level and the three-
level systems. When a resonant field irradiates on the device, the current shows
two symmetric peaks. In contrast, two asymmetric peaks display for the case of
non-resonant field. By analyzing the contributions of the states in the right dot,
we further find that the degrees of the contributions on the peaks are different. On
the other hand, we also study the frequency-dependent current by modulating the
energy difference between the ground states, It is clearly shown that a suppressed
(enhanced) behavior occurs due-to the déstructive (constructive) electron transfer
among the states. This allows:us to control the transport of the device by tuning

some related parameters.

Based on the results, some works can be proceeded continuously in the fu-
ture: spin relaxation in different structures. In chapter 5, we examine the spin
relaxation rate in single quantum dot. In general, a quantum device can be com-
posed of one or more quantum dots. According to the recent studies, different
arrangements show some different physical properties. It is thus interesting to
study the spin relaxation in multi-dot systems. On the other hand, geometrical
confinement strongly alters the properties of the phonon system. Apart from the
semiconductor slab, we can consider single or more quantum dots embedded in
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different structures. For example, a quantum wire with quantum dots has been
achieved in the recent works [112]. Thus the effect of different quantum structures

on the spin relaxation is worth studying.
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