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Abstract

The differential equations of flaine shéet model are highly nonlinear and strongly
coupled system. To solve thése equations nmumerically, we use damped Newton’s
method combining with one way multigrid method and Krylov subspace meth-
ods. The purpose of this thesis is to survey effective Krylov subspace methods
for this model, for example, biconjugate gradient stabilized method (BICGSTAB),
generalized minimum residual method (GMRES), and transpose-free QMR method
(TFQMR). A code for the flame sheet model in C' language is developed and nu-
merical results will be presented and discussed in this work.
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1 Introduction

Primitive formulation for laminar diffusion flame in three dimensional rectangular co-
ordinates can be transformed into the vorticity-velocity formulation by using two dimen-
sional cylindrical coordinates. A detailed derivation of the vorticity-velocity formulation
can be found in [4, 5]. Usually a flame sheet model [2] is used to initialize multidimen-
sional diffusion flames. The governing equations for flame sheet model can be derived
from equations for finite rate diffusion flame model in vorticity-velocity formulation. The
flame sheet model is based on the assumptions that the chemical reaction in a laminar
diffusion flame is a one-step irreversible reaction and that the conversion of reactant into
stable problem is infinitely fast. In the reaction zone, fuel and oxidizer are separated;
fuel and oxidizer react in stoichiometric proportion. With these assumptions, no fuel
appears on the oxidizer side and vice verse. Because the differential equations of flame
sheet model are highly nonlinear and strongly coupled system, it is extremely difficult to
analyze mathematically. Newton!simethod is a standard method in solving highly nonlin-
ear and strongly coupled system of partial diffetential equations. Combing with multigrid
method and Krylov subspace methods, we can solve the flame sheet model numerically.

Purpose of this thesis is to survéy efficient Krylov subspace methods and apply these
methods to solve the flame sheet model:yWe shall concentrate on three Krylov subspace
methods, namely biconjugate gradient stabilized method (BICGSTAB), generalized mini-
mum residual method (GMRES), and transpose-free QMR method (TFQMR). This work
is organized in the following ways: In the first chapter, we discretize the governing equa-
tion for flame sheet model by using centered difference scheme. The convective terms are
evaluated by using upwind differenced scheme to preserve monotonicity. In the second
chapter, we introduce the projection method and use Arnoldi’s method to construct the
Krylov subspace. In the third and fourth chapters, we will introduce BICGSTAB, GM-
RES, and TFQMR methods in mathematical level. In the last chapter, we present some

numerical results and give a discussion of these results.



1.1 The Governing Equations for Flame Sheet Model

The flame sheet equations consist of the total mass and momentum conservation equa-
tions, constituting the flow field problem and using vorticity-velocity formulation of the
steady-state, coupled with a conserved scalar equation. The governing equations for flame

sheet model with axis symmetry can be stated in the following form.

8r2+822_8z 7‘87“—’_7‘_2_5 p
0?V, 0%V, ow 10V, 0 (V-Vp)

or? + 922 or rd: 0z p

( OV, PV, dw 19V, V., 9 v-vp>

Puw  FPuw 0w Ow ow pV, = _V?
or? * 022 +5 r) Vo or p‘/za_ .
S/ =0 =0u
2 (V(div(V) - V= YV, - T2 - 91, V)
0

10 oS 08 05 oS
( ror < pD@ )JF&(”D@Z) pva va%’

where V' = (V,., V) is the velocitysvector with, radial V,. and axial V, components, w =

oV, OV,
0z or

is vorticity, and S is the ¢ongerved scalar. In addition, the scalar p is the mass
density of the mixture, measured ‘as g/cm?; given by the equation of

LIRW
P~ RT
where P is the pressure, R is the universal gas constant, 7" is the temperature, and W is
the mean molecular weight of the mixture. The scalar y is the viscosity coefficient of the

mixture, measured as g/(cm - S), given by the equation of

H = Ho T,

where r = 0.7, Ty = 298K, py = 1.85 x 10™*. The scalar D is a diffusion coefficient,

measured as cm?/s, given by the equation of

7
D=1
P j2)

where P, = 0.75. And the vector V3 = (%, —a—f) is curl of 3.



1.2 Discretized Form for Flame Sheet Model

We use the finite difference approximations to discrete the governing equations for flame
sheet model on the grid points in the computational domain, shown in Figure 1, which
cover from r = 0 to 7.5cm in the radial direction and from z = 0 to 30c¢m in the axial
direction. In the diffusion and source terms, we use standard centered differences. In the
axial, we use a monotonicity preserving upwind scheme to discrete the convective terms.

Next we write down the discretized form for each equation.

Radial Velocity :

(i) Fori=3~(n—1)and j =2~ (m=4)

o ( IV, 1 oV oV,
ar \" or ~ -7 (= >
irj w2 il i¥172,j i—1/2,
N 2 i1 e V)i s (V)i Tt T V)ig — (Vi)ic1
Tit1 — Ti-1 2 Titdle T 2 Ti— Ti-1 '
Fori=2and j=2~ (m—1)
o ( IV, 1 oV, oV,
I ra ~ r —7’8 where r; =0
r r 2.j 7“2+1/2 — T T 9+1/2,) r 1
2 ro+ 73 (Ve)sg — (Vi) \ _ (Vs — (Vi)ay
To + T3 2 rs —T9 rs — T2 )
(ii) Fori=2~(n—1)and j =2~ (m—1)
0%V, 1 oV, oV,
T i —
022 ij Z41/2 = 212\ 02 i,54+1/2 ij—1/2
oy 2 ((Vr)i,j+1 - Vi (V)iy — (Vr)m’—1> _
ZZj+1 — Zj-1 ZjHl TR 7T %=1

(iii) Fori=2~(n—1)and j =2~ (m —1)

Oow

Wij+1 — Wij—1
T .
0z

~ 1y

Zj+1 T Zj-1

,L7j



(iv) Fori=2~(n—1)and j =2~ (m —1)

(V) Fori=2~(n—1)and j =2~ (m—1)

O (VS| 0 (v
or P Or \ por

ar \ p 0z

4] 4,J 4,J
- T V. Op V. Op
Tivi/2 = Tic1j2 \ PO i+1/2,5 "ic1/2;
T V. 0p V. 0p
+ - - - =
Tit1 —Ti—1 P 32 Ay 14 82 i1
- ri K(Vr)m,j N (Vr)m‘> Pitlj — Pij
Tit1 — Ti—1 Pi.j Pi+1,j Tit1 — T4
B ((Vr)i—l,j n (V;")zj) Pij — pi—l,j:|
) Pijils. Pi-1 Ty — Ti—1
it Ty | [(Vz)iﬂ,j Pi+1,54+1 — Pi+1,5-1
Tk b =T 218 |\ Piv1,j Zjt1 — Zj-1
_ (Vz)i—l,j Pis1,541 — pil,j1:|

Pi—Lj Zjy1 — Zj—1

Axial Velocity :

OVe (O ow LoV, 0 (VNP
or2 022 Or rdz 0z p o
(i G () (i) (v)

(i) Fori=2~(n—-1)and j =2~ (m—1)

5V, I v o
2 . _ or
or i rivij2 = riciz \ O i+1/2,j i—1/2.j
- 2 (V)irry — (Vo)iy — (Ve)iy — (Va)imay
Tig1 — Ti—1 Tit1 — T4 Ty — Ti—1 .



(ii) Fori=2~(n—1)and j =2~ (m—1)

PV 1 oV, aV,
2 =~ _ -
0z i R T A 0z ij+1/2 ij—1/2
- 2 <(Vz)z‘,j+1 -~ (V)iy (V)i — (Vz)z‘,j—l)
Zj+1 — Zj—1 Zj+1 — % Zj— Zj—1
(iii) Fori=2~(n—1)and j =2~ (m —1)
8_00 L Witly — Wi-1
or| Tig1 —Tic1
ij

(iv) Fori=2~(n—1)and j =2~ (m —1)

1OV (Va)iger — (Va)ig—1
r 0z ri(zj41 — zj-1)

.3

(V) Fori=2~(n—1)and j =2~ (m—1)

o (V- _ o (vany| | o (o
0z p Oz \por)| 0z\poz)|
1,7 2, [2¥}

1 (W] Yo
Zj4+1 — Zj—1 | 1% (‘97“; i,j—i—l‘ P or i1
N 1 V2 0p V. 0p
Zj+1/2 Ty SN epide i+1/2 & ij—1/2
- 1 [(Vr)i,j—i-l Pty — Pimtirr  (Vi)ig—1 Pivr—1 — pi-1-1
Zj41 — Zj—1 Pij+1 Tig1 — Ti—1 Pij—1 Tig1 — Ti—1
N 1 K(Vr)z‘,jﬂ N (Vr)z‘,j) Pij+1 — Pij
Zj+l T Zj-1 Pi.j Pij+1 /) Zj+l = Zj
B ((‘/r)i,j—l n (W)zg) Pij — pi,j—1:|
Pi.j Pij—1 Zj — Zj-1
Vorticity :
0 [ Ouw Puw  pw Ow Ow = V2
2 (e Vi VS pVw ) V- Vs
8T<T(9T>+Tc9z2 r P 8r+rp 0z pYe rve 2Jr

=

(i) (ii) (i) (iv)
op

rVp-g—2r (V(div(V))-Vu) +2r (vw .vg_ﬁf +VV, .v_z) —0.

(vi) (vii) (viii)



(i) Fori=3~(n—-1)and j =2~ (m—1)

0 ( (’3,uw) 1 Opw Opw
— | r— Y r —r—
0 0 i+1/2 — Tie 0
" "y Tz i " liy2y i—1/2,j
N 2 Tit1 + T Plig1,jWit1,5 — HijWij
Tit1 — Ti-1 2 Tig1 — T4
LT T Wi — Hie1,jWie1,
2 TP — i1 '
Fori=2and j =2~ (m—1)
0 Opw 1 opw Opw
I 7“8— r 5 — ra— where r; =0
r r 2 Tot1/2 —T1 r 241/2 r .
2 T3t T2 H3,jWaj — HajWai ) _ H3,Wsj — Ha,jWa
T3+ 19 2 s — T2 s — T2 ‘
(ii) Fori=2~(n—1)and j =2 ~ (m,—.1)
02 puw 1 Opiw - Opw
r—— T ‘ L ——
2 .. AT S
0z irj 24172~ Zhye |02 irj+1/2 ij—1/2
~ 2 (,ui,jJrlwi,jJrl T HigWig o Wi — Mi,j1wi,j1>
"Zjr1 — 2k U Zj = Zj-1
(iii) Fori =2~ (n—1) and j =2 ~{m=1)
M ~ i Wi g
LA ri
Z7J
(iv) Fori=2~(n—1)and j =2~ (m —1)
Ow ow
Vi Viez —oVe
(rov G +roviy =i )|
17]
)i |7 i—1,7 1,7 1—
~ ripi [max{< )i + (Vr) 17370}“),3 Wi-1,j
2 Ti = Ti-1
~ max {_ (Vi)ig1; + (‘/;>z,j’0} Wit1,j — wi,j:|
2 Tit1 — T
2ig + (Va)ij— ij — Wij—
+7“ipi,j{max{( )i + (Va)iy 1’0}(")7] Wi,j—1
2 Zj T Zj—1
V)i V)i i1 — Wi
— max {—< Juger * (V2)ig ) 0} G ’J} — i (Vr)ijwij-
2 Zi+1 — &5



(V) Fori=2~(n—1)and j =2~ (m—1)

= 2 0 aV, oV, 0 aV, oV,
N R Vaadl gV _ 2P (9 gv.
TVpVQH_T(()Z(VTﬁr—FVZ&")” T@r(wﬁz—k‘/’z@z)”
,] ,] 2¥)
n p Pidt1 — Pij—1 {(V)- Wiy = (V)imay A (V2)it1y — (Vz)iu]
"z — 2z T Tiy1 — Ti-1 o Tiy1 — Ti-1

i
Tit1 — Ti—1

Pt~ Picy [(Vr)m (V)iger = (Ve)ig=1 (V)i (V2)ig+ — (Vz)i,jl] ‘

Zjt1 — Zj-1 ’ Zjt1 — Zj-1

(vi)Fori=2~(n—1)and j =2~ (m —1)

o
T
Z7J

(vii) Fori=2~(n—1)and j =2 ~ (m — 1)

~ (980.65)r; Pitly — Pizly

Tit1 — Ti—1

rVp-g

Z'Ij

2r (V(div(V)) - Vp)

]

B 0 (10 0 LT 0 ou Op
_2T<$<Tar( o)+ 82VZ>’_8_<7"8 (V)+$‘é>> <8r 8z>' ,
ij
o (v, 9V, N 10V, 5 ou (0%, 0%V, N 19V, Vv,
or \0z0r 022 r 0% TB \Jdrdz  Or:2 r or r?

%J 2y
~ o Hitlg — Mi-1; {(Vr)i—s-l,j—&-l— (Vr)i+1,j—1 = V)i + (V)imiy
Y ori =i (ris =ml) (2501 — 2j-1)
N 2 ((Vz)mﬂ - (V)iy (V)i — (Vz>z',j—1> L L Wig = (Vr)z‘,j—l]
Zj+1 = Zj-1 Zj+1 T Zj Zj T Zj-1 Ti Zj+1 T Zj-1
_ 27a',uli,j+1 — M -1 |:(Vz)z'+1,j+1 - (Vz)z‘+1,j—1 - (Vz)i—l,j+1 + (Vz)i—l,j—l
' Zj+1 T Zj-1 (riv1 = ric1) (25401 — 25-1)

N 2 ((Vr)m,j - V)iy  (V)iy — (Vr)z'l,j) L LWy = (Vi (Vr)m} ‘
Tit1 — Ti—1 Ti-1

=2r

2
Tit1 — Ty Ty = Ti-1 ri Tit1 — T4 T3



(viii) Fori=2~(n—1)and j =2~ (m —1)

2r (VV Vg ER

v Ly va“>

i?j

L AN ST AN R\ A AN
- or’ 0z 0z0r"  Or? or’ 0z 0227 Oroz

[82/18‘/2 Puov,  u (8% 81/2)}
=2r +

922 or  Or2 0z = 9z0r \ Or 0z N
27]
~ o [ 2 (Ni,j+1 — Wij Mg — Mm’l) (V2)isry — (Va)im1y

]

Zj+1 — Zj-1 Zj+1 — Zj Zj — Zj—1 Tit1 — Ti—1
. 2 (Miﬂ,j N Mz’l,j) (Vi)ige1r — (Vi)ij1
Tiv1 — Ti—1 Tiv1 — T4 Ty — Ti—1 Zj+1 — Zj-1

_|_

Pit1,j4+1 — Hit1—1 — Hi—1,5+41 + fim1,-1 ((Vr)m,j = (V)i (Va)ig1 — (Vz)i,jl)}

(Tig1 — T’i—l)(zj+1 - Zj—l) Tit1 — Ti—1 Zj+1 T Zj-1

Counserved Scalar :

S FNE T & 98\ 0 S
(pva +pva)75( D&») az(pDaz) 0

(i) ‘ (1) (iif)

(i) Fori=2~(n—-1)and j =2~ (m—1)

S S
(pV + pV.— )

or 0z ) |
i,J
~ p [max { (Vi)ig + (Vr)z'l,j’o} Sij = Sic1
2 r; Ti—1
— max{ (VT)H—LJ + (Vr)i,y’o} Sz+1,y Sm}
2 Tig1 — T
.y {max { (V2)ig + (‘é)i,j_170} Sij = Sij—1
2 Zj Zj—1
— max{ (VZ)MH + (Vz)w 7 0} Sij+1 — Sm}
2 Zj4+1 Zj



(ii) Fori=3~(n—1)and j =2~ (m—1)

1o os\| 1o os
ror "7 or ~ P.ror arr
27.]

i,
11 1 oS oS
S P s —ran \ o o
r i Ti41/2 i—1/2 i+1/2,f i—1/2,f
11 2 Tig1fiv1,j & Tillij Siv1,j — Sij  Tiliy + Timifliz1y Sij — Si—1,
Poriripr —rica 2 Tig1 —Ti 2 ri—Tic1 )
Fori=2and j=2~ (m—1)
10 DaS 110 - 05
- r - —_ -
ror P or P.ror Mar '
2,j 2,5
11 1 0S 0S 0S
~ y R T — T — — ’I“IME where | = 0
rT2T241/2 =11 241/2,j Lj Lj
112 T3 Topiy A pe S35 — 52\ _ L1 (ps e Sy, — 5o
PTT2T3+T2 2 2. ’I"g—T'Q‘ PTTQ 2 rs —To ’
(ili) Fori=2~(n—1) and j =2 ~ (m— 1)
0 D@S 10 as
92 \"" oz - Pz hoz
irj ‘ ij
_ 1 1 0 M@_S
Pr 212 = 212 ij+1/2 02 ij+1/2
_ i 2 (Mz’,j-H + i j Sij+1 — Siy Mgt g Sij — Si,j—l)
Pr Zj+1 T Zj—1 2 Zi41 — &5 2 e .|
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Figure 1: Physical configuration for diffusion flame model (not in scale)
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Outer Boundary (r = Ryax) :

v _, We_,y
a0 ar YT

(i) (i) (i) (iv)

(i) Fori=nand j=1~m

OVT ~ (Vr)mj B (V;‘)n—lvj'

or Tn — Tn_1
(ii) Fori=nand j=1~m

avtz o~ (‘/z)n,j - (‘[z)n—l,j
or T — Tro1 '

(iii) For i =n and j =1 or m

A A — (V)nj-1.

9z e 21— 21
(iv) Fori=mnand j=1~m

Axis of Symmetry (r =0) :

11



(ii) Fori=1and j =2~ (m—1)

We use the result (ii) to deal with axial velocity equation.

PV, PV, Ow 0 (V.0p\ (Voo = (Vo)
or2 022 Or 0z \ p 0z (rg —11)2

. 2 |:<Vz)1,j+1 — (Vo) B (Vo) — (Vz)l,jl] n w2,j
Zj+1 — Zj—1 Zj+1 — Zj Zj — Zj-1 ro—T

N 1 |:<(‘/z)1,j+1 n (Vz)l,j) PLj+1 — Prj <(Vz)1,j—1 n (V)i \ prj — P11
Zjg1 — Zj-1 P1, P1,+1 Zj+1 = Zj P15 P1,j—1

(iii) Fori=1and j =2 ~ (m —1)
w%wl’j.
(iv) Fori=1and j =2~ (m—1)

85 ~ (,dg’j — wl,j
or ro — T

Inlet Boundary (z = 0) :

OV OV,
oz or’
(i) (1) 43 (iif) (iv)

S =Sr).

Vi :O) V. :‘/;«O(r)a W

(i) Fori=1~(n—1)and j =1

(ii) Fori=1~(n—1)and j =1
V. = V2(r) = (Va)ia — V2 ().
(iii) For i = 1 and j = 1
WA Wi
Fori=2~(n—-1)and j =1

oV, 0V, w1+ wis (Vi)i2 (V2)is1a — (Va)iz11
- s = + :
0z or 2 Z9 — 21 Tiv1 —Ti—1

w

12



(iv) Fori=1~(n—1)and j =1

S — SO(T) ~ S@l — SO(’I"Z').

Outlet Boundary (z = L) :

oV, Ow oS
‘/1"_0’ 82_07 &_07 a_

(i) (ii) (iii) (iv)

0.

(ii) Fori=1~ (n—1) and j =m_

a‘/z = (%)z,m e (V:z)i,mfl

Oz s AN

(iii) For i =1 and j =m

W = Wim

Fori=2~(n—1)and j =m
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2 Krylov Subspace Methods

A Krylov subspace method is a method for which the subspace IC,,(A,ry) of R is the

Krylov subspace with the form
K (A, 10) = span{rg, Arg, A%rg, ..., A™ tryl,

where rq = b — Axg be initial residual in general and zy be initial guess. The Krylov sub-
space has well property that matrix-vector multiplication of basis is cheap to compute. In
other words, if we given a basis for IC,,,, then we can cheaply compute a basis for K,,, 1. In
this chapter for a start, we introduce the general projection methods, namely orthogonal
projection or oblique projection. Then we will show two optimal results. One is orthog-
onal projection just to minimize the A-norm of the error when A is symmetric positive
definite. The other is oblique projection just to minimize the 2-norm of the residual when
A be an arbitrary square matrix. In the second section, we introduce the Arnoldi’s method
to construct the Krylov subspace. Fhis‘method is an orthogonal projection method onto
IC for general non-Hermitian matrix. In the last section, we introduce the full orthogo-
nalization method and its variant version: called ihcomplete orthogonalization method,

to apply to linear system.

2.1 Projection Methods

Consider the linear system

Az =1 (2.1)

where A is an n X n real matrix (or sparse matrix). We will use projection method for
extracting an approximation to the solution of a linear system. This idea is to restrict
the next step in an iterative method to a small subspace but pick “best” step in that
subspace. In order to reach our goal as stated above, we find methods which can cheaply
find the next iterate as far as possible but still minimize some measure of the error or
residual at each step.

Let K and £ are two m-dimensional subspaces of R”. A projection technique onto

the subspace K and orthogonal to £ is just to find an approximate solution ¥ to (2.1) by

14



imposing two conditions. One is to find z belong to K and the other is making residual
vector must be orthogonal to £. Now suppose we have current guess xo and let initial

residual vector ro = b — Axy. The projection method is repressed as
Find z€xzy+ K, suchthat 7=b—Ax 1L L.
or equivalently
Find d €K, suchthat 7=b— A(zg+0)=ro— Ad L L. (2.2)

Let V = [vy1--- vy and W = [w; - - - wy,] are n X m matrix whose column-vectors form a
basis for K and L, respectively. Then ¥ = xg + 0 = xg + Vy for some y € R™. Thus, we

can transform (2.2) into matrix representation as following
WTAVy = Whrg (2.3)

If we can find WT AV is nonsingular, then (2.3) has unique solution. For this purpose,

the following proposition describes twoiideal cases.

Proposition 1. Let A, L, andi# satisfy either one of the two following conditions,
1. A is positive definite and L= IC,or
it. A is nonsingular and L =AKC!

Then the matrix B = WT AV is nonsingular for any bases V and W of K and L, respec-
tively.

Proof. To prove first case. Let V and W be any basis of K and L, respectively. Since £

and C are the same, we let W = VG, where G is a m x m nonsingular matrix. Then
B=WTAV =G"VTAV.

Because VT AV is positive definite, then we shows that B is nonsingular.
Consider the second case. Since £ = AK, we let W = AV G, where G is a m x m

nonsingular matrix. Then
B=WTAV = GT(AV)TAV.

Since A is nonsingular, the n x m matrix AV is full rank. Then we have (AV)TAV is

nonsingular. So we have a result. ]
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Suppose Proposition 1. hold, then the approximate solution  can be repressed as
F=x0+Vy=mo+VWIAV) "W,

A question is how much the quality of the approximate solution obtained from a gen-

eral projection method? In order to answer this problem, two optimal results will be

established.

Proposition 2. Assume that A is symmetric positive definite and L = IC. Then a vector
T is the result of an (orthogonal) projection method onto IC with the starting vector xo if
and only if it minimizes the A-norm of the error over xo + K, that 1is,

E(z) = min E(z),

r€xo+K
where
E(z) = (A(z, — ), x, — 2)Y? = ||z, — 2| 4.

Proof. Let & = xo + 6, where § & K. Theii

Jin |z, — offy = MR (w0t 0)]|4

= min ldo = dlla” (where dy =z, — x0)

= [[ds =814
Therefore, we have
dy—0 La K.
It would be better to say that ¢ is the A-orthogonal projection of dy onto K. |

Proposition 3. Let A be an arbitrary square matriz and assume that L = AK. Then a
vector T is the result of an (oblique) projection method onto KC orthogonally to L with the
starting vector xo if and only if it minimizes the 2-norm of the residual vector b— Ax over
x € xg+IC, that 1s,

R(Z) = min_ R(z),

r€xo+K

where

R(z) = ||b— Az|.
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Proof. Let & = xo + 6, where 6 € K. Then

in_[|b— Az[|; = min||b — A(w + 6
 in [|b— Azl = min || — A(zo +0)|2

= nin llro — Adll2  (where rqg = b — Axy)

= |[ro — Ad|2

Therefore, we have

ro— Ad L AK = L.
It would be better to say that Ad is the orthogonal projection of 7y onto AK. |

By Proposition 2., the result of the projection process can be interpreted as orthog-
onal projector acts on the initial error. The same is true of the Proposition 3. can be
interpreted as oblique projector acts on the initial residual. The following properties will

state conclusions from the above properties.

Proposition 4. Let T be the approximate solution obtained from an orthogonal projection

process onto K, and let d = .= 7 be the associatéd error vector. Then,

d ={(I—P,)dp,

where P, denotes the projector onto the subspace IC, which is orthogonal with respect to

the A-inner product.
Proof. By the result of Proposition 2. |

Proposition 5. Let & be the approzimate solution obtained from a projection process onto

IC orthogonally to L = AKC, and let 7 = b — AT be the associated residual. Then,
r= (I - P)TQ,
where P denotes the orthogonal projector onto the subspace AK.

Proof. By the result of Proposition 3. [
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2.2 Arnoldi’s Method

We know that Schur factorization reduces a dense matrix A into upper triangular matrix
U by applying unitary matrix V. In natural thought, the unitary matrix V' is made up of
Householder reflectors, and let V- = ViV, ---V,,. Then we have V*AV = U. In the first
step, V;* multiplied on the left of A and V; multiplied on the right of A. Note that V}*
will change all rows of A and V; will change all columns of A. The entries are changed at

each step and we write in boldface as following diagrams:

X X X X X X X X X X X X X X X

X X X X X 0 X X X X X X X X X

X X X X X — 0 X X X X — X X X X X

X X X X X 0 X X X X X X X X X

X X X X X 0 X X X X X X X X X
A VA VAV,

By the same way to apply to other Householder reflectors, we can find this idea had to fail.
Fortunately, Arnoldi’s method suggest a.good idea for us to reduce A to Hessenberg form.
At the first step, we select Householder reflector V5 that leaves the first row unchanged.
In other words, we let V= VoVs - - - Vi,sand omit the reflector V;. We show the first step

as following diagrams:

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X

X X X X X — 0 X X X X — 0 X X X X

X X X X X 0 X X X X 0 X X X X

X X X X X 0 X X X X 0 X X X X
A Vi A V5 AV,

Repeating this process by the same way on V,"AV; by Vs, ..., V,,, we have Hessenberg
form matrix

VAV = (V5 VIV ALV .. V) = Hy,.

Arnoldi’s method [1] is an orthogonal projection method onto X, for general non-
Hermitian matrices. This basic idea is reducing a dense matrix into Hessenberg form by
above way. For a start, we use standard Gram-Schmidt method to construct matrix V.

The Arnoldi algorithm is stated as follow:
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ALGORITHM 1. Arnold:
Choose a vector vy of norm 1

1.

2. Forj=1,2 ..., m Do:

3 hij = (Avj,v;) fori=1,2, ...,
4 wy = Av; = S0 b

. hjv1s = llw;ll2
)

7.

8.

If hjy1; = 0 then stop

Vit1 = w;/hjy1
EndDo

Proposition 6. Assume that Algorithm 1. does not stop before the m-th step. Then the

vectors vy, va, . .., Uy form an orthonormal basis of the Krylov subspace
Ko = spanf{vy, Avy, ..., A" o).
Proof. Follow from the fact of steps 4, 5, and 7 of Algorithm 1. ]

Proposition 7. Denote by V,,, the n x m matriz with column vectors vy, . .., Vm, by Hy,,
the (m + 1) x m Hessenberg matriz whose nonzero entries h;; are defined by Algorithm
1., and by H,, the matriz obtained from H,, by deleting its last row. Then the following

relations hold:
Avm =VnH, + wmeg; = m+1gm7
VIAV,, = H,,

where Wy, = Mgt mUm41-

Proof. From the fact of Algorithm 1, we have

Jj+1

AUj:ZhijUi, j:1,2,...,m.
i=1

Then we have all relations. [ |

By Algorithm 1, we know that Arnoldi’s method uses standard Gram-Schmidt orthonor-
malization to make V,,. In practice, the calculations of Gram-Schmidt formulas turn out
to be numerically unstable. We can gain simple modification by using the modified Gram-

Schmidt algorithm instead of the standard Gram-Schmidt algorithm. Let A = [a4, ..., ay)
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with columns {a;} and P; be an n x n orthogonal projector , projects the vector orthog-

onally onto the space orthogonal to (vq,...,v;_1), of rank n — (j — 1) such that
Pia, Pay Pja;
v = y U2 = T, U= )
[ Pra | | Paas | T 1Payll

with P, = I,,. It is not difficult to see that
Pp=Pry - Pry,Pry.
Then the standard Gram-Schmidt algorithm just to do a single orthogonal projection,
v; = Pa,;.
However, the modified Gram-Schmidt algorithm uses successive orthogonal projections,
vj =Py, - Py, Prya;

Therefore, we know that Gram-Schmidt and modified Gram-Schmidt are equivalent in

mathematics. The modified Gram-Schinmdt’s version of Arnoldi is as follow:

ALGORITHM 2. Arnoldi-Modified -Gram=Schmidt
Choose a vector vy of norm. 1
Forj=1 2, ..., m Do:
w; = AU]‘
Forv=1, ..., Do:
hij = (wj, v;)
W; = W; — hijvi
EndDo
hj—l—l,j = ||wj||2 If hj+1,j =0 then StOp
Vi1 = ;R
EndDo

S %NS O oo~

~
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2.3 FOM, IOM, and DIOM

Let us return to our main subject, to solve the linear system Ax = b, we want to find ap-
proximate solution Z cheaply. By the Arnoldi’s method, we can apply this method to three
types and obtain our goal in this section. The first type is directly applying algorithm
of Arnoldi, called full orthogonalization method or FOM. It should be said with some
emphasis that we use modified Gram-Schmidt process instead of Gram-Schmidt process
from now on. The second type is applying incomplete orthogonalization process in FOM,
called incomplete orthogonalization method or IOM. And the last type is improving IOM

by using LU factorization, called direct incomplete orthogonalization or DIOM.

2.3.1 FOM

Now, given an initial guess zy to the linear system Az = b, we consider an orthogonal

projection method, £ = K = K (Asro),
Km(A, rq) = spanfie, Aro, Aro, ..., A™ ryl,
where ro = b — Axq. Taking v, ="rg/F and B.= |r¢||2 in Arnoldi’s method, then we get
VIAV,, = H,

and by (2.2), we have
VTZ(TO - Avmym) =0.
Then
ym = H, (Viiro) = Hp'(Be). (2.4)

The approximate solution is given by
T = o + VinYm.- (2.5)

The process as above is called the full orthogonalization method (FOM). Let me stress
again that we use modified Gram-Schmidt method to make V,,, and the algorithm is stated

as follow:
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ALGORITHM 3. FOM
ro =b— Axg, B = ||roll2, and vy =19/
Set m x m matriz H,, =0
Forj=1,2 ..., m Do:
?,Uj = AUj
Foriv=1, ..., 7 Do:
hij = (wj, vi)
w; = wW; — hi,jvi
EndDo
hjt1,; = ||w;ll2. If hjz1,; = 0 then set m = j and Goto 12
Vi1 = wi/hji
11. EndDo
12. y, = H, ' (Be1) and ., = 2o + VinYm

~
S 00N T o~

2.3.2 IOM

Sometimes we have a situation that our calculations may be dictated by computer’s
memory limitations. By FOM algerithm, thé:memory cost increases at least as O(mn).
As m increases, the largest value of mythat can be used. We have two remedies to solve
our problem. One remedy is to restart the FOM algorithm for reaching “small” m. And
the other remedy is to truncate the:Arnoldiralgorithm, not using full orthogonalization.
It is to say that we use incomplete. orthogenalization process to make v; and gain a
banded Hessenberg matrix H,, with bandwidth £ + 1, the number k£ maybe dictated by
computer’s memory limitations. The incomplete orthogonalization process with (2.4) and

(2.5), called incomplete orthogonalization method (IOM), is performed as follow.

ALGORITHM 4. IOM

hjt1,; = ||wll2. If hjy1; =0 then set m = j and Goto 12
Visr = w/hj

11. EndDo

12. y,, = H, ' (Be1) and ., = 2o + VinYm

1. 19 =0b— Axy, 0= |roll2, and vi =1/

2. Setm x m matric H,, =0

3. Forjg=12 ..., m Do:

4. w = AUj

5. For i = max{l,j —k+1}, ..., j Do:
0. hi,j = (w,vi)

7. w=w — h; ;v

8. EndDo

9.
10.
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2.3.3 DIOM

We know that FOM and IOM algorithms use the same relation (2.4) to find approximate
solution x,,. These methods must to compute the inverse of H,,, then we need to solve m-
th linear system. To avoid computing the inverse problem, we can modify the algorithm
of IOM. The direct incomplete orthogonalization method (DIOM) is derived from the
structure of the LU factorization, H,, = L,,U,,, of the Hessenberg matrix H,,, which
obtained from the IOM. We assume that no pivoting is used, then matrix L,,, entries
{l;;}, is unit lower bidiagonal and U,,, entries {u;;}, is banded upper triangular, with %

diagonals. Thus the approximate solution is given by

T = To + Vi U, Ly (Ber). (2.6)
Defining the matrix
P =[p1,- . pm] = ViU, (2.7)
and the vector
2 (e PR el (Be: ). (2.8)

By (2.7) and the structure of U,,, we have

m
§ UimPiy = Um,

i=m—k-+1

which show the vector p,, to be updated from the previous p;’s and v,,, then

1 m—1

i=m—k+1

And by (2.8), because of the structure of L,,, we have
[
" Cm

Cm - _lm,m—lgm—l

where

with z; =[] and ¢; = 5. Then (2.6) can be rewritten as

Zm—
Ty = To + [Pm—lapm] |: C ! :|
=T+ pmflszl + Cmpm

= Tm-1 + Cmpm‘
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The algorithm of DIOM is stated as follow:

ALGORITHM 5. DIOM

1. Choose xy and ro = b — Axg, 5 = ||rol|2, and vy = 1o/

2. Form =1, 2, ..., until convergence Do:

3. w = Av,,

4. For i = max{l,m —k+1}, ..., m Do:

d. him = (w,v;)

6. w=w — hjnv;

7. EndDo

8. hont1m = ||wll2 and vy = w/hmi1m

9. Update the LU factorization of H,. If up, = 0 then Stop.
10. Gn={ ifm=1 then B, else =l m-1(m-1}
11. Pm = u b (vm — Z;an_kﬂ uimpi) (for i1 <0 set up; = 0)
12. Ty = Tpp—1 + Cmpm
13. EndDo
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3 Biconjugate Gradient Stabilized Method

Conjugate gradient (CG) and biconjugate gradient (BCG) algorithm are derived in this
chapter. These algorithms generate the optimal approximation from the Krylov sub-
space. When A is symmetric positive definite, CG can be derived from the symmetric
Lanczos process. Contrary to symmetric form, non-symmetric matrix, we use two-sided
Lanczos algorithm (Lanczos biorthogonalization) to construct biorthogonal bases for the
Krylov subspaces corresponding to A and A”. Then BCG can be derived from the Lanc-
zos biorthogonalization procedure. To avoid using A” in BCG, the conjugate gradient
squared method (CGS) can be derived from BCG. The CGS can obtain faster convergent
behavior than BCG for the same computational cost. Since the polynomials in CGS are
square, then rounding errors tend to be more damaging than in the BCG. Finally, we
improved the CGS algorithm such that can smoothen in the convergent behavior, called

biconjugate gradient stabilized method (BICGSTAB).

3.1 Conjugate Gradient Method

The Conjugate Gradient method [8]"is'one of the best known iterative techniques for solv-
ing sparse symmetric positive definite linear systems. The Conjugate Gradient algorithm
can be derived from the DIOM, for the case when A is symmetric positive definite. In the
first, we derive the similar case of FOM when A is symmetric, called Lanczos method.
Given an initial guess xy, we can find the approximate solution z,, by rewriting (2.4) and

Ty = X + mem
Ym = Trﬁl(ﬂel)’

where T}, be tridiagonal matrix of the following form,

Qg 52

Ba o B3
T, = DU (3.1)
ﬁm—l A1 ﬁm

B Qm
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Then the Lanczos method for linear system can be stated as follow:

ALGORITHM 6. Lanczos method for linear systems

1. ro=0b—Axy, B =|rol2, and vy = 1o/

2. Forj=1,2 ..., mDo:

3. wj = Avj — Bjv;_1 (If j =1 then set vy = 0)

4 a; = (wj,v;)

d. wj = w; — Q;v;

6. Bj+1 = ||wjll2- If Bj+1 =0 then set m = j and Goto 9
7. Vi1 = wj/Bjn

8. EndDo

9. T, = tridiag (5;, s, Biy1), and Vi, = [v1,..., 0.
10. Y, =T, (Ber) and x,, = xo + Viyym

We should notice that the steps 3 until 5 of algorithm of Lanczos method can corre-
spond with the steps 4 until 8 of algorithm of FOM as A is symmetric positive definite.
Now, we will follow the same steps as for DIOM to construct direct version of the Lanczos
method. Let T,, = L,,U,, be LUfactorization of.T,,, where L,, is unit lower bidiagonal

and U, is upper bidiagonal. Te take a simple example,

1 m B
Ay 1 2 B3

>\m—1 1 Nm—1 6m
Then an approximate solution x,, is

Ty = 2o + Vi T (Ber) = wo + Vi, U L H(Bey).

Defining the matrix
P =[p1,...,pm| = VinU,,)!

and the vector

Zm = [Zla s 7Zm]T - L;llﬁeb
Because of the structure of U,,, we have
Pm = 7]7;1 [Um - /Bmpm—l]'
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Note that 3, is a scalar computed from the Lanczos algorithm, while n,, results from the
m-~th Gaussian elimination step on the tridiagonal matrix, that is,
_ P

B 77m—17
Nm = Oy — )\mﬁm

Am

By the same way, because of the structure of L,,,

5 = |: Zm—1
m T Y
Cm
in which (,, = —\,,(n_1. Therefore, we can update z,, as

Ty = X + szm =Tm-1+ Cmpm
Then we have the direct version of the Lanczos algorithm, called D-Lanczos, as follow:

ALGORITHM 7. D-Lanczos
1. ro=0b— Axg, (1 = B = |[rolfz, and vi =e/
2. set \y =1 =0 and pyg =0
3. Form =1, 2, ..., until-convergence Do:

4. w = Avy — BmVm—t and @y =-(w, v,,)
5. Ifm>1 then A\ =74 dnd-Gor= —AuCm1
6. Nm = Qm — AmOm
7. Pm = n;ml(vm - ﬁmpm—l)
8. Ty = T—1 + Cmpm
9. If x,, has converged then stop
10. W =W — AU
11. Bt = |wlla and vy = w/ B
12.  EndDo
Proposition 8. Let r,, = b — Az,,, m = 0,1,..., be the residual vectors produced by
the Lanczos and the D-Lanczos algorithms and p,,, m = 0,1,..., the auxiliary vectors

produced by D-Lanczos. Then,

1. Fach residual vector ry, is such that r,, = 0,vn11 where o, is a certain scalar. As

a result, the residual vectors are orthogonal to each other.

2. The auziliary vectors p; form an A-conjugate set, i.e., (Ap;,p;) =0, for i # j.
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Proof. We prove the first part, by Proposition 7.
Ty =b— Az,
=b— A(zo + Vinym)
=70 — (VT + Bt 1Vm 1160 ) Ym
= Bv1 — VimBer — Brnir€pYmUm+1
= —5m+1€£ymvm+1~
For the second part, we will claim that PYAP,, is a diagonal matrix.
PLAP, = U, "V.IAV, U
= U, T.U,,}
=U.TL,.

Note that U, L, is a lower triangular and A is symmetric, then PLAP,, must be a

diagonal matrix. [ ]

Let us now return to CG algorithm. | For the propesition given above, we can derive CG
by imposing two conditions, one is 7;’s orthogonality and the other is p;’s A-conjugacy.
In D-Lanczos, we can find

Tjr1 = Iy + a;p;.
Then the residual r;;; can be repressed as

i1 = 75— o Apj. (3.2)
Since the r;’s are to be orthogonal each other, we have

(7"]' — O!jApj,Tj) =0.

Therefore,
(rj,75)
o = ——. (3.3)
T (Apjirj)
Also by DIOM, we have that the next search direction p;;, is a linear combination of ;1
and pj, it is

Pi+1 = Tj+1 + Bip;.
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Thus,
(Apj, ;) = (Apj,pj — Bj-1pj—1) = (Apj, pj).

Then (3.3) becomes

o = (rj, ) .
(Apj, p;)
Because Ap; orthogonal to p;;;, then

3 = _(Tj+1,Apj)'
! (ps, Ap;)

From (3.2) we have

1
Ap; = —a—j(rjﬂ - Tj)7

then
g = L i (i = m5)) _ (1 7i)
T (Appy) (rj,75)

By Proposition 8. and above manners, we can rewrite D-Lanczos algorithm to conjugate

gradient (CG) algorithm. We write'down CGalgorithm as follow:

ALGORITHM 8. CG
1. ro=0b— Axg, and py = rg.

2. Forj=0,1,..., until convergence Do:
3 a; = (rj,15)/(Apj, p;)

4 Tjy1 = Tj + a;p;

5. Tig1 =175 — OéjApj
6

7

8.

Bi = (rjs1,7541)/ (15, 75)
Pjt1 = Tj+1 + Bp;
EndDo
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3.2 Lanczos Biorthogonalization

3.2.1 Two-Sided Lanczos

We know if the matrix A is symmetric matrix, then the Gram-Schmidt procedure for con-
structing an orthonormal basis for Krylov subspace of A reduces to three term recurrences.
However, the matrix A is the case that A is non-symmetric in general. Fortunately, we can
extend the symmetric Lanczos algorithm to the non-symmetric version, having three term
recurrences. The Lanczos biorthogonalization use a pair of three term recurrences, one
involving A and the other involving AT, to construct biorthogonal bases for the Krylov

spaces corresponding to A and AT, respectively. Judging from the above, we have

Ko (A, v1) = span{vy, Avy, ..., A" 1o}
Kom (AT, w1) = spanfwy, ATwy, ..., (A7) wn },

in which (v;, w;) = 0 for ¢ # j. For the most part, we take (v;,w;) = 1. Then we show

the algorithm as follow:

ALGORITHM 9. The Lanczos. Biorthogonalization Procedure
1. Choose two vectors vy, Wy such that (v;, w,)= 1.
2. /61:51:(),UJ0:U0:0
3. Forjg=12 ..., m Do:

4 a; = (Avj, w;)
5. @j—H == AUj — QU5 — ﬁjvj_l
6. ’lZJj+1 = Aij — ;W — 5jwj_1
7. 5j+1 = |(1A)j+1, @j+1)|1/2. ]f 5j+1 =0 then St0p
8. Bi1 = (0j41,Wj41)/ 011
9. Wi+ = Wi1/ i1
10. Vjp1 = Vjr1/0j11
11. EndDo

Note that the Algorithm 9 selects a manner to ensure that (v;41,w;41) = 1. In that
case, it is a canonical choice to find two scalars (,41,0,41 such that satisfy the equality

as following form

0j+18j41 = (Dj1, Wys1)-
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If the algorithm does not break down, then we have T,, the tridiagonal matrix as below:

651 52
52 (8% 53

5m—1 Am—1 ﬁm
6m (8799

The following proposition will interpret this result.

Proposition 9. If the algorithm does not break down before step m, then the vector v;,

t=1,...,m, and wj, j =1,...,m, form a biorthogonal system, i.e.,

(Uj, w,) = 6@7]‘ 1 S Z,j S m.

.........

and the following relations hold,

AViy = Vollin ot Ot U,
ATWm = WmTTz: -+ ﬁm—‘,—lwm—kle%v

Vel dVim="F=

Proof. We need prove here only the-biorthogonality of the vectors v;, w; with induction.
Since the proof of the above relations issimilar to Proposition 7. Assume now that the
vectors vy, ...,v; and wy, ..., w; are biorthogonal. Claim that (vj11,w;) =0 for ¢ < j as
follow:

When i = j, by steps 5 and 9 of Algorithm 9., then

(vj11,w5) = (0511 [Av; = ajv; — Byvj ], w;)
= 0, [(Avj, wy) — a(vg,w5) = B5(vj—1,w))]

:5;:1[(1]«—(1]» x1—0]=0.

When i < j, by steps 5, 6, 9, and 10 of Algorithm 9., then

(Vj1, wi) = 51‘_431[(14% wi) = a; (v, wi) = B (vj -1, w;)]
= 074 [(vj, ATwi) = 0 — Bj(vj—1,ws)]

= 5;—:1[(Uj7 Bir1Wit1 + osw; + Sw;—1) — B; (Uj—l, w;)].
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Fori < j —1, (vj41,w;) = 0 by inductive hypothesis.
For i = 5 — 1, then

(a1, wi—1) = 05 [(vg, Byw; + ayywj 1 + 65 1w; ) — Bj(vj-1, wj1)]

= 051185 (v, w;) = Bj(vj-1,wj-1)] = 0.

3.2.2 BCG

The Biconjugate Gradient method (BCG) [6] is a oblique projection process onto
Ky = spanf{vy, Avy, -+, A" 1y}

orthogonally to

L,, = span{wy, ATwy, -+, (AT)mflwl},

where vy = ro/||rol|2 and takes wy_totsatistys (v1,w;) = 1. Proceeding in the same way
as for the CG algorithm from .the. syanmetric Lanczos algorithm, we can derive BCG
algorithm from Algorithm 9., the two-sided Iianezos algorithm. First, we use the LU

factorization of T, = L,,U,, and define two 1matrices

P, ¥ rremelhy = VmUn’ll,

By Proposition 9., we have
(P AP, = L) WEAV, U = LT, U, = 1.

Thus, the column vectors p! of P’ and those p; of P,, are A-conjugate. Also, it is known

that p;1 and pj,, can be expressed as

Pj+1 = Tj1 + 55p;. (3.4)
Piy1 = i T Bpj. (3.5)
From (3.5) and A-conjugacy,
(Apj,ri1 + Bp;) = 0.
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Then by (3.2), we have
(Apj, T;-H) _ (741, T;-H)
(Ap;, pj) (75,77)

And like the Conjugate Gradient algorithm, we find the residual r; and 7 are in the same

By =~ (3.6)

direction as for v;41 and wj1, respectively. For these information and by (3.5), we have
(r; — a;Apj, r;‘) =0,

it imply
_ (ij T;)
aj = ————.
(Apj, p})
Putting these relations together by above, we have the BCG algorithm as follow:

ALGORITHM 10. BCG
1. rg=0b— Axy, and choose r§ such that (ro,rs) = 1.
2. po=To, Pop =Ty
3. Forj=0,1,..., until convergence Do:
4 a; = (r5,75)/(Apj, p})
5} Tjt1 = Tj + a;p;
0. Tig1 =175 — OéjApj
7. Tl =T — oszij»
8
9
0
1.

ﬁj = (Tj+1,T;+1)/(Tj,T;)

Pit1 = Tj+1 + Bp;

Pjp1 = Ti1 + 5p;
EndDo
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3.3 Transpose-Free Variants
3.3.1 CGS

The BCG algorithm require multiplication by both A and AT at each step. One thing,
however, is certain: the vector pi,, or w; generated with AT do not contribute to the
solution directly, this mean extra work. For the reason given above, the Conjugate Gra-
dient Squared (CGS) [10] was mainly to avoid using A7 in the BCG and to obtain faster
convergence for the same computational cost. This idea is the residual vector r; and the

conjugate direction ¢;, in the BCG algorithm, can be expressed as
rj = (bj(A)TO? bj = ﬂ-j(A)TOv

where ¢; and 7; are certain polynomials of degree j with ¢o(A) =1 and my(A) = 1. The

same observation applies to the vectors 77 and pj, defined as

ry = o (ANgIL, P} = 7 (AT)rg.

By (3.6) and (3.7), the scalar a; and 3;-are given by
o <¢] (A)TO’ ¢j (AT)r8> 4 (QSJZ(A)TO? TS)
T (A (Ao w (ATYG) (A (A)ro, 1)

(¢j+1(A)7"0, ¢j+1(AT)7’8) _ (¢?+1(A)7"0, 7o)
(¢(A)ro, &;(AT)r) (93 (A)ro,5)

B =

This indicates that the coefficients can be computed if we know rf and ¢?(A)ry and

72 (A)rg.

J

From (3.4) and (3.5), it can be seen that the polynomials ¢;1(t) and 741 (t) satisfy

the recurrences

Gi1(t) = ¢;(t) — ajtm;(t) (3.8)
Tj+1(t) = 1 (t) + Bm;(t), (3.9)
and squaring both sides gives
Fa1) = G3(t) — 20,10, (1) (1) + 0273 (1) (3.10)
i1 (t) = 0541 () + 2850541 ()7 (8) + B3 (2). (3.11)
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Multiplying ¢;(¢) by the recurrence for 7;(t) gives

G ()i (t) = GF(t) + Bi-16 ()1 (1),

and multiplying the recurrence for ¢;41(t) by m;(t) gives

G ()T (t) = ¢ (t)m; () — ot (t)

= ¢7(t) + Bj—1¢;(t)m_1 (L) — atms(t).
Defining three new vectors as
ry = ¢32'(A)T07

bj = 7T32<A)T07
q; = ¢j+1(A),

then (3.10) and (3.11) and (3.13) translate_into

riv1 =r; — o AQri 28¢5 1 =0, Ap;),  (use (3.11))
Pj+1 = Tj+1 + 20,05+ @2%‘:
qj = i + B4+ = e Apy.
It is convenient to define two auxiliary vectors

uj =1+ fj-1gj-1,

dj = 27“]' + Qﬁj—lcb'—l - OéjApj = Uy + qj- (USQ (316))

Utilizing these auxiliary vectors, we rewrite (3.14) and (3.15) and (3.16) as

iy =15 — o Au; + q5)
pj+1 = i1 + B;(q; + Bjp;)

qj = uj — o Ap;.

(3.12)

(3.13)

(3.14)
(3.15)
(3.16)

The first point to notice is the residual of CGS is different from the residual of BCG. In

general, one should expect the result of CGS to converge twice as fast as BCG. Therefore,

the CGS algorithm is given as below.
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ALGORITHM 11. CGS

1. rog=0b— Axgy, and choose r§ such that (ro,r§) = 1.
2. po=1uUg=To

3. Forj=0,1,..., until convergence Do:

4 a; = (r;,75)/(Ap;,75)

5 g = uj — ;Ap;

6. Tiy1 = T + a;(u; + q;)

7. i =15 = o Au; + g5)

8 ﬂj = (rj+17T8)/(rj7T6)

9 Ujr1 = it + 545

0. Pit1 = i + Bi(a; + Bp))

1.

1
1 EndDo
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3.3.2 BICGSTAB

Note that the polynomials in the CGS are square, then the CGS residual usually increases
by approximately the square of the increase of the BCG. But one difficulty in CGS is that
rounding errors maybe lost or overflow and convergence curve maybe oscillate. To avoid
the large oscillations in the CGS, one might try to produce iterates whose residual vectors
are of the form
ri = v;(A)g;(A)ro,

where ¢;(t) is again the BCG polynomial and ;(¢) is a new polynomial which at each
step is chosen to try and keep the smoothing convergence behavior. Specifically, we define
1;(t) by the form

Ui (t) = (1 — wit);(t) (3.17)
in which the scalar w; can be chosen at each step to minimize ||rj41[|. This manner
leads to the Biconjugate Gradient Stabilized (BICGSTAB) [12], the derivation is similar
to CGS. First, leaving the discussion of the scalar w; aside for a moment, by using (3.8)

and the residual polynomial
Vi1 (1)@ (= (L=t5t)ili(t) gy (¢)
= (L= wit) (@) ¢; () — ajte; ()m; (L)), (3.18)

which show that we can compute if we know the products ;(t)m;(t). For this, by using
(3.9) and (3.17), we have

by ()i (t) = i (£)(05(t) + Bj—1mj1 (1))
= ¥;(1);(t) + 851 (1 — wjat) Y1 () w1 (1). (3.19)
In the BICGSTAB scheme, we require two recurrences
rj = ¢;(A)Y;(A)ro,
pi = ¥i(A)m;(A)ro.
According to the above formulas, it follow from (3.18) and (3.19) that
riv1 = (I — w;A)(r; — a;Ap;) (3.20)

i1 = Ti+1 + Bi(L —w;A)p;.
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Finally, we need to express the coefficients «;;, 3;, and w; in terms of the new vectors. Let

p; = (¢5(A)ro, ¢5(AT)rp),

pi = (¢5(A)ro, v;(AT)rg).
From BCG, we have ¢;(A)ry orthogonal to all vectors (AT)*r% with k < j. In addition,
¢;(A) and 1;(A) are polynomials of degree j. In particular, let nij ) and ﬁj ) be the leading

coefficients for the polynomials 1;(A) and ¢;(A), respectively. Then

h T ngj)
pj = ¢j(A)7‘o7w¢j(A Jro | = W’Oj'

1

According to (3.8) and (3.17), we have

1 i+1 j
7§J+ ) _%% )’ niﬁ ) _ wﬂ]g])-

As a result, we now compute [3; :

(Dj+1(A)ro, Y1 (A )7’8> &
o A o, (AT
_ Win (Ao i@ro,15)
(i(d)e ()Toﬂ“o) w;
:<TJ+17TS)
(7,75 wj'

To compute «; by the same way, the polynomials.in the right sides of the inner products
in both the numerator and denominatot-ean be replaced by their leading terms. And we

also know that the leading coefficients for ¢;(AT)ry and 7;(AT)ré are identical. Therefore,
_ (8i(A)ro, ¢5(AT)r)
T (Amy(A)ro, i (AT)rg)
_ (9i(A)ro, v;(AT)rg)
(Am;(A)ro, ¥ (AT)rg)
_ (Wi(A)¢;(A)ro, 75)
(Axpj(A)m;(A)ro, ()
_ (7"]-,7"3)
(Apj7 r5) ‘
Lastly, let us now return to find the scalar w; to be minimize the residual r;;; and by

(3.20), we have

g_lgé [7j41ll2 = gjlgé (I —w;jA)(rj — a;Ap;)|l2

= gé% (I —w;A)s;]l2
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in which s; = r; — ;Ap,;. By Minimal Residual iteration, the optimal value for w; is

given by
(Asj, s))
(ASJ', ASj) ’

Finally, we rewrite the residual 7,4, in the following form

w; =

rivr =15 — aAp; — wiAs; = r; — Alayp; + wjs;).
Then an approximate solution x;;; can be repressed as
Tjy1 = Tj + a;p; + W;s;.
Thus, we have the BICGSTAB algorithm as follow :

ALGORITHM 12. BCGSTAB
1. ro="b— Axgy, and choose 1§ such that (ro,75) = 1.

2. Po =To

3. Forj=0,1,..., until convergence 4)0:
4 Qj = (ijrg)/(ApﬁTS)

5 Sj = T’j — OéjApj

0. w; = (Asj, s5)/(AsAsy)
7. xj—f—l = [Ej + ajpj + w_ij
8

9

0

1.

rip1 =85 — w;As;
o (rrg) ooy
;= (rj,r¢) X wj
Pj+1 = 11 + Bi(pj — w;Apj)
EndDo
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4 'Transpose-Free QMR Method

In this chapter generalized minimal residual (GMRES), quasi-minimal residual (QMR),
and transpose-free QMR (TFQMR) algorithms are derived. In line 12 of FOM, we find
vector ¥, can be obtained by dealing with the problem of inverse matrix. We will discuss
it in different way from the least square method. In the first section, we derive GMRES
and this variations by relying on application of Arnoldi’s method. From the GMRES
algorithm, we took advantage of the same techniques of IOM and DIOM to construct
Quasi-GMRES and direct version of QGMRES, called DQGMRES. In the second sec-
tion, we introduce QMR method. In algorithm of QMR, we will find an approximate
solution x,, just as well as algorithm of GMRES, except for constructing the matrix T},
or H,,. In the last section, we introduce TFQMR method. This method is derived from
the CGS algorithm. We shall have more to say about TFQMR later on.

4.1 GMRES, QGMRES; and DQGMRES

In this section, we will developr GMRES; QGMRES, and DQGMRES as well as the sec-
tion 2.3. Only taking notice of-onéthing is to derive DQGMRES by using QR factor-

ization, not LU factorization.

4.1.1 GMRES

The GMRES [11] is a oblique projection method based on taking L,, = AK,,, in which
K is the m-th Krylov subspace with vy = 7¢/||ro|l2. Now, we construct a basis for /C,,
by using Arnoldi’s method. Then resulting projection, oblique projection, should satisfy

Proposition 3. If the approximate solution x,, = ¢ + V,,ym, then

b— Az, =b— A(zo + Vinym)
=To— Avmym
= Bvl - Verllf[mym

- m+1(ﬁ€1 - Hmym)
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So the next guess x,, should satisfy

i b— A =|b—A
Lin | zll2 = || T |2
= |’Vm+1(ﬁ€1 - Hmym)HQ
- ||661 - ﬁmymH%

and the claim is that solving the least squares problem is inexpensive to compute. By the

above relations, this gives the following algorithm.

ALGORITHM 13. GMRES
ro = b — Axg, B = [[roll2, and v; =19/
Set (m + 1) x m matriz H,, =0
Forj=1,2 ..., m Do:
wj = AU]'
Fori=1,...,7 Do:
hij = (wy, v;)
w; = W; — hijvi
EndDo
hjv1,; = ||w;ll2. If hjt1,; =:0sthen set m = j and Goto 12
Vi1 = W/
11. EndDo
12.  Compute y,, the minimizer-of ||Bey —Huyllz and ., = 10 + V.

~
S0 NS G o~

4.1.2 QGMRES

The same observation applies to QGMRES, we can use the same technique to derive an
incomplete version of the GMRES algorithm, Quasi-GMRES (QGMRES). The algorithm
of QGMRES is follow:

ALGORITHM 14. QGMRES

1. Tozb—Al’o,ﬁ:H’I“()Hz,_and’Ul:T()/ﬁ
2. Set (m+ 1) x m matriz H,, =0
3. Forjg=1,2 ..., m Do:
4. w = Av,
5. For i = max{l,j —k+1}, ..., j Do:
0. hij = (U),UZ‘)
7. w=w — hijUi
8. EndDo
9. hit1 = llwllz and vy = w/hjia,
10. EndDo
11.  Compute y,, the minimizer of ||Be1 — Hyyllz and z, = 20 + Vil
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4.1.3 DQGMRES

But before we come on to introduce DQGMRES, let us pause here to look briefly at
transforming the Hessenberg matrix into upper triangular by using Givens rotation. In

the first, we define the rotation matrices

1

c S — TOW 1
—8; ¢ — row ¢ + 1

with ¢ + s? = 1. If m = 4, the sample example, we would have

hii hia his hia
har hao  hassdioa

Hy = hag-has hsg e, Go =
hyz | Ty

0
0
c1  S1
R
le 1
1
1

hll
851 = —F———e, (1=~
Vhi + h3, Vhi + h3,

to obtain the matrix H f) and right-hand side

1 1 1 1
hg1) th) h§3) hg4) ( af

oo™

= 661.

Then premultiply H, by

with

1 1 1
Hy" = hsy hss hgs |2 91 =
hyz  hay
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Be continued until the 4-th rotation is applied by the same way, which transform the Hy

into one involving the matrix and right-hand side,

PRy RY R "

o TR
1= hsg  hay |» 94= | 73
hﬁ) V4

0 75

higry hy Y
S; = +, , Ci = ¢ (41)
i—1 i—1
N R Y (s CER
Define (@),,, the product of matrices €2;,
Qm = QQO—l s Ql
and
= Qm(ﬁel) = ('717 = 77m+1>T'
Then
min 1Ber = Hylfe= min |G — Rinyllo-
Proposition 10. Let Q;, i = 1,...,m be the rotation matrices used to transform H,,
into an upper triangular form and Ry, Gm = (V1,-..,Yms1)? the resulting matriz and

right-hand side. Denote by R,, the m x m upper triangular matriz obtained from R, by
deleting its last row and by g,, the m-dimensional vector obtained from g,, by deleting its

last component. Then,

1. The rank of AV,, is equal to the rank of R,,. In particular, if v, = 0 then A must

be singular.
2. The vector y,, which minimizes ||Be; — Hyuyllo is given by
Ym = R G
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3. The residual vector at step m satisfies
b— Az = Vi1 (Ber — Hiym) = Vi1 Q) (Yms1€ms1)

and, as a result,

16— Azplle = [Vimsal-

We need not elaborate or proof on above proposition, it is treated much more ade-
quately in [9, p.169]. We can find y,, in Proposition 10., then the direct version of
QGMRES, called DQGMRES,; is quite similar to DIOM. For example, if 5 x 4 Hessenberg
matrix with bandwidth equal to 3, this is

hi1 i 5}

) hoi hoy  hos 0
H, = hsy hss hss |, go=1| O
haz  haa 0

Multiply the Hessenberg matrix &y and go by €, then the resulting is R4y = g4, with

11 T12 713 il

B Uy 2 V2
Ry = T33-T3 s Ja= | 73
T44 Bz

0 Vs

Therefore, the general approximate solution is given by
Ty = To + VmRy_nlgm

where R,, and g,, are obtained by removing the last row of R, and §,,, respectively.

Defining the matrix

P =p1,- s pm] = VR

and the vector

in which

Tm = Cmfy(mil) )
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(m—

where v, U is the last component of the vector g,,_; and ¢, defined by (4.1). Thus, z,,

can be written as

xm:xO—i_ngm

=T + Pm—lgm—l + YmPm

= Tm—1 1 YmPm-
ALGORITHM 15. DQGMRES

1. ro=>b— Axy, v1 = ||roll2, and v1 = ro/m1

2. Form =1, 2, ..., until convergence Do:

3. w = Av,,

4. For i = max{l,m —k+ 1}, ..., m Do:

5. h,m = (w, Ui)

6. w = w — hjyv;

7. EndDo

8. hms1m = ||wll2 and vy = w/hTH,m

9. Update the QR factorization of H,,, i.e.,
10. Apply Q, i=m-k, . .apitllito the m-th column of H,,
11. Compute the rotation coefficients.c,, sm by (4.1)
12. Tm+1 = —SmTm
135. Ym = CmVm
14. honm = Cmhimm + 3mhm+1,m (: \/h’gn—i-l,m + hgnm)
15. Pm = (Um - Z?lznl,k hzmpz)/hmm
16. Tm = Tm-1 + YmPm
17. If |Yma1]| is small enough then stop.
18. EndDo
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4.2 Quasi-Minimal Residual

In BCG algorithm or Proposition 9., we know those used the Lanczos biorthogonaliza-

tion procedure to make

in which T, is (m + 1) x m tridagonal matrix of the form
_ T,
Tm N |: 5m+leﬁ :| .

Consider the DQGMRES algorithm make

Avm = Vm+1Hm

in which H,, is (m + 1) x m banded matrix of the form

_ H,,

Hm B [ h’m—i—l,meg‘l :| '
If a bandwidth of H,, equal to three. Then we can find 7,, and H,, are similar. Then we
can derive QMR by the same way.as for GMRES or DQGMRES. In the first instance, if

we have an approximate solution x,, \=q + V,,yn»then

b — Axgpp=0b —Alro + Viuym)
=To— Avmym
= ﬁvl - Vm+1Tmym

= m+1(ﬁ61 - Tmym)'
So the next guess x,, should satisfy

i — Azl =b— A
min b= Aalls = [b = Azala

- ”Vm-&-l(ﬁel - Tmym)H?

< Vintallz - [18er = Tnyml2-

Since the columns of V,,,; are not orthogonal in the Lanczos algorithm, it would be
difficult to choose y,, to minimize the residual. However, we can easily choose to minimize

the second factor, ||Be; — Tpym|l2- Then we write down the algorithm as follow:
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ALGORITHM 16. QMR

1. rog=>b— Axg, v = ||roll2, w1 =v1 =19/71 and f; =61 =0
2. Form =1, 2, ..., until convergence Do:
3. am = (AU, Wiy)
4. Umt1 = AUy — QU — BiUm—1 (vg = 0)
5. Wny1 = AT W, — apwy, — pwm—1 (wo = 0)
6. Oma1 = |(Oms1, Wins1) |2 If Oppyr = O then stop
7. ﬂm—&-l = (@m+17 wm+1)/5m+1
8. W1 = Wit/ Bt
9. Vmt1 = Oms1/Oms1 B
10. Update the QR factorization of T,,, i.e.,
11. Apply Q;, i =m —2, m — 1 to the m-th column of T),
12. Compute the rotation coefficients ¢, sm by (4.1)
15. Ym+l = —SmVm
14. Ym = CmTm
15. Qi = CnQm + SmOma1
16. Pm = (Um - Z?i;nl_z timpi)/tmm
17. T = Tm—1 T+ YmPm
18. If |Ym+1]| is small enough then stop.
19. EndDo
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4.3 TFQMR

The Transpose-Free QMR (TFQMR) [7] for solving general non-Hermitian linear systems
is derived from CGS algorithm. By incorporating the QMR approach, residual norm
of TFQMR produces smoother convergence behavior than CGS. In the first, we derive
TFQMR from the CGS algorithm. We double all subscripts in the CGS algorithm, that

is to say
Qi = (r25,70)/ (Ap2;,70) (4.2)
G2 = U2; — Oészpzj (4-3>
Tojra = Toj + (U + Ga5) (4.4)
Tojro = T2j — Qo;A(ug; + qo)) (4.5)
Baj = (r2j42,70)/(raj,75) (4.6)
Ugjya = T2j+2 + [P2q2; (4.7)
P2 = Ugjta + Bai(qa; + B2jp2;) (4.8)

Observe that approximate solution #a; o in (4.4) can be split into the following two half-

steps:
Toj11 ' ="To; + QajUsg; (4.9)
Tojro = Tojy1 + Q2jq2;. (4.10)
When m is odd, set
Um = m—1
{ Oy = Q1 <4'11>

Then (4.9) and (4.10) can be simplified by (4.11). Whether m is even or odd, the single
equation is

Tm = Tm-1 T Qm—1Um—1-

It must be noted that the intermediate iterates x,, does not exist in the original CGS

algorithm with m is odd. And we define the n x m matrix,

Um = [UO, c. ,um,l]

48



and the vector

Zm = (g, ..., Q1)

General iterate z,, and residual vector r,, are

T = Tl + Oy 1 Upn—1 (4.12)
Ty = Tl — Q1 AUp—1 (4.14)
=19 — AU, 2m.- (4.15)
From a result of (4.14), we have
1
A'U/m,1 = (T’m,1 - Tm)-

Am—1
Judging from the above relation, we can translate into matrix form, this relation becomes
A= Ryni1Bm (4.16)
where R,,41 is the n x (m + 1).matrix;

R pr=dro,r1, - <o )

and where B,, is the (m + 1) x M matrix with the following form,

1 0 o --- 0
-1 1 0 0
_ 0o -1 1 0 1
B, = ) X diag{—,—, , }
. Qp O Om—1
o --- 0o -1 1
0 0 0 -1

Let the (m + 1) x (m + 1) scaling matrix is
Am—i—l = diag{éo, (517 e 75m}7

in addition, each inverse of diagonal element can rescale the corresponding column of

R, 11 equal to one. Then, the relation of (4.16) becomes

AUm = RerlA;i_lAerle

= Vi1 Hyp, (4.17)
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if we define the n x (m + 1) matrix V41 = Ry, and (m + 1) x m matrix H, =

A i1 By, With this result, equation (4.15) becomes

Tm =70 — AU zm = Ryt [61 — Bmzm}

= Rm+1A77n{H [5061 — Am+1Bmzm:| . (418)

This will lead us further into a consideration of whether we can exploit above relations by

QMR. But before we come on to that, let us pause here to look at the following lemma.

Lemma 1. Let R, be the m x m upper part of the matriz Q1 H,, in FOM and let R,
be the m x m upper part of the matriz Qn,H,, in GMRES. Similarly, let §,, be the vector
of the first m components of Q,,—1(0e1) and let g,, be the vector of the first m components
of Qm(Be1). Define

Jm = Bl Gm,  ym = Ryl g

the y wvectors obtained for an m-dimensional FOM and GMRES methods, respectively.

Then
Y — Ym—1 JF CQ Zj . Ym—-1
" 0 ' M 0

wn which ¢, is the cosine used<n the m=sth rotation(2,,, as defined in DQGMRES.

We need mention here only the result of lemma, this proof of lemma can be seen in
[9, p.180]. Let us return to our main subject to derive TFQMR. By above lemma, we
know it is also valid for the CGS/TFQMR pair. This relation provides a starting point to
derive the TFQMR algorithm. Thus, the TFQMR iterates satisfy the following relation

Ty — T1 = 2, (2595 —2,,1). (4.19)
Setting the vector
1
Ay = —— (295 — 2, 1) (4.20)
Am—1
and the scalar
T = Cop Q1. (4.21)

Then (4.19) can be expressed as
T = Tyne1 + Do, (4.22)
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Moreover, by (4.12), (4.19), (4.20), and (4.21), we have

1
dy = —— (2575 = 2050) + (25,57 = 2ms) = (@1 — Ts)]
Om—1
_ 1 cas _ 1 B
= Up—1 + (T — Tm—2) (Tm-1— Tm—2)
Om—1 Om—1
1—¢c%_
= U1 + —ml(xggf — Tpm_2)
Am—1
1—¢2 _
= Um-1 + B mo1 It dm—1~
Cn—1 Om—1

Define the m-st tangent by 0, = $,,/cm, then we have the new relation as below

02 1

dpy1 = Uy + . (4.23)

am
By the structure of H,, in (4.17), the angle used in the (j + 1)-th rotation can obtain by
(4.1), that is

Sj+1 = —%, Ci+1 = #, Oj41 = 7_]'+1, (4.24)
where 7; be (j + 1)-th diagonal element of €2; - - Qi H,,. Moreover, after j + 1 rotations,

next diagonal element d,,; becomes 7;ggywhich is

7—454
JjYj+1
Ti+1 = 041 X iy = —F——— > o
= —T; X Sj41 = _Tj0j+lcj+l~ (425)

Since only the square of scalar 6;,; is invoked in the update of the direction d,,;;. We

can ignore the negative symbol in (4.24) and (4.25). So far, we have seen the following

relations:
° dm+1 = Uy + (egz/am)nmdm
L em—i-l — m+1/7—m
® Cpt1 = (1 + 972n+1)_%

Tm+1 = Tm9m+1cm+l

_ 2
® Nm+1 = Crpp1%m-
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The question which we must consider next is to derive the remain terms. We note a little
earlier that the vectors r,, in (4.14) are no longer the actual residuals, we rewrite the new

notation by w,,. Then we have
Wy = Wm—1 — am—lAum—l-

We may note, in passing, that the scalar ¢,, equal to ||wy,|l2. Setting the new vector

Uy; = Apo; and multiplying (4.8) by matrix A,

Vo = Aug; + Poj_2(Aqej—2 + Boj—2Ap2j_2)

= Aug; + Boj_2(Augj_1 + Poj_ov2_2). (by (4.16))
The same observation applies to (4.3) and (4.7), we have

Ugj4+1 = Uzj — QU2

Unj g S Ms Ey F- BojUnjt1-
To sum up all relations above, we have TEFQMR algorithm as follow:

ALGORITHM 17. TFQMR

1 wOZUOZTOZb—Al’Q,’Uo:AUO,dOZO
2 T0 — HT()HQ, 90:770:0.
3. Choose r§ such that py = (r§,10) # 0.
4. Form =0, 1,..., until convergence Do:
d. If m is even then
o Uil = QU = P/ (Vi 75)
7 Umt1 = Up — Uy
8 EndlIf
9. Wil = Wy — O Aty
10. A1 = U + (02, / Q) i,
11. Oms1 = Wit lle/Tms cmyr = (1 + an-',-l)_%
12. Tt = TmOma1Cma1; Mme1 = cfnﬂam
13. Tl = T+ Dmt1dmt1
14. If m is odd then
15. Pm+1 = (wm+17 718)? Bm1 = perl/pmfl
16. Uma1 = Wint1 + Brm—1Um
17. U1 = Atma1 + Bm—1 (At + Bin—1Um—1)
18. EndIf
19. EndDo
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5 Algorithm and Numerical Results
5.1 General Solution Algorithm

In the first, we refer to the finest grid (with 41 x 129 nodes) as level 1. Two additional
coarser grids are constructed by successively discarding every other mesh line from one

grid to the coarser one. These grids are numbered with increasing level number, we have

e level 1: 41 x 129 grid,
e level 2: 21 x 65 grid,

e level 3: 11 x 33 grid.

According to the characteristic of the results are given in section 1.2, we have a nonlinear

system of the discretized equations in residual form,
F(®) = 0. (5.1)

Assume that nonlinear system start fromi & initial guess ®, and have an accurate solution
®,. The vector ® has N.N,N,.three components for two dimensional problems, where
N, is the number of the solutionicomponents; N, and NV, are the number of grid points
in the r and z direction, respectively. 4 order to stabilize convergence, we use a damped
Newton method [3] instead of Newton method.* Suppose an initial solution @, is close
to the solution @, enough, the equations (5.1) can be solved by using a damped Newton
method, that is

J(@,)(Ppyi1 — D) = =N F(P,), n=0,1,... (5.2)

where J(®,,) is the Jacobian matrix at ®,, with the form

_OF

J(@a) = =

(Pn),

and the damping parameter )\, is in the range of (0 < A, < 1). We denote the update

vector as AP, = ¢,,.; — &, and (5.2) with convergence tolerance
| A @2 < 107°.

In our numerical applications, we use likely modified Newton method in (5.2). This means
that the Jacobian matrix is re-evaluated only twice Newton iterative step. If the rate of

convergence is too slow, we form a new damping parameter.
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We know that the governing equations of a combustion process are difficult to solve
and a good initial solution estimate for an iteration process is hard to determine. For
eliminating these difficulties, a time relaxation process is used. Due to the nonlinearity of
the governing equations of a combustion process, we can use a pseudo transient process to
produce a parabolic in time problem and bring the starting estimate into the convergence
domain of the steady Newton method. Thus, the unsteady form of the governing equations

can be obtained by adding the unsteady term to the steady-state equations. We have

(I)n—l—l - (I)n

F(@ni1) = F(®uin) + D=5

—0, (5.3)

where D is a diagonal scaling matrix with nonnegative entries and At = ¢+ 7 ig n-st
time step. In our calculations of program, in time dependent part, we use modified Newton
method to solve the nonlinear system (5.3) which is similar to the system of equations in
(5.2). In steady-state part, we use one way multigrid method and damped Newton method
to solve the nonlinear system (5.1). .One way multigrid method means that the coarser
meshes are used only to initialize the next-finer ones. Our goal is to obtain a converged
numerical solution on level 1.=Fer that purpose, we solve the nonlinear problem (5.1)
and (5.3) starting at the coarsest level“and ‘ending at the finest. To summarize above

informations, we write down these phases as following sample processes:

1. Time stepping on level 3 (in coarsest level).

2. Steady Newton iterations on level 3 and interpolation of the numerical solution from

level 3 onto level 2.

3. Steady Newton iterations on level 2 and interpolation of the numerical solution from

level 2 onto level 1.

4. Steady Newton iterations on level 1.

5.2 Numerical Results and Discussion

In this section, we present three Krylov subspace methods of numerical results, these
methods are BICGSTAB and GMRES and TFQMR. First, a contour plot of the computed
temperature for the flame sheet model is shown in Figure 2 by using MATLAB. For

computing efficiently in programs, we combined with a Gauss-Seidel left-preconditioner.
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Table 1:
Numerical results for one way multigrid during
the time stepping phase (level 3).

Linear solver | Iterations | Residual | CPU time
(seconds)
BICGSTAB 91 0.268043 4.0
GMRES 113 0.282073 4.0
TFQMR 384 0.24029 10.0

We left the problem, how to choose preconditioner matrix is, untouched. In our numerical
calculations, the numerical result during time stepping are presented in Table 1 and
Figure 3 is the residual norm during the time stepping phase. The Table 2 contains
the results for the one way multigrid and damped Newton methods in steady-state. In
addition, a speed-up is with respect to the unilevel solution time (412.0). Table 3 and
Table 4 and Table 5 indicate that total numbers of iteration performed on each level
during the steady-state. We presentsesidual.norm on each level during the steady-state
Newton iterative steps in Table, 6. Finallyywe compare GMRES with others in maximum
temperature of flame by using: Ctor FORTRAN language in Table 7. These diagrams
helps us to interpret the somé facts.” First,-GMRES gives the best execution time in
our program. Secondly, BICGSTAB gives thedess iterations than the others, and gains
the smoother residual norm during the time stepping phase. However, if we take the
numbers of iteration on finest level as a criterion, then GMRES is just slightly better
than BICGSTAB. Furthermore, we can find TFQMR is more expensive than all cases in
our experience. Thus, we see that BICGSTAB and GMRES are better solvers to solve

the flame sheet model.
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Numerical results for damped Newton with one way multigrid during

Table 2:

the steady-state phase.

’ Linear solver \ Operation \ level 1 \ level 2 \ level 3 ‘
BICGSTAB | Total CPU seconds | 293.0 | 29.0 4.0
Speed-up in time 1.4 14.2 103.0
GMRES Total CPU seconds | 190.0 | 25.0 5.0
Speed-up in time 2.2 16.5 82.4
TFQMR Total CPU seconds | 412.0 | 65.0 5.0
Speed-up in time 1.0 6.3 82.4

Table 3:
Numerical results for one way multigrid.
BICGSTAB(i) represents the total number of BICGSTAB iterations

performed on level i during the steady-state Newton iterations.
’ Total levels \ Level 3 \ Level 2 \ Level 1 ‘

BICGSTAB(1) - - 672
BICGSTAB(2) - 350 676
BICGSTAB(3) 192 148 269
’ Total iterations | 192 T 498 ‘ 1617 ‘
Table 4:

Numerical resultsfor one.way multigrid.
GMRES(i) represents. the total number of GMRES iterations

performed on level ¢ during the steady-state Newton iterations.
’ Total levels ‘ Level 3 ‘ Level 2 ‘ Level 1 ‘

GMRES(1) - - 609
GMRES(2) - 410 551
GMRES(3) 361 336 280
’ Total iterations \ 361 \ 746 \ 1440 ‘
Table 5:

Numerical results for one way multigrid.
TFQMR(z) represents the total number of TFQMR iterations

performed on level ¢ during the steady-state Newton iterations.
’ Total levels \ Level 3 \ Level 2 \ Level 1 ‘

TFQMR(1) - - 1042

TFQMR(2) - 746 | 1418

TFQMR(3) 324 | 1324 [ 1798
| Total iterations | 324 | 2070 | 4258 |
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Table 6: Residual norm on level ¢ during the steady-state Newton iterative
steps by using GMRES as linear solver.
*. bracket represent the new residual norm taking damped parameter A\, = 0.5

’ Newton iteration ‘ Level 3 ‘ Level 2 ‘ Level 1 ‘

original 1.979 x 1071 | 3.998 x 10! 2.507 x 10?
1 1.249 x 1072 | 1.259 x 10% | 5.736 x 10%(1.665 x 10%)*
2 8.311 x 107* | 3.571 x 10! | 3.299 x 10%(1.274 x 10%)*
3 1.004 x 10~* | 2.863 x 10" 1.478 x 102
4 5.234 x 10~° | 7.470 x 1073 1.185 x 10!
5 - 2.144 x 107% 4.134 x 1072
6 - - 2.961 x 1074

Table 7: Compare GMRES with others in maximum temperature of flame
by using C'or FORTRAN.

| Solver | C | FORTRAN| C - FORTRAN |
GMRES - GMRES [ 0.0000 [ 0.0000 0.0015
GMRES - BICGSTAB [ 0.2593 [ 0.1846 0.1848

GMRES - TFQMR | 0.2801 - -
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Figure 2: Contour plot of the temperature
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