
Primary answers to these questions can be obtained through many numerical com-

putations. We can first use the setting below, as in [7], in which a Rossler (resp. Lorenz) is

unidirectionally coupled to a Rossler (resp. Lorenz), or consider a coupled Rossler-Lorenz

system and compute the Lyapunov spectrum of the whole system as a function of the

coupling parameter. We can also set up a mutually coupled scheme and do the same

computations. We hope to gain further understanding after accumulating enough numer-

ical data. This can serve as a preliminary work for the scaling of Lyapunov exponent

in coupled chaotic system with different coupling scheme and study connection between

Lyapunov exponent and dissipation of the coherence behavior of coupled system.

In Section 2, we will present several definitions of Lyapunov exponent, and discuss

the relation among these definitions. In addition, we summarize some theorems about

Lyapunov exponent.

In Section 3, we will discuss The subtracted system and the coupled systems as well

as their relationships between them. We then investigate the relation between Lyapunov

exponents of the whole coupled system along with the ones of the associated difference sys-

tem. In the second part of this section, some analytic works about variations of Lyapunov

exponent with special coupling way will be addressed.

In Section 4, we present some results of numerical experiment of chaotic coupled

system with different coupling scheme and provide some numerical illustrations. Section

5 will be devoted to discussion and conclusion.

2 Lyapunov Exponents in Continuous-time Systems

In the first part of this section, we will present the definitions of Lyapunov exponent, and

discuss the relations among these definitions. In the second part, we summarize some

theorems about Lyapunov exponent.

Before we begin introducing the definitions of Lyapunov exponent formally, we first

provide the notion of characteristic exponent of functions, which was first developed by

Lyapunov in 1892. The following definition can be found in [Adrianova].

Definition 2.1. Let f(t) be a complex-valued function defined on the interval [t0,∞).

χ[f ] = lim sup
t→∞

1

t
ln |f(t)|

is called the characteristic exponent of the function f(t).
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The characteristic exponent tells us about the growth of the absolute value of a

function. Clearly, if the characteristic exponent for a function f is the number α, then

for a large time t, the growth of the absolute value of f is almost exp(αt).

We shall mainly deal with finite characteristic exponents with the exception of χ[f ] =

±∞. From Definition 2.1, some basic properties are listed as follows:

(a) χ[f ] = χ[|f |],

(b) χ[cf ] = χ[f ],

(c) if |f(t)| ≤ |g(t)| for t ≥ a, then χ[f ] ≤ χ[g].

We summarize further properties of characteristic exponent in the following para-

graph.

Theorem 2.2 (Adrianova). The characteristic exponent of the sum of a finite number

of the functions fk(t), k = 1, 2 . . . n, does not exceed the greatest one of the characteristic

exponents of these functions, i.e.,

χ[
n∑

k=1

fk(t)] ≤ max
1≤k≤n

χ[fk(t)].

The equality holds if only one of these functions has the greatest exponent. On the other

hand, the characteristic exponent of the product of a finite number of functions does not

exceed the sum of the characteristic exponents of factors, i.e.,

χ[
n∏

k=1

fk(t)] ≤
n∑

k=1

χ[fk(t)],

and the equality holds if one function has a finite limit, i.e.,

lim
t−→∞

1

t
ln |fk(t)| = α 6= ±∞ for some k.

Now, let us consider the characteristic exponent of an integral. Following Lyapunov,

in considering characteristic exponents of integral, we set

F (t) =

∫ t

a

f(s)ds, where a =

{
t0 for χ[f ] ≥ 0,
∞ for χ[f ] < 0.

The integral defined in this way is called the Lyapunov integral. With this definition,

we have the following theorem about the characteristic exponent of integral and integrand.
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Theorem 2.3 (Adrianova). Let F (t) be the Lyapunov integral of f(t). The character-

istic exponent of an integral does not exceed the characteristic exponent of the integrand,

i.e.,

χ[F ] ≤ χ[f ].

Naturally, we are bound to ask: why do we need a condition on the lower integral

limit in the integral ? Let us consider a example, f(t) = exp(αt), then

F (t) =

∫ t

t0

exp(αs)ds.

For α > 0 or α = 0, χ[F ] ≤ χ[f ] holds. But for α < 0, χ[F ] > χ[f ]. Henceforth, we need

to employ the notion of Lyapunov integral in our studies.

Remark 2.4. When χ[f ] = α < 0, we can rewrite the Lyapunov integral in the form

∫ t

∞
f(s)ds =

∫ t

t0

f(s)ds−
∫ ∞

t0

f(s)ds,

where the second integral on the right-hand side of the equality is convergent.

So far we have only discussed the characteristic exponent of a scalar function. Now

we shall present some definitions and theorems of the characteristic exponent of the matrix

function. The following definition can be found in [Adrianova].

Definition 2.5. Let F (t) be a m × n matrix function of t, m ≤ n. The number defined

as

χ[F ] = max
i,j

χ[fij]

is called the characteristic exponent of the matrix F (t).

Theorem 2.6 (Adrianova). The characteristic exponent of a finite size matrix F (t)

coincides with the characteristic exponent of its norm, i.e.,

χ[F ] = χ[‖F‖].

The result always holds for all norms.
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Theorem 2.7 (Adrianova). The characteristic exponent of the sum of a finite number

of matrices does not exceed the greatest one of characteristic exponents of these matrices,

i.e.,

χ[
n∑

k=1

Fk(t)] ≤ max
1≤k≤n

χ[Fk(t)].

The equality holds if only one matrix has the greatest characteristic exponent. The char-

acteristic exponent of the product of a finite number of matrices does not exceed the sum

of the characteristic exponents of these matrices, i.e.,

χ[
n∏

k=1

Fk(t)] ≤
n∑

k=1

χ[Fk(t)].

The equality holds if one matrix function has a finite limit.

Obviously, Theorem 2.7 is similar to Theorem 2.2. In addition, for a vector-valued

function, the above theorems are also valid.

Lyapunov exponents provide a qualitative and quantitative characterization of dy-

namical behavior. It is related to the exponentially fast divergence or convergence of

nearby orbits in phase space. In fact, they are a generalization of the eigenvalues for

linear systems and of characteristic multipliers for periodic linear systems. In the case of

linear homogeneous systems with constant coefficients, Lyapunov exponents are the real

parts of the eigenvalues of the matrix of coefficients, and in the case of periodic coeffi-

cients they are the real parts of the logarithms of the characteristic multipliers divided

by the period. They can be used to determine the stability of quasi-periodic and chaotic

behavior as well as that of equilibrium points and periodic solutions.

Consider an autonomous continuous dynamical system of the following form:

ẋ(t) = f(x(t)), t ≥ 0; x(0) = x0, x(t) ∈ Rn, (2.1)

where f is continuously differentiable. Let φt(x0) be the solution of the system (2.1),

which passes through x0 at t = t0.

Consider the linear variational equation:

Ẏ (t) = Dxf(φt(x0))Y =: A(t)Y (t), Y (t) ∈ Rn×n, t ≥ t0, Y (t0) = I, (2.2)
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where A(t) =
∂f

∂x
(φt(x0)) ∈ Rn×n. Let Φ(t) be the fundamental matrix solution (FMS) of

the variational equation (2.2). Since the initial condition is the identity matrix, it follows

that a perturbation δx0 of x0 evolves according to (2.2) is

δx(t) = Φ(t)δx0,

where δx0 is the initial infinitesimal perturbation at x0.

The perturbation δx may be interpreted in two ways: as an infinitesimal pertur-

bation of the solution for the original system (2.1) or as a vector-valued solution of the

linear variational equation (2.2).

Now, we will present the definition of Lyapunov exponent as follow:

Definition 2.8. Consider the system (2.1), and n linearly independent initial perturbation

vectors {δix0 | i = 1, · · · , n} at x0. Let Φ(t) be the fundamental matrix solution of the

variational equation (2.2), then the number defined as

λi(x0) = lim sup
t→∞

1

t
ln ‖δix(t)‖ = lim sup

t→∞

1

t
ln ‖(Φ(t)δx0)i‖

is called the Lyapunov exponent of the system (2.1) at x0, where δix(t) is regarded as

a perturbation function of the solution for the original system (2.1), i = 1 . . . n.

In fact, Lyapunov exponents are characteristic exponents of the perturbation func-

tions of the system (2.1).

Another aspect of this notion is on how Φ(t) changes lengths of all perturbation

vectors. We can consider the square of the length of the image of a perturbation vector

δx0 under Φ(t) by

||Φ(t)δx0||2 = (Φ(t)δx0)
T Φ(t)δx0

= δxT
0 [(Φ(t))T Φ(t)]δx0.

It is possible to take roots: [(Φ(t))T Φ(t)]1/2 measures how much lengths are changed by

Φ(t), and [(Φ(t))T Φ(t)]1/2t measures the average amount vectors are stretched. Therefore,

we can also rewrite the definition 2.8 as follow:
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Definition 2.9 (Eckmann and Ruelle). Let Φ(t) be the FMS of the linear variational

equation (2.2), then the following symmetric positive-definite matrix exists:

Λ = lim sup
t−→∞

(Φ(t)T Φ(t))1/2t,

and the logarithms of their eigenvalues are called the Lyapunov exponents of (2.2).

From definition 2.8 and definition 2.9, we know there are n Lyapunov exponents for

(2.2) at x0. All these exponents are probably different. Next, we shall present another

definition that which requires the FMS, Φ(t), be the normal FMS.

Let us turn again to the linear homogeneous system (2.2). Suppose its spectrum

contains p elements, p ≤ n, i.e., let

∞ > λ1 > λ2 > · · · > λp > −∞
be the set of distinct characteristic exponents of solutions for the linear system (2.2).

Consider the FMS Φ(t) of the linear system, which has form as Φ(t) = {φ1(t), . . . , φn(t)}
ordered in such a way that χ[φk] ≤ χ[φk+1], k = 1, . . . n − 1. Of course, some of these

characteristic exponents could coincide. Let this FMS contain rk solutions with the char-

acteristic exponent λk, k = 1, . . . , p. We note that some rk may be zero.

We call the number

σΦ =

p∑

k=1

rkλk,

the sum of characteristic exponents of the FMS Φ(t).

Definition 2.10 (Adrianova). A FMS Φ(t) of the linear homogeneous system is called

normal if σΦ ≤ σΨ, for all possible FMS, Ψ(t), of the linear homogeneous system.

In fact, a FMS Φ(t) = {φ1(t), . . . , φn(t)} is normal if and only if it has the property

of incompressibility, i.e.

χ[
n∑

i=1

ciφi(t)] = max
1≤i≤n

χ[φi(t)],

where |ci| 6= 0.

By the normal FMS of the linear homogenous system, the definition of Lyapunov

exponent can be written as follow:
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Definition 2.11. Consider the linear variational equation (2.2) of the original system

(2.1) and its normal FMS Φ(t), then the number defined as

λi(x0) = lim sup
t→∞

1

t
ln ‖Φ(t)ei‖

is called the Lyapunov exponent of the system (2.1) at x0, where ei is the standard

basis of Rn, i = 1 . . . n.

However, we would like to know how does a FMS be transformed to a normal FMS.

With the theorem below, Lyapunov showed how to construct a normal FMS.

Definition 2.12 (Adrianova). Consider a FMS Ψ(t) = [ψ1(t), . . . , ψn(t)], such that the

characteristic exponent of the columns of Ψ(t) are ordered as χ[ψ1] ≤ · · · ≤ χ[ψn]. There

exists a nonsingular triangular matrix C of the form




1 0 · · · 0

c21 1
. . .

...
...

. . . . . . 0
cn1 · · · cn,n−1 1


 ,

such that

Φ(t) = Ψ(t)C = {φ1(t), . . . , φn(t)}
is a normal FMS. Similarly, if the characteristic exponent of the columns of Ψ(t) are

ordered as χ[ψ1] ≥ · · · ≥ χ[ψn], then there exists a unit upper triangular matrix C such

that Φ(t) = Ψ(t)C is a normal FMS. A unit triangular matrix is a triangular matrix

whose diagonal elements are 1.

In some references, Lyapunov exponent is also defined as follow:

Definition 2.13 (Parker and Chua). Let Φ(t) is the FMS of the linear variational

equation (2.2), let m1(t), . . . , mn(t) be the eigenvalues of FMS Φ(t), then the Lyapunov

exponent of x0 are defined as

λ(x0) = lim sup
t−→∞

1

t
ln |mi(t)|, i = 1, . . . , n.
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There are similar definitions for nonautonomous continuous dynamical system. Ba-

sically, Definition 2.8, Definition 2.9, and Definition 2.11 are equivalent, but Lyapunov

exponents calculated by Definition 2.13 are different from the above three definitions. We

can give a example as follow:

Consider the linear homogenous system

ẋ = Ax, x(0) = x0, x ∈ R2,

where

A =

(
1 0
et 2

)
.

We can also solve the FMS Φ(t) of this system:

Φ(t) =

(
et 0

te2t e2t

)
.

By the above Theorem 2.7 and Definition 2.5, we can calculate the Lyapunov exponent

by using Definitions 2.8, 2.9, 2.11, and they are λ1(x0) = 2, λ2(x0) = 2. However, cal-

culating the Lyapunov exponent by using Definition 2.13 gives λ1(x0) = 1, λ2(x0) = 2.

Nevertheless, four definitions may be the same under some conditions, and we will discuss

it later.

Next part, we present some properties of Lyapunov exponents.

Definition 2.14 (Adrianova). L is a Lyapunov transformation or Lyapunov ma-

trix if

(i) L ∈ C1[t0,∞).

(ii) L(t), L−1(t), L̇(t) are bound for t ≥ t0.

Let x = L(t)y be a Lyapunov transformation. It follows that

ẋ = A(t)x =⇒ ẏ = B(t)y, B(t) = L−1(t)A(t)L(t)− L−1(t)L̇(t).

¿From the second condition of Definition 2.14, it can be seen that Lyapunov transforma-

tions do not change characteristic exponents.

Consider a linear system

ẋ = A(t)x, x ∈ Rn, A ∈ C([t0,∞)). (2.3)
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Theorem 2.15 (Adrianova). By means of a unitary transformation any linear sys-

tem (2.3) can be reduced to a system with an upper triangular matrix whose diagonal

coefficients are real. If coefficient matrix A(t) of the system (2.3) is bounded, then the co-

efficient matrix of the triangular system are also bounded, and the unitary transformation

is a Lyapunov transformation.

Remark 2.16. In fact, via an unitary transformation Q, any linear system (2.3) can

be reduced to a system whose coefficients matrix is an upper triangular matrix, and the

unitary matrix Q can transform FMS Φ(t) to a upper matrix R.

Consider the following lower triangular coefficient matrix system,

ẋ = A(t)x, x ∈ Rn, A ∈ C[t0,∞), sup ‖A(t)‖ ≤ M, (2.4)

where

A(t) =




a1,1(t) 0 · · · 0

a2,1(t) a2,2(t)
. . . 0

...
...

. . . 0
an,1(t) an,2(t) · · · an,n(t)


 .

Theorem 2.17. The Lyapunov exponents of the triangular system (2.4) with real diagonal

have the form

λk = χ[φk,k(t)] = lim sup
t−→∞

1

t

∫ t

t0

ak,k(s)ds, k = 1, . . . , n.

Proof. We introduce the notation

Ak = exp

∫ t

t0

ak,k(s)ds.

Consider the FMS

Φ(t) = {φ1(t), . . . , φn(t)},
where

φk(t) =




φk,1(t)
φk,2(t)

...
φk,n(t)


 ,
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and
φk,j(t) = 0 for j < k,
φk,k(t) = Ak for j = k,

φk,j(t) = Aj

∫ t

αj

A−1
j

j−1∑

s=k

aj,s(u)φk,s(u)du = Aj

∫ t

αj

B(u)du for j > k,

where

αj =

{
t0 if χ[B] ≥ 0,
∞ if χ[B] < 0.

Now, let us show that χ[φk(t)] = λk,

χ[φk,k] = λk,

χ[φk,k+1] = χ[Ak+1

∫ t

αk+1

A−1
k+1ak+1,k(u)φk,k(u)du]

≤ χ[Ak+1] + χ[

∫ t

αk+1

A−1
k+1ak+1,k(u)φk,k(u)du]

≤ λk+1 + χ[A−1
k+1ak+1,k(u)φk,k(u)du]

≤ λk+1 + χ[A−1
k+1] + χ[ak+1,k(t)] + χ[φk,k]

≤ λk+1 − λk+1 + 0 + λk

≤ λk.

In the above derivations, we have used Theorems 2.2 and 2.3. Next, it can be shown by

induction that

χ[φk,i] ≤ λk, for i = k, . . . , j − 1.

Thus, we get

χ[φk,j] = χ[Aj

∫ t

αj

A−1
j

j−1∑

s=k

aj,s(u)φk,s(u)du]

≤ λj − λj + max
s
{χ[aj,s]}+ max

s
χ[φk,s]

≤ λk.

By Definition 2.5, we obtain

χ[φk] = λk.

Let us show that φk(t) is a solution of system (2.4). We will substitute φk(t) into

the system (2.4), and we will check that the equality holds. Since it is obvious for j = k

and j < k, we will only check the case j > k. Firstly, we look the left-hand side of the

equality,
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d

dt
φk,j(t) =

d

dt
Aj

∫ t

αj

A−1
j

j−1∑

s=k

aj,s(u)φk,s(u)du + Aj
d

dt

∫ t

αj

A−1
j

j−1∑

s=k

aj,s(u)φk,s(u)du. (2.5)

When χ[B(t)] < 0, we takes αj = ∞. Hence, the equation (2.5) becomes

d

dt
φk,j(t) =

d

dt
Aj

∫ t

∞
A−1

j

j−1∑

s=k

aj,s(u)φk,s(u)du + Aj
d

dt

∫ t

∞
A−1

j

j−1∑

s=k

aj,s(u)φk,s(u)du.

By Remark 2.4 and the fundamental theorem of calculus,

d

dt
φk,j(t) =

d

dt
Aj

∫ t

∞
A−1

j

j−1∑

s=k

aj,s(u)φk,s(u)du + Aj
d

dt
[

∫ t

t0

A−1
j

j−1∑

s=k

aj,s(u)φk,s(u)du− c]

= ajj(t)Aj

∫ t

∞
A−1

j

j−1∑

s=k

aj,s(u)φk,s(u)du + Aj[A
−1
j

j−1∑

s=k

aj,s(t)φk,s(t)]

= aj,j(t)φk,j +

j−1∑

s=k

aj,s(t)φk,s

=
k∑

s=1

aj,s(t) · 0 +

j∑

s=k

aj,s(t)φk,s +
n∑

s=j+1

0 · φk,s

= the j component of the right− hand side of the system (2.4).

Therefore, we have already checked that the equality of the system (2.4) holds.

Similarly, it holds for the case χ[B(t)] ≥ 0.

Next, we show that the FMS Φ(t) is a normal FMS. We will use the notion of

incompressibility, which is the same as the notion of normal. Without loss of generality,

we assume that

χ[Φ(t)] = χ[φγ1(t)] = · · · = χ[φγs(t)] = max
k

χ[φk] = λ,

where γs ∈ {1, 2, · · · , n}, 1 ≤ s < n, and γ1 < γ2 < · · · < γs. Further, by the preceding

proof and Definition 2.5, we know that

χ[Φ(t)] = χ[φγs(t)] = χ[φγs,γs(t)] = λ > χ[φl,j(t)],

where l ∈ {1, 2, · · · , n} \ {γ1, γ2, · · · , γs}, j = 1, · · · , n. Then,
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n∑

k=1

ckφk =




c1φ1,1

c1φ1,2 + c2φ2,2
...∑n

k=1 ckφk,n


 ,

where |ck| 6= 0, by Theorem 2.2, we can deduce that





χ[
∑t1

k=1 ckφk,t1 ] < λ, 1 ≤ t1 ≤ γ1 − 1

χ[
∑γ1

k=1 ckφk,γ1 ] = λ,

χ[
∑t2

k=1 ckφk,t2 ] ≤ λ, γ1 + 1 ≤ t2 ≤ n.

Once again, by Definition 2.5, we obtain

χ[
n∑

k=1

ckφk] = max
k

χ[φk] = λ,

Similarly, as

χ[Φ(t)] = χ[φk(t)] = λ, ∀ k = 1, 2, · · · , n,

we can show the same manner. Therefore, we have completed the proof the FMS Φ(t) is

a normal FMS. Hence,

λk = χ[Ak] = χ[φk] = lim sup
t−→∞

1

t

∫ t

t0

ak,k(s)ds, k = 1, . . . , n.

Remark 2.18. In fact, we still need to discuss whether definition 2.13 is the same under

unitary transformation (here, it also satisfies the condition of Lyapunov transformation)

which can transform the original system to a triangular one. Hence, the question is the

same as

lim sup
t−→∞

1

t
ln |mi(t)| = lim sup

t−→∞

1

t
ln |pj(t)| ? ∀i, j = 1, · · · , n,

where mi(t) is the eigenvalue of the FMS Φ1(t) of original linear variational system, and

pj(t) is the eigenvalue of the FMS Φ2(t) of linear system that was transformed.

Intuitively, since this Lyapunov transformation (or Lyapunov matrix) is a unitary

matrix, the dynamical behavior of the original system should not be influenced from the

fact that the any unitary matrix is the composite of rotations and reflections. From this

view, it perhaps tells us the answer to the above question is right.
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If this answer is right, then Theorem 2.17 can tell us calculate results using Definition

2.8, 2.9, 2.11, and 2.13 are the same under the coefficient matrix A(t) in the system (2.2)

is uniformly bounded. In fact, we mainly discuss the Lyapunov exponent of the dissipative

system with attractor. Therefore, the condition the coefficient matrix A(t) in the system

(2.2) is uniformly bounded can satisfy.

For the limit existence of Lyapunov exponent, we also present as follows:

Consider a system

ẋ = A(t)x, x ∈ Rn, A ∈ C[t0,∞), sup ‖A(t)‖ ≤ M. (2.6)

Definition 2.19 (Adrianova). The system (2.6) is regular if and only if the following

two conditions are satisfied simultaneously:

(i) The limit

lim
t−→∞

1

t

∫ t

t0

tr(A(s))ds = Λ

exists.

(ii) For any normal FMS Φ(t) such that σΦ = Λ.

Remark 2.20. A regular system transformed by Lyapunov transformation is still a regular

system.

Theorem 2.21 (Adrianova). The triangular system (2.4) with real diagonal is regular

if and only if its Lyapunov exponent λk has finite limit value, i.e,

λk = χ[φkk(t)] = lim
t−→∞

1

t

∫ t

t0

akk(s)ds, k = 1, . . . , n.

Remark 2.22. In fact, by means of remark 2.20 and theorem 2.21, the Lyapunov exponent

of a regular system has finite limit value.

Theorem 2.23 (Oseledec). The continuous dynamical system (2.1), and the variational

equation (2.2), Φ(t) is its FMS. For the ergodic measure ρ, then almost all x ∈ Rn, the

following limits exist:

(i)

lim
t−→∞

(Φ(t)T Φ(t))1/2t = Λx.
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(ii)

lim
t−→∞

||Φ(t)u|| = λk(x), if u ∈ Ek(x) \ Ek+1(x),

where λ1(x) > λ2(x) > . . . are the logarithms of the eigenvalue of Λ(x), and Ek(x) is the

subspace of Rn corresponing to the eigenvalues ≤ exp λk(x).

In fact, regular systems we discussed above are prevalent in a certain measure theo-

retic sense. We can see Oseledec’s work [8]. For example, the work [8] implies that if the

variational equation (2.2) comes from linearization of a trajectory of a nonlinear system,

and the orbit through the initial condition x0 generates an ergodic measure, then the

Lyapunov exponents exist as limits (and the system (2.2) is regular) and they are the

same for almost every x0 with respect to the ergodic measure.

Next, we shall summary some significant properties of Lyapunov exponent for dy-

namical system as following:

Proposition 2.22:

(i) Any continuous dynamical system without a fixed point will have at least one zero

exponent [5], corresponding to the slowly changing magnitude of a principal axis

tangent to the flow.

(ii) The sum of the Lyapunov exponents is the time-averaged divergence of the phase

space velocity; hence any dissipative dynamical system will have at least one negative

exponent.

(iii) By the definition of sensitive dependence of chaos, any chaotic continuous dynamical

will have at least one positive exponent.

(iv) For the ergodic measure, almost every point in the basin of attractor of strange

attractor has the same Lyapunov exponent. But, for every point (Not need almost

every) in the basin of attractor of nonstrange attractor has the same Lyapunov

exponent.
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