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Abstract

This paper proposes a self-structuring fuzzy neural network (SFNN) using asymmetric Gaussian membership functions in the
structure and parameter learning phases. An adaptive self-structuring asymmetric fuzzy neural-network control (ASAFNC) system
which consists of an SFNN controller and a robust controller is proposed. The SFNN controller uses an SFNN with structure
and parameter learning phases to online mimic an ideal controller, simultaneously. The structure learning phase consists of the
growing-and-pruning algorithms of fuzzy rules to achieve an optimal network structure, and the parameter learning phase adjusts
the interconnection weights of neural network to achieve favorable approximation performance. The robust controller is designed
to compensate for the modeling error between the SFNN controller and the ideal controller. An online training methodology is
developed in the Lyapunov sense, and thus the stability of the closed-loop control system can be guaranteed. Finally, the proposed
ASAFNC system is applied to a second-order chaotic dynamics system. The simulation results show that the proposed ASAFNC
can achieve favorable tracking performance.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, the fuzzy neural network (FNN), which incorporates the advantages of fuzzy inference and neuro-learning,
has been an interesting topic. The FNN possesses the merits of the low-level learning and computational power of
neural network, and the high-level human knowledge representation and thinking of fuzzy theory [14,17]. Due to their
learning ability, FNNs are increasingly receiving attention in solving the control problems [1,8,12,22]. Although the
neuro-learning structure can tune membership functions and fuzzy rules automatically, the structure of the FNN should
be determined in advance by trial-and-error. It is difficult to consider the balance between the rule number and the
desired performance. As a result, if the number of fuzzy rules is chosen too large, the computation loading is heavy so
that it is not suitable for practical applications. If the number of fuzzy rules is chosen too small, the control performance
may be not good enough to achieve the desired performance.

To solve the problem of determining the structure in FNN approaches, much interest has been focused on the
self-structuring fuzzy neural network (SFNN) approach [6,7,9,10,13]. The self-structuring approach demonstrates the
properties of automatic generating rules for FNN without needing preliminary knowledge. In general, the mathematical
description of the existing rules can be expressed as a set of clusters. As usually seen in other self-structuring approaches,
the new membership function is generated when a new input signal is too far from the current clusters, and an existing rule
is deleted when the fuzzy rule is insignificant. SFNNs also have been adopted widely for the control of complex dynamic
systems due to their good generalization capability, structural adaptation, and simple computation [3,4,16,15,25,26].
Some of them use the gradient descent method to derive the parameter learning algorithms; however, they cannot
guarantee the system stability [16,15]. Some of them derive the parameter learning algorithms based on the Lyapunov
function to guarantee system stability; however, the structure learning algorithm is too complex [3,25,26]. Some of
them proposed a simple growing-and-pruning algorithm to self-structure the FNN online with symmetric membership
functions; however, this will result in slow learning speed [4].

This paper proposes an SFNN in which the learning phase considers both the structure and parameter learning
phases. The structure adaptation is described as follows. A new rule is generated when a new input signal is too far
from the current clusters. To avoid the unrestricted growth of membership functions and fuzzy rules, this paper uses
an exponential function to calculate the significant indexes of each existing fuzzy rule. The exponential function can
gradually rise or decrease the significant index values for each rule. If the fuzzy rule of SFNN is insignificant, it will be
removed to reduce the computation load; and if the fuzzy rule of SFNN is significant, it will be retained. Thus, the SFNN
can self-structure the fuzzy rules online to achieve an optimal network structure. Moreover, by accommodating the left-
sided and right-sided spreads into a standard Gaussian membership functions, the asymmetric Gaussian membership
functions can upgrade the learning capability and flexibility of a neural network [20].

Therefore, an adaptive self-structuring asymmetric fuzzy neural-network control (ASAFNC) system, which consists
of an SFNN controller and a robust controller, is proposed. The SFNN controller utilizes an SFNN to mimic an ideal
controller, and the robust controller is designed to compensate for the modeling error between the SFNN controller
and the ideal controller. The learning phase of SFNN includes the structure learning phase and the parameter learning
phase. The structure learning phase consists of the growing-and-pruning algorithms of fuzzy rules to achieve an
optimal network structure, and the parameter learning phase adjusts the interconnection weights of neural network to
achieve favorable approximation performance. All the parameters of ASAFNC are tuned online based on the Lyapunov
stability to achieve favorable performance. Finally, the effectiveness of the proposed ASAFNC scheme is demonstrated
by simulations. The simulation results show that not only favorable tracking performance can be achieved but also a
concise network structure can be obtained by the proposed structure learning method.

2. Problem statement

Consider the nth-order nonlinear dynamic system of the form

x(n) = f (x) + u, (1)

where x = [x ẋ · · · x(n−1)]T, which is assumed to be available for measurement, is the state vector of the system,
f (x) is the system dynamics equation, and u is the control effort. The control objective is to find a control law so that
the state trajectory x can track a command trajectory xc, and thus a tracking error is defined as

e = xc − x. (2)
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If the system dynamics f (x) in (1) is well known, there exists an ideal controller as [19]

u∗ = −f (x) + x(n)
c + kne

(n−1) + · · · + k2ė + k1e, (3)

where ki , i = 1, 2, . . . , n are non-zero positive constants. Substituting (3) into (1) yields

e(n) + kne
(n−1) + · · · + k2ė + k1e = 0. (4)

If ki are chosen to correspond to the coefficients of a Hurwitz polynomial whose roots lie strictly in the open left half of
the complex plane, then limt→∞ e = 0 can be implied for any starting initial conditions. However, because the system
dynamics f (x) may be unknown or perturbed in practice, the ideal control law u∗ in (3) cannot be implemented easily.
To solve the problem of the model-based control approach for real-time implementation, adaptive fuzzy neural-network
control (AFNC) techniques have been developed to control these kinds of unknown nonlinear dynamic systems [1,
8, 12, 22]. These techniques use an FNN to estimate the plant or controller parameters online. If the FNN is used to
estimate the model of the plant, it is called an indirect AFNC, and if the FNN is used to estimate the controller of the
plant, it is called a direct AFNC [23].

3. ASAFNC design

Based on the direct AFNC concept, this paper proposes an ASAFNC system as shown in Fig. 1.The ASAFNC system
is composed of an SFNN controller and a robust controller as

uac = usfnn + urb, (5)
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Fig. 1. The block diagram of ASAFNC system.
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Fig. 2. The structure of SFNN.

where a sliding surface is defined as

s = e(n−1) + kne
(n−2) + · · · + k2e + k1

∫ t

0
e d�. (6)

The SFNN controller usfnn utilizes the SFNN with asymmetric Gaussian membership functions to mimic the ideal
controller in (3), and the robust controller urb is designed to compensate for the modeling error between the SFNN
controller usfnn and the ideal controller u∗.

3.1. Description of SFNN

Fig. 2 shows the configuration of the proposed SFNN which is composed of the input, the membership, the rule,
and the output layers. Layer 1 accepts the input variables. Nodes at layer 2 are term nodes which act as membership
functions to represent the terms of the respective linguistic variables. The asymmetric Gaussian membership function
constituted by a center, a left-side variance, and a right-side variance is considered. Nodes of layer 3 are regarded
as fuzzy rules. The links before layer 3 represent the preconditions of rules and the links after layer 3 represent the
consequences. Layer 4 is the output layer, where the node in this layer is the output of the neural network. The output
of the SFNN with N existing fuzzy rules is given as

yo =
N∑

k=1

wk�k(x) (7)
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in which wk is the output action strength associated with the kth rule and �k is the response of the firing weight for an
input vector x = [x1 x2 · · · xL]T and composed of membership function defined as [20]

�ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

(
− (xi − mij )

2

(�l
ij )

2

)
if − ∞ < xi �mij ,

exp

(
− (xi − mij )

2

(�r
ij )

2

)
if mij �xi < ∞,

j = 1, 2, . . . , M, (8)

where M is the total number of membership functions with respect to the respective input node; mij , �l
ij , and �r

ij

are the mean, left-side variance, and right-side variance of the asymmetric Gaussian function in the j th term of the
ith input linguistic variable xi , respectively. However, �l

ij and �r
ij may become zero in the training procedure, the

membership function �ij will not be defined. To avoid this problem, this paper considers a membership function form
as [23]

�ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

(
− (xi − mij )

2

(�l
ij )

2 + �

)
if − ∞ < xi �mij ,

exp

(
− (xi − mij )

2

(�r
ij )

2 + �

)
if mij �xi < ∞,

j = 1, 2, . . . , M, (9)

where � is a small positive constant. Then, the associated firing strength can be defined as

�k =
M∏

j=1

�jk. (10)

To note easily, define vectors m, �l, and �r collecting all parameters of SFNN as

m = [m11 · · · mL1 m12 · · · mL2 · · · · · · m1M · · · mLM ]T, (11)

�l = [�l
11 · · · �l

L1 �l
12 · · · �l

L2 · · · · · · �l
1M · · · �l

LM ]T, (12)

�r = [�r
11 · · · �r

L1 �r
12 · · · �r

L2 · · · · · · �r
1M · · · �r

LM ]T. (13)

Thus, the output of the SFNN can be represented in a vector form as

yo = wT�(x, m, �l, �r), (14)

where w = [w1 w2 · · · wN ]T and � = [�1 �2 · · · �N ]T. For the FNN approaches, the structure of the FNN
should be determined in advance by trial-and-error. However, it is difficult to consider the balance between the
rule number and the desired performance. Therefore, the structure adaptation algorithm which contains the grow-
ing and pruning of membership functions and fuzzy rules is proposed in this paper. The descriptions are given as
follows.

In the structure growing process, the mathematical description of the existing rules can be expressed as a set of
clusters. For constructing the initial fuzzy rules of the SFNN, the fuzzy clustering method is used to partition a set of
data into a number of overlapping clusters based on the distance in a metric space between the data points and the cluster
prototypes. Each cluster in the product space of the input–output data represents a rule. The firing strength of a rule for
each incoming data xi can be represented as the degree that the incoming data belong to the cluster [13]. If the value of
firing strength is too small, it indicates that the input value is on the edge of range of the existing membership functions.
Under this situation, the output will cause unsatisfactory performance. Therefore, a new membership function and a
new fuzzy rule should be generated to improve the performance.

The firing strength from (10) is used as the degree measure

�k = �k, k = 1, 2, . . . , N(t), (15)
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where N(t) is the number of the existing fuzzy rules at the time t. Define the maximum degree �max as

�max = max
1�k �N(t)

�k. (16)

If �max �Gth is satisfied, where Gth ∈ (0, 1) is a pre-given threshold, the incoming data are far from the edge of range
of the existing membership functions. Hence, a new membership function is generated. The mean and the standard
deviation of the new membership function and the weight are selected as follows:

mnew
i = xi, (17)

�l,new
i = �i , (18)

�r,new
i = �i , (19)

wnew = 0, (20)

where xi is the new incoming data and �i is a pre-specified constant.
To avoid the unrestricted growth of network structure and an overload computation, the pruning algorithm is developed

to eliminate irrelevant fuzzy rules. In Ref. [4], a significance index is determined for the importance of the fuzzy rules.
The elimination algorithm is derived from the observation that if the significance index gets fading when the rule firing
weight is smaller than threshold value and if the significance index gets fixation when the rule firing weight is larger
than threshold value [4]. In this paper, when the rth firing strength �r is smaller than the threshold value Pth, it indicates
that the relationship becomes weak between the input and the rth rule. Then, the significant index of rth fuzzy rules will
be decreased. When the rth firing strength �r is larger than the threshold value Pth, it indicates that the incoming inputs
fall into the range of the rth fuzzy rule. Thus, the significant index of rth fuzzy rules should be raised. The significance
index is determined for the rth rules can be given as

Ir (t + 1) =
{

Ir (t) · exp(−�1) if �r < Pth,

Ir (t) · [2 − exp(−�2(1 − Ir (t)))] if �r �Pth,
r = 1, 2, . . . , N(t), (21)

where Ir is the significant index of the rth rule and its initial value is 1, Pth is the pruning threshold value, and �1 and
�2 are the designed constant. Exponential functions in (21) are used to rise or decrease the values of significant index
in [0, 1]. If Ir �Ith is satisfied, where Ith is another pre-given threshold, therth fuzzy rule will be deleted. For real-time
implementation, if the computation load is the important issue, a large Pth should be chosen, so that more fuzzy rules
can be pruned. This operation will prevent the fuzzy rule, which may be less used but still significant, from being
deleted in the training process. Hence, the computation load would be reduced.

In summary, the flow chart of the structure learning algorithm is shown in Fig. 3. The major contributions of the
SFNN are: (1) SFNN can be operated directly without spending much time pre-determining membership functions and
fuzzy rules and (2) the computation load can be reduced simultaneously.

3.2. Approximation of SFNN

An optimal SFNN controller can be designed to approximate the ideal controller (3) even under the structural change
of neural network, such that [18,20]

u∗ = u∗
sfnn + 	 = w∗T�(x, m∗, �∗

l , �
∗
r) + 	 = w∗T�∗ + 	, (22)

where �∗ = �(x, m∗, �∗
l , �

∗
r), 	 denotes the approximation error, and w∗, m∗, �∗

l , and �∗
r are the optimal vectors. In

fact, the optimal vectors that best approximate a given nonlinear function are difficult to determine. Thus, an estimated
SFNN controller will be introduced to mimic the ideal controller as

usfnn = ŵT�(x, m̂, �̂l, �̂r) = ŵT�̂, (23)

where �̂ = �(x, m̂, �̂l, �̂r) and ŵ, m̂, �̂l, and �̂r are the estimated vectors of w, m, �l, and �r, respectively. Moreover,
the optimal vectors can be further defined as [20]

(w∗, m∗, �∗
l , �

∗
r) = arg min

ŵ∈�w,m̂∈�m,�̂l∈��l ,�̂r∈��r

[
sup

x∈�x×R

∣∣u∗
sfnn(x) − usfnn(x, m̂, �̂l, �̂r)

∣∣] , (24)
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where

�w = {ŵ : ‖ŵ‖�Dw}, (25)

�m = {m̂ : ‖m̂‖�Dm}, (26)
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��l = {�̂l : ‖�̂l‖�D�l}, (27)

��r = {�̂r : ‖�̂r‖�D�r }, (28)

where Dw, Dm, D�l , and D�r are positive constants specified by designers. There exists 	∗ which is a finite positive
constant such that the inequality ‖	‖�	∗ can be held. Define a modeling error, ũ, as

ũ = u∗ − usfnn = w̃T�̃ + ŵT�̃ + w̃T�̂ + 	, (29)

where w̃ = w∗ − ŵ and �̃ = �∗ − �̂. In the following, the linearization technique is employed to transform the
nonlinear fuzzy function into a partially linear form so that the expansion �̃ can be expressed as [5]

�̃ =

⎡
⎢⎢⎢⎣

�̃1

�̃2
...

�̃N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��1

�m
��2

�m
...

��N

�m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
m=m̂

(m∗ − m̂) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��1

��l
��2

��l
...

��N

��l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�l=�̂l

(�∗
l − �̂l) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��1

��r
��2

��r
...

��N

��r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�r=�̂r

(�∗
r − �̂r) + h

= �T
mm̃ + �T

�l
�̃l + �T

�r
�̃r + h, (30)

where h is a vector of higher-order terms, m̃ = m∗ − m̂, �̃l = �∗
l − �̂l, and �̃r = �∗

r − �̂r. Substituting (30) into (29),
(29) can be rewritten as

ũ = w̃T�̃ + ŵT(�T
mm̃ + �T

�l
�̃l + �T

�r
�̃r + h) + w̃T�̂ + 	

= w̃T�̂ + m̃T�mŵ + �̃T
l ��l ŵ + �̃T

r ��r ŵ + 
, (31)

where m̃T�mŵ = ŵT�T
mm̃, �̃T

l ��l ŵ = ŵT�T
�l

�̃l, �̃T
r ��r ŵ = ŵT�T

�r
�̃r, and the uncertain term 
 = ŵTh + w̃T�̃ + 	.

The higher-order term h satisfies

‖h‖ = ‖�̃ − �T
mm̃ − �T

�l
�̃l − �T

�r
�̃r‖

� ‖�̃‖ + ‖�T
m‖‖m̃‖ + ‖�T

�l
‖‖�̃l‖ + ‖�T

�r
‖‖�̃r‖

� c0 + c1‖m̃‖ + c2‖�̃l‖ + c3‖�̃r‖, (32)

where c0, c1, c2, and c3 are bounded positive constants satisfying ‖�̃‖�c0, ‖�T
m‖�c1, ‖�T

�l
‖�c2, ‖�T

�r
‖�c3. The

existence of c0, c1, c2, and c3 is assured due to the fact that Gaussian function and its derivative are always bounded
by constants. Moreover, w̃, m̃, �̃l, and �̃r satisfy

‖w̃‖ = ‖w∗ − ŵ‖�‖w∗‖ + ‖ŵ‖�Dw + ‖ŵ‖, (33)

‖m̃‖ = ‖m∗ − m̂‖�‖m∗‖ + ‖m̂‖�Dm + ‖m̂‖, (34)

‖�̃l‖ = ‖�∗
l − �̂l‖�‖�∗

l ‖ + ‖�̂l‖�D�l + ‖�̂l‖, (35)

‖�̃r‖ = ‖�∗
r − �̂r‖�‖�∗

r‖ + ‖�̂r‖�D�r + ‖�̂r‖. (36)

Next, the uncertain term 
 is satisfied

|
| = ‖w̃T(�T
mm̃ + �T

�l
�̃l + �T

�r
�̃r + h) + ŵTh + 	‖

= ‖w̃T�T
mm̃ + w̃T�T

�l
�̃l + w̃T�T

�r
�̃r + w∗T h + 	‖

� c1(Dw + ‖ŵ‖)(Dm + ‖m̂‖) + c2(Dw + ‖ŵ‖)(D�l + ‖�̂l‖) + c3(Dw + ‖ŵ‖)(D�r + ‖�̂r‖)
+Dw[c0 + c1(Dm + ‖m̂‖) + c2(D�l + ‖�̂l‖) + c3(D�r + ‖�̂r‖)] + 	∗

= [�1, �2, �3, �4, �5, �6, �7, �8][1, ‖ŵ‖, ‖m̂‖, ‖�̂l‖, ‖�̂r‖, ‖m̂‖‖ŵ‖, ‖�̂l‖‖ŵ‖, ‖�̂r‖‖ŵ‖]T,

= �T�, (37)

where � = [�1, �2, �3, �4, �5, �6, �7, �8]T, �1 = (c0 + 2c1Dm + 2c2D�l + 2c3D�r )Dw + 	∗, �2 = c1Dm +
c2D�l + c3D�r , �3 = 2c1Dw, �4 = 2c2Dw, �5 = 2c3Dw, �6 = c1, �7 = c2, �8 = c3 and
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� = [1, ‖ŵ‖, ‖m̂‖, ‖�̂l‖, ‖�̂r‖, ‖m̂‖‖ŵ‖, ‖�̂l‖‖ŵ‖, ‖�̂r‖‖ŵ‖]T. Since � is a bounded vector, if � can be guaran-
teed to be bounded, the uncertain term 
 is thus bounded. The analysis of boundness of � will be given in the next
subsection.

3.3. ASAFNC design

Substituting (5) into (1) and using (3) and (6), yields

ṡ = u∗ − usfnn − urb. (38)

By using (31), (38) can be rewritten as

ṡ = w̃T�̂ + m̃T�mŵ + �̃l
T��l ŵ + �̃T

r ��r ŵ + 
 − urb. (39)

If 
 exists, consider a specified L2 tracking performance [5,24]∫ T

0
s2(t) dt �s2(0)+�2

∫ T

0

2(t) dt + 1

�w

w̃T(0)w̃(0)+ 1

�m

m̃T(0)m̃(0)+ 1

��l

�̃T
l (0)�̃l(0) + 1

��r

�̃T
r (0)�̃r(0),

(40)

where �w, �m, ��l
, and ��r

are the positive-constant learning rates, and � is a prescribed attenuation constant. If the
system starts with initial conditions s(0) = 0, w̃(0) = 0, m̃(0) = 0, �̃l(0) = 0 and �̃r(0) = 0, the L2 tracking
performance in (40) can be rewritten as

sup

∈L2[0,T ]

‖s‖
‖
‖ ��, (41)

where ‖s‖2 = ∫ T

0 s2(t) dt and ‖
‖2 = ∫ T

0 
2(t) dt . If � = ∞, this is the case of minimum error tracking control without
disturbance attenuation. To determine the adaptive laws of the parameters of ASAFNC appropriately and guarantee
the closed-loop system stability, the Lyapunov function candidate is defined as

V = 1

2
s2 + w̃Tw̃

2�w

+ m̃Tm̃
2�m

+ �̃T
l �̃l

2��l

+ �̃T
r �̃r

2��r

. (42)

Differentiating (42) with respect to time and using (39) yield

V̇ = sṡ + w̃T ˙̃w
�w

+ m̃T ˙̃m
�m

+ �̃T
l
˙̃�l

��l

+ �̃T
r
˙̃�r

��r

= s(w̃T�̂ + m̃T�mŵ + �̃T
l ��l ŵ + �̃T

r ��r ŵ + 
 − urb) + w̃T ˙̃w
�w

+ m̃T ˙̃m
�m

+ �̃T
l
˙̃�l

��l

+ �̃T
r
˙̃�r

��r

= w̃T
(

s�̂ + 1

�w

˙̃w
)

+ m̃T
(

s�mŵ + 1

�m

˙̃m
)

+ �̃T
l

(
s��l ŵ + 1

��l

˙̃�l

)

+�̃T
r

(
s��r ŵ + 1

��r

˙̃�r

)
+ s(
 − urb). (43)

Choose the adaptive laws as

˙̃w = − ˙̂w = −�ws�̂, (44)

˙̃m = − ˙̂m = −�ms�mŵ, (45)

˙̃�l = −˙̂�l = −��l
s��l ŵ, (46)

˙̃�r = −˙̂�r = −��r
s��r ŵ (47)
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and the robust controller is designed as

urb = �2 + 1

2�2
s. (48)

Thus, (43) can be rewritten as

V̇ = s

(

 − �2 + 1

2�2
s

)

= s
 − s2

2
− s2

2�2

= − s2

2
− 1

2

( s

�
− 
�

)2 + 1

2

2�2

� −1

2
s2 + 1

2

2�2. (49)

Assume 
 ∈ L2[0, T ], ∀T ∈ [0, ∞). Integrating the above equation from t = 0 to T yields

V (T ) − V (0)� − 1

2

∫ T

0
s2 dt + 1

2
�2
∫ T

0

2 dt . (50)

Since V (t)�0, we can arrange (50) as follows:

1

2

∫ T

0
s2 dt �V (0) + 1

2
�2
∫ T

0

2 dt (51)

which is equivalent to inequality (40) , i.e., L2 tracking performance. Assume 
 ∈ L2, then the sliding surface s will
converge to a certain small boundary. It is implied that the tracking error e will also converge to a certain small boundary
[24].

3.4. Boundary analysis using projection algorithm

Although the stability of ASAFNC can be guaranteed, the parameters ŵ, m̂, �̂l, and �̂r cannot be guaranteed within
a desired bound value by using the adaptive laws (44)–(47). According to the projection algorithm [11], the adaptive
laws can be modified as follows. The adaptive law of weight is

˙̂w =
{

�ws�̂ if‖ŵ‖ < Dw or (‖ŵ‖ = Dw and sŵT�̂�0),

Pr(�ws�̂) if (‖ŵ‖ = Dw and sŵT�̂ > 0),
(52)

where the projection operator is given as

Pr(�ws�̂) = �ws�̂ − �ws
ŵT�̂

‖ŵ‖2
ŵ. (53)

The adaptive law of mean of asymmetric membership function is

˙̂m =
{

�ms�mŵ if ‖m̂‖ < Dm or (‖m̂‖ = Dm and sm̂T�mŵ�0),

Pr(�ms�mŵ) if (‖m̂‖ = Dm and sm̂T�mŵ > 0),
(54)

where the projection operator is given as

Pr(�ms�mŵ) = �ms�mŵ − �ms
m̂T�mŵ
‖m̂‖2

m̂. (55)

The adaptive law of left-side variance of asymmetric membership function is

˙̂�l =
{

��l
s��l ŵ if ‖�̂l‖ < D�l or (‖�̂l‖ = D�l and s�̂T

l ��l ŵ�0),

Pr(��l
s��l ŵ) if (‖�̂l‖ = D�l and s�̂T

l ��l ŵ > 0),
(56)
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where the projection operator is given as

Pr(��l
s��l ŵ) = ��l

s��l ŵ − ��l
s
�̂T

l ��l ŵ
‖�̂l‖2

�̂l. (57)

The adaptive law of right-side variance of asymmetric membership function is

˙̂�r =
{

��r
s��r ŵ if ‖�̂r‖ < D�r or (‖�̂r‖ = D�r and s�̂T

r ��r ŵ�0),

Pr(��r
s��r ŵ) if (‖�̂r‖ = D�r and s�̂T

r ��r ŵ > 0),
(58)

where the projection operator is given as

Pr(��r
s��r ŵ) = ��r

s��r ŵ − ��r
s
�̂T

r ��r ŵ
‖�̂r‖2

�̂r. (59)

If the initial value of ŵ is bounded (i.e., ŵ(0) ∈ �w), ‖ŵ‖ is bounded by the constraint set �w for all t �0. Similarly,
the results can also be derived that ‖m̂‖ is bounded by the constraint set �m if m̂(0) ∈ �m; ‖�̂l‖ is bounded by the
constraint set ��l if �̂l(0) ∈ ��l ; and ‖�̂r‖ is bounded by the constraint set ��r if �̂r(0) ∈ ��r , for all t �0. Thus,
the fact that the uncertain term 
 is bounded can be guaranteed by the modified adaptive laws (52), (54), (56) and (58).
Next, define some variables as

Jw = w̃T
(

s�̂ + 1

�w

˙̃w
)

, (60)

Jm = m̃T
(

s�mŵ + 1

�m

˙̃m
)

, (61)

J�l = �̃T
l

(
s��l ŵ + 1

��l

˙̃�l

)
(62)

and

J�r = �̃T
r

(
s��r ŵ + 1

��r

˙̃�r

)
. (63)

If the projection algorithm is taken place, the property z̃Tẑ = 0.5(‖z∗‖2 − ‖ẑ‖2 − ‖z̃‖2) < 0 is applied according to
‖ẑ‖ = �z > ‖z∗‖, where z = ŵ, m̂, �̂l, and �̂r. Thus, the following equations can be obtained:

Jw = s

2

(‖w∗‖2 − ‖ŵ‖2 − ‖w̃‖2)

‖ŵ‖2
ŵT�̂�0 for (‖ŵ‖ = Dw and sŵT�̂ > 0), (64)

Jm = s

2

(‖m∗‖2 − ‖m̂‖2 − ‖m̃‖2)

‖m̂‖2
m̂T�mŵ�0 for (‖m̂‖ = Dm and sm̂T�mŵ > 0), (65)

J�l = s

2

(‖�∗
l ‖2 − ‖�̂l‖2 − ‖�̃l‖2)

‖�̂l‖2
�̂T

l ��l ŵ�0 for (‖�̂l‖ = D�l and s�̂T
l ��l ŵ > 0) (66)

and

J�r = s

2

(‖�∗
r‖2 − ‖�̂r‖2 − ‖�̃r‖2)

‖�̂r‖2
�̂T

r ��r ŵ�0 for (‖�̂r‖ = D�r and s�̂T
r ��r ŵ > 0). (67)

Then, the derivative of Lyapunov function (43) can be rewritten as

V̇ = Jw + Jm + J�l + J�r + s(
 − urb)

� s(
 − urb). (68)
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By substituting the robust controller (48), (68) can be rewritten as

V̇ � s

(

 − �2 + 1

2�2
s

)

= − s2

2
− 1

2

( s

�
− 
�

)2 + 1

2

2�2

� −1

2
s2 + 1

2

2�2. (69)

Using the same discussion in Section 3.3, the stability of the system with the projection algorithm can also be guaranteed.

4. Simulation results

In this section, the proposed ASAFNC is applied to a second-order chaotic dynamics system to verify its effectiveness.
This scheme emphasizes that the parameter and network structure of the SFNN can be tuned online by the proposed
algorithm. Consider a second-order chaotic dynamics system such as Duffing’s equation describing a special nonlinear
circuit or a pendulum moving in a viscous medium as follows [5]:

ẍ = f (x) + u, (70)

where f (x) = −pẋ − p1x − p2x
3 + q cos(t) is the system dynamics, t is the time variable,  is the frequency, u is

the control force, and p, p1, p2, and q are real constants. The solutions of (70) may exhibit periodic depending on the
choice of these constants, i.e., it is almost periodic and chaotic behavior. The open-loop system behavior, i.e., u = 0,
is simulated with p = 0.4, p1 = −1.1, p2 = 1.0, and  = 1.8 for observing the chaotic unpredictable behavior. The
phase plane plots with an initial condition point (0, 0) are shown in Figs. 4(a) and (b) for q = 1.95 and 7.00, respectively.
The uncontrolled chaotic system has different trajectories for different values of q. To illustrate the effectiveness of the
proposed design method, a comparison among a fix-structure AFNC using symmetric Gaussian membership functions
[21], a fix-structure AFNC using asymmetric Gaussian membership functions [2], and the proposed ASAFNC is made.

The simulation results of fix-structure AFNC using three symmetric membership functions are shown in Fig. 5.
The tracking responses of state x are shown in Figs. 5(a) and (d); the tracking responses of state ẋ are shown in Figs.
5(b) and (e); and the associated control efforts are shown in Figs. 5(c) and (f) for q = 1.95 and 7.00, respectively.
The simulation results show that the tracking responses decline when membership functions are selected insufficiently.
Next, the simulation results of fix-structure AFNC using 20 symmetric membership functions are shown in Fig. 6. The
tracking responses of state x are shown in Figs. 6(a) and (d); the tracking responses of state ẋ are shown in Figs. 6(b)
and (e); and the associated control efforts are shown in Figs. 6(c) and (f) for q = 1.95 and 7.00, respectively. The
simulation results show that the favorable tracking performance can achieve; however, the computation load is heavy.
These results demonstrate the fact that it is difficult to consider the balance between the rule number and the desired
performance.

To show that the learning capability of neural network can be upgraded as using the asymmetric Gaussian membership
functions, the fix-structure AFNC using asymmetric Gaussian membership functions is applied to chaotic dynamics
system again. The simulation results of fix-structure AFNC using three asymmetric membership functions are shown
in Fig. 7. The tracking responses of state x are shown in Figs. 7(a) and (d); the tracking responses of state ẋ are shown in
Figs. 7(b) and (e); and the associated control efforts are shown in Figs. 7(c) and (f) for q = 1.95 and 7.00, respectively.
The simulation results show that the favorable tracking performance can be achieved. Next, the simulation results of
fix-structure AFNC using 20 asymmetric membership functions are shown in Fig. 8. The tracking responses of state
x are shown in Figs. 8(a) and (d); the tracking responses of state ẋ are shown in Figs. 8(b) and (e); and the associated
control efforts are shown in Figs. 8(c) and (f) for q = 1.95 and 7.00, respectively. The simulation results show that
the favorable tracking performance can achieve; however, the computation load is heavy. Comparing with Figs. 5 and
7, and Figs. 6 and 8 shows that the adaptive fuzzy neural network with asymmetric membership functions performs
better than the adaptive fuzzy neural network with symmetric membership functions. However, the structure of the
FNN should still be determined by trial-and-error.

To solve this problem, the proposed ASAFNC is applied to the chaotic dynamics system. The parameters of ASAFNC
system are selected as k1 = 2, k2 = 1, �w = 50, �m = ��l

= ��r
= 0.5, Gth = 0.4, Ith = 0.1, Pth = 0.1, �1 = 0.01,
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Fig. 4. Phase plane of uncontrolled chaotic dynamics system.

�2 = 0.05, �i = 0.6, � = 0.1, and � = 0.6. All the gains in the proposed control system are chosen to achieve
the best transient control performance considering the stability and possible operating conditions. The parameters �w,
�m, ��l

, and ��r
are the leaning rates of SFNN. If the leaning rates are chosen too small, the parameter convergence

of SFNN will be easily achieved; however, this will result in slow learning speed. On the other hand, if the leaning
rates are chosen too large, the learning speed will be fast; however, the SFNN system may become more unstable. The
simulation results of ASAFNC for q = 1.95 and 7.00 are shown in Figs. 9 and 10, respectively. The tracking responses
of state x are shown in Figs. 9(a) and 10(a); the tracking responses of state ẋ are shown in Figs. 9(b) and 10(b); the
associated control efforts are shown in Figs. 9(c) and 10(c); the number of fuzzy rules is shown in Figs. 9(d) and
10(d); and the final shapes of membership functions are shown in Figs. 9(e) and 10(e), respectively. These results state
that the rule number and good tracking performance can be considered simultaneously in the simulation procedure.
To demonstrate the control performance of the proposed ASAFNC system with different reference trajectories, the
command xc(t) = sin(1.5t) + 0.5 cos(3.5t) is examined here. The simulation results for q = 1.95 and 7.00 are shown
in Figs. 11 and 12, respectively. The tracking responses of state x are shown in Figs. 11(a) and 12(a); the tracking
responses of state ẋ are shown in Figs. 11(b) and 12(b); the associated control efforts are shown in Figs. 11(c) and
12(c); the number of fuzzy rules is shown in Figs. 11(d) and 12(d); and the final shapes of membership functions are
shown in Figs. 11(e) and 12(e), respectively. The simulation results show that the proposed ASAFNC system, which
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Fig. 5. Simulation results of AFNC using three symmetric membership functions.
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Fig. 6. Simulation results of AFNC using 20 symmetric membership functions.
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Fig. 7. Simulation results of AFNC using three asymmetric membership functions.
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Fig. 8. Simulation results of AFNC using 20 asymmetric membership functions.
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Fig. 9. Simulation results of ASAFNC for q = 1.95.
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Fig. 10. Simulation results of ASAFNC for q = 7.00.
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Fig. 11. Simulation results of ASAFNC for q = 1.95 with different trajectory.
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Fig. 12. Simulation results of ASAFNC for q = 7.00 with different trajectory.
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includes SFNN with the asymmetric Gaussian membership function, can achieve satisfactory tracking responses in
the presence of different reference trajectories. Moreover, a concise SFNN structure can be obtained by the proposed
self-structuring mechanism and the online learning algorithms.

5. Conclusions

This paper develops an ASAFNC system, which consists of an SFNN controller and a robust controller. In the
SFNN controller, SFNN using asymmetric Gaussian membership functions is utilized to mimic an ideal controller in
the structure and parameter learning phases. The structure learning phase of SFNN is used to find how many rules
and membership functions are necessary, and the parameter learning phase of SFNN is concerned with the parameter
values of membership functions in the premise part and the crisp value in the consequence part. The robust controller
is designed to compensate for the modeling error between the SFNN controller and the ideal controller. An online
training methodology is developed in the Lyapunov sense, and thus the stability of the closed-loop control system
can be guaranteed. Finally, the simulation results of a chaotic dynamics system show that the ASAFNC can achieve
favorable tracking performance without control system dynamics.
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