國立交通大學

工學院產業安全與防災學程

碩士論文

潔淨室內 SF₆氣體的擴散實驗 Experimental study of sulfur hexafluoride (SF₆) dispersion inside a cleanroom

- 研究生:施惠雅
- 指導教授:蔡春進 教授

中華民國九十六年六月

潔淨室內 SF6 氣體的擴散實驗

Experimental study of sulfur hexafluoride (SF₆) dispersion inside a cleanroom

研究生:施惠雅 Student:Hui-Ya Shih

指導教授: 蔡春進 Advisor : Chuen-Jinn Tsai

國立交通大學

A Thesis

Submitted to Degree Program of Industrial Safety and Risk Management College of Engineering National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Industrial Safety and Risk Management

> June 2007 Hsinchu, Taiwan, Republic of China

> > 中華民國 九十六年六月

中文摘要

本研究乃以六氟化硫 (SF₆)為追蹤氣體,模擬半導體製程機台維護保 養時反應腔殘氣逸散,及管路內氣體洩漏時對潔淨室污染之影響,實驗區 域為蝕刻與薄膜製程區以及爐管區,實驗區域內釋放 SF₆氣體同時搭配三台 抽氣式 FTIR 於潔淨室內作多次不同位置量測,同時一組開放光徑式 FTIR 於相鄰獨立之微影區迴風前同步監測。研究結果發現,潔淨室內若有氣體 洩漏,經與循環氣流混合後其稀釋倍數最少為 10⁵倍,即使微影為相對正壓 與獨立循環區域,其他製程區之污染氣體仍會藉由擴散作用影響微影區, 本研究結果將有助於氣體監測器之佈點以及擬定潔淨室微污染之控制策 略。

英文摘要

Sulfur hexafluoride (SF₆) of 99.9% was intentionally released as an emission source inside a manufacturing cleanroom to study the contaminating gas dispersion pattern during preventive maintenance processes. To measure the movable Fourier transform SF_6 concentration profiles, three infrared spectrometers (FTIRs) were simultaneously used. In addition, to determine if cross-contamination of different working zones occurred, an open-path FTIR was also used to monitor the SF_6 concentrations before the recirculation air of the fab. The results show that the dilution factor of the cleanroom circulation air Manna Manna is more than 10⁵, and that cross-contamination situation occurs in some isolated areas. The data of this study are useful for a manufacturing fab to develop the airborne molecular contamination (AMC) strategies and to locate the gas sensor installation positions.

致 謝

完成期盼已久的目標,愉悅之情難以言喻!能夠順利完成碩士學程,首 要感謝指導教授<u>蔡春進老師</u>的悉心指導,還有<u>吳宗信老師及簡弘民博士</u>的 寶貴意見。

身為在職生,肩負課業與工作壓力,若無長官及同事支持,單憑個人意 志難以兼顧得宜,感謝亦師亦友的長官<u>李壽南博士</u>,無私的提攜與指導成 就今日的我,還有可信賴的同事們:<u>許大哥、紹儀、阿魯米、光聖</u>、Jeff、 小奧、<u>柏瑞及翔翔</u>,因有大家的支援,才能兼顧學業與工作,感激<u>新友</u>的 支持與包容,使我無後顧之憂;此外,還要感謝過去六年不斷給予機會的 華邦電子<u>謝看處長、洪政樑經理及鏡元</u>,諸位先進的提拔,後輩點滴心頭。 最後,對於曾經給予我鼓勵與關懷的同事、朋友們表達我最真誠的感

謝,雖未能一一列舉,感激之情未有稍減,亦將永銘於心。

謹以此論文獻給我摯愛的家人。

中	文摘	要	I
英	文摘	要	II
致		謝	III
目		錄	IV
表	目	錄	VI
圖	目	錄	
-	、緒	論	
	1.1	前	言1 ESNE
	1.2	研	究目的與內容
-	、文	獻	回顧3
	2.1	微	污染定義與分類3
,	2.2	微	污染之影響與來源4
Ξ	、研	究	方法11
	3.1	研	究架構11
	3.2	實	驗設備與材料12
	3.2	.1	霍式紅外光譜儀(Fourier Transform Infrared Spectroscopy,以下簡
	稱	FT	TR)
	3.2	.2	追蹤氣體-六氟化硫14

3.2.3	質流量控制器	14
3.2.4	釋放 SF ₆ 用之 1/4"鐵氟龍管與 8 吋機台反應腔模型	14
3.3 實馬	臉設計	15
3.3.1	實驗區域	15
3.3.2	實驗條件與規劃點數	16
四、結果」	與討論	20
4.1 實馬	驗結果	21
4.1.1	潔淨室 SF ₆ 內擴散稀釋倍數	21
4.1.2	跨隔間區域氣體污染之嚴重程度	
4.2 研究	究結果討論	
4.2.1	氣態污染物稀釋倍數之影響	
4.2.2	發生跨隔間區域污染之可能原因	
4.3 潔?	爭室內氣態污染物之控制	
五、結論,	與建議	
5.1 結言	淪	
5.2 建言	義	
六、參考:	文獻	41

表目錄

表	1	機台 PM 過程量測之酸性氣體濃度值7
表	2	管路 PM 所量測到之酸性氣體7
表	3	污染物對半導體製程之影響 ^[25] 8
表	4	SEMI 針對不同等級之潔淨室污染物訂定之標準 ^[3] 9
表	5	ITRS 對晶片環境中之污染物控制標準建議值(摘錄自 ^[1])10
表	6	FAB 與 SUBFAB 抽氣式 FTIR 量測位置佈點數19
表	7	重複實驗 SF ₆ 最大濃度值之誤差結果21
表	8	實驗區域一模擬 PM 氣體逸散之結果23
表	9	實驗區域一與實驗區域二模擬氣體管路洩漏之結果
表	10	污染源與潔淨室內各測點濃度之稀釋範圍
表	11	PM 氣體經稀釋後與 SEMI 標準比較35
表	12	半導體廠常見之氣體原物料濃度及其容許濃度

圖目錄

圖	1 ;	絜淨室氣流循環圖2
圖	2	典型五大類氣態微污染之分類及代表物 ^[2] 3
圖	3	『T-TOPPING』現象 ^[8] 6
圖	4	研究架構圖11
圖	5	數種氣體分子之紅外光吸收光譜13
圖	6	抽氣式 FTIR 之儀器組態示意圖13
圖	7	開放光徑式 FTIR 之量測示意圖14
圖	8	鐵氟龍管與反應腔模型實體圖片15
圖	9	反應腔模型組件15
圖	10	實驗區域規劃圖
圖	11	實驗區域一模擬機台殘氣逸散量測點位置18
圖	12	實驗區域一模擬尾氣管路洩漏量測點位置18
圖	13	實驗區域二實驗規劃釋放點數及 FTIR 量測佈置點19
圖	14	實驗區域二兩次釋放實驗編號 8 之 SF6 濃度趨勢圖
圖	15	實驗區域一兩次釋放實驗編號 24 之 SF ₆ 濃度趨勢圖
圖	16	實驗區域一之第5分鐘 SF ₆ 氣體分佈24
圖	17	實驗區域一之第10分鐘 SF ₆ 氣體分佈24
圖	18	實驗區域一之第15分鐘 SF6氣體分佈25
圖	19	實驗區域一之第20分鐘SF6氣體分佈25
圖	20	實驗區域一之第 25 分鐘 SF6 氣體分佈25

圖	21	實驗區域一之第 30 分鐘 SF ₆ 氣體分佈	26
圖	22	實驗區域一之第 35 分鐘 SF ₆ 氣體分佈	26
圖	23	實驗區域一之第40分鐘 SF ₆ 氣體分佈	26
圖	24	實驗區域二之第5分鐘 SF ₆ 氣體分佈	30
圖	25	實驗區域二之第10分鐘 SF ₆ 氣體分佈	30
圖	26	實驗區域二之第15分鐘 SF ₆ 氣體分佈	30
圖	27	實驗區域二之第20分鐘 SF ₆ 氣體分佈	31
圖	28	實驗區域二之第25分鐘SF6氣體分佈	31
圖	29	實驗區域二之第 30 分鐘 SF ₆ 氣體分佈	31
圖	30	微影區迴風牆量測結果 OPEN PATH FTIR 量測結果	33
圖	31	第10次實驗時微影區 SF6濃度趨勢圖	34
圖	32	洩漏源即時診斷系統之示意圖	40
		A DECEMBER OF THE OWNER	

一、緒論

1.1 前言

半導體與光電精密製程之快速演進,趨使潔淨室生產環境潔淨度 要求日趨嚴苛。國際半導體技術藍圖委員會(International Technology Roadmap for Semiconductors, ITRS)預估至 2010 年晶片關鍵尺寸 (critical dimension, CD)將縮小至45 奈米(nm),而微污染控制為關鍵 技術之一^[1]。理論上,污染控制最好方式乃由源頭著手,瞭解污染源 並予以消除乃為最佳策略。整座潔淨室的污染源可來自外氣或由內部 作業所產生,外氣污染物主要源自於本身或鄰近廠煙囪排放、汽機車 或發電機啟動、廢水處理過程之氣體逸散等;而內部作業所產生之污 染包括機台及廠務系統之維修保養(preventive maintenance, PM)、濕式 清洗台(wet bench)逸散、潔淨室設備及材料(如濾材、塑膠手套)釋 氣(outgassing)及製程尾氣或製程氣體管路洩漏等,經由氣流循環擴散 至整作潔淨室內,如圖 1 所示。其中,PM 為廠內每日例行作業,占 廠內污染源貢獻之最大量,另管路洩漏時高濃度的氣體會瞬間逸散至 廠內進而污染製程區,影響產品之正常生產運作。

因此,本研究將針對製程機台 PM 與尾氣管路洩漏兩狀況進行模擬,探討此狀況下潔淨室氣體污染物之擴散情形及其影響程度,希望 能有助於潔淨室內微污染控制策略之研擬。

1

圖 1 潔淨室氣流循環與污染源圖

ALL DE LE

1.2 研究目的與內容

研究內容針對氣態污染物在潔淨室內的不同釋出方式進行模擬 實驗,其一乃模擬製程機台進行維護保養(PM)時氣態污染物擴散情 況,其釋出的速度較低;另一實驗乃模擬製程尾氣管路洩漏時氣體污 染物的擴散情況,污染氣體以噴流的方式釋出。本研究之主要目的為 下列三項:

1. 瞭解氣態污染物在潔淨室內的擴散情形。

2. 瞭解跨隔間區域氣態污染物影響之嚴重程度。

3. 藉由實驗結果輔助潔淨室內氣態污染物之控制策略。

二、文獻回顧

2.1 微污染定義與分類

廣義而言,微污染物包含氣態分子(airborne molecular contamination,簡稱 AMC)及固態微粒(particle),近來文獻將氣態污 染物歸納為五類,分別為酸(acids,簡稱 MA)、鹼(bases,簡稱 MB)、 可凝結物(condensables,簡稱 MC)、掺雜物(dopants,簡稱 MD)及其 他未分類物(no classes)^[2]。根據 SEMI F21-1102 定義,酸為化學反應 中之電子接受者,鹼則為電子提供者;可凝結物為水除外在常壓下沸 點高於室溫之物質,且具有在潔淨物表面凝結之能力;掺雜物則是指 具改變半導體材料電性之元素^[3],五大類氣態微污染分類如圖 2 所 示。

圖 2 典型五大類氣態微污染之分類及代表物^[2]

Forsland 等認為潔淨室內主要微污染來源有四類,分別為製程化 學品的洩漏與逸散、人為活動、潔淨室內設備材料本體釋氣及外氣。 研究發現,人活動會產生 NH₃以及每秒近 600 顆微粒;而潔淨室內 設備材料本體釋氣則包含有 HEPA 濾材釋出硼及由晶片盒釋出 DBP (dibutyl-phthalate)和 BHT (2,6-di-t-butyl-4-methyl-phenol)^[4];最後是外氣,包括 $O_3 \times SO_x \times NO_x \times MA \times MB \times MC$ 及來自海水之 $MD^{[5]}$ 。

2.2 微污染之影響與來源

潔淨室內製程繁複,其中又以微影(lithography)、閘極(gate)及接 觸層(contact layer)等製程對微污染具高敏感度。然微污染不僅影響製 程,對人體健康亦有危害,包括意外事故及 PM 所造成之短暫間歇性 高濃度暴露所引發的肺功能異常、肺癌及自發性流產等症狀^[6]。對於 產品良率之傷害層面更廣,如歸類於 MA 的 HCl 濃度大於 28 ppb 便 可造成肉眼可見之晶片腐蝕^[7]、MB 中的 NH₃會造成『T-topping』現 象,見圖 3^[8]、MC 中含 6 到 10 個的碳化合物會導致微影製程機台鏡 片霧化^[9],屬 MD 的硼吸附於晶片後使摻雜物濃度失去控制^[10]、一顆 粒徑為 50 nm 的微粒便會導致一片晶片(die)毀損^[11]。因此,微污染監 測與控制是締造高良率產品之重要技術,而其中以瞭解污染來源為微 污染控制的首要步驟。以下將對各類微污染來源及其影響舉例說明。

MA 可能源於外氣及內部循環氣體,外氣主要為煙道排放之製程 尾氣藉 MAU(make-up air unit)吸入廠內,循環氣體內之污染物則由 wet bench、機台 PM 及原料或尾氣管路洩漏等所貢獻,其中機台例行 PM 亦為廠內 MA 之主要來源,包含機台與管路端拆清過程皆會釋出 腐蝕性氣體,其中 etching 機台 PM 時發現高濃度的 HCl 和 HCN、 NO₃、SiF₄及 HBr 等危害性氣體滯留於機台內,而 CVD 機台 PM 時 亦發現有 SiF₄、HNO₂、HCOOH 及 NH₃等逸散。值得注意的是多數 業者管路與 dry pump 乃委外清理,此為最難管理且容易忽略的部分, 研究資料顯示管路內的 HCl 濃度可高達 339 ppm,如表 1 與表 2 所 示,拆清過程若未能及時密封處理,高濃度的 MA 及微粒將隨廠內循 環氣流污染至潔淨室各處^[12]。

MB 是微影製程特別敏感之污染物,『T-topping』為典型副作用

4

之瑕疵品,研究發現當晶圓經過使用 Cl₂ 的乾蝕刻製程後再暴露到潔 淨室中的微量 NH₃,晶圓表面將因酸鹼反應而產生次微米級之鹽類微 粒^[13]。MB 另一影響是線寬改變,實驗結果顯示晶圓暴露於 5 ppb 的 MB 十分鐘便造成 10-20 nm 的誤差,比利時的 IMEC(inter-university microelectronics center)研發中心進一步研究結果發現,使用 ESCAP (Environmentally Stable Chemically Amplified Photoresist) 248 nm 的光 阻、暴露於 MB 濃度為 15 ppb 之潔淨室,會導致 6 nm/min 的關鍵尺 寸誤差。MB 來源除了未處理乾淨之進氣外,廠內生產作業是主要貢 獻源,如 wet bench 光阻逸散造成潔淨室持續幾小時 MB 濃度值高達 200 ppb,另外倘若 CMP(chemical mechanical polish)製程隔間門被延 長開啟,將導致微影區的胺類濃度值大幅升高^[14]。

MC 污染會造成晶圓表面之 Si-N 膜變為氧化矽(Si-O),進而導致 氮化矽(Si-N)膜之膜厚與純度同時降低^[15]; MC 另一影響為改變介電 質特性而影響潰電壓^[16],或形成 Si-C 之不純結構^[17]。MC 來源除製 程原物料的逸散外,設備材質釋氣是主要來源,如使用塑膠材質之晶 片盒(wafer cassette)會釋出 DBP 及 BHT;在多種塑膠材質釋氣實驗中 發現, PTFE (polytetrafluoroethlene)與 PFA(perfluoroalkoxy)的釋氣 (outgassing)量最少^[18]。另有文獻資料發現作業人員穿戴之手套也是潔 淨室內 MC 的污染源,包含橡膠、抗氧化劑、油脂、介面活性劑及無 機物等,研究結果也發現橡膠手套(nitrile glove)的污染物逸散量遠小 於乳膠手套(latex glove)^{[19][20][21]}。

MD 來源除外氣貢獻及潔淨室內機台或管路內氣體(如 BF₃, PH₃..) 洩漏,還有 HEPA 濾材的密封膠(sealant)所釋放出之有機磷酸鹽類 (organophosphate)^[22],或是由濾材纖維釋出之硼^[10],這些額外的摻雜 物會影響電流而導致元件失效或產品良率下降。

其他未分類的污染物來源主要為廠內作業及廠外進氣,如 PM 作業使用 IPA、acetone 等,而 wet bench、TEOS/O3 製程、含有 O3 之潔

5

淨水^[12]及使用 DUV 之機台等皆可能為 O₃來源。另台灣夏季高溫時 大氣中 O₃濃度可高達 100 ppb,因此防範外氣污染成為控制重點。研 究發現"壞的"O₃ 會影響晶片電容^[23];而另一方面,位於微影區鏡片 (lens)周圍"好的"O₃,可以防止有機物沈積、降低鏡片霧化發生機率^[24]

Shoko 等將各類污染物對不同製程可能產生之影響整理如表 3^[25]。國際半導體設備及材料協會(SEMI)針對不同等級之潔淨室亦訂 定其污染物容許標準,例如 MA-10 範圍內其總酸性氣體最大容許濃 度為 10 pptM (part per trillion molar),見表 4^[3],而 ITRS 對不同線寬 之製程也提供其建議參考值^[1],如表 5 所示,這些標準乃是提供潔淨 室內微污染控制成果之重要參考依據。

圖 3 『T-topping』現象^[8]

表 1 機台 PM 過程量測之酸性氣體濃度值

Table 1.	Peak gas co	oncentrations meas	ured in	proces	ss cham	bers b	efore PM (ppm)
Process	Model	Process gases	HCI	HCN	HNO3	SiF4	Other
Etch	P5000	Cl ₂ , BCl ₃ , CF ₄ , CHF ₃ , He	160	58	2.4	1.4	
	P5000-5	BCI3, CF4, N2, O2	123.1	43		0.07	
	P5000-2	BCI3, CF4, N2, O2	85.1	90	9.1	3.8	
	AMET-1	Cl ₂ , BCl ₃ , CF ₄ , CHF ₃ , SF ₆ , Ar	0.9	1.46			
	BSTI-1	Ar, C ₂ F ₆ , O ₂ , CHF ₃ , SF ₆ , C ₄ F ₈ , CF ₄ , NF ₃ , N ₂ , CH ₃ F, Cl ₂ , HBr, He, CO	240.6			31.8	HBr (181.8)
	AWSI2-2	C2F6, Cl2, HBr, He				1.7	
	B4720- 05	SF ₆ , Ar, O ₂				0.19	
	BMET	Cl ₂ , BCl ₃ , CF ₄ , N ₂ , C	343.5	95.3	14/50	18.6	Энсоон (3.7)
	TCP	Cl ₂ , BCl ₃ , CF ₄ , CHF ₃ , He	128		3	6	
CVD	P5000	SiH4, NH3, N2O				3	HNO ₂ (0.5)
	AMI-5	SiH ₄ , B ₂ H ₆ , N ₂ O, PH ₃				3.6	HNO ₂ (0.4); NO ₂ (34.9)
	BWCVD-	SiH ₄ , WF ₆ , NF ₃ , N ₂ , Ar				0.7	NF3 (1.8)
	BSA-6	SiH ₄ , NH ₃ , N ₂ O, C ₂ F ₆ , N ₂ , CF ₄				0.1	HCOOH (1.7)
	BHDA-2	SiH4, NF3				0.49	
	PUG	TDMAT, H ₂			114		NH3 (15)

表 2 管路 PM 所量測到之酸性氣體

Table 2.	Trapped gas concentrations inside the foreline after metal etcher (ppm)								
		HCI	HCN	HNO3	SiF4				
Residual g sample	85	339	ND	22	23				
Dry N ₂ pur	ge	53	ND	ND	ND				
Water-wette	ed air flow	189	147	ND	28				

Drocoss star		Esilum		Cont	amina	ants	
Process step		Failure	А	В	0	Η	D
Mask oxidation	Diff.						
Mask SiN deposition	Thin film	Haze/low thickness uniformity			0	0	
Active area pattern	Photo	T-topping (DUV)		0			
STI RIE	Etch		$\overrightarrow{\Delta}$				
Active area oxidation	Diff.						
STI SiO ₂ fill	Thin film						
Well pattern	Photo	T-topping (DUV)		0			
Well implant	I/I	Vth shift					0 रूर
Gate oxidation	Diff.	Low breakdown field/Oxidation rate change			0	0	
Poiy Si deposition	Thin film	Low breakdown field/Unusual growth			0		
Gate conductor pattern	Photo	T-topping (DUV)		0			
Gate conductor RIE	Etch	JULI	$\overset{\wedge}{\bigtriangledown}$				
Extension implant	I/I	Vth shift				0	0
Spacer TEOS/SiN	Thin film	1896					
S/D pattern	Photo	T-topping (DUV)		0			
S/D implant	I/I	Sheet resistance increase				(0)	0
BPSG deposition	Thin film	Moisture absorption Vth shift				0	
CMP	Etch						
Contact pattern	Photo	T-topping (DUV)		0			
Contact RIE	Etch	corrosion	0 ਨੂੰ				
Metal deposition	Thin film	Native oxide growth				0	
CMP		Contact resistant increase				0	
Metal deposition	Thin film	Native oxide growth				0	
Interconnection pattern	Photo	T-topping (DUV)		0			
Metal RIE	Etch	corrosion	0			0	

表 3 污染物對半導體製程之影響[25]

A: acid gas, B: basic gas, O: organic molecules, H: humidity, D: Dopant $\frac{\Lambda}{\lambda d}$: self contamination

Material	1*	10*	100*	1 000*	10.000*	
Category	1	10	100	1,000	10,000	
Acid	MA-1	MA-10	MA-100	MA-1,000	MA-10,000	
Base	MB-1	MB-10	MB-100	MB-1,000	MB-10,000	
Condensable	MC-1	MC-10	MC-100	MC-1,000	MC-10,000	
Dopants	MD-1	MD-10	MD-100	MD-1,000	MD-10,000	

表 4 SEMI 針對不同等級之潔淨室污染物訂定之標準^[3]

*Concentration, in parts per trillion

表 5 ITRS 對晶片環境中之污染物控制標準建議值(摘錄自^[1])

Year Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM 1/2 Pitch (nm)	80	70	65	57	50	45	40	26	20
(contacted)	80	70	05	57	50	45	40	30	32
MPU/ASIC metal 1(M1)	00	70	(9	50	50	45	40	26	22
1/2 Pitch(nm) (contacted)	90	/8	08	59	52	45	40	30	32
MPU physical Gate	22	20	25	22	20	10	16	14	12
Length(nm)	32	20	23	22	20	10	10	14	15
Wafer Environment Contro	l such as clea	nroom, SMIF	F POD, FOUF	, etcnot ne	cessarily the	cleanroom its	elf but wafer	environment	
Critical particle	40	35	33	20	25	23	20	18	16
size(nm)[A]	40	35	55	29	23	23	20	10	10
Number of particle size	ISO CL2	ISO CL2	ISO CL2	ISO CL2	ISO CL2	ISO CL1	ISO CL1	ISO CL1	ISO CL1
$(/m^3)[A][B]$	150 CL2	150 CL2	150 CL2	150 CL2	150 CL2	150 CL1	150 CL1	150 CLI	150 CL1
Airborne Molecular Contar	ninats in Gate	e Phase (pptM	1) [C][G][M]	r		r	r	r	
Lithography (cleanroom									
ambient)[V]									
Total acids (as SO ₄)	5.000	5.000	5,000	5.000	5.000	5.000	5.000	5.000	5.000
including organic acids	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
Total bases (NH ₃)	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000
Condensable organics									
(w/ GCMS retention	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000
times \geq benzene,	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000
calibrated to hexadecane)			100		-				
Refractory			5		1				
compounds(organics	100	100	100	E100	100	100	100	100	100
containing S, P, Si)					BE				
General Wafer Environmer	t (cleanroom	/ POD/FOUP	ambient, all a	areas unless s	pecified belo	w)			L
Total acids (as SO ₄)	1.000	1.000	1.000	1.000	1.000	500	500	500	500
including organic acids	,		SUN	1000	13-				
Total base (as NH ₃)	5,000	5,000	5,000	5,000	5,000	2,500	2,500	2,500	2,500
Condensable organics			- 41	11111					
(w/GCMS retention	4,000	3,500	3,000	3,000	2,500	2,500	2,500	2,500	2,500
times≧benzene,				-					
calibrated to hexadecane)									
Dopants [E] (front end of	10	10	10	10	10	10	10	10	10
line only)									
SMC (surface molecular	2	2	2	2	2	0.5	0.5	0.5	0.5
condensable) organics on	2	2	2	2	2	0.5	0.5	0.5	0.5
Frank and answers have									
Front-enu-process, bare									
24 hour witness wefer	2.00E+12	1.00E+12	1.00E+12	1.00E+12	1.00E+12	1.00E+12	1.00E+12	1.00E+12	1.00E+12
24-nour writess water,									
Front-end-processes here									
Si total metals added to									
witness wafer	2.00E+10	2.00E+10	2.00E+10	2.00E+10	1.00E+10	1.00E+10	1.00E+10	1.00E+10	1.00E+10
atoms/cm ₂ [F][M]									

三、研究方法

3.1 研究架構

本研究架構如圖 4,首先進行潔淨室內氣態污染物種、來源及其 影響等相關文獻蒐集,並篩選出為危害性較高之氣態污染物及其來 源;其次,據文獻資料可知蝕刻製程機台 PM 會逸散出高濃度之酸性 氣體^[12],因此選定蝕刻與薄膜區為實驗區域,進而針對該區進行實驗 與量測佈點之規劃,完成實驗設計後便可進行實廠量測,而後進行 FTIR 光譜解析與數值分析;最後,將實驗模擬結果與文獻資料作討 論,瞭解氣態污染物擴散模式及其對潔淨室內生產之影響^[26]。

圖 4 研究架構圖

3.2 實驗設備與材料

3.2.1 霍式紅外光譜儀(Fourier Transform Infrared Spectroscopy,以下

簡稱 FTIR)

本研究選用 ABB Bomem 公司型號為 Work IR-104 之 FTIR, 圖 譜解析軟體則為工研院能環所開發之 CESHFTIR 連續監測程式,其 偵測原理為對量測區域發射一道光束,並量測光束通過待測氣體後的 強度變化量。由於每種氣體分子均有其特定之紅外光吸收係數,在光 束通過量測區域時,特定氣體分子會吸收特定波長的光,使得光束在 此波段之強度減弱,而吸收前後之光強度比值與氣體的濃度直接相 關,測量氣體樣品的吸收波段及強度,便可得知氣體中所含的成分及 濃度,圖 5 為數種氣態分子之紅外光吸收光譜。抽氣式 FTIR 之主要 組件包括:紅外光源(IR source)、干涉儀(interferometer)、分光儀(beam splitter)、固定鏡片(fixed mirror)、移動鏡片(moving mirror)、密閉吸收 槽(gas cell)、偵測器(detector)、電子模組(electronic module)等,除此 之外,須具備採樣管及幫浦等裝置以便將氣體樣品導入密閉吸收槽 (或稱偵檢腔)中進行分析。抽氣式 FTIR 譜儀之儀器組態如圖 6,另 有開放光徑式 FTIR (open path FTIR),其偵測原理同抽氣式,主要差 異處在於無須抽氣泵浦,可應用於開放空間之氣體量測,其量測示意 圖如圖 7。

12

圖 6 抽氣式 FTIR 之儀器組態示意圖

圖 7 開放光徑式 FTIR 之量測示意圖

3.2.2 追蹤氣體-六氟化硫

Sulfur Hexafluoride 化學式為 SF₆(供應商:錦德氣體有限公司), 濃度 99.9%,釋放流量 1.35 lpm;濃度為 1%,釋放流量為 5 lpm。

3.2.3 質流量控制器

本研究使用 BROOKS 型號為 5850E 系列之質流量控制器,用於控制 SF₆ 氣體釋放之流量。

1896

3.2.4 釋放 SF6 用之 1/4" 鐵氟龍管與 8 吋機台反應腔模型

模擬管路洩漏時以釋放 SF₆氣體時乃以 1/4"鐵氟龍噴出,模擬機 台 PM 時氣體逸散則以反應腔模型釋出,圖 8 為鐵氟龍管與反應腔 模型實體圖片,腔體內徑 35 cm,高 18 cm,並含一多孔鐵氟龍釋氣 管,上方為厚度為 2 mm 的金屬網型板,目的在於減緩 SF₆氣體釋出 時之向上速度,圖 9 為反應腔模型之組件。

圖 8 鐵氟龍管與反應腔模型實體圖片

圖 9 反應腔模型組件

3.3 實驗設計

3.3.1 實驗區域

圖 10 為某 8 吋半導體廠 Fab 平面圖,該潔淨室整體換氣每小時 平均 4~6 次, 蝕刻(etch)與薄膜區(thin-film)為同一迴風區隔間,該區 域靜壓設定為 1.1 mmAq, 尺寸為 86 m ×30 m ×16 m,以下將定義為 實驗區域一,爐管區(furnace)為另一迴風區,靜壓設定為 1.2 mmAq, 尺寸為 32 m × 30 m × 16 m,以下將定義為實驗區域二,微影區則 為一獨立迴風區,靜壓設定為 1.8 mmAq,尺寸 32 m × 40 m × 16 m, 相對於其他兩區靜壓設定為正壓區,以下將定義為實驗區域三,本研 究擬於蝕刻與薄膜區及爐管區進行氣態污染物擴散模擬實驗,於實驗 區域一與二內釋放 SF₆氣體,並以三台抽氣式 FTIR 同步量測 SF₆濃 度值,同時於實驗區三迴風牆前架設一組 open path FTIR 進行監測, 目的在於確認 SF₆氣體是否會跨隔間區污染。

圖 10 實驗區域規劃圖

3.3.2 實驗條件與規劃點數

本實驗為模擬兩種情況下潔淨室內氣態污染物之擴散情形,一為 機台 PM 時氣體逸散情形,二為管路氣體洩漏逸散情況,其實驗條件 為實驗區域一以 99.9 %之 SF₆氣體,且流量為 1.35 l/min,連續釋放 10 分鐘後停止, SF₆釋放量為 8045 mg/min,如 3.1 式所列,而實驗 區域二則以 1%之 SF₆氣體,流量為 5 lpm 連續釋放 10 分鐘後停止, 釋放量為 596 mg/min,如 3.2 式所示;同時以3台抽氣式 FTIR 連續 監測潔淨室內各點 SF6濃度值,直到 SF6低於偵測極限 10 ppb 以下始 停止量測,以此程序完成一次量測,受限於抽氣式 FTIR 數目,一次 至多僅能完成三個量測點,因此,將重複上述實驗程序至完成所需量 測點數。

(1) 實驗區域一 SF₆釋放量:

SF₆釋放量(mg/min)=C_{SF6}(ppm)×M_{SF6}÷24.5×Q_{SF6}(l/min)÷1000

$=10^{6} \times 146 \div 24.5 \times 1.35 \div 1000$

=8045(3.1)

(2) 實驗區域二 SF₆釋放量:

SF₆釋放量(mg/min)=C_{SF6}(ppm)×M_{SF6}÷24.5×Q_{SF6}(l/min)÷1000

$$= 10^{4} \times 146 \div 24.5 \times 10 \div 1000$$

= 596(3.2)

(3) 機台 PM 時氣體逸散:實驗區域規劃如圖 11 所示,實驗區域一 之 Fab 層走道編號 D 與 E 間工作區中央位置為污染源(SF₆釋放 位置),同樓層量測點編號為1到15,subFab 層量測點編號為16 到21,兩樓層共計取樣數有21點;此外,一組開放光徑式FTIR 同時於相鄰微影區 subfab 層之迴風牆前連續量測。

The second

(4)管路氣體洩漏逸散:實驗區域一模擬尾氣端管路洩漏,污染源為 subFab層中間點(SF6釋放位置),Fab層量測點編號為22到24, subFab層量測點編號為25到27,量測點位置如圖12所示,而 微影區亦同時監測。此外,實驗區域二將用以模擬供氣端管路洩 漏,污染源(SF6釋放位置)為氣體分配閥箱(Valve Manifold Box, 以下簡稱VMB),量測點皆位Fab層,如圖13所示。

圖 12 實驗區域一模擬尾氣管路洩漏量測點位置

表 6 fab 與 subfab 抽氣式 FTIR 量測位置佈點數

SF_6 释放位置	Fab 量測點	subFab 量測點	總計點數	
Fab 層-機台模擬腔	1~15	16~21	つ1 町ト	
(走道編號 D 與 E 間工作區)	17~15	10/~21	21 點	
subFab-尾氣管路	22~24	25~27	6 點	

圖 13 實驗區域二實驗規劃釋放點數及 FTIR 量測佈置點

四、結果與討論

受限制於抽氣式 FTIR 設備數量僅3台,無法同時進行全部量測 點之實驗,所以進行重複釋放實驗,為了確認重複實驗之再現性,於 規劃量測區域且相同實驗條件下,各挑選一個量測點數值進行比對, 實驗區域二為編號8,實驗區域一則為編號24,結果分別如圖 14 與 圖 15 所示;將兩組數值經配對 T-檢定後,相關係數分別為 0.99 與 0.91,且皆具顯著性,此外,其最高濃度值之誤差分別為 1.2 %與 1.4 %,詳見表 7。由結果證明重複釋放 SF₆之量測結果,具極佳之再現 性,本研究可進行重複釋放 SF₆之量測實驗。

圖 14 實驗區域二兩次釋放實驗編號 8 之 SF6 濃度趨勢圖

圖 15 實驗區域一兩次釋放實驗編號 24 之 SF6 濃度趨勢圖

實驗區域與	第一次釋放最	第二次釋放最	差值	誤差
量測點	高濃度值(ppb)	高濃度值(ppb)	(ppb)	(%)
實驗區域二	25.7	26.0	0.2	1.2
(編號8)	23.1	20.0	0.5	1.2
實驗區域一	71 7	60 5	1.05	1 4
(編號 24)	/1./	68.3	1.05	1.4

表 7 重複實驗 SF₆最大濃度值之誤差結果

4.1 實驗結果

4.1.1 潔淨室 SF₆內擴散稀釋倍數

(1) 模擬機台 PM 時殘氣逸散結果

於實驗區域一內模擬 PM 時氣體逸散情況,濃度為 99.9%之 SF₆ 由反應腔模型釋出,流量為 1.35 lpm 連續釋放 10 分鐘後停止,SF₆ 釋放量為 8045 mg/min,結果見表 8,該區 21 個量測點之最高濃度值 介於 50 ppb 到 4939 ppb,量測點編號 2 位於 Fab 層,距釋放源水平 下風 2 m處,其最高濃度值為 4939 ppb,相較於釋放源其稀釋倍數為 2.0x10⁵倍,編號 19 位於 subfab 層,距釋放源垂直下方 4 m處,該測 點之最高濃度值為 654 ppb,稀釋倍數為 1.5×10^6 倍,而編號 20 最高 濃度值為 50 ppb 是稀釋最大者,達 2.0×10^7 倍,簡而言之,機台 PM 所逸散之氣態污染物經潔淨室氣流循環後,其稀釋倍數將介於 10^5 至 10^7 倍。將所有量測點數值選用 Kriging method 繪圖,以 Sufer 7.0 製 出 SF₆氣體於潔淨室內之濃度分佈圖,以 SF₆開始釋放之時間為起始 點計算,Fab 層 SF₆濃度隨時間之分佈狀況如圖 17~圖 24 所示。

若假設 SF₆ 氣體釋放後均勻分佈於潔淨室內,則估算後 SF₆ 濃度為 401 ppb,稀釋倍數為 2.5×10⁶倍,計算過程如 4.1 與 4.2 式所列; 比較實場量測與估算結果,兩結果相當一致。 實驗區域一之 SF₆均勻分佈濃度估算:

SF₆釋放流量:Q_{SF6}=1.35 (l/min)

SF₆釋放濃度:C_{SF6}=10⁶(ppm)

實驗區域一補充氣體流量 Q_{make-up air}=201600 (m3/h)=3360000 (l/min) 所以,均勻混合後 SF₆濃度:

$$\frac{Q_{SF6}(l_{\min}) \times C_{SF6}(ppm)}{Q_{make-up air}(l_{\min})} = \frac{1.35 \times 10^6}{3360000} = 0.401(ppm) = 401 \text{ (ppb)}$$
(4.1)

量測點	C max	依理位业	T max	T _{90%}	量測	備
編號	(ppb)	柿梓倍數	(min)	(min)	樓層	註
1	264	3.8E+06	13.6	29.7	fab	
2	4939	2.0E+05	12.5	20.8	fab	a
3	114	8.8E+06	16.6	31.8	fab	
4	238	4.2E+06	13.3	28.4	fab	
5	86	1.2E+07	16.1	23.9	fab	
6	231	4.3E+06	14.2	29.1	fab	
7	147	6.8E+06	14.6	33.5	fab	
8	113	8.8E+06	16.1	35.2	fab	
9	81	1.2E+07	18.6	Ν	fab	
10	104	9.6E+06	13	Ν	fab	
11	82	1.2E+07	16.3	Ν	fab	
12	86	1.2E+07	E 16.8	28.7	fab	
14	68	1.5E+07	27.7	N	fab	
15	67	1.5E+07	1827.7	N	fab	
16	158	6.3E+06	14.1	24	subfab	
17	63	1.6E+07	32.7	Ν	subfab	
18	86	1.2E+07	20.1	30.5	subfab	
19	654	1.5E+06	18.3	10.5	subfab	b
20	50	2.0E+07	14.4	Ν	subfab	
21	73	1.4E+07	18.6	Ν	subfab	
平均	385	9.7E+06	17.8	27.1		

表 8 實驗區域一模擬 PM 氣體逸散之結果

註:

1.C_{max}:最高濃度值,單位 ppb

2. T_{max}: 到達最高濃度值所需時間(分鐘)

3. T90%: 濃度消減 90%時所需時間(分鐘)

4. N 表示 SF₆ 消減 90%之濃度值低於偵測下限 10 ppb

5. a 位於 Fab 層,距釋放源水平下風 2 m 處; b 位於 subfab 層,釋放 源垂直正下方 4m 處。

圖 17 實驗區域一之第5分鐘 SF₆氣體分佈

圖 18 實驗區域一之第 10 分鐘 SF₆ 氣體分佈

圖 19 實驗區域一之第 15 分鐘 SF₆ 氣體分佈

圖 20 實驗區域一之第 20 分鐘 SF₆氣體分佈

圖 21 實驗區域一之第 25 分鐘 SF₆ 氣體分佈

圖 22 實驗區域一之第 30 分鐘 SF₆氣體分佈

圖 23 實驗區域一之第 35 分鐘 SF₆ 氣體分佈

圖 24 實驗區域一之第 40 分鐘 SF₆ 氣體分佈

(2) 模擬管路氣體洩漏逸散

模擬尾氣端管路洩漏於實驗區域一內進行,洩漏源位於 subFab 層,源濃度為 99.9%之 SF6由 1/4"之鐵氟龍管直接釋出,流量為 1.35 lpm 連續釋放 10 分鐘後停止, SF₆釋放量為 8045 mg/min, 該區 6 個 測點之最高濃度值介於 72 ppb~986 ppb 之間,相較於洩漏源濃度, 稀釋倍數為 $1.4 \times 10^7 \sim 1.0 \times 10^6$ 倍,編號 26 距洩漏源水平下風 2 m,為 濃度最高之測點,結果見表 9;而實驗區域二則模擬供氣端管路氣體 洩漏,洩漏源為 Fab 層 VMB 處,1% 流量為 5 lpm 之 SF₆ 由 1/4"之鐵 氟龍管連續釋放 10 分鐘, SF₆釋放量為 596 mg/min, 相同地使用 Sufer 繪出濃度分佈圖,以 SF6開始釋放之時間為起始點計算,實驗期間該 區 SF6濃度之分布如圖 25~圖 30 所示,實驗區域內共計 13 個量測 點,各點最高濃度值介於9 ppb~43 ppb之間,相較於釋放源稀釋倍 數為 1.1×10⁶ ~ 2.3×10⁵ 倍,詳見表 9。若假設 SF₆ 氣體釋放後均勻分 佈於潔淨室內,則估算後 SF_6 濃度為 72 ppb,稀釋倍數為 1.4×10^5 倍, 計算過程如 4.3 與 4.4 式所列;比較實場量測與估算結果,兩結果相 當一致。

實驗區域二之 SF6均勻分佈濃度估算:

SF₆釋放流量:Q_{SF6}=10(l/min)

SF₆釋放濃度:C_{SF6}=10⁴(ppm)

實驗區域二補充氣體流量 Q_{make-up air}=83520(m3/h)=1392000 (l/min) 所以,均匀混合後 SF₆濃度:

$$\frac{Q_{SF6}(l_{\min}) \times C_{SF6}(ppm)}{Q_{make-up air}(l_{\min})} = \frac{10 \times 10^4}{1392000} = 0.072(ppm) = 72 \text{ (ppb)}.....(4.3)$$

相較於釋放源之稀釋倍數: $\frac{10^4 * 10^3 (ppb)}{72 (ppb)} = 1.4 \times 10^5 (倍).....(4.4)$

依上述結果,當有氣體管路於較小隔間(如實驗區域二,尺寸=

32 m × 30 m × 16 m)內洩漏,經潔淨室循環氣流稀釋後,稀釋倍數 約為 10⁵~10⁶倍,當隔間區擴大為兩倍以上(如實驗區域一,尺寸= 86 m ×30 m ×16 m),其稀釋倍數將增加至 10⁶~10⁷倍。

綜合實驗條件之結果,如表 10 所示,無論是 PM 作業或是管路 氣體洩漏,若經潔淨室循環氣流稀釋後,其稀釋倍數將至少為 10⁵~ 10⁷倍。

毎臥厄は	量測點	C max	轻辉众业	T max	T _{90%}	量測	備
貨驗區域	編號	(ppb)	柿梓倍數	(min)	(min)	樓層	註
	22	219	4.6E+06	11.5	15.9	Fab	
宙队厅出	23	548	1.8E+06	11.3	10	Fab	
員廠回政	24	147	6.8E+06	10.8	16.3	Fab	
一(毛彩官	25	151	6.6E+06	13.6	25	subFab	
哈汉洞)	26	986	1.0E+06	8.6	Ν	subFab	
	27	72	1.4E+07	10.6	Ν	subFab	
	1	12	8.1E+05	10.6	n	Fab	
	2	9	1.1E+06	13.9	n	Fab	
	3	11	8.8E+05	19.2	n	Fab	
	4	14	7.0E+05	11.9	n	Fab	
	5	23	4.3E+05	9.9	n	Fab	
實驗區域	6	34	3.0E+05	9.4	n	Fab	
ニ(VMB	7	39	2.5E+05	10.1	27.3	Fab	
洩漏)	8	26	3.8E+05	16.9	n	Fab	
	9	41	2.4E+05	9.4	22.4	Fab	
	10	43	2.3E+05	16.9	23	Fab	
	11	21	4.7E+05	11.3	n	Fab	
	12	18	5.6E+05	11.8	n	Fab	
	13	21	4.8E+05	11.4	n	Fab	

表 9 實驗區域一與實驗區域二模擬氣體管路洩漏之結果

註:

1.C_{max}:最高濃度值,單位 ppb

2. T_{max}: 到達最高濃度值所需時間(分鐘)

3. T90%: 濃度消減 90%時所需時間(分鐘)

4. N 表示 SF₆ 消減 90%之濃度值低於偵測下限 10 ppb, n 表示 SF₆ 消 減 90%之濃度值低於偵測下限 4 ppb

圖 25 實驗區域二之第5分鐘 SF6 氣體分佈

圖 26 實驗區域二之第 10 分鐘 SF₆氣體分佈

圖 27 實驗區域二之第 15 分鐘 SF6 氣體分佈

圖 28 實驗區域二之第 20 分鐘 SF₆ 氣體分佈

 25 min
 ●

 25 min
 ●

 25 min
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

 ●
 ●

圖 29 實驗區域二之第 25 分鐘 SF₆ 氣體分佈

31

描版计氿跖	安队区比	释放源	量測點 SF ₆	SF_6	
快恢 77 宋 源	員微區政	SF ₆ 濃度	最高濃度值	稀釋倍數	
	實驗區域二	1.0/	0 40 mm	105 106 10	
氣體管路	(供氣端,VMB)	1 %	9 ~ 49 ppb	10~~10°倍	
洩漏	實驗區域一		72 0.00 mm h	106~7 13	
	(尾氣端)	>99 %	72 ~ 986 ppb	10° 7倍	
機台維護保	毎 臥 同 片 」	> 00 0/	50 4020 mmh	105~7 10	
養(PM)	貝微匝琐一	<i>></i> 99 %	50 ~ 4939 ppb	10~ 7 倍	

表 10 污染源與潔淨室內各測點濃度之稀釋範圍

(3) 氣態污染物之削減

如圖 16 所示,以C_{max}表示 SF₆之最高濃度值,T_{max}表示由開始釋放 至C_{max}所需要之時間,T_{90%}表示由C_{max}時間起算後濃度消減90%所需之 時間,由表 8 與表 9 結果發現,若潔淨室內有氣態污染物連續洩漏 10 分 鐘後停止,則該污染物消減90%所需之時間約為0.5 小時,相當於潔淨室整 體換氣2~3 次所需要之時間(廠務端設定4~6 次/小時)。

The second

4.1.2 跨隔間區域氣體污染之嚴重程度

當實驗區域一進行 SF₆釋放時,實驗條件包含 PM 作業及尾氣管路 洩漏兩假設狀況,同時以一組 open path FTIR 量測實驗區域三(微影區)之 迴風,取樣時間為每5分鐘一筆數值,量測結果如圖 31 所示,其中第9次 和第10 次為尾氣端管路洩漏,其餘皆為 PM 作業,由結果可知每次釋放 SF₆ 後,於微影區量測之最大值介於 1.8 ppb~7.0 ppb 間,相較於釋放源濃度稀 釋倍數為 5.6×10⁸ ~ 1.4×10⁸倍;此外,第12 與第13 次實驗時,將 subfab 層實驗區域一與實驗區域三相通之隔間門開啟,結果微影區之最高濃度值 升高至 5.1 ppb 與 7.0 ppb,由此結果顯示, SF₆貢獻至微影區之總量增加, 意即隔間門開啟會導致跨區域污染量增加。

第10次實驗為跨實驗區影響最低者,該次實驗時微影區SF6濃度趨

32

勢如圖 32 所示,由偵測出 SF6 濃度值至其消減至偵測極限(0.4 ppb)以下 約需1小時20分鐘,換句話說,若實驗區域一(蝕刻與薄膜區)發生氣體 連續洩漏 10 分鐘,則影響實驗區域三(微影區)將至少長達 80 分鐘。

綜合上述實驗結果,即使微影區為獨立且相對正壓區(1.8 mmAq), 蝕刻及薄膜區(1.1 mmAq)洩漏之氣態污染物仍藉由氣流循環擴散進而影響 至微影區,相較於洩漏源其稀釋倍數為 10⁸~10⁹倍,且兩區隔間門開啟會 導致污染量加倍。

微影医迪风路前5分缘平均最高速度值

微影區迴風牆量測結果 open path FTIR 量測結果 圖 31

圖 32 第 10 次實驗時微影區 SF₆濃度趨勢圖

實驗結果得知潔淨室內氣態污染物經循環氣流稀釋後,稀釋倍數高達 10⁵~10⁷倍,以均勻混合後稀釋倍數為10⁶倍,與實驗條件相同的洩漏流量 1.35 l/min,而污染氣體穩定存在且未分解或反應的假設條件下,若潔淨室 內 PM 作業逸散氣體或製程氣體洩漏,氣體監測器能否做動呢?污染物是 否會影響製程產品良率?

(1)機台與管路 PM 氣體

將文獻資料中 PM 過程所逸散的酸性氣體及其濃度,假設該氣體穩定 且未分解或反應,逸散量與實驗洩漏量同為 1.35 l/min,並以平均分佈為 10⁶ 稀釋倍數計算該氣體可能存在潔淨室內之濃度,再將計算結果與 SEMI 規範 之潔淨室標準比較,結果如所表 11 示,以 HCl 為例,污染源濃度為 343.5 ppm,經 10⁶倍稀釋後濃度為 343.5 ppt,高於 SEMI 規範 Class 100 之潔淨度, 若在 Class 100 之潔淨室內即可能影響製程產品。

污染源	機台 PM				管路 PM		
逸散氣體 ^[9]	HCl	HCN	HNO ₃	SiF ₄	HCl	HNO ₃	SiF ₄
濃度(ppm)	343.5	95.3	9.1	18.6	339	22	23
經106稀釋 (ppt)	343.5	95.3	9.1	18.6	339	22	23
與 SEMI-MA 標 準比較	>100	>10	>1	>10	>100	>10	>10

表 11 PM 氣體經稀釋後與 SEMI 標準比較

(2)管路洩漏氣體

一般潔淨室內氣體監測器設定之警報值為容許濃度值(PEL)或是 25% 的爆炸下限(LEL)^[27],基於設置成本考量,氣體監測器難以高密度地分 佈於廣大空間的潔淨室內,同樣的,以氣流稀釋倍數為 10⁶倍估算,氣體洩 漏量為 1.35 l/min,而洩漏氣體穩定存在且未分解或反應的假設條件下,除 非氣體監測器非常接近洩漏源,或者該偵測器設定值較低且具低偵測下 限,其他多數氣體洩漏情況下並不會被察覺,以氯化氫(HCl)氣體為例, 其容許濃度為 5 ppm,若有 100%之濃度洩漏,經潔淨室氣流 10⁶稀釋後最 高濃度將低於 0.1 ppm,若非緊鄰於洩漏源之氣體監測器將不會作動,表 12 為 20 種常見的半導體氣體原物料,以原物料濃度洩漏經 10⁶稀釋後,氣體 平均分佈而穩定存在且未分解或反應的假設條件下,僅有 Cl₂與 CIF₃ 兩種 能使監測器作動,然而,此類氣體活性高易分解或反應,續存於潔淨室的 總量更低,所以不易被氣體監測器偵知;此外,一般製程尾氣濃度較原物 料低,一旦洩漏更不易被監測器偵知。

台融	容許濃度 PEL (ppm)	監測器設定	百曲州	經 10 ⁶ 稀	平均分佈條件
^紀 祖 化學式		警報值	凉初杆 ::::::::::::::::::::::::::::::::::::	釋後濃度	下,監測器作
		(ppm)	辰及(70)	(ppm)	動?
AsH ₃	0.05	0.05	1	0.01	×
BCl ₃	5*	5	100	1	×
BF_3	1*	3	100	1	×
Cl_2	0.5	0.5	100	1	0
ClF ₃	0.1	0.3	100	1	0
CO	35	25	100	1	×
SiH_2Cl_2	5*	5	100	1	×
F_2	1	1	1	0.01	×
HBr	3	3	100	1	×
HCl	5	5	100	1	×
HF	3		100	1	×
CH ₃ OH	200	500	100	1	×
NF3	10	10	99	0.99	×
NH3	50	25	100	1	×
PH_3	0.3	0.3	10	0.1	×
SiF_4	3*	3	100	1	×
WF_6	3*	3	100	1	×
SiH_4	5	5	100	1	×
CH_4	15000	500	99	0.99	×
H_2	12000	500	100	1	×

表 12 半導體廠常見之氣體原物料濃度及其容許濃度

註:*表示最高容許濃度值(ceiling)。

4.2.2 發生跨隔間區域污染之可能原因

實驗結果亦證明氣態污染物會發生跨隔間區污染之現象,雖然微影區 為獨立隔間且相對正壓區,但隨製程運作需求,潔淨室隔間會有些許變動, 如增設製程機台擴充隔間、增設管線...等,導致原設計之密閉隔間缺損, 除此之外,經實驗證明,人員走動開啟隔間門及自動傳輸系統的管道也是 原因之一,因而使潔淨室之氣態污染物產生交互污染之現象,此現象對微 影區影響甚大,主因是微量的氣態污染物會導致製程機台鏡片霧化^[9],製程 機台無法正常運作後,便會衍生產品良率下降及產能降低等問題。

雖然數十 ppb 的 HCl 對人體無立即致命之虞,卻遠超越晶圓所能容忍 之濃度範圍,會導致晶圓腐蝕而使產品良率下降^[7],此現象對液晶顯示器 (LCD) 製程影響將更為顯著,尤其 LCD 製程機台與產品尺寸更為巨大, 製程產品暴露於環境的機率更多,潔淨室內氣態污染物更顯重要。因此, 為能提昇產品良率及其可靠度,微污染之控制技術已是先進製程首要面臨 的挑戰。

4.3 潔淨室內氣態污染物之控制

Muller 認為 AMC 控制策略有三個步驟,首先評估內、外空氣品質 辨識潛在污染物,其次為 AMC 控制技術,最後為持續監測並控制環境^[30]。 外氣的污染物可藉由進氣處理設備或化學濾材處理之,而由於能源及經濟 考量,潔淨室內大部分氣體主成為內循環氣體,內循環氣體中之氣態污染 物控制更顯重要,對於已知之污染源如 PM 作業、原物料更換等,可由污 染發生源可使用局部抽氣裝置進行污染總量消減^[28],針對未知之污染源(如 管路氣體洩漏)首要策略為監測,污染發生時能在最短時間內偵知並控制, 才能使污染之影響降到最低,然而,潔淨室內循環氣流對污染物之稀釋倍 數高達 10⁵~10⁷倍,大部分氣體無法被監測器所偵知,建議可搭配 open path FTIR 於氣流必經之迴風區持續監測,利用 FTIR 高靈敏度與低偵測下限之 特性補強一般環境氣體監測器之缺點,此外,若能同時建立廠內製程原料、

37

機台、管路等電子化系統,建置化學物流通資料庫,結合此兩種系統,管 路洩漏時能即時偵測並搜尋資料庫找出來源^[29],提供應變措施並記錄作為 事後響評估,以此模式持續回饋控制策略,能使潔淨室內之氣態污染控制 之管理更臻完備。

五、結論與建議

5.1 結論

本研究以實廠釋放 SF₆為作為追蹤氣體,模擬潔淨室內氣態污染物之擴 散實驗,依實驗與分析結果得知,無論污染源是 PM 作業逸散,或是管路 氣體洩漏,氣態污染物隨潔淨室之氣流稀釋倍數至少為 10⁵ 到 10⁷ 倍,在每 小時平均整體換氣 4 到 6 次的潔淨室內,若有氣體連續洩漏 10 分鐘後,至 少約需 0.5 小時始能達 90%之氣態污染物消減,且在此污染條件下,大部分 之氣體監測器不會作動。除此之外,實驗結果亦證明,雖然微影製程為獨 立隔間與相對正壓區域,但隨製程變更的擴充與管線配置,破壞原本設計 之密閉隔間,以及作業人員走動與傳輸系統動線的氣流,其他隔間區域之 氣態污染物仍會伴隨著氣流擴散污染微影區,而相對於污染源濃度稀釋倍 數為 10⁸~10⁹ 倍,研究結果也發現,隔間門的開啟會導致污染至微影區的 總量加倍。

5.2 建議

潔淨室內之氣態污染物經氣流稀釋後,大部分情況下無法被氣體監測 器所偵知,便在無預警狀態下傷害晶圓良率,導致生產者巨大之損失,因 此,建議針對潔淨室內常態性已知之污染源(如 PM 作業)進行發生源控 制^[28],相較於外氣的污染,潔淨室內未知的污染源濃度更高,且污染源更 貼近製程產品,對產品傷害必然更為顯著,因而需持續的監控潔淨室內空 氣品,除了既有之氣體監測器設置,另可使用 open path FTIR 監測潔淨室內 迴風,並建立製程原料、機台、管路等電子化系統,如圖 33 所示,結合 open path FTIR 與電子化系統能即時診斷洩漏源,以達洩漏源即時搜尋之目 的,此外,搭配潔淨室內流場與濃度場模擬評估污染影響程度,能更有效 擬定氣態污染之控制策略,最後,對於敏感製程可選用化學濾材(Chemical filter)作為微環境(Mini-Environment)之最後一道防線^[29]。

圖 33 洩漏源即時診斷系統之示意圖

六、參考文獻

- [1] International technology roadmap for semiconductors. 2005 Edition Yield Enhancement.
- [2] Ayre, C. R., Mittal, A. K., O'sullivan, J. F. "The influence and measurement of airborne molecular contaminants in advanced semiconductor processing", *Semiconductor Fabtech.*, 24th Edition, 2005. http://www.fabtech.org
- [3] SEMI F21-1102, "Classification of airborne molecular contamination levels in clean environments", Semiconductor Equipment and Materials International, 2001.
- [4] Saga, K. and Hattori, J. "Identification and removal of trace organic contamination on silicon wafers stored in plastic boxes", J. Electrochem. Soc., Vol. 143, No. 10, pp. 3279-3284, October, 1996.
- [5] Forsland, M. and O'Reilly, S. "Prevention of Airborne Molecular Contamination", Semiconductor Fabtech., 12th Edition, 2000. http://www.fabtech.org
- [6] Hallock M.F., Hammond S.K., Hines C.J., Woskie S.R., Schenker M.B.
 "Patterns of chemical use and exposure control in the semiconductor health study", *Am. J. Ind. Wed.*, Vol. 28, No.6, pp.681-697, December, 1995.
- [7] Higley , J. K. and Joffe ,M. A.. "Airborne molecular contamination: cleanroom control strategies", *Solid State Technol.*, Vol. 39, No. 7, pp.

211-212, July, 1996.

- [8] Ruede, D., Ercken, M., and Borgers T. "The impact of airborne molecular base on DUV photoresists", *Solid State Technol.*, Vol. 44, No. 8, pp.63-70, August, 2001.
- [9] Barzaghi, S., Pilenga, A., Vergani, G., Guadagnuolo,S., and Getters, S.
 "Purged gas purification for contamination control of DUV stepper lenses".
 Solid State Technol., Vol. 44, No. 9, pp.99-104, September, 2001.
- [10] Stevie, F.A., Martin, E. P., Jr., Kahora, P. M., Cargo, J. T., Nanda, A.K. Harrus, A. S., Muller, A. J. and Krautter, H.W. "Boron contamination of surfaces in silicon microelectronics processing: characterization and causes". J. Vac. Sci. Technol. A, Vol. 9, No. 5, pp.2813-2816, Sep/Oct, 1991.
- [11] Levit, L. B., Hanley, T. M. and Curran, F. "In 300 mm contamination control, watch out for electrostatic attraction", *Solid State Technol.*, Vol. 43, No. 6, pp. 209-212, June 2000.
- [12] Li, S.N., Shih, H.Y., Wang, K.S., Hsieh, K., Chen, Y. Y., Chen, Y. Y. and Chou, J. "Preventive maintenance measures for contamination control", *Solid-State Technol.*, Vol. 48, No. 12, pp. 53-56, December, 2005.
- [13] Kanzawa, K. and Kitano, J. "A semiconductor device manufacturer's efforts for controlling and evaluating atmospheric pollution", *IEEE/SEMI Advanced Semiconductor Manufacturing Conference*, pp.190-193,

November, 1995.

- [14] Demandante, B., Murray, K. and Alexander, M. "Protect DUV Processes with Real-time Molecular Monitoring", *Semiconductor International*, Vol. 23, No. 10, pp.115-122, September, 2000.
- [15] Saga, K. and Hattoril, T. "Influence of Surface Organic Contamination on the Incubation Time in Low-Pressure Chemical Vapor Deposition", J. *Electrochem. Soc.*, Vol. 144, No. 9, L253-L255, September, 1997.
- [16] Ishihara, Y., Nakajima, D. and Ohmi, T. "Economical clean dry air system for closed manufacturing system", *IEEE Transactions on Semiconductor Engineering*, Vol.13, No.1, pp.16-23, February, 2000.
- [17] Kasi, S. R., Liehr, M. Thiry, P. A. Dallaporta, H. and Offenberg, M. "Hydrocarbon reaction with HF-cleaned Si(100) and effects on metal-oxide-semiconductor device quality", *Appl. Phys. Lett.* Vol.59, No. 1, pp.108-110, July 1, 1991.
- [18] Budde, K. J., Holzapfel, W. J. and Beyer, M. M. "Application of ion mobility spectrometry to semiconductor technology: outgassings of advanced polymers under thermal stress", *J. Electrochem. Soc.*, Vol. 142, No. 3, pp. 888-896, March, 1995.
- [19] Schnabel, P. H., Lindley, P. M., Nehrkorn, D. and Kendall, M. "Identifying the types and potential sources of airborne molecular contamination: a multi-technique approach", *Semiconductor Fabtech*, 11th edition, February,

2001.

http://www.fabtech.org

- [20] Bhattacharjee, H. R. and Paley, S. T. "Comprehensive particle and fiber testing for cleanroom wipers", *Journal of the IEST*, Vol. 41, No. 6, pp.19-25, Nov/Dec 1998.
- [21] Ensor, D. S., Elion, J. M. and Eudy, J. "The size distribution of particles released by Garments during Helmke Drum tests", *Journal of the IEST*, Vol. 44, No.4, pp.24-27, Fall, 2001.
- [22] Lebens, J. A., McColgin, W. C., Russell, J. B., Mori, E. J. and Shive, L. W.
 "Unintentional Doping of Wafers Due to Organophosphates in the Clean Room Ambient", *J. Electrochem. Soc.*, Vol. 143, No. 9, pp. 2906-2909, September 1996.
- [23] Park, Y. K., Kim, H. J., Kim, D. W. and Park, J. H. "Environmental ozone effect on the growth of hemispherical grained silicon for ULSI DRAM stacked capacitor", *J. Electrochem. Soc.*, Vol.148, No. 8, pp. F170-174, August, 2001.
- [24] Kunz, R. R., Liberman, V., and Downs, D. K. "Photo-induced organic contamination of lithographic optics", *Microlithography World*, Vol. 9, No. 1, pp.2-8, Winter, 2000.
- [25] Shoko, I., Makiko, T., Ayako, S., Soichi, N., Katsuya, O., Yoko, S., AkiraT. and Manabu, T. "Wafer ambient control for agile FAB", pp. 121-124,

Semiconductor Manufacturing Symposium2001 IEEE International, USA, October, 2001.

- [26] Chen, S-C, Tsai, C-J, Li, S-N and Shih, H-Y. "Dispersion of gas pollutant in a fan-filter-unit (FFU) cleanroom", *Building and Environment*, Vol. 42, Issue 5, pp. 1902-1912, May, 2007.
- [27] Zdankiewicz, Edward M. "Avoid false alarms with proper gas detection equipment", *Solid State Technology*, Vol. 40, Issue 8, pp.81 - 87, August,1997.
- [28] 古坤文、李壽南、施惠雅、蔡春進,半導體金屬蝕刻機台於預防維修時之化學危害控制,化工科技, Vol. 143, pp. 163-pp.175,2005,2月。
 [29] 施惠雅、李壽南、顏紹儀、呂建豪,微污染控制之成功案例,中文半

導體科技雜誌, No. 61, pp. 54 - 60, 2006年7月。

 [30] Chris Muller, "Airborne Molecular Contamination Control in Semiconductor Fabs: A practical Approach", *Semiconductor Fabtech*, pp. 113 - .117, 16th Edition, 2002. http://www.fabtech.org