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摘要 
 

在現今廣受應用的資料探勘領域裡，推薦系統廣泛被應用於建議相關商品

給使用者。在眾多新興電子商務中，線上電影推薦系統如"IMDb(Internet Movie 

Database)"， "MovieFinder.com"，"MovieLens"等，皆已廣為大眾喜愛和接受。

這些電影推薦系統都是使用「協同過濾」(Collaborative Filtering) 技術來推薦相

關影片給使用者。在這篇研究中，我們嘗試根據使用者線上瀏覽歷史和影片評價

紀錄，運用「使用者相關性」(UserCorrelation)、「商品相關性」(ItemCorrelation)，

以及「斜率性預測」(SlopeOne Predictor)，來建立一個「動態協同式過濾推薦

系統」。此外所實做之系統運用「點閱流樹」(ClickStream Tree)技術，來預測

使用者下一步將瀏覽的網頁。研究方法發現「商品相關性」(ItemCorrelation)是

協同過濾演算法中較有效率的，而「斜率性預測」(SlopeOne Predictor)則是較

精確的方法。此動態推薦系統以「服務性架構」(Service Oriented Architecture)

及「商業流程執行語言」(Business Process Execution Language)為實做基礎，

能有效地根據資料的特性進行相關商品推薦。 
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Abstract 

     

As a popular application of data mining, recommender systems attempt to 

predict items that a user may be interested in, given some information about the user's 

profile. With the gradually increasing use of IMDb (Internet Movie Database), 

MovieFinder.com, MovieLens and the likes, recommendation systems are gaining 

more popularity and acceptance by the public. Such film recommendation systems 

make use of collaborative filtering technology to recommend films to users. In this 

research, we propose a dynamic collaborative filtering system that makes use of 

UserCorrelation, ItemCorrelation, SlopeOne Predictor, and Clickstream collaborative 

filtering model to make use of both user navigation patterns along side historical 

purchased items for users with similar buying behavior. With the proposed dynamic 

model, we predicted the potential next page (movie title) of interest with higher 

confidence via the help of clickstream tree. We observed that ItemCorrelation is the 

faster recommendation scheme, and SlopeOne Predictor is the more accurate scheme. 

Our dynamic recommendation system based on SOA, orchestrated by BPEL 

dynamically switches among the schemes to generate the more accurate 

recommendation within a timely fashion in a scalable manner. 
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1. Introduction 

1.1. Background 
 

The data that one collects about their customers is one of the greatest assets of that 

business. Buried within this vast amount of data are all sorts of valuable information 

that could make a significant difference to the way in which any business organization 

run their business, interact with their current and prospective customers and gaining 

the competitive edge on their competitors. Data mining is a set of automated 

techniques used to extract buried or previously unknown pieces of information from 

large databases, using different criteria, which makes it possible to discover patterns 

and relationships. The derived information can be utilized in the areas such as 

decision support, prediction, forecasting and estimation to make important business 

decisions. Data mining uses the business data as raw material using a predefined 

algorithm to search through the vast quantities of raw data, and group the data 

according to the desired criteria that can be useful for the future target marketing. 

Creating a picture of what is happening relies on the collection, storage, processing 

and continuous analysis of large amounts of data to provide the information that the 

particular business will need [1].   

 

As a popular application of data mining, recommender system attempt to predict 

items that a user may be interested in, given some information about the user's profile. 

Recommendation systems work by collecting data from users, using a combination of 

explicit and implicit methods. 

 

Examples of explicit data collection include the following: 

 Asking a user to rate an item on a sliding scale. 
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 Asking a user to rank a collection of items from favorite to least favorite. 

 Presenting two items to a user and asking him/her to choose the best one. 

 Asking a user to create a list of items that he/she likes. 

 

Examples of implicit data collection include the following: 

 Observing the items that a user views in an online store. 

 Keeping a record of the items that a user purchases online. 

 Obtaining a list of items that a user has listened to or watched on his/her 

computer. 

 

The recommendation system compares the collected data to similar data 

collected from others and calculates a list of recommended items for the user. 

Recommendation systems are a useful alternative to search algorithms since they help 

users discover items they might not have found by themselves [20]. Collaborative 

filtering techniques are well known in enabling the prediction of user preferences in 

the recommendation systems. There are three major processes in the recommendation 

systems: object data collections and representations, similarity decisions, and 

recommendation computations. Collaborative filtering aims at finding the 

relationships among the new individual and the existing data in order to further 

determine the similarity and provide recommendations. 

 

Defining the similarity is an important issue. How similar should two objects be 

in order to finalize the preference prediction? Similarity decisions are concluded 

differently by collaborative filtering techniques. For example, people that like and 

dislike movies in the same categories would be considered as the ones with similar 

behavior. The concept of the nearest-neighbor algorithm has been included in the 
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implementation of the recommendation systems. The challenge of conventional 

collaborative filtering algorithms is the scalability issue. Conventional algorithms 

explore the relationships among system users in large datasets. User data are dynamic, 

which means the data vary within a short time period. Current users may change their 

behavior patterns, and new users may enter the system at any moment. Millions of 

user data, which are called neighbors, are to be examined in real time in order to 

provide recommendations [3].  

 
1.2. Motivation 
 

With the gradually increasing use of IMDb (Internet Movie Database), 

MovieFinder.com, MovieLens and the likes, movie recommendation system are 

gaining more popularity and acceptance by the public. Such film recommendation 

systems make use of collaborative filtering technique to recommend films to users. 

The predictions are personalized to individual user's tastes, requiring users to rate 

films they have seen and generating recommendations based on patterns of similarity 

discovered in the user base. Traditional movie rental stores in Taiwan often make use 

of POS (Point of Sale) systems to take orders and perform simple queries. Such stores 

often query customer data, record an order, and forget it. With this business model, 

customers would usually walk into the store, browse through piles of unassociated 

titles and check out the items that he had in mind before coming to the store. Little or 

no interactions made with the customer often result in poor cross selling, lower 

customer satisfaction, decreases the customer’s loyalty on the company and the 

likelihood of the customer attaching to the company in a long run. What is unknown 

to the store owners are the hidden relations between their users and items on the shelf. 

With the aid of collaborative filtering, it is our aim in this research to build a movie 

recommendation system to mine these forgotten data so that similar items rented by 
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users with similar preference in the past can be processed to come up with other title 

recommendation to increase the overall sale. 

 
1.3. Organization 
 

The sections that follow are organized in the following fashion. A literature review 

of related researches and journals are touched. Collaborative filtering, clickstream 

collaborative filtering, and SOA architecture serve as the main focus subjects. Section 

3 discusses our proposed methodology with regards to ER model design, UI design, 

collaborative filtering algorithm implemented, and the dynamic system that 

seamlessly incorporate all of the above. Section 4 details the experiment evaluation 

and analysis. In this section we go over the initial data and application setup, 

evaluation metrics and analyze the results and findings. A concluding remark along 

with future work for improvement follows last in Section 5. 
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2. Literature Review 
2.1. Collaborative Filtering 
 

Recommender systems have been developed to automate the recommendation 

process. Large-scale commercial applications of the recommender systems can be 

found at many ecommerce sites, such as Amazon, CDNow, Drugstore, and 

MovieFinder. These commercial systems recommend products to potential consumers 

based on previous transactions and feedback. They can enhance e-commerce sales by 

converting browsers to buyers, increasing cross-sales, and building customer loyalty. 

One of the most commonly-used and successful recommendation approaches is the 

collaborative filtering approach. Such approach works by first identifies a set of 

similar consumers based on past transaction and product feedback information and 

then makes a prediction based on the observed behavior of these similar consumers.  

 Collaborative filtering generates personalized recommendations by aggregating 

the experiences of similar users in the system. The key aspect of collaborative 

filtering lies in identification of consumers or users similar to the one who needs a 

recommendation. Cluster models, Bayesian Network models, and specialized 

association-rule algorithms, among other techniques, have been used for this 

identification purpose [7]. However, there remain important research questions in 

overcoming two fundamental challenges for collaborative filtering recommender 

systems: (1) scalability and (2) accuracy. The first challenge is to improve the 

scalability of the collaborative filtering algorithms. These algorithms are able to 

search tens of thousands of potential neighbors in real-time, but the demands of 

modern systems are to search tens of millions of potential neighbors. Further, existing 

algorithms have performance problems with individual users for whom the site has 

large amounts of information. The second challenge is to improve the quality of the 
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recommendations for the users. Users need recommendations they can trust to help 

them find items they will like. Users will "vote with their eyes closed" by refusing to 

use recommender systems that are not consistently accurate for them. In some ways 

these two challenges are in contrary, since the less time an algorithm spends searching 

for neighbors, the more scalable it will be, and the worse its quality. For this reason, it 

is important to treat the two challenges simultaneously so the solutions discovered are 

both useful and practical [11]. 

 

Most collaborative filtering methods fall into two categories: memory based 

algorithms and model based algorithms [2]. Memory based algorithms store users’ 

rating in a training set. In the predication phase, they predict the ratings of an active 

user based on the corresponding ratings of the users in the training set that are similar 

to the active user. In contrast, model-based algorithms construct models in a 

precompiled manner that capture items with similar ratings from the training set and 

apply the precompiled model to predict the ratings for active users. Both types of 

approaches have been shown to be effective for collaborative filtering. In the 

subsections that follow, we elaborate the two approaches as well as an emerging 

simple, yet efficient deviation from model based scheme, slope one predictor. 

 
2.1.1. Memory Based Collaborative Filtering 
 

Early recommender systems were pure collaborative filters that computed pair 

wise similarities among users and recommended items according to a similarity 

weighted average. Breese et al. [2] refer to this class of algorithms as memory based 

algorithms. Memory based collaborative filtering algorithms are deterministic by 

nature. They rely on a database of previous users’ preferences and perform similarity 

calculations on the database each time a new prediction is required [2]. The most 
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common representatives are nearest neighbor-based algorithms where a subset of 

users most similar to an active user is chosen and a weighted average of their 

preference ratings is used to estimate preferences of an active user on other items. 

 

Memory based algorithms utilize the entire user-item database to generate 

predictions. These systems employ statistical techniques to find a set of users, known 

as neighbors, that have a history of agreeing with the target user (i.e., they either rate 

different items similarly or they tend to buy similar set of items). Once a 

neighborhood of users is formed, these systems use different algorithms to combine 

the preferences of neighbors to produce a prediction or top-N recommendation for the 

active user. The techniques, also known as K nearest neighbor or user-based 

collaborative filtering, are more popular and widely used in practice. Figure 1 shows 

the schematic diagram of the collaborative filtering process. Collaborative filtering 

algorithms represent the entire M x N user-item data as a ratings matrix, A. Each 

entry aij in A represents the rating of the ith user on the jth item. Each individual rating 

is within a numerical scale (e.g. 1 to 5) and it can as well be 0 indicating that the user 

has not yet rated that item. 

 

 

Figure 1: The Collaborative Filtering Process 



 8

User-based collaborative filtering systems have been very successful in past, but 

their widespread use has uncovered some potential challenges such as: 

 

 Sparsity: In practice, many commercial recommender systems are used to 

evaluate large item sets (e.g., Amazon.com recommends books and CDnow.com 

recommends music albums). In these systems, even active users may have 

purchased well under 1% of the items (1% of 2 million books is 20,000 books). 

Accordingly, a recommender system based on nearest neighbor algorithms may 

be unable to make any item recommendations for a particular user. As a result 

the accuracy of recommendations may be poor. 

 Scalability: Nearest neighbor algorithms require computation that grows linearly 

with both the number of users and the number of items. With millions of users 

and items, a typical web based recommender system running existing algorithms 

will suffer serious scalability problems as it must traverse through the entire data 

set. 

 
2.1.2. Model Based Collaborative Filtering 
 

Model based collaborative filtering algorithms provide item recommendation by 

first developing a model of user ratings. Algorithms in this category take a 

probabilistic approach and envision the collaborative filtering process as computing 

the expected value of a user prediction, given his/her ratings on other items. The 

model building process is performed by different machine learning algorithms such as 

Bayesian network, clustering, and rule-based approaches. The main idea here is to 

analyze the user-item representation matrix to identify relations between different 

items and then to use these relations to compute the prediction score for a given 

user-item pair. The intuition behind this approach is that a user would be interested in 
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purchasing items that are similar to the items the user liked earlier and would tend to 

avoid items that are similar to the items the user didn't like earlier. These techniques 

need not require identifying the neighborhood of similar users when a 

recommendation is requested; as a result they tend to produce much faster 

recommendations [11]. 

One critical step in the item-based collaborative filtering algorithm is to compute 

the similarity between items and then to select the most similar items. The basic idea 

in similarity computation between two items i and j is to first isolate the users who 

have rated both of these items and then to apply a similarity computation technique to 

determine the similarity si,j. Figure 2 illustrates this process. Here the matrix rows 

represent users and the columns represent items. 

 

 

Figure 2: Isolation of the co-rated items and similarity computation 

 

One fundamental difference between the similarity computation in user-based 

collaborative filtering and item-based collaborative filtering is that in case of 
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user-based collaborative filtering the similarity is computed along the rows of the 

matrix but in case of the item-based collaborative filtering, the similarity is computed 

along the columns (e.g. each pair in the co-rated set corresponds to a different user, 

see Figure 2). The similarity computation scheme is still correlation-based but the 

computation is performed on the item space rather than the user space. Typically, one 

would usually have a set of items that is static compared to the number of users that 

changes more often. The static nature of items has lead to the idea of precomputing 

the item similarities. In this scheme, one would retain only a small number of similar 

items. For each item j one compute the k most similar items, where k << n and record 

these item numbers and their similarities with j. K is termed as the model size. Based 

on this model building process, the prediction generation algorithm works as follows. 

For generating predictions for a user u on item i, our algorithm first retrieves the 

precompiled k most similar items corresponding to the target item i. Then it searches 

how many of those k items were purchased by the user u, based on this intersection, 

the prediction is computed using basic item-based collaborative filtering algorithm. 

 
2.1.3. Slope One Predictor 
 

Slope one predictor algorithm works on the intuitive principle of a “popularity 

differential” between items for users. In a pair wise fashion, one determines how 

much better one item is liked than another [9]. One way to measure this differential is 

simply to subtract the average rating of the two items. In turn, this difference can be 

used to predict another user’s rating of one of those items, given their rating of the 

other. Consider two users A and B, two items I and J and Figure 3. User A gave item I 

a rating of 1, whereas user B gave it a rating of 2, while user A gave item J a rating of 

1.5. We observe that item J is rated more than item I by 1.5−1 = 0.5 points, thus one 

could predict that user B will give item J a rating of 2+0.5 = 2.5. User B is called the 
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predictee user and item J the predictee item. Many such differentials exist in a training 

set for each unknown rating and one can take an average of these differentials.  

 

 

Figure 3: Basis of Slope One 

 
2.2. Clickstream Collaborative Filtering 
 

Clickstream based collaborative filtering (CCF), a kind of item-based 

collaborative filtering, has received much attention as a way of doing collaborative 

filtering recommendation in web navigation because user data is generally not 

available. Like other item-based collaborative filtering, CCF needs to adopt prediction 

models for efficient and effective recommendations of pages (or products) due to its 

vast amount of data stream to process: it trains the models offline and uses them in 

online recommendations [8]. Unlike other item-based CF recommendations (i.e., 

market basket data in EC), the sequence of pages is important for its recommendation 

quality due to the fact that the sequential structure is embedded through the hyperlinks 

in web pages. From browsing patterns user’s product preference can be captured and 

then relevant pages or products can be recommended. The common models for CCF 
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recommendation are Markov models, sequential association rules, association rules 

and clustering. Markov models have been well positioned as a CCF recommendation 

model because of its high precision coming from the consideration of consecutive 

orders of preceding pages. In the subsections that follow, we examine Markov model 

and the clickstream concepts more in detail. 

 
2.2.1. Markov Models 
 

 The problem of predicting a user’s behavior on a web site has gained importance 

due to the rapid growth of the World Wide Web and the need to personalize and 

influence a user’s browsing experience. Markov models and their variations have 

been found to be well suited for addressing this problem. Markov models have been 

used for studying and understanding stochastic processes and shown to be well suited 

for modeling and predicting a user’s browsing behavior on a web site. In general, the 

input for these problems is the sequence of web pages accessed by a user and the goal 

is to build Markov models that can be used to predict the web page that the user will 

most likely access next [4]. Lower-order Markov models are not very accurate in 

predicting the user’s browsing behavior, since these models do not look far into the 

past to correctly discriminate the different observed patterns. As a result, higher-order 

models are often used. Unfortunately, these higher-order models have a number of 

limitations associated with high state-space complexity, reduced coverage, and 

sometimes, even worse, overall prediction accuracy. One simple method to overcome 

some of these problems is to train varying order Markov models and use all of them 

during the prediction phase. Unfortunately, even though this approach was able to 

reduce the state-space complexity by up to an order of magnitude, it also reduced the 

prediction accuracy of the resulting models.  
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 The act of a user browsing a web site is commonly modeled by observing the set 

of pages that he or she visits. This set of pages is referred to as a web session (S), and 

is represented by the sequence of pages S = (P1, P2, …, Pi) that were accessed. In this 

sequence, P1 represents the first page that was accessed, P2 the second, and so on. 

Given such a web session, the next-page prediction problem is that of predicting the 

web page that will be accessed by the user next. That is, given S, predict the next page 

Pl+1 of the user’s web session. This formulation can be used to solve many prediction 

problems that often arise in the web and e-commerce domain, such as whether or not 

a user will further explore the information associated with a particular topic, buy a 

particular product, view certain advertisements, or leave the web site, providing 

valuable clues about the user’s interests and behavioral patterns. Such formulations 

are possible because most pages in a web site have a certain meaning associated with 

them and a user, by visiting a particular page, indicates his or her interest in that page. 

For example, e-commerce sites contain pages related to the products they sell (e.g., 

product description/specification pages, customer ratings and reviews, comparative 

pricing, etc.), pages related to order processing (e.g., shopping cart management, 

payment information, etc.), and pages related to various policies (e.g., 

return/exchange policy, privacy policy, etc.) [4].  

 
2.2.2. Click-Stream Tree 
 

A clickstream is the recording of what a computer user clicks on while web 

browsing or using a personal computer. As the user clicks anywhere in the tool, 

application or the webpage, the action is logged on a client or inside the web server. 

Clickstream analysis is generally used for analyzing employee productivity, software 

testing, market research and web activity analysis. Since the business world is quickly 

evolving into a state of e-commerce, analyzing the data of clients that visit a company 
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website is becoming a necessity in order to remain competitive [18]. This analysis can 

be used to generate an analysis of a user’s clickstream while using a website to reveal 

usage patterns, which in turn gives a heightened understanding of customer behavior. 

This use of the analysis creates a user profile that aids in understanding the types of 

people that visit a company’s website. Clickstream analysis can be used to predict 

whether a customer is likely to purchase from an e-commerce website. Clickstream 

analysis can also be used to improve customer satisfaction with the website and with 

the company itself. Both of these uses entail a huge business advantage. With the 

growing corporate knowledge of the importance of clickstream, the way that they are 

being monitored and used to build Business Intelligence is evolving.  

  

The study of modeling and predicting a user's access on a web site has become 

more important. There are three steps in this process [6]. Since the data source is web 

server log data, the first step is to clean the data and prepare for mining the usage 

patterns. The second step is to extract usage patterns, and the third step is to build a 

predictive model based on the extracted usage patterns. The prediction step is the 

real-time processing of the model, which considers the active user session and makes 

recommendations based on the discovered patterns. Overall approach can be 

summarized as follows. The user sessions are clustered based on the similarity of the 

user sessions. When a request is received from an active user, a recommendation set 

consisting of three different pages that the user has not yet visited, is produced using 

the best matching user session. For the first two requests of an active user session all 

clusters are explored to and the one that best matches the active user session. For the 

remaining requests, the best matching user session is found by exploring the top-N 

clusters that have the highest N similarity values computed using the first two 
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requests of the active user session. The rest of the recommendations for the same 

active user session are made by using the top-N clusters. 

 

2.2.3. Light Collaborative Filtering 
 

Unlike explicit movie ratings, user browsing behavior logs are in the form of either 

a true visit or no-visit. Because the data are binary (1 or 0) encoded, and not ranked 

preferences on a numerical scale, efficient and lightweight schemes are described for 

compactly storing data, computing similarities between new and stored records, and 

making recommendations tailored to an individual. In the simplest scoring scheme, 

recommendations might be made based on a linear weighted combination of other 

people's browsing behavior logs [14]. The basic idea is as follows: 

 

1. find the K nearest neighbors to the new (test) case 

2. collect all attributes of these neighbors that don't occur in the test case 

3. rank these attributes by frequency of occurrence among the K neighbors. 

 

In measuring distance between cases, a score that measures similarity is computed; 

the higher the score, the greater the similarity. The pseudo code is shown below. It 

follows the 3 steps listed earlier and computes as the aforementioned steps.  

 
Input: C {new case represented by M attributes C(1), ... C(m)}, 

       D {Historical data of n cases, D1 ... Dn} 

Output: A {Ranked List of attributes} 

 

Begin 

  for j = 1 .. m do 

    df = Number of case in D where attribute j appears; 

    pv(j) = 1 + 1/df; 
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  done 

  score(Di) = 0 for i=1,n 

  rank(j) = 0 for j=1,m 

  for j = 1 .. m do 

    if (C(j) == 0) continue; 

    //examine only attributes that are positive for the new case 

    for i = 1 .. n do 

      if (Di(j) == 0) continue; 

      //score a case only if it shares an attribute with new case 

      score(Di) += pv(j); 

    done 

  T = select K cases with highest scores in D; 

  for j = 1 to m do 

    if (C(j) == 1) continue; 

    //examine only attributes that are not positive for new case 

    for i = 1 to k do 

      //increase count of those attributes that are in top-K cases 

      if (Ti(j) == 1) 

        rank(j) += 1; 

    done 

  done 

  Output = small subset of attributes with highest rank(j); 

End 

 

2.3. Dynamic Data Mining 

 

A Dynamic Data Mining Process (DDMP) system based on Service-Oriented 

Architecture (SOA) is especially useful when different activity of data mining is 

applied. Each activity in data mining process is viewed as a web service operated on 

internet. Depending on recommendation outlined above, the web service can be 

dynamically linked using Business Process Execution Language (BPEL). If the 

recommendation functions can be selected, combined, and interchanged dynamically, 

it will be much more flexible for small and medium enterprises to adopt it [13]. For an 
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effective knowledge discovery in database process (KDD), several technologies have 

to work together. First, data preprocessing including data cleaning, integration, 

transformation, and reduction should be applied. The quality of data preprocessing 

will significantly affect the mining result. Second, statistical analysis and 

machine-learning techniques are applied to those quality data to extract patterns and 

to predict trends. A typical KDD process including data preprocessing phase, data 

mining phase, and analysis phase is illustrated as Figure 4. 

 

 

Figure 4: Knowledge Discover in Database Process 

 

Dynamic Data Mining Process (DDMP) system based on SOA [13] proposed 

that each activity in data mining process be viewed as a web service operated on 

internet. The Web Services provide functions of data preprocessing, algorithm 

calculations, data mining tasks, or visualization analysis. Those Web Services are 

dynamically linked using BPEL to construct a desired data mining process. The 

building blocks of DDMP, SOA, BPEL are examined next. 
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2.3.1. SOA 
 

Service oriented architecture (SOA) is an evolution of distributed computing 

based on the request/reply design paradigm for synchronous and asynchronous 

applications. An application's business logic or individual functions are modularized 

and presented as services for consumer/client applications. What's key to these 

services is their loosely coupled nature, e.g., the service interface is independent of 

the implementation. Application developers or system integrators can build 

applications by integrating one or more services without knowing the services' 

underlying implementations or physical locations [16]. For example, a service can be 

implemented either in .Net in the states or J2EE in Taiwan, and the application 

consuming the service can be on a different platform or language. 

 

Service oriented architectures have the following key characteristics: 

 SOA services have self-describing interfaces in platform independent XML 

documents. Web Services Description Language (WSDL) is the standard used to 

describe the services. 

 SOA services communicate with messages formally defined via XML Schema 

(also called XSD). Communication among consumers and providers or services 

typically happens in heterogeneous environments, with little or no knowledge 

about the provider. Messages between services can be viewed as key business 

documents processed in an enterprise. 

 SOA services are maintained in the enterprise by a registry that acts as a 

directory listing. Applications can look up the services in the registry and invoke 

the service. Universal Description, Definition, and Integration (UDDI) is the 

standard used for service registry. 
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 Each SOA service has a quality of service (QoS) associated with it. Some of the 

key QoS elements are security requirements, such as authentication and 

authorization, reliable messaging, and policies regarding who can invoke 

services. 

 

2.3.2. BPEL 
 

The Business Process Execution Language (BPEL) is a programming language 

for specifying business processes that involve Web Services. BPEL is especially good 

at supporting long running conversations with business partners. Even before the 

standard is formally released, it is becoming clear that BPEL will be the more 

widely-adopted standard for business processes involving Web Services. BPEL is 

geared towards programming in the large, which supports the logic of business 

processes. These business processes are self-contained applications that use Web 

Services as activities that implement business functions [17]. BPEL does not try to be 

a general-purpose programming language. Instead, it is assumed that BPEL will be 

combined with other languages which are used to implement business functions 

(programming in the small). 

 

Programming in the large generally refers to the high-level state transition 

interactions of a process—BPEL refers to this concept as an Abstract Process. A 

BPEL Abstract Process represents a set of publicly observable behaviors in a 

standardized fashion. An Abstract Process includes information such as when to wait 

for messages, when to send messages, when to compensate for failed transactions, etc. 

Programming in the small, in contrast, deals with short-lived programmatic behavior, 

often executed as a single transaction and involving access to local logic and 
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resources such as files, databases, etc. BPEL's development came out of the notion 

that programming in the large and programming in the small required different types 

of languages. 
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3. Methodology 
 

In this research, we propose a dynamic collaborative filtering system that makes 

use of UserCorrelation, ItemCorrelation, SlopeOne Predictor, and Clickstream 

collaborative filtering model to make use of both user navigation patterns along side 

historical purchased items for users with similar buying behavior. Clickstream 

collaborative filtering is taken into consideration in that often user may just appear to 

be browsing through the library of movie titles without target intent of purchase set in 

mind. He or she may tend to browse a site randomly on a routine basis similar to what 

most people would do everyday by checking eBay, Yahoo, or Amazon and the likes 

just for fun. Without a pre-determined mind set of purchasing any item, items 

recommended via traditional collaborative filtering could sometimes prove ambiguous 

to the user. We believe that in this scenario, a CCF approach would have been more 

accurate and up to the point. As indicated by Deshpande [4] the probability of visiting 

a page pi does not depend on all the pages in the web session, but only on a small set 

of k preceding pages, where k << total number of pages in the active session. Using 

the clickstream process assumption, being able to predict the potential interests (or 

disinterests) of a user while he or she is still undecided, can help in taking actions to 

affect their behavior.  

 

In cases where users have committed on buying a particular item (e.g. added an 

item to shopping cart), item to item CF will come into the play. This is similar to 

Amazon's book recommendation when one has committed on purchasing a book. At 

this stage, user has already indicated interest in buying, thus the turn out ratio for he 

or she to buy a closely related item (e.g. other items purchased by users when they 
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purchased this item) would have been higher. Because the algorithm recommends 

highly correlated similar items, recommendation quality is excellent [11]. Item to item 

CF has also proved to be highly scalable and up to the performance challenge. The 

key to item-to-item collaborative filtering’s scalability and performance is that it 

creates the expensive similar-items table offline. The algorithm’s online component 

looking up similar items for the user’s purchases and ratings scales independently of 

the catalog size or the total number of customers; it is dependent only on how many 

titles the user has purchased or rated. Thus, the algorithm is fast even for extremely 

large data sets [10]. 

 

To adopt the aforementioned techniques, Dynamic Collaborative Filtering 

system based on SOA [13] will be approached. With this approach, each 

recommendation technique will be viewed as a web service. The data 

recommendation service will provide Clickstream Collaborative Filtering along with 

User-Based Collaborative Filtering, Item-Based Collaborative Filtering, and 

SlopeOne Predictor. The goal of using Web Services in this is to achieve universal 

interoperability between applications by using web standards. Web Services use a 

loosely coupled integration model to allow flexible integration of heterogeneous 

systems in a variety of domains including business-to-consumer, business-to-business 

and enterprise application integration [21]. The basic specifications defined the Web 

Services operations: Simple Object Access Protocol (SOAP), Web Services 

Description Language (WSDL), and Universal Description, Discovery, and 

Integration (UDDI). SOAP defines an XML messaging protocol for basic service 

interoperability. WSDL introduces a common grammar for describing services. UDDI 

provides the infrastructure required to publish and discover services in a systematic 

way. In metaphor, UDDI acts as directory listing service like yellow pages, WSDL 
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acts as an entry in the listing describing access information such as expected inputs 

and outputs, and SOAP acts as telephone line connecting the end points. Together, 

these specifications allow data mining applications to find each other and interact 

following a loosely coupled, platform independent model [11]. The framework of the 

proposed Dynamic Collaborative Filtering system can be depicted as Figure 5. 

 

 

Figure 5: Dynamic Collaborative Filtering Architecture 

 

The data source of our dynamic system will be that of a video store currently 

running a POS system for its daily rental operations. The legacy system keeps its 

transaction records in a DOS-based application. Since the legacy system doesn’t 

require customers to explicitly give a rating on the movie each time he or she rents 

one, we will not be able to approach legacy data with the prescribed item-based CF. A. 

Schein [12] have termed this, the cold-start problem, where recommendations are 

required for items that no one (in our data set) has yet rated. Pure collaborative 

filtering cannot help in a cold-start setting, since no user preference information is 
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available to form any basis for recommendations. A work around is to approach this 

via an implicit rating deviation. Implicit rating prediction refers to prediction of data 

such as purchase history; a purchase is not necessarily an indication of satisfaction, 

but a purchase can be treated as an indication of some implicit need or desire for an 

item. For legacy data we assign users and movies that had been associated in the past 

an implicit value of 1, a task that is analogous to predicting a customer purchase. 

Implicit rating prediction is more appropriate for domains where explicit rating 

information is not available. To evaluate our dynamic model, we will be reviewing 

the key decisions in evaluating collaborative filtering recommender systems: the user 

tasks being evaluated, the types of analysis and datasets being used, the ways in which 

prediction quality is measured, the evaluation of prediction attributes other than 

quality, and the user-based evaluation of the system as a whole as outlined by 

Deshpande [4]. We now discuss key components of the proposed dynamic system 

approach in the following subsections.  

 

3.1. ER Model Design 

 

The proposed ER model for the persistent layer is shown in Figure 6. Since we do 

not have explicit ratings from the migrated legacy data, an “IMPLICITRATING” 

column is used to associate the past rental records where 1 indicates a rent. As our 

dynamic system is built and evolve, the system will be asking future users to 

explicitly give a rating on a scale of 1 to 5. When enough explicit ratings have been 

accumulated passed a preset threshold (e.g. 5 explicit ratings for the particular movie), 

the dynamic system can switch to the explicit rating scheme that makes use of 

traditional item-based collaborative filtering methods. The implicit rating scheme 
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serves a great aid in situations of a “cold start” and in places where explicit ratings 

have not yet met the threshold. 

 
CUSTOMER

CUSTOMERID: NUMBER(9) NOT NULL

USERNAME: VARCHAR2(20) NOT NULL
GENDER: VARCHAR2(1) NULL
DATEOFBIRTH: DATE NULL
EMAIL: VARCHAR2(40) NULL
CREATEDTIMESTAMP: DATE NULL
LASTMODIFIEDTIMESTAMP: DATE NULL

MOVIE
MOVIEID: NUMBER(9) NOT NULL

MOVIECODE: VARCHAR2(50) NOT NULL
MOVIENAME: VARCHAR2(256) NOT NULL
GENERECODE: NUMBER(10) NULL
RENTCOUNT: NUMBER(6) NULL
CREATEDTIMESTAMP: DATE NULL
LASTMODIFIEDTIMESTAMP: DATE NULL

CUSTOMER_MOVIE_RATING
CUSTOMER_MOVIE_RATINGID: NUMBER(12) NOT NULL
CUSTOMERID: NUMBER(9) NOT NULL
MOVIEID: NUMBER(9) NOT NULL

EXPLICITRATING: NUMBER(2) NULL
IMPLICITRATING: NUMBER(1) NULL
CREATEDTIMESTAMP: DATE NULL
LASTMODIFIEDTIMESTAMP: DATE NULL

GENERECODE
GENERECODE: NUMBER(10) NOT NULL

PARENTCODE: NUMBER(10) NULL
GENEREDESC: VARCHAR2(20) NULL

CUSTOMERADDRESS
CUSTOMERADDRESSID: VARCHAR2(1) NOT NULL
CUSTOMERID: NUMBER(9) NOT NULL

ZIPCODE: NUMBER(5) NULL
ADDRESS: VARCHAR2(100) NULL
HOMEPHONE: VARCHAR2(15) NULL
MOBILE: VARCHAR2(20) NULL
FAXNUMBER: VARCHAR2(15) NULL
COUNTRY: VARCHAR2(20) NULL
CREATEDTIMESTAMP: DATE NULL
LASTMODIFIEDTIMESTAMP: DATE NULL

RENTRECORD
RENTRECORDID: NUMBER(12) NOT NULL
CUSTOMERID: NUMBER(9) NOT NULL
MOVIEID: NUMBER(9) NOT NULL

RENTDATE: DATE NULL
RETURNDATE: DATE NULL
CREATEDTIMESTAMP: DATE NULL
LASTMODIFIEDTIMESTAMP: DATE NULL

 

Figure 6: ER Model 

 

3.2. Class Diagram 

 

The implementation involve the components as follow: (1) Recommender, (2) 

DataModel, (3) UserCorrelation, (4) ItemCorrelation, (5) Userneighbourhood. A 

Recommender is the core abstraction in our implementation. Given a DataModel, it 

can produce recommendations. Applications will either use the 

GenericUserBasedRecommender implementation or GenericItemBasedRecommender. 

A DataModel is an encapsulation over user preferences. Our implementation draws 

this data from a database. An alternative to read the data from flat files is also 

provided. Along with DataModel, we use User, Item and Preference abstractions to 

represent the users, items, and preferences for those items in the recommendation 
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engine. A UserCorrelation defines a notion of similarity between two Users. These are 

attached to a Neighborhood implementation for finding the closest neighbor’s 

similarity scores. In a user-based recommender, recommendations are produced by 

finding a "neighborhood" of similar users near a given user. A UserNeighborhood 

defines a means of determining that neighborhood — for example, nearest 10 users. 

ItemCorrelations are analogous, but find similarity between Items. As depicted in 

Figure 2 previously, ItemCorrelations compute the similarity scores along item 

columns in contrast to UserCorrelation where the computation takes place along user 

columns. The DataModel class provides function calls to retrieve such information as 

users, preference for the item, and items. A parent DataModel interface defines the 

common functions, whereas the implementing FileDataModel and 

AbstractJDBCDataModel provide functions to encapsulate data from flat text file and 

database. The Item, User, Preference encapsulate the retrieved items, users, and 

preference for the item respectively. The overall DataModel class diagram is shown 

below in Figure 7. 
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Item

getID()
isRecommendable()

(from model)

<<Interf ace>>

User

getID()
getPref erenceFor()
getPref erences()

(from model)

<<Interf ace>>

AbstractJDBCDataModel

AbstractJDBCDataModel()
checkNotNullAndLog()
lookupDataSource()
getDataSource()
getUsers()
getUser()
getItems()
getItem()
getPref erencesForItem()
getNumItems()
getNumUsers()
getNumThings()
addTransf orm()
getTransf orms()
setPref erence()
remov ePref erence()
ref resh()
addPref erence()
transf ormUser()
buildUser()
buildItem()
buildPref erence()
saf eClose()

(from jdbc)

My SQLJDBCDataModel

My SQLJDBCDataModel()
My SQLJDBCDataModel()
My SQLJDBCDataModel()
My SQLJDBCDataModel()

(from jdbc)

FileDataModel

FileDataModel()
reload()
processFile()
processLine()
checkLoaded()
getUsers()
getUser()
getItems()
getItem()
getPref erencesForItem()
getNumItems()
getNumUsers()
addTransf orm()
getTransf orms()
setPref erence()
remov ePref erence()
ref resh()
buildUser()
buildItem()
buildPref erence()
toString()

(from file)

DataModel

getUsers()
getUser()
getItems()
getItem()
getPref erencesForItem()
getNumItems()
getNumUsers()
addTransf orm()
getTransf orms()
setPref erence()
remov ePref erence()

(from model)

<<Interf ace>>

-delegate

Pref erence

getUser()
getItem()
getValue()
setValue()

(from model)

<<Interf ace>>

 

Figure 7: DataModel Class Diagram 

 

UserCorrelation and ItemCorrelation are similar as they compute similarity 

scores based on the ratings given by users. Both approaches use scoring algorithms to 

compute similarity. In our approach, we will use the two widely-adopted approaches, 

Cosine-based Similarity and Correlation-based Similarity (Pearson Correlation) to 

score the similarity between items and users. Similarities between items are calculated 

along the data columns, whereas similarities between users are calculated along data 
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rows as discussed in section 2.1.2. The overall Correlation class diagram is shown 

below in Figure 8. 

 

ItemCorrelation

itemCorrelation()

(from correlation)

<<Interface>>
UserCorrelation

userCorrelation()
setPreferenceInferrer()

(from correlation)

<<Interface>>

AbstractVectorCorrelation

AbstractVectorCorrelation()
getDataModel()
getPreferenceInferrer()
setPreferenceInferrer()
userCorrelation()
itemCorrelation()
computeResult()
refresh()
internalToString()

(from correlation)
GenericItemCorrelation

GenericItemCorrelation()
GenericItemCorrelation()
itemCorrelation()
refresh()

(from correlation)

PearsonCorrelation

PearsonCorrelation()
computeResult()
toString()

(from correlation)
CosineMeasureCorrelation

CosineMeasureCorrelation()
computeResult()
toString()

(from correlation)

ItemItemCorrelation

value : double

ItemItemCorrelation()
getItem1()
getItem2()
getValue()
toString()

(from GenericItemCorrelation)

0..*

1

0..*

1

 
Figure 8: Correlation Class Diagram 

 

Recommender implementations make use the aforementioned correlation 

implementations to aggregate the similarity scores calculated and select the top score 

items or closest “neighbors” for generating recommendation based on 

UserCorrelation or ItemCorrelation. GenericUserBasedRecommender does not 

reference UserCorrelation directly, instead it deters reference to 

NearestNUserNeighborhood that caches the calculated UserCorrelation as a measure 

of neighborhood similarity. The higher the UserCorrelation score, the closer the 
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neighbor. In contrast, GenericItemBasedRecommender makes direct reference to 

ItemCorrelation. Since ItemCorrelation captures the ItemItemCorrelation between two 

items in a static manner, the collection of ItemItemCorrelations are pre-computed 

offline to decouple the recommendation process and computation process. Due to this 

static behavior, we deter the ItemItemCorrelations computation in an offline batch. 

The overall Recommender class diagram is shown below in Figure 9. 

 

Recommender

recommend()
recommend()
estimatePreference()
setPreference()
removePreference()
getDataModel()

(from recommender)

<<Interface>>

UserBasedRecommender

mostSimilarUsers()
mostSimilarUsers()

(from recommender)

<<Interface>>
ItemBasedRecommender

mostSimilarItems()
mostSimilarItems()

(from recommender)

<<Interface>>

NearestNUserNeighborhood

NearestNUserNeighborhood()
NearestNUserNeighborhood()
getUserNeighborhood()
toString()

(from neighborhood)

AbstractUserNeighborhood

samplingRate : double

AbstractUserNeighborhood()
getUserCorrelation()
getDataModel()
sampleForUser()
refresh()

(from neighborhood)

UserCorrelation

userCorrelation()
setPreferenceInferrer()

(from correlation)

<<Interface>>

-userCorrelation

UserNeighborhood

getUserNeighborhood()

(from neighborhood)

<<Interface>>

GenericUserBasedRecommender

GenericUserBasedRecommender()
recommend()
estimatePreference()
mostSimilarUsers()
mostSimilarUsers()
doMostSimilarUsers()
doEstimatePreference()
getAllOtherItems()
refresh()
toString()

(from recommender)

-correlation

-neighborhood

ItemCorrelation

itemCorrelation()

(from correlation)

<<Interface>>

RecommendedItem

getItem()
getValue()

(from recommender)

<<Interface>> 0..*

1

0..*

1return

GenericItemBasedRecommender

GenericItemBasedRecommender()
recommend()
estimatePreference()
mostSimilarItems()
mostSimilarItems()
doMostSimilarItems()
doEstimatePreference()
getNumPreferences()
refresh()
toString()

(from recommender)

-correlation

0..*

1

0..*

1 return

 
Figure 9: Recommender Class Diagram 

 

The overall package interaction abstraction is illustrated in Figure 10. In short, 

recommender package makes use of neighborhood package to generate 
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recommendations based on the applied model based on UserCorrelation; whereas 

ItemCorrelation is referenced directly by the recommender package. 

 

correlation

neighborhood

recommender

model

 
Figure 10: Package Interaction Diagram 

 
3.3. Collaborative Filtering 

3.3.1. Item-Based Collaborative Filtering 
 

There are a number of different ways to compute the similarity between items. B. 

Sarwar [11] presented three such methods. They are cosine-based similarity, 

correlation-based similarity and adjusted-cosine similarity.  

 

Cosine-based Similarity 

In this case, two items are thought of as two vectors in the m dimensional 

user-space. The similarity between them is measured by computing the cosine of the 

angle between these two vectors. Formally, in the M x N ratings matrix in Figure 2, 

similarity between items i and j, denoted by sim(i, j) is given by 
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Correlation-based Similarity 

In this case, similarity between two items i and j is measured by computing the 

Pearson-r correlation corri,j. To make the correlation computation accurate we must 

first isolate the co-rated cases (i.e., cases where the users rated both i and j) as shown 

in Figure 2. Let the set of users who both rated i and j are denoted by U then the 

correlation similarity is given by  
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Weighted Sum 

The next step of our collaborative filtering system is to generate the output in 

terms of prediction. Once we isolate the set of most similar items based on the 

aforementioned similarity measures, the next step is to look into the target user’s 

ratings and use a technique to obtain predictions. Here we consider the Weight Sum 

approach. This technique computes the prediction on an item i for a user u by 

computing the sum of the ratings given by the user on the items similar to i. Each 

ratings is weighted by the corresponding similarity sim(i, j) between items i and j. The 

prediction Pu,i is simply in the form of 
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Basically this approach tries to capture how the active user rates the similar items. 

The weighted sum is scaled by the sum of the similarity terms to make sure the 

prediction is within the predefined range. 
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3.3.2. Slope One Predictor 
 

The Slope One scheme takes into account both information from other users who 

rated the same item (like the Adjusted Cosine Similarity) and from the other items 

rated by the same user (like the Per User Average). However, the schemes also rely 

on data points that fall neither in the user array nor in the item array (e.g. user A’s 

rating of item I in Figure 3), but are nevertheless important information for rating 

prediction. Much of the strength of the approach comes from data that is not factored 

in. Specifically, only those ratings by users who have rated some common item with 

the predictee user and only those ratings of items that the predictee user has also rated 

enter into the prediction of ratings under slope one schemes. We now elaborate the 

slope one derivation. 

 

The notation denoting the schemes are as follows. The ratings from a given user, 

called an evaluation, are represented as an incomplete array u, where ui is the rating of 

the user gives to item i. The subset of the set of items consisting of all those items 

which are rated in u is S(u). The set of all evaluations in the training set is x. The 

number of elements in a set S is card(S). The average of ratings in an evaluation u is 

denoted u . The set Si(x) is the set of all evaluations u∈x such that they contain item i 

(i∈S(u)). Given a training set x, and any two items j and i with ratings uj and ui 

respectively in some user evaluation u (annotated as u∈Sj,i(x)), we consider the 

average deviation of item i with respect to item j as: 
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Given that devj,i + ui is a prediction for uj given ui, a reasonable predictor might 

be the average of all such predictions: 
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We can simplify the prediction formula for the SLOPE ONE scheme to: 
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Note that the implementation of Slope One doesn’t depend on how the user rated 

individual items, but only on the user’s average rating and crucially on which items 

the user has rated. This will act as another item-based CF provider as depicted in 

Figure 5. 

 
3.3.3. Light Collaborative Filtering 
 

Here we define the target active user session as a collection of page ids associated 

with Web pages. The page ids are analogous to the new case’s attributes as discussed 

in Section 2.2.3. Each new case represented by m page ids. For each training case, 

count the number of positive page ids in common with the new case. The new case’s 

collection of page ids is represented by C(1) to C(m). Historical cases are resented by 

D1 to Dn. For each new case’s page ids (e.g 1 to m), with reference to the pseudo 

code defined in section 2.2.3 we compute the apriori predictive value as 1 plus the 

inverse frequency of the total attribute occurrences. This function measures the apriori 

predictive value of the particular page id and is computed once at the start. We then 

traverse through each of the historical cases to check if the historical case’s page ids 
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are positive with the corresponding new case’s page ids. For each historical case’s 

page ids conforming to test page id, the computed apriori predictive value is 

accumulated for that historical case. The top K cases are then selected to further rank 

the page ids that have not occurred in the new case. The rank is based on the total 

occurrences of the page id in the returned top K cases.  

 
3.4. Clickstream Tree  
 

The novelty of this approach proposed by Ş. Gündüz [5] lies in the method by 

which the similarity of user sessions are computed and how they are clustered. Each 

user session is a sequence of Web pages visited by a single user with a unique session 

number. Each clickstream tree has a root node, which is labeled as “null". Each node 

except the root node of the clickstream tree consists of three fields: data, count and 

next node. Data field consists of page number and the normalized time information of 

that page. Count field registers the number of sessions represented by the portion of 

the path arriving to that node. Next node links to the next node in the clickstream tree 

that has the same data field or null if there is any node with the same data field. Each 

clickstream tree has a data table, which consists of two fields: data field and first node 

that links to the first node in the clickstream tree that has the data field. The tree for 

each cluster is constructed by applying the algorithm given in below. 

 
Create a root node of a clickstream tree, and label it as null 

index  0 

while index ≤  number of sessions in the cluster do 

  active_session  tindex 

  m  0 

  current_node  root node of the clickstream tree 

  while m ≤  active_session.length do 

    active_date  { m
tindex

p } – { m
tindex

T } 
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    if there is a child of current_node with the data field then 

      child.count++ 

      current_node  child 

    else 

      create a child node of the current_node 

      child.data = active_data 

      child.count = 1 

      current_noode  child 

    end if 

    m++ 

  end while 

  index++ 

end while 

 

The children of each node in the clickstream tree are ordered in the count 

descending order such that a child node with bigger count is closer to its parent node.  

Upon constructing the clickstream tree, we tweaked the original idea of returning the 

most frequent visited path by feeding the frequent path to a binary data 

recommendation engine, Light Collaborative Filtering as discussed previously in 

section 3.3.3. We make use of Light CF’s scoring function to score each case (e.g. 

clickstream tree’s computed frequent paths) with their apriori predictive value 

respectively. The higher the apriori score, the higher the rank. The recommendation is 

then based on the top-most ranked cases.  

 
3.5. Dynamic Collaborative Filtering   
 

In this section we discuss the dynamic collaborative filtering approach under 

Service Oriented Architecture (SOA). The core to SOA lies in Business Process 

Execution Language (BPEL). BPEL orchestrates at the time of execution, which of 

the aforementioned collaborative filtering algorithm is to be processed. The business 

rules defined in BPEL and the actual implementations are loosely coupled in that 
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changes in BPEL do not affect the actual implementations. As business rules evolve, 

we can change the orchestration defined in BPEL to reflect such. Should there be new 

algorithms developed in the future, we can plug-in the new implementation into the 

“enterprise service bus.” We will use ActiveBPEL Designer [15] to design our 

dynamic model. The proposed dynamic collaborative filtering process is designed to 

distinguish logged in users to check if enough explicit ratings have been observed so 

that a choice among the collaborative filtering algorithms can be made. Concurrently, 

“ClickStreamTree” implementation for recommending next “most likely to access” 

Web pages associated with each movie based on matching the current access path to 

the most similar stored access path as defined in clickstream tree is also being 

processed. In cases where users have logged in, BPEL first checks if explicit ratings 

have met the predefine threshold. If rating counts exceeded a predefined threshold 

(e.g. 100,000) where the real time computation as those defined in SlopeOne 

Predictor could significantly affect the recommendation efficiency, Item-Based 

Collaborative Filtering recommendation service will be called upon to alleviate the 

recommendation task and balance the scalability and prediction accuracy. Note that 

ClickStreamTree service is independent of BPEL execution in that it computes the 

next most likely to be viewed Web pages in a parallel process. The BPEL orchestrated 

process with the aforementioned rule sets designed by ActiveBPEL Designer is given 

below in Figure 11. 
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Figure 11: Dynamic Collaborative Filtering Process 
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4. Experimental Evaluation 
 

Recommender systems research has used several types of measures for 

evaluating the quality of a recommender system. They can be mainly categorized into 

two classes: 

 

 Statistical accuracy metrics evaluate the accuracy of a system by comparing the 

numerical recommendation scores against the actual user ratings for the 

user-item pairs in the test dataset. Mean Absolute Error (MAE) between ratings 

and predictions is a widely used metric. MAE is a measure of the deviation of 

recommendations from their true user-specified values. For each ratings 

prediction and actual pair <pi, qi>, this metric treats the absolute error between 

them, e.g., ii qp −  equally. The MAE is computed by first summing these 

absolute errors of the N corresponding ratings-prediction pairs and then 

computing the average. Formally, 

 

N
qp

MAE
N

i ii∑=
−

= 1  

 

The lower the MAE, the more accurately the recommendation engine predicts 

user ratings. 

 Decision support accuracy metrics evaluate how effective a prediction engine is 

at helping a user select high quality items from the set of all items. These metrics 

assume the prediction process as a binary operation either items are predicted 

(good) or not (bad). With this observation, whether an item has a prediction 
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score of 1:5 or 2:5 on a five-point scale is irrelevant if the user only chooses to 

consider predictions of 4 or higher. The most commonly used decision support 

accuracy metrics are reversal rate, weighted errors and ROC sensitivity. 

 

We will use MAE as our choice of evaluation metric to report prediction 

experiments because it is most commonly used and easiest to interpret directly.  

 
4.1. Data Source 
 

We will be drawing customer rating data from CUSTOMER_MOVIE_RATING 

table as depicted in Figure 6. Since we do not have explicit ratings available from our 

legacy exported data, we will be obtaining our alternative “1 Million MovieLens 

Dataset” from GroupLens Research [19]. Note the 2 columns of EXPLICITRATING 

and IMPLICITRATING in the table. Since a rent record from legacy data indicates a 

purchase, in hindsight, we will be assigning a value of 1 in the IMPLICITRATING 

column and leave the EXPLICITRATING empty. For the MovieLens data, the actual 

ratings will be inserted into the EXPLICITRATING column, and since an explicit 

rating is most likely associated with a purchase, we’ll be defaulting the 

IMPLICITRATING column for such data a value of 1. A snapshot of the imported 

data in the database is depicted in the Table 1. 
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Table 1: Imported Data Snapshot 

 

 
4.2. Application Setup 
 

The application requires J2SE 5.0 or above to run. The bundled java web archive 

file (WAR) requires Servlet 2.3 or above containers such as Apache Tomcat. Copy 

the WAR file to Tomcat’s webapps directory, and the start Tomcat by executing the 

startup.bat command in terminal window. Recommendations are automatically 

retrieved with reference to three controlling attributes: “userID”, “movieID” and 

“howMany”. UserID and movieID attributes are automatically checked by the system, 

whereas howMany attribute is preset in a global web context fashion. The “userID” 

denotes which user id one is seeking recommendation for, and “howMany” denotes 

how many recommendations the application should return from the computation. The 

movieID associated with the web page is then passed along with the userID and 

howMany attributes to the BPEL engine. BPEL engine takes charge in checking the 

rating counts for the particular movie. Depending on the rating counts for the 

particular movie, the dependent CF scheme as illustrated in Figure 11 will be chosen 

to generate recommendations. Upon receiving the web server renders the 

recommendation at the lower part of the target page. 
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4.3. Experiment Result 
 

The data were randomly divided as 90% for training, and 10% for testing purposes. 

With the trained dataset, the correlation scores thereby generated were used to predict 

the ratings in the test dataset. The actual rating is compared with the estimated rating 

generated by the recommendation engine. MAE is then calculated to be the average of 

the actual and estimated differentials. Experiments were run with the different 

collaborative filtering scheme aforementioned in section 3.3. We've divided the 

evaluation into 3 parts: (1) initial run time consumption, (2) subsequent runs time 

consumption, and (3) MAE (Mean Absolute Error). The Time consumptions were 

divided into initial run and subsequent runs to illustrate Item-Based Collaborative 

Filtering is magnitudes higher in Time consumption during startup (see Chart 1), but 

is more efficient in subsequent runs (see Chart 2). The reason for this is that during 

startup phase, Item-Based CF scans through the entire database and compute each 

item pair's correlation score. Nevertheless, since relationships between item pairs are 

rather static, this calculation can be pre-computed in a separate offline batch Process. 

The computed similarity scores can then be stored in cache for later online 

Item-Based CF's quick reference. The initial run of compared collaborative filtering 

scheme in milliseconds is shown next in Chart 1, the associated data sheet is shown in 

Table 2. 
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Chart 1: Initial Run Time Consumed 

 
Table 2: Initial Run Time Consumed Data Sheet 

 
Collaboration Scheme Time (milli-seconds)

ItemCorrelation(Pearson) Initial Run 380328
UserCorrelation(Cosine) Initial Run 27453
SlopeOne Initial Run 14610

 

 

 

The subsequent runs of compared collaborative filtering scheme in milliseconds 

is shown next in Chart 2, the associated data sheet is shown in Table 3. 
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Chart 2: Subsequent Runs Time Consumed 

 
Table 3: Subsequent Runs Time Consumed Data Sheet 

 

Collaboration Scheme Run 1 Run 2 Run 3 Run 4 Run 5
ItemCorrelation(Pearson) 12250 9031 10750 8157 8609
UserCorrelation(Cosine) 14468 14579 18906 13484 14656
SlopeOne 8953 10297 10500 8609 10156
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Chart 3: Various Runs MAE (Mean Absolute Error) 

 

Table 4: Various Runs MAE (Mean Absolute Error) Data Sheet 

 

Collaboration Scheme Run 1 Run 2 Run 3 Run 4 Run 5
ItemCorrelation(Pearson 0.8300 0.8023 0.8100 0.8081 0.8134
UserCorrelation(Cosine) 0.9393 0.9393 1.0132 0.9821 0.9789
SlopeOne 0.7332 0.7284 0.7248 0.7402 0.7166

 

For the clickstream tree evaluation, since we do not have access to user 

navigation logs with our current application, we make use of the msweb data courtesy 

of Microsoft.com covering the web pages each user has navigated in a one-week time 

frame in February 1998. We evaluated the clickstream tree by first generating the 

clickstream via the frequent visited navigation paths. Upon completing the 

clickstream tree, the tree elements (e.g. frequent navigation path) will be scored via 
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the light collaborative filtering case scoring scheme where the apriori score is 

calculated for each case. The top cases are then tested to check against a purposely 

hidden path id (e.g. web page id) to verify if it’s among one of the top cases. If any of 

the case matches, it is considered an accurate path recommendation. The observed 

accuracy scores are listed in the following Table 5. 

 

Table 5: Clickstream Tree Accuracy 

 

Recommendation Length 3 5 8

Accuracy 0.3333 0.4833 0.5883  
 

 
4.4. Experiment Analysis 

 

In Table 2, the MAE for among all collaboration schemes are comparable. The 

runs were divided in two runs: initial run and next run. As expected ItemCorrelation 

takes the longest time in the initial run as it has to scan through the entire database to 

calculate the ItemItemCorrelation scores for all items, though subsequent computing 

time toped all other schemes. SlopeOne scheme ranked first in lowering the MAE, 

and thus is observed to be the more accurate scheme. UserCorrelation ranked last in 

MAE and time consumed. It’s interesting to see that accuracy actually decreases with 

greater count of data processed. This is likely to be the result of over-fitting. As a 

result of this, our Dynamic Collaborative Filtering model efficiently makes use of 

BPEL engine to dynamically choose a scheme that is more accurate but requires more 

processing time for smaller data counts and switch to a more scalable scheme that cuts 

the processing time for larger data counts to balance the prediction accuracy and 

processing time. 
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5. Conclusions and Future Work 
 

With the proposed dynamic model, we predicted the potential next page (movie 

title) of interest with higher confidence via the help of clickstream tree. We observed 

that ItemCorrelation is the faster recommendation scheme, and SlopeOne predictor is 

the more accurate scheme. Our dynamic recommendation system based on SOA, 

orchestrated by BPEL dynamically switches among the schemes to generate more 

accurate recommendation within a timely fashion in a scalable manner. We expect 

that for users with committed buying will rent even more movies through the 

recommendation computed by the dynamically binded collaborative filtering. The 

ultimate goal of this research is to turn traditional video rental stores into an 

e-commerce capable business through Knowledge Discovery in Database (KDD) 

techniques such as product recommendation via collaborative filtering approach. 

Having the framework built in a service oriented architecture (SOA), we leave the 

room for improvement with a very scalable and yet adaptable infrastructure. To sum it 

up, what we achieved in this research is to turn a traditional business into a e-Business 

by KDD techniques to mine the useful knowledge buried within legacy data in hope 

that data can some day be formalized into information, information be turned into 

knowledge, and eventually be transformed into intelligence to not only increase 

customer loyalty but also maximize the net profit. The data source from Movie Lens, 

albeit useful in proving our concept will be much more practical when we tailor our 

design to capture that of a real video store. We've only made use of SOA to 

orchestrate the collaborative filtering Web Services with our local implementation, 

the service can greatly be enhanced when external collaborative filtering or data 

mining schemes can be integrated and orchestrated. 



 47

 

References 
 
1. S.R. Ahmed, “Applications of data mining in retail business,” Information 

Technology: Coding and Computing, 2004, Proceedings, ITCC 2004, IEEE, pp. 
455-459 Vol.2. 

2. J. S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive 
Algorithms for Collaborative Filtering,” Proc. 14th Conf. Uncertainty in 
Artificial Intelligence, Morgan Kaufmann, 1998, pp. 43-52. 

3. A.Y. Chen and D. McLeod, “Collaborative Filtering for Information 
Recommendation Systems,” Department of Computer Science and Integrated 
Media System Center. 

4. M. Deshpande, G. Karypis, “Selective Markov models for predicting Web page 
accesses,” ACM Transactions on Internet Technology (TOIT) 2004, pp. 
163-184. 

5. Ş Gündüz, MT Özsu, “A Web Page Prediction Model Based on Click-Stream 
Tree Representation of User Behavior,” Proceedings of the ninth ACM SIGKDD 
international conference on Knowledge discovery and data mining, 2003, pp. 
535-540. 

6. J.L. Herlocker, J.A. Konstan, J. Riedl, “Explaining collaborative filtering 
recommendations,” Proceedings of the 2000 ACM conference on Computer 
supported cooperative work, 2000, pp.241-250. 

7. Z. Huang, D. Zeng, H. Chen, “A Link Analysis Approach to Recommendation 
under Sparse Data,” Proceedings of the Tenth Americas Conference on 
Information Systems, New York, New York, August 2004. 

8. Dong-Ho Kim, Il Im, Atluri, V., “A clickstream-based collaborative filtering 
recommendation model for e-commerce,” Seventh IEEE International 
Conference, E-Commerce Technology, 2005. CEC 2005, pp. 84-91. 

9. D. Lemire, A. Maclachlan, “Slope one predictors for online rating-based 
collaborative filtering,” Proceedings of SIAM Data Mining (SDM’05), 2005. 

10. Greg Linden, Brent Smith, and Jeremy York, “Amazon.com recommendations: 
item-to-item collaborative filtering,” Internet Computing, IEEE, 2003, pp. 76- 
80. 

11. B. Sarwar, G. Karypis, J. Konstan, J. Reidl, “Item-based collaborative filtering 
recommendation algorithms,” Proceedings of the 10th international conference 
on World Wide Web, ACM, pp. 285-295. 

12. A. Schein, A. Popescul, L. Ungar, and D. Pennock, “Methods and Metrics for 
Cold-Start Recommendations,” Proceedings of the 25th International ACM 



 48

Conference on Research and Development in Information Retrieval, 2002, 
pp.253-260. 

13. Chieh-Yuan Tsai, Min-Hong Tsai, “A dynamic Web service based data mining 
process system,” The Fifth International Conference on Computer and 
Information Technology (CIT’05), IEEE, 2005, pp. 1033-1039. 

14. Sholom M. Weiss and Nitin Indurkhya, “Lightweight Collaborative Filtering 
Method for Binary Encoded Data,” Proceedings of PKDD Freiburg, Germany, 
September 2001. 

15. ActiveBPEL Designer, http://www.active-endpoints.com/active-bpel-designer.htm 
16. An introduction to SOA,  

http://www.javaworld.com/javaworld/jw-06-2005/jw-0613-soa.html 

17. BPELJ: BPEL for Java technology,  
http://www-128.ibm.com/developerworks/library/specification/ws-bpelj/ 

18. Clickstream, http://www.active-endpoints.com/active-bpel-designer.htm 
19. MovieLens Data Sets, http://www.grouplens.org/taxonomy/term/14 
20. Recommendation System, http://en.wikipedia.org/wiki/Recommender_system 
21. W3C, Web Service Architecture, http://www.w3.org/TR/ws-arch/  


