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Radius blends, very important in geomet-
ric and solid modeling, can be seen as the
trimmed envelope of a rolling sphere or a
sweeping circle with a constant or variable
radius that centers on a spine curve and
touches the surfaces to be blended along
the linkage curves. Usually, in variable-ra-
dius blending, the radius is difficult to
specify, and the spine curve is hard to trace.
We propose several geometric constraints
to specify the variable radius, which we
then translate to a nonlinear system to re-
present the spine curve exactly. This is fi-
nally traced numerically in a high-dimen-
sional space. We also propose a paradigm
that implements the constraints while trac-
ing along the spine curve in 3D space. We
represent the result in parametric form.
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1 Introduction

Surface blending is becoming a necessary opera-
tion in geometric and solid modeling in which
sharp edges must often be rounded or replaced
by a smooth surface for aesthetic or functional rea-
sons. A blending surface is a surface that smoothly
connects two or more surfaces, which are called
base surfaces. The curves where the blend meets
the base surfaces are called linkage curves, rail
curves, or contact curves. The base surfaces can
be either intersecting or disjointed. When the base
surfaces are disjointed, the blending surface
smoothly joins them. While the shape of blends
is not critical in some applications, positional and
tangential continuity between the blend and base
surfaces is generally required along the linkage
curves.

The base surfaces can be defined either implicitly
or parametrically. The blending of implicit surfac-
es has been treated extensively in the literature
(Hoffmann and Hopcroft 1987; Middleditch and
Sears 1985; Rockwood and Owen 1987). These
blending techniques result in an exact implicit
blend, frequently in a rigorous mathematical form.
Most existing methods for blending parametric
surfaces derive the blending surface by requiring
positional and tangential continuity along the link-
age curve on each of the base surfaces (Filip 1989;
Koparkar 1991) and produce blends in the form of
approximated spline surfaces. Methods for implic-
it blends generally cannot be extended to paramet-
ric surfaces unless a complex implicitization pro-
cess is applied. However, several recent efforts
have been made to extend implicit methods to
the blending of parametric surfaces (Chuang and
Lien 1995; Lee et al. 1993; Vaishnav and Rock-
wood 1993).

Among the blending methods currently available,
radius blends are popular because of their simple
geometric description. Radius blends are generally
described as the trimmed envelope of a rolling
sphere or a sweeping circle. Pegna and Wilde
(1990) term the first of these descriptions a spher-
ical blend and the second, a circular blend. The
trajectory of the center of the rolling sphere or
sweeping circle is usually called the spine curve.
The radius of the rolling sphere and the sweeping
circle can be constant or can vary along the spine
curve. A constant-radius blend requires the radius
value as input and can generally be derived auto-
matically by the modeler; a variable-radius blend
generally requires more intervention from the us-
er. Although a constant-radius blend is geometri-
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Fig. 1. Radius blends of a cylinder and an
inclined plane
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Fig. 2a-b. Point correspondence and con-
tributing circle for the variable-radius blend;
a spherical blend; b circular blend

cally simpler and computationally more efficient
than a variable-radius blend, constant-radius
blends are inadequate in certain applications. For
example, when a cylinder is blended with an in-
clined plane, as shown in Fig. 1, a constant-radius
blend results in a blend that has a circular arc with
a radius larger than necessary for a certain portion
of the blend. In variable-radius blends, it is, how-
ever, difficult to define the spine curve and the
variable radius and to form a correct point corre-
spondence between points on the spine curve
and the respective linkage curves. Previously pro-
posed methods either explicitly specify the radius
as a radius function defined on a given reference
curve (Chuang et al. 1995; Harada et al. 1991)
or implicitly define the spine curve as the intersec-
tion of a given reference surface with the Voronoi
or equidistant surface of two base surfaces
(Chandru et al. 1990; Hoffmann 1990). Such
specifications for a suitable radius function
usually require experience and lots of work.

In this paper, we propose several constraints that
can be used to specify the variable radius and
can easily be adopted in the formulation of spine

curves and variable-radius blendings. Together
with the higher-dimensional representation of Vor-
onoi surfaces (Hoffmann 1990), we formulate the
radius constraint in a nonlinear system that exactly
represents the spine curve. Alternatively, the con-
straints can be implemented in a marching proce-
dure that marches along the spine curve in R>. Al-
though tracing the spine curve in higher-dimen-
sional space using the exact representation of the
spine is conceptually simpler, it is computationally
more expensive than tracing in R°. In Sect. 2, we
review methods for specifying and manipulating
radius blends. In Sect. 3, we present several possi-
ble constraints and a general constraint for specify-
ing variable-radius. In Sect. 4, an exact higher-
dimensional formulation for the variable-radius
spine curve that incorporates the proposed con-
straints is proposed and the tracing of the spine
curve is described. In Sect. 5, we propose a proce-
dure that implements the constraints while tracing
the spine curve in R3. Surface formulations for the
spherical and circular blends are described in
Sect. 6. In Sect. 7, we show some experimental re-
sults and compare the proposed 3D tracing to high-
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dimensional tracing. Sect. 8 presents concluding
remarks.

2 Review of radius blends

In the literature, spherical blends are represented
either exactly or approximately, while circular
blends are usually approximated. The constant-
or variable-radius spherical blend for base surfaces
in either implicit or parametric form can be formu-
lated exactly in higher-dimensional spaces with
the dimensionality paradigm (Hoffmann 1990).
The idea is to represent the blend as the natural
projection of a 2-surface in n-space into 3-space,
for some n > 3. For example, the spine of the con-
stant-radius blend with radius r is the intersection
of offsets with radius r from each base surface.
The offset of base surfaces is represented as the
envelope of spheres with radius r and center on
the respective surface. The spine curve of the vari-
able-radius blend can be defined as the intersection
of a third user-defined surface, called the reference
surface, with the surface equidistant from two base
surfaces, called the Voronoi (or equidistant) sur-
face of the two base surfaces. The Voronoi surface
can again be defined as the intersection of offsets
with varying radius from each base surface in
which the radius is itself a variable. The constant-
or variable-radius spherical blend is then simply
the envelope of spheres centering on the derived
spine curve and having a suitable radius that is
specified either explicitly as a constant » or implic-
itly as the distance from the sphere center to its
foot points on the base surfaces. Such an envelope
is the solution set of a system of equations each of
which is converted from some geometric con-
straints. Each solution point of the system repre-
sents a spine point, parameter values for foot
points of the spine point on each of the base sur-
faces, and other auxiliary parameters. According
to the constraints, points on two linkage curves
correspond to each other if the surface normals
at these two points are coplanar and intersect at
the corresponding spine point. This type of point
correspondence for constant-radius spherical
blends can easily be found by tracing the spine
curve, which is often defined as the intersection
of offsets with the specified radius from the two
base surfaces. The derivation of point correspon-
dence on the spine and linkage curves in vari-
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able-radius spherical blends is much more compli-
cated, however, since the spine curve cannot easily
be defined. It is worthing noting that the contribut-
ing circle for the constant-radius spherical and cir-
cular blend is the greatest circle passing through
the sphere center and its foot points. For the vari-
able-radius spherical blend, the contributing circle
is on the plane containing the two foot points of
the sphere center and perpendicular to the tangent
of the spine curve at the center of the sphere (see
Fig. 2a).

Other proposed methods approximate radius
blends using parametric surfaces. Methods for ap-
proximating constant-radius spherical blends are
presented in (Barnhill et al. 1993; Choi and Ju
1989; Klass and Kuhn 1992; Varady 1989). All
of these methods derive the spine curve by tracing
the intersection of offsets with an equal radius
from the base surfaces. For variable-radius spheri-
cal blends, a marching procedure is proposed by
Chuang et al. (1995) that ensures the correct point
correspondence while tracing the spine and linkage
curves simultaneously in R°.

Harada et al. (1991) propose a sliding-circle meth-
od to derive the spine curve for the variable-radius
circular blend. In this method, the user defines a
control curve and a radius function on it. A circle
is then slid onto two parametric base surfaces so
that it is on the normal plane of the control curve
and its radius is the value of the radius function
at the respective point on the control curve. Choi
(1991) assumes the radius function to be monotonic
between a minimum radius and a maximum radius,
both of which are chosen by the user. The intersec-
tion curve of two offsets with a radius equal to the
average of the minimum and maximum radius val-
ues is traced and used as a control curve. Then a
circle with a suitable radius is derived on the plane
normal to the constant-radius spine. For these two
approaches, points on linkage curves correspond
to each other when they are on the normal plane
of a user-defined control curve, and normals of
two corresponding linkage points are not necessar-
ily coplanar. Thus, the correspondence is critically
dependent on the control curve. Moreover, the de-
rived sweeping circle is centered on the spine curve
and lies on the normal plane of the control curve.
Note that the sweeping circle for the variable-radi-
us circular blends implemented in this paper is the
greatest circle of the rolling sphere that passes foot
points of the sphere center (Fig. 2b).



3 Constraints for the
variable-radius function

Current geometric modelers usually require a user-
prescribed radius function or reference surface for
generating variable-radius blends. Since the geom-
etry along the intersection of two base surfaces can
be complicated, specifying an appropriate radius
function is a nontrivial task. This type of scheme
greatly limits the design capability, and for this
reason, most modelers allow only linear radius
functions. Here we present several constraints
from which the variable radius can automatically
be generated.

Let P and Q be two base surfaces and S be a point
on the spine curve. Then we have the radius func-
tion

}’:d(S, P) :d(Sv Q)7

where d(S,P) and d(S,Q) are the orthogonal dis-
tances from S to P and Q, respectively. With only
one user-defined parameter, the proposed con-
straints can specify the varying radius according
to the angle between line segments from the center
of the rolling sphere to two contact points on base
surfaces. Figure 3 depicts this configuration, in
which r and S are the radius and the center of the
rolling sphere, and M and N are contact points of
the rolling sphere on base surfaces P and Q, respec-
tively. O is the intersection of the tangent plane of
P and Q at M and N, respectively, and the plane de-
termined by S, M, and N, a represents the area in-
side the triangle formed by M, O, and N and outside
the circular arc from M to N, a. represents the cir-
cular area from M to N, 6 represents the angle be-
tween line segments SM and SN, d is the distance
from O to N, and d. is the distance from O to S.
Note that, since M and N are contact points of
the rolling sphere on base surfaces P and Q, respec-
tively, vectors from M to S and from N to § are nor-
mals to the surface P and Q, respectively. Some
possible constraints for the variable radius are:

e Constant radius. The radius r is set to be con-
stant:
r=R.

e Constant arc length. The length [ of the circular
arc from M to N is set to be a constant L. Since

Tangent plane oP at M

Tangent plane ofQ at N

Fig. 3. Specitying the variable-radius function

[ =r0, we have

L
r=—.

0

e Constant circular area. The area a, is set to be a

constant A,. Since a, = r? g, we have
2A,
r= .
6

o Constant area. The area a is set to be a constant
A. Since a = r*tan? — r*2, we have
A

0_ 0
tan2 5

r =
o Constant range distance. The distance d is set to
be a constant D. Since d = rtang, we have

D

= 0
t?:ll’l2

e Constant circular distance. The distance d, is

set to be a constant D,. Since d. = ﬁ, we have
2

=D.cos—.
' 2

All these constraints can be generalized as
c

r(6) o) (1)
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where ¢ is a user-specified constant and f(0) is a
non-negative function of 6, 0 <8 < z. The func-
tion f(60) basically controls how the radius varies
with respect to the angle 6. For example, if f(6)
is monotonely increasing (or decreasing), r(6) be-
comes smaller (or larger) as 6 increases. Thus, an
appropriate f(6) can easily be chosen according
to the particular design needs. Figure 4 depicts
the relation between the radius and 6 (top) as well
as the relation between the length of circular arc
and 6 (bottom) for some pairs of ¢ and f(6), where
0.4<6<m/2. To derive a variable-radius blend,
users are only required to set a function f(6) and
the value of c. Because they allow an appropriate
radius to be specified and require only a very sim-
ple user input, the proposed constraints should
greatly facilitate the derivation of variable-radius
blends.

4 An exact variable-radius spine
and its tracing

The radius function described in Eq. 1 can easily
be augmented to the high-dimensional formulation
of a Voronoi surface proposed by Hoffmann
(1990). It does not matter if the base surfaces are
implicitly or parametrically defined. In this sec-
tion, we discuss the case of parametric base surfac-
es. Given two parametric surfaces
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P(s, )= (Px(s, 1), Py(s, 1), P(s, t))

and

Q(”a V) = (Qx(”v V)v Qy(ua V)7 Qz(uv v)),

the Voronoi surface of P and Q can be defined as
the intersection of r-offsets of P and Q by the fol-
lowing system of six equations in eight variables
X,¥,2,8,t,u,v, and r:

Sp: (x—Py(s, 1))’

+(y—Py(s, )+ (z—P.(s,0) > =0 (2)

oSp
=0 (3)
OSp
— =0 (4)

So: (x—Ox(u, v))*

+(= 0w, )+ (2= O, V) =P =0 (5)
oS
87920 (6)
0So B
5, =0 (O



Equations 2—4 and Eqs. 5-7 represent the offsets of
P and Q, respectively, with an unknown radius r.
Since r itself is a variable, the intersection of r-off-
sets of P and Q represents points equidistant to P
and Q. Figure 5 illustrates the Voronoi surface of
a cylinder and an inclined plane. Note that Eq. 2
represents the sphere Sp centered on the surface
point P(s,t) with radius r, while Eq. 3 and 4 con-
strain points on the sphere Sp to the offset of P.
The natural projection of the zero set of the system
into (x,y,z)-space represents the desired Voronoi
surface. Since each point on the Voronoi surface
is equidistant to P and Q with a variable-radius
r, we can specify a spine curve by requiring that
r satisfy

rf(@) —c=0 (8)

for some user-defined ¢ and f(6), where 6 is the
angle between two unit surface normals at P(s,t)
and Q(u,v). That is, 6 =arccos(m-n), where m
and n are unit surface normals at P(s,f) and
Q(u,v), respectively. The expression for 6 can be
translated to an equation such as

0 — arccos

[x—Px(s, 1),y —Py(s, 1), z— P(s, t)] ‘
H [x—Px(s, 1),y —Py(s, 1), z— P(s, t),] H

[)C— QX(“? V), y—= Qy(M, V), Z— Qz(u, v)]
1= 0, v), 3 = Oy (1, v), 2 = Q:(u, V)] |

=0.

©)

Appending Eqs. 8 and 9 to Eqgs. 2-7 yields a sys-
tem of equations that provides an exact formula-
tion for the desired variable-radius spine curve.

The spine curve so defined can be traced with the
algorithm described by Hoffmann (1990). Al-
though such a tracing scheme is simple, the com-
putational cost involved for computing the local
approximant and performing point refinement with
a Newton iteration increases with the number of
dimensions. Evaluating surface partials becomes
very complicated, especially for NURBS surfaces.
The derivation of 6 in Eq. 9 requires partials that
are one degree higher than those for the local ap-
proximant, as shown in Eq. 9, and this further com-
plicates the computation. Moreover, it becomes

nontrivial in R® to determine the step size for trac-
ing, especially near the boundaries of surfaces, and
to decide appropriate tolerances for point refine-
ment. This high-dimensional tracing is harder to
implement and computationally much more expen-
sive than the proposed tracing in R>. See Section 7
for a comparison.

5 Tracing the spine and linkage
curves in R’

The spine for the constant-radius blend can be
represented as the intersection of offsets of two
base surfaces. When the offset is represented in
differential form, the constant-radius spine can
be traced in R* with a system of three nonlinear
equations for the spine. However, the point re-
finement requires second derivatives of the base
surfaces and solving a 3 x4 linear system for
each iterate. When the offset is represented by
the dimensional paradigm, the constant-radius
spine can be traced in R’ with a system of six non-
linear equations for the spine. The point refine-
ment requires solving a 6 x 7 linear system for
each iterate. Hence, tracing the constant-radius
spine in either R* or R’ is conceptually simple,
but the computational cost can be expected to
be high. Tracing the spine in R® and performing
point refinement without the use of the nonlinear
system for the spine is generally considered more
efficient (Barnhill et al. 1993; Chuang et al. 1995;
Varady 1989). Tracing the variable-radius spine
in R° with the exact representation raises similar
problems. Thus, tracing the variable-radius spine
in R3 is generally preferable; however, the tracing
direction cannot be determined as easily as that
for the constant-radius spine, and point refine-
ment is much more complicated, because the radi-
us has to be determined simultaneously in the re-
finement process; see (Chuang et al. 1995). For a
given pair of parametric surfaces P(s,7) and
QO(u,v) to be blended and a constraint for radius
function as in Eq. 1, we present a marching proce-
dure that starts from a point on the spine curve,
steps along the tangent vector of the spine curve,
and refines the next approximate point to a spine
point that satisfies the given radius constraint.
The refinement is performed in R3. The result of
the marching procedure is a set of triples, each
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Fig. 5. Voronoi surface of a cylinder and an inclined plane
Fig. 6. Toward a new spine point in step 2

Fig.7a, b. The point displacement in step 1

1(6)—offset of LP 1(0)—offset of [‘Q

plane E

b 0>m/2

consisting of a point on the spine curve and its 4. Repeat steps 2 and 3 until one of the foot points

foot points on P and Q. The marching procedure
is outlined as follows:

1. If the starting point is not on the spine curve, re-
fine it to a spine point S that satisfies the con-

of S is outside the domain of the respective base
surface or S is equal to (within a distance toler-
ance) the starting spine point, which indicates a
closed spine.

straint given for the radius. If the spine is an open curve, the procedure must

2. Derive the step vector step_vector in the tangen-
tial direction of the spine curve at S and obtain
the next approximate point S'.

be called again with the opposite tracing direction,
and two segments should be merged to form the
complete open spine.

Locating starting points on the spine is in general

3. Refine §' to a spine point S that satisfies the  difficult. An approach that works well in practice
constraint given for the radius. is first to locate an intersection point between
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P(s,t) and Q(u,v) by surface subdivision (Barnhill
and Kersey 1990) and then to refine the point to
the spine with a refinement procedure, which is de-
scribed in Sect. 5.2.

The derivation of the step vector is described in
Sect. 5.1, and the point refinement method is pre-
sented in Sect. 5.2.

5.1 Step vector

The step vector considered here is in the tangential
direction of the variable-radius spine curve. The
tangent of the constant-radius spine at a point is
simply in the direction of the cross-product of sur-
face normals at foot points of the spine point. For a
variable-radius spine, the exact tangent of the spine
cannot be obtained from such a simple paradigm;
we need the exact representation of the variable-ra-
dius spine. To obtain this, we first compute the tan-
gent vector, say t, of the spine curve in R° by re-
quiring that t be perpendicular to the gradient of
each function in Eq. 2-9. This amounts to solving
a system of eight linear equations in nine variables.
The tangent vector of the spine curve is then the
natural projection of t into (x,y,z)-space (Chuang
and Hoffmann 1992).

The step size can be fixed or variable. A fixed step
size tends to be conservative and slows down the
tracing. The variable step size can be estimated
from the local curvature which, however, has to
be done beforehand. An alternative, proposed by
Barnhill et al. (1993), is to determine the step size
according to the angle between the unit tangent
vectors at two successive spine points.

5.2 Point refinement

Since the spine is not represented explicitly, the re-
finement process has to bring the approximated
spine point S’ to a point that satisfies the radius
constraint. Each refining iteration consists of three
steps. First, we refine §' to a point that is equidis-
tant to two base surfaces. Second, we derive a ra-
dius by applying the radius constraint to the result-
ing configuration. Finally, if the orthogonal dis-
tance from S to the base surfaces is equal to the
derived radius, we have found the point; otherwise,
we move S’ to a point that is more likely to have

the derived radius as its orthogonal distance to
the base surfaces and denote this point by §'. The
procedure is as follows:

1. Refine §’ to a point that is equidistant to the
base surfaces:

la. Find the projection points P* and Q* of S’ onto
P(s,t) and Q(u,v), respectively.
Let E be the plane passing through S, P*, and

Ib. Let Rp=||S'— P*|| and Ry =||S' — Q||
If |[Rp — Ry| < dist_tolerance, then go to Step 2.

lc. Compute unit normals Np and Ny of P(s,1)
and Q(u,v) at P* and Q¥, respectively.
Compute the angle 6 between Np and No.

If Rp > RQ

then set §' as §' —}—f” c(ﬁ Ny and compute the
projection P* of §' onto P,

else set §' as § —1—1 coseNP and compute the
projection Q* of " onto Q.

1d. Let E be the plane passing through §’, P*, and
Q.

Go to Step 1b.

2. Compute the constrained radius and bring S’ to
a point that is a better approximation having
the derived radius as its orthogonal distance
to the base surfaces:

2a. Derive the radius r(6) according to the radius
constraint.

2b. If |Rp —r(0)| < dist_tolerance and |Ry — r(6)|
< dist_tolerance, then the refinement succeeds
and stops.

2c¢. Calculate the intersection line Lp between E
and the tangent plane of P(s,t) at P*, and the
intersection line Ly between E and the tangent
plane of Q(u,v) at O* (Fig. 6).

2d. Find a circle with radius () that lies on E
and touches both Lp and L. Set the new ap-
proximate spine point S’ as the center of the
circle (Fig. 6).

2e. Go to Step 1.

Step 1 and the whole point refinement process may
either succeed in finding the designated point or
fail to do so within a user-specified maximum
number of iterations. When the refinement fails,
the current step size should be reduced and the
point refinement repeated.

The dlsI?Iacement from S to S’+f” C(ﬁ Ny or
S’ —|—1 ¢ —5Np in step lc. is quite intuitive. Let us
consider the case where Rp > Rp.When 6 <17/2,
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we displace §' to a point that is offset d from the
current S’ in the direction of Ng, where d ensures
that the orthogonal distances from the displaced
point to tangent planes of P(s,f) and Q(u,v) at
P* and QF, respectively, are equal. That is, d is
positive and must satisfy

Ro+d=Rp+dcoso,

Rp—Ro
1—cos6

which implies that d =
7 <0 <=, d must satisfy

(Fig. 7a). When

Ro+d=Rp—dcos(n—0),

which implies also that d = 282 (Fig. 7b).

1—cos6

6 Representing
the variable-radius blends

Having derived points on the spine and linkage
curves that correspond to each other, we next ap-
proximate linkage curves and the curve for centers
of contributing circles with parametric curves and
then sweep a circular arc along the linkage curves
to construct the blend in parametric form. The
variable-radius circular blend is constructed by se-
lecting the cross-section circle as the greatest circle
of the sphere that passes through the spine point
and its foot points on P and Q. For the variable-ra-
dius spherical blend, the contributing circle on
each sphere must lie on the plane that is perpendic-
ular to the tangent of the spine at the center of the
sphere and contains the foot points.

6.1 Centers of contributing circles

Let (S;,si,t;,u;,v;, T;) denote the ith output of the
marching process, where S; is the spine point,
(si,t;) and (u;,v;) are preimages of S; on P and
0, respectively, and T; is the spine tangent at S;.
For circular blends, we consider the contributing
circle for sphere centering at S; as the greatest cir-
cle passing through S;, P(s;,t;), and O(u;,v;).
Hence the center of contributing circle, denoted
by O;, is §;, for each i. For spherical blends, the
contributing circle lies on the plane perpendicular
to the spine tangent at S;. Consequently, for each
i (Fig. 8)
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spine curve

Q(S,‘, l,’)

Py

9

Fig. 8. Center of the contributing circle for spherical
blends

Fig. 9. Computing the control point P,

T; | T;
1T T

0,‘ = S,’ + (P(Si, l‘,‘) — S,)

We call the curve formed by O; the center curve of
the contributing circle.

6.2 Interpolating center
and linkage curves

To ensure positional continuity between the blend
and base surfaces, linkage curves are first fitted in
parameter spaces, namely (s,7)-space and (u,v)-
space, and then represented as the mapping of
the domain curves on the surfaces. Moreover, to
maintain the correct point correspondence after fit-



ting, the spine and linkage curves are fitted simul-
taneously by regarding O; = (x;,¥;,%), (sj,), and
(u;,v;) as a single data point (x;,y;,z;,5;,t,u;,V;)-
General methods for B-spline curve fitting are ap-
plied. The knot vector is set to be open uniform
and the chord length between data points is used
to approximate the parameter value f; for
(Xj,¥j,2j,8j,t;,4;,vj). The number of control points
is predetermined by a bisection procedure that
searches for an appropriate number of control
points in a binary-search fashion. The resulting
number of control points guarantees that the fitting
error is within a prescribed tolerance. The number
of control points is generally less than the number
of data points, and hence the fitting is solved by a
least-squares computation. The parameter value f3;
for each data point is adjusted by Newton-Raphson
iteration as described by Plass and Stone (1983).
The fitting produces the center curve

O(B) = (x(B), ¥(B), 2(B))

and the linkage curves in the parameter spaces

Ip(B) = (s(B), 1(B)) and lo(B) = (u(B), v(B))-

The linkage curves on the base surfaces are then
P(Ip(B)) and Q(lp(B)). Note that, for variable-ra-
dius circular blends, data points of the center curve
are not fitted since only surface normals at

P(Ip(B)) and Q(lp(B)) are needed.

6.3 Constructing the variable-radius blend

The variable-radius blend is constructed by sweep-
ing a cross-section curve along the fitted linkage
curves. The cross-section curve is a circular arc
represented by the following rational quadratic Bé-
zier curve:

600(1 —Ol)ZP() —|—2(01(1 —a)aPl +a)2a2P2
wo(1 —a)*+20,(1 — a) a + v,02

B(a) =

(10)

where Py,P;, and P, are the control points and
Wy, 1, and @, are the weights. The control points
Py and P, are located on the respective linkage
curves and are expressed as

Po(B) = P(s(B), 1(B)) and P(B) = Q(u(B), v(B)).

As in (Choi and Ju 1989; Chuang et al. 1995), P,
can be written as

2(1 —m-n)

1
Pi=—(Py+P)—|Py—P
1=5PotP) =IPo =Pl T

5 (m+n).
For circular blends, m and n are unit normals of P
and Q at Py(f) and P;(f), respectively, while, for
spherical blends, we have m and n equal to the unit
vectors of O(f) — Py(B) and O(B) — P2(S3), respec-
tively. The derivation is illustrated in Fig. 9.
Since the rational quadratic Bézier curve is re-
quired to be a circular arc, the weights must be
suitably controlled. Let wg and @, be equal to 1.
®; must be cosa and can be written in terms of
m and n as

1+m-n
@ =cosa =cosf = —

where m and n are unit vectors pointing from
Po(B) and P;(p), respectively, toward the circle's
center. Substituting Py(S),P;(B), and P,(f) into
Eq. 10 yields the blending surface

B(a, B)

(1—0)*Po(B) + 2 (1 — &) a Py (B) + a*Py(B)
(1—a)*+20,(1 —a)a+a?

(11)

7 Implementations and examples

The proposed constraints for the variable-radius
spine and marching procedures have been imple-
mented on an SGI Indigo2 workstation. Shown in
Fig. 10 are spherical blends between a cylinder
and an inclined plane wusing constraints
r(6)=1.0/6""1, r(6) =1.0 (constant-radius), r(6)
=1.0/6 (constant arc length), r(6)=1.0/tan§
(constant range distance), r(8)=1.0/6"*, and
r(6) = 1.0/6?, respectively. Fig. 11 shows spheri-
cal blends between two intersecting Bézier surfac-
es using radius constraints r(0) =3.0/6"",
r(6)=3.0, r(0)=3.0/6"*, and r(6)=3.0/6%
These figures reveal that the proposed scheme
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r=1.0/ul

d constant range distance, r=1.0/tan ”

Fig. 10a—f. Spherical blends of a cylinder and an inclined plane

for radius constraints is able to effectively produce
variable-radius blends to meet practical consider-
ations. Our experience is that the constraint func-
tion r(0) =c/6” is simple enough and performs
well. With only two parameters ¢ and p, users
are able to effectively control the shape of the
blend. For examples, constant-radius constraint
(p =0) is appropriate for representing blends re-
sulting from NC cutting, while constraints with
p>1 effectively reduce the radius in the area
where two base surfaces meet in small angles.

Tables 1 and 2 compare the timing data for two
tracing schemes. We observe that tracing in R® is
much more efficient than numerical tracing in
high-dimensional space using a dimensionality
paradigm, since solving linear systems for the local
approximant and performing point refinement with
Newton iteration are computationally expensive.
Moreover, a partial of Eq. 9 can be very complicat-
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Constant radius,

r=1.0/ut* f

r=1.0 Constant arc length, r=1.0/u

r=1.0/u??

ed for certain constraints, which, in turn, compli-
cates the polynomial evaluation. One observation
worth mentioning is that the point refinement us-
ing Newton iteration in the high-dimensional trac-
ing usually takes only three to four iterations on
average, while the point refinement using geomet-
ric properties in the proposed 3D tracing may take
on average 0.5 to 2.5 steps and 4 to 47 steps to get
an equidistance point and a spine point, respective-
ly. When using the dimensionality paradigm, trac-
ing the spines in R° for variable-radius spines de-
mands much more computing time than tracing
in R7 for constant-radius spines. In the proposed
3D tracing, all radius spines, however, require
about the same order of computing time. A final
special note is that base surfaces in NURBS form
generally demand a higher surface manipulation
cost in high-dimensional marching than polynomi-
al base surfaces, as depicted in Tables 1 and 2



a Constant radius, r= 3.0 b Constant ar c length, r=3.0/u

Fig. 11a-d. Spherical blends of two
Bézier surfaces

c r=30/ut4 d r=230/u?°

Table 1. Times in seconds for marching the spine of a cylinder and an inclined plane

r(0) = 9'4{ r(0)=1.0 r(0) =10 r(0) = 712“11@0/2) r(0) = ;+O r(0) = %
3D marching 21.878 8.459 8.386 10.178 9.322 10.136
H-D marching 582.008 56.172 376.137 523.746 418.473 410.958

Table 2. Times in seconds for marching the spine of two Bézier surfaces

r(0) = 343 r(0)=3.0 r(g) =30 r(0) = 712“13(;90/2) r(0) = gli’ r(0) = %0
3D marching 5.126 3.981 11.395 17.171 13.452 28.436
H-D marching 202.346 30.828 261.380 352.137 324.601 375.363

where cylinders are represented in NURBS form  system becomes nearly singular or singular. We

and Bézier surfaces are in polynomial form. handle such cases by rewriting Eq. 1 as

In practical implementations, we must deal with c

the cases where f(6) approaches 0, which implies () = —————, (12)
the derived radius goes to infinity and the resulting f(6)+e
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r=0.5

r=05/19

r=05/(6 + 005)

r=05/(8 + 0.5)

r=05/(6 + 0.005)

r=05/(8 + 0.005)

Fig. 12a-f. Effects of epsilon when blending two intersecting cylinders with equal and different radii

whenever f(6) is not a constant, where € is a small
and fixed number. Since this modified radius con-
straint will be applied everywhere in the spine gen-
eration, e is expected to be as small as possible to
reduce its global effects. However, e must be large
enough to avoid the numerical instability caused
by the vanishing of f(6). We have found that the
€ determined by the maximum allowable radius
i Using

c
P ==
£
is very effective in practice. The maximum allow-
able radius r,, can be two or three times as large as
the diameter of the base surfaces. Figure 12 depicts
the effects of applying the modified radius to the
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blend generation. Figure 12a shows the constant-
radius blend of two cylinders of identical radius.
The marching of the spine with constant arc length
constraint will fail at the points where normals of
two cylinders coincide. Figure 12b and c shows
such a blend using the modified constraint with €
equal to 0.05 and 0.005, respectively. The effect
of modified constraints near the singular point re-
sembles the shape of constant-radius blend, as
shown in Fig. 12a. Figure 12d—f reveals the effects
of applying the modified constant arc length con-
straint to two intersecting cylinders with different
radii, in which f(0) is nowhere to be 0. The mod-
ified constraint with a smaller ¢ makes a smaller
shape deviation in the resulting blend than the
original constraint.



8 Conclusion

We have proposed geometric constraints that con-
strain the variable-radius spine and produce
smooth, visually appealing variable-radius blends.
The constraints can easily be adopted into a
high-dimensional representation resulting in an ex-
act form of the spine, which can be traced in high-
dimensional space. Alternatively, the constraints
can be implemented in a marching procedure that
marches the spine and linkage curves simulta-
neously in R3. Our experiments show that the pro-
posed scheme for radius constraints is able to ef-
fectively produce variable-radius blends to meet
practical considerations, and marching in R? is
much more efficient than tracing in high-dimen-
sional space. For future work, constraints that are
capable of representing a wide range of surface
blendings are of great interest.
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