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Abstract

The 3-stage network was first proposed by Clos and is one of the most basic
multistage interconnecting network. Clos (1953) showed that the number of
middle crossbar required for strictly nonblocking is 2n — 1, where n is the
number of inlets of an input crossbar. Benes (1965) constructed an example
to show that using packing routing strategy can make the number of middle
crossbar required lower. This has remained the only example of wide-sense
non-blocking 3-stage Clos network -whiéh.is not strictly nonblocking.

In this thesis, we showed thatsthe number of middle crossbar required
for wide-sense nonblocking under several routing strategies: save the unused,
packing, minimum index,=¢yclic static, and cyclic dynamic, which has been
studied in the literature issthe sameéras required for strictly nonblocking and
extended them to asymmetrie 3-stage Closmetwork. In particular, we prove
the same conclusion for the multi-log; N network and extend to a general

class of network.
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Chapter 1

Introduction

The need of a switching network first came from the need to interconnect
pairs of telephones. Later, it was reinvented for parallel computer to intercon-
nect a set of processors with a set of memories. Currently, it is intended for
many other applications, data_transmission, conference calls, satellite com-
munication .... One frequently diseussed topic in switching networks is its
nonblocking property. There are different levels of nonblockingness: strictly
nonblocking, wide-sense nonblocking. and rearrangeable nonblocking. We
will discuss more detail in“SectiontrirBecause wide-sense nonblocking net-
works use an algorithm to route requests,the cost of it is expected to be less
than strictly nonblocking networks: In"these thesis, we study several routing
strategies which have been studied in the literature [9] and gave an amazing
result that the cost of these networks are the same with strictly nonblocking

networks in 3-stage Clos network and multi-log N network.

1.1 Preliminaries

The basic components of switching network are crossbar switches, or just
crossbars, and links which connect crossbars. A crossbar with n inlets and
m outlets, denoted by X,,,, is said of size n x m(See Figure 1.1(a)). (For
convenience, we draw a two side crossbar without exposing its internal wiring

(See Figure 1.1(b))). Inlets(outlets) on the same crossbar are called co-
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Figure 1.1: X,,,,

inlets(co-outlets). In a crossbar, each inlet and each outlet are connected by
a crosspoint. Therefore, there are m x n crosspoints in X,,,,,. Each crosspoint
determine some inlet a and some outlet b is connected or not. In general, we
assume one inlet(outlet) can onlyi¢énnect to only one outlet(inlet) and any
matching between the inletsiand the.outlets.is routable.

In an s-stage interconnection network,.the crossbars are lined up into s
columns, each called a stage. Crossbars in the same stage have the same size
and links exist only between érosshars-in adjacent stages(See Figure 1.2).
The inlets(outlets) of the firgt(last) stage are called inputs(outputs) of the

Figure 1.2: A 4-stage interconnection network

network.
Let X x Y to denote a network structure in which each crossbar of the



last stage of X has a link to each crossbar of the first stage of Y. The 3-
stage network X, X X, 0, X Xpnn, was first proposed by Clos(1953) and
is now known as the 3-stage Clos network. For convenience, we use the
notation C(ny,r1,m,ng,re) to denote Xy, m X Xpip X Xpn, and label the
crossbars of the first(second, third) stage from I, (M, Oy) to 1., (M, O,,).
See Figure 1.3(a). Then the number of inputs N; = nyr; and the number of
outputs Ny = nory. If ny = ny and ry = ry, then we call this 3-stage Clos

network symmetric and denoted by C(n,m, ). See Figure 1.3(b).

(a) C(2,4,38,2) (b) C(2,4,3)

Figure 1:3: (a) asymmetric (b) symmetric

A d-nary baseline network of order n_denocted by BLg(n) has d" inputs, d"
outputs and n stages, each stage contains d" ! d x d crossbars. The linking
pattern of BL4(n) can be obtained by n — 1 recurrent constructions(See
Figure 1.4(a)). Figure 1.4(b) gives the example of BLy(4).

Two networks are called equivalent if the crossbars can be labeled such
that the linking functions of the two networks become identical. There
are many networks equivalent to baseline network, see [3], such as banyan,
Omega, .... We call this class of network log, N network, where N = n4. In
this thesis, only the baseline architecture will be considered.

For convenience of analysis, we transform a log; N network to a digraph
by converting each link, including the inputs and the outputs, to a node,
while a crosspoint connecting two links in the network becomes an arc in the

digraph(See Figure 1.5). Nodes are arranged in n+1 stages labeled 0,1, ..., n

3
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Figure 1.6: Multi-log; N Network

from left to right. The nodes in stage 0 correspond to inputs and the nodes
in stage n correspond to outputs.

Lea(1990) introduced the.multi-log,; Nt.network composed of p copies of
log,; N network connected in parallel. In each.copy, there is exactly one link
between an arbitrary input and output:-See Figure 1.6.

A request is an (inputoutput)‘pair seeking connection. A set of requests
can be routed if there exists link-disjointpaths connecting them. A switching
network is said to be strictly nonblocking (SNB) if a request can always be
routed regardless how the previous requests are routed. It is said to be wide-
sense nonblocking (WSNB) with respect to a routing strategy A if every
request is routable under A. The restraint that no two paths in the original
network competes for the same link is translated to that no two paths in
the graph model competes for the same node. In this thesis we make the
common assumption that a crossbar is SNB.

For the 3-stage Clos network, a routing strategy deals with the choice of
a middle switch to route the request when many are available. We review

the five routing strategies proposed in the literature [9]:

(i) Save the unused (STU). Do not route through an empty middle crossbar

unless there is no choice.



(ii) Packing (P). Choose a busiest, yet available, middle crossbar.

(iii) Minimum index (MI). For each request, route in the order My, Ms,. . .,

until the first available one emerges.

(iv) Cyclic dynamic (CD). If M was used last, try My 1, My o, ..., until

the first available one emerges.

(v) Cyclic static (CS). If M was used last, try copy My, My,q, ..., until

the first available one emerges.

For multi-log; N network, we translate these routing strategies by replacing
“choosing a middle crossbar” to “choosing a copy (of log; N)”. Note that P
= STU. So WSNB under STU = WSNB under P since P is a choice of STU.
On the other hand, not WSNB under P implies not WSNB under STU.

1.2 Literature review and thesis overview

The notion of wide-sense-nénblocking”in switching networks is a fascinat-
ing idea to computer scientists! It suggests that the hardware can be re-
duced through intelligent software (routing) without affecting the nonblock-
ing property of the network. “The existence of a WSNB network was first
demonstrated by Benes(1965) for the symmetric 3-stage Clos network. He
proved that C'(n,m,2) is WSNB under packing if and only if m > |3n/2]
which is the only positive result. Lots of efforts have been spent to expand
this result, but without success.

Smith[14] proved that C(n,m,r) is not WSNB under P or MI if m <
|2n—2|. Du et al. [7] improved to [2n — 5"+ | which was extended to cover
CS in Hwang [9]. For P, Yang and Wang [18] gave a linear programming

formulation of the problem and ingeniously found the closed-from solution

m > [2n— e 1J where F},_; is the 2r —1%¢ Fibonacci number, as a necessary
-

condition for C'(n, m,r) to be WSNB. Actually, there was an earlier stronger
result of Du et al. reported in the 1998 look of Hwang [9] that m > 2n — 1



is necessary and sufficient for C'(n, m,r), n > 3, to be WSNB under P. This
result for r > 3 together with Benes result for r = 2 gave a definitive answer
to the WSNB property of C'(n, m, ) under P. Finally, Tsai, Wang and Hwang
[15] proved that for all n, there exists r large enough such that C(n,m,r) is
not WSNB under any algorithm.

The proof of the m > 2n — 1 result by Du et al. is quite difficult to
check and the proof of Yang and Wang is also complicated. In Chapter 2
we give a much simpler proof which not only works for P (hence STU), but
also for CD, CS and MI. We also extend all these results to the asymmetric
3-stage Clos network C'(ni,ns,m,ry, 7). In Chapter 3, we prove a similar
conclusion these strategies require the same number of copies as SNB does.

In Chapter 4, we extend our results to a more general class.



Chapter 2

3-stage Clos networks

In this chapter, we study the five strategies, CD, CS, STU, P, and MI, in
the 3-stage clos network. And we give a sequence of requests to force each of
them using the maximum number of middle crossbars, i.e., the same number

of crossbars as required by the SNB network.

2.1 Strictly nonblocking

First, we give classical SNB result-omsymmetric and asymmetric 3-stage Clos

network. Then we can compare.it to the result in Section 2.2 and Section 2.3.

Theorem 2.1.1 (Clos [6]). Assuming min{ry, 2} > 2, C'(ny,r1,m, N9, 1) is
SNB if and only if m > min{n; + ny — 1,n171,naro }.

Proof. Without loss of generality, assume the new request v is from I; to
0. Clearly, m = min{nyr,naro} is sufficient since only min{n;ry, nars}
requests can be generated, and we can route them each through a distinct
middle crossbar in worst case. Furthermore, if the busy co-inlets and co-
outlets are each routed through a distinct middle crossbar, then at most
(ny — 1)+ (ny — 1) middle crossbars are taken; so n; +ny — 1 middle crossbars
also suffice.

Next we prove necessity. Suppose m = n; + ny — 2 and neglect the

boundary condition. If we connect ny — 1 co-inlets to O, and ny — 1 co-
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outlets from I, and let these n; + ny — 2 requests route through distinct
middle crossbar, then + is blocked. Hence m must be greater than n;+mnq,—2.

Then we prove the theorem. Il
Corollary 2.1.2. Ifr > 2, then C(n,m,r) is SNB if and only if m > 2n—1.

Proof. Because r > 2, N = nr > 2n > 2n — 1. Hence min{2n — 1, N} =
2n — 1. [

2.2 Wide-sense nonblocking in symmetric case

The only positive result in about WSNB is Benes result [1]. He demonstrated

the following theorem on C'(n,m,2):
Theorem 2.2.1. C(n,m,2) is WSNB under STU if m > |3n/2].

Proof. Let s be a state and let n(s) denote the set of busy middle crossbars
(carrying at least one conuection) in s. Let #h;;(s) denote the set of middle
crossbars carrying a connection from /;to Oj-i,j = 1,2. We will prove the
theorem by induction on-the number of steps to reach s (from the initial

empty state):
(i) [n(s)] < [3n/2],
(i) |n11(s) Unaa(s)| < n,
(iii) [n12(s) Unai(s)] < n.

All three claims are trivially true at empty state. Consider a general step
from state s’ to s. If s is obtained from s’ by deleting a connection, the three
claims obviously remain true. So assume s is obtained from s by adding
a connection. Without loss of generality, assume it is from I to O;. If
naa(s’) \ n11(s’) # @, then a crossbar belong to naa(s’) \ n11(s’) will carry the
new request under STU. Thus |n11(s) U nga(s)| = |n11(s’) Unge(s)| < n and

the claims remain true. Therefore, we assume ngs(s’) \ n11(s") = @.



(i) Since I; and O, can each be engaged in at most n — 1 connections,
In11(s") Unga(s)] <n—1,

In11(s") Ungi(s")] <n—1.

Using the induction hypothesis (iii)
[n12(s") Ungi(s')] < n.
Adding them up, we obtain
2In(s")] < 3n—2, or |n(s')| < [3n/2] — 1.

Route the new request through an unused middle crossbar. Then
n(s)] < [3n/2].

(ii) Because ngs(s') C nqq(sf) and nyi(s’)| < n — 1, we obtain |nqi(s) U

nga(s)| < n.

(ili) |n12(s) Ungi(s)| = |mi2(s") Unai(s)] < n:

]

Note that Theorem 2.2.1 is for the almost trivial network » = 2. Lots of
efforts have been spent to expand this result, but without success. In the
following section, we will give the unexpected results that for » > 3, not
only packing and STU, but also CS, CD, and MI do not save any middle
crossbars.

A state of C'(n, m, r) can be represented by an r x r matrix where cell (i, j)
consists of the set of the labels of middle crossbars carrying a connection from
I; to O;. Then each row or column can have at most n entries and the entries
must be all distinct. The n-uniform state is the matrix where each diagonal
cell contains {1,...,n} and all other cells are empty. The [2n — 5% ]| result

was actually proved [9] for all algorithms which can reach the n-uniform

10



state, which, as shown in [9], includes P, STU, MI and CS. Hung (private
communication) observed that CD can also reach the n-uniform state. Chang

et al. [4] give a stronger result based on his method.
Lemma 2.2.2. CD can reach any state s from any state s'.

Proof. Since we can disconnect all paths in s’ to reach the empty state, it
suffices to prove for s’ the empty state. We prove this by adding each M}
in s to it’s proper cell one by one. Suppose My is in cell (i,7). Consider a
request . Suppose CD assigns M), to connect . If h # k, disconnect v and
reconnect it immediately. Then CS would assign M} to connect the pair.

Repeat this until My, is assigned. Since My, is arbitrary, s can be reached. [
Corollary 2.2.3. CD can reach the the n-uniform state.

For CS we prove a weaker property. Let [i, j] denote the set {i,i+1,...,5}
if 1 < 4, and the empty set if 7537 9:

Lemma 2.2.4. Let state s bel obtained. from-s' by adding [i,7], i < j, to a

cell C. Then s can be reachéd from s~under CS.

Proof. Suppose the last assignmentiisTM, in s’. Since i < j, we can add
at least two connections in“C4%. Then My and M., will be assigned. If
k # 1, disconnect the connection through M, and regenerate a connection
in C', for which M}, will be assigned. Continue this until M; and M;,, are
assigned. Then add j — 4 — 1 connections to C' for which M o, ..., M; will
be assigned. Il

Theorem 2.2.5. C'(n,m,r) for r > 2 is WSNB under CD and CS if and
only if m > 2n — 1.

Proof. The ”if” part is trivial since C(n,2n — 1,7) is SNB, hence WSNB. To
prove the ”only if” part, we claim that if m = 2n — 2, then there exists a
blocking state.

It is well known [9] that it suffices to prove for the minimum 7 which
is 2 here. By Lemma 2.2.2 and 2.2.4, the state in which cell (1,1) contains

11



[1,n—1] and cell (2, 2) contains [n,2n —2] can be reached. But a new request

in cell (1,2) is blocked. Hence m must be grater than 2n — 2. O

Theorem 2.2.6. For P, hence STU, C(n,m,r) , r > 3, is WSNB if and

only if m > 2n — 1.

Proof. The "if” part is trivial. We prove the "only if” part by showing that

for r = 3 there exists a sequence of calls and disconnections forcing the use

of 2n — 1 middle switches:

[1,n] n
1,n]| — n+1|[1l,n—1]
n n+1 n n+1
—n+1|[1l,n—1] — [1,n—1]
n+1
n n 441 n n+1,n+ 2
—n+2|[1,n—1] =mnH- 2001, n — 1]
n+1 n.+1
n 1 n+2]
— [15n —1 —
n+1,n+ 2]
n [n+1,2n — 2]
— [1,n—1]
n+1,2n — 2]
n n+1,2n — 2]
T =1 a1
n+1,2n — 2]

Note that this proof is much more elementary than the proof in [7].

For MI, we first prove a lemma.

Lemma 2.2.7. Consider a state s in C(n,m,2) consisting of x requests

from Iy to Oy carried by the set X of middle switches, and y requests from

12



Iy to Oy carried by the set Y of middle switches such that X NY = &,
XUY =A{1,...,z+ vy}, i.e. cell (1,1) is X and cell (2,2) is Y. Then a
state s’ can be obtained from s, where s’ is same as s except that x becomes

', and y becomesy =z +y—1a'.

Proof. Without loss of generality, assume 2’ > z(otherwise we work with
y). Disconnect =’ — x requests whose indices are smallest in Y from s. Add
x' — x new requests in cell (1,1). By the MI rule, these new requests must
be carried by S. Thus s’ is obtained. O

Theorem 2.2.8. C(n,m,r) for r > 2 is WSNB under MI if and only if
m>2n— 1.

Proof. 1t suffices to prove that m = 2n — 1 is necessary for WSNB for r» = 2.

By induction on n, suppose m = 2n — 3 is necessary for C'(n — 1,m, 2) to
be WSNB. Therefore there exists & state

X 2n—3
%
in C(n,2n — 1,2), such that'w = y=n -2 XUY = {1,---,2n — 4}.
Therefore we can obtain aistate s sfromrsiby adding 2n — 2 to the (1,2) cell.
Delete the four calls carriedby. [2n — 7,2m = 4] in the (1,1) and (2,2) cells,
and use Lemma 2.2.7 to rebalance 'the members of calls carried by them, i.e.,
each carrying n — 4 calls. Assign [2n — 7,2n — 4] to cell (2,1).

Next we delete [2n—11, 2n—8] from cells (1, 1) and (2, 2), do the balancing
and assign [2n — 11,2n — 8] to cell (1,2). Repeatedly doing so, eventually
(the last step may delete only two calls) we reach a state consisting of 2n — 2
distinct indices in cells (1,2) and (2,1). Thus a new (1, 1) request must be
carried by Ma, 1. O

Example 1. The following example shows that C(n,m,2) can be routed
through 2n — 1-th middle crossbar under MI for n < 6. “=" means to do

13



the balancing.

n:2:—>1’2‘ _)2\ H2\3
| 1 1
_g. ., 2[34 3.4 5 |34
"= 1 1,2] 1,2]
4. 5,6 3,4 5,6 | 1,5,6 |
TR T T, 4] 2,3,4
1,5,6] 7
- 12,3,4
s 1,56 7,8 1 |78 17,8
" 234 B[ 2 B
9 |1,2,7,8
-
3, 6]
_ ., 910]1,2.48 9910 |"k,2  [1,4],9,10]
" 3.6] 3458 55.9]
N [2,4],9,10 | 2,4]9,10| 11
| 1,1558] | 1,[5,8]

Corollary 2.2.9. For 3-stage Clos network C(n,m,r), let s be the state
where X, Y, and Z are in cells (i1, j2), (i2,j1), and (i1, J1), respectively,

X

Z
Y

where, min{Z} >k, XNY =, XUY =[1,k], k <2(n—|Z]).

For each o« < k and max{a, k — a} < (n—|Z|), let fo(s) be the state which
has fo(X) in cell (i1,72), |fo(X)| = a, and fo(Y) in cell (is,j1), such that
Foa(X)Nfo(Y) =2, fo(X)U fo(Y) = [1,k]. Then fo(s) can be reached from

s under MI.

14



2.3 Wide-sense nonblocking in asymmetric case

Without loss of generality, we assume LZ—;J = k > 1 throughout this section.
If ny > rong, then m = rony is necessary and sufficient for C'(nq, ry, m, ng, rs)
to be either SNB or WSNB. Therefore we assume ry > Z—;, or ro > f";—?}

Theorem 2.3.1. C(ny,r1,m,ng,r3) forro > 2 is WSNB under CS and CD
of and only if m > nq +mngo — 1.

Proof. The ”if” part is trivial since C'(ny,ry,ny + ng — 1,n9,72) is SNB. To
prove the "only if” part, we show that if m = n; 4+ ny — 2, then there exists
a blocking state. Clearly, we can reach the state

[1,712] ‘ [7’LQ+ ]_,2TL2] ‘ ‘ [kn2 + 1,TL1 - 1] ‘
‘ [n1,m1 4+ ng — 2]

(if [kng + 1,ny — 1] is an empty set, then the corresponding column does not
exist). Since row 1 has only ny < 1'entriesand the last column has only ny — 1
entries, one new connection'can berequeésted.in the cell (1, [71] +1), but no

middle switch is available: O
The MI case is as followingy ‘We first prove a lemma.

Lemma 2.3.2. C(ny,ry, m, Neyra) withay-= ny + 1, min{ry,ro} > 2, is not
WSNB under MI if m < 2na.

Proof. We prove, by induction on nq, the existence of a state which must use

2n9 middle switches.

(1) n2:27
L2 12 ]4
3 3

‘ —

[1,2] |3

(ii) suppose that for ny = n the statement is true.

(iii) ne = n+1, since for ny = n the statement is true, we can reach a state

S,

15



X | 2n

v X =n Y] =n—-1,XNY =g,and XUY =[1,2n — 1].

Add 2n+1 to cell (1,2), since ny = n+ 1, and delete the four numbers
[2n — 4,2n — 1] from cell (1,1) and (2,2). By noting that Corollary
2.2.9 also applies to the asymmetric 3-stage clos network,we can get a

state sy,

X1 | 2n,2n +1]
R

?’X1’:”_37 ‘Yl\:n—Q,XlﬂYl:@, and
X, UY; = [1,2n - 5).

Then, we add [2n —4,2n — 1] to cell (2,1), and delete the four numbers
[2n — 8,2n — 5] from cell (1, 1) and (2,2). By Corollary 2.2.9 again, we
can reach a state so,

X 2n,2n +1
Xo Yo =g, and Xo UYs = [1,2n — 9].

Repeat the above stéps, without-loss of generality, we reach a state s,

!/
%, X 2R = 0+ 1, X' 1Y’ = &, and

X'UY' =[1,2n+1].

Finally, we add 2n + 2 to cell (2,2).

]

Corollary 2.3.3. C(ny,r1,m,ng,re) with ng < ny < 2ng, 11 > 2,19 = 2, 18
not WSNB under MI if m < 2ns.

Theorem 2.3.4. C(ny,r;,m,ng,re) with ny > ng, min{ry,r} > 2, is
WSNB under MI if and only if m > min{n; + ny — 1,7m9n5}.
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Proof. The ”if” part is trivial. To prove the "only if” part, it suffices to show

for ri = 2.

Case 1. ny < (19 — 1)ng, assume n; = pny + ¢,0 < ¢ < ny. Clearly we can

reach the state

[Lno) | [ne4+1,2n0) | ... | [w,m —no] | |

;where v = (p—2)na+ 1,if g =0; 2 = (p — 1)ng + L,if ¢ # 0.

We can also move [1,n; — ny| from first row to second row by moving
cell by cell in the order from left to right.

Our focus is actually on the last two columns, i.e., the 2 x 2 submatrix
M. The Set [1,n7 — ng| in the first p — 1 or p columns serves the sole
purpose that all entries in M are larger than ny; — ny. This is achieved
by moving the set[1,n; —mb] 'to the. row where entries are to be added
in M. The entries are 'added=according to the proof of Lemma 2.2.7.

Hence, eventually, we reach the state

[1,no] | [nog 1,2nsl Y [z —no] | ... | X |
| == LY

X =Y =n—1, XNY' =9 and XUY = [ny—no+1,n1+ny—2].

Finally, add n; + ns — 1 to cell (1,75).

Case 2. (ry — 1)ng < ny < rang, which implies (ny + ng — 1) > rono.

Clearly, we can reach the state

[1,712] ‘ ‘ [(TQ—S)TL2+1,(T2—2)7’LQ] ‘ ‘

Similar to Case 1, we can reach the state

[1,712] ‘ ‘ [(7“2—3)712—‘—1,(7“2—2)712] ‘ X‘
| Y
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| X| =no, Y| =n2—1,XNY = @and XUY = [(rg—2)ng+ 1,105 —1].
Finally,add rons to cell (1,79).

Case 3. ryny < ny. This is a trivial case with m = ryns.
O

Finally, we study the packing and STU strategies. Let X;; denote the set

of connections from I; to O;. We first prove
Lemma 2.3.5. Suppose ny > ny. Then | X113 U Xog| < ng, | X2 U Xog| < no.

Proof. Suppose not, say, | X113 U Xos| = ns + 1. Let y denote the (ny + 1)st
middle switch added to cell (1,1) or cell (2,2). Without loss of generality,
assume y is added to cell (2,2). Then Xj;/X9 = @ since otherwise, the
(I3, O3) connection should be routed through a middle crossbar in X7/ X9
by the packing strategy. Therefore

Xa UXop =.X03,

and
XU X <ng= 1

since cell (2,2) can have at most my connections, including y, contradicting
the assumption that y is the (ny + 1)st middle switch in X7, U Xo.
Similarly, we can prove |Xis U Xo1| < na. ]

Theorem 2.3.6. Suppose ny > ny. Then C(nq,2,m,ny,2) is wide-sense

nonblocking under the packing or the STU strategy if and only if m > min{2ny, no+

[n1/2]}-

Proof. Suppose ny > 2n,. Consider 2ny connections for an input switch.
They must be routed through 2n, distinct middle switches. On the other
hand, there are at most 2n, connections, hence 2n, middle switchs suffice.

Next suppose n; < 2ns.
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Necessity.
[1, 7] | _, (Lng = [m/2]] |
‘ (1, ng] ‘ [ne — [n1/2]] + 1, 9]

(1,9 — [ /2]] |
[ne + 1,n9 + |n1/2]] ‘ [ne — [n1/2]] + 1, 9]

The last state has ny — |11 /2] + [n1/2] 4+ |n1/2]| = na+ |n1/2] elements.
Sufficiency. Suppose to the contrary that there exists a state such that a
new request under the packing strategy will force the use of an idle middle
crossbar y which will be the (ny + |n;/2| + 1)st middle crossbar in use.
Without loss of generality, assume y is in cell (2,2). Then by an argument

analogous to the one used in proving Lemma 2.3.5, X;; C Xy, in that state.

Therefore

X1 UXj2U X9 U Xoy = X9 U Xgp U Xy
Further

| X12 U Xop| <mg (by Lemima 2.3.5)

| X120 U Xoa| <img,

| Xo1 U Xoo| <imigs
Hence

|X12UX21 UX22| S (712 +n2 +n1)/2, or
|X12UX21 UX22| S %) + Ln1/2j

]

Note that the proof of sufficiency is simpler than Benes original proof for

the symmetric network.

Theorem 2.3.7. Suppose ny > ny and max{ry,ra} > 3. Then C(ny,r;, m,ns,rs)

is wide-sense nonblocking if and only if m > min{rony, nq + ny — 1}.

19



Proof. The 7if” part is trivial since the condition already guarantees strict
nonblockingness by an extension of Clos result [6] to the asymmetric case.
We now prove the 7only if” part. If ny > rong, then trivially, m > rong is

necessary. Therefore we assume n; < rons.

Case (i) 79 = 2,7 > 3.

[1,712] [1,712 — ]_] [1,712 — ”
Ng — Tl2+1 Nng — 712+1 N9
n2+1
[1,%2—1]7712—{—1 [1,n2—1],n2+1
— ny < — [n2, 19 + 1]
’I’Lg—f-]_
[1,712 — 1]

— n2+2 [ng,n2+1]

Repeat such an operation,eventually we obtain

[17 Mg — 1]

[griot [n1/2] — 1]

[1,ny —1]
— ng + |n1/2] | [na,ne + [n1/2] — 1]

Case (ii) ro > 3,711 = 2.

Subcase (1): ny > (ro — 1)no.
First,

[1,n2] ‘ [nz + 172712] ‘ s ‘ [(Tz — 3)n2 +1, (TQ — 2)n2 — ].] ‘ [(7‘2 — 2)n2, (TQ — 1)n2 — 2] ‘

Now, consider the last three columns. Define A = [(ry — 3)ny + 1, (12 —
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2)ny — 1] and B = [(ry — 2)ng, (r2 — 1)ng — 1]. Then

A B,(?”Q—l)ng—l

A B,(T’Q—l)TLQ—l

A B‘ (7’2—1)77,2

‘ (7"2 — 1)712 —1
A B,(T’Q—l)’flg‘

(7"2 — 1)%2 -1

(19 — 1)ny | (ra—1)np — 1
A B‘
(ro — 1)ngy | (ra—1)ny — 1
A|B,(rs = ny |
‘ (ro — 1)ngy — 1
A|B
(ro — 1)ng — 1y(ra==sl)no o
A|B
(1o — 1)fag — 1, rams —3]
define C' = [(ro — 1)ng — L rony — 3|
A| B | rong —2 A{ B |r2n2—2
C o ‘ roloy — 2 ‘ C
A, rong — 2 B ‘
ToNg — 2 ‘ C
A,rong —2 | B ‘ rong — 1 A, rong — 2 B ‘
‘ C rong — 1 ‘ C
A ‘ B ‘ A,rong— 1| B ‘
‘rgng—l‘C,rgng—Q ‘C,r2n2—2
A rong — 1 ‘ B,rong — 2 ‘
C
[1,no] | [na+1,2n9] |-+ | A,rang — 1| B,rany — 2| rang
C

Subcase (2): ny < (rg — 1)na.

First,
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[1,?’2,2] [n2+1,2n2] [n172n2+1,n1 771271] [nlf’ﬂg,’ﬂ172]
Also, consider the last three columns, define A = [n; —2ns+1,n1 —ny—1]
and B = [7’L1 — No, N1 — 2]

Similar, we can get the following state
AlB]|
‘ ‘[(nl—l,n1+n2—3]

define C' = [(ny — 1,ny + ng — 3]

A B‘n1+n2—2_>A‘ B ‘n1+n2—2

‘ C ‘n1+n2—2‘ C

A B,n1+n2—2‘

C

I8
|

[1,712] ‘ [TLQ + 1,2712
|

Case (iii) r; > 3,ry > 3.

: \A\B,n1+n2—2\n1+n2—1
|| | C

Let p = [n1/n2]|. Thenwms < ny < rono implies 1 < p < ry. It suffices to
prove the state

[1,n9] | [n2 +1, 2na] = H(p = 2)ny + 1, (p — 1)ng)

can be reached since we can use Case (i) for the remaining ry x (ro —p +1)
array with njy < mn; < 2n}. Hence the total number of middle crossbars used
is(p—1)ng+ (nf+ny—1) =ny +ny — 1.

[1,n2] |

[1, TLQ] [712 + 1, 2%2]

[1,n0] | [n2 + 1,2n5] | [2n2 + 1,3n4] |
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Chapter 3

Multi-log; N networks

The multi-log; N network, first proposed by Lea [12], can be obtained by
substituting each middle crossbar of a 3-stage Clos stage with a log; N net-
work. In this chapter, we study the five WSNB strategies in multi-log; N

networks and show that the costus'still the same as SNB.

3.1 Strictly nonblocking

For strictly nonblocking, Shyy andslea13] proved the following theorem for
d = 2 and Hwang [8] extended it to the d-nary version.

Theorem 3.1.1. Multi-log; N network with p copies is strictly nonblocking
i p > p(n), where

(n) = (d+1)xdz"' —1 forn even,
)2 xdT -1 forn odd.

Proof. We consider the graph model of a copy (baseline network). For the
note in the j-th link stage is the path of a request (i,0), j = 1,...,n, there
are at most k(j) requests can intersect it and doesn’t intersect the other node

on the path, where

, & — di1 for j < n/2,
k(j) = { J </

A" — d 3t otherwise.
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Therefore, there are at most

(

n/2—
. Z — Y + (d? = dV*Y)  for n even,

7=0 Z — ' for n odd.

==

(7
o
I/
<
~—
|
—_
N~—
I
S

(d+ 1) xdz=' =2 for n even,
2xd"7 —2 for n odd.

If these requests are route in distinct copies, then (7, 0) must route in another

copy. Hence, the theorem holds. Il

Any request has a unique path in a log, NV network. Hence two intersect-
ing paths must be routed through different copies of log; N network.
Theorem 3.1.1 was stated in,[8sonly as a sufficient condition. Chang,

Guo, and Hwang [5] proved that it is also miecessary.

Theorem 3.1.2. Multi-log N network with p, copies is strictly nonblocking
only if p > p(n).

Proof. For any request v =(@;y), assume that the path of v consists of links
Lo, Ly, ..., L,. For n odd, let I{(O3) be the set of inputs(outputs), except
x(y), which can reach Lns, then II;| =d"= —1and |0y = d"s — 1. Let
O1(I2) be the set of outputs(lnputs) except y(x), which can reach Lings.
Then |0y = d"z° — 1 and |I,| = d"* — 1. Note that v cannot be routed
through the same copy with any request from I; to O or I5 to O;. Suppose
p = p(n) — 1 while |I;] requests from I; to Oy \ Oy and |O,| requests from O,
to I \ I; have already been connected in different copies. In this case, they
can occupy |[1]| + 01| = p(n) — 1 = p copies, with no copy left for 7. For n
even, let I;(O2) be the set of inputs(outputs), except x(y), which can reach
Ly, then |I;] = d27' — 1 and |Oy| = d2*" — 1. Let Oy([3) be the set of
outputs(inputs), except y(x), which can reach L= ;. Then |O;| = dz1 —
and |Iy| = dz*' — 1. Let I3(Os) be the set of inputs(outputs), except z(y),
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which can reach Lx. Then |I;] = [O3] = dz. Note that v cannot be routed
through the same copy with any request from I; to Oy, I, to Oy, or I3
to Os. Suppose p = p(n) — 1 while |I;| requests from I; to Oy \ O3, |O]
requests from O; to I\ I3, and |I3\ I;] requests from I3\ I; to O3\ Oy have
already been connected in different copies. In this case, they can occupy
|+ [O1] + 1T\ 1] = |1 + [O4] + |05\, O] = p(n) — 1 = p copies, with no
copy left for v. Hence p must be greater than or equal to p(n). O]

We call such a set of p(n) — 1 requests blocking v the maximal blocking
configuration (MBC), denote by M (n, 7).

Note that if a network is SNB, then it is also WSNB. i.e. multi-log; N
is WSNB if p > p(n). Therefore, we only need to prove necessity in the
following proofs. In all these proofs, we assume that the network carries no

traffic at the beginning.

3.2 Wide-sense.nonblocking

We consider strategy CD first.

Theorem 3.2.1. Multi-log,; Nenetweork-with p copies is WSNB under CD if
and only if p > p(n).

Proof. Suppose p < p(n). Consider a sequence of p + 1 requests with p
requests from M (n, ) followed by the request . By the property of strategy
CD, these p requests will be routed in p copies. Then we cannot route v any

more. Hence p must be greater than or equal to p(n). Il
For strategy CS,

Theorem 3.2.2. Multi-log; N network with p copies is WSNB under CS if
and only if p > p(n).

Proof. Suppose p < p(n). For a request v and any p requests of M (n,~), say
V1,2, - - -5 Yp, TOUtE 71 in copy 1, then route vy in copy 2(because v, blocks
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in copy 1). Then disconnect v and route 7, in copy 2. Then route «y in copy
3. Again disconnect it and route <3 in copy 3. Doing this iteratively until v,
is routed in copy p. Then v cannot be routed any more. Hence p must be

greater than or equal to p(n). O
For strategies P or STU, we introduce a lemma.

Lemma 3.2.3. For any request y and M (n,~), there exists a request y" which
does not block v or any request in M(n,~) in the logy; N network.

Proof. Use the graph model of the baseline network as an example. Without
loss of generality, let v = (0,0). For all requests (i, 7) in M(n,y), we obtain
i< and j <. Hencey' = (N —1,N — 1) will satisfy our claim. O

Theorem 3.2.4. Multi-log; N network with p copies is WSNB under P or
STU if and only if p > p(n).

Proof. Suppose to the contrary, p=<«p(n)i+ For any request v and any p
requests of M(n,v), say J1,%s, -5 Yp..We route v, in copy 1 first. Then
route 7y in copy 2 and route v"in copy 2 (becatse copy 1 are as busy as copy
2, we can choose copy 2)= Now, wediséonnect v and route 7, in copy 2.
Then disconnect +'. Similarly;.we route #/ in copy 3 and 4" in copy 3, then
disconnect v and route 73 in copy2." Finally, we route «, in copy p. Then

~ cannot be routed any more. Hence p must be greater than or equal to
p(n). O

MI is more complicated. It’s amazing that we construct a relation between
3-stage Clos network and multi-log; N network, and then we can apply the

same process in Theorem 2.2.8 to multi-log; N network.

Theorem 3.2.5. Multi-log; N network with p copies is WSNB under MI if
and only if p > p(n).

Proof. We discuss two cases:
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Figure 3.1: The left figure is an induced graph of the graph model of a multi-
log; N network, for n odd. And the right figure is its correspondence to a 3-stage
Clos network.

(i) n is odd. Select two sabset I; and.l; of inputs and two subset O
and Oy of outputs. Set 71 =05 =.{0; 1,2,...,(1!”771 — 1}, Iy = Oy =
{d%, L2 xdT e I}, See Figure 3.1. By the configuration of

baseline network, every request from /; to O; U Oy must intersect node

n—1

0 in stage “5= and eyery request-fromr I to O; U O, must intersect

node 1 in stage "T’l Therefore; for : = 1 or 2, all requests from I;

to O; U Oy must use different copies. Similarly, every request from

ntl
n—1 2

I; U I, to Oy must intersect node d 2z in stage "T“ Therefore, for

1 = 1 or 2, all requests from I; U I, to O; must use different copies.

n—1

Now, we match this to a 3-stage Clos network C'(d"= ,1,2), where I;
is the i-th input switch, O; is the i-th output switch, for + = 1 or 2,

I; U, to O must intersect node 0 in stage and every request from

and the complete bipartite graph induced by nodes 0 and 1 of stage
”T_l and nodes 0 and d"z of stage "TH is the middle switch. Then
a request (7, 7) in C(d%,p, 2) routed through the k-th middle switch
under MI corresponds to a request (4, j) in the multi-log,; N using copy
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Figure 3.2: This is an inducéd graph of the graph'model of a multi-log; N network,
for n is even.

k. Therefore, by Theorem'2.2:8;the network is not WSNB if

p<2-(dZT)YE1=2xd"T —1=p(n).

(ii) n is even. Select four subset I, I1, Iy and I} of inputs and four subset
O1, O}, Oy, and O} of outputs. Set I, = O; = {0,1,2,...,d2~1 — 1},
I=0,={d>"",....d> =1}, [, = Oy = {d2,...,(d + 1)d>~* — 1},
and I} = Oy = {(d+1)d>7%,...,2 x d* — 1}. See Figure 3.2. Then
every request from I; to Oy U O; must intersect node 0 in stage & — 1,
every request from I, to O; U O, must intersect node d in stage § — 1,

every request from I; U I to O; must intersect node 0 in stage § + 1,

and every request from I; U I, to O, must intersect node dz in stage

% 4 1. Similar to case (i), we can treat Iy, I, O1,0; as the inputs and

outputs of C(d27%,1,2), and the subgraph sketch in bold line in Figure

n
2
n
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3.2 is the middle switch. Therefore, by Theorem 2.2.8, the network is
not WSNB if
p<2-(dz7h) —1. (3.2.1)

Besides, we observe that, for ¢,7 = 1,2, every request from I; to O;
must block every request from I; to O’ in the same node in the stage
2 Therefore, if we connect all (d — 1)d2 " requests in I to Oj in copy
0 to copy (d — 1)dz~! — 1 before every time we connect a request -y
from I; to O; and disconnect them after v connected, then we can force
the copy chosen to route v begin at least (d — 1)dz~!-th copy. Hence
(3.2.1) can be enlarged to

p<2x(d2 ) =1+ (d—1)d:"" = p(n).

]

Note that, in Theorem 3:2.5, itsdeesn’t need to consider all inputs and
outputs, because I; U I, and O U Os are enough to force p > p(n) which is
the bound of SNB.

Example 2. Here is an example that multi-log, 32 network can be routed
through 7-th copy under MI. A triple (i, 0, k) means the request (i, 0) routes
through k-th copy and (i, 0, k)~ means the request (i, 0) routed through k-th

copy disconnected.

(0,0,1) — (1,1,2) — (0,0,1)” — (4,4,1) — (0,5,3) — (2,6,4)
—(1,1,2)" (4 4,1)” — (4,0,1) — (5,1,2) — (1,2,5) — (3,3,6)
—(4,0,1)" = (5,1,2)" — (0,5,3)" — (2,6,4)" — (4,4,1) — (5,5,2)
(6,6,3) — (7, ) (4,4,1)" = (0,0,1) — (2,4, 7).

—

Example 3. Here is an example that multi-log, 64 network can be routed

through 11-th copy under MI. Note that every step following start from 5-th
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copy because the 4 requests from [; to O through 1-st to 4-th copy.

(0,0,5) — (1,1,6) — (0,0,5)" — (8,8,5) — (0,9,7) — (2, 10,8)
(1,1,6)" — (8,8,5)" — (8,0,5) — (9,1,6) — (1,2,9) — (3,3,10
(8,0,5) — (9,1,6)" — (0,9,7) — (2,10,8)” — (8,8,5) — (9,9,6)
—(10,10,7) — (11,11,8) — (8,8,5)" — (0,0,5) — (2,8, 11).

—

—

3.3 Generalizations

In this chapter, we extend our results to a class of networks including the
3-stage Clos networks, the multi-log; N and the log,(N, k,m) networks as
special cases.

A vertical-copy network V' consists of an input stage of 1 ny xm crossbars,
an output stage of 75 m X ns crossbars and a middle stage of m copies of
a network v with r; inputs and 79 outputs. There exists exactly one link
between each input(output) crossbar and each copy of v. When v is the
r1 X 1o crossbar, V is a 3-stage Clos network- When n; = ny = 1 and v is
the log; N network, V' is a multi-log; N network. When n; = ny =1 and v
is the k-extra-stage log, N-network, then V s the log,(N, k, m) network. In
particular, if k =n — 1, then"Vis the Cantor network.

Suppose that the necessary and sufficient condition for v to be SNB is
known. Consider p = p(n) — 1. For any request ~, there must be a state s
such that + is blocked in each of the p(n) — 1 copies vi,vs, ..., Vpm)—1. Let
R; be the set of all requests routing through v; in s and M (v,v) ={R; | i =
1,2,...,p(n)—1}. i.e., V is SNB if and only if the number of copies is larger
than [M(v,v)|. Let “Route R; in v;” mean “Route all requests in R; in v,

consecutively”.

Theorem 3.3.1. A wvertical-copy network V' is WSNB under the CS routing
if and only if V is SNB.

Proof. Suppose there are p < p(n) copies vy, 15, ...,v, in V. For a request 7,

we route R; in v, then route 7 in v(7 is blocked in v4). Then disconnect ~y
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and route Ry in v5. Then route v in v3. Again disconnect it and route R3 in
v3. Doing this iteratively until R, is routed in v,. Then 7 cannot be routed

in any copy. Hence p must be greater than or equal to p(n). Il
For CD, we use another argument.

Theorem 3.3.2. A vertical-copy network V is WSNB under the CD routing
if and only if V' is SNB.

Proof. First, we claim every request 7y can be routed in v, for a given k. Route
v in ;. If ¢ # k, then disconnect v and route it again in v;,,. Similarly, if
t + 1 # k, then disconnect v and route it again in v;,5 until 7 is routed in
vk. Note that if ¢ = p, then we let i + 1 be 1. Therefore, if p < p(n), then
we can route R; in v; for ¢ = 1 to p as we want. Then ~ cannot be routed in

any copy. Hence p must be greater than or equal to p(n). O]

For STU, if there exists astequest 44 which does not block {7} U R; for
all 4, theorem 3.2.4 remains true-if M(n,~) is replaced by M (v,~) and ~; is

replaced by R;. But we use a.different.argument for P.

Theorem 3.3.3. Suppose-there €xists-a-request v, which does not block {~}U
R; for alli. A wvertical-copymetwork V is WSSNB under the P routing if and
only if V is SNB.

Proof. 1t suffices to prove the “only if” part. Suppose there are only p =
p(n) — 1 copies vy, s, ...,1v, in V. For the request v = (0,0), without loss of
generality, suppose R; = {7v;; |7 =1,..., A} and Ay < Xy < --- < \,. Let
|v;| denote the number of connections in v;. For a given k, let s(k,B) be a

state satisfying the following conditions:
(1) v < A,
(ii) Connections in v; are those from R;,

(iii) |vi| = |w| + 1 or |v;| = A; if @ € B, where B denotes the set of ¢ such
that |v;| > |vl.
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Let S(k) denote the state that v; contains R; for all 1 <i < k. We make
two claims:

Claim A. We can add another connection § of Ry in vy in state s(k,B).

Claim B. S(k) can be realized.

We prove both claims by induction on k. For k£ = 1, then B = &. Clearly,
we can add ¢ to vy, and keep on adding other connections until v; contains
R;. So consider general k > 1. From s(k,B) we can obtain the state s*(k,B),
which differs from s(k,B) by having v; containing R; for all 1 <i < k — 1,
by applying induction to claim B(with £ = k£ — 1). In state s*(k,B), ~
must be routed in v;. Now delete all connections in s*(k,B) \ s(k, B) so that
|vk| > |v4] for all 4. Then 7}, can be routed in vy. Delete v and route J in v.
Delete v;, and Claim A is proved. Also, we can keep on adding all remaining
connections of Ry to v, to prove Claim B.

Setting &k = p in Claim B, then v cannot be routed in any of the p copies.
Hence at least p(n) copies are,needed:

O

Example 4. For simplicity, we will represent & state by its |v|-sequence. To
help clarify the state, let [i;|* denote thefact that v is in the v;, |v;|" the fact
that 4" is and |v;|” the fact'that both ares “Suppose p = 3 and we want to
reach the state S(3) = (A1, A2, A3)i=1(2,3,4). The the |v|-sequence of our

construction in Theorem 3.3.3 would be:

(0,0,0) =(1,0,0) =(2,0,0) =(2,1*,0) =(1,1*,0) =(1,2",0)
=(1,1,0) =(1,2,0) =(1,1,0) =(2,1,0) =-(2,2*,0) =(2,3",0)
=(2,2,0) =(2,3,0) =(2,2,0) =(2,3,0) =(2,3,1%) =(1,1,1%)
=(1,1,2") =(1,1,1) =(1,1,2) =(1,1,1) =(2,1,1) =(2,2%1)
=(2,3".1) =(2,2,1) =(2,3,1) =(2,2,1) =(2,3,1) =(2,3,2")
=(2,2,2%) =(2,2,3") =(2,2,2) =(2,2,3) =(2,2,2) =(2,3,2)
=(2,3,3") =(2,3,4") =(2,3,3") =(2,3,4) =(2,3,3) =-(2,3,4)

Therefore, we obtain the state S(3).
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Figure 3.3: v and M(V,v) = {a,b,c,d} in C(3,4,2)

Corollary 3.3.4. log,(N, k,m) is WSNB under any of CS, CD, STU, and
P if and only if it is SNB, i.e., [8],

n—-=k+4+1

k+2 =2 —2, for n — k odd.

{k+3-2nTk_1—2, for n — k even,
m >

Proof. Note that log, (N, k,m ) is @ vertical copy network. Then the results
for CS and CD follow from “Theorem 3.3:1*and 3.3.2. For P and STU, it is
easily verified that v/ = (N — 1, N'=1)"doesn’t block any request in {y}U R;
for all ¢ Then the results follow from Theorems 3.3.3. O

That packing is a good routing strategy has been a folklore for a long
time and documented in literature [1]. One motivation for that folklore is
that C(n,m,2) is WSNB under P if and only if m > [22] [1], while it is SNB
if and only if m > 2n — 1. The seemingly discrepancy between the m > [ 22|
result and Theorem 3.3.3 is explained by the fact that 7/ does not exist in
C(n,m,2) since M (V,~) occupies both input switches(see Figure 3.3).

For r > 3, C(n,m,r) is WSNB under P if and only if it is SNB. Thus the
saving of C'(n, m,2) under P seems to be a fluke rather than a testimony of its

goodness. In this chapter, again we showed that in the worst-case scenario,
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P does not help. Instead, MI is the only routing strategy which is still not

ruled out to be useful.
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Chapter 4

Conclusions and future works

From Chapter 2 and 3, we see that the costs of WSNB under the five routing
strategies on the 3-stage Clos network, the multi-log; N, and some more gen-
eral vertical-copy networks are same as SNB, except C'(n, m,2) with packing
strategy. It seems like WSNB isino!better than SNB. But for multicast traf-
fic, Yang-Masson [17] suggested a WSNB algorithm such that the required
number of middle crossbars of the 3-stage.Clos network is strictly less than
SNB. For log, N networks, T'scha and Lee [16]1sed the window algorithm in
the log, (N, 0, m) network (alsosee-Kabacinski and Danilewicz [11]) to give
another example that the number of copies’'in WSNB is less than in SNB.
Recently, Hwang and Lin [10] further extended their result to log, (N, k,m).
Note that if the window algorithm is used on one-to-one (1-cast) traffic, then
the result is still same as SNB.

For larger r, Tsai, Wang, and Hwang [15] proved that C'(n,m,r) is not
WSNB under any algorithm. We extended it to the asymmetric version (See

Appendix for the proof).

Theorem 4.1. For niry < nere and ry > (ng — 1)("1;7?f2) +1, C(ny,r,m,
na, 7o) 18 WSNB if and only if m > ny + ne — 1. For niry > nory and
re > (np — 1) ("1+"2_2) + 1, C(ny,r1,m,ne,ro) is WSNB if and only if m >

na—1
ny + no — 1.
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Corollary 4.2. Forr > (n—1)(>"?) + 1, C(n,m,r) is WSNB if and only
ifm>2n—1.

Note that further increasing r does not lead to a stronger result since O,
can be connected to at most n inputs. Moreover, if m > n; +no — 1, then it
is SNB.

From these theorems, it seems that it is hopeless to find a good algo-
rithm for WSNB in one-to-one traffic for large r. However, finding a better
algorithm for smaller r is still possible. Note that the lower bound of r in
Corollary 4.2 is exponential in n. Obtaining a polynomial bound will greatly

reduce the range of uncertainty whether WSNB can improve over SNB.
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Appendix

Proof of Theorem 4.1. For niry < ngry, it suffices to prove the “only if”
part. Suppose r; = (ng — 1)("1:17121_2) + 1 and m = ny + ny — 2. Consider

the state s that every input crossbar has n; — 1 inputs connect to arbitrary

output crossbar except O;. Then every input crossbar connects to n; — 1

middle crossbars. By the pigeonhole principle, there are |7(rTl)—‘ = No
ni—1

input crossbars, say X, connected to'the same ny, middle crossbars, say M.
Under s, we add ny new requests from.idle.input links in X to O;. Since
X is already routed through M, the new requests cannot use M any more.
And since the new requests involve the same eutput crossbar, they must be

routed through distinct middle etoessbarss Therefore
m > | X{F|Mf=n, +ny — 1.

For nyr; > nary, the argument is similar by exchanging “input” to “out-
put”. O]
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