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Numerical Methods for Computing Flame
Sheet Model

Student: Tzong-Tzer Lin Advisor: Dr. Li-Ming Yeh

Department of Applied Mathematics
National Chiao Tung University

Abstract

The differential equations of flame sheet model are highly nonlinear and strongly
coupled system. To solve these equations numerically, we use damped Newton’s
method combining with one way multigrid method and Krylov subspace meth-
ods. The purpose of this thesis is to survey effective Krylov subspace methods
for this model, for example, biconjugate gradient stabilized method (BICGSTAB),
generalized minimum residual method (GMRES), and transpose-free QMR method
(TFQMR). A code for the flame sheet model in C language is developed and nu-
merical results will be presented and discussed in this work.
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1 Introduction

Primitive formulation for laminar diffusion flame in three dimensional rectangular co-

ordinates can be transformed into the vorticity-velocity formulation by using two dimen-

sional cylindrical coordinates. A detailed derivation of the vorticity-velocity formulation

can be found in [4, 5]. Usually a flame sheet model [2] is used to initialize multidimen-

sional diffusion flames. The governing equations for flame sheet model can be derived

from equations for finite rate diffusion flame model in vorticity-velocity formulation. The

flame sheet model is based on the assumptions that the chemical reaction in a laminar

diffusion flame is a one-step irreversible reaction and that the conversion of reactant into

stable problem is infinitely fast. In the reaction zone, fuel and oxidizer are separated;

fuel and oxidizer react in stoichiometric proportion. With these assumptions, no fuel

appears on the oxidizer side and vice verse. Because the differential equations of flame

sheet model are highly nonlinear and strongly coupled system, it is extremely difficult to

analyze mathematically. Newton’s method is a standard method in solving highly nonlin-

ear and strongly coupled system of partial differential equations. Combing with multigrid

method and Krylov subspace methods, we can solve the flame sheet model numerically.

Purpose of this thesis is to survey efficient Krylov subspace methods and apply these

methods to solve the flame sheet model. We shall concentrate on three Krylov subspace

methods, namely biconjugate gradient stabilized method (BICGSTAB), generalized mini-

mum residual method (GMRES), and transpose-free QMR method (TFQMR). This work

is organized in the following ways: In the first chapter, we discretize the governing equa-

tion for flame sheet model by using centered difference scheme. The convective terms are

evaluated by using upwind differenced scheme to preserve monotonicity. In the second

chapter, we introduce the projection method and use Arnoldi’s method to construct the

Krylov subspace. In the third and fourth chapters, we will introduce BICGSTAB, GM-

RES, and TFQMR methods in mathematical level. In the last chapter, we present some

numerical results and give a discussion of these results.
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1.1 The Governing Equations for Flame Sheet Model

The flame sheet equations consist of the total mass and momentum conservation equa-

tions, constituting the flow field problem and using vorticity-velocity formulation of the

steady-state, coupled with a conserved scalar equation. The governing equations for flame

sheet model with axis symmetry can be stated in the following form.





∂2Vr

∂r2
+

∂2Vr

∂z2
=

∂ω

∂z
− 1

r

∂Vr

∂r
+

Vr

r2
− ∂

∂r

(
V · ∇ρ

ρ

)
,

∂2Vz

∂r2
+

∂2Vz

∂z2
= −∂ω

∂r
− 1

r

∂Vr

∂z
− ∂

∂z

(
V · ∇ρ

ρ

)
,

∂2µω

∂r2
+

∂2µω

∂z2
+

∂

∂r

(µω

r

)
= ρVr

∂ω

∂r
+ ρVz

∂ω

∂z
− ρVr

r
ω +∇ρ · ∇V 2

2
−∇ρ · g

+2

(
∇(div(V )) · ∇µ−∇Vr · ∇∂µ

∂r
−∇Vz · ∇∂µ

∂z

)
,

1

r

∂

∂r

(
rρD

∂S

∂r

)
+

∂

∂z

(
ρD

∂S

∂z

)
= ρVr

∂S

∂r
+ ρVz

∂S

∂z
,

where V = (Vr, Vz) is the velocity vector with radial Vr and axial Vz components, ω =

∂Vr

∂z
− ∂Vz

∂r
is vorticity, and S is the conserved scalar. In addition, the scalar ρ is the mass

density of the mixture, measured as g/cm3, given by the equation of

ρ =
PW

RT

where P is the pressure, R is the universal gas constant, T is the temperature, and W is

the mean molecular weight of the mixture. The scalar µ is the viscosity coefficient of the

mixture, measured as g/(cm · S), given by the equation of

µ = µ0

(
T

T0

)r

where r = 0.7, T0 = 298K, µ0 = 1.85 × 10−4. The scalar D is a diffusion coefficient,

measured as cm2/s, given by the equation of

ρD =
µ

Pr

where Pr = 0.75. And the vector ∇β = (∂β
∂z

,−∂β
∂r

) is curl of β.
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1.2 Discretized Form for Flame Sheet Model

We use the finite difference approximations to discrete the governing equations for flame

sheet model on the grid points in the computational domain, shown in Figure 1, which

cover from r = 0 to 7.5cm in the radial direction and from z = 0 to 30cm in the axial

direction. In the diffusion and source terms, we use standard centered differences. In the

axial, we use a monotonicity preserving upwind scheme to discrete the convective terms.

Next we write down the discretized form for each equation.

Radial Velocity :

∂

∂r

(
r
∂Vr

∂r

)

(i)

+ r
∂2Vr

∂z2

(ii)

− r
∂ω

∂z

(iii)

− Vr

r

(iv)

+ r
∂

∂r

(
V · ∇ρ

ρ

)

(v)

= 0.

(i) For i = 3 ∼ (n− 1) and j = 2 ∼ (m− 1)

∂

∂r

(
r
∂Vr

∂r

) ∣∣∣∣∣
i,j

≈ 1

ri+1/2 − ri−1/2


r

∂Vr

∂r

∣∣∣∣∣
i+1/2,j

− r
∂Vr

∂r

∣∣∣∣∣
i−1/2,j




≈ 2

ri+1 − ri−1

(
ri+1 + ri

2

(Vr)i+1,j − (Vr)i,j

ri+1 − ri

− ri + ri−1

2

(Vr)i,j − (Vr)i−1,j

ri − ri−1

)
.

For i = 2 and j = 2 ∼ (m− 1)

∂

∂r

(
r
∂Vr

∂r

) ∣∣∣∣∣
2,j

≈ 1

r2+1/2 − r1


r

∂Vr

∂r

∣∣∣∣∣
2+1/2,j

− r
∂Vr

∂r

∣∣∣∣∣
1,j


 where r1 = 0

≈ 2

r2 + r3

(
r2 + r3

2

(Vr)3,j − (Vr)2,j

r3 − r2

)
=

(Vr)3,j − (Vr)2,j

r3 − r2

.

(ii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

r
∂2Vr

∂z2

∣∣∣∣∣
i,j

≈ ri
1

zj+1/2 − zj−1/2


∂Vr

∂z

∣∣∣∣∣
i,j+1/2

− ∂Vr

∂z

∣∣∣∣∣
i,j−1/2




≈ ri
2

zj+1 − zj−1

(
(Vr)i,j+1 − (Vr)i,j

zj+1 − zj

− (Vr)i,j − (Vr)i,j−1

zj − zj−1

)
.

(iii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

r
∂ω

∂z

∣∣∣∣∣
i,j

≈ ri
ωi,j+1 − ωi,j−1

zj+1 − zj−1

.

3



(iv) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

Vr

r

∣∣∣∣∣
i,j

≈ (Vr)i,j

ri

.

(v) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

r
∂

∂r

(
V · ∇ρ

ρ

) ∣∣∣∣∣
i,j

= r
∂

∂r

(
Vr

ρ

∂ρ

∂r

) ∣∣∣∣∣
i,j

+ r
∂

∂r

(
Vz

ρ

∂ρ

∂z

) ∣∣∣∣∣
i,j

≈ ri

ri+1/2 − ri−1/2


Vr

ρ

∂ρ

∂r

∣∣∣∣∣
i+1/2,j

− Vr

ρ

∂ρ

∂r

∣∣∣∣∣
i−1/2,j




+
ri

ri+1 − ri−1


Vz

ρ

∂ρ

∂z

∣∣∣∣∣
i+1,j

− Vz

ρ

∂ρ

∂z

∣∣∣∣∣
i−1,j




≈ ri

ri+1 − ri−1

[(
(Vr)i+1,j

ρi,j

+
(Vr)i,j

ρi+1,j

)
ρi+1,j − ρi,j

ri+1 − ri

−
(

(Vr)i−1,j

ρi,j

+
(Vr)i,j

ρi−1,j

)
ρi,j − ρi−1,j

ri − ri−1

]

+
ri

ri+1 − ri−1

[
(Vz)i+1,j

ρi+1,j

ρi+1,j+1 − ρi+1,j−1

zj+1 − zj−1

− (Vz)i−1,j

ρi−1,j

ρi−1,j+1 − ρi−1,j−1

zj+1 − zj−1

]
.

Axial Velocity :

∂2Vz

∂r2

(i)

+
∂2Vz

∂z2

(ii)

+
∂ω

∂r

(iii)

+
1

r

∂Vr

∂z

(iv)

+
∂

∂z

(
V · ∇ρ

ρ

)

(v)

= 0.

(i) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

∂2Vz

∂r2

∣∣∣∣∣
i,j

≈ 1

ri+1/2 − ri−1/2


∂Vz

∂r

∣∣∣∣∣
i+1/2,j

− ∂Vz

∂r

∣∣∣∣∣
i−1/2,j




≈ 2

ri+1 − ri−1

(
(Vz)i+1,j − (Vz)i,j

ri+1 − ri

− (Vz)i,j − (Vz)i−1,j

ri − ri−1

)
.

4



(ii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

∂2Vz

∂z2

∣∣∣∣∣
i,j

≈ 1

zj+1/2 − zj−1/2


∂Vz

∂z

∣∣∣∣∣
i,j+1/2

− ∂Vz

∂z

∣∣∣∣∣
i,j−1/2




≈ 2

zj+1 − zj−1

(
(Vz)i,j+1 − (Vz)i,j

zj+1 − zj

− (Vz)i,j − (Vz)i,j−1

zj − zj−1

)
.

(iii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

∂ω

∂r

∣∣∣∣∣
i,j

≈ ωi+1,j − ωi−1,j

ri+1 − ri−1

.

(iv) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

1

r

∂Vz

∂z

∣∣∣∣∣
i,j

≈ (Vz)i,j+1 − (Vz)i,j−1

ri(zj+1 − zj−1)
.

(v) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

∂

∂z

(
V · ∇ρ

ρ

) ∣∣∣∣∣
i,j

=
∂

∂z

(
Vr

ρ

∂ρ

∂r

) ∣∣∣∣∣
i,j

+
∂

∂z

(
Vz

ρ

∂ρ

∂z

) ∣∣∣∣∣
i,j

≈ 1

zj+1 − zj−1


Vr

ρ

∂ρ

∂r

∣∣∣∣∣
i,j+1

− Vr

ρ

∂ρ

∂r

∣∣∣∣∣
i,j−1




+
1

zj+1/2 − zj−1/2


Vz

ρ

∂ρ

∂z

∣∣∣∣∣
i,j+1/2

− Vz

ρ

∂ρ

∂z

∣∣∣∣∣
i,j−1/2




≈ 1

zj+1 − zj−1

[
(Vr)i,j+1

ρi,j+1

ρi+1,j+1 − ρi−1,j+1

ri+1 − ri−1

− (Vr)i,j−1

ρi,j−1

ρi+1,j−1 − ρi−1,j−1

ri+1 − ri−1

]

+
1

zj+1 − zj−1

[(
(Vr)i,j+1

ρi,j

+
(Vr)i,j

ρi,j+1

)
ρi,j+1 − ρi,j

zj+1 − zj

−
(

(Vr)i,j−1

ρi,j

+
(Vr)i,j

ρi,j−1

)
ρi,j − ρi,j−1

zj − zj−1

]
.

Vorticity :

∂

∂r

(
r
∂µω

∂r

)

(i)

+ r
∂2µω

∂z2

(ii)

− µω

r

(iii)

−
(

rρVr
∂ω

∂r
+ rρVz

∂ω

∂z
− ρVrω

)

(iv)

− r∇ρ · ∇V 2

2

(v)

+

r∇ρ · g

(vi)

− 2r
(∇(div(V )) · ∇µ

)

(vii)

+ 2r

(
∇Vr · ∇∂µ

∂r
+∇Vz · ∇∂µ

∂z

)

(viii)

= 0.

5



(i) For i = 3 ∼ (n− 1) and j = 2 ∼ (m− 1)

∂

∂r

(
r
∂µω

∂r

) ∣∣∣∣∣
i,j

≈ 1

ri+1/2 − ri−1/2


r

∂µω

∂r

∣∣∣∣∣
i+1/2,j

− r
∂µω

∂r

∣∣∣∣∣
i−1/2,j




≈ 2

ri+1 − ri−1

(
ri+1 + ri

2

µi+1,jωi+1,j − µi,jωi,j

ri+1 − ri

−ri + ri−1

2

µi,jωi,j − µi−1,jωi−1,j

ri − ri−1

)
.

For i = 2 and j = 2 ∼ (m− 1)

∂

∂r

(
r
∂µω

∂r

) ∣∣∣∣∣
2,j

≈ 1

r2+1/2 − r1


r

∂µω

∂r

∣∣∣∣∣
2+1/2,j

− r
∂µω

∂r

∣∣∣∣∣
1,j


 where r1 = 0

≈ 2

r3 + r2

(
r3 + r2

2

µ3,jω3,j − µ2,jω2,j

r3 − r2

)
=

µ3,jω3,j − µ2,jω2,j

r3 − r2

.

(ii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

r
∂2µω

∂z2

∣∣∣∣∣
i,j

≈ ri
1

zj+1/2 − zj−1/2


∂µω

∂z

∣∣∣∣∣
i,j+1/2

− ∂µω

∂z

∣∣∣∣∣
i,j−1/2




≈ ri
2

zj+1 − zj−1

(
µi,j+1ωi,j+1 − µi,jωi,j

zj+1 − zj

− µi,jωi,j − µi,j−1ωi,j−1

zj − zj−1

)
.

(iii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

µω

r

∣∣∣∣∣
i,j

≈ µi,jωi,j

ri

.

(iv) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

(
rρVr

∂ω

∂r
+ rρVz

∂ω

∂z
− ρVrω

) ∣∣∣∣∣
i,j

≈ riρi,j

[
max

{
(Vr)i,j + (Vr)i−1,j

2
, 0

}
ωi,j − ωi−1,j

ri − ri−1

− max

{
−(Vr)i+1,j + (Vr)i,j

2
, 0

}
ωi+1,j − ωi,j

ri+1 − ri

]

+ riρi,j

[
max

{
(Vz)i,j + (Vz)i,j−1

2
, 0

}
ωi,j − ωi,j−1

zj − zj−1

− max

{
−(Vz)i,j+1 + (Vz)i,j

2
, 0

}
ωi,j+1 − ωi,j

zj+1 − zj

]
− ρi,j(Vr)i,jωi,j.
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(v) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

r∇ρ · ∇V 2

2

∣∣∣∣∣
i,j

= r
∂ρ

∂z

(
Vr

∂Vr

∂r
+ Vz

∂Vz

∂r

) ∣∣∣∣∣
i,j

− r
∂ρ

∂r

(
Vr

∂Vr

∂z
+ Vz

∂Vz

∂z

) ∣∣∣∣∣
i,j

≈ ri
ρi,j+1 − ρi,j−1

zj+1 − zj−1

[
(Vr)i,j

(Vr)i+1,j − (Vr)i−1,j

ri+1 − ri−1

+ (Vz)i,j
(Vz)i+1,j − (Vz)i−1,j

ri+1 − ri−1

]

− ri
ρi+1,j − ρi−1,j

ri+1 − ri−1

[
(Vr)i,j

(Vr)i,j+1 − (Vr)i,j−1

zj+1 − zj−1

+ (Vz)i,j
(Vz)i,j+1 − (Vz)i,j−1

zj+1 − zj−1

]
.

(vi) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

r∇ρ · g
∣∣∣∣∣
i,j

= −rgz
∂ρ

∂r

∣∣∣∣∣
i,j

≈ (980.65)ri
ρi+1,j − ρi−1,j

ri+1 − ri−1

.

(vii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

2r
(∇(div(V )) · ∇µ

)
∣∣∣∣∣
i,j

= 2r

〈
∂

∂z

(
1

r

∂

∂r
(rVr) +

∂

∂z
Vz

)
,− ∂

∂r

(
1

r

∂

∂r
(rVr) +

∂

∂z
Vz

)〉
·
〈

∂µ

∂r
,
∂µ

∂z

〉 ∣∣∣∣∣
i,j

= 2r
∂µ

∂r

(
∂2Vr

∂z∂r
+

∂2Vz

∂z2
+

1

r

∂Vr

∂z

) ∣∣∣∣∣
i,j

− 2r
∂µ

∂z

(
∂2Vz

∂r∂z
+

∂2Vr

∂r2
+

1

r

∂Vr

∂r
− Vr

r2

) ∣∣∣∣∣
i,j

≈ 2ri
µi+1,j − µi−1,j

ri+1 − ri−1

[
(Vr)i+1,j+1 − (Vr)i+1,j−1 − (Vr)i−1,j+1 + (Vr)i−1,j−1

(ri+1 − ri−1)(zj+1 − zj−1)

+
2

zj+1 − zj−1

(
(Vz)i,j+1 − (Vz)i,j

zj+1 − zj

− (Vz)i,j − (Vz)i,j−1

zj − zj−1

)
+

1

ri

(Vr)i,j+1 − (Vr)i,j−1

zj+1 − zj−1

]

− 2ri
µi,j+1 − µi,j−1

zj+1 − zj−1

[
(Vz)i+1,j+1 − (Vz)i+1,j−1 − (Vz)i−1,j+1 + (Vz)i−1,j−1

(ri+1 − ri−1)(zj+1 − zj−1)

+
2

ri+1 − ri−1

(
(Vr)i+1,j − (Vr)i,j

ri+1 − ri

− (Vr)i,j − (Vr)i−1,j

ri − ri−1

)
+

1

ri

(Vr)i+1,j − (Vr)i−1,j

ri+1 − ri−1

− (Vr)i,j

r2
i

]
.
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(viii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

2r

(
∇Vr · ∇∂µ

∂r
+∇Vz · ∇∂µ

∂z

) ∣∣∣∣∣
i,j

= 2r

(〈
∂Vr

∂r
,
∂Vr

∂z

〉
·
〈

∂2µ

∂z∂r
,−∂2µ

∂r2

〉
+

〈
∂Vz

∂r
,
∂Vz

∂z

〉
·
〈

∂2µ

∂z2
,− ∂2µ

∂r∂z

〉) ∣∣∣∣∣
i,j

= 2r

[
∂2µ

∂z2

∂Vz

∂r
− ∂2µ

∂r2

∂Vr

∂z
+

∂2µ

∂z∂r

(
∂Vr

∂r
− ∂Vz

∂z

)] ∣∣∣∣∣
i,j

≈ 2ri

[
2

zj+1 − zj−1

(
µi,j+1 − µi,j

zj+1 − zj

− µi,j − µi,j−1

zj − zj−1

)
(Vz)i+1,j − (Vz)i−1,j

ri+1 − ri−1

− 2

ri+1 − ri−1

(
µi+1,j − µi,j

ri+1 − ri

− µi,j − µi−1,j

ri − ri−1

)
(Vr)i,j+1 − (Vr)i,j−1

zj+1 − zj−1

+
µi+1,j+1 − µi+1,j−1 − µi−1,j+1 + µi−1,j−1

(ri+1 − ri−1)(zj+1 − zj−1)

(
(Vr)i+1,j − (Vr)i−1,j

ri+1 − ri−1

− (Vz)i,j+1 − (Vz)i,j−1

zj+1 − zj−1

)]
.

Conserved Scalar :

(
ρVr

∂S

∂r
+ ρVz

∂S

∂z

)

(i)

− 1

r

∂

∂r

(
rρD

∂S

∂r

)

(ii)

− ∂

∂z

(
ρD

∂S

∂z

)

(iii)

= 0.

(i) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

(
ρVr

∂S

∂r
+ ρVz

∂S

∂z

) ∣∣∣∣∣
i,j

≈ ρi,j

[
max

{
(Vr)i,j + (Vr)i−1,j

2
, 0

}
Si,j − Si−1,j

ri − ri−1

− max

{
−(Vr)i+1,j + (Vr)i,j

2
, 0

}
Si+1,j − Si,j

ri+1 − ri

]

+ ρi,j

[
max

{
(Vz)i,j + (Vz)i,j−1

2
, 0

}
Si,j − Si,j−1

zj − zj−1

− max

{
−(Vz)i,j+1 + (Vz)i,j

2
, 0

}
Si,j+1 − Si,j

zj+1 − zj

]
.
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(ii) For i = 3 ∼ (n− 1) and j = 2 ∼ (m− 1)

1

r

∂

∂r

(
rρD

∂S

∂r

) ∣∣∣∣∣
i,j

=
1

Pr

1

r

∂

∂r

(
rµ

∂S

∂r

) ∣∣∣∣∣
i,j

≈ 1

Pr

1

ri

1

ri+1/2 − ri−1/2


rµ

∂S

∂r

∣∣∣∣∣
i+1/2,j

− rµ
∂S

∂r

∣∣∣∣∣
i−1/2,j




≈ 1

Pr

1

ri

2

ri+1 − ri−1

(
ri+1µi+1,j + riµi,j

2

Si+1,j − Si,j

ri+1 − ri

− riµi,j + ri−1µi−1,j

2

Si,j − Si−1,j

ri − ri−1

)
.

For i = 2 and j = 2 ∼ (m− 1)

1

r

∂

∂r

(
rρD

∂S

∂r

) ∣∣∣∣∣
2,j

=
1

Pr

1

r

∂

∂r

(
rµ

∂S

∂r

) ∣∣∣∣∣
2,j

≈ 1

Pr

1

r2

1

r2+1/2 − r1


rµ

∂S

∂r

∣∣∣∣∣
2+1/2,j

− rµ
∂S

∂r

∣∣∣∣∣
1,j


 where

∂S

∂r

∣∣∣∣∣
1,j

= 0

≈ 1

Pr

1

r2

2

r3 + r2

(
r3 + r2

2

µ3,j + µ2,j

2

S3,j − S2,j

r3 − r2

)
=

1

Pr

1

r2

(
µ3,j + µ2,j

2

S3,j − S2,j

r3 − r2

)
.

(iii) For i = 2 ∼ (n− 1) and j = 2 ∼ (m− 1)

∂

∂z

(
ρD

∂S

∂z

) ∣∣∣∣∣
i,j

=
1

Pr

∂

∂z

(
µ

∂S

∂z

) ∣∣∣∣∣
i,j

≈ 1

Pr

1

zj+1/2 − zj−1/2


µ

∂S

∂z

∣∣∣∣∣
i,j+1/2

− µ
∂S

∂z

∣∣∣∣∣
i,j+1/2




≈ 1

Pr

2

zj+1 − zj−1

(
µi,j+1 + µi,j

2

Si,j+1 − Si,j

zj+1 − zj

− µi,j + µi,j−1

2

Si,j − Si,j−1

zj − zj−1

)
.
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Figure 1: Physical configuration for diffusion flame model (not in scale)
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Outer Boundary (r = Rmax) :

∂Vr

∂r
= 0

(i)

,
∂Vz

∂r
= 0

(ii)

, ω =
∂Vr

∂z

(iii)

, S = 0

(iv)

.

(i) For i = n and j = 1 ∼ m

∂Vr

∂r
≈ (Vr)n,j − (Vr)n−1,j

rn − rn−1

.

(ii) For i = n and j = 1 ∼ m

∂Vz

∂r
≈ (Vz)n,j − (Vz)n−1,j

rn − rn−1

.

(iii) For i = n and j = 1 or m

∂ω

∂r
≈ ωn,j − ωn−1,j

rn − rn−1

.

For i = n and j = 2 ∼ (m− 1)

ω − ∂Vr

∂z
≈ ωn,j − (Vr)n,j+1 − (Vr)n,j−1

zj+1 − zj−1

.

(iv) For i = n and j = 1 ∼ m

S ≈ Sn,j.

Axis of Symmetry (r = 0) :

Vr = 0

(i)

,
∂Vz

∂r
= 0

(ii)

, ω = 0

(iii)

,
∂S

∂r
= 0

(iv)

.

(i) For i = 1 and j = 2 ∼ (m− 1)

Vr ≈ (Vr)1,j.
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(ii) For i = 1 and j = 2 ∼ (m− 1)

We use the result (ii) to deal with axial velocity equation.

∂2Vz

∂r2
+

∂2Vz

∂z2
+

∂ω

∂r
+

∂

∂z

(
Vz

ρ

∂ρ

∂z

)
≈ 2

(Vz)2,j − (Vz)1,j

(r2 − r1)2

+
2

zj+1 − zj−1

[
(Vz)1,j+1 − (Vz)1,j

zj+1 − zj

− (Vz)1,j − (Vz)1,j−1

zj − zj−1

]
+

ω2,j

r2 − r1

+
1

zj+1 − zj−1

[(
(Vz)1,j+1

ρ1,j

+
(Vz)1,j

ρ1,j+1

)
ρ1,j+1 − ρ1,j

zj+1 − zj

−
(

(Vz)1,j−1

ρ1,j

+
(Vz)1,j

ρ1,j−1

)
ρ1,j − ρ1,j−1

zj − zj−1

]
.

(iii) For i = 1 and j = 2 ∼ (m− 1)

ω ≈ ω1,j.

(iv) For i = 1 and j = 2 ∼ (m− 1)

∂S

∂r
≈ ω2,j − ω1,j

r2 − r1

.

Inlet Boundary (z = 0) :

Vr = 0

(i)

, Vz = V 0
z (r)

(ii)

, ω =
∂Vr

∂z
− ∂Vz

∂r

(iii)

, S = S0(r)

(iv)

.

(i) For i = 1 ∼ (n− 1) and j = 1

Vr ≈ (Vr)i,1.

(ii) For i = 1 ∼ (n− 1) and j = 1

Vz − V 0
z (r) ≈ (Vz)i,1 − V 0

z (ri).

(iii) For i = 1 and j = 1

ω ≈ ωi,1.

For i = 2 ∼ (n− 1) and j = 1

ω − ∂Vr

∂z
+

∂Vz

∂r
≈ ωi,1 + ωi,2

2
− (Vr)i,2

z2 − z1

+
(Vz)i+1,1 − (Vz)i−1,1

ri+1 − ri−1

.
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(iv) For i = 1 ∼ (n− 1) and j = 1

S − S0(r) ≈ Si,1 − S0(ri).

Outlet Boundary (z = L) :

Vr = 0

(i)

,
∂Vz

∂z
= 0

(ii)

,
∂ω

∂z
= 0

(iii)

,
∂S

∂z
= 0

(iv)

.

(i) For i = 1 ∼ (n− 1) and j = m

Vr ≈ (Vr)i,m.

(ii) For i = 1 ∼ (n− 1) and j = m

∂Vz

∂z
≈ (Vz)i,m − (Vz)i,m−1

zm − zm−1

.

(iii) For i = 1 and j = m

ω ≈ ωi,m.

For i = 2 ∼ (n− 1) and j = m

∂ω

∂z
≈ ωi,m − ωi,m−1

zm − zm−1

.

(iv) For i = 1 ∼ (n− 1) and j = m

∂S

∂z
≈ Si,m − Si,m−1

zm − zm−1

.
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2 Krylov Subspace Methods

A Krylov subspace method is a method for which the subspace Km(A, r0) of Rn is the

Krylov subspace with the form

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0},

where r0 = b−Ax0 be initial residual in general and x0 be initial guess. The Krylov sub-

space has well property that matrix-vector multiplication of basis is cheap to compute. In

other words, if we given a basis for Km, then we can cheaply compute a basis for Km+1. In

this chapter for a start, we introduce the general projection methods, namely orthogonal

projection or oblique projection. Then we will show two optimal results. One is orthog-

onal projection just to minimize the A-norm of the error when A is symmetric positive

definite. The other is oblique projection just to minimize the 2-norm of the residual when

A be an arbitrary square matrix. In the second section, we introduce the Arnoldi’s method

to construct the Krylov subspace. This method is an orthogonal projection method onto

K for general non-Hermitian matrix. In the last section, we introduce the full orthogo-

nalization method and its variant version, called incomplete orthogonalization method,

to apply to linear system.

2.1 Projection Methods

Consider the linear system

Ax = b (2.1)

where A is an n × n real matrix (or sparse matrix). We will use projection method for

extracting an approximation to the solution of a linear system. This idea is to restrict

the next step in an iterative method to a small subspace but pick “best” step in that

subspace. In order to reach our goal as stated above, we find methods which can cheaply

find the next iterate as far as possible but still minimize some measure of the error or

residual at each step.

Let K and L are two m-dimensional subspaces of Rn. A projection technique onto

the subspace K and orthogonal to L is just to find an approximate solution x̃ to (2.1) by
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imposing two conditions. One is to find x̃ belong to K and the other is making residual

vector must be orthogonal to L. Now suppose we have current guess x0 and let initial

residual vector r0 = b− Ax0. The projection method is repressed as

Find x̃ ∈ x0 +K, such that r̃ = b− Ax̃ ⊥ L.

or equivalently

Find δ ∈ K, such that r̃ = b− A(x0 + δ) = r0 − Aδ ⊥ L. (2.2)

Let V = [v1 · · · vm] and W = [w1 · · ·wm] are n ×m matrix whose column-vectors form a

basis for K and L, respectively. Then x̃ = x0 + δ = x0 + V y for some y ∈ Rm. Thus, we

can transform (2.2) into matrix representation as following

W T AV y = W T r0 (2.3)

If we can find W T AV is nonsingular, then (2.3) has unique solution. For this purpose,

the following proposition describes two ideal cases.

Proposition 1. Let A, L, and K satisfy either one of the two following conditions,

i. A is positive definite and L = K,or

ii. A is nonsingular and L = AK.

Then the matrix B = W T AV is nonsingular for any bases V and W of K and L, respec-

tively.

Proof. To prove first case. Let V and W be any basis of K and L, respectively. Since L
and K are the same, we let W = V G, where G is a m×m nonsingular matrix. Then

B = W T AV = GT V T AV.

Because V T AV is positive definite, then we shows that B is nonsingular.

Consider the second case. Since L = AK, we let W = AV G, where G is a m × m

nonsingular matrix. Then

B = W T AV = GT (AV )T AV.

Since A is nonsingular, the n × m matrix AV is full rank. Then we have (AV )T AV is

nonsingular. So we have a result. ¥
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Suppose Proposition 1. hold, then the approximate solution x̃ can be repressed as

x̃ = x0 + V y = x0 + V (W T AV )−1W T r0.

A question is how much the quality of the approximate solution obtained from a gen-

eral projection method? In order to answer this problem, two optimal results will be

established.

Proposition 2. Assume that A is symmetric positive definite and L = K. Then a vector

x̃ is the result of an (orthogonal) projection method onto K with the starting vector x0 if

and only if it minimizes the A-norm of the error over x0 +K, that is,

E(x̃) = min
x∈x0+K

E(x),

where

E(x) ≡ (A(x∗ − x), x∗ − x)1/2 ≡ ‖x∗ − x‖A.

Proof. Let x̃ = x0 + δ̃, where δ̃ ∈ K. Then

min
x∈x0+K

‖x∗ − x‖A = min
δ∈K

‖x∗ − (x0 + δ)‖A

= min
δ∈K

‖d0 − δ‖A (where d0 = x∗ − x0)

= ‖d0 − δ̃‖A

Therefore, we have

d0 − δ̃ ⊥A K.

It would be better to say that δ̃ is the A-orthogonal projection of d0 onto K. ¥

Proposition 3. Let A be an arbitrary square matrix and assume that L = AK. Then a

vector x̃ is the result of an (oblique) projection method onto K orthogonally to L with the

starting vector x0 if and only if it minimizes the 2-norm of the residual vector b−Ax over

x ∈ x0 +K, that is,

R(x̃) = min
x∈x0+K

R(x),

where

R(x) ≡ ‖b− Ax‖2.
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Proof. Let x̃ = x0 + δ̃, where δ̃ ∈ K. Then

min
x∈x0+K

‖b− Ax‖2 = min
δ∈K

‖b− A(x0 + δ)‖2

= min
Aδ∈AK

‖r0 − Aδ‖2 (where r0 = b− Ax0)

= ‖r0 − Aδ̃‖2

Therefore, we have

r0 − Aδ̃ ⊥ AK = L.

It would be better to say that Aδ̃ is the orthogonal projection of r0 onto AK. ¥

By Proposition 2., the result of the projection process can be interpreted as orthog-

onal projector acts on the initial error. The same is true of the Proposition 3. can be

interpreted as oblique projector acts on the initial residual. The following properties will

state conclusions from the above properties.

Proposition 4. Let x̃ be the approximate solution obtained from an orthogonal projection

process onto K, and let d̃ = x∗ − x̃ be the associated error vector. Then,

d̃ = (I − PA)d0,

where PA denotes the projector onto the subspace K, which is orthogonal with respect to

the A-inner product.

Proof. By the result of Proposition 2. ¥

Proposition 5. Let x̃ be the approximate solution obtained from a projection process onto

K orthogonally to L = AK, and let r̃ = b− Ax̃ be the associated residual. Then,

r̃ = (I − P )r0,

where P denotes the orthogonal projector onto the subspace AK.

Proof. By the result of Proposition 3. ¥
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2.2 Arnoldi’s Method

We know that Schur factorization reduces a dense matrix A into upper triangular matrix

U by applying unitary matrix V . In natural thought, the unitary matrix V is made up of

Householder reflectors, and let V = V1V2 · · ·Vm. Then we have V ∗AV = U . In the first

step, V ∗
1 multiplied on the left of A and V1 multiplied on the right of A. Note that V ∗

1

will change all rows of A and V1 will change all columns of A. The entries are changed at

each step and we write in boldface as following diagrams:




× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×




A

−→




× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×




V ∗
1 A

−→




× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×




V ∗
1 AV1

.

By the same way to apply to other Householder reflectors, we can find this idea had to fail.

Fortunately, Arnoldi’s method suggest a good idea for us to reduce A to Hessenberg form.

At the first step, we select Householder reflector V ∗
2 that leaves the first row unchanged.

In other words, we let Ṽ = V2V3 · · ·Vm and omit the reflector V1. We show the first step

as following diagrams:




× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×




A

−→




× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×




V ∗
2 A

−→




× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×




V ∗
2 AV2

.

Repeating this process by the same way on V ∗
2 AV2 by V3, . . . , Vm, we have Hessenberg

form matrix

Ṽ ∗AṼ = (V ∗
m . . . V ∗

3 V ∗
2 )A(V2V3 . . . Vm) = Hm.

Arnoldi’s method [1] is an orthogonal projection method onto Km for general non-

Hermitian matrices. This basic idea is reducing a dense matrix into Hessenberg form by

above way. For a start, we use standard Gram-Schmidt method to construct matrix V .

The Arnoldi algorithm is stated as follow:
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ALGORITHM 1. Arnoldi
1. Choose a vector v1 of norm 1
2. For j = 1, 2, . . . , m Do:
3. hij = (Avj, vi) for i = 1, 2, . . . , j

4. wj = Avj −
∑j

i=1 hijvi

5. hj+1,j = ‖wj‖2

6. If hj+1,j = 0 then stop
7. vj+1 = wj/hj+1,j

8. EndDo

Proposition 6. Assume that Algorithm 1. does not stop before the m-th step. Then the

vectors v1, v2, . . . , vm form an orthonormal basis of the Krylov subspace

Km = span{v1, Av1, . . . , A
m−1v1}.

Proof. Follow from the fact of steps 4, 5, and 7 of Algorithm 1. ¥

Proposition 7. Denote by Vm, the n×m matrix with column vectors v1, . . . , vm, by H̄m,

the (m + 1) × m Hessenberg matrix whose nonzero entries hij are defined by Algorithm

1., and by Hm the matrix obtained from H̄m by deleting its last row. Then the following

relations hold:

AVm = VmHm + wmeT
m = Vm+1H̄m,

V T
m AVm = Hm,

where wm = hm+1,mvm+1.

Proof. From the fact of Algorithm 1, we have

Avj =

j+1∑
i=1

hijvi, j = 1, 2, . . . , m.

Then we have all relations. ¥

By Algorithm 1, we know that Arnoldi’s method uses standard Gram-Schmidt orthonor-

malization to make Vm. In practice, the calculations of Gram-Schmidt formulas turn out

to be numerically unstable. We can gain simple modification by using the modified Gram-

Schmidt algorithm instead of the standard Gram-Schmidt algorithm. Let A = [a1, . . . , an]
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with columns {aj} and Pj be an n× n orthogonal projector , projects the vector orthog-

onally onto the space orthogonal to 〈v1, . . . , vj−1〉, of rank n− (j − 1) such that

v1 =
P1a1

‖P1a1‖ , v2 =
P2a2

‖P2a2‖ , · · · , vj =
Pjaj

‖Pjaj‖ ,

with P1 = In. It is not difficult to see that

Pj = P⊥vj−1
· · ·P⊥v2P⊥v1 .

Then the standard Gram-Schmidt algorithm just to do a single orthogonal projection,

vj = Pjaj.

However, the modified Gram-Schmidt algorithm uses successive orthogonal projections,

vj = P⊥vj−1
· · ·P⊥v2P⊥v1aj

Therefore, we know that Gram-Schmidt and modified Gram-Schmidt are equivalent in

mathematics. The modified Gram-Schmidt’s version of Arnoldi is as follow:

ALGORITHM 2. Arnoldi-Modified Gram-Schmidt
1. Choose a vector v1 of norm 1
2. For j = 1, 2, . . . , m Do:
3. wj = Avj

4. For i = 1, . . . , j Do:
5. hij = (wj, vi)
6. wj = wj − hijvi

7. EndDo
8. hj+1,j = ‖wj‖2. If hj+1,j = 0 then stop
9. vj+1 = wj/hj+1,j

10. EndDo
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2.3 FOM, IOM, and DIOM

Let us return to our main subject, to solve the linear system Ax = b, we want to find ap-

proximate solution x̃ cheaply. By the Arnoldi’s method, we can apply this method to three

types and obtain our goal in this section. The first type is directly applying algorithm

of Arnoldi, called full orthogonalization method or FOM. It should be said with some

emphasis that we use modified Gram-Schmidt process instead of Gram-Schmidt process

from now on. The second type is applying incomplete orthogonalization process in FOM,

called incomplete orthogonalization method or IOM. And the last type is improving IOM

by using LU factorization, called direct incomplete orthogonalization or DIOM.

2.3.1 FOM

Now, given an initial guess x0 to the linear system Ax = b, we consider an orthogonal

projection method, L = K = Km(A, r0),

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0},

where r0 = b− Ax0. Taking v1 = r0/β and β = ‖r0‖2 in Arnoldi’s method, then we get

V T
m AVm = Hm

and by (2.2), we have

V T
m (r0 − AVmym) = 0.

Then

ym = H−1
m (V T

m r0) = H−1
m (βe1). (2.4)

The approximate solution is given by

xm = x0 + Vmym. (2.5)

The process as above is called the full orthogonalization method (FOM). Let me stress

again that we use modified Gram-Schmidt method to make Vm and the algorithm is stated

as follow:
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ALGORITHM 3. FOM
1. r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β
2. Set m×m matrix Hm = 0
3. For j = 1, 2, . . . , m Do:
4. wj = Avj

5. For i = 1, . . . , j Do:
6. hi,j = (wj, vi)
7. wj = wj − hi,jvi

8. EndDo
9. hj+1,j = ‖wj‖2. If hj+1,j = 0 then set m = j and Goto 12

10. vj+1 = wj/hj+1,j

11. EndDo
12. ym = H−1

m (βe1) and xm = x0 + Vmym

2.3.2 IOM

Sometimes we have a situation that our calculations may be dictated by computer’s

memory limitations. By FOM algorithm, the memory cost increases at least as O(mn).

As m increases, the largest value of m that can be used. We have two remedies to solve

our problem. One remedy is to restart the FOM algorithm for reaching “small” m. And

the other remedy is to truncate the Arnoldi algorithm, not using full orthogonalization.

It is to say that we use incomplete orthogonalization process to make vj and gain a

banded Hessenberg matrix Hm with bandwidth k + 1, the number k maybe dictated by

computer’s memory limitations. The incomplete orthogonalization process with (2.4) and

(2.5), called incomplete orthogonalization method (IOM), is performed as follow.

ALGORITHM 4. IOM
1. r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β
2. Set m×m matrix Hm = 0
3. For j = 1, 2, . . . , m Do:
4. w = Avj

5. For i = max{1, j − k + 1}, . . . , j Do:
6. hi,j = (w, vi)
7. w = w − hi,jvi

8. EndDo
9. hj+1,j = ‖w‖2. If hj+1,j = 0 then set m = j and Goto 12

10. vj+1 = w/hj+1,j

11. EndDo
12. ym = H−1

m (βe1) and xm = x0 + Vmym
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2.3.3 DIOM

We know that FOM and IOM algorithms use the same relation (2.4) to find approximate

solution xm. These methods must to compute the inverse of Hm, then we need to solve m-

th linear system. To avoid computing the inverse problem, we can modify the algorithm

of IOM. The direct incomplete orthogonalization method (DIOM) is derived from the

structure of the LU factorization, Hm = LmUm, of the Hessenberg matrix Hm, which

obtained from the IOM. We assume that no pivoting is used, then matrix Lm, entries

{lij}, is unit lower bidiagonal and Um, entries {uij}, is banded upper triangular, with k

diagonals. Thus the approximate solution is given by

xm = x0 + VmU−1
m L−1

m (βe1). (2.6)

Defining the matrix

Pm = [p1, . . . , pm] = VmU−1
m (2.7)

and the vector

zm = [z1, . . . , zm]T = L−1
m (βe1). (2.8)

By (2.7) and the structure of Um, we have
m∑

i=m−k+1

uimpi = vm,

which show the vector pm to be updated from the previous pi’s and vm, then

pm =
1

umm

[
vm −

m−1∑

i=m−k+1

uimpi

]
.

And by (2.8), because of the structure of Lm, we have

zm =

[
zm−1

ζm

]

where

ζm = −lm,m−1ζm−1

with z1 = [β] and ζ1 = β. Then (2.6) can be rewritten as

xm = x0 + [Pm−1, pm]

[
zm−1

ζm

]

= x0 + Pm−1zm−1 + ζmpm

= xm−1 + ζmpm.
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The algorithm of DIOM is stated as follow:

ALGORITHM 5. DIOM
1. Choose x0 and r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β
2. For m = 1, 2, . . . , until convergence Do:
3. w = Avm

4. For i = max{1,m− k + 1}, . . . , m Do:
5. hi,m = (w, vi)
6. w = w − hi,mvi

7. EndDo
8. hm+1,m = ‖w‖2 and vm+1 = w/hm+1,m

9. Update the LU factorization of Hm. If umm = 0 then Stop.
10. ζm = { if m = 1 then β, else −lm,m−1ζm−1}
11. pm = u−1

mm

(
vm −

∑m−1
i=m−k+1 uimpi

)
(for i ≤ 0 set uimpi = 0)

12. xm = xm−1 + ζmpm

13. EndDo
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3 Biconjugate Gradient Stabilized Method

Conjugate gradient (CG) and biconjugate gradient (BCG) algorithm are derived in this

chapter. These algorithms generate the optimal approximation from the Krylov sub-

space. When A is symmetric positive definite, CG can be derived from the symmetric

Lanczos process. Contrary to symmetric form, non-symmetric matrix, we use two-sided

Lanczos algorithm (Lanczos biorthogonalization) to construct biorthogonal bases for the

Krylov subspaces corresponding to A and AT . Then BCG can be derived from the Lanc-

zos biorthogonalization procedure. To avoid using AT in BCG, the conjugate gradient

squared method (CGS) can be derived from BCG. The CGS can obtain faster convergent

behavior than BCG for the same computational cost. Since the polynomials in CGS are

square, then rounding errors tend to be more damaging than in the BCG. Finally, we

improved the CGS algorithm such that can smoothen in the convergent behavior, called

biconjugate gradient stabilized method (BICGSTAB).

3.1 Conjugate Gradient Method

The Conjugate Gradient method [8] is one of the best known iterative techniques for solv-

ing sparse symmetric positive definite linear systems. The Conjugate Gradient algorithm

can be derived from the DIOM, for the case when A is symmetric positive definite. In the

first, we derive the similar case of FOM when A is symmetric, called Lanczos method.

Given an initial guess x0, we can find the approximate solution xm by rewriting (2.4) and

(2.5),

xm = x0 + Vmym

ym = T−1
m (βe1),

where Tm be tridiagonal matrix of the following form,

Tm =




α1 β2

β2 α2 β3

. . . . . . . . .

βm−1 αm−1 βm

βm αm




. (3.1)
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Then the Lanczos method for linear system can be stated as follow:

ALGORITHM 6. Lanczos method for linear systems
1. r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β
2. For j = 1, 2, . . . , m Do:
3. wj = Avj − βjvj−1 (If j = 1 then set β1v0 = 0)
4. αj = (wj, vj)
5. wj = wj − αjvj

6. βj+1 = ‖wj‖2. If βj+1 = 0 then set m = j and Goto 9
7. vj+1 = wj/βj+1

8. EndDo
9. Tm = tridiag (βi, αi, βi+1), and Vm = [v1, . . . , vm].

10. ym = T−1
m (βe1) and xm = x0 + Vmym

We should notice that the steps 3 until 5 of algorithm of Lanczos method can corre-

spond with the steps 4 until 8 of algorithm of FOM as A is symmetric positive definite.

Now, we will follow the same steps as for DIOM to construct direct version of the Lanczos

method. Let Tm = LmUm be LU factorization of Tm, where Lm is unit lower bidiagonal

and Um is upper bidiagonal. To take a simple example,

Tm =




1
λ2 1

. . . . . .

λm−1 1
λm 1



×




η1 β2

η2 β3

. . . . . .

ηm−1 βm

ηm




.

Then an approximate solution xm is

xm = x0 + VmT−1
m (βe1) = x0 + VmU−1

m L−1
m (βe1).

Defining the matrix

Pm = [p1, . . . , pm] = VmU−1
m

and the vector

zm = [z1, . . . , zm]T = L−1
m βe1.

Because of the structure of Um, we have

pm = η−1
m [vm − βmpm−1].
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Note that βm is a scalar computed from the Lanczos algorithm, while ηm results from the

m-th Gaussian elimination step on the tridiagonal matrix, that is,

λm =
βm

ηm−1

,

ηm = αm − λmβm.

By the same way, because of the structure of Lm,

zm =

[
zm−1

ζm

]
,

in which ζm = −λmζm−1. Therefore, we can update xm as

xm = x0 + Pmzm = xm−1 + ζmpm.

Then we have the direct version of the Lanczos algorithm, called D-Lanczos, as follow:

ALGORITHM 7. D-Lanczos
1. r0 = b− Ax0, ζ1 = β = ‖r0‖2, and v1 = r0/β
2. set λ1 = β1 = 0 and p0 = 0
3. For m = 1, 2, . . . , until convergence Do:
4. w = Avm − βmvm−1 and αm = (w, vm)

5. If m > 1 then λm = βm

ηm−1
and ζm = −λmζm−1

6. ηm = αm − λmβm

7. pm = η−1
m (vm − βmpm−1)

8. xm = xm−1 + ζmpm

9. If xm has converged then stop
10. w = w − αmvm

11. βm+1 = ‖w‖2 and vm+1 = w/βm+1

12. EndDo

Proposition 8. Let rm = b − Axm, m = 0, 1, . . ., be the residual vectors produced by

the Lanczos and the D-Lanczos algorithms and pm, m = 0, 1, . . ., the auxiliary vectors

produced by D-Lanczos. Then,

1. Each residual vector rm is such that rm = σmvm+1 where σm is a certain scalar. As

a result, the residual vectors are orthogonal to each other.

2. The auxiliary vectors pi form an A-conjugate set, i.e., (Api, pj) = 0, for i 6= j.
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Proof. We prove the first part, by Proposition 7.

rm = b− Axm

= b− A(x0 + Vmym)

= r0 − (VmTm + βm+1vm+1e
T
m)ym

= βv1 − Vmβe1 − βm+1e
T
mymvm+1

= −βm+1e
T
mymvm+1.

For the second part, we will claim that P T
mAPm is a diagonal matrix.

P T
mAPm = U−T

m V T
m AVmU−1

m

= U−T
m TmU−1

m

= U−T
m Lm.

Note that U−T
m Lm is a lower triangular and A is symmetric, then P T

mAPm must be a

diagonal matrix. ¥

Let us now return to CG algorithm. For the proposition given above, we can derive CG

by imposing two conditions, one is rj’s orthogonality and the other is pj’s A-conjugacy.

In D-Lanczos, we can find

xj+1 = xj + αjpj.

Then the residual rj+1 can be repressed as

rj+1 = rj − αjApj. (3.2)

Since the rj’s are to be orthogonal each other, we have

(rj − αjApj, rj) = 0.

Therefore,

αj =
(rj, rj)

(Apj, rj)
. (3.3)

Also by DIOM, we have that the next search direction pj+1 is a linear combination of rj+1

and pj, it is

pj+1 = rj+1 + βjpj.
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Thus,

(Apj, rj) = (Apj, pj − βj−1pj−1) = (Apj, pj).

Then (3.3) becomes

αj =
(rj, rj)

(Apj, pj)
.

Because Apj orthogonal to pj+1, then

βj = −(rj+1, Apj)

(pj, Apj)
.

From (3.2) we have

Apj = − 1

αj

(rj+1 − rj),

then

βj =
1

αj

(rj+1, (rj+1 − rj))

(Apj, pj)
=

(rj+1, rj+1)

(rj, rj)
.

By Proposition 8. and above manners, we can rewrite D-Lanczos algorithm to conjugate

gradient (CG) algorithm. We write down CG algorithm as follow:

ALGORITHM 8. CG
1. r0 = b− Ax0, and p0 = r0.
2. For j = 0, 1, . . . , until convergence Do:
3. αj = (rj, rj)/(Apj, pj)
4. xj+1 = xj + αjpj

5. rj+1 = rj − αjApj

6. βj = (rj+1, rj+1)/(rj, rj)
7. pj+1 = rj+1 + βjpj

8. EndDo
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3.2 Lanczos Biorthogonalization

3.2.1 Two-Sided Lanczos

We know if the matrix A is symmetric matrix, then the Gram-Schmidt procedure for con-

structing an orthonormal basis for Krylov subspace of A reduces to three term recurrences.

However, the matrix A is the case that A is non-symmetric in general. Fortunately, we can

extend the symmetric Lanczos algorithm to the non-symmetric version, having three term

recurrences. The Lanczos biorthogonalization use a pair of three term recurrences, one

involving A and the other involving AT , to construct biorthogonal bases for the Krylov

spaces corresponding to A and AT , respectively. Judging from the above, we have

Km(A, v1) = span{v1, Av1, . . . , A
m−1v1}

Km(AT , w1) = span{w1, A
T w1, . . . , (A

T )m−1w1},

in which (vi, wj) = 0 for i 6= j. For the most part, we take (vi, wi) = 1. Then we show

the algorithm as follow:

ALGORITHM 9. The Lanczos Biorthogonalization Procedure
1. Choose two vectors v1, w1 such that (v1, w1) = 1.
2. β1 = δ1 = 0, w0 = v0 = 0
3. For j = 1, 2, . . . , m Do:
4. αj = (Avj, wj)
5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = AT wj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 then stop
8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11. EndDo

Note that the Algorithm 9 selects a manner to ensure that (vj+1, wj+1) = 1. In that

case, it is a canonical choice to find two scalars βj+1, δj+1 such that satisfy the equality

as following form

δj+1βj+1 = (v̂j+1, ŵj+1).
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If the algorithm does not break down, then we have Tm the tridiagonal matrix as below:

Tm =




α1 β2

δ2 α2 β3

. . . . . . . . .

δm−1 αm−1 βm

δm αm




.

The following proposition will interpret this result.

Proposition 9. If the algorithm does not break down before step m, then the vector vi,

i = 1, . . . ,m, and wj, j = 1, . . . ,m, form a biorthogonal system, i.e.,

(vj, wi) = δi,j 1 ≤ i, j ≤ m.

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and {wi}i=1,2,...,m is a basis of Km(AT , w1)

and the following relations hold,

AVm = VmTm + δm+1vm+1e
T
m,

AT Wm = WmT T
m + βm+1wm+1e

T
m,

W T
mAVm = Tm.

Proof. We need prove here only the biorthogonality of the vectors vi, wi with induction.

Since the proof of the above relations is similar to Proposition 7. Assume now that the

vectors v1, . . . , vj and w1, . . . , wj are biorthogonal. Claim that (vj+1, wi) = 0 for i ≤ j as

follow:

When i = j, by steps 5 and 9 of Algorithm 9., then

(vj+1, wj) = (δ−1
j+1[Avj − αjvj − βjvj−1], wj)

= δ−1
j+1[(Avj, wj)− αj(vj, wj)− βj(vj−1, wj)]

= δ−1
j+1[αj − αj × 1− 0] = 0.

When i < j, by steps 5, 6, 9, and 10 of Algorithm 9., then

(vj+1, wi) = δ−1
j+1[(Avj, wi)− αj(vj, wi)− βj(vj−1, wi)]

= δ−1
j+1[(vj, A

T wi)− 0− βj(vj−1, wi)]

= δ−1
j+1[(vj, βi+1wi+1 + αiwi + δiwi−1)− βj(vj−1, wi)].
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For i < j − 1, (vj+1, wi) = 0 by inductive hypothesis.

For i = j − 1, then

(vj+1, wj−1) = δ−1
j+1[(vj, βjwj + αj−1wj−1 + δj−1wj−2)− βj(vj−1, wj−1)]

= δ−1
j+1[βj(vj, wj)− βj(vj−1, wj−1)] = 0.

¥

3.2.2 BCG

The Biconjugate Gradient method (BCG) [6] is a oblique projection process onto

Km = span{v1, Av1, · · · , Am−1v1}

orthogonally to

Lm = span{w1, A
T w1, · · · , (AT )m−1w1},

where v1 = r0/‖r0‖2 and takes w1 to satisfy (v1, w1) = 1. Proceeding in the same way

as for the CG algorithm from the symmetric Lanczos algorithm, we can derive BCG

algorithm from Algorithm 9., the two-sided Lanczos algorithm. First, we use the LU

factorization of Tm = LmUm and define two matrices

Pm = [p1, . . . , pm] = VmU−1
m ,

P ∗
m = [p∗1, . . . , p

∗
m] = WmL−T

m .

By Proposition 9., we have

(P ∗
m)T APm = L−1

m W T
mAVmU−1

m = L−1
m TmU−1

m = I.

Thus, the column vectors p∗i of P ∗
m and those pi of Pm are A-conjugate. Also, it is known

that pj+1 and p∗j+1 can be expressed as

pj+1 = rj+1 + βjpj. (3.4)

p∗j+1 = r∗j+1 + βjp
∗
j . (3.5)

From (3.5) and A-conjugacy,

(Apj, r
∗
j+1 + βjp

∗
j) = 0.
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Then by (3.2), we have

βj = −(Apj, r
∗
j+1)

(Apj, p∗j)
=

(rj+1, r
∗
j+1)

(rj, r∗j )
. (3.6)

And like the Conjugate Gradient algorithm, we find the residual rj and r∗j are in the same

direction as for vj+1 and wj+1, respectively. For these information and by (3.5), we have

(rj − αjApj, r
∗
j ) = 0,

it imply

αj =
(rj, r

∗
j )

(Apj, p∗j)
. (3.7)

Putting these relations together by above, we have the BCG algorithm as follow:

ALGORITHM 10. BCG
1. r0 = b− Ax0, and choose r∗0 such that (r0, r

∗
0) = 1.

2. p0 = r0, p∗0 = r∗0
3. For j = 0, 1, . . . , until convergence Do:
4. αj = (rj, r

∗
j )/(Apj, p

∗
j)

5. xj+1 = xj + αjpj

6. rj+1 = rj − αjApj

7. r∗j+1 = r∗j − αjA
T p∗j

8. βj = (rj+1, r
∗
j+1)/(rj, r

∗
j )

9. pj+1 = rj+1 + βjpj

10. p∗j+1 = r∗j+1 + βjp
∗
j

11. EndDo
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3.3 Transpose-Free Variants

3.3.1 CGS

The BCG algorithm require multiplication by both A and AT at each step. One thing,

however, is certain: the vector p∗j+1 or wj generated with AT do not contribute to the

solution directly, this mean extra work. For the reason given above, the Conjugate Gra-

dient Squared (CGS) [10] was mainly to avoid using AT in the BCG and to obtain faster

convergence for the same computational cost. This idea is the residual vector rj and the

conjugate direction φj, in the BCG algorithm, can be expressed as

rj = φj(A)r0, pj = πj(A)r0,

where φj and πj are certain polynomials of degree j with φ0(A) = 1 and π0(A) = 1. The

same observation applies to the vectors r∗j and p∗j , defined as

r∗j = φj(A
T )r∗0, p∗j = πj(A

T )r∗0.

By (3.6) and (3.7), the scalar αj and βj are given by

αj =
(φj(A)r0, φj(A

T )r∗0)
(Aπj(A)r0, πj(AT )r∗0)

=
(φ2

j(A)r0, r
∗
0)

(Aπ2
j (A)r0, r∗0)

βj =
(φj+1(A)r0, φj+1(A

T )r∗0)
(φj(A)r0, φj(AT )r∗0)

=
(φ2

j+1(A)r0, r
∗
0)

(φ2
j(A)r0, r∗0)

.

This indicates that the coefficients can be computed if we know r∗0 and φ2
j(A)r0 and

π2
j (A)r0.

From (3.4) and (3.5), it can be seen that the polynomials φj+1(t) and πj+1(t) satisfy

the recurrences

φj+1(t) = φj(t)− αjtπj(t) (3.8)

πj+1(t) = φj+1(t) + βjπj(t), (3.9)

and squaring both sides gives

φ2
j+1(t) = φ2

j(t)− 2αjtφj(t)πj(t) + α2
j t

2π2
j (t) (3.10)

π2
j+1(t) = φ2

j+1(t) + 2βjφj+1(t)πj(t) + β2
j π

2
j (t). (3.11)
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Multiplying φj(t) by the recurrence for πj(t) gives

φj(t)πj(t) = φ2
j(t) + βj−1φj(t)πj−1(t), (3.12)

and multiplying the recurrence for φj+1(t) by πj(t) gives

φj+1(t)πj(t) = φj(t)πj(t)− αjtπ
2
j (t)

= φ2
j(t) + βj−1φj(t)πj−1(t)− αjtπ

2
j (t). (3.13)

Defining three new vectors as

rj = φ2
j(A)r0,

pj = π2
j (A)r0,

qj = φj+1(A),

then (3.10) and (3.11) and (3.13) translate into

rj+1 = rj − αjA(2rj + 2βj−1qj−1 − αjApj), (use (3.11)) (3.14)

pj+1 = rj+1 + 2βjqj + β2
j pj, (3.15)

qj = rj + βj−1qj−1 − αjApj. (3.16)

It is convenient to define two auxiliary vectors

uj = rj + βj−1qj−1,

dj = 2rj + 2βj−1qj−1 − αjApj = uj + qj. (use (3.16))

Utilizing these auxiliary vectors, we rewrite (3.14) and (3.15) and (3.16) as

rj+1 = rj − αjA(uj + qj)

pj+1 = uj+1 + βj(qj + βjpj)

qj = uj − αjApj.

The first point to notice is the residual of CGS is different from the residual of BCG. In

general, one should expect the result of CGS to converge twice as fast as BCG. Therefore,

the CGS algorithm is given as below.
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ALGORITHM 11. CGS
1. r0 = b− Ax0, and choose r∗0 such that (r0, r

∗
0) = 1.

2. p0 = u0 = r0

3. For j = 0, 1, . . . , until convergence Do:
4. αj = (rj, r

∗
0)/(Apj, r

∗
0)

5. qj = uj − αjApj

6. xj+1 = xj + αj(uj + qj)
7. rj+1 = rj − αjA(uj + qj)
8. βj = (rj+1, r

∗
0)/(rj, r

∗
0)

9. uj+1 = rj+1 + βjqj

10. pj+1 = uj+1 + βj(qj + βjpj)
11. EndDo
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3.3.2 BICGSTAB

Note that the polynomials in the CGS are square, then the CGS residual usually increases

by approximately the square of the increase of the BCG. But one difficulty in CGS is that

rounding errors maybe lost or overflow and convergence curve maybe oscillate. To avoid

the large oscillations in the CGS, one might try to produce iterates whose residual vectors

are of the form

r′j = ψj(A)φj(A)r0,

where φj(t) is again the BCG polynomial and ψj(t) is a new polynomial which at each

step is chosen to try and keep the smoothing convergence behavior. Specifically, we define

ψj(t) by the form

ψj+1(t) = (1− ωjt)ψj(t) (3.17)

in which the scalar ωj can be chosen at each step to minimize ‖rj+1‖2. This manner

leads to the Biconjugate Gradient Stabilized (BICGSTAB) [12], the derivation is similar

to CGS. First, leaving the discussion of the scalar ωj aside for a moment, by using (3.8)

and the residual polynomial

ψj+1(t)φj+1(t) = (1− ωjt)ψj(t)φj+1(t)

= (1− ωjt)(ψj(t)φj(t)− αjtψj(t)πj(t)), (3.18)

which show that we can compute if we know the products ψj(t)πj(t). For this, by using

(3.9) and (3.17), we have

ψj(t)πj(t) = ψj(t)(φj(t) + βj−1πj−1(t))

= ψj(t)φj(t) + βj−1(1− ωj−1t)ψj−1(t)πj−1(t). (3.19)

In the BICGSTAB scheme, we require two recurrences

rj = φj(A)ψj(A)r0,

pj = ψj(A)πj(A)r0.

According to the above formulas, it follow from (3.18) and (3.19) that

rj+1 = (I − ωjA)(rj − αjApj) (3.20)

pj+1 = rj+1 + βj(I − ωjA)pj.
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Finally, we need to express the coefficients αj, βj, and ωj in terms of the new vectors. Let

ρj = (φj(A)r0, φj(A
T )r∗0),

ρ̃j = (φj(A)r0, ψj(A
T )r∗0).

From BCG, we have φj(A)r0 orthogonal to all vectors (AT )kr∗0, with k < j. In addition,

φj(A) and ψj(A) are polynomials of degree j. In particular, let η
(j)
1 and γ

(j)
1 be the leading

coefficients for the polynomials ψj(A) and φj(A), respectively. Then

ρ̃j =

(
φj(A)r0,

η
(j)
1

γ
(j)
1

φj(A
T )r0

)
=

η
(j)
1

γ
(j)
1

ρj.

According to (3.8) and (3.17), we have

γ
(j+1)
1 = −αjγ

(j)
1 , η

(j+1)
1 = −ωjη

(j)
1 .

As a result, we now compute βj :

βj =
(φj+1(A)r0, ψj+1(A

T )r∗0)
(φj(A)r0, ψj(AT )r∗0)

× αj

ωj

=
(ψj+1(A)φj+1(A)r0, r

∗
0)

(ψj(A)φj(A)r0, r∗0)
× αj

ωj

=
(rj+1, r

∗
0)

(rj, r∗0)
× αj

ωj

.

To compute αj by the same way, the polynomials in the right sides of the inner products

in both the numerator and denominator can be replaced by their leading terms. And we

also know that the leading coefficients for φj(A
T )r∗0 and πj(A

T )r∗0 are identical. Therefore,

αj =
(φj(A)r0, φj(A

T )r∗0)
(Aπj(A)r0, πj(AT )r∗0)

=
(φj(A)r0, ψj(A

T )r∗0)
(Aπj(A)r0, ψj(AT )r∗0)

=
(ψj(A)φj(A)r0, r

∗
0)

(Aψj(A)πj(A)r0, r∗0)

=
(rj, r

∗
0)

(Apj, r∗0)
.

Lastly, let us now return to find the scalar ωj to be minimize the residual rj+1 and by

(3.20), we have

min
ωj∈R

‖rj+1‖2 = min
ωj∈R

‖(I − ωjA)(rj − αjApj)‖2

= min
ωj∈R

‖(I − ωjA)sj‖2
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in which sj = rj − αjApj. By Minimal Residual iteration, the optimal value for ωj is

given by

ωj =
(Asj, sj)

(Asj, Asj)
.

Finally, we rewrite the residual rj+1 in the following form

rj+1 = rj − αjApj − ωjAsj = rj − A(αjpj + ωjsj).

Then an approximate solution xj+1 can be repressed as

xj+1 = xj + αjpj + ωjsj.

Thus, we have the BICGSTAB algorithm as follow :

ALGORITHM 12. BCGSTAB
1. r0 = b− Ax0, and choose r∗0 such that (r0, r

∗
0) = 1.

2. p0 = r0

3. For j = 0, 1, . . . , until convergence Do:
4. αj = (rj, r

∗
0)/(Apj, r

∗
0)

5. sj = rj − αjApj

6. wj = (Asj, sj)/(Asj, Asj)
7. xj+1 = xj + αjpj + ωjsj

8. rj+1 = sj − ωjAsj

9. βj =
(rj+1,r∗0)

(rj ,r∗0)
× αj

ωj

10. pj+1 = rj+1 + βj(pj − ωjApj)
11. EndDo
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4 Transpose-Free QMR Method

In this chapter generalized minimal residual (GMRES), quasi-minimal residual (QMR),

and transpose-free QMR (TFQMR) algorithms are derived. In line 12 of FOM, we find

vector ym can be obtained by dealing with the problem of inverse matrix. We will discuss

it in different way from the least square method. In the first section, we derive GMRES

and this variations by relying on application of Arnoldi’s method. From the GMRES

algorithm, we took advantage of the same techniques of IOM and DIOM to construct

Quasi-GMRES and direct version of QGMRES, called DQGMRES. In the second sec-

tion, we introduce QMR method. In algorithm of QMR, we will find an approximate

solution xm just as well as algorithm of GMRES, except for constructing the matrix Tm

or Hm. In the last section, we introduce TFQMR method. This method is derived from

the CGS algorithm. We shall have more to say about TFQMR later on.

4.1 GMRES, QGMRES, and DQGMRES

In this section, we will develop GMRES, QGMRES, and DQGMRES as well as the sec-

tion 2.3. Only taking notice of one thing is to derive DQGMRES by using QR factor-

ization, not LU factorization.

4.1.1 GMRES

The GMRES [11] is a oblique projection method based on taking Lm = AKm, in which

Km is the m-th Krylov subspace with v1 = r0/‖r0‖2. Now, we construct a basis for Km

by using Arnoldi’s method. Then resulting projection, oblique projection, should satisfy

Proposition 3. If the approximate solution xm = x0 + Vmym, then

b− Axm = b− A(x0 + Vmym)

= r0 − AVmym

= βv1 − Vm+1H̄mym

= Vm+1(βe1 − H̄mym).
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So the next guess xm should satisfy

min
x∈x0+Km

‖b− Ax‖2 = ‖b− Axm‖2

= ‖Vm+1(βe1 − H̄mym)‖2

= ‖βe1 − H̄mym‖2,

and the claim is that solving the least squares problem is inexpensive to compute. By the

above relations, this gives the following algorithm.

ALGORITHM 13. GMRES
1. r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β
2. Set (m + 1)×m matrix H̄m = 0
3. For j = 1, 2, . . . , m Do:
4. wj = Avj

5. For i = 1, . . . , j Do:
6. hij = (wj, vi)
7. wj = wj − hijvi

8. EndDo
9. hj+1,j = ‖wj‖2. If hj+1,j = 0 then set m = j and Goto 12

10. vj+1 = wj/hj+1,j

11. EndDo
12. Compute ym the minimizer of ‖βe1 − H̄my‖2 and xm = x0 + Vmym.

4.1.2 QGMRES

The same observation applies to QGMRES, we can use the same technique to derive an

incomplete version of the GMRES algorithm, Quasi-GMRES (QGMRES). The algorithm

of QGMRES is follow:

ALGORITHM 14. QGMRES
1. r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β
2. Set (m + 1)×m matrix H̄m = 0
3. For j = 1, 2, . . . , m Do:
4. w = Avj

5. For i = max{1, j − k + 1}, . . . , j Do:
6. hij = (w, vi)
7. w = w − hijvi

8. EndDo
9. hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10. EndDo
11. Compute ym the minimizer of ‖βe1 − H̄my‖2 and xm = x0 + Vmym.
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4.1.3 DQGMRES

But before we come on to introduce DQGMRES, let us pause here to look briefly at

transforming the Hessenberg matrix into upper triangular by using Givens rotation. In

the first, we define the rotation matrices

Ωi =




1
. . .

1
ci si

−si ci

1
. . .

1




← row i
← row i + 1

with c2
i + s2

i = 1. If m = 4, the sample example, we would have

H̄4 =




h11 h12 h13 h14

h21 h22 h23 h24

h32 h33 h34

h43 h44

h54




, ḡ0 =




β
0
0
0
0




= βe1.

Then premultiply H̄4 by

Ω1 =




c1 s1

−s1 c1

1
1

1




with

s1 =
h21√

h2
11 + h2

21

, c1 =
h11√

h2
11 + h2

21

to obtain the matrix H̄
(1)
4 and right-hand side

H̄
(1)
4 =




h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14

h
(1)
22 h

(1)
23 h

(1)
24

h32 h33 h34

h43 h44

h54




, ḡ1 =




c1β
−s1β

0
0
0




.
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Be continued until the 4-th rotation is applied by the same way, which transform the H̄4

into one involving the matrix and right-hand side,

H̄
(4)
4 =




h
(4)
11 h

(4)
12 h

(4)
13 h

(4)
14

h
(4)
22 h

(4)
23 h

(4)
24

h
(4)
33 h

(4)
34

h
(4)
44

0




, ḡ4 =




γ1

γ2

γ3

γ4

γ5




.

By the above example, in general the scalars ci and si of the ith rotation Ωi are defined as

si =
hi+1,i√

(h
(i−1)
ii )2 + h2

i+1,i

, ci =
h

(i−1)
ii√

(h
(i−1)
ii )2 + h2

i+1,i

. (4.1)

Define Qm the product of matrices Ωi,

Qm = ΩmΩm−1 . . . Ω1

and

R̄m = H̄(m)
m = QmH̄m,

ḡm = Qm(βe1) = (γ1, . . . , γm+1)
T .

Then

min
y
‖βe1 − H̄my‖2 = min

y
‖ḡm − R̄my‖2.

Proposition 10. Let Ωi, i = 1, . . . ,m be the rotation matrices used to transform H̄m

into an upper triangular form and R̄m, ḡm = (γ1, . . . , γm+1)
T the resulting matrix and

right-hand side. Denote by Rm the m×m upper triangular matrix obtained from R̄m by

deleting its last row and by gm the m-dimensional vector obtained from ḡm by deleting its

last component. Then,

1. The rank of AVm is equal to the rank of Rm. In particular, if rmm = 0 then A must

be singular.

2. The vector ym which minimizes ‖βe1 − H̄my‖2 is given by

ym = R−1
m gm.
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3. The residual vector at step m satisfies

b− Axm = Vm+1(βe1 − H̄mym) = Vm+1Q
T
m(γm+1em+1)

and, as a result,

‖b− Axm‖2 = |γm+1|.

We need not elaborate or proof on above proposition, it is treated much more ade-

quately in [9, p.169]. We can find ym in Proposition 10., then the direct version of

QGMRES, called DQGMRES, is quite similar to DIOM. For example, if 5×4 Hessenberg

matrix with bandwidth equal to 3, this is

H̄4 =




h11 h12

h21 h22 h23

h32 h33 h34

h43 h44

h54




, ḡ0 =




β
0
0
0
0




.

Multiply the Hessenberg matrix H̄4 and ḡ0 by Ωi, then the resulting is R̄4y = ḡ4, with

R̄4 =




r11 r12 r13

r22 r23 r24

r33 r34

r44

0




, ḡ4 =




γ1

γ2

γ3

γ4

γ5




.

Therefore, the general approximate solution is given by

xm = x0 + VmR−1
m gm

where Rm and gm are obtained by removing the last row of R̄m and ḡm, respectively.

Defining the matrix

Pm = [p1, . . . , pm] = VmR−1
m

and the vector

gm =

[
gm−1

γm

]
,

in which

γm = cmγ(m−1)
m ,
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where γ
(m−1)
m is the last component of the vector ḡm−1 and cm defined by (4.1). Thus, xm

can be written as

xm = x0 + Pmgm

= x0 + Pm−1gm−1 + γmpm

= xm−1 + γmpm.

ALGORITHM 15. DQGMRES
1. r0 = b− Ax0, γ1 = ‖r0‖2, and v1 = r0/γ1

2. For m = 1, 2, . . . , until convergence Do:
3. w = Avm

4. For i = max{1,m− k + 1}, . . . , m Do:
5. him = (w, vi)
6. w = w − himvi

7. EndDo
8. hm+1,m = ‖w‖2 and vm+1 = w/hm+1,m

9. Update the QR factorization of H̄m, i.e.,
10. Apply Ωi, i=m-k, . . . , m-1 to the m-th column of H̄m

11. Compute the rotation coefficients cm, sm by (4.1)
12. γm+1 = −smγm

13. γm = cmγm

14. hmm = cmhmm + smhm+1,m (=
√

h2
m+1,m + h2

mm)

15. pm = (vm −
∑m−1

i=m−k himpi)/hmm

16. xm = xm−1 + γmpm

17. If |γm+1| is small enough then stop.
18. EndDo
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4.2 Quasi-Minimal Residual

In BCG algorithm or Proposition 9., we know those used the Lanczos biorthogonaliza-

tion procedure to make

AVm = Vm+1T̄m

in which T̄m is (m + 1)×m tridagonal matrix of the form

T̄m =

[
Tm

δm+1e
T
m

]
.

Consider the DQGMRES algorithm make

AVm = Vm+1H̄m

in which H̄m is (m + 1)×m banded matrix of the form

H̄m =

[
Hm

hm+1,meT
m

]
.

If a bandwidth of H̄m equal to three. Then we can find T̄m and H̄m are similar. Then we

can derive QMR by the same way as for GMRES or DQGMRES. In the first instance, if

we have an approximate solution xm = x0 + Vmym, then

b− Axm = b− A(x0 + Vmym)

= r0 − AVmym

= βv1 − Vm+1T̄mym

= Vm+1(βe1 − T̄mym).

So the next guess xm should satisfy

min
x∈x0+Km

‖b− Ax‖2 = ‖b− Axm‖2

= ‖Vm+1(βe1 − T̄mym)‖2

≤ ‖Vm+1‖2 · ‖βe1 − T̄mym‖2.

Since the columns of Vm+1 are not orthogonal in the Lanczos algorithm, it would be

difficult to choose ym to minimize the residual. However, we can easily choose to minimize

the second factor, ‖βe1 − T̄mym‖2. Then we write down the algorithm as follow:
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ALGORITHM 16. QMR
1. r0 = b− Ax0, γ0 = ‖r0‖2, w1 = v1 = r0/γ1 and β1 = δ1 = 0
2. For m = 1, 2, . . . , until convergence Do:
3. αm = (Avm, wm)
4. v̂m+1 = Avm − αmvm − βmvm−1 (v0 = 0)
5. ŵm+1 = AT wm − αmwm − δmwm−1 (w0 = 0)
6. δm+1 = |(v̂m+1, ŵm+1)|1/2. If δm+1 = 0 then stop
7. βm+1 = (v̂m+1, ŵm+1)/δm+1

8. wm+1 = ŵm+1/βm+1

9. vm+1 = v̂m+1/δm+1

10. Update the QR factorization of T̄m, i.e.,
11. Apply Ωi, i = m− 2, m− 1 to the m-th column of T̄m

12. Compute the rotation coefficients cm, sm by (4.1)
13. γm+1 = −smγm

14. γm = cmγm

15. αm = cmαm + smδm+1

16. pm = (vm −
∑m−1

i=m−2 timpi)/tmm

17. xm = xm−1 + γmpm

18. If |γm+1| is small enough then stop.
19. EndDo
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4.3 TFQMR

The Transpose-Free QMR (TFQMR) [7] for solving general non-Hermitian linear systems

is derived from CGS algorithm. By incorporating the QMR approach, residual norm

of TFQMR produces smoother convergence behavior than CGS. In the first, we derive

TFQMR from the CGS algorithm. We double all subscripts in the CGS algorithm, that

is to say

α2j = (r2j, r
∗
0)/(Ap2j, r

∗
0) (4.2)

q2j = u2j − α2jAp2j (4.3)

x2j+2 = x2j + α2j(u2j + q2j) (4.4)

r2j+2 = r2j − α2jA(u2j + q2j) (4.5)

β2j = (r2j+2, r
∗
0)/(r2j, r

∗
0) (4.6)

u2j+2 = r2j+2 + β2jq2j (4.7)

p2j+2 = u2j+2 + β2j(q2j + β2jp2j) (4.8)

Observe that approximate solution x2j+2 in (4.4) can be split into the following two half-

steps:

x2j+1 = x2j + α2ju2j (4.9)

x2j+2 = x2j+1 + α2jq2j. (4.10)

When m is odd, set {
um = qm−1

αm = αm−1
. (4.11)

Then (4.9) and (4.10) can be simplified by (4.11). Whether m is even or odd, the single

equation is

xm = xm−1 + αm−1um−1.

It must be noted that the intermediate iterates xm does not exist in the original CGS

algorithm with m is odd. And we define the n×m matrix,

Um = [u0, . . . , um−1]
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and the vector

zm = (α0, . . . , αm−1)
T .

General iterate xm and residual vector rm are

xm = xm−1 + αm−1um−1 (4.12)

= x0 + Umzm, (4.13)

rm = rm−1 − αm−1Aum−1 (4.14)

= r0 − AUmzm. (4.15)

From a result of (4.14), we have

Aum−1 =
1

αm−1

(rm−1 − rm).

Judging from the above relation, we can translate into matrix form, this relation becomes

AUm = Rm+1B̄m (4.16)

where Rm+1 is the n× (m + 1) matrix,

Rm+1 = [r0, r1, . . . , rm]

and where B̄m is the (m + 1)×m matrix with the following form,

B̄m =




1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 −1 1
0 0 · · · 0 −1



× diag

{
1

α0

,
1

α1

, · · · ,
1

αm−1

}
.

Let the (m + 1)× (m + 1) scaling matrix is

4m+1 = diag{δ0, δ1, . . . , δm},

in addition, each inverse of diagonal element can rescale the corresponding column of

Rm+1 equal to one. Then, the relation of (4.16) becomes

AUm = Rm+14−1
m+14m+1B̄m

= Ṽm+1H̄m, (4.17)
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if we define the n × (m + 1) matrix Ṽm+1 = Rm+14−1
m+1 and (m + 1) ×m matrix H̄m =

4m+1B̄m. With this result, equation (4.15) becomes

rm = r0 − AUmzm = Rm+1

[
e1 − B̄mzm

]

= Rm+14−1
m+1

[
δ0e1 −4m+1B̄mzm

]
. (4.18)

This will lead us further into a consideration of whether we can exploit above relations by

QMR. But before we come on to that, let us pause here to look at the following lemma.

Lemma 1. Let R̃m be the m×m upper part of the matrix Qm−1H̄m in FOM and let Rm

be the m×m upper part of the matrix QmH̄m in GMRES. Similarly, let g̃m be the vector

of the first m components of Qm−1(βe1) and let gm be the vector of the first m components

of Qm(βe1). Define

ỹm = R̃−1
m g̃m, ym = R−1

m gm

the y vectors obtained for an m-dimensional FOM and GMRES methods, respectively.

Then

ym −
(

ym−1

0

)
= c2

m

(
ỹm −

(
ym−1

0

))

in which cm is the cosine used in the m-th rotation Ωm, as defined in DQGMRES.

We need mention here only the result of lemma, this proof of lemma can be seen in

[9, p.180]. Let us return to our main subject to derive TFQMR. By above lemma, we

know it is also valid for the CGS/TFQMR pair. This relation provides a starting point to

derive the TFQMR algorithm. Thus, the TFQMR iterates satisfy the following relation

xm − xm−1 = c2
m(xCGS

m − xm−1). (4.19)

Setting the vector

dm =
1

αm−1

(xCGS
m − xm−1) (4.20)

and the scalar

ηm = c2
mαm−1. (4.21)

Then (4.19) can be expressed as

xm = xm−1 + ηmdm. (4.22)
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Moreover, by (4.12), (4.19), (4.20), and (4.21), we have

dm =
1

αm−1

[
(xCGS

m − xCGS
m−1) + (xCGS

m−1 − xm−2)− (xm−1 − xm−2)
]

= um−1 +
1

αm−1

(xCGS
m−1 − xm−2)− 1

αm−1

(xm−1 − xm−2)

= um−1 +
1− c2

m−1

αm−1

(xCGS
m−1 − xm−2)

= um−1 +
1− c2

m−1

c2
m−1

ηm−1

αm−1

dm−1.

Define the m-st tangent by θm = sm/cm, then we have the new relation as below

dm+1 = um +
θ2

mηm

αm

dm. (4.23)

By the structure of H̄m in (4.17), the angle used in the (j + 1)-th rotation can obtain by

(4.1), that is

sj+1 =
−δj+1√
τ 2
j + δ2

j+1

, cj+1 =
τj√

τ 2
j + δ2

j+1

, θj+1 =
−δj+1

τj

, (4.24)

where τj be (j + 1)-th diagonal element of Ωj · · ·Ω1H̄m. Moreover, after j + 1 rotations,

next diagonal element δj+1 becomes τj+1, which is

τj+1 = δj+1 × cj+1 =
τjδj+1√
τ 2
j + δ2

j+1

= −τj × sj+1 = −τjθj+1cj+1. (4.25)

Since only the square of scalar θj+1 is invoked in the update of the direction dm+1. We

can ignore the negative symbol in (4.24) and (4.25). So far, we have seen the following

relations:

• dm+1 = um + (θ2
m/αm)ηmdm

• θm+1 = δm+1/τm

• cm+1 = (1 + θ2
m+1)

− 1
2

• τm+1 = τmθm+1cm+1

• ηm+1 = c2
m+1αm.
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The question which we must consider next is to derive the remain terms. We note a little

earlier that the vectors rm in (4.14) are no longer the actual residuals, we rewrite the new

notation by wm. Then we have

wm = wm−1 − αm−1Aum−1.

We may note, in passing, that the scalar δm equal to ‖wm‖2. Setting the new vector

v2j = Ap2j and multiplying (4.8) by matrix A,

v2j = Au2j + β2j−2(Aq2j−2 + β2j−2Ap2j−2)

= Au2j + β2j−2(Au2j−1 + β2j−2v2j−2). (by (4.16))

The same observation applies to (4.3) and (4.7), we have

u2j+1 = u2j − α2jv2j

u2j+2 = w2j+2 + β2ju2j+1.

To sum up all relations above, we have TFQMR algorithm as follow:

ALGORITHM 17. TFQMR
1. w0 = u0 = r0 = b− Ax0, v0 = Au0, d0 = 0
2. τ0 = ‖r0‖2, θ0 = η0 = 0.
3. Choose r∗0 such that ρ0 = (r∗0, r0) 6= 0.
4. For m = 0, 1,. . . , until convergence Do:
5. If m is even then
6. αm+1 = αm = ρm/(vm, r∗0)
7. um+1 = um − αmvm

8. EndIf
9. wm+1 = wm − αmAum

10. dm+1 = um + (θ2
m/αm)ηmdm

11. θm+1 = ‖wm+1‖2/τm; cm+1 = (1 + θ2
m+1)

− 1
2

12. τm+1 = τmθm+1cm+1; ηm+1 = c2
m+1αm

13. xm+1 = xm + ηm+1dm+1

14. If m is odd then
15. ρm+1 = (wm+1, r

∗
0); βm−1 = ρm+1/ρm−1

16. um+1 = wm+1 + βm−1um

17. vm+1 = Aum+1 + βm−1(Aum + βm−1vm−1)
18. EndIf
19. EndDo
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5 Algorithm and Numerical Results

5.1 General Solution Algorithm

In the first, we refer to the finest grid (with 41 × 129 nodes) as level 1. Two additional

coarser grids are constructed by successively discarding every other mesh line from one

grid to the coarser one. These grids are numbered with increasing level number, we have

• level 1: 41× 129 grid,

• level 2: 21× 65 grid,

• level 3: 11× 33 grid.

According to the characteristic of the results are given in section 1.2, we have a nonlinear

system of the discretized equations in residual form,

F (Φ) = 0. (5.1)

Assume that nonlinear system start from an initial guess Φ0 and have an accurate solution

Φ∗. The vector Φ has NcNxNy three components for two dimensional problems, where

Nc is the number of the solution components; Nx and Ny are the number of grid points

in the r and z direction, respectively. In order to stabilize convergence, we use a damped

Newton method [3] instead of Newton method. Suppose an initial solution Φ0 is close

to the solution Φ∗ enough, the equations (5.1) can be solved by using a damped Newton

method, that is

J(Φn)(Φn+1 − Φn) = −λnF (Φn), n = 0, 1, . . . (5.2)

where J(Φn) is the Jacobian matrix at Φn with the form

J(Φn) =
∂F

∂Φ
(Φn),

and the damping parameter λn is in the range of (0 < λn ≤ 1). We denote the update

vector as 4Φn = Φn+1 − Φn and (5.2) with convergence tolerance

‖ 4 Φn‖2 < 10−5.

In our numerical applications, we use likely modified Newton method in (5.2). This means

that the Jacobian matrix is re-evaluated only twice Newton iterative step. If the rate of

convergence is too slow, we form a new damping parameter.
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We know that the governing equations of a combustion process are difficult to solve

and a good initial solution estimate for an iteration process is hard to determine. For

eliminating these difficulties, a time relaxation process is used. Due to the nonlinearity of

the governing equations of a combustion process, we can use a pseudo transient process to

produce a parabolic in time problem and bring the starting estimate into the convergence

domain of the steady Newton method. Thus, the unsteady form of the governing equations

can be obtained by adding the unsteady term to the steady-state equations. We have

F(Φn+1) = F (Φn+1) + D
Φn+1 − Φn

4tn+1
= 0, (5.3)

where D is a diagonal scaling matrix with nonnegative entries and4tn+1 = tn+1−tn is n-st

time step. In our calculations of program, in time dependent part, we use modified Newton

method to solve the nonlinear system (5.3) which is similar to the system of equations in

(5.2). In steady-state part, we use one way multigrid method and damped Newton method

to solve the nonlinear system (5.1). One way multigrid method means that the coarser

meshes are used only to initialize the next finer ones. Our goal is to obtain a converged

numerical solution on level 1. For that purpose, we solve the nonlinear problem (5.1)

and (5.3) starting at the coarsest level and ending at the finest. To summarize above

informations, we write down these phases as following sample processes:

1. Time stepping on level 3 (in coarsest level).

2. Steady Newton iterations on level 3 and interpolation of the numerical solution from

level 3 onto level 2.

3. Steady Newton iterations on level 2 and interpolation of the numerical solution from

level 2 onto level 1.

4. Steady Newton iterations on level 1.

5.2 Numerical Results and Discussion

In this section, we present three Krylov subspace methods of numerical results, these

methods are BICGSTAB and GMRES and TFQMR. First, a contour plot of the computed

temperature for the flame sheet model is shown in Figure 2 by using MATLAB. For

computing efficiently in programs, we combined with a Gauss-Seidel left-preconditioner.
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Table 1:

Numerical results for one way multigrid during

the time stepping phase (level 3).
Linear solver Iterations Residual CPU time

(seconds)

BICGSTAB 91 0.268043 4.0
GMRES 113 0.282073 4.0
TFQMR 384 0.24029 10.0

We left the problem, how to choose preconditioner matrix is, untouched. In our numerical

calculations, the numerical result during time stepping are presented in Table 1 and

Figure 3 is the residual norm during the time stepping phase. The Table 2 contains

the results for the one way multigrid and damped Newton methods in steady-state. In

addition, a speed-up is with respect to the unilevel solution time (412.0). Table 3 and

Table 4 and Table 5 indicate that total numbers of iteration performed on each level

during the steady-state. We present residual norm on each level during the steady-state

Newton iterative steps in Table 6. Finally, we compare GMRES with others in maximum

temperature of flame by using C or FORTRAN language in Table 7. These diagrams

helps us to interpret the some facts. First, GMRES gives the best execution time in

our program. Secondly, BICGSTAB gives the less iterations than the others, and gains

the smoother residual norm during the time stepping phase. However, if we take the

numbers of iteration on finest level as a criterion, then GMRES is just slightly better

than BICGSTAB. Furthermore, we can find TFQMR is more expensive than all cases in

our experience. Thus, we see that BICGSTAB and GMRES are better solvers to solve

the flame sheet model.
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Table 2:

Numerical results for damped Newton with one way multigrid during

the steady-state phase.
Linear solver Operation level 1 level 2 level 3

BICGSTAB Total CPU seconds 293.0 29.0 4.0
Speed-up in time 1.4 14.2 103.0

GMRES Total CPU seconds 190.0 25.0 5.0
Speed-up in time 2.2 16.5 82.4

TFQMR Total CPU seconds 412.0 65.0 5.0
Speed-up in time 1.0 6.3 82.4

Table 3:

Numerical results for one way multigrid.

BICGSTAB(i) represents the total number of BICGSTAB iterations

performed on level i during the steady-state Newton iterations.
Total levels Level 3 Level 2 Level 1

BICGSTAB(1) - - 672
BICGSTAB(2) - 350 676
BICGSTAB(3) 192 148 269

Total iterations 192 498 1617

Table 4:

Numerical results for one way multigrid.

GMRES(i) represents the total number of GMRES iterations

performed on level i during the steady-state Newton iterations.
Total levels Level 3 Level 2 Level 1

GMRES(1) - - 609
GMRES(2) - 410 551
GMRES(3) 361 336 280

Total iterations 361 746 1440

Table 5:

Numerical results for one way multigrid.

TFQMR(i) represents the total number of TFQMR iterations

performed on level i during the steady-state Newton iterations.
Total levels Level 3 Level 2 Level 1

TFQMR(1) - - 1042
TFQMR(2) - 746 1418
TFQMR(3) 324 1324 1798

Total iterations 324 2070 4258
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Table 6: Residual norm on level i during the steady-state Newton iterative

steps by using GMRES as linear solver.

*: bracket represent the new residual norm taking damped parameter λn = 0.5
Newton iteration Level 3 Level 2 Level 1

original 1.979× 10−1 3.998× 101 2.507× 102

1 1.249× 10−2 1.259× 102 5.736× 102(1.665× 102)*
2 8.311× 10−4 3.571× 101 3.299× 102(1.274× 102)*
3 1.004× 10−4 2.863× 100 1.478× 102

4 5.234× 10−5 7.470× 10−3 1.185× 101

5 - 2.144× 10−4 4.134× 10−2

6 - - 2.961× 10−4

Table 7: Compare GMRES with others in maximum temperature of flame

by using C or FORTRAN.
Solver C FORTRAN C - FORTRAN

GMRES - GMRES 0.0000 0.0000 0.0015
GMRES - BICGSTAB 0.2593 0.1846 0.1848

GMRES - TFQMR 0.2801 - -
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Figure 2: Contour plot of the temperature
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Figure 3: Residual norm of Newton step during the time stepping phase
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