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A Cyclic Pair of Linear Transformations

Student : Jheng-Lin Pan Advisor : Dr. Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University

Hsinchu 300, Taiwan, R.O.C.

Abstract

A square matrix X is cyclic if all the entries in the lower diagonal and in the
last column of the first row are nonzero. Let C denote a field and let V
denote a vector space over C with finite positive dimension. By a cyclic pair

on V we mean an ordered pair of linear transformations A:V -V and

B:V -V that satisfies conditions (i), (ii) below.

(i) There exists a basis for V with respect to which the matrix representing A
Is diagonal and the matrix representing B is cyclic.

(if) There exists a basis for V with respect to which the matrix representing B
Is diagonal and the matrix representing A is cyclic.

We characterized cyclic pairs by their matrix coefficients, and by their

multiplication rules. One of the rules is related to the binomial theorem.
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1 Introduction

The study of a pair of linear transformations with specified combinatorial properties
occurred in [1], [2], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [22]. The study
of this pair of linear transformations is related to the study of module structure
of some free algebras with 2 generators. Usually the entries in the matrix forms
of these two linear transformations can be described by recurrence relations and is
related to a class of special functions. One of such a pair of linear transformations

occurs in P- and Q-polynomial scheme.

For example, referring to [17], [18], [19], let Y denote a symmetric association
scheme, with vertex set X. Assume Y is P-polynomial with respect to an asso-
ciate matrix A, and @-polynomial with respect to a primitive idempotent E. Let
Matx(C) denote the C-algebra consisting of all matrices with rows and columns
indexed by X, and entries in C. Fix a vertex x € X, and let A* = A*(x) denote the

diagonal matrix in Matx(C) with diagonal entries
Ay, = | X[ By (Vy € X).

Let T denote the subalgebra of Matx(C) generated by A and A*, and let V' denote
an irreducible T-module. Then the restriction A|y, A*|y form a pair of linear trans-
formations on V. This is called a Leonard pair [7]. The study of Leonard pair is
connected to a theorem of Leonard [4], [5, p.260] involving the ¢-Racah and related

polynomials of the Askey scheme [20].

The pair of linear transformations we study in this thesis are related to a cycle. See
section 2 for formal definition. We characterized them by their matrix coefficients,
by their multiplication rules. One of the rules is related to the generalized binomial

theorem. See Corollary 2.9 for details.



2 Cyclic pairs

Theorem 2.1. Let d denote a nonnegative integer. Let V denote a vector space
over C with dimension d +1. Let A :'V — V and B : V — V denote linear
transformations. If there exists a basis ug, uy, - -+ ,uq for V with respect to which the

matrices representing A and B have the following forms,

000 0 a 50 0 . 0]
100 0 0

0 B¢ 0 - 0

010 0 0 00 8P 0

A0 01 oo | BT T P E

Poror e oL

(000 - 10| 000 ba” |

where o, € C are nonzero scalars and q€ C is a primitive root of unity of order
d+ 1. Then there exists two nonzero complex numbers v, n such that A = ~I,

B4 = I, BA = qAB, where q is a primitive root of unity of order d + 1.

Proof.
Observe
0 0 0 —al
-1 =z 0 0 0
0 -1 = 0 0 d+1 d+1
det(xl — A) = 0 0 -1 o | =T (1) a
: : T
| 0 0 O -1 =z |

Then 2! + (—=1)¥1a = 0. Set v = (—=1)%a. We have A1 = ~ by Cayley-

Hamilton theorem. Set n = $4*!. It is easy to check B4*! = nI. By computing the
matrix products AB and BA, we get BA = gAB. ]



Definition 2.2. Let C denote the field of complex numbers, let d denote a non-
negative integer, and let A denote a matrix in Mat,,1(C). We say A is (left)-cyclic
when each of the entries Ay, Ao ,---, Aga—1, Aoa is nonzero and all other entries

of A are zero.

Definition 2.3. Let V' denote a vector space over C with finite positive dimension.
By a cyclic pair on V' we mean an ordered pair of linear transformations A : V. — V

and B :V — V that satisfy conditions (i), (ii) below.

(i) There exists a basis for V' with respect to which the matrix representing A is

diagonal and the matrix representing B is cyclic.

(ii) There exists a basis for V' with respect to which the matrix representing B is

diagonal and the matrix representing A is cyclic.

Theorem 2.4. Let d denote a nonnegative integer. Let V denote a vector space
over C with dimension d + 1. If there exists two nonzero complex scalars v, n such
that

Al = ~T B4 =y, BA = ¢AB,

where q is a primitive root of unity of order d + 1. Then the pair A, B is a cyclic

pair on V.

Proof.

Observe all eigenvalues of A, B are nonzero, since their characteristic polynomials

d+1

have the form 2 — ¢ = 0 for some ¢ # 0.



Fix an eigenvalue X\ of B and let v be the corresponding eigenvector.
Set v; = A'v, where 0 < i < d. Observe v; # 0 since A is invertible.

We first claim vy, vy, - - - ,vg are linear independent. Suppoe

CoUp + €1v1 + Uy + - - - + cquqg = O,

for some ¢, -+ ,cq € C. Then

coU + 1AV + o A% + - + cgA% = 0.

Applying B to both sides,
coBv + c;BAv + coBA*v + -+ - + ¢;BA% = 0.
Because of BA = gAB,
coBv 4 c1gABv + ¢3¢*A’Bv + - - - + ¢4q?ABv = 0.
Since v is an eigenvector of B corresponding to eigenvalue A\, we have
Meo + c1gA + co? A% + -+ + cqq® A = 0.

Eliminate A

(co 4 c1qA + g A? + -+ c4q° A = 0.

Repeating of above steps, we obtain

(co + A+ cg* A2+ cdq2dAd)v = 0,

(co+ a1’ A+ 2’ A> + -+ cyg®™ A% = 0,

(co+ c1qA + cog®? A% + - + cdquAd)v = 0.

Writting these equations in matrix form,



1 r -1 co 0 0 0 Vg

1 g ¢ q° 0 ¢ O 0 Uy

1 ¢ ¢ > 0 0 ¢ 0 Vg

1 q¢ ¢* qd2 0 0 O Cq Vg
Since 1,q,¢%,--- ,q% are distinct, the above first matrix is invertible. This forces
CoVg = C1v1 = - =cqvg=0and then cog=ci =co=---=¢4=0.

Now we know Av; = v, i@ < d, Avg = AA% = A%y = yIv = vy, then A is

similar to

Bv; = BA' = ¢*A'Bv = Mg’ A'v = \¢'v; and B is similar to

Corollary 2.5. Let V denote a vector space over C with dimension d + 1.

A:V =V and B :' V — V denote linear transformations.

o O = O

o O >

(i)- (1) are equivalent.

O = O O

0
A
0

=

(i) (A, B) is a cyclic pair on V.

_— o O O

0
0

o O OO

o O O

Let

Then the following



(ii) There exists a basis ug,uy, -+ ,uq for V with respect to which the matrices

representing A and B have the following form,

000 0 «a 50 0 . 0
100 00

0 Bg 0 -+ 0

010 00 o

A0 01 oo | BT T P E

AR o

(000 - 10| 000 ba” |

where o, f€ C are nonzero scalars and q€ C is a primitive root of unity of

order d + 1.

(iii) There exists two nonzero complex numbers v, n such that ATt = ~yI, B4t =

nl, BA = qAB, where q is a primitive root of unity of order d + 1.

Proof.

(ii)=-(iii) This is Theorem 2.1. (iii)=-(i) This is Theorem 2.4. (i)=-(ii) This is from
[3]. ]

Definition 2.6. [6, p.292]

RS last S auts)

k G- =1 q=n  Osk=n)

Lemma 2.7. [6, p.295]

Proof.



(¢"—=1D(gt=1)---(g—1) (¢"—=1)(gt=1)---(¢g—1)
_ (=D (-1 (1)@ )
(¢ —1) (¢t—=1)--(¢—1)

Theorem 2.8. The following are equivalent.

(i) BA=gAB.

" } A"B for all n € N.
q

1

(i) (A+ By =5 |

(iii) (A+ B)? = A*+ (¢ + 1)AB + B2

Proof.

(1)=(ii)We will prove this by induction on n. Then n = 1 is clearly true. Now let k

be a natural number such that n = k is true; that is,

k

A+BF =Y [ ' ] AF—ip

=0



We need to show that n = k 4 1 is true. However,

(A+B)*' = (A4 B)(A+ B)*

= (A+B)> { ’: L AF1BY

1=0

k
_ (Ak-‘rl + Z |: lj :| A(k+1)—iBi)
=1 q

k
+(Bk+1 + Z { z’fl ] q(k+1)fiA(k+1)fiBi>
=1 q

k
— AR Z({ ]Zf ] i { iljl ] q(k+1)—i)A(k+1)—iBi 1 gkt
i=1 q q

k
Ak Z [ k ;L 1 1 Al+D)=igi | gkl
q

i=1

k+1
> { i } AtHD=iB?,
1=0 ¢ q

We see that n = k£ + 1 is true.
(ii)=-(iii) This is clear.

(iii) = (i)
(A+B)> = A+ BA+ AB + B?

= A+ (¢+1)AB+ B>

Hence

BA = g¢AB.



Corollary 2.9. Let V denote a vector space over C with dimension d + 1. Let
A:V =V and B : V — V denote linear transformations. Then the following

(i)-(iv) are equivalent.

(i) (A, B) is a cyclic pair on V.

(i) There exists a basis ug,uy,--- ,uq for V with respect to which the matrices

representing A and B have the following form,

000 0 «a 50 0 e 0T
100 00

0 B¢ 0 - 0

010 00 0 0 G o

Al 0 01 00| B S

AR O

(000 -+ 10| L0 00 ba”

where o, B€ C are nonzero scalars and q€ C is a primitive root of unity of

order d + 1.

(iii) There exists two nonzero complex numbers v, 1 such that AT = I, Bi+1 =

nl, BA = qAB, where q is a primitive root of unity of order d + 1.

(iv) There exists two nonzero complex numbers v, n such that AT = ~I, BT =

nl, (A+B)" =371, {

of unity of order d + 1.

Z.L } A" B for any n € N, where q is a primitive root
q

Proof.

The equivalence of (i), (ii), (iii) follows from corollary 2.5. (iii)=-(iv) This is Theorem

2.8. (iv)=-(iii) This is Theorem 2.8. ]
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