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Abstract

For arbitrary n-by-n commuting complex matrices A and B, it is known that
the inequality w(AB) < |A|w(B) is in general false where w(-) denotes the

numerical radius of a matrix, but this still holds for special classes of A and B.
In our Chapter 2 below, we prove that the inequality holds if A is square-zero or

idempotent.
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Chapter 1  Introduction

The theory of quadratic forms and their applications appear in many parts of
mathematics and sciences. Also, we often have the opportunity to encounter such
concepts and applications in linear algebra. This subject and its extensions to
infinite dimensions comprise the theory of the numerical range. In fact, a lot of
recent researches have been focused on the numerical range and numerical radius in
finite dimensions. In Chapter 2, we will present some results concerning the
numerical radius w(AB) when complex matrices A and B commute, namely,

AB = BA.

We now introduce some of the notations to be used in the following chapter. We

use A, B, C,---to denote complex-square:matrices. M _(C) denotes the algebra of
all n-by-n complex matrices. ||A| =max{|Ax|:xeC", ||x|=1} denotes the matrix

norm of an n-by-n matrix A. The numerical range of A is defined by

W(A) = {(Ax,x):xeC", |x|=1} and the numerical radius is w(A) =
max {|z|:zeW (A)}. Here (x,y) denotes the inner product (X, y>:zn:xjy_j of
j=1

vectors X =(X,%,,.... %), Y=(Y,Y,...,¥,)" in C". Recall that the inner

product is conjugate dual, (y,x) = (x,y), and is related to the norm by

(x,x) = ||x||2 Recall that A" is defined by the duality relationship

<Ax,y>:<x,A*y> forall x and y in C".



Chapter 2 Numerical Radius Inequalities of Square-zero and

Idempotent Matrices

Quadratic forms and their use in linear algebra are quite well-known. In this

section, we consider the numerical range, denoted by W (-), of n-by-n complex

matrices. Furthermore, we study some basic properties of the numerical range and
the numerical radius. We also indicate how one may compute the numerical range

W (A) for matrices A and give some examples.

Section 2.1. Numerical Range and Numerical Radius

In this section, we first define.the numerical range of a matrix.

Definition 1.1. The numericalrange of “A~'in M _(C) is

W(A) = {(Ax,x):xeC",

X|=1}.
Thus W () isa function from M (C) into subsets of the complex plane.

The following examples give a rough idea of what the shape of the numerical

range can be:
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Example 1.2. If A:[O O} , then W (A) is the closed unit interval [0,1].
0 2 . -

Example 1.3. If Az[o 0} ,then W(A) is the closed unitdisc {zeC:

2| <1}.



The most fundamental properties of the numerical range W(A) for A in

M, (C) are its compactness and convexity.

Theorem 1.4. Forall A in M_(C), W(A)isacompact subset in the complex
plane.

Proof. The set W(A) is the range of the continuous function x—><Ax,x>

over the domain {XEC“ :[|=1}, the unit sphere of the Euclidean space C",

which is a compact set. Since the continuous image of a compact set is compact, it

follows that W (A) is compact.

Theorem 1.5. Forany A=in M (C);W(A)is aconvex subset of the complex

plane.

This is the classical Toeplitz-Hausdorff theorem (cf. [ 3, Section 1.3] ).

Proposition 1.6. Let A and B be matricesin M (C).If U isa unitary
matrix in M_(C) and c isascalar, then the following hold:

(1) W(A+cl,))=W(A)+c,

(2) W(cA)=cW (A),

(3) W(A+B)cW(A)+W (B),

(4) WUAU) =W (A).



Proof. (1) We have

W(A+cl) = {(A+cl)xx):[x|=1} = {{Ax,x>+c:||x||:1}

= (=g v e = WiAre.

(2) We have
W (cA) = {{(cA)x,x):”x”:l} = {C(Ax,x>:||x||:1}

= c{(Ax,x>:||x||:1} = cW(A).

(3) We have

W (A+B) =H{(A+BIR: [Mh=1] = {(Axx)+(Bxx):[x|=1]

(A =1} {(Bysy): [yl =1f =W (A)+W (B).

4)If xeC" and |x|=1, we have
<(U*AU)x,x>:<Ay,y>eW(A),

where y =Ux and|)y|| = |ux||=||x|=1. It implies that W(U"AU)c W(A). The

reverse containment is obtained similarly.

Next, we want to measure the size of W (A). This can be done by considering
the radius of the smallest circular disc centered at the origin that contains W (A).

Hence we have the following definition.



Definition 1.7.  The numerical radiusof A in M_(C) is

W(A) =max{|z]:zeW(A)}.

In the following theorem, we show some basic properties of the numerical radius,
one of which says that the numerical radius provides a norm equivalent to the

matrix norm.

Theorem 1.8. Let A and B be matricesin M, (C) and c be ascalar. Then
the following hold:

(1)w(A)=0 ifandonlyif A=0,

(2)w(A+B)<w(A)+w(B),

() w(cA) =|c|w(A).
@] A)72 <w(A) <|A].

Proof. (2) Assume that zeW (A+B). Since W(A+B)cW (A)+W (B),
there exist uew(A) and vew(B) suchthat z=u+v. Also,
|z| =|u+v| < |u[+|v| <w(A)+wW(B).

Thus w(A+B)<w(A)+w(B).

(3) Ifc=0,then w(cA)=0=|c|w(A).Hence we may assume that c=0.Let
zeW (cA). Since W (CA)=cW (A), there exists ueW (A) such that z=cu. Also,

|z| = |cu|=|c||u] < [c] w(A). Thusw(cA) < |c|w(A). On the other hand, using this we
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have w(A) = W(E A) < ﬁw(cA). Hence w(cA) = [c|w(A).
c
(4) We have, for any |x| =1, by the Schwarz inequality

[(Ax, )| [Ax]x] = [Ax] < Al
Thus max |( Ax, x)|: x| = 1}3 A, that is, w(a) < |A].

To prove the other inequality, we use the polar identity, which may be verified

by a direct computation:

4(AX, Y) =LA+ IXF Y)Y ={A(X—y), x—Y)

Fi(AQFIY), X+ iy ) =i (A(x—iy),x—iy).
Hence
A Ax,y) < wA) sy [x =y [+ fxs iyl ey |
=aw(A) x| + v |-
For |x|=|y|=1, we have 4‘<Ax, y>‘g 8w(A) , which implies that||A| < 2w(A).

Thus ||A/2 <w(A) <|A].

(1) By (4), we have w(A) =0 ifandonlyif |A|=0.Thus w(A)=0 ifand

only if A=0.
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Theorem 1.9. If A:{:l3 Z},then W(A), W(A) cW(A) and w(A),

W(A) < W(A).

This follows easily from the definitions of the numerical range and numerical

radius.

In the following section, it is known that in general for A commuting with

B, W(AB) < w(A)|B| is false. It was resolved by a counterexample in [4]. But

for special matrices, this inequality may,still hold. This is the case when A is a
normal matrix or a 2-by-2 matrix commuting.with B (cf. [1, pp. 38— 39] and [2]).
In the following, we prove that the inequality “holds if A is square-zero or

idempotent.

Section 2.2. Square-Zero Matrices

In this section, we first define a square-zero matrix.

Definition 2.1. Ifamatrix A in M _(C) satisfies A*>=0,then A is called

a square-zero matrix.

The next lemma tells us that a square-zero matrix can be unitarily equivalent

to a canonical form:
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Lemma 2.2. Let A be a square-zero matrix. Then A is unitarily equivalent to
0 0 A
[’g 0} , Where Alz{o 0} with A' positive definite. Moreover, A' is

unique up to unitary equivalence.
This result can be found in [5, pp. 1140-1142].

The next theorem says that for commuting A and B in M, (C), inequalities
W(AB) < ||A|w(B) and w(AB) < w(A)||B| hold if A is a square-zero

matrix.

Theorem 2.3. If A is a square-zero matrix in M _(C) and B isan n-by-n

matrix commuting with A, then \w(AB) <||Afw(B) and w(AB) < w(A)|B|.

0
Proof. By Lemma 2.2, we have that A is unitarily equivalent to ['(A)\l 0]

a

a,

0o A
where AI:{O O} and A'= ,a,>a,>--->a_ >0. Assume

B B
that B{Bl BZ]Since AB =BA , we have

3 4

A o8 8] [B BJA 0
o ole o) ls alo o

that is,



AB, AB,] [BA 0
0 0 B,A 0|
AB, 0
Thus AB =BA, AB,=0,and B,A =0. Sowehave AB= 0 0 and

B:{ . Z]Where AB,=0 and B,A =0. Itimplies that
B, B,

W(AB) = w(AB)

%||AlBl|| (cf. [5, Theorem 2.1] since A B, is square-zero)

IA

1
SIAlIBS < Alw®) = [Alw®).

Similarly, we have

W(AB) = w(AB) = Z[AB,| < Z|Alle] < wAlg]

This completes the proof:.

Section 2.3. Idempotent Matrices
We first define an idempotent matrix.

Definition 3.1. Ifamatrix A in M, _(C) satisfies A’=A, then A is called

an idempotent matrix.

The next lemma gives a canonical form for the idempotent matrix .

13
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Lemma 3.2. Let A be an idempotent matrix in M _(C). Then A is unitarily
al

. I A a,
equivalentto 0@ | @ 0 0 , Where A'=

>a,>0.
This result can be found in [5, pp. 1140-1142].

Recall that matrices A and B are said to doubly commute if AB =BA and

AB*=B'A.

Theorem 3.3. If matrices “A and B in M (C) doubly commute, then

w(AB) < |A|w(B) and w(AB) < w(A)|B|-

This result can be found in [1, pp. 38— 39].

Lemma 3.4. Let a >a;>0and let K be a compact subset of C" with

(X, ¥,e” y£%,....y,e") eK for all (X,¥,,¥y....y,)eKand 6,eR, j=23

...,n. Then

max {

eK}.

X+a12y,-‘:(x, Yoreer Yo)

j=2

(X, Yy, Y,) € K} < max{

n
x+2ajyj
=2



Proof. If a, =0, then this lemma obviously holds. Next, we assume that

a, >0 and claim that for someé,,...,6, € R,

n
XJFZZ“aj Y,
J:

<

1)

n
i0;
x+a,) ye"|.
=2

Since‘Re(anz)‘ = Re(xa, y,e ) for somed, e R, so

|X|2 + |a2y2|2 + 2Re (Xa2§2)

|x+a2y2|2
< |x|2+|a2y2|2+2|Re (xajz)‘
2 i0, |2 = o
= |X| +‘a2y2e ‘ +2Re(xa,y,e )
? i, < e
< X +aye® FoRe (@ y.e )

i6,(|2

= ‘x+a1y2e

2
I forsomed, eR.

namely, |x+a,y,| < ‘X+a1y2e'

Now, assume that for n=k, (1) is true, that is,

k
X+Zzlaj Y,
j=

forsome 6,,...,6, in R.Thenforn=k+1,

<

k

i6;

x+a Y ye"
=2

)

k+1 k _
2 ay) < [+ 2y +ayi.e™| forsome 6., R
2 j=2
_ K
= |(x+ay.*)+ > ay,
j=2
i S
< |(x+ay, %)+ %Zyje | oy ()
j=2

15



k+1

x+a, > y.e”
j=2

Hence, by induction, we see that (1) is true, that is,

i=2

x+>ay| < [x+>aye”
j=2 j=2
< max{ X+alz Yil s (X Yaueen ¥o) € K} So

max{

This completes the proof.

n
x+22:ajyj
J:

:(x,yz,...,yn)eK} < max{x+a12yj
j=2

By the preceding lemma, we can prove-the-following theorem.

Theorem 3.5. If A is an idempotent matrix in M, (C) and B isann-by-n

matrix commuting with A, then w(AB) <||A|w(B) and w(AB) < w(A)|B|.

Proof. By Lemma 3.2, we have A’ =A ifandonly if A is unitarily

equivalent to

aQ Q
I A
, Where A'= . , or
{O 0} ..

kxm



Q
0|, ay=2a,2---2a,20 and k>m.
am mxk
% B, B
Case 1: Let A'= and B{Bl BZ]Then AB = BA, that is,
3 4

o ola o) [a allo of

B,+A'B, Bj+AB B BA
0 0 B, BA'|

implies that

Thus B,=0, B,+A'B, = B/Alor By=B/A A'B, . So

B, BA-A'B B, BA'
B=| * “land AB=| * 1 |,
0 B, 0 0

Now if a, =0,thenwehave A'=0 and w(A)=||A|=1.Soit

follows that

wW(AB) = w(B,) <w(B) (by Theorem 1.9)

=| A|w(B).
Similarly, we have w(AB) = w(B,) < w(B) <|B| = w(A)|B|.

Next, we consider a, >0 and the special case when A'= a,l . Then

B B e B

17
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and

I al (B 0| (B aB"| |B" 0| al
0 0JJo B |0 o0 |0 B0 O]

2
>
z
A
>
=
=z
I

J1+a® W(B,) (by Theorem 3.3)

IA

|Ajw(B) (by Theorem 1.9).
W({Bl 3131D . S0
0 O

X+ =1}

Next, we check W(AB) < w(AB), thatis,w |:Bl BlA:D <

o3 %)) - ==L 1 )

= (B x) B Y0 X[ + vl =1

= max{

B'x=(z,2,,....2,), ||x||2 + ||y||2 = 1} :

(B, X)+ . a.y,7;
=

Y=Y Yo Yo

Thus, by Lemma 3.4, we have

WHI(B)l BloA'D _ max{(le,x>+a1y1§1+jzn;:ajyﬁ,— Y=Y Yareer V)
okttt I+ =1
< max{(le,x>+a1y1§1+algijj Y=Yy Yareer Yo )s
okttt I+ =1
= max{(le,x>+algijj Y = (Yo Yareeos Yy
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Finally,

W(AB) = WH% BloA'D < wq% 31081D = w(AB)< |Ajw(B).

Moreover, since A and B doubly commute, so

w(AB) < W(K)HEH = w(A)|B < w(A)|B| (by Theorem 3.3).
Also, we have |A|=1+a; =HKH and w(A) =w(A) (cf. [5, Theorem 2.1]). It

follows that W(AB) < w(AB) < w(A)|B|.

a

) B B
Case 2: LetA'= .. 0 and B=| * _?|.Then AB=BA,
B, B,
a
m mxk
that is,
0k><m 0k><k BS B4 BS B4 kam 0k><k
implies that
B,+A'B, B,+A'B,] _[B, BA
kam okxk - B3 BSA' .
Thus B,=0,,,, B,+A'B,=BA'or B,=BA-A'B,.So

B, BA-A'B B, BA
B=| ' ! “land AB=| *' Yo,
0 B4 kak

kxm kxm



Now if a, =0,thenwehave A'=0 and w(A)=||A|=1.So0
wW(AB) = w(B,) <w(B) (by Theorem 1.9)
= |Ajw(B).
Similarly, we have w(AB) = w(B,) < w(B) <|B|| = w(A)|B|.

Next, we assume that a, >0. Then

(o 2 = mele 2 TI0D

- max {K B,x, X)+(B,A'Y, X>‘ : ||x||2 +| y||2 :1}

max{

B %= (a2 ki) (Xl =)

< max{

B, X =(2,,2,....,2,), ||x||2 + ||y||2 = 1} (by Lemma 3.4)

max {

8% = (22302, X[+ =1]

WU: Bl a'lBl I: Im Omx(k—m) ]:D )
kam kak

X+ =1}

<le’x>+a1ylzl+zajyjzj :y:(y11y2 ----- yk)!

=2

:y:(Yvyz ----- yk)1

(Bxix)+ay,zika Y y,z
=2

:y:(yl’yZ ----- yk)!

(Bx,X)+a,» Y,z
i1

I [I 0 :‘ Bl Omxk
Let A=| ™ Slim Seeemllgng Bo B, 0]|.Then AB=BA
Oum U O 0 0

and AB' =B A.Hence A and B doubly commute. So

20
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w(AB) < “N‘w(ﬁ) = Ji+a2 w(B) (by Theorem 3.3)
= \/1+ afW(Bl)
< ||A||w(B) (by Theorem 1.9).

Finally,

W(AB)ZWH B, BlA'D ) WH B, aB[l, O”“(k"‘JD:vv(z\é)
kam Oka 0 0k><k

kxm
< ||A|w(B)-

Moreover, since A and B doubly commute, so

w(AB) < w(A)[B| = w(A)|Bfu=, wAB|.
Also, we have |A|=41+a, :”ﬂ” and - wW(A) =w(A) (cf. [5, Theorem 2.1]). It

follows that w(AB) < w(AB) < w(A)|8].

B, B
Case 3: LetA'= . and Bz{B1 BZ]Then AB = BA, that is,

3 4

kxm
I, A8 B] [B BI[I A
omxk Omxm B3 B4 B B3 B4 Omxk Omxm

B,+A'B, B,+A'B,] [B, BA
0 0 B, BA'|

implies that

mxk mxm

Thus B,=0,,, B,+A'B,=BA'or B,=BA-A'B,.So

mxk ?
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B BA-AB B BA'
B=| * ! *l'and AB=| * ' |
0 B, 0 0

mxk mxk mxm

Now if a, =0,thenwehave A'=0 and w(A)=||A|=1.Soit

follows that

W(AB) = w(B,) <w(B) (by Theorem 1.9)
=| A|w(B).
Similarly, we have w(AB) = w(B,) < w(B) <|B| = w(A)|B|.

Next, we assume that a, >0. Then

oot 4] - bl 1)
(B )+ (BiAY. x| x| + ] =1

max {

B X = (222 [+ [y = 1]

X+ =1}

: y:(yleZ ----- ym)’

(BX.xy+¥ayz+y.ay,z
=2

< maX{<le,X>+a1yﬁl+a12y,-Ej Y= (Y0 Yareeor Y
j=2
B'x=(z,2,,..., zk),||x||2+||y||2=1} (by Lemma 3.4)
<

Y =(Y0 Yoo Y

max{

8% = (2 22, N [ =1

(& %)

Koo
(BX,X)+a,> Y,Z]
-1
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As in Case 1 before, we have

{2 %) - o

IA

[Alw®) < A

and

IA

w(AB) < w(A)|B| <w(a)[8|,

W B, aB,
_Ok Ok
~ [ al -~ [B, 0
where A=| ¢ "} and Bz{ ! k}. So it follows that

0, B
oo [ & 24 -

0 0

W[P aiBD < |AwE), w(A)[B]

This completes the proof.

In conclusion, we remark that it is unknown that whether the inequalities
w(AB) <|A|w(B) and w(AB) <w(A)|B| hold for commuting n-by-n matrices A

and B with A satisfying a quadratic polynomial equation.
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