Bt g

oL w2

SRR S M B AR T
Tie ik g g o

T

| ¢

Interface Approximation and Matrix Reduction
for Semiconductor Quantum Well, Wire, and
Dot Models



LEE A m g R ;Fﬁ»/}‘i
T R B g S 2

Interface Approximation and Matrix Reduction
for Semiconductor Quantum Well, Wire, and

Dot Models
A R S Student : Chen-Chih Kao
hERREHFR Advisor : Jinn-Liang Liu

A Thesis
Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Applied Mathematics

June 2004

Hsinchu, Taiwan, Republic of China

PEARY Sz ER



LEWESE S B TR

Bz

fii?r %ﬁﬁ—ﬁﬁﬂ’ HIE = I’[ﬁ'ﬁﬂﬁ ° T 5T f[ﬁ'ﬁﬂﬁ}@ » 7§ I'F'ﬁifﬁﬁflé%i'i[ (quantum
well) ~ Ei="5L (quantum wire) ~ Ei'%ﬁ (quantum dot) FUESf % o =5 P H T IR
PR e AUV BT T iR (interface condition) b =% 5 3 AT E]
FuAdiil o PELEET S E‘lf'il'fFﬂ?EﬁfJ’fﬁ fot s> B 5 IPEF P15 2 7 I ek
S RET [ A s TR B o Sh IR S5
R R R AR A x = 2 xR ARORES o ] Jiﬁff;;arrfg Eprfst /| f;imgﬁ
PEURUSELI A B et o[ f%ﬁfﬁﬁjﬁ'ﬁ o lﬁﬁ[ﬂ FLE B (wave function) ZF
it FL R A T e B~ L SRR « [ 2
(PR~ Ef‘ﬁl'*’ S AR APSRER [0 ZS IR T ?U?Eﬁfj’*ﬁyﬁéﬁgﬁ T
e



Interface Approximation and Matrix

Reduction for Semiconductor Quantum
Well, Wire, and Dot Models

Student: Chen-Chih Kao Advisor: Dr. Jinn-Liang Liu

Department of Applied Mathematics
National Chiao Tung University

Abstract

There are two parts in the thesis. In'the first part, we discuss the discretization
in the quantum well, wire, and dot. For the.interface condition, we use different
discretizations to the model equation, and compare the results. Because the in-
terface condition is very important, we use different discretizations to the interface
condition and get different convergent results about the smallest eigenvalue. In the
second part, we use some substitutions to reduce the dimension on the matrix A in
the eigenvalue system A-z = \-z, and get the smallest eigenvalue which is very close
to the one of the original matrix A. Since the wave function can be very smooth,
there is no need in solving the whole system with very fine mesh. Therefore, we
use some substitutions to reduce the dimension of the matrix A and we can still get
very accurate eigenvalue.
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Part |
Interface Approximations

1 Introduction

In the world of quantum, the interesting problems are the problems in three-
dimension (3D). But the complicated problems are always constructed from the
simple problems. Thus, we start with simple finite well in one-dimension (1D),
and we expect that the result of the finite well in 1D can bring some ideas
and foundations for quantum dots in 3D and let us to understand semiconductor
guantum dots more so that we can find more applications for our life, like quantum
dot infrared photodetectors, lasers, etc. [7, 5] .

For example, in the first part, we compare the discretizations for the equation
of the interface condition. If we use linear interface approximation to the inter-
face condition, we get the convergency of O(h) for eigenvalue and eigenvector. If
we use quadratic interface approximation, we get the convergency of O(h?) for
eigenvalue and eigenvector. \WWe find that the quadratic interface approximation
is much better. Although we wantto get.better results, we use the high order in-
terface approximation. However, if the order of interface approximation is higher
than three, there are some problems.with constructing the matrix. Therefore, all
good results that we get are using-quadratic interface approximation. With the
experience of discretizations forinterface condition, we also use quadratic inter-
face approximation to 2D and 3D.model. . In order to slove the matrix of 2D and
3D model, we use Linear Jacobi-Davidson method [3, 8], since it can converge to
the extreme eigenvalue quickly.

To deserve to be mentioned, there are some benefits with quadratic inter-
face approximation. When we use quadratic interface approximation, we can
construct the matrix which is symmetric. When we use the linear interface ap-
proximation, the place corresponding to the interface condition in the matrix is
nonsymmetric and it is more expensive for solving the eigensystem. In addition
to numerical verification, we also prove the convergence of the quadratic interface
approximation for 1D, 2D, and 3D problem, and compare the different directions
of interface condition for 2D model.



2 Linear Interface Approximation

We consider a single quantum well. According to time-independent Schrddinger
equation, the model problem is:

—_~2d2u(x)

2m dx?
with the interface conditions:

+V (X)u(x) = Au(x); 8x 2 (a;b) (2.1)

1 du 1 du 1 du 1 du
_——| = —— , ——| = —— (2.2)
mpdx|.- mydx|. = midX|,  mydX|,,
and the boundary conditions:
u@ =u)=0 (2.3)
wherea<c<d<b,~= % h is Planck’s constant, m; and m, are constant

masses in (c;d) and (a;b) n (c; d), respectively, V(x) is the potential energy, as
shown in Figure 2.1.

=i —

m2 mz2

0

mi

L L |
a [ d b

Figure 2.1. Structure schema of a single quantum well.

2.1 Discretization

There are two discretizations for the model equation. One is for grid points at
the interface, and another is for grid points that satisfy (2.1). For (2.1), the
discretization done by the central finite difference method is

d®u(x;) _ Uj_1 — 2Uj + Ujsq
dx@ (M x)2
where uU; = u(X;), and M x = X; — X. At the interface, we use the interface

condition to substitute the model equation (2.1). The interface condition is as
follows:




—1du(xi) _ —1du(xi)
m; dx B

m, dx

well— well+

The linear approximation for the interface condition (2,2) is based on the follow-
ing:

du(xi) _ Ui — Ui
dx M x

2.2 Matrix Formulation
The central finite difference approximation of (2.1) at x; & a;b;c; d is thus

—~2 (Uj_1 — 2Uj + Ujsq
2m (M x)2

where V; =V (X;). The linear difference approximation of (2.2) at x; = c;d is

) + Viu; = AU (24)

=1 Ui = UiZy s —Lujeg — U;

= 2.5
mo M x my M x ( )
where i = ifl or if2 with-Xjs; = ¢ and Xjs, = d. From (2.5), we get the equation:
m m
Ui = U Uiy
my +=m, mp; +my

Then the discretization of the model problem leads to the following eigenvalue
system:

AU = \U (2.6)

where

2 3
17,

2
By 2 s uz
Bif1_1 Cif1-1 Vif1_1 Uif1-1
Bif1+1 Qif1+1 Vif1+1 Uif1+1

Uif2—1
Uif2+1

Bifo_1 Qif2—1 Vifr_1
Bifo+1 Qif2+1 Vico+1

Ba_1 n—17n-1 Un_1

Bn Qn Un



with 8 |
mno? Vo 1<k<ifl-2
%}1;2”12 2m2~(2/lx)2 + Vi, k= ?fl —1
riwnllgr?; (02 k =ifl+1 _
M if1+2 <k <if2-2
§ e 2m1~(gllx)2’ k= !f2 —1
r;l;zrrr?zz 2m22Mx)2 + Vi, k=if2+1
man? T Vi if2+2<k<n
8
% 2mz(Mx)2’ 2<k<ifl-1
2m1(Mx)2 m1+m2 k=ifl+1
2m1(Mx)2’ ifl+2<k<if2-1
§ 2m2(Mx)2 o k=if2+1
~ IR0 if2+2<k<n
8
% 2mz(Mx)2’ 1<k<ifl-2
2m2(Mx)2 i k=ifl-1
2m1<Mx>2’ ifl+1<k<if2-2
g 2m2('\/|><)2 m1+m2 k=if2-1

Zmz(MX)Z’ if2+1<k<n-1

Note that A is nonsymmetric.



3 Quadratic Interface Approximation

In this case, we still use the model equation (2.1), but with different approxima-
tion for the interface condition.

3.1 Discretization
According to Taylor’s expansion, we get the equation:

00
u_
Ui A Ui + Ui(= MX) + (= M)’

00

0 Ui — Uj_1 U;
N+ — .
U; M x > (M x) (3.1
Similarly,
u;
Uiy 2 U; + Ui (M X) + = (M x)?
u Uy
0 i+1 — Ui i
i ——— ——(M 3.2
e (M) (3:2)
Because u satisfies (2.1) at X; & c; d,;"we get the equation
2mv. =2
u? = ( Tz + ~r2n)\) Ui 3.3)

From (3.1), (3.2), (3.3), the interface conitions (2.2) can be approximated by
i Ui — Uj_1 + M Xu(;o — i Uj+1 — Uj B M Xu(;o
mo M x 2 mq M x 2

ui—ui_1+ VkMx_)\Mx ui:ui+1—ui+>\qui
mz M X ~2 ~2 m; M X ~2

2

—~2 ~ mi+mp Vg —=
——— Ui + — Ui+ ——
2my(M x)2 2(M x)2 mim, 2 2my(M x)2

Uj+1 = AU; (34)



3.2 Matrix Formulation
From (2.4), (3.4), we obtain the eigenvalue system (2.6) but with

2 3 2 3

Q171 Uz

Ba 02 v, Uy
Bif1 Cif1 Vif1 Uif1

A= . . . , U==ea:

Bif2 Qif2 Vif2 Uif2
6n—1 An—1Yn-1 Un—1

ﬁn an un

with 8 |, _
§W+Vk,v 1<k<ifl-1
~ + — -
2(Mx)? nr1nllrrr122 hZ k=ifl

§ 2wy B Yes i

2(Mx)Zima i 1223

-mzzMX)2+Vk’ if2+1<k<n

8 ® _

%—m, 2<k<ifl-1
2 .

~ 2ma 02 k=ifl
Bk = _ ~ e ifl+l1<k<if2—1

~2 .

E—W, k=1if2

— if2+1<k<n

2my(Mx)2
8 2 -
-2 .
_W’ k=ifl
W= e, ifl+1<k<if2—1
-2 .
§_2m2(¥|x)2, k -_ If2

if2+1<k<n-1

2my (Mx)2?

Note that A is symmetric.



4 High Order Interface Approximation

If we further improve the order of the discretization at the interface and we would
expect better results. But, unfortunately, we encounter some difficulties in doing
this way.

4.1 Discretization
According to Taylor’s expansion, we get the equation:

00 000

i1 Uy U (= MX) + (= M)2 + (= M )P

o Ui — Ui (M X)2
T —(M X) - vy (4.1)

Similarly,

00 000

Uiss ~ Ui + U (MpX) ot u?i(M X)? + l%‘(I\/I x)*

M X)2

' B '(M X) — u (4.2)

M X
From (3.3), we know that:

00 <2mV —2m)\)
Ui = + Ui

=2 ~2

and

000

=) (43)

(55« =)

_(2mV  —2mA\ U; — Uj_1

= T2 M x
Pl=) (4.4)
well+
( <2mv —ZmA) >°
Ui

2m —2m)\ Uj+1 — Ui

~2 M X



From (3.3), (4.1), (4.2), (4.3), (4.4) the interface conition (2.2) can be approxi-
mated by

-1 Vi 1 mpg+my 2V -1
— 0t | Ui1 t + Ui + | —=— ) Ui+t
mz(M X)2 3~2 (M X)2 mim; 3~2 ml(M X)2

(e (e (e

From (2.6), we know that there is a problem at the grid point in the interface
when we are constructing the matrix.




5 Quadratic Interface Approximation for 2D Model

Because we use quadratic interface approximation to 1D problem and get good
matrix formulation (A is symmetric) and numerical results, thus, we continue
using the advantage of quadratic interface approximation to 2D problem.

5.1 Quadrangular Wire

We consider a quadrangular quantum wire which is embedded in the center of an-
other quadrangular materials. According to time-independent Schrddinger equa-
tion, the 2D model problem is:

2
%AU(X; y) +V (X y)u(x;y) = Au(x;y) (5.1)
with the interface conditions:
1@ _ 10u 1@u _ 10u
mz x|, MiBx|qe © MiOX|o, M2 0X|g
Lo _Feul Loy _ 16u 62)
Mo @Yoz =M@ for " mily o, Ma@yg: '
and the boundary conditions:
u(xleft) = U(Xright) =0
U(Yptm) = u(Ytop) =0 (5.3)

as shown in Figure 5.1.

) ‘:
mn
Do !

%, D Ose T
Figure 5.1. Structure schema of a quadrangular wire.



5.1.1 Discretization

With the same trick as for 1D model, the central finite difference approximation
for (5.1) is thus

—~2 (Ui_1j — 2Ujj + Uixy; L U1 — 2Uj;5 + Ujjj+1
2m (M x)? (My)?

where ui;j= u(Xi;yj), Vij = V (Xi;¥j) and M X = Xj—Xj_1, My = yj—Yj_1, M X =M
y. And the interface conditions (5.2) with quadratic interface approximation can
be approximated by

> + Vijlij = Auij  (5.4)

2 P 2 ,
- 3 _ k B
vzttt + + X ) Uit ———— Uisgi = AU
2m, M)z <2m1(M x)2 - 2mp(Mx)? 2 ) M my Mgz T

(5.5)

.2 2 Vk
Uii +< ) Uij+s———Uij+1 = AUi;j

_~2 2
- .- __+
2y (M x)2 b <2m1(l\/l )2 2m2(l\/l )2 " om 2(|v| )ZU"+1J

2my(My)2 7\ 2my (M )2 ZmZ(My)Z E2 2m1(M )2

U|j+ U|J+1 )\ui;j

2 2
—~ ~ Vk
2my(Myy? T <2m1(M y)? 2m2(M y)2 "2 2m2(M )2

5.1.2 Matrix Formulation
From (5.4), (5.5), we obtain the eigenvalue system (2.6) but with

2 3 2 3
Stk Hik F.
Gax SZk sz F..

S 2R™™U=8 : Z2R™! (56)
Gn—l;k Sn—1;k Hn—1;k I::;n—l
Gn;k Sn;k Fin
where
2 3
Uz;k
u2;k
Fx= : 2 R™1 fork =1;::n
unfl;k
un;k

10



and the matrices S;x, Gix, Hi.k are defined according to following three cases:

Case (i): If the matrices S;x, Gi.x, Hix do not involve the interface and in
mass m,

2 3
a1 N
52 a2 7>
Sik = . 2 R™" (5.7)
ﬁn 1%n-17n-1
ﬁn Qn
and
2 2
Gix=————1"" Hiy = — |nxn.
BT T 2m, (M x)2 KT oM, (M x)2
i — _ 22 _ -2 _ 2
with oi = e +Vie Bi = ~ammmor 7= ~amr

Case (ii): If the matrices S;.x, Gik, Hix do not involve the interface and in
mass my, and the formulation, of matrice:S;.« is also (5.7), but with

x4 2
Gi.. = _—lnxn, B o= — |n><n,
T T 2m (M )2 K T oM (M x)2
and
2.2 12 2
aj — /Bi =

m;(M x)2" 2mex)2 T T 2m (M x)?

Case (iii): If the matrices S, Gik, Hix involve the interface, the matrices
Si:k,» Gik, Hix, are chosen from the three cases described in Table 5.1.

Table 5.1
Possible choices of matrices Si.x, Gix, Hix involving interface.
Sik
Interface type Bi Qi Vi
. 2 2 + 2 lV _ 2
Qieft 2ma(M)2 2ma(Mx)2  2mp(Mx)2 2 2mz (Mx)Z
] _ 2 2 + 2 + lV _ 2
Qright 2mi(Mx)2  2mi(Mx)2 | 2mp(Mx)2 | 2 2mz (Mx)2
Z Z 1
Qotm 0 2m1(2/lx)2 + 2m2(2/lx)2 + EV 0
~ ~ 1
Qtop 0 2my (Mx)2 + 2m; (Mx)2 + EV 0
Interface type Gik Hi.k
Qeft 0 0
Qright 0 0
Q 2 | nxn ~2 | nxn
btm 2mz(Mx)? 2m1(Mx)?
Q 2 [nxn - _ ~2 |nxn
top 2m3 (Mx)?2 2m; (Mx)2

11



5.2 Triangular Wire

We consider a triangular quantum wire which is embedded in the center of another
quadrangular materials. According to time-independent Schrddinger equation,

the 2D model problem is:

2
mAu(x; y) +V (X y)u(x;y) = Au(x;y)

with the interface conditions:

1 @u _ 1 @u
My OX|r- My @X |
teu _1l@u
my @X Trge T2 @x T
1 @u _ 1 Qu
M@y |y s 0y |

and the boundary conditions:

U(Xiert) = U(Xsight) = 0
U(thm) T U(Ytop) =0

as shown in Figure 5.2.

Tom

% T Tige .

Figure 5.2. Structure schema of a triangular wire.
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5.2.1 Discretization

With the same trick as for 1D model, the central finite difference approximation
for (5.8) is thus

—~? (Ui_1;j — 2Ujj + Ujir; 4+ Y1 — 2Ui;j + Uijj+1
2m (M x)> (My)?
where ui;j= u(Xi;yj), Vi;j = V (Xi;¥j) and M X = Xj—Xj_1, My = yj—Yj_1, M X =M

y. And the interface conditions (5.9) with quadratic interface approximation can
be approximated by

) + Vijuij = Aui;j  (5.11)

2 2 2 5

_~ - - ’ s
vzttt + + ) Upi—————Uirgi = MU
2m2(M X)2 =1 <2m1(M X)2 2m2(|\/| X)2 2 ) 1] 2m1(M X)2 i+1j ¥

2 2 2 Vk _ 2
— Uj g+ + + = Ui = AU
2my(M )2 <2m1(|\/l X2 oMMz | 2 ) Ui Sy V02 it = i
(5.12)
_ 2 2 & v _ 2
— Ui 4+ + + K Ui+t =—————Uji+1 = AUj:
2my(My)2 7\ 2my(My)? " 2ma(Miy)2 =2 ) 7 2my(My)2 !
5.2.2 Matrix Formulation
From (5.11), (5.12), we obtain the eigenvalue system (2.6) but with
2 3 2 3
S1 k Hl M I::;1
Gaxk SZk sz F.o
2R U=8 : Z2R™! (5.13)
Gn lkSn 1an 1:k I::;n—l
Gn,k Sn,k I::;n
where
2 3
U1:k
U2:k
F.x = : 2 R™ fork =1;::n
Un-1k
Un:k

and the matrices S;., Gix, Hi.k are defined according to following three cases:

13



Case (i): If the matrices Sk, Gik, Hix do not involve the interface and in

mass ms, > 3
a1 71
By a2 7,
Sik = 2 R™" (5.14)
ﬁnfl On—-17n-1
ﬁn Qn
and , ,
G, = _;len; Hi. =— - n><n;
BT T 2m, (M x)2 KT oM, (M x)2
- _ 2~2 _ 2 _ 2
Wlth aj — ma (Mx)2 + Viy Bi - _zmz(MX)Zl Yi — _W

Case (ii): If the matrices S;.x, Gik, Hix do not involve the interface and in
mass mj, and the formulation of matrice S;.« is also (5.14), but with

2 2
[N — nxn

j H -
K 2m; (M x)2

G, ,=—-———
K 2m; (Mx)2

and

2_,2 =z 2

YT M X2 7 —2miM02’ 1T T 2mu(M )2

Case (iii): If the matrices Sy, Gix, Hix involve the interface, the matrices
Siks Gixk, Hix, are chosen from the three cases described in Table 5.2.

Table 5.2
Possible choices of matrices Si.x, Gix, Hix involving interface.
Sik
Interface type Bi Qi Vi
T -2 -z + -z + 1V -z
left _2m2(|2wx)2 2m1(l2\/Ix)2 2m2(l2\/Ix)2 2 _2m1(gllx)2
-~ -~ -~ 1 -~
Tright  2m1(Mx)2 2m1(LVIx)2 + 2m; (Mx)2 + EV ~ 2my(Mx)2
~ Z 1
Thtm 0 2m1(Mx)? + 2m5(Mx)? + EV 0
Interface type Gik Hi.x
Theft 0 0
Tright 0 0
2 2
Totm T 2ma(Mx)? I T 2my (Mx)2 |

14



6 Quadratic Interface Approximation for 3D Model

Because we want to understand semiconductor quantum dots more, we still con-
tinue using the advantage of quadratic interface approximation to 3D problem.

6.1 Quadrangular Dot

We consider a quadrangular quantum dot which is embedded in the center of an-
other quadrangular materials. According to time-independent Schrddinger equa-

tion, the 3D model problem is:

—;:AU(x;y; z) + V(X y; 2)u(x;y; 2) = Au(X;y; z)

2
with the interface conditions:

Lou _ 1oul  lgu _ 1gu

mz x|, Milx|gy " MilX|o, - M20X|gr
1 @u 1 @u 1 Qu _1@u

Mz QY |o- <My @yfgEnami@y|o- Mm@y |qs
1 @u = 1 @u 1 @u 1 @u

m; 07 |- =My @Z g 7m0z 0, M 0Z|or

and the boundary conditions:

U(Xleft) = u(Xright) =0

U(Yiwa) = U(Ypwa) =0

U(thm) = u(Ztop) =0

as shown in Fingure 6.1.

15
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Figure 6;1. Structure.schemaof a quadrangular dot.

6.1.1 Discretization

With the same trick as for 1D model, the central finite difference approximation
for (6.1) is thus

2
—~ <Ui1;j;k — 2Uijk Flike | Yi-uk — 2Ui + Uik

2m (M x)? (My)*
Uijik—1 — 2Uijk + Uikt =
. (l\/llzj)2 o ) + VijUigk = AUijk (6.4)

where Uijx= u(Xi;Vj:Zx), Vijk = V(Xi;yj;z) and M X = X — Xji_1, My =
Vi —Vj-1, Mz =2z —zx_1;, MX =My =M z. And the interface conditions (6.2)
with quadratic interface approximation can be approximated by

2 2 2 2
- - - . -
Y . + + — ) Ui ————--lUing ik = AUii.
2m,(M x)zu' ik <2m1(M x)2  2my(Mx)2 2 ) Uik 2m; (M x)zu' Lik = Alijik

2 2 2 )

—~ - _ ’ -
S (M 2 Y-tk + + — ) Ui ———-—-lUisg ik = AUii.
2m(M X)2 i—1;jk <2m1(M X)2 2m,(M X)2 2 ) HH 2m,(M X)2 i+1Jk i;jik

2 2 ) ,
—~ N _ Vi N
2m, (M y)2 “H-tk * + — | Uijk s——Uij+1k = AUigj:
2my(M y)? Uij -1k <2m1(M y)2  2my(My)?2 2 ) Ui;j;k 2my (M y)? Uisj+1:k = AUisjik

(6.5)
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2 2 2 2
o~ ~ ~ Vk o~
— Ui 1+ + + — — Uitk = A
2my(My)? It <2m1(M Y2 2myMy)? 2 ) PN (VEY Eh
2 2 2 V 2
7okt + + Uijk == Uijjik+1 = AUijk
2m,(M 2)2 T omiM2)2 ~ 2myMz)2 2 ) R T omM )2 3
_ 2 2 2 V _ 2
Ui 1+ + + ML Uj-ikt———=Ujik+1 = )\ui"'k
2m(M 2)2 T omiM2)2 T 2my(Mz)2 T 2 ) R T om,(M )2 ¥
6.1.2 Matrix Formulation
From (6.4), (6.5), we obtain the eigenvalue system (2.6) but with
2 3 2 3
Tl El I::;:;1
BT, E; F..o
A= 2 Rn3><n3’U — 2 Rn?’xl (66)
Bn—l Tn—l En—l I::;:;n—l
Bn Tl’l F:;:;n

where

By = diag [B1x, - - - Bni] 2 R™*1,

Ex = diag[E1x, - - - Enk] 2 R™7,

2 3
Sk Hik
Gaox 52|< sz
2 Rn2><n2
n 1kSn 1k Hn 1k
Gn,k Sn,k
2 2 3
Ul k ui;:;k
UZ k ui;:;k
with Fi..x = : fork =1;:::n,
un 1;::k ik
un,.,k ui;:;k
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and the matrices Bi.x, Ei.x, Sik, Gix, Hix are defined according to following three
cases:

Case (i): If the matrices Bj., Eik, Sik, Gik, Hix do not involve the interface
and in mass ms,

2 3
a1 71
52 a2 72
Sik = . 2 R™" (6.7)
6n 10n-1Yn-1
Bn Qn
and
~2 2
B. —___ g hXn E e nxn
KT T MM )2 T T T omyMx)2
~2 2
Gik=————=I"" Hik = — |nxn
T 2m,(MX)2 Lk 2m;(M x)2
- 2 , 2
with Qi = mo (Mx)2 + VI1 B| T T 2mp(Mx)2 g " T Ima (M2

Case (ii): If the matrices Bj.k, Eik, Sik, Gik, Hi.k do not involve the interface
and in mass my, and the fermulation of-matrice S;.« is also (6.7), but with

2 2
B' —_ nxn E — nxn
HTTo2mMx)2 T  2mx)2
2 2
G :_—Inxn’ Hi. = — |n><n,
KT 2m (M x)2 K T oMy (M x)?
and
3,,,2 2 2
(0% ﬂi = _

 my(Mx)?’ am ()2 T am (M x)2

Case (iil): If the matrices Bj.x, Eix, Sik, Gik, Hik involve the interface, the

matrices Bi., Eik, Six, Gik, Hik, are chosen from the three cases described in
Table 6.1.
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Table 6.1
Possible choices of matrices Bi., Eix, Sik, Gik, Hix involving interface.

Sik
Interface type ﬁiz , Qi . %2
Quert _2m2~(Mx)2 2m1~(Mx)2 + 2mz~(l\/l><)2 * %V _W
Qright _2m12:/lx)2 2m1~(:/lx)2 + ZmQE:/Ix)Z + %V _Wf\/lx)2
Qfwd 0 2m1~(i/Ix)2 + 2m2~(Mx)2 + %V 0
Qbwd 0 2m1~(illx)2 + 2m2~(Mx)2 + %V 0
Qbtm 0 2m1~(:/lx)2 + 2m2~(Mx)2 + %V 0
Qtop 0 2m1~(i/lx)2 + 2m2~(Mx)2 + %V 0
Interface type Bix Gix Hik Ei.x
Qleft 0 0 0 0
Qright 0 0 0 0
Qfwa 0 _Wi/lx)z [ m [rxn 0
Qbwd 20 _Wiﬂxﬁlnxn _Wlnxn 20
Qbtm _2I'T12~(—MX)2 | n 0 0 B 2m1~(Mx)2 I
Qtop _Wlnxn 0 0 _2m2~(i/lx)2|n><n

6.2 Truncated Octagonal-Based Pyramid Dot

We consider a truncated octagonal-based pyramid quantum dot [11] which is
embedded in the center of another quadrangular materials. According to time-
independent Schrddinger equation, the 3D model problem and boundary condi-
tions are also (6.1) and (6.3), but with the interface conditions:

lu  _ 1gu

M2 OXlo,,  M1@X|or,
16u _ 10u

m, @x 05, m; @x oz,
A6u _ 10u

m, @X o5, m; @X oz,
1 @u 1 @u
m2@ylo- ~ M@y~

leu  _ 1gu
ml @X OEght m2 @X o:i—ght
lou _ 18u
" mj @x os, m, @X oz,
1 @u 1 @u
Lo _ i 69
my @X o5, m, @X oz,
1 @u 1 @u
my @y Opwd Mz By Opwa



1 Qu 1 @u 1 Qu 1 @u
my@z]o- ~ M @z|g = My 0z op, M 0z o,
as shown in Fingure 6.2.
Za
IRNN
SR
o Ly
Ohm
Yima ./ ..............................................
. y
Via - = X
Te Tow ¥

b: o dm O o
Figure 6.2 (b) Structure schema of a cross-section for X-Y plane.

6.2.1 Discretization

With the same trick, the central finite difference approximation for the model
problem (6.1) is still (6.4), but the interface conditions (6.8) with quadratic in-
terface approximation can be approximated as follows:
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2

_~2 2
—  Uiqiap+ +
2 (M )2 ik <2m1(M X)2

for the sidewall Oy, Os,, Os,.

2m2(M X)2

2

~

_ 2 2
————Uj_1jk+ +
2my(M x)2 LIk <2m1(M X)2

for the sidewall Oyignt, Os,, Os;.

4+ <
2m2(M X)2

_ 2 2
2mAMyV“””*+<2mAMyV'F

for the sidewall Oyyq.

2my(M y)2 T2

_ 2 2
Ui 4 +
2my(My)2 a5k <2m1(M y)?

for the sidewall Opygq.

2maMy)? 2

2

_2 =
2m,(M z)zu"”k_1 <2m1(M z)?

for the bottom of the dot Op¢m

-+
2my(M 2)2

2

_2 2
— Uiigoq+ +
2m; (M z)zu"”k_1 <2m1(M z)2

for the top of the dot Oyp.
6.2.2 Matrix Formulation

2my(M z)?

e Ui
2my (M y)2 i

+wulj+lk

) Yt U = Al
2 Ui:j:k 2m1(M X)Z i+1;j;k — i;j:Ko

= AUi;jk,

/\Ulj ko

Vi —
g ) iinc g gy ke = AUisjiky

+ﬁ Uijk 5= Uijik+1 = AUj;j
2 i;J;k 2m2(M 2)2 i;j;k+1 — i;J;K»

From (6.4) and the interface approximation, we obtain the eigenvalue system

(2.6) but with

LER =

where

Bk = dlag [Bl;ka s

2
EBsz E
n 1Tn 1En 1

n Tn
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Bn;k] 2 Rn2><1’

2
1
un2
2R U =8
I::;:;nfl

5an

(6.9)



Ex = diag[Eix, - Enk] 2 RN,

2 3
Sk Hix
Goik 52 K Hz K
2 Rn2><n2
n 1;k Sn 1;k Hn 1;k
Gn K Sn K
2 2
u1;:;k Uik
U2;::k U| K
F.x= : with Fj..x = fork =1;::n
Un_1::k U| ‘K
Un;:k Uik

and the matrices Bi.x, Ei.x, Sik, Gi.k» Hik are defined according to following three
cases:

Case (i): If the matrices Bi.x, Eik, Six, Gik, Hix do not involve the interface
and in mass ms,

2 3
O 91
52 @2 ’Yz
Sik = . 2 R™" (6.7)
6n 1%n-1"7n-1
Bn Qn
and
2 2
Bijx=——I1™" Ejx = — jnxn
BT 2m,(M x)2 hk 2m, (M x)2
2 2
G;. :_—Inxn, Hi. = — |n><n’
BT 2m,(M x)? K 2m;(M x)2
. B P
with aj = — (MX)2 +Vi, 3= — oz Vi = T I

Case (ii): If the matrices Bi., Ei.x, Sixk, Gik, Hi:k do not involve the interface
and in mass my, and the formulation of matrice S; is also (6.7), but with

2 2

B,=— ™" E., =_— | nxn

TTOmM )2 T T ompmx)2

Gik:— ~2 Inxn’ i'k: _~—2 n><n’
2my(M x)2 ’ 2my(M x)2
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and

@i = my(M Xx)2’

3_,,2

Bi =

2

2

T2mMx)2’ T T 2my (M x)2

Case (iii): If the matrices Bj.x, Eix, Sik, Gik, Hik involve the interface, the
matrices Bi., Eik, Sik, Gik, Hik, are chosen from the three cases described in

Table 6.2.
Table 6.2
Possible choices of matrices Bi., Ei.x, Sik, Gik, Hix involving interface.
Siik
Interface type G Qi Vi
Ot —smgmy  zmqoor + zmgwer * 2V~ zmgpey?
Oright _2m1~(E/IX)2 2m1~(E/Ix)2 + 2m2~(gllx)2 + %V _W
Os, _2m2~(g/lx)2 2m1~(2/Ix)2 + 2m2~(gllx)2 + %V _W
Os, _2m1~(5/lx)2 2m1~(g/|x)2 i 2m2~(5/lx)2 + %V _W
053 _2m22g/lx)2 2m1~(gllx)2 + ZmZA&Q/Ix)2 + %V _W
Os, _2m1~(Mx)2 2m1~(Mx)2 ' 2m2~(Mx)2 + %V _m
Ode 0 2m1~(illx)2 o 2m2~(§/lx)2 + %V 0
Ode 0 2m12i/|x)2 o 2m2~(§/lx)2 + %V 0
Obtm 0 2m1~(i/lx)2 + 2m2~(i/lx)2 + %V 0
OtOD 0 2m1~(illx)2 + 2m2~(§/lx)2 + %V 0
Interface type Bix Gik Hix Eix
Ohett 0 0 0 0
Orignt 0 0 0 0
Os, 0 0 0 0
Os, 0 0 0 0
Os, 0 0 0 0
Os, 0 0 0 0
Ofud 0 _ 2m2~(i/|x)2 |nxn 2m1~(§/lx)2 | nxn 0
Obwd 0 B 2m1~(i/|x)2 I B 2m2~(i/lx)2 | 0
Obtm _2mz~(—Mx)2 |nxn 0 0 _ 2m1~(fle)2 [nxn
Otop _m |nxn 0 0 _Zm;(illx)z |nxn
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7 Convergency of The Smallest Eigenvalue

If we use central finite difference discretization at the non-interface, and use
quadratic interface approximation at the interface, we can prove that the conver-
gency of the smallest eigenvalue for the model equation (2.1) is O(h?).

7.1 1D Model
7.1.1 Convergency of Eigenvector

Acconding to model equation (2.1), we know:
242
1 d“u(x) (7.1)
A=V (X) 2m dx?

And with central finite difference method, the second diffenential term of approx-
imation solution @ is thus:

u(x) =

d*0(x;) o+t 20 + 0t
x2 (M x)2
where &' = 0(x;). By Taylor’sexpansion, the second differential term of the exact
solution u is thus:

(7.2)

. . i i i
ut=u+ %(— M x)=+ %(— M) + —ugTX(— Mx)®+C,OMx*)  (7.3)

ui+1 — ui + li_;l((M X) + %(M X)2 + %(M X)3 + Czo(M X4) (74)
(7.3)+(7.4)

utt Uttt =20 + U (M x)? + C30(M x*)

) ui—1 — 2ui + yi+t

Uk, = M) + C30(M x?) (7.5)

where u' = u(x;) and C; = C; + C,. From (7.1), (7.2) and (7.5), we get the
convergency of & and u at the non-interface :

o' —u'f], < Kqyol, — < K,O(M x?) (7.6)
From quadratic interface approximation (3.2), we know:

Loo—et Mx, )1t M
mo M x 2 _ml M x 2

i
Werll 1
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1 /0" -0t Mx . 1 /0 —aof Mx .
— + —0 ) — — +—0, ] =0 7.7
m; < M x 2 XX) m; ( M x 2 XX> (7.7

by Taylor’s expansion:

) ) i
W= Ui+ %(— M x) + %(_ M x)2 + C;O(M x?) (7.8)
. - i I
utl = Ul + 1_>I<(M X) + u2X|X M X)2 + C,0M X3) (7.9)

From (7.8) and (7.9)

1 i 1 i
—u, — — 7.10
mzux mlux (7.10)
1 /u—u1l Mx . 1 /u*l—u Mx .

— + u' o =+ u' + C;,OM X2
m; < M X 2 XX) my ( M X 2 XX) OMx7)

From (7.7) and (7.10), we-get the convergency of & and u at the interface:

0" = ulfl, < C:0M x?) (7.11)

From (7.6) and (7.11), we findthat every 0(X;), corresponding the every dis-
cretization point x;, converges to.u(x;)-with O(h?), and therefore we know that
the convergency of & and u is O(h?).

7.1.2 Convergency of Eigenvalue

Acconding to [10], we know the inequality equation:

kuk, < "fikuk, (7.12)
kuk, <" nkuk,

where u 2 C". And acconding to [4], we know the inequality equation:
A= x < Clluf w2 (7.13)
for 2mth-order problem. From (7.6), (7.11), (7.12), and (7.13), the convergency

of the smallest eigenvalue is thus:

AT = A < Coflul — ui;

=C kO. — Uiki

(7.14)
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<y (PRK; - uik,)?
=Cinkly — Uik’
<Cin( ko — uiky )
=Cin?koy — Uik’

< Cali ) OM X))

=C,0(h?)

where h =M x .
Therefore, we prove the convergency of the smallest eigenvalue is O(h?).

7.2 2D Model
If we consider the model equation is two variables for 2D model as follows:

2
HAu(x; y) +V (X;y)u(x;y) = Au(x;y)

1 2
Au(x; 7.1
A—V(Xy) 2m ux:y) (7.15)
And acconding to central finite differenee; the second diffenential term of approx-
imation solution @ is thus:

u(X;y)=

@20(xi; yi) ~ @20(xi; i) N 020(xi; yi)
@x? @x? @y?
~ 0 + 0y
i1 _ opid 4 i+l o1 ol 4+ i+l
(M x)? My)?

where 0 = 0(x;; yj). By Taylor’s expansion, the second differential term of the
exact solution u is thus:

(7.16)

u

Q%X (— Mx)®+C,O0Mx*) (7.17)

ui—u = i o+ %(_ M X) + %(— M x)? +
1! 2! 3

o . iij ij ij
Uittt = i ¢ ulil(M X) + %(M X)2 + %(M X)3 + C,0(M x4) (7.18)
(7.17)+(7.18)
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ui—l;j - 2ui;j + ui+1;j
uld = (M X2 + C30(M x?) (7.19)

For the same reason,

i ui;jfl _ 2ui;j + ui;j+1
usd =

From (7.15), (7.16), (7.19) and (7.20), we get the convergency of & and u at the
non-interface:

+ C,O0(M x?) (7.20)

|07 — ub ||| < CsO(M X%) (7.21)
From (7.11), with the same trick, we get the convergency of & and u at the
interface:

[0 — Ut ||| < CsO(M X?) (7.22)

Thus, form (7.21) and (7.22), wescansget the convergency of & and u is O(h?).
From (7.14), we know that the convergency.of the first eigenvalue is thus:

')‘P;j = Aigl =< C1 KOijo— Ui K2 (7.23)
< C30(h?)

Therefore, we prove the convergency. of the smallest eigenvalue of the equation
(7.15) is O(h?).

7.3 3D Model

If we consider the model equation is three variables for 3D model as follows:

;—;:AU(x;y; z) +V (X y; 2)u(x;y; z) = Au(X;y; 2) (7.24)

From (7.11), (7.16), (7.19) and (7.20), with the same computation, we can get
the convergency of @ and u is O(h?). From (7.14), we know the convergency of
the smallest eigenvalue is thus:

P‘P;j;k - )\i;j;k‘ <C kOi;j;k - Ui;j;kki (7-25)
< C,0(h%)
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8 Numerical Results

We consider the GaAs-Aly.3Gag-;As quantum well [2,6], as shown in Figure 8.1.
GaAs is surronded by Aly.3Gag.7As. The effective mass m; = 0:067mq for GaAs,
and m, = 0:919m, for Aly.3Gag.7As, the band gap V = 0:33eV, the domain length
is 80nm and the well length is 6nm. Numerical results are shown in Table 8.1,
and Fig 8.2 and 8.3.

B8.372e-032 —

AlGahs AlGahs

B.104e-032 -

Gahs

b : i b
Figure 8.1 GaAs-Alg:3Gag:7As quantum well for 80nm domain length and 6nm well length.

8.1 Linear Interface Approximation

Table 8.1
Numerical results of linear interface approximation.

Number of discretization points | the smallest eigenvalue

400 0.0654366759

800 0.0665192182
1600 0.0670666387
3200 0.0673417041
6400 0.0674795526
12800 0.0675485529
25600 0.0675830716

If we take the smallest eigenvalue for the number which the discretization
point is 25600 as exact solution. We compute the value log, % where

n=1;2;4;8;16 , and we get the convergency of O(h) , as shown in Table 8.2.
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Table 8.2

Convergency of linear approximation.

A400n —A25600
n |092 A800n —A25600

1:01261671
1:042646542
1:097349481
1:221335845
16 | 1:584445548

| A~ N
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ERin

Figure 8.2 The eigenvector corresponding to Agoo;A1600;A3200:
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Figure 8.3 The eigenvector corresponding to Ae400;A12800;A25600:
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8.2 Quadratic Interface Approximation

Numerical results for this case are shown in Table 8.3, and Fig 8.4 and 8.5.

Table 8.3

Numerical results of quadratic interface approximation.
Number of discretization points | the smallest eigenvalue

400 0.0677403958

800 0.0676483810

1600 0.0676253023

3200 0.0676195279

6400 0.0676180840

12800 0.0676177231

25600 0.0676176328

Again, the smallest eigenvalue is chosen as an exact solution so that the
corresponding number of the grid points is 25600. We see that the quadratic
method indeed leads to quadraticiconvergence O(h?) as shown in Table 8.4.

Table 8.4

Convergency of quadratic approximation.

A800n —A25600

n |ng A400n —A25600

1.997301944

2.003297526

2.016858549

QO I =

2.070435005

[HEN
(op}

2.320969175
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Figure 8.4 The eigenvector corresponding to Agoo;A1600;A3200:
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Figure 8.5 The eigenvector corresponding to Ae400;A12800;A25600:

34



8.3 Quadratic Interface Approximation for 2D Model

From Table 8.3 and Table 8.4, we get good results with quadratic interface ap-
proximation for 1D model. Therefore, we expect that if we use quadratic interface
approximation to 2D problem and we can get good results, too. For 2D prob-
lem, we still consider the GaAs-Aly.3Gag.7As quantum wire, but with two forms,
guadrangular wire and triangular wire.

8.3.1 Quadrangular Wire
The GaAs which is quadrangular form is embedded in the center of Aly.3Gag-7As.
The effective mass m; = 0:067mg for GaAs, and m, = 0:919m, for Aly.3Gag.7AS,

the band gap V = 0:33eV, the domain length is 80nm and the wire length is
6nm, as shown in Figure 8.6.

v
A

30(am)

43

L

b b e X

a 37 43 B(EJ()em)
Figure 8.6 Quadrangular wire for 80nm domain length and 6nm wire length.

We compute the smallest eigenvalue of the eigenvalue system (5.6) with Linear
Jacobi-Davidson method, and numerical results are shown in Table 8.5.
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Table 8.5
Numerical results of quadratic interface approximation
for quadrangular wire.

Number of discretization points | the smallest eigenvalue
80 0.150776228
120 0.143535101
160 0.140267686
200 0.138426696
240 0.137249795
280 0.136433981
320 0.135835769
360 0.135378635
400 0.135018102
440 0.134726575
480 0.134486039
520 0.134284238
560 0.134112543
1000 0.133154291

Similarly, the smallest eigenvalue is chosen as-an exact solution so that the cor-
responding number of the grid pointsis"1000. We see that the quadratic method
indeed leads to quadratic convergence O(h?) as shown in Table 8.6.

Table 8.6
Convergency of quadratic approximation
for quadrangular wire.
ny n, o
80 | 120 | 1.305132427
120 | 160 | 1.313878089
160 | 200 | 1.342154047
200 | 240 | 1.385447265
240 | 280 | 1.441063036
280 | 320 | 1.508115132
320 | 360 | 1.586866276
360 | 400 | 1.678417846
400 | 440 | 1.784633341
440 | 480 | 1.908217490
480 | 520 | 2.052932528
520 | 560 | 2.223984138

— Ang—A1000 \ — n
where a = (Iog2 m) = (Iog2 n—i)
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8.3.2 Triangular Wire

In this case, we consider that the GaAs embedded in the center of Aly.3Gag.7AS is
triangular form. The effective mass, band gap and domain length do not change,
but the high length of triangular wire is 3nm, as shown in Figure 8.7.

v
A

30(am)

43

i 7 4 80
Figure 8.7 Triangular wire for-80nm domain length and 3nm triangular high length.

We still use Linear Jacobi=Davidson method to compute the smallest eigenvalue,
and numerical results are-shown in-Table 8.7.

Table 8.7
Numerical results of quadratic interface approximation
for triangular wire.

Number of discretization points | the smallest eigenvalue
80 0.229057156
120 0.228011643
160 0.226661956
200 0.225471317
240 0.224503847
280 0.223725553
320 0.223093927
360 0.222574378
400 0.222141037
440 0.221774871
480 0.221461811
520 0.221191334
560 0.220955457
1000 0.219536222

Again, the smallest eigenvalue is chosen as an exact solution so that the corre-
sponding number of the grid points is 1000. The quadratic convergence O(h?) is
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shown in Table 8.8.

Table 8.8
Convergency of quadratic approximation
for triangular wire.
ny n, o
80 | 120 | 0.286886879
120 | 160 | 0.602948987
160 | 200 | 0.819336432
200 | 240 | 0.975974275
240 | 280 | 1.105417327
280 | 320 | 1.223872831
320 | 360 | 1.340303162
360 | 400 | 1.460595640
400 | 440 | 1.589432155
440 | 480 | 1.731273778
480 | 520,/ 1.891030774
520 | 560 | 2.074689085

_ Ang—X tf
where o = (Iog2 ﬁ) r (Iog2 ﬁf)
8.3.3 The Direction of Interface Condition

We compare the different “directions of interface approximation to the trian-
gular quantum wire. We let “the direction of interface to be x-direction(x), y-
direction(y) and normal-direction(n), as shown in Figure 8.8.

v
i — interface direction

fsz.i

AR

X, oy

L Tm Tﬂg\l
Figure 8.8 Structure schema of interface approximation for x-x, y-y, n-n directions

We compute the smallest eigenvalue with Linear Jacobi-Davidson method, and
numerical results are shown in Table 8.9.
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Table 8.9

Numerical results of interface approximation for x-x, y-y, n-n directions

Number of discretization points | Xx-direction | y-direction | n-direction
80 0.229057156 | 0.254449472 | 0.239340493
120 0.228011643 | 0.246422757 | 0.234231239
160 0.226661956 | 0.240833229 | 0.230919605
200 0.225471317 | 0.237146702 | 0.228695908
240 0.224503847 | 0.234582120 | 0.227117186
280 0.223725553 | 0.232706675 | 0.225943389
320 0.223093927 | 0.231279313 | 0.225038259
360 0.222574378 | 0.230158088 | 0.224319798
400 0.222141037 | 0.229254718 | 0.223736023
440 0.221774871 | 0.228511659 | 0.223252495
480 0.221461811 | 0.227889885 | 0.222845539
520 0:221191334 | 0.227362036 | 0.222498361
560 0.220955457 | 0.226908378 | 0.222198730
1000 0.219536222 | 0.224293304 | 0.220449095

8.4 Quadratic Interface Approximation for 3D Model

For 3D problem, we still consider the‘GaAs-Aly.;Gay.;As quantum dot with two

forms, quadrangular dot and‘truncated.oectagonal-based pyramid dot.

8.4.1 Quadrangular Dot

The GaAs embedded in the center of Aly.3Gag.7As is quadrangular form, and the

domain length is 80nm, the dot length is 6nm, as shown in Figure 8.9.
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Figure 8.9 Quadrangular dot for.80nm domain length and 6nm dot length.

We still use Linear JacobizDavidson method to compute the smallest eigenvalue,
and numerical results are;shown in Table 8.10.

Table 8.10
Numerical results of quadratic interface approximation
for quadrangular dot.

Number of discretization points | the smallest eigenvalue
80 0.222975522
120 0.238028478
160 0.252003562
200 0.265509664
240 0.277890995

Similarly, the smallest eigenvalue is chosen as an exact solution so that the cor-
responding number of the grid points is 240. The quadratic convergence O(h?)
is shown in Table 8.11.

Table 8.11
Convergency of quadratic approximation
for quadrangular dot.
n, n, o
80 | 120 | 0.790101724
120 | 160 | 1.500541303
160 | 200 | 3.305351448
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8.4.2 Truncated Octagonal-Based Pyramid Dot

In this case, we consider that the GaAs embedded in the center of Aly.3Gag.7AS
is a truncated octagonal-based pyramid. Except the top of the dot, each cross-
section of GaAs in the X-Y plane is a octagon. The domain length is still 80nm
and the high length of the dot is 6nm, as shown in Figure 8.10.

80(m)
\ ”’1': P
43
37
P
80Gum) ./ .......................... e

0 : = X

o0 g 80(nm)

Figure 8.10 (a) Truncaetd octagonal-based pyramid-dot for 80nm domain length and 6nm high length.

B0(nm)

) O
37

E; 37 43 SED(m)
Figure 8.10 (b) Cross-section of the truncated octagonal-based pyramid dot for X-Y plane.

Again, we use Linear Jacobi-Davidson method to compute the smallest eigen-
value, and numerical results are shown in Table 8.12.
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Numerical results of quadratic interface approximation

Table 8.12

for truncated octagonal-based pyramid dot.

Number of discretization points | the smallest eigenvalue
80 0.226957440
120 0.239821566
160 0.250414198
200 0.258812098
240 0.264974261

Again, the smallest eigenvalue is chosen as an exact solution so that the corre-
sponding number of the grid points is 240. The quadratic convergence O(h?) is

shown in Table 8.13.

Table 8.13

Convergencysof quadratic approximation
for trucated octagonal-based pyramid dot.

Ny

Ny

(87

80

120

1.018740363

120

160

1.900301524

160

200

3.853369264
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Part 11
Matrix Reduction

9 Introduction

In the first part, it is difficult to solve eigenvalue problems with huge matrices.
However, many calculations for the huge matrix are unnecessary. Because the
solution function is exponentially approaching zero beyond the confinement re-
gions. It is shown here that the reduction factor is (%)“, n =1(1D), n = 2(2D),
n = 3(3D) with the accuracy of the smallest eigenvalue up to 5 decimal point.
Therefore, the method which is used to reduce the matrix and the level which we
gain in reducing the matrix are very improtant problems. Especially the model
in 2D or 3D, because the matrix is huge, it is a very important problem to reduce
the calculations which are unnecessary.

10 Reduction of The Matrix

To reduce the matrix means to delete some grid points. Because the matrix is
constructed by the equations of the -grid. points. Thus, if we want reduce the
matrix, we can delete some:grid points. But the position and the number of
deleted points are very important. If the deleted points are in the quantum well,
the accuracy of the smallest eigenvalueris affected largely. If there are too many
grid points which are deleted, the error of the smallest eigenvalue would increase
even though the calculaton of the matrix has reduced.

10.1 Positions of Deleted Points

We find that it is much better that the positions of deleted points are far away
the quantum well. Because the eigenvectors corresponding to these grid points
are exponentially approaching zero. After we delete these grid points, the error
of the smallest eigenvalue is still small.

However, if the positions of deleted points are in the quantum well, the error
of the smallest eigenvalue is big even though we only reduce one grid point. This
is because the eigenvectors corresponding to these grid points are nonzero. If we
delete grid points indiscriminately, we may make big error.

10.2 Numbers of Deleted Points

How many grid points could be deleted? This seems to be very problem depen-
dent. Because it is concerned about what accuracy you can tolerate and how big
the domain is to be simulated. In our experience, the ratio of the numbers of the
grid points between the inside and the outside of the well is approximately (%)n
for up to 5 decimal point accuracy, n = 1;2; 3.
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11 Numerical Results

11.1 1D Model

For 1D model, we still choose the quantum well of GaAs-Aly.3Gag.7As, and the
number of total grid points which we discretize is 800, and the number of grid
points in the well is 60. We delete the grid points which are outside the well, and
show the result in Table 11.1.

Table 11.1
The number of total grid points is 800, and the
number of grid points in the well is 60.

Number of deleted points | the smallest eigenvalue

0 0.067648381

2 0.067648381
100 0.067648381
200 0.067648381
300 0.067648381
400 0.067648381
500 0.067648381
600 0.067649395
700 0.070597346

If we delete the grid points which are-in the well, the result is shown in Table
11.2 as follows:

Table 11.2
The number of total grid points is 800, and the
number of grid points in the well is 60.

Number of deleted points | the smallest eigenvalue
0 0.0676483810
1 0.0691423424
2 0.0706856067
3 0.0722803122
4 0.0739287095

11.2 2D Model

With the experience of 1D model, we deal with 2D problem similarly. For 2D
model, we still consider the GaAs-Aly.3Gag.;As quantum wire with two forms,
guadrangular wire and triangular wire.

11.2.1 Quadrangular Wire

The GaAs is embedded in the center of Aly.3Gag.;As, and the domain length is
still 80nm, the wire length is still 6nm, as shown in Figure 11.1.
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Figure 11.1 Structure schema of deleted point for the quadrangular wire.

For each side, the number of tetal ‘grid. points which we discretize is 800, and
the number of grid points in:the wire is 60.-\We delete the grid points which are
outside the wire symmetrically, and show.the-result in Table 11.3.

Table 11.3
For each side, the number-of total grid points is 800,
and the number of grid points:in the wire is 60.

Number of deleted paoints‘| the smallest eigenvalue

0 0.133454599
100 0.133454599
200 0.133454599
300 0.133454599
400 0.133454599
500 0.133454603
600 0.133459353
700 0.139817185

11.2.2 Triangular Wire

We use the same skill to triangular quantum wire which the domain length is
80nm and the high length of triangular wire is 3nm, as shown in Figure 11.2.
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Figure 11.2 Structure schema of deleted point for the triangular wire.
Again, the number of total grid points which we discretize for each side is still
800, and the number of grid peints for the:-high of triangular wire is 30. We show
the numerical result in Table 11.4.

Table 11.4
For each side, the number of total grid points is 800, and the
number of grid points far thethigh/of triangular wire is 30.

Number of deleted points_ | the smallest eigenvalue

0 0.220000492
100 0.220000492
200 0.220000492
300 0.220000492
400 0.220000492
500 0.220000689
600 0.220002040
700 0.230964566

11.3 3D Model

For 3D model, we consider the GaAs-Aly.3Gag.7As quantum dot with two forms,
guadrangular dot and truncated octagonal-based pyramid dot.

11.3.1 Quadrangular Dot

The GaAs is embedded in the center of Aly.3Gag-7As, and the domain length is
80nm; the dot length is 6nm. For each side, the number of total grid points which
we discretize is 80, and the number of grid points in the dot is 6. \We delete the
grid points which are outside the dot symmetrically, like 2D model, and show the
result in Table 11.5.
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Table 11.5
For each side, the number of total grid points is 80, and the
number of grid points in the dot is 6.

Number of deleted points | the smallest eigenvalue
0 0.222975522
10 0.222975522
20 0.222975522
30 0.222975523
40 0.222975524
50 0.222975662
60 0.223003735
70 0.228506895

11.3.2 Truncated Octagonal-Based Pyramid Dot

The GaAs embedded in the centeriof Aly:sGag.7As is a truncated octagonal-based
pyramid., and the domain length is 80nm; the dot length is 6nm. For each side,
the number of total grid peints which-we discretize is still 80, and the number of
grid points in the dot is 6. We still delete the grid points symmetrically, and get
the result in Table 11.6.

Table 11.6
For each side, the number-of total grid points is 80, and the
number of grid points in the dot is 6.

Number of deleted points | the smallest eigenvalue
0 0.226957440
10 0.226957440
20 0.226957440
30 0.226957439
40 0.226957439
50 0.226957574
60 0.226984064
70 0.232934269
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12 Conclusion

In the first part, we know that it is the best choise to let the discretization of the
grid point at the interface to be quadratic. With this discretization, we can get
the accuracy of O(h?) to the smallest eigenvalue. In the second part, to avoid
the calculations which are nonnecessary, we delete some grid points, and we find
that the deleted grid points which are outside the quantum well, wire, and dot
are much better than those grid points which are inside the well, wire and dot.
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