
Remark 3.8. In the derivation of the Theorem 3.5, it needs the condition of integral

separateness. However, for the linear system, if the integral separateness is not satisfied,

then the result of Theorem 3.5 can be obtained. Let us give a example as follows,

ẋ = A(t)x, A(t) =

(
1 + π

2
sin π

√
t 0

0 0

)
, x ∈ R2.

It has two Lyapunov exponents 1 and 0. This system does not have integral separateness,

but the result of Theorem 3.5 holds for its coupled system.

Remark 3.9. In numerical experience, we vary the coupling parameter k in order to

receive amplitude synchronization which arises as the largest Lyapunov exponent of the

difference system becomes negative by varying k. Hence, by the definition of Lyapunov

exponent, we can ei(t) ≈ exp λjt, for large t, where ei is the error vector of the difference

system, i, j = 1, · · ·n, λj < 0 by varying k. From this fact, we perhaps can understand the

perturbation term of the coefficient matrix of the system (3.13) and (3.19) that it converges

to 0 with a negative exponential rate. It may imply that the Lyapunov exponents of the

original system and its perturbed system are the same without Theorem 3.2 and Theorem

3.3.

4 Numerical Illustrations

In the first two section, we present some results of numerical experiments which is related

to the discussion in the preceding section, where the coupled system consists of two Rossler

system or two Lorenz ones.

In the third part, we mainly concern ourself with the numerical results about Lya-

punov exponents of two different coupled systems. Namely, the coupled system consists

of one Rossler and one Lorenz equations.

In the fourth part, we summarize our numerical results and compare variations of

Lyapunov exponents for the Rossler and Lorenz systems coupled in different manners.

Some parts of the results in the tables need further numerical evidence.

The following numerical experience mainly uses the matlab program to execute,

and the algorithm of calculating Lyapunov exponent is adopted from [3], other related

calculating algorithms are in the reference [1], [2], [12].
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4.1 Lyapunov Exponents for two Coupled Rossler Systems

In Fig.1-Fig.6, we consider the coupled Rossler-Rossler system

ẋ1 = −(y1 + z1) + k1(x2 − x1)
ẏ1 = x1 + 0.15y1

ż1 = 0.2 + z1(x1 − 10)
ẋ2 = −(y2 + z2) + k2(x1 − x2)
ẏ2 = x2 + 0.15y2

ż2 = 0.2 + z2(x2 − 10)

(4.1)

where the coupling is one-component, and k1,2 are the coupling parameters between the

two oscillators. It is set as k1 = 0 if the coupling scheme is uni-directional, and as

k1 6= 0, k2 6= 0 if the coupling scheme is bi-directional .

Herein initial condition = (1, 1, 1, 1, 1, 0.5), time=104, absolute error=10−8, relative

error=10−8, a hundred values of k is taken within the indicated interval.

Fig.1: variations of the originally positive and null Lyapunov exponents for k1 = 0 and

k2 ∈ [0, 0.5].

Fig.2: variations of the originally negative Lyapunov exponent for k1 = 0 and k2 ∈ [0, 0.5].

Fig.3: variations of the originally positive Lyapunov exponent for k1 = 0 and k2 ∈
[5.5, 10.5].

Fig.4: variations of the originally positive and null Lyapunov exponent for k1 = k2 ∈
[0, 0.5].

Fig.5: variations of the originally negative Lyapunov exponent for k1 = k2 ∈ [0, 0.5].

Fig.6: variations of the originally positive Lyapunov exponent for k1 = k2 ∈ [2.5, 7.5].

Remark 4.1. In Fig.3 and Fig.6, the originally positive Lyapunov exponent becomes

negative and then positive again as the coupling parameter increases. If we keep increasing

the coupling parameter, then this positive Lyapunov exponent still increases asymptotically.

This phenomena only occurs in one-component coupling, not in full-component coupling.

In Fig.7-Fig.10, we consider the coupled Rossler-Rossler system

ẋ1 = −(y1 + z1) + k1(x2 − x1)
ẏ1 = x1 + 0.15y1 + k1(y2 − y1)
ż1 = 0.2 + z1(x1 − 10) + k1(z2 − z1)
ẋ2 = −(y2 + z2) + k2(x1 − x2)
ẏ2 = x2 + 0.15y2 + k2(y1 − y2)
ż2 = 0.2 + z2(x2 − 10) + k2(z1 − z2),

(4.2)
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where the coupling is of full-component, and k1,2 are the coupling parameters between

the two oscillators. It is set as k1 = 0 if the coupling scheme is unidirectional, and as

k1 6= 0, k2 6= 0 if the coupling scheme is bi-directional.

Herein initial condition (1, 1, 1, 1, 1, 0.5), time=104, absolute error=10−8, relative

error=10−8, a hundred values of k is taken within the indicated interval.

Fig.7: variations of the originally positive and null Lyapunov exponents for k1 = 0 and

k2 ∈ [0, 0.4].

Fig.8: variations of the originally negative Lyapunov exponent for k1 = 0 and k2 ∈ [0, 0.4].

Fig.9: variations of the originally positive and null Lyapunov exponent for k1 = k2 ∈
[0, 0.35].

Fig.10: variations of the originally negative Lyapunov exponent for k1 = k2 ∈ [0, 0.5].

Remark 4.2. In Fig.7-Fig.10, the originally positive, null, and negative Lyapunov expo-

nents of the coupled system (4-2) seem to have pairwise linear difference (differ by k for

uni-direction case and by 2k for bi-direction case), as the parameter is large enough.

In Fig.11, Fig.12, we consider the coupled Rossler-Rossler along with the associated dif-

ference system
ẋ1 = −(y1 + z1)
ẏ1 = x1 + 0.15y1

ż1 = 0.2 + z1(x1 − 10)
ẋ2 = −(y1 + z1)) + k(x1 − x2)
ẏ2 = x1 + 0.15y1 + k(y1 − y2)
ż2 = 0.2 + z1(x1 − 10) + k(z1 − z2)
ė1 = −ke1 − e2 − e3

ė2 = e1 + (0.15− k)e2

ė3 = z2e1 + (x1 − 10− k)e3,

(4.3)

where k is the coupling parameter. e1 = x1 − x2, e2 = y1 − y2, e3 = z1 − z2.

With initial condition (1, 1, 1, 1, 1, 0.5, 0, 0, 0.5), time=104, absolute error=10−8, rel-

ative error=10−8, one hundred and fifty values of k is taken within [0.0025, 0.13].

Fig.11: variations of the positive, null Lyapunov exponents for k ≥ 0.

Fig.12: variations of the negative Lyapunov exponent for k ≥ 0.

Remark 4.3. From Fig.11 and Fig.12, we can observe three pairs of Lyapunov exponents.

They seem to be identical when k passes about 0.09. There are three Lyapunov exponents
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of the response system and three Lyapunov exponents of the difference system among three

pairs.

4.2 Lyapunov Exponents for two Coupled Lorenz Systems

In Fig.13-Fig.20, we consider the coupled Lorenz-Lorenz system

ẋ1 = 10(y1 − x1) + k1(x2 − x1)
ẏ1 = 28x1 − y1 − x1z1

ż1 = −8
3
z1 + x1y1

ẋ2 = 10(y2 − x2) + k2(x1 − x2)
ẏ2 = 28x2 − y2 − x2z2

ż2 = −8
3
z2 + x2y2,

(4.4)

where the coupling is of one-component, and k1,2 are the coupling parameters between

the two oscillators. It is set as k1 = 0 if the coupling scheme is uni-directional, and as

k1 6= 0, k2 6= 0 if the coupling scheme is bi-directional .

Herein initial condition (1, 1, 1, 1, 1, 0.5), time=104, absolute error=10−8, relative

error=10−8, a two hundred values of k is taken within [0, 2] in Fig.13-Fig.15, one hundred

values of k is taker within [6.5, 12] in Fig.16, one hundred and forty values of k = k1 = k2

is taken within [0, 1.4] in Fig.17-Fig.19, one hundred values of k is taker within [3, 7] in

Fig.20,.

Fig.13: variations of the originally positive Lyapunov exponents for k1 = 0 and k2 ∈ [0, 2].

Fig.14: variations of the originally null Lyapunov exponent for k1 = 0 and k2 ∈ [0, 2].

Fig.15: variations of the originally negative Lyapunov exponent for k1 = 0 and k2 ∈ [0, 2].

Fig.16: variations of the originally positive, null Lyapunov exponents for k1 = 0 and

k2 ∈ [6.5, 12].

Fig.17: variations of the originally positive Lyapunov exponent for k1 = k2 ∈ [0, 1.4].

Fig.18: variations of the originally null Lyapunov exponent for k1 = k2 ∈ [0, 1.4].

Fig.19: variations of the originally negative Lyapunov exponent for k1 = k2 ∈ [0, 1.4].

Fig.20: variations of the originally positive, null Lyapunov exponents for k1 = k2 ∈ [3, 7].

Remark 4.4. In Fig.16 and Fig.20, the originally positive Lyapunov exponent asymp-

totically becomes negative as the coupling parameter increases. If we keep increasing the

coupling parameter, then this positive Lyapunov exponent still negative. The increasing

behavior of Lyapunov exponents in Fig.3 and Fig.6 does not take place in Fig.16 and

Fig.20.
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In Fig.21-Fig.29, we consider the coupled Lorenz-Lorenz system

ẋ1 = 10(y1 − x1) + k1(x2 − x1)
ẏ1 = 28x1 − y1 − x1z1 + k1(y2 − y1)
ż1 = −8

3
z1 + x1y1 + k1(z2 − z1)

ẋ2 = 10(y2 − x2) + k2(x1 − x2)
ẏ2 = 28x2 − y2 − x2z2 + k2(y1 − y2)
ż2 = −8

3
z2 + x2y2 + k2(z1 − z2),

(4.5)

where the coupling is of full component, k1,2 are the coupling parameters between the two

oscillators. It is set as k1 = 0 if the coupling scheme is unidirectional, and as k1 6= 0, k2 6= 0

if the coupling scheme is bi-directional.

Herein initial condition (1, 1, 1, 1, 1, 0.5), time=104, absolute error=10−8, relative

error=10−8, one hundred and forty values of k is taken within [0, 1.4] in Fig.21 and Fig.23,

a hundred values of k is taken within [0, 0.2] in Fig.22, a hundred and twenty values of k

is taken within [0, 1] in Fig.24 and Fig.26, two hundred value of k is taken within [0, 0.2]

in Fig.25. 6× 106 values of time t is taken within [0, 104] in Fig.27-28. 107 values of time

t is taken within [0, 106] in Fig.29.

Fig.21: variations of the originally positive and null Lyapunov exponents for k1 = 0 and

k2 ≥ 0.

Fig.22: variations of the originally null Lyapunov exponent for k1 = 0 and k2 ∈ [0, 0.2].

Fig.23: variations of the originally negative Lyapunov exponent for k1 = 0 and k2 ≥ 0.

Fig.24: variations of the originally positive and null Lyapunov exponent for k1 = k2 ≥ 0.

Fig.25: variations of the originally positive and null Lyapunov exponent for k1 = k2 ∈
[0, 0.2].

Fig.26: variations of the originally negative Lyapunov exponent for k1 = k2 ≥ 0.

Fig.27: Behavior of x1 − x2, y1 − y2, z1 − z2 v.s. time of the system (4.4) for coupling

parameter k1 = k2 = 0.26.

Fig.28: Behavior of x1 − x2, y1 − y2, z1 − z2 v.s. time of the system (4.4) for coupling

parameter k1 = k2 = 0.28.

Fig.29: Behavior of x1 − x2, y1 − y2, z1 − z2 v.s. time of the system (4.4) for coupling

parameter k = 0.3.

Remark 4.5. In Fig.21, Fig.23, Fig.24, and Fig.26, the originally positive, null, and

negative Lyapunov exponents of the coupled system (4-5) seem to have linear difference

pairwise as the coupling parameter is large enough. In Fig.21 and Fig.23, As k varies
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from 0 to positive, and it differs with one of the positive Lyapunov exponents by k when k

passes about 0.9. In Fig.24 and Fig.26, As k varies from 0 to positive, and it differs with

one of the positive Lyapunov exponents by 2k when k passes about 0.45.

Remark 4.6. In Fig.24 and Fig.26, variations of Lyapunov exponent are rather strange

for coupling parameter k1 = k2 ∈ [0.25, 0.45]. When we can observe the behavior of

x1 − x2, y1 − y2, and z1 − z2 in Fig.27-Fig.29 ( the respective coupling parameter is

k1 = k2 = 0.26, 0.28, 0.3), we find that no synchronization takes place for in Fig.27;

synchronization arises in Fig.28; no synchronization arises in Fig.29, but the behavior of

variable difference preserves some constant for large time t. In fact, we have verified the

three above situations take places by varying for coupling parameter k1 = k2 ∈ [0.25, 0.45].

Nevertheless, we observe the situation as one which arises in Fig.30 for many coupling

parameter that pass through about 0.3 to 0.45.

Remark 4.7. From the numerical observation, we can understand that decreasing varia-

tion amplitude of Lyapunov exponent of coupled system adopting the bidirectional coupling

scheme is larger than one of coupled system adopting the unidirectional coupling scheme.

4.3 Lyapunov Exponents for Coupled Rossler and Lorenz Sys-
tems

In Fig.30-Fig.32, we consider the coupled Rossler-Lorenz system

ẋ1 = −(y1 + z1)
ẏ1 = x1 + 0.15y1

ż1 = 0.2 + z1(x1 − 10)
ẋ2 = 10(y2 − x2) + k(x1 − x2)
ẏ2 = 28x2 − y2 − x2z2

ż2 = −8
3
z2 + x2y2,

(4.6)

where k is the coupling parameter.

With initial condition (1, 1, 1, 0.5, 0.5, 0.5), time=104, absolute error=10−8, relative

error=10−8, one hundred and fifty values of k is taken within [0, 1.5].

Fig.30: variations of the originally positive Lyapunov exponents for k ≥ 0.

Fig.31: variations of the originally null Lyapunov exponent for k ≥ 0.

Fig.32: variations of the originally negative Lyapunov exponent for k ≥ 0.

34



Remark 4.8. We compute Lyapunov exponents in the coupled system (4-6) with different

time, in order to observe the convergence of the originally null Lyapunov exponents for

some k.

For the coupling parameter k = 0.92, we compute the originally null Lyapunov

exponents, with different computation time as

Time λ1 λ2

104 0.00131296 -0.00023921
105 0.00030551 -0.00002626
106 0.00029458 -0.00000256

For the coupling parameter k = 0.99, we compute the originally null Lyapunov

exponents with different computation time as

Time λ1 λ2

104 0.00195271 -0.00025496
105 0.00044135 -0.00002526
106 0.00042638 -0.00000354

For the coupling parameter k = 1.23, we compute the originally null Lyapunov

exponents with different computation time as

Time λ1 λ2

104 0.00108621 -0.00001271
105 0.00065541 -0.00000419
106 0.00082521 -0.00000045

Remark 4.9. In [6], it declares that generalized synchronization takes place as some

original positive Lyapunov exponent becomes negative by varying k beyond some value.

4.4 The comparison table
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(R-R)s−x λ
(1)
0 ≡ 0; λ

(2)
0 ↘ (L-L)s−x λ

(1)
0 ≡ 0; λ

(2)
0 ↗↘

(R-R)bi−x λ
(1)
0 ≡ 0; λ

(2)
0 ↘ (L-L)bi−x λ

(1)
0 ≡ 0; λ

(2)
0 ↗↘

(R-R)s−xyz λ
(1)
0 ≡ 0; λ

(2)
0 ↘ (L-L)s−xyz λ

(1)
0 ≡ 0; λ

(2)
0 ↗↘

(R-R)bi−xyz λ
(1)
0 ≡ 0; λ

(2)
0 ↘ (L-L)bi−xyz λ

(1)
0 ≡ 0; λ

(2)
0 ↗↘? ↘

Table 1: The behavior of the originally null Lyapunov exponents λ
(1)
0 , λ

(2)
0 of the coupled

system as the coupling parameter k varies from 0 to positive.

Amplitude As−x > Abi−x > As−xyz > Abi−xyz

coupling parameter range Rs−x > Rbi−x > Rs−xyz > Rbi−xyz

Table 2: The comparison of amplitude and coupling parameter range for λ
(2)
0 as it turns

to positive from zero for the coupled (L-L) system case.

(R-R): Coupled Rossler-Rossler system.

(L-L): Coupled Lorenz-Lorenz system.

s−x: The coupling scheme: two systems are coupled through x component in single di-

rection.

bi−x: The coupling scheme: two systems are coupled through x component bi-directionally.

s−xyz: The coupling scheme: two systems are coupled through x, y, and z component in

single direction.

bi−x: The coupling scheme: two systems are coupled through x, y, and z component

bi-directionally.

λ
(1)
0 , λ

(2)
0 : The originally null Lyapunov exponents of the coupled system.

?: The behavior of the Lyapunov exponent of the coupled system is not affirmative from

numerical examination in some coupling parameter interval.

≡: The indicated value is preserved throughout the computations.

A: The largest amplitude of λ
(2)
0 for the (L-L) coupled system as it turns from zero to

positive.

R: The coupling parameter range of λ
(2)
0 for the (L-L) coupled system as it turns from

zero to positive.
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(R-R)s−x λ
(1)
+ ≡ λR

+ ; λ
(2)
+ ↘↗

(R-R)bi−x λ
(1)
+ ≈ λR

+, as k > k1 ; λ
(2)
+ ↘↗, as k > k1

(R-R)s−xyz λ
(1)
+ ≡ λR

+ ; λ
(2)
+ ↘

(R-R)bi−xyz λ
(1)
+ ≈ λR

+, as k > k2 ; λ
(2)
+ ↘, as k > k2

(L-L)s−x λ
(1)
+ ≡ λL

+ ; λ
(2)
+ ↘

(L-L)bi−x λ
(1)
+ ≈ λR

+, as k > k3 ; λ
(2)
+ ↘, as k > k3

(L-L)s−xyz λ
(1)
+ ≡ λL

+ ; λ
(2)
+ ↘↗↘

(L-L)bi−xyz λ
(1)
+ ≈ λR

+, as k > k4 ; λ
(2)
+ ↘, as k > k4

Table 3: The variations of the originally positive Lyapunov exponents λ
(1)
+ , λ

(2)
+ of the

coupled system as the coupling parameter k varies from 0 to positive.

(R-R)s−x λ
(1)
− ≡ λR

− ; λ
(2)
− ↘

(R-R)bi−x λ
(1)
− ≈ λR

−, as k > k1 ; λ
(2)
− ↘, as k > k1

(R-R)s−xyz λ
(1)
− ≡ λR

− ; λ
(2)
− ↘

(R-R)bi−xyz λ
(1)
− ≈ λR

−, as k > k2 ; λ
(2)
− ↘, as k > k2

(L-L)s−x λ
(1)
− ≡ λL

− ; λ
(2)
− ↘

(L-L)bi−x λ
(1)
− ≈ λR

−, as k > k3 ; λ
(2)
− ↘, as k > k3

(L-L)s−xyz λ
(1)
− ≡ λL

− ; λ
(2)
− ↘↗↘

(L-L)bi−xyz λ
(1)
− ≈ λR

−, as k > k4, λ
(2)
− ↘, as k > k4

Table 4: The variations of the originally negative Lyapunov exponent λ
(1)
− , λ

(2)
− of the

coupled system v.s. the coupling parameter k.

λ
(1)
+ , λ

(2)
+ : The originally positive Lyapunov exponents of the coupled system.

λR
+: The constant and positive Lyapunov exponent of the coupled system (R-R)s−x.

λL
+: The constant and positive Lyapunov exponent of the coupled system (L-L)s−x.

k1, k2, k3, k4: These are some constants, with k1 > k2, k3 > k4.

≈: The Lyapunov exponent is near a fixed number.

λ
(1)
− , λ

(2)
− : The originally negative Lyapunov exponents of the coupled system.

λR
−: The constant and negative Lyapunov exponent of the coupled system (R-R)s−x.

λL
−: The constant and negative Lyapunov exponent of the coupled system (L-L)s−x.
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(R-R)s−x None
(R-R)bi−x None

(R-R)s−xyz λ
(1)
+ − λ

(2)
+ ≡ k, λ

(1)
0 − λ

(2)
0 ≡ k, λ

(1)
− − λ

(2)
− ≡ k, as k > 2k2 ≈ 2kas

(R-R)bi−xyz λ
(1)
+ − λ

(2)
+ ≡ 2k, λ

(1)
0 − λ

(2)
0 ≡ 2k, λ

(1)
− − λ

(2)
− ≡ 2k, as k > k2 ≈ kas

(L-L)s−x None
(L-L)bi−x None

(L-L)s−xyz λ
(1)
+ − λ

(2)
+ ≡ k, λ

(1)
0 − λ

(2)
0 ≡ k, λ

(1)
− − λ

(2)
− ≡ k, as k > 2k4 > 2kas

(L-L)bi−xyz λ
(1)
+ − λ

(2)
+ ≡ 2k, λ

(1)
0 − λ

(2)
0 ≡ 2k, λ

(1)
− − λ

(2)
− ≡ 2k, as k > k4(>?)kas

Table 5: The linear difference between the originally two positive, two null, and two
negative Lyapunov exponents of the coupled system as the coupling parameter k varies
from 0 to positive.

kas: The coupling parameter value at which the amplitude synchronization takes

place.

5 Conclusions

This thesis has studied numerically the variations of Lyapunov exponents of some chaotic

systems with several coupling schemes. We have also attempted to explore the behaviors

of Lyapunov exponents as the coupled system undergoes synchronization. In the investi-

gations, some analytical results about variations of Lyapunov exponent for system with

specific coupling scheme have been obtained. However, because of inherent and unknown

characteristic in the considered chaotic system, and the interaction of respective chaotic

system through the coupled terms, analytic works about variations of Lyapunov exponent

are rather difficult to establish. An alternative way to accomplish this task is to study

the relation between Lyapunov exponent and the discrete type chaotic coupled system

with different coupling schemes. At the same time, observations from thorough and pre-

cise numerical computations, and more mathematics machinery such as ergodic theory

should help make the analytic studies more successful. On the other hand, studying the

connection between Lyapunov exponent and the dissipation of different coupling scheme

is also an interesting project. These investigations are useful in synchronizing the chaotic

system effectively in chaotic control.
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