
3 Lyapunov Exponents for Coupled Chaotic Systems

In Section 3.1, we will discuss Lyapunov exponents of the difference system and of the

coupled system corresponding to two identical chaotic attractors. In Section 3.2, we

present some analytical results for variations of Lyapunov exponent for certain coupled

system which undergoes synchronization.

3.1 Lyapunov Exponents for Coupled Chaotic System and Dif-
ference System

Consider a system of ordinary differential equations

ẋ = f(x), x(0) = x0 ∈ Rn, (3.1)

where f ∈ C1 is such that the system has a chaotic attractor. We couple two such identical

systems in a unidirectional manner:

ẋ1 = f(x1), x1(0) = x
(0)
1 ∈ Rn

ẋ2 = f(x2) + kD(x1 − x2), x2(0) = x
(0)
2 ∈ Rn,

(3.2)

where D is a n× n coupling matrix, k is the coupling parameter.

We note that the x1-component is not influenced by the x2-component, while x2-

component affects the x1-component. Therefore, we sometimes call the x1-subsystem

driving (or master) one, and the x2-subsystem response (or slave) one.

Then, its variational system along a solution (x1(t;x
(0)
1 ),x2(t, k;x

(0)
2 )) is

(
ẏ1

ẏ2

)
=

(
A1(t) 0
kD A2(t, k)− kD

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
y

(0)
1

y
(0)
2

)
, (3.3)

where

A1(t) = Dxf(x1(t;x
(0)
1 )) ∈ C([0,∞)), ||A1(t)|| ≤ M,

A2(t, k) = Dxf(x2(t, k;x
(2)
0 )) ∈ C([0,∞)× [0,∞)), ||A2(t, k)|| ≤ M,

and (x1(t;x
(0)
1 ),x2(t, k;x

(0)
2 )) is the solution of this coupled system, which passes through

(x
(0)
1 ,x

(0)
2 ) at t = 0. We hope to understand the dynamical behavior of the whole coupled

system in the aspect of its Lyapunov exponents.

When we study the behavior of amplitude synchronization for coupled system, we

may calculate the Lyapunov exponent of the difference system, which will tell us whether
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if the variable difference will damp out or not and hence whether if the synchronization

state is stable or not. The difference system corresponding to two identical oscillators

coupled in a unidirectionally manner is as follows.

ż = f(x1)− f(x2)− kDz = (A2(t, k)− kD)z + h(z, k), (3.4)

where z = x1 − x2 ∈ Rn, h ∈ C(Rn × [0,∞)). Sometimes, (3.4) can be written as

ż = (A3(t, k)− kD)z.

as is the case for the coupled Rossler-Rossler system and coupled Lorenz-Lorenz system.

where

A3(t, k) ∈ C([0,∞)× [0,∞)), ||A3(t, k)|| ≤ M.

In fact, h(z, k) contains the higher order terms of Taylor expansion of f(x1) − f(x2) =

f(z+x2)−f(x2) about x2. As to A3(t, k), we may give a example of the difference system

of Rossler-Rosseler system. From this example, it helps to understand what A3(t, k) is

and the general form of the difference system. The Rossler system is system (3.1) with

f = (f1, f2, f3) and f1(x) = −x2 − x3, f2(x) = x1 + 0.15x2, f3(x) = 0.2 + x3(x1 − 10),

where x = (x1, x2, x3). Consider the Rossler-Rossler system coupled as in (3.2). Denote

xi = (xi1, xi2, xi3), i = 1, 2. Then, its linear variational system can be written as follows:

(
ẏ1

ẏ2

)
=

(
A1(t) 0
kD A2(t, k)− kD

) (
y1

y2

)
,

where yi = (yi1, yi2, yi3), i = 1, 2,

A1(t) =




0 −1 −1
1 0.15 0

x13(t) 0 x11(t)− 10


 ,

and

A2(t, k) =




0 −1 −1
1 0.15 0

x23(t, k) 0 x21(t, k)− 10


 .

Let z = (z1, z2, z3) = x1 − x2, then its difference system can be written as follows:

ż = (A3(t, k)− kD)z = (A2(t, k)− kD)z + h(z, k),

where

A3(t, k) =




0 −1 −1
1 0.15 0

x23(t, k) 0 x11(t)− 10


 ,
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and h(z, k) = (0, 0, z1z3). From this instance, we observe that A3(t, k) is a time dependent

matrix and some of its coefficients are different from A2(t, k).

Therefore, the Lyapunov exponents of response system are not the same as the ones

of the difference system, as to be seen in the numerical computations in Fig.26 and Fig.27.

However, we will see that those Lyapunov exponents seem to be the same as coupling

parameter k exceeds some value at which the positive Lyapunov exponent of the difference

system becomes negative. The reason is because that amplitude synchronization arises. In

physical viewpoint, the term h(z, k) of the difference system can die out asymptomatically,

and the coefficient matrix A2(t, k)− kD of variational system of the response system and

the coefficient matrix A3(t, k)− kD of the difference system are nearly the same for large

t. We believe this also holds for coupled Lorenz-Lorenz system, although it remains to be

checked more carefully.

There are a few facts that we are assure of in computing Lyapunov exponents.

Namely,

(i) The Lyapunov exponents of the driving system are the same as the ones of the

original system (3.1), as long as the coupling is unidirectional. It is clear that under a Lya-

punov transformation the linear variational system can be transformed to the triangular

one. By means of the property that Lyapunov transformation does not change Lyapunov

exponent of the original system, we arrive at this assertion.

(ii) In physics, the coefficient matrix of the variational equation of the response

system is the same as the one of the difference system for large time t as coupling parameter

k exceeds some value at which the positive Lyapunov exponent of the difference system

becomes negative.

On the other hand, we also consider the identical system coupled in a bidirectionally

manner:

ẋ1 = f(x1) + kD(x2 − x1), x1(0) = x
(0)
1 ∈ Rn

ẋ2 = f(x2) + kD(x1 − x2), x2(0) = x
(0)
2 ∈ Rn,

(3.5)

where D is a n× n coupling matrix, k is the coupling parameter.

Then, its variational system along a solution (x1(t, k;x
(0)
1 ),x2(t, k;x

(0)
2 )) is
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(
ẏ1

ẏ2

)
=

(
A1(t, k)− kD kD

kD A2(t, k)− kD

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
y

(0)
1

y
(0)
2

)
,

(3.6)

where

A1(t, k) = Dxf(x1(t, k;x
(0)
1 )) ∈ C([0,∞)× [0,∞)), ||A1(t, k)|| ≤ M,

A2(t, k) = Dxf(x2(t, k;x
(2)
0 )) ∈ C([0,∞)× [0,∞)), ||A2(t, k)|| ≤ M.

(x1(t, k;x
(0)
1 ),x2(t, k;x

(0)
2 )) is the solution of this coupled system, which passes through

(x
(0)
1 ,x

(0)
2 ) at t = 0.

Its difference system is similar to one of the unidirectional coupled system. The

difference system can be written as follow:

ż = f(x1)− f(x2)− 2kDz = (A2(t, k)− 2kD)z + h(z, k), (3.7)

where z = x1 − x2 ∈ Rn, h ∈ C(Rn × [0,∞)). Similar to the unidirectional scheme, (3.7)

sometimes can be written as

ż = (A3(t, k)− 2kD)z.

As is the case for the coupled Rossler-Rossler system and coupled Lorenz-Lorenz system,

where

A3(t, k) ∈ C([0,∞)× [0,∞)), ||A3(t, k)|| ≤ M.

We note that x1 and x2 subsystem of the coupled system, which interacts each other,

so it can not be solved individually, as the situation in the unidirectional coupled system.

To obtain Lyapunov exponent, we must solve the whole system. At the same time, we

seek for the relation between Lyapunov exponents of the whole system and the ones of the

difference system. Restart, are some Lyapunov exponents of the whole system the same as

the ones of the difference system, as the case in the unidirectional-coupled system? Under

the special circumstances x0
1 = x0

2, we know some Lyapunov exponents of bidirectional-

coupled system are the same as the ones of the difference system. We will see this fact

in the theorem in the later subsection. As to x0
1 6= x0

2, from the numerical observation,

we can find the Lyapunov exponents of the coupled system and the ones of the difference

system seem to be the same as coupling parameter k exceeds some value. Similarly, we
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only check coupled Rossler-Rossler system; for coupled coupled Lorenz-Lorenz, further

investigations are needed.

Let us consider the question when do two coupled chaotic systems become synchro-

nized ?

In [9], [10], [11], identical synchronization (or amplitude synchronization) arises as

the largest Lyapunov exponent of of the difference system becomes negative. On the other

hand, [7] declares amplitude synchronization takes place as one original positive Lyapunov

exponent of coupled chaotic system becomes negative through some coupling parameter.

From our numerical observation, we have observed that the above two significant coupling

parameters of amplitude synchronization seem to be the same. There is still the question

that why [7] adopts the second view of amplitude synchronization. The possible reason

is that before calculating Lyapunov exponents of the difference system, we need to solve

the whole coupled system. To obtain the difference system and its associated linear

variational equation. However, if we adopt the viewpoint in [7], than we only solve the

coupled system and its linear variational one. Herein, we use the viewpoint in [7] as the

criterion for amplitude synchronization to take place.

3.2 Variations of Lyapunov Exponents for Synchronized Chaotic
Systems

In the first subsection, we discuss the variations of Lyapunov exponents of the unidirec-

tionally coupled system, and in the second subsection, we are concerned with the variations

of Lyapunov exponent of the bidirectionally coupled system. In each subsection, we only

adopt the full component coupling scheme, which is

K = kIn,

where k is the coupling parameter. This special coupling scheme is used in control theory,

and we can always synchronize the coupled system with the right choice of coupling

parameter k.

As to the other coupling scheme, the one component coupling scheme is described
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as follows:

K =




k 0 · · · 0

0 0
. . .

...
...

. . . . . .
...

0 · · · · · · 0




n×n

.

We only consider the coupling term x1 (or x2) component. Several studies on the syn-

chronization of two chaotic systems apoted this coupling scheme. Nevertheless, we only

discuss variations of Lyapunov exponents of the coupled system with the full component

coupling scheme in numerical results.

3.2.1 The unidirectional coupling

Before we present the main result, we first introduce the notion of stability of Lyapunov

exponent and related theorem. Consider the system

ẋ = C(t)x, (3.8)

where

C ∈ C(R+), sup
t∈R+

||C(t)|| ≤ M, x ∈ Rn,

with Lyapunov exponents λ1, λ2, . . . , λn, and the perturbed system

ẏ = [C(t) + E(t)]y,

E ∈ C(R+), sup
t∈R+

||E(t)|| ≤ δ,

with Lyapunov exponents λ′1, λ
′
2, . . . , λ

′
n.

Definition 3.1 (Adrianova). The Lyapunov exponents of the system (3.8) are said to

be stable if for all ε > 0, there exists δ > 0 such that the inequality supt∈R+ ||E(t)|| < δ

implies the inequality

|λi − λ′i| < ε, i = 1, . . . , n.

Theorem 3.2 (Adrianova). If the Lyapunov exponent of the system (3.8) is stable and

||E(t)|| −→ 0 as t −→∞,

then

λi = λ′i, i = 1, . . . , n.
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Theorem 3.3 (Adrianova). (Necessary and sufficient conditions for stability of Lya-

punov exponent.)

If the system (3.8) has different Lyapunov exponent., then they are stable if and only if the

system (3.8) has integral separateness property, i.e. it has solutions x1(t),x2(t), . . . ,xn(t)

such that the inequalty

||xi(t)||
||xi(s)|| ·

||xi+1(s)||
||xi+1(t)|| ≥ dea(t−s), i = 1, . . . , n− 1,

holds for some constants a > 0, d > 0 and for all t ≥ s.

Remark 3.4.

(i) Integral separateness is invariant under Lyapunov transformation.

(ii) We can confirm the integral separateness of the original system by means of checking

whether diagonal elements bi,i of the triangular system have integral separateness. Herein,

the triangular system is the system which be reduced by Lyapunov transformation. In other

words, we only check whether if the following inequality are satisfied, i.e.

∫ t

s

[bi,i(τ)− bi+1,i+1(τ)]dτ ≥ a(t− s)− d, t ≥ s, a > 0 d ∈ R i = 1, . . . , n− 1.

(iii) Diagonal elements bi,i of the triangular system are integrally separated if and only if

for sufficiently large H such that the following inequality holds

1

H

∫ t+H

t

[bi,i(τ)− bi+1,i+1(τ)]dτ ≥ a > 0, t ≥ 0.

Now, let us recall a dynamical system (3.1)

ẋ = f(x), x(0) = x0, x ∈ Rn,

where the f is assumed to be continuously differentiable, and has a chaotic attractor. Let

x1(t;x0) be the solution of the system (3.1) passing through x0 at t = 0.

Consider a unidirectionally coupled system of the following forms:

ẋ1 = f(x1), x1(0) = x0
1

ẋ2 = f(x2) + K(x1 − x2), x2(0) = x0
2,

(3.9)
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Theorem 3.5. If the linear variational system of (3.1) has the integral separateness

property, then the Lyapunov exponents of the unidirectionally coupled system (3.9) are

λ1, λ2, . . . , λn, λ1 − k, λ1 − k, . . . , λn − k, for k ≥ k∗,

where λ1, λ2, . . . , λn are Lyapunov exponents of the original system (3.1). k∗ is some

coupling parameter value.

Proof. We divide the discussions into two cases.

When x0
1 = x0

2 , then the variational equation of (3.9) is

(
ẏ1

ẏ2

)
=

(
A1(t) 0

K A1(t)−K

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
y0

1

y0
2

)
, (3.10)

where yi ∈ Rn, i = 1, · · · , n,

A1(t) = Dxf(x1(t; x
0
1)) ∈ C([0,∞)), ||A1(t)|| ≤ M,

and (x(t;x0),x(t;x0)) is the solution of the system (3.9) passing through (x0,x0) at t = 0.

Then, the FMS of (3.10) is

Φ(t) =

(
Φ1(t) 0
Φ21(t) e−ktΦ1(t)

)
,

where Φ1(t) is a FMS of the system ẏ1 = A1(t)y1, hence we can find a Lyapunov trans-

formation

Q =

(
0 Q1

Q1 0

)
,

so that the system (3.10) is transformed to the triangular system (3.11).

(
ż1

ż2

)
=

(
B1(t)−K K

0 B1(t)

)(
z1

z2

)
,

(
z1(0)
z2(0)

)
=

(
z0

1

z0
2

)
, (3.11)

where Y = QZ, Y = (y1,y2), Z = (z1, z2) and Q1 is the n × n unitary matrix of QR

decomposition of FMS Φ1 in Theorem 2.15, and

ẏ1 = A1(t)y1 =⇒ ż1 = B1(t)z1, B1(t) = Q−1
1 (t)A1(t)Q1(t)−Q−1

1 (t)Q̇1(t),

with B1(t) also a n× n upper triangular matrix.
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Hence, by Theorem 2.17, we obtain the result that the Lyapunov exponents of the

system (3.9) are

λ1, λ2, . . . , λn, λ1 − k, λ2 − k, . . . , λn − k,

where λ1, λ2, . . . , λn are Lyapunov exponents of the original system (3.1). In this case k∗

is 0.

When x0
1 6= x0

2 , then the variational equation of the system (3.9) arises is

(
ẏ1

ẏ2

)
=

(
A1(t) 0

K A2(t, k)−K

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
y0

1

y0
2

)
, (3.12)

where

A1(t) = Dxf(x1(t;x
(1)
0 )) ∈ C([0,∞)),

A2(t, k) = Dxf(x2(t, k;x
(2)
0 )) ∈ C([0,∞)× [0,∞)),

||A1(t)|| ≤ M, ||A2(t, k)|| ≤ M,

and (x1(t;x
0
1),x2(t, k;x0

2)) is the solution of the system (3.9) passing through (x0
1,x

0
2) at

t = 0.

Since the system (3.9) has amplitude synchronization for k large enough, it follows that

lim
t−→∞

(x1(t;x
0
1)− x2(t, k;x0

2)) = 0, for k ≥ k∗.

For this k∗ = kas, at which amplitude synchronization takes place.

Write

x1(t;x
0
1) + e(t, k) = x2(t, k;x

(2)
0 ),

where e(t, k) −→ 0 , as t −→ ∞, for k ≥ k∗. Then, the variational equation (3.12) can

be rewritten as follows

(
ẏ1

ẏ2

)
=

(
A1(t) 0

K A1(t) + E(t, k)−K

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
y0

1

y0
2

)
, (3.13)

where ||E(t, k)|| −→ 0 , as t −→∞, for k ≥ k∗.

Once again, we use the same Lyapunov transformation Q in x0
1 = x0

2 case. Then,

the system (3.13) can be rewritten the system (3.14)
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(
ż1

ż2

)
=

(
B1(t)−K + E1(t, k) K

0 B1(t)

)(
z1

z2

)
,

(
z1(0)
z2(0)

)
=

(
z0

1

z0
2

)
, (3.14)

where Y = QZ, Y = (y1,y2), Z = (z1, z2), ||E1(t, k)|| −→ 0, as t −→∞, for k ≥ k∗.

Because n Lyapunov exponents of the z2-subsystem of the system (3.14) and the

ones of the triangular system of linear variation system of the system (3.1) are the same.

Hence, the other Lyapunov exponents of the system (3.14) can determine by finding

Lyaupunov exponents of ż1 = (B1(t) + E1(t, k) −K)z1. Since there is the perturbation

matrix E1(t, k) in the coefficient matrix of this system, we can use Theorems 3.2 and 3.3

to obtain that the Lyapunov exponents for ż1 = (B1(t) − K)z1 and this system with a

perturbation system ż1 = (B1(t) + E1(t, k)−K)z1 are the same.

Therefore, the Lyapunov exponents of the whole coupled system can be obtained

by finding the ones of ż1 = (B1(t)−K)z1 and ż2 = B1(t)z2. Since the above two systems

are also triangular systems, we may use Theorem 2.17 to conclude that

λ1, λ2, . . . , λn, λ1 − k, λ1 − k, . . . , λn − k, for k ≥ k∗,

where

λi = lim sup
t−→∞

1

t

∫ t

0

bi,i(s)ds, i = 1, · · · , n,

bi,i is the diagonal element of the upper triangular coefficient matrix B1(t). Then, λi,

i = 1, · · · , n are also the Lyapunov exponents of the original original system (3.1) by the

property that Lyapunov transformation does not change the Lyapunov exponent. Hence,

we have completed the proof.

3.2.2 The bidirectional coupling

In this subsection, We only show that the proposition is analogous to x0
1 = x0

2 case in

Theorem 3.5. As to x0
1 6= x0

2, although we also observe such a result similar to Theorem

3.5 from numerical observation. But we are not able to verify it theoretically.

Consider a bidirectional coupled system of the following forms:

ẋ1 = f(x1) + K(x2 − x1), x1(0) = x0
1

ẋ2 = f(x2) + K(x1 − x2), x2(0) = x0
2,

(3.15)

where xi ∈ Rn, i = 1, · · · , n.
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Proposition 3.6. If the initial condition of the system (3.15) satisfies x0
1 = x0

2, then the

Lyapunov exponents of the bidirectional coupled system (3.15) are

λ1, λ2, . . . , λn, λ1 − 2k, λ1 − 2k, . . . , λn − 2k, for k ≥ 0,

where λ1, λ2, . . . , λn are Lyapunov exponents of the original system (3.1).

Proof.

When x0
1 = x0

2, the variational equation of the system (3.15) is

(
ẏ1

ẏ2

)
=

(
A1(t)−K K

K A1(t)−K

) (
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
y0

1

y0
2

)
, (3.16)

where yi ∈ Rn, i = 1, 2,

A1(t) = Dxf(x1(t;x
0
1)) ∈ C([0,∞)), ||A1(t)|| ≤ M,

and (x(t;x0),x(t;x0)) is the solution of the system (3.15) passing through (x0,x0) at

t = 0. In fact, x(t;x0) is also the solution of the original system (3.1) passing through x0

at t = 0. The FMS of the system (3.16) is

Φ(t) =

(
(1

2
e−2kt)Φ1(t) Φ1(t)

(−1
2
e−2kt)Φ1(t) Φ1(t)

)
,

where Φ1(t) is the FMS of the system ẏ1 = A1(t)y1. Hence we can find a Lyapunov

transformation

Q =
1√
2

(
Q1 Q1

Q1 −Q1

)
,

such that the system (3.16) is transformed to the triangular system (3.17),

(
ż1

ż2

)
=

(
B1(t) 0

0 B1(t)− 2K

) (
z1

z2

)
,

(
z1(0)
z2(0)

)
=

(
z0

1

z
0)
2

)
, (3.17)

where Y = QZ, Y = (y1,y2), Z = (z1, z2), and Q1 is the n × n unitary matrix of QR

decomposition of FMS Φ1 in Theorem 2.15, which makes that

ẏ1 = A1(t)y1 =⇒ ż1 = B1(t)z1, B1(t) = Q−1
1 (t)A1(t)Q1(t)−Q−1

1 (t)Q̇1(t),
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and B1(t) is also a n× n upper triangular matrix.

By Theorem 2.17 and the fact that Lyapunov transformation does not change the

Lyapunov exponents, we can obtain the result that Lyapunov exponents of (3.15) are

λ1, λ2, . . . , λn, λ1 − 2k, λ2 − 2k, . . . , λn − 2k, for k ≥ 0,

where λ1, λ2, . . . , λn are Lyapunov exponents of the original system (3.1).

For the situation x0
1 6= x0

2, we slightly discuss in later.

Similarly, the variational equation of (3.15) is

(
ẏ1

ẏ2

)
=

(
A1(t, k)−K K

K A2(t, k)−K

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
y0

1

y0
2

)
, (3.18)

where yi ∈ Rn, i = 1, 2,

A1(t, k) = Dxf(x1(t, k;x0
1)) ∈ C([0,∞)× [0,∞)),

A2(t, k) = Dxf(x2(t, k;x0
2)) ∈ C([0,∞)× [0,∞)),

||A1(t, k)|| ≤ M, ||A2(t, k)|| ≤ M,

and (x1(t, k;x0
1),x2(t, k;x0

2)) is the solution of the system (3.15) passing through (x0
1,x

0
2)

at t = 0. Since the system (3.15) has amplitude synchronization for k large enough, then

lim
t−→∞

(x1(t, k;x0
1)− x2(t, k;x0

2)) = 0, for k ≥ k∗

for this k∗ = kas, at which amplitude synchronization takes place.

Let

x1(t, k;x0
1) + e(t, k) = x2(t, k;x0

2),

where ||e(t, k)|| −→ 0 , as t −→ ∞, for k ≥ k∗. Then, the variational system (3.18) can

be rewritten as following:

(
ẏ1

ẏ2

)
=

(
A1(t, k)−K K

K A1(t, k) + E(t, k)−K

)(
y1

y2

)
, (3.19)

(
y1(0)
y2(0)

)
=

(
y0

1

y0
2

)
.
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where ||E(t, k)|| −→ 0 , as t −→∞, for k ≥ k∗

Similarly, we could consider a Lyapunov transformation Y = QZ, where

Q =
1√
2

(
Q1(t, k) Q1(t, k)
Q1(t, k) −Q1(t, k)

)
,

Y = (y1,y2), Z = (z1, z2), and Q1(t, k) is the n× n unitary matrix of QR decomposition

of FMS Φ1 in theorem 2.15, which makes that

ẏ1 = A1(t, k)y1 =⇒ ż1 = B1(t, k)z1,

B1(t, k) = Q−1
1 (t, k)A1(t, k)Q1(t, k)−Q−1

1 (t, k)Q̇1(t, k),

and B1(t, k) is also a n× n upper triangular matrix. Q could transform (3.19) to (3.20)

(
ż1

ż2

)
=

(
B(t, k) + E1(t, k) 0

0 B(t, k) + E1(t, k)− 2K

)(
z1

z2

)
, (3.20)

(
z1(0)
z2(0)

)
=

(
z0

1

z0
2

)
,

where

B(t, k) ∈ C([0,∞)× [0,∞)), ||B(t, k)|| ≤ M,

and B(t, k) is a upper triangular matrix. ||E1(t, k)|| −→ 0, as t −→∞, for k ≥ k∗.

Here, the original coupled system has became a decoupled system. Therefore, the

Lyapunov exponents of z1-subsystem and z2-one in the system (3.20) can be calculated

respectively. Similarly, ż1 = (B(t, k)+E1(t, k))z1 can be considered as a perturbed system

of ż1 = B(t, k)z1. Once again, if we add the integrally separateness condition, then we

have following results.

Lyapunov exponents of the system (3.15) are

λ̄1, λ̄2, . . . , λ̄n, λ̄1 − 2k, λ̄2 − 2k, . . . , λ̄n − 2k,

where λ̄1, λ̄2, . . . , λ̄n are Lyapunov exponents of the system ż1 = B(t, k)z1 (or the system

ẋ1 = A1(t, k)x1).

However, we may ask the question: does the linear system ż1 = B(t, k)z1 always

have the integrally separateness for k ≥ k∗? The answer needs to be found.

Remark 3.7. From numerical results of bidirectionally coupled system in the next section,

λ̄1, λ̄2, . . . , λ̄n seem to be the Lyapunov exponents of the original system (3.1).
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Remark 3.8. In the derivation of the Theorem 3.5, it needs the condition of integral

separateness. However, for the linear system, if the integral separateness is not satisfied,

then the result of Theorem 3.5 can be obtained. Let us give a example as follows,

ẋ = A(t)x, A(t) =

(
1 + π

2
sin π

√
t 0

0 0

)
, x ∈ R2.

It has two Lyapunov exponents 1 and 0. This system does not have integral separateness,

but the result of Theorem 3.5 holds for its coupled system.

Remark 3.9. In numerical experience, we vary the coupling parameter k in order to

receive amplitude synchronization which arises as the largest Lyapunov exponent of the

difference system becomes negative by varying k. Hence, by the definition of Lyapunov

exponent, we can ei(t) ≈ exp λjt, for large t, where ei is the error vector of the difference

system, i, j = 1, · · ·n, λj < 0 by varying k. From this fact, we perhaps can understand the

perturbation term of the coefficient matrix of the system (3.13) and (3.19) that it converges

to 0 with a negative exponential rate. It may imply that the Lyapunov exponents of the

original system and its perturbed system are the same without Theorem 3.2 and Theorem

3.3.

4 Numerical Illustrations

In the first two section, we present some results of numerical experiments which is related

to the discussion in the preceding section, where the coupled system consists of two Rossler

system or two Lorenz ones.

In the third part, we mainly concern ourself with the numerical results about Lya-

punov exponents of two different coupled systems. Namely, the coupled system consists

of one Rossler and one Lorenz equations.

In the fourth part, we summarize our numerical results and compare variations of

Lyapunov exponents for the Rossler and Lorenz systems coupled in different manners.

Some parts of the results in the tables need further numerical evidence.

The following numerical experience mainly uses the matlab program to execute,

and the algorithm of calculating Lyapunov exponent is adopted from [3], other related

calculating algorithms are in the reference [1], [2], [12].
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