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ABSTRACT

THE QUANTUM ELECTRONIC TRANSPORT IN STRONGLY

CORRELATED QUANTUM DOT SYSTEM

BY

KAO-CHIN, LIN

Doctor of Philosophy

National Chiao-Tung University, Hsinchu 300, Taiwan, 1998

The electron quantum transport through quantum dot(s) system is studied in

this dissertation. The strong correlation between dot and lead is considered. The

dissertation consists of two main subjects: (I) The Anderson impurity model with

spin flip associated tunneling in quantum dot system. (II) The elecron-photon

interaction inducing correlation of dot-nonconnected-lead in double-dot-system

in which each dot is coupled to leads individually. In order to calculate the

interaction system, the non-equilibrium Green function technique is used. The

non-equilibrium electron transport formula is used to calculate the conductance

due to electron transport through the interacting quantum dot. In subject (I),

we find the spin flip associated tunneling causes enhancement and blue shift of

Kondo resonance peak. The net effect suppresses the conductance as the strength
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of spin-flip associated tunneling is increased. In subject (II), it is found that the

dipole-like electron-photon interaction induces the correlation between dot and

nonconnected-lead under non-weak-coupling approximation in double-dot-system

when the detuning factor∆ = ε2−ε1−ωph is smaller than a critical detuning factor

∆C and the temperature is below the critical temperature πT ph
c = |∆|. After the

dot-nonconnected-lead correlation is constructed, the corresponding peak grows

logarithmically at the vicinity of ωm = εFm0 − (−1)mωph where m,m0 ∈ 1, 2 ,

m 6= m0 , and m = 1, 2 indicates the lower energy (m = 1) and higher energy

(m = 2) dot, respectively.
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CHAPTER 1

INTRODUCTION

1.1 The Quantum Dot

With the advent of the modern semiconductor technologies, artificial het-

erostructures with layer width of only a few nanometers, i.e. the supperlattice,

have been grown. The heterostructure layers confine the free electron gas in a

2D plane to form a two-dimensional electron gas (2DGE). Using the additional

metallic lateral patterning by lithographic (such as the electron-beam) or etching

techniques (ion beam, x-ray, scanning probe microscopies) on the hetrostructure

layer, the electron can be confined in a very small region with nanometer scale by

the applied electric field on the metallic patterning. Thus, it is possible to make a

nanometer scale zero-dimension device whose vertical and lateral dimensions are

controlled in the order of de Broglie wavelength of the electron in semiconductor

as shown in Fig.1.1, Fig.1.2 and Fig.1.3). Such a zero dimension device is called

as ”quantum dot”.

Besides the lateral patterning confinement, the quantum dot can also be made

by the cluster of the atoms called ”assembled quantum dot”. The assembled quan-
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Figure 1.1: A scanning electron micrograph of various size GaAs nanostructures

containing quantum dots. The dark region on top of the column is the electron-

beam defined Ohmic contact and etch mask

2



Figure 1.2: A. Schematic diagram of an artificial atom located between two capac-

itor plates. The artificial atom is actually two-dimensional; the bowl like shape

represents the force tending to move electrons to the center of the atom. B.

Diagram of the sample used in single-electron capacitance spectroscopy (SECS)

experiments in a crystal grown using molecular-beam epitaxy. The artifical atom

is the black disk in the quantum well. C. Capacitance of the sample containing

the artificial atom as a function of the top plate (gate) voltage. The first peak on

the left represents the first electron entering the artifical atom.
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Figure 1.3: The quantum dot structure studied at Delft and NTT in Japan is

fabricated in the shape of a round pillar. The source and drain are doped semi-

conductor layers that conduct electricity, and are separated from the quantum dot

by tunnel barriers 10 nm thick. When a negative voltage is applied to the metal

side gate around the pillar, it reduces the diameter of quantum dot.
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Figure 1.4: The self-assembled quantum dot. (a) and (b) are plane view. (c)

is the cross-scetional view of a typical island sample (a). The wetting layer and

underlying 60 Å reference InGaAs quantum well.
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tum dot is constructed during the growth of highly lattice mismatched semicon-

ductor layer onto a substrate, leading to spontaneous formation of small islands.

(as shown in Fig.1.4 ).

The semiconductor quantum dot is constructed by a million atoms with an

equivalent number of electrons. But almost all of the electrons are bound to the

nuclei of atoms and do not affect the properties of quantum dot. In fact, there are

only few free electrons confined in quantum dot which dominate the properties of

quantum dot.

Since the dimension of confinement is in the order of the electron wavelength,

the energy level of quantum dot is discrete due to the quantization of electron en-

ergy in quantum dot. In 1988, Reed et al. used the electron-beam lithography to

define an ensemble of AuGe/Ni/Au Ohmic metallization dots with 100∼250 nm

diameter[1]. (Fig.1.1) They studied the current-voltage characteristics of a single

quantum dot and observed resonance corresponding to the discrete density of state

of quantum dot. Owing to the quantization of energy, the quantum dot is regarded

as an ”artificial atom”[2]. Similar to the natural atom, the shell structure is found

in quantum dot[3].(Fig.(1.5) But instead of the optical spectroscopic study in nat-

ural atom system, the periodic table of quantum dot system is constructed via

measuring the electron transport through quantum dot, i.e. the single-electron

capacitance spectroscopy[3][4]. By the way of single-electron capacitance spec-

troscopy, the energy levels of a N-electron dot can be directly measured as a
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function of the magnetic field. In 1993, Ashoori et al. used the electrode confined

electron in AlGaAs/GaAs/AlGaAs supperlattice and studied the electronic state

of quantum dot via observating of the relationship between capacitance and gate

voltage. They also studied the N-electron ground state energies of quantum dot

in magnetic field.[4](Fig.1.2) In 1998, Tokura et al. found the atom like property

such as a shell structure and they found that Hund’s rule is obeyed in the vertical

quantum dot[5].(Fig.1.3 and Fig.1.5) They also used the vertical quantum dot

which contains double-barrier structure to observe the electron states in quantum

dot molecules[3]. Besides the periodic table, as the ionization energy in natural

atom, the quantum dot has the charge energy which is the energy required to

add or remove a single electron from quantum dot. The quantum dot coupled to

lead is analogy to the impurity in electron gas. The electron transport problem in

impurity embedded electron gas, such as Anderson impurity model, Kondo effect

and localization effect etc., is also found in the quantum dot system[6][7][8]. Since

there are many atom-like properties, the quantum dot is naturally regarded as

the artificial atom. But unlike the real atom, the quantum dot is constructed by

hundreds or thousands atoms. The dimension of the quantum dot is in mesoscopic

scale. Since the dimension of atom is in microscopic scale, the bias voltage may

be considered as zero and the electron transport problem can be treated as equi-

librium case. However, the applied bias is actually able to drop over a mesoscopic

length ,i.e. the bias voltage may be finite. Thus, the transport problem in QD
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system might be a nonequilibrium problem[9]. For the dimensional size of the

quantum dot, it is easy to apply the external filed on the quantum dot and hence

the properties of quantum dot maybe modified. Thus, the physics of quantum

dots has been a very active and fruitful research topic.

1.1.1 Electron Transport through the Quantum Dot System

Besides the discrete energy, the small dimension confinement of quantum dot

causes the strong intradot Coulomb interaction. In addition to these two ef-

fects, the temperature strongly affects the essential characters of electron trans-

port through the quantum dot. The intradot Coulomb interaction depends on the

particle number in QD and is hardly to be calculated by the way of first principle.

A compact way is the equivalent circuit model which suggests the Coulomb in-

teractions to be expressed in terms of the circuit diagram as shown in Fig.1.6[10].

Using the capacity model, the additional energy of quantum dot is found as

µdot(N + 1)− µdot(N) = ∆E +
e2

C
(1.1)

where ∆E = EN+1 −EN is the quantum level spacing, e2/C is the charge energy

and N is the particle number. C is the total capacitance, i.e. the capacitance

between the dot and all other pieces of metal around it, plus the contribution from

self-capacitance. The total capacitance C = Cl+Cr+Cg consists of capacitances

across the barriers, Cl and Cr, and a capacitance between the dot and gate, Cg.
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Figure 1.5: Current flowing through a two-dimensional circular quantum dot on

varying the gate voltage.(a) The first peak marks the voltage where the first elec-

tron enters the dot and the number of electron, N , increases by one at each sub-

sequent peak. The distance between adjacent peaks corresponds to the addition

energies (see inset). (b) The addition of electrons whereas the second shell can

contain up to four electrons. It therefore costs extra energy to add the thired and

seventh electron. (c) The electronic properties following from a two-dimensional

shell structure can be summarized in a periodic table for two—dimensional ele-

ments. (The elements are named after team members from NTT and Delft.)9



Figure 1.6: Circuit diagram for electron transport through a quantum dot. The

tunneling barriers are represented as a parallel capacitor and resistor. The differ-

ent gates are represented by a single capator
P

Cg. The charging energy in this

circuit is e2/(Cl + Cr +
P

Cg)
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This simple model is valid at the linear response regime (i.e.(µleft − µright)/e <<

∆E/e, e/C). The requirement for electron being able to transport through QD is

when there are available states in the dot within the energy window between µleft

and µright. Thus, for µdot(N) < µleft, µright < µdot(N + 1) the electron transport

is blocked, which is known as the Coulomb blockade.

Since the temperature effect broadens the profile of Fermi distribution of the

electron in lead with energy in the vicinity of Fermi level of lead. The role of

temperature will divide the transport problem in QD system into three regimes:

(i) e2/C << kBT , where the discreteness of charge cannot be discerned.

(ii)∆E << kBT << e2/C, the classical or metallic Coulomb blockade regime,

where many levels are excited by thermal fluctuations.

(iii) kBT << ∆E < e2/C, the quantum Coulomb blockade regime, where only

one or a few levels participate in transport.

The quantum electron transport appears in regime (iii). In situation of regime

(iii), since the large intradot Coulomb interaction and energy spacing, the electron

can transport through QD via channels (energy levels) with energy between the

bias window eVsd = µhigh − µlow which is called ”conduction channel” in this

dissertation (Fig.1.7). The channels with energy below the lower Fermi level of

the lead µlow are occupied and do not contribute current. The channels above

the higher Fermi level of lead are unoccupied and the electron in the transport

channel can be excited to these unoccupied channel. Thus, at the regime of the
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Figure 1.7: The sketch of the quantum transport

quantum transport, the channel coupled to the bias window is similar to the

most outshell electron in natural atom which interacts with external field and

dominates the properties of the system. The sketch is shown in Fig.1.7. In this

dissertation, the quantum electron transport is considered. We study the electron

tunneling through the conduction channels which interacts with each other or

with unoccupied channel via electron-photon interaction.

1.1.2 The Photon Associated Transport

The photon associated transport means that the electron transport through

a region coupled with an AC field (or photon field) . The frequency regime of

the applied AC field is much lower than that of the visible light. The important

frequency scales are listed in table I.
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Table I. A list of the important energy/frequency scales for transport through

quantum dots. For ωph = 10GHz the photon energy, ~ωph, is 40 µeV .[11]

Quantity Equivalent frequency Typical frequency

thermal broadening ∼ 4kBT/h 10GHz (at100mk)

Tunneling rate on/off the dot Γ 0 ∼ 100GHz

Level spacing (or inverse traversal time) ∆ε/h 10 ∼ 100GHz

Charge energy e2/hC 40 ∼ 400GHz

Tunnelling time 1/τ tunnel 200GHz ∼ 1THz

For the typical quantum dot, the level spacing ∆ε is 0.05∼0.5 meV and the

charge energy, e2/C, is about 0.2 ∼ 2meV . To observe the discreteness of the

energy (level) in quantum dot, the thermal broadening 4kBT/h can not exceed

the level spacing and charge energy e2/C. Γ is the rate for tunneling in/off the

dot and can be very small. In order to keep the transport process in quantum

transport regime, Γ should be smaller than ∆ε otherwise the level broadening will

exceed the spacing between the single states. The tunneling time is the actual

time spent during tunneling through the barrier. AC signals can be applied and

the effects on DC transport can be observed when the AC signal time scale exceeds

the tunneling time scale.

If the frequency of AC field is much smaller than the tunneling rate Γ, i.e.

ωph ¿ Γ the electron is acted by an static potential[12]. If ωph À Γ, the elec-

tion will interact many cycles with AC field in interaction region. In order to
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observe the effect of AC field, the energy of AC field must be larger than the

thermal broadening, otherwise the photon process will be covered by the thermal

fluctuations. Since that, the frequency of AC field for PAT is set in the condition

hωph À 4kBT and hωph À 4kBT.[13]

The photon associated transport has been studied for a long time since 1960.

In 1963, Dayem and Martin observed the multiphoton associate tunneling in su-

perconductor diode (superconductor-insulator-superconductor)[14]. In their work,

microwave is coupled to the superconductor diode and found that (1) an excess

of tunneling current in the region below the knee of the current (if microwave is

turned off) and a reduction of the tunneling current in the region above the knee

of the current if microwave is turned on, and (2) the tunneling current appears at

voltage of n~ωph/e, n ∈ integer and ωph is the frequency of microwave. As shown

in Fig.1.8, Tien and Gordon employed a time dependent potential difference

V cosωpht between two films to model the experiment of Dayem and Martins.

They found that the wave function contains components which have energies, E0,

E0±~ωph, E0± 2~ωph, ....., etc., respectively when the microwave is applied. The

additional energies E0±~ωph, E0±2~ωph, ..... are called photonic sidebands which

provide the additional channels for electron tunneling. Each component with en-

ergy E0±n~ωph corresponding to absorbing n photons for sign ”+” and emitting

n photons for sign ”−”. And the amplitude of n− photon absorption (emission)

component is proportional to the nth order Bessel function Jn(Vω ), and the effective
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Figure 1.8: The milti-photon associated tunneling in superconductor diode

(superconductor-insulator-superconductor) observed by A.H. Dayem and R.J.

Martin.
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Figure 1.9: The SEM photo of sample for PAT experiment in quantum dot system.

density is proportional to J2n(
V
ω
). Thus the current due to the electron tunneling

via the channel with energy E0 ± n~ωph is proportional to J2n(
V
ω
). In 1994, the

electron transport via the photon sideband was also found and studied in quantum

dot system[15]. L. P. Kouwenhoven et al. applied microwave to a quantum dot

defined by metallic gates (Fig.1.9) in a GaAs/AlGaAs heterostructure containing

a 2-DEG dimensional electron gas (2DEG) 100nm below the surface. The current

due to the electron transport via photonic sideband E0 ± ~ωph, E0 ± 2~ωph was

observed in the experiment. Almost all of the studies in PAT topics treated the

photon field as the semi-classical model, i.e. treated the photon filed as the AC

gate voltage[16][17] .The quantum electrodynamic treatment of PAT was studied
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by Foden and Whittaker. Foden and Whittaker treated the photon field as a

quantum field and used the canonical transformation to solve the PAT problem.

They pointed out that the classical field approximation is a valid one, not because

the field intensities are high but because the coupling between the electrons and

field is weak[18].

In the above introduction about PAT, the electron interacts with photon and

without inter-state transition. But for the two level system (ground state and

excited state), the electron may transit between the ground state and excited

state via electron-photon interaction. In the atomic optical topic, this is the dipole

interaction. In the case of dipole interaction, the atom can transit between lower

energy state and higher energy state due to the photon absorption or emission

process. It is known that the transition cycle between two states is called Rabi

oscillation with Rabi frequency ΩR. The Rabi frequency is defined as ΩR =p
∆2 + 4g2nph where ∆ = ωph − (ε2 − ε1) is the detuning factor, where nph,

ωph are the photon number and photon frequency, respectively[19] . Since the

properties of quantum dot is similar to the atom, the dipole interaction may

appear in the quantum dot system. The two-level quantum dot system with

intradot transition due to AC field was considered by Brune et al..[20] They found

that the photonic sideband locates at ε = (ε2 + ε1 ± ~ωph ± ΩR)/2 where Rabi

frequency is ΩR =
q
∆2 + |∆f |2, and ∆f is the coupling strength of the electron-

field interaction.[15]
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Besides the semi-classical treatment of photon field, most of the theoretical

models treated the PAT problem in the frame work of weak reservoir coupling

limit. In the weak reservoir approximation, the electron-photon interaction is

assumed much stronger than the tunneling effect.[17] Hence, the AC field applied

on the quantum dot is firstly treated as an electron-photon interaction quasi-

particle and then the interaction quasi particle is coupled to lead. In the weak

reservoir coupling limit, the higher order tunneling effects, such as Kondo effect

and co-tunneling effect, are ignored.

In chapter 4 of this dissertation, the electron transport through the AC field-

applied-two-level quantum dot is studied. The electron-photon interaction is

treated as a dipole interaction. The photon field will be treated as a quantum

field. In order to study the strong correlation between dot and lead induced by the

electron-photon interaction, the non-weak reservoir coupling limit is considered.

1.1.3 The Anderson Impurity Model in Quantum dot system

1.1.3.1 Electron transport at low temperature

For normal metal or free electron gas, the property of electron transport or

the electrical conductivity (resistivity) can be explained by Ohm’s law. In Ohm’s

law, the electrical conductivity σ is defined as σ = ne2τ/m where n is the electron

number, e is electronic charge, τ is the collision time andm is the electronic mass.

The net collision time τ can be recognized as the phonon scattering part τL and
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the imperfection scattering part τ i and 1
τ
= 1

τL
+ 1

τi
. The net resistivity is given

by ρ = ρL + ρi where ρL is the resistivity caused by the thermal phonons, and

ρi is the resistivity caused by scattering of the electron waves by static defects

that disturb the periodicity of the lattice. The collision time τL and resistivity ρL

can be estimated by the Drue model. In Drue model, the resistivity is originated

by the collision of conduction electron which alters the velocity of conduction

electron. The electron-electron interaction between collisions is neglected which is

known as the independent electron approximation. The electron-ion interaction is

also ignored and that is known as the free electron approximation. The electrons

are assumed to achieve thermal equilibrium with their surrounding only through

collision. The average time between the collision events is assumed as τL. The

time τL is called as the relaxation time, the collision time, or the mean free time,

and it plays a fundamental role in the theory of metallic conduction. The mean

free path lL can be expressed by the mean free time as lL = v0τL where v0 is the

average electronic speed. The mean free path measures the average distance of an

electron travelling between two successive collisions. The average electronic speed

is estimated from classical equipartition principle of energy: 1
2
mv20 =

3
2
kBT . For

a given sample, the mean free path is constant and the mean free time is τL =

lL/
p
3kBT/m. The resistance can be estimated as ρL =

m
ne2τL

=
m
√
3kBT/m

ne2lL
. The

resistivity originated by the phonon (or electron) scattering is proportional to the

square root of temperature. The resistivity ρi is often independent of temperature.
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Thus, the resistivity of metal is decreased with decreasing of temperature at high

temperature region and approximates to a constant residual resistivity, ρ(0), when

the temperature is low.

But, for many years experimentalists noticed that magnetic impurities in non-

magnetic metals caused anomalous behavior in low-temperature resistivity ρ(T ).

Magnetic impurities are those with a net spin caused by partially filled d- or f-

electron shells. An example is manganese impurities in cooper. The magnetic

impurity causes a resistance minimum at nonzero temperature. Kondo explained

this behavior as due to spin-flip scattering between the conduction electrons and

localized spin. The resistance minimum is called Kondo effect. The Anderson

model is another model for a system of conduction electrons that interact with a

local spin[21]. Many early works regarded that these two models can make very

similar predictions. Schrieffer andWolff gave the transformation which shows that

the two models are very similar[22]. Now it is known that the Anderson model

has a greater variety of behavior. It contain more interesting physics.

The Anderson impurity model describes the strong correlation between elec-

tron in magnetic impurity and electron reservoir (electron gas) via the Coulomb

interaction and direct tunneling between impurity and metal. Consider an elec-

tron with spin σ1 which locates in an impurity state with energy ε0. It is intuitive

that the second electron with spin σ2 will occupy the impurity state with energy

ε0 + U .(Fig.(1.10.a)) But Anderson regarded that this is not the ground state of
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Figure 1.10: (a)Unperturbed energy levels (b) Density of state distribution, The

”humps” at ε0+hnσ1iU and ε0+hnσ2iU are virtual states in impurity. The number

of electrons hnσ1i and hnσ2i occupied is computed from the area of unshaded

portion, below Fermi surface.

the two-electron-system in impurity under Coulomb interaction and tunneling per-

turbation. The ground state is the virtual state constructed by the electron with

energy ε0+hnσ2iU and ε0+hnσ1iU and lies near the Fermi level[21].(Fig.(1.10.b))

In this case, the electron can tunnel from the impurity and escape provided its

energy lies above the Fermi level, otherwise it will remain to be trapped. In the

picture, the defect has a spin of 1/2 and its z-component is fixed as either ”spin

up” or ”spin down”. The so-called exchange processes can effectively flip the spin

of the impurity from spin up to spin down, or vice versa, which simultaneously
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creates a spin excitation in the Fermi sea.

The Kondo effect is a quantum mechanical phenomenon. The energy needed

for the electron is taken from the magnetic impurity state and put into an unoc-

cupied state at the Fermi surface of Fermi level is about 1 ∼ 10eV , this process

is forbidden for classical situation. But it is possible to take place in quantum

mechanics. The uncertainty principle allows such a configuration to exist for a

very short time τK = h/ |ε0| (h is the Plank constant.) Within this time scale,

another electron must tunnel from the Fermi sea back towards the impurity. The

spin of impurity is changed via this quantum mechanics process. As many spin

exchange processes take place together, the new state (the virtual state), knows as

the Kondo resonance, is constructed with the energy near the Fermi level. Since

many electrons need to be involved, the Kondo effect is a many body phenomenon.

Note that, the Kondo state is always ”on resonance” since it is fixed to Fermi

level. The Kondo effect alters the energy of the system so that it is always on

resonance. The only requirement for the effect to occur is that the sample has

to be cooled to sufficiently low temperature to be below Kondo temperature TK .

Duncan Haldane showed that TK is related to the parameters of the Anderson

model by TK = 1/2(ΓU)1/2 exp[πε0(ε0+U)/ΓU ], where Γ is the width of impurity

state due to the direct tunneling from it, and U is the on-site Coulomb repulsion

energy[23]. The Kondo temperature can vary from 1 ∼ 100K.

When temperature is near or below the critical temperature TK (Kondo tem-
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perature), the virtual state is constructed and the density of state of electron in

the impurity grows logarithmically in the vicinity of Fermi surface to form Kondo

resonance peak. In a magnetic bulk, the virtual state causes more scattering,

hence the resistance is increased logarithmically as temperature is decreased. As

a result to cause a minimum resistance at nonzero temperature.

Since the quantum dot can be controlled more conveniently than natural im-

purity. This property provides a way to control the Kondo effect experimentally.

Therefore, the non-equilibrium ( i.e. nonzero bias, Kondo effect) is naturally stud-

ied in quantum dot system.[24] The spin state of quantum dot can be modified

by applying an external magnetic field. The Kondo effect can also be found in

singlet (S = 1/2) and triplet (S = 1) states in quantum dot system by applying

a magnetic field around 1 tesla. This experiment is hardly to implement in the

natural magnetic impurity since the required magnetic field is about 106 tesla and

can not be generated in the laboratory. The quantum dot is a powerful system

for the research in Kondo effect which provides wider regime to be inaccessible

with magnetic impurities. In the quantum dot system, unlike the bulk system,

the virtual state provides a channel in the vicinity of Fermi energy of lead for elec-

tron tunneling between quantum dot and lead. Thus the conductance is increased

logarithmically as temperature is decreased.

The Kondo effect is a many-body problem and needs more skills to solve.

There are many methods to solve Kondo problem. The equation of motion method
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(EOM)[25][26][27][28], slave boson technique[29] and renormalization group theory[30]

are often used to solve the Kondo effect problem. The EOM is a compact way for

the Kondo problem and widely employed to describe an interacting QD coupled

to normal or superconducting electrodes. The EOM generates two-particle Green

functions, which have to be decoupled and truncated. The preciseness of the

EOM depends on the way of decoupled scheme. The two-particle Green function

corresponding to the Anderson impurity model is G(2) = hhTdσnσ0 , dσii. If one

takes G(2) = nσ0 hhTdσ, dσii, this approximation is effective to the Hartree-Fock

approximation which gives the Coulomb Blockade effect. For the higher order

perturbation due to the tunneling between dot and lead, two-particle Green func-

tion contains two lead electronic operators and two dot electronic operators which

maybe decoupled as
­­
ckσcq−σd

+
−σ, d

+
σ

®®
' −

­
cq−σd

+
−σ
®
,
­­
c+q−σckσd−σ, d

+
σ

®®
'

−
­
c+q−σd−σ

®
hhckσ, d+σ ii,

­­
c+q−σck−σdσ, d

+
σ

®®
'
­
c+q−σck−σ

®
hhdσ, d+σ ii. Lacroix (1981)

suggested that the decoupled approximation
­
cq−σd

+
−σ
®
=
­
c+q−σd−σ

®
= 0 and­

c+q−σck−σ
®
= δq,k hnk−σi are correct only at high temperature (above the Kondo

temperature). These decouple scheme will be called as Lacroix’s high temperature

decoupled scheme in this dissertation. When temperature is below Kondo temper-

ature TK, Lacroix pointed out that the approximations
­
cq−σd

+
−σ
®
=
­
c+q−σd−σ

®
=

0 and
­
c+q−σck−σ

®
= δq,k hnk−σi do not correct exactly and have to be solved in

higher order expansion and calculated self-consistently (This decoupled approxi-

mation is called as the Lacroix’s low temperature decoupled scheme). Luo et al.

24



(1999) included the higher order term (compares to the Lacroix’s low tempera-

ture decoupled scheme) and got the result very closed to the one calculated by

numerical renormalization group[31]. Although the Lacroix’s high temperature

decoupled scheme is not correct exactly (quantitatively) but it can give reason-

ably qualitative result. For simplicity, the Lacroix’s high temperature decoupled

sheme will be adopted.
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CHAPTER 2

THE NONEQUILIBRIUM GREEN FUNCTION AND

CURRENT FORMULA

2.1 The Green function method

In this dissertation, one of the interest subjects is to study the current due to

the electron transport through the quantum dot which interacts with other parti-

cle, i.e. the many body problem. In order to calculate such a many body problem,

the current formula which is based on the nonequilibrium Green functions (or con-

tour ordered Green functions) developed by Antti-Pekka Jauho et al. is used. In

the following, we will give an brief introduction. For detial review, one can refer

to the book ”Quantum Kinetics in Transport and Optics of Semiconductors”.

2.1.1 Equilibrium Green function (time ordered Green function)

2.1.1.1 Definition of Green functions

There are many ways to treat the many-body interacting system, the Green

function method is one of the popular methods. The equilibrium Green function
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is defined as

G(x, t, x0, t0) = −ihΨ0|T{ψH(x, t)ψ
+
H(x

0, t0)} |Ψ0i
hΨ0| Ψ0i

(2.1)

Here, T{...} is the time-ordering operator which moves the operator with early

time to the right:

T{A(t)B(t0)} = θ(t− t0)A(t)B(t0)∓ θ(t0 − t)B(t0)A(t) (2.2)

where the upper sign refers to Fermions. This negative sign is caused by the inter-

change of the order of Fermi operator. The operator ϕH(x, t) is time dependent

and inHeisenberg picture. H |Ψ0i = E0 |Ψ0i is the ground system of interact-

ing system. The term hΨ0| Ψ0i is a normalization factor and relates to density

operator of ground state.

For future use, it is necessary to define the retarded, advanced, "lesser" and

"greater" Green functions:

Gr(x, t;x0, t0) = −iθ(t− t0)
­
{ψ(x, t), ψ+(x0, t0)}

®
(2.3)

Ga(x, t;x0, t0) = iθ(t0 − t)
­
{ψ(x, t), ψ+(x0, t0)}

®
(2.4)

G<(x, t;x0, t0) = i
­
ψ+(x0, t0)ψ(x, t)

®
(2.5)

G>(x, t;x0, t0) = i
­
ψ(x, t)ψ+(x0, t0)

®
(2.6)

The retarded Green function Gr is nonzero only for times t ≥ t0, thus this function

can be used to calculate the response at t to an earlier perturbation of the system

at time t0. The advanced Green function Ga is only finite for t ≤ t0. The "lesser"
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Green function is also called the particle propagator, while the "greater" Green

function, in which the order of the creation and annihilation operators are reversed,

is called the hole propagator. These various functions are not independent, they

obey

Gr −Ga = G> −G< (2.7)

In Eq.(2.3)∼Eq.(2.6), we dropped the normalization factor hΨ0| Ψ0i. Note that

the time-ordered, the retarded, and the advanced Green function can be expressed

in term of G> and G<:

G(x, t, x0, t0) = θ(t− t0)G>(x, t, x0, t0) + θ(t0 − t)G<(x, t, x0, t0) (2.8)

Gr,a(x, t, x0, t0) = ±θ(±t∓ t0)[G>(x, t, x0, t0)−G<(x, t, x0, t0)] (2.9)

The observables can also be expressed in term of G>,<; for example

hn(x)i = −iG<(x, t;x, t) (2.10)

Although all Green functions can be expressed in terms of each other, each one of

them has its own advantage and necessary to introduce:

(1) G(x, t, x0, t0) can be obtained by a systematic perturbation theory.

(2) Gr,a(x, t;x0, t0) has a nice analystic structure (pole in one half-plane) and

is convenient to calculate the physical quantities, such as spectral properties,

densities of states, and scattering rates.

(3)G>,<(x, t;x0, t0) is directly linked to observable physical quantities and ki-

netic properties, such as particle densities or current.
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Another important properties for these Green functions is that Green func-

tions G,Gr,a, G>,< are also linked by the fluctuation-dissipation theorem.

2.1.1.2 Fluctuation-Dissipation theorem

The spectral function (or the density of state) is essential and relates to ob-

servable quantities. It is defined as:

A(k, ω) = i[Gr(k, ω)−Ga(k, ω)] (2.11)

and with the property:Z ∞

−∞

dω

2π
A(k, ω) =

Z
d3(x− x0)e−ik(x−x

0)
­
{ψ(x, t), ψ+(x0, t0)}

®
= 1 (2.12)

because of the equal-time anticommutation rule. The density of state can be

calculated by A(k, ω):

ρ(ω) =

Z ∞

−∞

d3k

(2π)3
A(k, ω)

(Since the vector k is quantized in quantum dot, the spectral function A(ω) equals

to the density of state ρ(ω)). The fluctuation-dissipation theorem A(k, ω) links

the spectral function to the particle propagator G<(k, ω) :

G<(k, ω) = if(ω)A(k, ω) (2.13)

where f(ω) = (1 + exp[β(ω − µ)])−1 , β = (kBT )
−1 and µ is the chemical po-

tential. Eq.(2.13) is an useful equation for determinating the particle number in

equilibrium system (zero basis system). For the case of quantum dot:

N = −i
Z

dω

2π
G<(ω) =

Z
dω

2π
f(ω)A(ω) (2.14)
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The spectral function is the image part of retarded Green function, and it deter-

mines the decay in time-domain, and hence the dissipation. The form of Eq.(2.13)

explains the name ”fluctuation-dissipation” theorem. It means that the correla-

tion function G< (which also carries information about the fluctuations) is pro-

portional to the dissipative part and the proportionality factor is the Fermi-Dirac

distribution function. For non-interaction system, A(k, ω) = 2πδ(εk − ω). The

greater Green function (or the hole propagator) also has the similar relation:

G>(k, ω) = −i(1− f(ω))A(k, ω)

The hole propagator is proportional to the probability of finding a hole, i.e. an

unoccupied state, times the spectral function.

2.1.1.3 Perturbation Expansion of the Green function

There are three representations in quantum mechanics, i.e.

(a) Schrodinger picture: the wave function is time dependent i ∂
∂t
ψ(t) = Hψ(t);

the operators are constant.

(b) Heisenberg picture: the wave function is constant; the operator is time

dependent Ô(t) = eiHtÔ(0)e−iHt.

(c) interaction picture: The wave function develops under the influence of the

interaction part of Hamiltonian H = H0 + V ; ψ̂(t) = e−iV tψ(0). The operator

develops under the influence of the non-interaction part of Hamiltonian Ô(t) =

eiH0tÔ(0)e−iH0t.
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The time evolution of wave function in interaction picture can be expressed

as:

ψ̂(t) = U(t)ψ̂(0), U(t) = e−iV t

Introduce the S-matrix which describes the time evolution of wave function from

t to t0 :

S(t, t0) = U(t)U(t0), ψ̂(t) = S(t, t0)ψ̂(t0)

The S-matrix obeys the property S(t, t0) = S(t, t00)S(t00, t0). The S-matrix can be

expressed as a time ordered product:

S(t, t0) = Te−i
t
t0 dt1V̂ (t1) (2.15)

Thus the relation between the exact ground state of interaction system |Ψ0i and

noninteracting system |Φ0i is:

|Ψ0i = S(0,−∞) |Φ0i and hΨ0| = hΦ0|S(0,−∞)

The term hΨ0| Ψ0i = hΦ0|S(0,−∞)S(0,−∞) |Φ0i is an ill-defined phase and

is cancelled with numerator in Eq.(2.1) under the ”adiabatic switch on” interac-

tion, i.e. the cancellation theorem[32][33]:

G(x, t, x0, t0) = −ihΨ0|T{ψ̂H(x, t)ψ̂
+

H(x
0, t0)} |Ψ0i

hΨ0| Ψ0i
(2.16)

= −ihΦ0|T{S(−∞,∞)ψ̂i(x, t)ψ̂
+

i (x
0, t0)} |Φ0i

hΦ0|S(−∞,∞) |Φ0i

= −i
hΦ0|S(−∞,∞) |Φ0inon−connected hΦ0|T{S(−∞,∞)ψ̂i(x, t)ψ̂

+

i (x
0, t0)} |Φ0iconnected

hΦ0|S(−∞,∞) |Φ0inon−connected

= −i hΦ0|T{S(−∞,∞)ψ̂i(x, t)ψ̂
+

i (x
0, t0)} |Φ0iconnected
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Figure 2.1: The sketch of Feynmann diagram corresponding to connected term,

non-connected term and Green function

The subscript connected in the term hΦ0| ... |Φ0iconnected presents that the interac-

tion line connects with the particle line. The subscript non-connected in the term

hΦ0| ... |Φ0inon−connected presents that the interaction line does not connect with the

particle line. The hΦ0| ... |Φ0inon−connected is the vacuum bubble and does not affect

the system. The sketch is shown in Fig.2.1.This result generates the systematic

perturbation scheme for Green function. The S-matrix can be expanded in V (t) :

S(∞,−∞) =
∞X
n=0

(−i)n
n!

Z ∞

t1

· · ·
Z tn

−∞
dt1 · · · ·dtnT{V̂ (t1) · · · ·V̂ (tn)} (2.17)
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i.e. the Dyson expansion. Since t1 · · · ·tn are mute variables, the time order of

t1 · · · ·tn have n! possible permutations with the same physical meaning. The

factorial n! will be cancelled with the number of possible permutations due to

change of the upper limit and lower limit of integral variables to ∞ and −∞[34].

For example, if V̂ (t1) contains two operators, for the second expansion, i.e. n = 2,

one needs to evaluate the term:

hΦ0|T{ψ̂(t)ψ̂
+
(t0)ψ̂

+
(t1)ψ̂

+
(t2)ψ̂(t2)ψ̂(t1)} |Φ0i (2.18)

It is constructed by the product of six operators. It can be treated with Wick’s

theorem, which means that the result of Eq.(2.18) is the sum of all pairwise

contractions[35] . There are three time variables and 3! possible permutations.

All the possible diagrams corresponding to Eq.(2.18) are shown in Fig.(2.2):The

diagrams (a) and (b) are vacuum bubbles which are cancelled by the normalization

factor in denominator as shown in Fig.(2.1). The diagram (c) equals to (e) and

diagram (d) equals to (f) since the time variables are mute. Hence, the factorial

n!(2! = 4 for Eq.(2.18)) in the denominator of Eq.(2.17) is cancelled by the n!

equivalent time ordered arrangement. Thus, in the ”adiabatic switch on” limit,

the Green function of interaction system can be obtained as:

G(t, t0) = −i
∞X
n=0

(−i)n
Z ∞

−∞
dt1····

Z ∞

−∞
dtn hΦ0|T{ψ̂i(x, t)ψ̂

+

i (x
0, t0)V̂ (t1)V̂ (t2)····V̂ (tn)} |Φ0iconnected

(2.19)

where the summation includes topologically different connected diagrams only.
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Figure 2.2: diagrams correspond to hΦ0|T{ψ̂(t)ψ̂
+
(t0)ψ̂

+
(t1)ψ̂

+
(t2)ψ̂(t2)ψ̂(t1)} |Φ0i

2.1.1.4 The interaction and self energy

For the interaction system, the Green function can be calculated by Dyson

expansion and usually has the form:

G(1, 10) = G0(1, 1
0) +

Z
dt2G0(1, 2)U(2)G(2, 1

0) (2.20)

+

Z
dt2

Z
dt3G0(1.2)Σ(2, 3)G(3, 1

0)

where U(2) is the one-body external potential U and usually zero in most equi-

librium case. The self-energy term Σ(2, 3) contains the interaction. Using the
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Figure 2.3: The Dyson’s equation for G(ω)

Fourier transformation Eq.(2.20) becomes:

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω) (2.21)

= G0(ω) +G0(ω)Σ(ω)G0(ω) +G0(ω)Σ(ω)G0(ω)Σ(ω)G(ω)

= G0(ω) +G0(ω)Σ(ω)G0(ω) +G0(ω)Σ(ω)G0(ω)Σ(ω)G0(ω) + · · · · ··

G(ω) =
1

ω − ε0 − Σ(ω)
(2.22)

where ε0 is the eigen energy of particle. The diagrams of G(ω) and Σ(ω) are

shown in Fig.(2.3). Σ(ω) is the self energy which maybe a complex quantity. The

real part of the self energy is the energy shift and image part is the decay rate (or

bandwidth) due to interaction.
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2.1.2 The nonequilibrium Green function

The nonzero bias system is an ordinary case in the electron transport prob-

lem which is usually nonequilibrium. Consider a quantum dot connecting to the

leads of which the right one is a higher Fermi energy level and the left one is a

lower Fermi energy level. The electron in state |Ri will transport from the right

lead through the dot with state |doti and into the left lead with state |Li. The

electron does not return to the original lead, i.e. state |Ri. Hence the process is

a nonequilibrium process.

Since the initial state and final state are different states in the nonequilibrium

problem. Thus, the final state is not the ground state of the system. The equi-

librium Green function (or time ordered Green function) is not suitable for the

problem. In order to solve the problem, the contour-ordered Green function is

introduced. The contour ordered Green function is defined as

G(1, 10) ≡ −i hTC [ψH(1)ψH(1
0)]i (2.23)

where the contour C begins from t0 and ends at t0(t0 → ±∞ for the case of

adiabatic switch on approximation); the contour starts from t0, passes through t1

and t10 along real axis and finally ends at t0 again (Fig.2.4). We use the shorthand

notation (1) ≡ (x1, t1). A typical interesting problem would be the two time Green

function. The two time variables would be located on either of two branches of the

complex time path, there are four distinct possibilities. Thus Eq.(2.23) contains

four different functions:
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Figure 2.4: Contour C

G(1, 10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GC(1, 1
0) t1, t10 ∈ C1

G>(1, 10) t1 ∈ C2, t10 ∈ C1

G<(1, 10) t1 ∈ C1, t10 ∈ C2

GC(1, 1
0) t1, t10 ∈ C2

(2.24)

where GC(1, 1
0) is the casual, or time-ordered Green function

GC(1, 1
0) = −i

­
T [ϕH(1)ϕ

+
H(1

0)]
®

(2.25)

= −iθ(t1 − t10)
­
ϕH(1)ϕ

+
H(1

0)
®
+ iθ(t10 − t1)

­
ϕ+H(1

0)ϕH(1)
®

G>(1, 10) is the "greater" Green function

G>(1, 10) = −i
­
ϕH(1)ϕ

+
H(1

0)
®

(2.26)

G<(1, 10) is the "lesser" Green function

G>(1, 10) = −i
­
ϕ+H(1

0)ϕH(1)
®

(2.27)

and GC(1, 1
0) is the anti-time-ordered Green function

GC(1, 1
0) = −i

DeT [ϕH(1)ϕ
+
H(1

0)]
E

(2.28)

= −i− iθ(t10 − t1)
­
ϕH(1)ϕ

+
H(1

0)
®
+ iθ(t1 − t10)

­
ϕ+H(1

0)ϕH(1)
®
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Since GC(1, 1
0) + GC(1, 1

0) = G>(1, 10) + G<(1, 10), there are only four linear

independent functions.

The physical quantities related Green functions are G>,< and Ga,r. In order

to calculate the physics quantities, it is necessary to introduce the advanced and

retarded Green function. the advanced and retarded Green functions are defined

as

Ga(1, 10) = iθ(t10 − t1)
­
T{ϕH(1), ϕ

+
H(1

0)}
®

(2.29)

= θ(t10 − t1)[G
<(1, 10)−G>(1, 10)]

and

Gr(1, 10) = −iθ(t1 − t10)
­
T{ϕH(1), ϕ

+
H(1

0)}
®

(2.30)

= θ(t1 − t10)[G
>(1, 10)−G<(1, 10)]

Here the curling bracket denotes an anticommutator. One can observe that Gr −

Ga = G> −G<.

After developing the nonequilibrium Green function, the next problem is:

how to obtain the Green function for an interacting system? Fortunately, under

the adiabatic ”switch on” limit, the equilibrium and nonequilibrium theories are

structurally equivalent. The only difference is to replace the real axis integrals by

contour integrals.

Since the most interesting problem is related to interacting system. The Green

function constructed by the product of Green functions will be needed in the
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Figure 2.5: Deformation of contour C

interacting system. One of the key problem in the nonequilibrium problem is:

how to obtain the Green function which is structured by the product of Green

functions. The solution is the Langreth Theorem[36].

2.1.2.1 The Langreth theorem

Consider the Green function with the structure C = AB, or, explicitly,

C(t1, t10) =

Z
C

dτA(t1, τ)B(τ , t10) (2.31)

Now, let us evaluate the corresponding lesser Green function C<(t1, t10). In order

to evaluate C<, let us assume that t1 is on the first half of C, and t10 is on the

latter half, as shown in Fig.(2.5). Hence, the lesser Green function C< is rewritten
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as:

C<(t1, t10) =

Z
C1

dτA(t1, τ)B
<(τ , t10) (2.32)

+

Z
C01

dτA<(t1, τ)B(τ , t10)

The first term at right sight of Eq.(2.32) lies on the contour C1 on which the

variable t10 is always on the later half of C1 and variable τ runs over all of C1.

Hence, function B(τ , t10) is a lesser function on the contour C1. In the same way,

the function A(t1, τ) is a greater function on C2. In order to obtain function

A(t1, τ), we split contour C1 into two part: C1A : −∞ < τ < t1 and C1B : t1 <

τ < ∞. The function A(t1, τ) is a greater function on the contour C1A and is a

lesser function on C1B. Now consider the first term in Eq.(2.32), and split the

integration into two parts:

Z
C1

dτA(t1, τ)B
<(τ , t10) =

Z t1

−∞
dtA>(t1, t)B

<(t, t0) +

Z t1

−∞
dtA<(t1, t)B

<(t, t0)

(2.33)

≡
Z ∞

−∞
dtAr(t1, t)B

<(t, t0)

A similar analysis can be applied to the second term in Eq.(2.32). Put two terms

together, we have the first of Langreth’s result:·

C<(t1, t10) =

Z ∞

−∞
dt[Ar(t1, t)B

<(t, t10) +A<(t1, t)B
a(t, t10)] (2.34)

It is easy to generalize the result Eq.(2.34) for a (matrix) product of three
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function: If D = ABC is on the contour, then on the real axis, one has:

D< = (AB)rC< + (AB)<Ca

= (AB)rC< + (AB)rCa +A<BaCa

Now, the next problem is to solve the retarded function (AB)r which is constructed

from the production of A and B. The required expression is derived by repeated

use of the definitions Eq.(2.30) and Eq.(2.34). If E = AB:

Er(t1, t10) = θ(t1 − t10)[C
>(t1, t10)− C<(t1, t10)]

= θ(t1 − t10)

Z ∞

−∞
dt[Ar(B> −B<) + (A> −A<)Ba]

= θ(t1 − t10)[

Z t1

−∞
dt(A> −A<)(B> −B<) +

Z t10

−∞
dt(A> −A<)(B< −B>)]

=

Z t1

t10

dtAr(t, t1)B
r(t, t10)

In the compact notation this relation is expressed as Er = ArBr. Hence, the

lesser function D< is obtained as:

D< = ArBrC< +ArB<Ca +A<BaCa

In the interacting system, one may evaluate two Green functions with paral-

lel evolution lines. In this case one needs the ”lesser” and/or retarded/advance

component of structures like:

C(τ , τ 0) = A(τ , τ 0)B(τ , τ 0) (2.35)

D(τ , τ 0) = A(τ , τ 0)B(τ 0, τ) (2.36)
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where τ and τ 0 are contour variables. In similar to the analization presented above,

one finds:

C<(t, t0) = A<(t, t0)B<(t, t0)

D<(t0, t) = A<(τ , t0)B>(t0, t)

and

Cr(t, t0) = A<(t, t0)Br(t, t0) +Ar(t, t0)B<(t, t0) +Ar(t, t0)Br(t, t0)

Dr(t, t0) = Ar(t, t0)B<(t0, t) +A<(t, t0)Ba(t0, t)

= A<(t, t0)Ba(t0, t) +Ar(t, t0)B<(t0, t)

For a quick reference, the rules provided by the Langreth theorem are collective

in TableII

Table II Rules for analytic continuation

Contour Real axis

C =
R
C
AB C< =

R
t
[ArB< +A<Ba]

Cr =
R
t
ArBr

D =
R
C
ABC D< =

R
t
[ArBrC< +ArB<Cα +A<BaCa]

Dr =
R
t
ArBrCr

C(τ , τ 0) = A(τ , τ 0)B(τ , τ 0) C<(t, t0) = A<(t, t0)B<(t, t0)

Cr(t, t0) = A<(t, t0)Br(t, t0) +Ar(t, t0)B<(t, t0) +Ar(t, t0)Br(t, t0)

D(τ , τ 0) = A(τ , τ 0)B(τ 0, τ) D<(t, t0) = A<(t, t0)B>(t0, t)

Dr(t, t0) = A<(t, t0)Ba(t, t0) +Ar(t, t0)B<(t0, t)
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Using table II, all of possible combinations of product of Contour Green func-

tions can be transformed to Real axis Green function. For example, if a contour

function constructed by D(t, t0) = A(t, t0)B(t, t0)C(t, t0), the real axis Green func-

tion corresponding to D(t, t0) can be obtained by following the way:

D(t, t0) = A(t, t0)B(t, t0)C(t, t0) = [A(t, t0)B(t, t0)]C(t, t0)

D<(t, t0) = [A(t, t0)B(t, t0)]<C<(t, t0)

= A<(t, t0)B<(t, t0)C<(t, t0)

Dr(t, t0) = [A(t, t0)B(t, t0)]<Cr(t, t0) + [A(t, t0)B(t, t0)]rC<(t, t0) + [A(t, t0)B(t, t0)]rCr(t, t0)

= A<(t, t0)B<(t, t0)Cr(t, t0)

+A<(t, t0)Br(t, t0)C<(t, t0) +Ar(t, t0)B<(t, t0)C<(t, t0) +Ar(t, t0)Br(t, t0)C<(t, t0)

+A<(t, t0)Br(t, t0)Cr(t, t0) +Ar(t, t0)B<(t, t0)Cr(t, t0) +Ar(t, t0)Br(t, t0)Cr(t, t0)

Another useful formula is the Keldysh equation which can be used to calculate

the lesser Green function and particle. Assume the lesser Green function of an

interaction can be expanded as:

G< = G<
0 +Gr

0Σ
<G< +Gr

0Σ
<Ga +Gr

0Σ
<Ga (2.37)

Proceed by iteration with respect to G<, for one iterating, after regrouping the

terms one can obtain

G< = (1 +Gr
0Σ

r)G<
0 (1 + ΣaGa) + (Gr

0 +Gr
0Σ

rGr
0)Σ

<Ga +Gr
0Σ

rGr
0Σ

rG< (2.38)
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Repeat the process and rearrange the equation, one can find the second term

of 2.38 has the form of (Gr
0 + Gr

0Σ
rGr

0 + Gr
0Σ

rGr
0Σ

rGr
0 + ........) which equals to

the interacting retarded Green function Gr. And the first term of 2.38 becomes

(1+[Gr
0+G

r
0Σ

rGr
0+G

r
0Σ

rGr
0Σ

rGr
0+........]Σ

r)G<
0 (1+Σ

aGa) which can be rewritten

as (1 +GrΣr)G<
0 (1 + ΣaGa) And the result is:

G< = (1 +GrΣr)G<
0 (1 + ΣaGa) +GrΣ<Ga

2.2 The Nonequilibrium transport Formula in the interacting res-

onant tunneling

In this section, the nonequilibrium transport formula based on the nonequi-

librium Green function is introduced. The derivation processes is followed the

ref.[17]. Consider a system that electron transport from lead through the central

region which can interact with external field and then transport from the central

region into another lead. The Hamiltonian of the system can be written as:

H = Hcen +Hlead +HT (2.39)

where Hcen is the Hamiltonian of the central region which contains the nonin-

teracting electron Hamiltonian and the Hamiltonian of interaction part. The

Hamiltonian of noninteracting electron with time dependent level is:

H0
cen =

X
m

εm(t)d
+
mdm (2.40)

Here d+m(dm) is the creation (annihilation) operator in central region.
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In this dissertation, the electron-photon interaction is modeled as the dipole

interaction, hence the interaction Hamiltonian can be written as:

Hint
cen =Md+1 d2b

+ + h.c (2.41)

where b+(b) is the photon creator (annihilator) operator. The electron-photon

coupling coefficient M = −−→p · −→E, where −→p = e h2|−→r |1i, is the electron dipole

transition matrix element and
−→
E is the strength of electric field of the photon

field. .

The lead Hamiltonian is:

Hlead =
X

kα∈L,R,m

εkα(t)c
+
kα
ckα + h.c. (2.42)

where c+kα(ckα) creates (annihilates) the electron with momentum k at α lead

(α ∈ L,R). The electron in lead is assumed to be noninteracting except the

applied electrostatic-potential causes a bias voltage. The time dependent bias

voltage equivalent to accumulating or depleting charge to form a dipole around

the central region. Hence, the particle energy in lead is time dependent, i.e.

εkα → εkα(t) = ε0kα +∆α(t). The occupation in each state is not changed by the

applied bias and is determinated by an equilibrium distribution function. The

time dependent Green functions in the leads for the uncoupled system are

g<(t, t0) ≡ i
­
c+k (t

0)ck(t)
®

(2.43)

= if(ε0kα) exp[−i
Z t

t0
dt1εkα(t1)]
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gr,a(t, t0) ≡ ∓iθ(±t∓ t0)
­©
ck(t), c

+
k (t

0)
ª®

(2.44)

= ∓iθ(±t∓ t0) exp[−i
Z t

t0
dt1εkα(t1)]

The tunneling Hamiltonian HT is

HT =
X

kα,m∈1,2
V ∗kα,m(t)d

+
mckα + h.c. (2.45)

where V ∗kα,m(t) is the tunneling matrix between lead α and dot.

The current due to electron transport from left contact into central region can

be calculated from time evaluation of the occupation number of the left contact:

JL = −e
¿

·
NL

À
= −ie

~
h[H,NL]i (2.46)

where NL =
P

k,α∈L c
+
kα
ckα and H = HC +HT +Hcen. Since NL commutes with

HC and H0
cen, one finds:

JL =
ie

~
X
k,α∈L

n

Vkα,n
­
c+kαdn

®
− V ∗kα,n

­
d+n ckα

®
(2.47)

=
2e

~
Re{

X
k,α∈L

n

Vkα,n(t)G
<
n,kα(t, t

0)}

where G<
kα,n(t, t) = −[G<

kα,n(t, t)]
∗, and G<

kα,n(t, t
0) ≡ i

­
c+kα(t

0)dn(t)
®
. In order to

obtain the lesser Green function , one must find the contour Green function and

then transform it into lesser Green function. The contour Green function can be

obtained by the equation of motion or the Dyson expansion technique.

Gkα,n(τ , τ
0) =

X
m

Z
dτGnm(τ , τ 1)V

∗
kα,m(τ 1)gkα(τ 1, τ

0) (2.48)
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Using the Langreth theorem, one can find the corresponding lesser Green function

as:

G<
n,kα(t, t

0) =
X
m

Z
dt1V

∗
kα,m(t1)[G

r
nm(t, t1)g

<
kα(t1, t

0)+G<
nm(t, t1)g

a
kα(t1, t

0)] (2.49)

where Green functions are defined in Eq.(2.44) and Eq.(2.43). Combining Eq.(2.44),

Eq.(2.43) and Eq.(2.47), one obtains:

JL = −2e
~
Im{

X
k,α∈L
m,n

Vkα,n(t)

Z t

−∞
dt1e

i t
t1
dt2εkα(t2)V ∗kα,m(t1) (2.50)

×[Gr
nm(t, t1)fL(εkα) +G<

nm(t, t1)]}

Define the generalized linewidth function:

[ΓL(ε, t1, t)]mn = 2π
X
α∈L

ρ(ε)Vα,n(ε, t)V
∗
α,m(ε, t1) exp[i

Z t

t1

dt2∆α(ε, t2)] (2.51)

In terms of the generalized linewidth function, the current can be expressed as:

JL = −2e
~

Z t

−∞
dt1

Z
dε

2π
ImTr{e−iε(t1−t)Γ(ε, t1, t) (2.52)

×[G<(t, t1) + fL(ε)G
r(t, t1)]}

The Eq.(2.52) has rich physical meaning. The first term in square bracket is the

lesser Green function which relates the occupation number (the particle number)

in the central region. This term expresses the electron tunneling off the central

region into the lead with the rate Γ(ε, t1, t). The second term contains the Fermi-

Dirac distribution function which is the occupation number of electron in left and

the retarded Green function which relates the density of state in central region.
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This term describes the electron tunneling for left lead into central region. Now,

the remaining problem is: how to solve the Green function in central region.

Without additional interaction except the tunneling between lead and central

region, the retarded Green function for central region can be solved by the Dyson

expansion:

Gr(t, t0) = gr(t, t0) +

Z
dt1

Z
dt2g

r(t, t1)Σ
r(t1, t2)G

r(t2, t
0) (2.53)

Σr
nn0(t1, t2) =

X
k,α∈L,R

V ∗kα,n(t1)g
r
kαV

∗
kα,n0(t2) (2.54)

In order to solve Σr, the wideband approximation is used[37]. The wideband

approximation consists of (i) the energy due to tunneling effect, (ii) energy in-

dependent line width and (iii) allowing a single time dependence. Hence, the

retarded self-energy in Eq.(2.59) becomes:

Σr
nn0(t1, t2) =

X
k,α∈L,R

u∗α(t1)uα(t2)e
−i t1

t2
dt3∆α(t3) (2.55)

×
Z

dε

2π
e−iε(t1−t2)θ(t1 − t2)[−iΓα]

= −1
2
[ΓL(t1) + ΓR(t1)]δ(t1 − t2)

And the retarded Green function for central region including the perturbation due

to tunneling effect is:

Gr,a(t, t0) = gr,a(t, t0) exp{∓
Z t

t0
dt1
1

2
[ΓL(t1) + ΓR(t1)]} (2.56)

with

gr,a(t, t0) = ∓iθ(±t∓ t0) exp[−i
Z t

t0
dt1ε0(t1)] (2.57)
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The lesser Green function G<(t, t1) can be calculated by Keldysh equation:

G<(t, t0) =

Z
dt1G

r(t, t1)Σ
<(t1, t2)G

a(t2, t
0) (2.58)

where

Σ<(t1, t2) = i

Z
dε

2π
e−iε(t1−t2)fL/R(ε)Γ

L/R(ε, t1, t) (2.59)

Thus, the current formula is obtained as:

JL = −
e

~
[ΓL(t)N(t) +

Z
dε

π
fL(ε)

Z t1

−∞
dt1Γ

L/R(t1, t) Im{e−iε(t1−t2)Gr(t, t1)}]

(2.60)

In order to give a compact express, the generalized spectral function is introduced:

AL/R(ε, t) =

Z
dt1uL/R(t1)G

r(t, t1) exp[iε(t− t1)− i

Z t1

t

dt2∆L/R(t2)] (2.61)

In term of AL/R(ε, t), the occupation number can be expressed as

N(t) =
X
α∈L,R

Γα(t)

Z
dε

2π
fL/R(ε)

¯̄
AL/R(ε, t)

¯̄2
(2.62)

Thus, the current formula for electron flowing out from central region into left/right

lead can be rewritten as a compact form:

JL/R = Jout
L/R(t)− J in

L/R(t) (2.63)

Jout
L/R(t) = −

e

~
ΓL/R(t)N(t) (2.64)

J in
L/R(t) = −

e

~
uL/R

Z
dε

π
fL(ε) Im{AL/R(ε, t)} (2.65)

It is evident that AL/R(ε, t) is just the Fourier transformation of retarded Green

function for central region Gr for the time independent case.
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2.3 The Equation of Motion Method and The Lacroix’s Decoupled

Scheme

There are many ways to solve the strong correlation problem. In Anderson

model or Kondo problem, equation of motion method (EOM), slave boson, and

the renormalization group are often used. The EOM is a compact way. The

processes of the EOM method are: (i) calculate the time evolution of the operator

by Heisenberg Equation of motion iḋ = [d,H] and take the Fourier transforma-

tion into energy representation. (ii) substitute the result of (i) into the opera-

tor in Green function. (iii) choose a suitable decoupled approximation scheme

to cut off the processes. For the Anderson model, the EOM method needs to

calculate the two particle correlation function
­
dσ1d

+
σ2dσ2 ; d

+
σ1

®
. The suitable de-

coupled scheme is needed, of which the perturbation order or the interaction

bubble for calculation is determined. The correlation function
­­
dσ1d

+
σ2dσ2; d

+
σ1

®®
appears due to electron-electron Coulomb interaction. The decoupled approx-

imation
­­
dσ1d

+
σ2dσ2 ; d

+
σ1

®®
∼ hnσ2i

­­
dσ1 ; d

+
σ1

®®
is the well-known Hartree-Fock

approximation which gives the Coulomb blockade effect in transport problem and

is appropriate for the temperature higher than Kondo temperature. When the

temperature is near the Kondo temperature, the Kondo effect becomes prominent

and the Hartree Fock approximation is not valid. The higher order term which

contains two operators for electron in lead must be included. Lacroix suggested
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the decoupled approximation:

­­
ckσcq−σd

+
−σ, d

+
σ

®®
≈ −

­
d+−σcq−σ

® ­­
ckσ, d

+
σ

®®
(2.66)

­­
c+q−σckσd−σ, d

+
σ

®®
≈ −

­
c+q−σd−σ

® ­­
ckσ, d

+
σ

®®
(2.67)

­­
c+q−σck−σdσ, d

+
σ

®®
≈
­
c+q−σck−σ

® ­­
dσ, d

+
σ

®®
(2.68)

can be employed for the temperature higher than or near the Kondo temperature.

For the temperature is higher than or near Kondo temperature, T ' TK ,

the Eq.(2.67) and Eq.(2.68) are the higher order terms and can be ignored for

T ∼ TK . This approximation is called the high temperature Lacroix’s decoupled

approximation. For temperature T ¿ TK , both Eq.(2.67) and Eq.(2.68) must be

considered. And more higher order terms have to be included as temperature is

lower.
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CHAPTER 3

ANDERSON MODEL WITH SPIN-FLIP ASSOCIATED

TUNNELING

Recently, many theoretical and experimental researches related to electron spin

were studied. Owing to the progress in nanofabrication and microelectronic tech-

niques, devices based on the electron spin, such as the spin memory[38], spin

transistor[39] and electron spin based quantum computer[40],[41] may be realized

very soon. These devices are related to the spin polarization orientation or spin flip

effect. Usually, the spin flip effect occurs in the scattering processes. The scatter-

ing processes may be caused by the magnetic impurities, magnons, domain walls

at the interface or electrode[42] or may be due to the interaction with phonon[43],

or photon field[44]. In addition to the scattering processes, the spin flip may take

place when the electron transports between different spin state regions. One of

the instances is that the electron transports between the Rashba quantum dot and

ferromagnetic lead. The Rashba effect might be observed in InAs semiconductors.

The eigen state of the Rashba Hamiltonian is the superposition of the spin state

|↑i and |↓i i.e. |±i = 1√
2
(eiθ/2 |↑i±e−iθ/2 |↓i)[41]. It is known that the off-diagonal

terms of the tunneling amplitude matrix and coupling constant are nonzero and
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Figure 3.1: The Schematic plot of the system considered in this work. (a) The

spin flip associated tunneling is originated by the impurity scattering. (b) The

spin flip associated tunneling is due to the tunneling between the different spin

states.

the spin flip associated tunneling appears in the system[45]. The sketch of the

spin-flip associated tunneling through a quantum system is shown in Fig.3.1.

The spin flip associated tunneling effect could cause some special behaviors

in electric properties of the material. The intradot spin flip effect was found to

shift the resonant energy ε0 of the quantum dot to ε0 ± R , where R is the spin

flip scattering amplitude[45]. Sergueev et. al.[46] studied the spin flip associated
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tunneling through a quantum dot and described the spin valve effect. The spin

valve effect caused by the transport between different spin states manifests that

the resistance depends on the direction (in parallel or anti-parallel) of the mag-

netization of two ferromagnetic (FM) metals[46][47][48][49]. Zhu and Balatsky

studied the spin flip associated tunneling through a local nuclear spin precess-

ing in a magnetic field to simulate the conductance oscillation observed in STM

experiment[50]. They included the off-diagonal process and concluded that the

conductance of the system can be modified obviously. F. Guinea pointed out that

the elastic spin flip effects give rise to a temperature-independent reduction of the

magnetoresistance while the inelastic spin-flip processes give rise to a tempera-

ture dependent nonohmic effects and variation of conductance[42]. As mentioned

above, the spin flip effect is important in the study of spin electronic devices and

thus is worth to be explored.

In the spin-based devices such as the spin based quantum computer which

may be operated at low temperature, the correlation between the electron in

quantum dot and the conduction electron in reservoir is important because the

correlation will cause a peak of density of state (DOS) in the vicinity of Fermi level

for temperature T ≤ TK , where TK is Kondo temperature. Anderson impurity

model, which describes the correlation due to on-site Coulomb interaction and

the direct tunneling between the conduction band and the local spin state in

magnetic impurity, is also employed to describe the quantum dot (QD) system[51].
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The correlation interaction causes a sharp peak in the vicinity of Fermi level for

temperature below TK . The electron in impurity may tunnel out of the impurity

site to occupy a ”virtual state”, and then to be replaced by an electron from the

metal[21][52]. This process can effectively ”flip” the spin of impurity. Schrieffer

and Wolff have shown that, in the limit of strong on-site Coulomb interaction,

Anderson impurity model is equivalent to the s-d model when the impurity level

ε0 is well below the Fermi level and Kondo effect is obtained in this limit[22]. In

the original Anderson impurity model, the electron spin does not flip during the

process of tunneling between the impurity and the electron reservoir. In this work,

we consider the electron spin flips during the tunneling process, i.e. the spin flip

associated coupling constant Γσσα = 2π
P

k,s,α∈L,R V
∗
kαs,σ

Vkαs,σ × δ(ω − εkαs) where

σ(s) is the spin state of electron in QD (lead) and σ 6= σ is included in our study.

The effects on the density of state and the conductance of quantum dot system

versus the strength of the spin flip coupling will be discussed. Comparing to

the original Anderson model, the spin flip associated tunneling effect is expected

to contribute additional self-energy which may modify the local density of state

(LDOS, or the diagonal part −2 ImGr
σσ). The conductance depends strongly

on the profile of the spectral function, and the off-diagonal part, −2 ImGr
σσ, of

which may change sign in the vicinity of peak position of DOS. Therefore, the

off-diagonal spectral function is expected to modify the conductance. In other

words, the conductance may be modified by the spin flip associated tunneling.
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Instead of studying the mechanism of the spin flip effect, we will study the spin

flip effect in a phenomenological way. The tunneling coupling constant will be

assumed the same as that proposed in ref.[50].

3.1 Model and Formalism

The Hamiltonian of the system considered in this work can be written as:

Hd =
X
σ

εσd
+
σ dσ + Unσnσ (3.1)

HC =
X
kαs

α∈L,R

εkαsc
+
kαs

ckαs

HT =
X
kαs

V ∗kαS,σd
+
σ ckαs + VkαS,σc

+
kαs

dσ

where d+σ (dσ) is the creation (annihilation) operator of the electron with spin

state σ in the dot, and c+kαs(ckαs) is the creation (annihilation) operator of an

electron with momentum k and spin state s in α lead (where α ∈ L,R). Note

that the spin states s and σ are not necessary in the same eigenstate, for example

the spin state σ in QD may be the eigen state of Rashba and the spin state s

in the lead may be the pure spin up or spin down state. The energy εkαs is the

single particle energy of conduction electron in α lead. U is the intradot Coulomb

interaction. The electron tunneling between the lead and dot can be described by

the tunneling matrix Vkαs,σ. As shown in Ref.[50], the coupling constant between

QD and the lead can be expressed by Γσσα = 2π
P

k,s,α∈L,R V
∗
kαs,σ

Vkαs,σ×δ(ω−εkαs).

The spin-flip coupling constant is set to be symmetric for the state σ(σ) flipped
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into the state σ(σ), i.e. Γσσα = Γσσα = Γsα. And the normal coupling constant

Γσσα = 2π
P

k,s,α∈L,R V
∗
kαs,σ

Vkαs,σ × δ(ω − εkαs) is assumed to be spin independent,

i.e. Γσσα = Γσσα = Γnα. In this paper, we use the notion σ to stand for spin being

not equal to σ while σ0 being equal to or not equal to σ.

The Green function G corresponding to spin flip associated tunneling effect

of noninteracting system can be written as:⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦ =
⎡⎢⎢⎣ G0

σσ 0

0 G0
σσ

⎤⎥⎥⎦+
⎡⎢⎢⎣ G0

σσ 0

0 G0
σσ

⎤⎥⎥⎦
⎡⎢⎢⎣ Σσσ Σσσ

Σσσ Σσσ

⎤⎥⎥⎦
⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦
(3.2)

=

⎡⎢⎢⎣ [(G0
σσ)

−1 − Σσσ − ΣσσG̃
0
σσΣσσ]

−1 G̃0
σσΣσσGσσ

G̃0
σσΣσσGσσ [(G0

σσ)
−1 − Σσσ − ΣσσG̃

0
σσΣσσ0 ]

−1

⎤⎥⎥⎦
where the self-energy Σσσ is caused by the tunneling without spin-flip associated

and the self-energy Σσσ is caused by the spin-flip associated tunneling. Σσσ flips

spin σ to spin σ during the electron transports between the lead and the dot. G0
σσ

is the free particle Green function and G̃0
σσ = (ω − εσ −Σσσ)

−1 is Green function

of electron in QD with spin state σ perturbed by tunneling effect. The detailed

derivation of Eq.(3.2) is shown in Appendix A.

If the intradot Coulomb interaction is included, the Kondo effect occurs when

T ≤ TK. There are many approaches to solve the problem, such as equation of mo-

tion (EOM)method[25][26][27][28][47] noncrossing-approximation approach[29][48],or

renormalization group method[49][26][30]. The equation of motion method will
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be used to solve the Green function of the interaction system in this work. In the

processes of the EOM, the two-particle correlation function (or Green function)

arises from the two-particle on-site Coulomb interaction and needs to be decou-

pled. The accuracy of EOMmethod depends on the decoupling scheme. One of the

compact way to decouple the two-particle correlation function to single-particle

correlation function is the decoupling scheme introduced by Lacroix for high tem-

perature (i.e.T ≥ TK). The high temperature Lacroix’s decoupling approximation

at low temperatures (T < TK) gives only qualitative solution and is even quanti-

tatively correct at high temperatures (T ≥ TK)[46][26]. The EOM and Lacroix’s

high temperature decoupling scheme are popularly adopted by many authors. In

this work, we will use the high temperature Lacroix decoupling approximation to

decouple the two-particle Green function.

Consider the spin flip associated tunneling effect and the intradot particle-

particle interaction is assumed to be Coulomb interaction. By using the method

of equation of motion in Green function G, one obtains⎡⎢⎢⎣ (ω − εσ)Gσσ (ω − εσ)Gσσ

(ω − εσ)Gσσ (ω − εσ)Gσσ

⎤⎥⎥⎦ (3.3)

=

⎡⎢⎢⎣ 1 0

0 1

⎤⎥⎥⎦+
⎡⎢⎢⎣ ΣTn

σσ ΣTs
σσ

ΣTs
σσ ΣTn

σσ

⎤⎥⎥⎦
⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦+ U

⎡⎢⎢⎣ G
(2)
σσ G

(2)
σσ

G
(2)
σσ G

(2)
σσ

⎤⎥⎥⎦
where Gσσ̄ ≡ (−i)

­
T
©
dσ, d

+
σ̄

ª®
and G

(2)
σσ̄ ≡ (−i)

­
T
©
dσnσ, d

+
σ̄

ª®
. The Green

function G(2)
σσ is the two particle Green function corresponding to particle-particle
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interaction (Coulomb interaction) which relates the Kondo effect. Using the EOM

in G(2), we obtain:⎡⎢⎢⎣ (ω − εσ − U)G
(2)
σσ (ω − εσ − U)G

(2)
σσ

(ω − εσ − U)G
(2)
σσ (ω − εσ − U)G

(2)
σσ

⎤⎥⎥⎦ (3.4)

= [
hnσi 0

0 hnσi
]+

X
kαs

⎡⎢⎢⎣ V ∗kαs,σ(−i)
­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
V ∗kαs,σ(−i)

­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
V ∗kαs,σ(−i) hT {ckαsd+σ dσ, d+σ }i V ∗kαs,σ(−i)

­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
⎤⎥⎥⎦

+
X
kαs

⎡⎢⎢⎣ Vkαs,σ(−i)
­
T
©
c+kαsdσdσ, d

+
σ

ª®
Vkαs,σ(−i)

­
T
©
c+kαsdσdσ, d

+
σ

ª®
Vkαs,σ(−i)

­
T
©
c+kαsdσdσ, d

+
σ

ª®
Vkαs,σ(−i)

­
T
©
c+kαsdσdσ, d

+
σ

ª®
⎤⎥⎥⎦

−
X
kαs

⎡⎢⎢⎣ V ∗kαs,σ(−i)
­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
V ∗kαs,σ(−i)

­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
V ∗kαs,σ(−i) hT {ckαsd+σ dσ, d+σ }i V ∗kαs,σ(−i)

­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
⎤⎥⎥⎦

In general there are four one-particle Green functions (Gσσ, Gσσ, Gσσ and Gσσ)

and four two-particle Green functions (G(2)
σσ , G

(2)
σσ , G

(2)
σσ and G

(2)
σσ) in our system.

Contrast with Eq.(3.3), the equation of Green function G(2) can be assumed as:⎡⎢⎢⎣ (ω − εσ − U)G
(2)
σσ (ω − εσ − U)G

(2)
σσ

(ω − εσ − U)G
(2)
σσ (ω − εσ − U)G

(2)
σσ

⎤⎥⎥⎦ (3.5)

=

⎡⎢⎢⎣ hnσi 0

0 hnσi

⎤⎥⎥⎦+
⎡⎢⎢⎣ X

(2)
σσ X

(2)
σσ

X
(2)
σσ X

(2)
σσ

⎤⎥⎥⎦
⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦+
⎡⎢⎢⎣ Y

(2)
σσ Y

(2)
σσ

Y
(2)
σσ Y

(2)
σσ

⎤⎥⎥⎦
⎡⎢⎢⎣ G

(2)
σσ G

(2)
σσ

G
(2)
σσ G

(2)
σσ

⎤⎥⎥⎦
In order to simplify the problem, we consider infinite U limit. Under infinite U

limit, the off-diagonal term of Y(2) can be ignored (the detailed derivation will be
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given in appendix B). The Eq.(3.5) can be rewritten as:⎡⎢⎢⎣ G
(2)
σσ G

(2)
σσ

G
(2)
σσ G

(2)
σσ

⎤⎥⎥⎦

=

⎡⎢⎢⎣ g
0(2)
σσ hnσi 0

0 g
0(2)
σσ hnσi

⎤⎥⎥⎦+
⎡⎢⎢⎣ g

0(2)
σσ (X

(2)
σσGσσ +X

(2)
σσGσσ) g

0(2)
σσ (X

(2)
σσGσσ +X

(2)
σσGσσ)

g
0(2)
σσ (X

(2)
σσGσσ +X

(2)
σσGσσ) g

0(2)
σσ (X

(2)
σσGσσ +X

(2)
σσGσσ)

⎤⎥⎥⎦
where g0(2)σσ ≡ (ω − εσ − Yσσ −U)−1 and g

0(2)
σσ ≡ (ω − εσ − Yσσ −U)−1. Substitute

G(2) into G, one obtains:⎡⎢⎢⎣ (ω − εσ)Gσσ (ω − εσ)Gσσ

(ω − εσ)Gσσ (ω − εσ)Gσσ

⎤⎥⎥⎦

=

⎡⎢⎢⎣ 1 + Ug
0(2)
σσ hnσi 0

0 1 + Ug
0(2)
σσ hnσi

⎤⎥⎥⎦+
⎡⎢⎢⎣ ΣT

σσ + Ug
0(2)
σσ X

(2)
σσ ΣT

σσ + Ug
0(2)
σσ X

(2)
σσ

ΣT
σσ + Ug

0(2)
σσ X

(2)
σσ ΣT

σσ + Ug
0(2)
σσ X

(2)
σσ

⎤⎥⎥⎦
⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦

≡

⎡⎢⎢⎣ 1 + Ug
0(2)
σσ hnσi 0

0 1 + Ug
0(2)
σσ hnσi

⎤⎥⎥⎦+
⎡⎢⎢⎣ Σtot

σσ Σtot
σσ

Σtot
σσ Σtot

σσ

⎤⎥⎥⎦
⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦
Under the infinite U limit, Ug0(2) ∼ −1 and Σtot = ΣT − X(2). Compare to

Eq.(3.2) ( after some algebra), one obtains:⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦ (3.6)

=

⎡⎢⎢⎣ (1− hnσi)[(G̃0
σσ)

−1 − Σtot
σσG̃

0
σσΣ

tot
σσ]

−1 G̃0
σσΣ

tot
σσGσσ

G̃0
σσΣ

tot
σσGσσ (1− hnσi)[(G̃0

σσ)
−1 − Σtot

σσG̃
0
σσΣ

tot
σσ

0 ]−1

⎤⎥⎥⎦
In Eq.(3.6) G̃0

σσ ≡ (ω − εσ − Σtot
σσ)

−1 and G̃0
σσ ≡ (ω − εσ − Σtot

σσ)
−1. Compare G̃0

σσ
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with Eq.(3) in ref[26]

Gσσ =
1− hnσi

ω − εσ − Σ0σ − Σ1σ
(3.7)

which is the Green function corresponding to original Anderson model and set

X(2) ≡ −Σ1σ. G̃0 is the same as Green function corresponding to the original

Anderson Hamiltonian except the factor (1 − hnσi). G̃0 can be regarded as the

Green function of the quasiparticle of Anderson Hamiltonian without spin flip

effect. Now, the remaining problem is to obtain X(2) and Y(2). The detailed

derivation and results are presented in Appendix B.

The form of Eq.(3.6) is the same as that of the Eq.(3.2) except the self-energy

X(2) which relates to Kondo effect. The physical picture of the Green function

(Eq.(3.6) )can be interpreted as follows. G̃0 is the Green function corresponding to

Anderson Hamiltonian without spin-flip effect, i.e. it is the form of Green function

as shown in Eq.(3) of Ref.[26]. Gσσ in Eq.(3.6) , for example, represents the

corresponding σ state quasiparticle of Anderson Hamiltonian which is scattered

between the σ and σ states and causes the self-energy Σtot
σσG̃

0
σσΣ

tot
σσ. Σtot

σσ contains

two terms: the self-energy ΣT
σσ corresponding to the scattering via the normal

channel and the self-energy X
(2)
σσ corresponding to the scattering via the Kondo

channel. The normal channel scattering is energy and temperature independent.

Since the Kondo effect is strongly dependent on the temperature and causes a

Kondo resonant peak in the vicinity of the Fermi level of lead, the Kondo channel

scattering is strongly dependent on the temperature and dominates the scattering
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with energy in the vicinity of Fermi energy of lead.

Since the transport problem in quantum dot system may be a nonequilibrium

problem, we will employ the nonequilibriumGreen function method and the trans-

port equation developed by Wingreen et. al. to calculate the particle number and

conductance[17]. To evaluate the Eq.(3.6) numerically, one has to determine the

particle number hnσi and the expectation value hd+σ dσi by self-consistent method.

In order to calculate the expectation values hnσi and hd+σ dσi, the corresponding

lesser Green function G<
σσ and G<

σσ must be solved first, i.e. hnσi = −i
R

dε
2π
G<
σσ

and hd+σ dσi = −i
R

dε
2π
G<
σσ. In this work, we use the method proposed by Sun and

Guo which is able to solve the lesser Green function of interacting system exactly

for the steady state problem[53]. The detailed derivation processes are shown in

appendix C.

3.2 Result and Discussion

In the following discussion, all energy scales are normalized to the normal

tunneling coupling constant Γnα = 1. The resonant energy of quantum dot is set

as ε0 = −5. The Fermi level of the lead EF is set to be zero for the equilibrium

situation. The temperature is normalization to Kondo temperature TK which is

calculated by the exact expression obtained by Haldane TK ≈ (DΓ)1/2 exp(π(ε0−

EF )/(2Γ)) ≈ 0.004[23] with the halfwidth D = 100 and Γ = ΓnL + ΓnR.

Since the high temperature Lacroix’s decoupling approximation at low temper-
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atures (T < TK) gives only qualitative solution and is even quantitatively correct

at high temperatures (T > TK), thus, we consider the situation with temperature

near Kondo temperature i.e. T = 10TK , 1TK and 0.1TK and a normal limit T =

100TK , of which the Kondo effect can be ignored for comparison[54]. The spectral

function (or local density of state, LDOS when σ = σ) Aσσ(ω) = −2 ImGr
σσ in

equilibrium situation is calculated in terms of the strength of spin-flip associated

tunneling which is described by the spin-flip coupling constant Γs. As previous

discussion, the quasiparticle of Anderson Hamiltonian is scattered by the normal

channel and the Kondo channel. The self-energy ΣT due to normal channel scat-

tering is independent of the energy and the temperature, thus the electron can

be scattered by the normal channel in arbitrary energy and temperature. Con-

trast to the normal channel, the Kondo effect channel is energy dependent and

the strength is increased logarithmically in the vicinity of Fermi level when T

≤ TK . Thus, the self-energy corresponding to Kondo channel X(2) is sensitive to

temperature and energy. It can be expected that the Kondo channel dominates

the scattering due to spin flip associated tunneling effect in the vicinity of Fermi

level when T ≤ TK . The normal channel scattering dominates the spin flip effect

for electrons with energies far away from the Fermi level or T > TK . As shown

in Fig.3.2, the LDOS in the region far away from the Fermi level is temperature

independent. It implies that the electron with energy far away from the Fermi

level is mainly scattered by the normal channel. Fig.3.3 shows the detailed plot
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Figure 3.2: The plot of spectral function as function of ω with temperature T =

10TK,1TK and T = 0.1T.
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of LDOS with energy in the vicinity of Fermi level. The spectral functions for

T = 100TK , i.e. the normal case, are shown in Fig.3.3.(a),(b) ( dash lines). The

spin-flip scattering via normal channel affects the diagonal part spectrum function

Aσσ (or LDOS) very slightly for the case of T = 100TK (normal limit). But the

dependence of the off-diagonal spectrum function Aσσ on spin-flip scattering via

classical channel is stronger than Aσσ. When the temperature is decreased to the

order of Kondo temperature (T = 10TK and T = 1TK in our case), the Kondo

effect becomes obvious and the Kondo resonance peak grows logarithmically. As

Fig.3.3(a),(b) (solid line) and (c),(d) show, it is obvious that the LDOS with en-

ergy near Fermi level is strongly dependent on temperature when temperature is

close to the Kondo temperature. Therefore, it implies that the scattering in the

region near Fermi level is dominated by the Kondo channel. When the temper-

ature is below the Kondo temperature (T = 0.1TK in our case), the scattering

via Kondo channel is prominent. As shown in Fig.3.3(e) and (f), there are two

major effects due to the spin-flip associated tunneling via Kondo channel. The

amplitude of the Kondo resonance peak is increased as Γs is increased, i.e. the

Kondo resonance peak is enhanced by the spin flip associated tunneling effect.

Besides the increasing of the peak height, the spin flip tunneling also causes the

blue shift of Kondo resonance. These effects become stronger as the temperature

is decreased. Note that the enhancement and shift of Kondo resonance peak due

to spin-flip associated tunneling will affect the conductance. Since the off-diagonal
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Figure 3.3: The detailed plot of spectral function in the vicinity of the Fermi level

as function of ω (a) T = 100TK and 10TK (b) T = 1TK (c) T = 0.1TK with

various Γsα/Γ
n
α.
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Green function is Gσσ = G̃0
σσΣ

tot
σσGσσ, the profile of off-diagonal spectral function

Aσσ is similar to the diagonal spectral function Aσσ but with opposite sign. It

is worth to note that for the case of T ≥ TK , the decrease (more negative) of

Aσσ is faster than the increase of Aσσ. This phenomenon is the main reason of

suppression of conductance for T ≥ TK.

The conductance gc for the equilibrium case is calculated by Eq.(3) of Ref.[50].

For equilibrium situation, the current is contributed from the electron with energy

near the Fermi level of leads. Thus, the equilibrium conductance reflects the

properties of Kondo resonance peak with energy in vicinity of Fermi level of leads.

Fig.3.4 shows the equilibrium conductance versus the spin flip coupling constant

Γs. One can find that for Γs = 0, the total conductance gctot is increased as the

temperature is decreased, since the Kondo resonance peak is enhanced as the

temperature is decreased. For the case of T = 100TK , the Kondo effect can

be ignored and the scattering is dominated by the normal channel. As previous

discussion, the decrease of Aσσ is faster than the increase of Aσσ as Γs is increased,

hence the total conductance gctot is dominated by the off-diagonal part conductance

gcσσ and decreased as Γ
s is increased. For the cases of T = 10TK (1.0TK) the Kondo

effect appears, however it is not obvious. One can find that gcσσ is increased

slightly as Γs is increased for Γs > 0.3Γn (0.1Γn). This phenomena reflects the

enhancement of Kondo resonance peak due to spin-flip effect via Kondo channel

as discussed previously. Similar to the case of T = 100TK, the total conductance
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Figure 3.4: The equilibrium conductance versus Γsα/Γ
n
α at various temperatures.

The dash line is the diagonal part. The dot line is the off-diagonal part. And

the solid line is the total conductance. The blue line is T = 100TK ,the green line

T = 10TK, the red line is T = 1TK and The black line is T = 0.1TK
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is dominated by off-diagonal conductance and decreased as Γs is increased. For

the case of T = 0.1TK , the effect due to spin-flip scattering via the Kondo channel

becomes more prominent. The diagonal part gcσσ contains peak enhanced and peak

shift effects due to spin flip via Kondo channel. For Γs < 0.48, the peak enhanced

effect is dominated and gcσσ increased as Γ
s is increased. For Γs > 0.48, the peak

shift effect is dominated and thus the peak height is shifted out of the vicinity

of Fermi level of leads, and thus there are only fewer electrons contribute to the

conductance, hence gcσσis decreased. The profile of off-diagonal spectral function

Aσσ is similar to that of Aσσ except the opposite sign, thus the behavior of off-

diagonal part conductance is similar to the diagonal part except the sign. For

T = 0.1TK the total conductance is dominated by gcσσ. In the region dominated

by the peak enhanced effect, i.e. Γs < 0.48, the total conductance is slightly

increased as Γs is increased. In the region dominated by peak shift effect, the total

conductance decreased as Γs is increased. Note that the conductance is suppressed

rapidly for the case of T = 0.1TK when Γs > 0.48. The rapid decreasing of

conductance is caused by the peak shift effect due to spin-flip scattering.

For the nonequilibrium case, a quantum dot connected to two leads with

different Fermi level is studied. The Fermi level is set as zero when the bias voltage

is zero. When the bias voltage Vb is applied, the Fermi levels of the leads are ER
F =

−Vb/2 and EL
F = Vb/2. The nonequilibrium differential conductance is defined as

gc = ∆J/∆Vb, where the current J is calculated by the method of Ref.[17]. The
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nonequilibrium differential conductance is shown in Fig.3.5. Since the applied bias

is symmetry, the conductance is symmetry for Vbias > 0 and Vbias < 0, as shown

in Fig.3.6(a) and (b). Follow the same reason, the nonequilibrium differential

conductance is decreased as Γs is increased for the cases of T ≥ TK . In the

region |Vbias| > 0.25 the conductance is temperature insensitive. It implies that

the nonequilibrium differential conductance for |Vbias| > 0.25 is dominated by the

scattering via normal channel, the behavior of differential conductance is similar to

the equilibrium case for T > TK . Hence, for |Vbias| > 0.25, differential conductance

is decreased as Γs is increased. In the region with energy near Fermi level, i.e.

|Vbias| < 0.25 , the Kondo effect is more important when T < Tk. This is because

that the Kondo effect influences LDOS when the electron energy is near Fermi

level only. The nonequilibrium differential conductance is influenced strongly

by Kondo effect when bias voltage |Vbias| ∼ 0 for T ≤ Tk. Fig.3.5(b) shows

the detailed plot of the nonequilibrium differential conductance with bias voltage

|Vbias| < 0.05. The variation of the conductance for |Vbias| ∼ 0 is similar to

the case of |Vbias| >> 0 when T > Tk (the dotted line in Fig.3.5(b)) and the

scattering is via the normal channel. As the temperature is decreased to T ∼ Tk,

the influence due to Kondo effect becomes important and the Kondo resonance

peak is prominent. Hence, the conductance is larger than the one for T > Tk. For

T = Tk (the dash line in Fig.3.5(b)), the quantity of conductance suppression due

to the spin flip associated tunneling is similar to that in large bias voltage region.
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Figure 3.5: Fig.5 (a) The differential conductance versus bias voltage with various

Γsα/Γ
n
α for different temperature. (b) The detailed plot of (a) with energy in

vicinity of Fermi level.
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The suppression of conductance is due to the decrease of gcσσ as Γ
s is increased.

The prominent of conductance reflects the prominent Kondo resonance peak of

LDOS. When T ≤ Tk (the solid line in Fig.3.4(b)), the influence of peak shift

of Kondo resonance becomes important. As the case of equilibrium, the gcσσ is

strongly suppressed by the shift of Kondo resonance peak when Γs is large. As

a result, the total conductance is suppressed rapidly when Γs > 0.4 and causes a

valley when Γs = 0.6. Fig.3.6.(a),(b) shows the spectral function for T = 0.1TK

and Vbias = 10−3. One can find that the LDOS within the Fermi level of leads

is increased as Γs is increased when Γs < 0.6. This explains the differential

conductance is increased as Γs is increased when Γs < 0.6 and T = 0.1TK in the

vicinity of Vbias = 0. For Γs = 0.6, the peak shift effect shifts the peak height

out of the region between Fermi level of leads and the total LDOS within the

Fermi level of leads is fewer than the LDOS for Γs < 0.6. Hence, differential

conductance appears slightly when Vbias ∼ 0 for T = 0.1TK and Γs = 0.6. This

tip of conductance occurs when T < Tk in the vicinity of Fermi level of leads,

therefore, this phenomenon is mainly originated from the scattering via Kondo

channel.

3.3 Summary

In summary, we study the spin flip associated tunneling in Anderson model.

The total effect can be interpreted as follows. As the Eq.(3.6) shows, the quasi-
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Figure 3.6: The nonequilibrium spectral function for the case of Vbias = −10−3

with various Γsα/Γ
n
α.
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particle described by Anderson Hamiltonian is scattered via normal channel and

the Kondo channel. The normal channel dominates the scattering of the electrons

with energy far away from the Fermi level of the lead. The electrons with en-

ergy near Fermi level of the leads are mainly scattered by Kondo channel when

T ≤ Tk. Note that, only the infinite U limit approximation is used in Eq.(3.6),

i.e. the Eq.(3.6) is a general form for Anderson model with spin flip associated

tunneling in infinite U limit and does not relate to the decouple method. The

spin flip associated tunneling via the Kondo channel causes two main effects. One

is the enhancement of Kondo resonance peak, the other is the blue shift of the

Kondo resonance peak. When temperature T = 10TK and T = 1.0TK, the Kondo

resonance peak is obviously enhanced by spin flip associated tunneling effect, but

the blue shift of Kondo resonance peak is not obvious. This effect is reflected

on the conductance. The enhancement of the Kondo resonant peak causes the

increases of diagonal part of conductance gσσ and decreases the off-diagonal part

of conductance gσσ(more negative). Since the decrease of the off-diagonal part

conductance is stronger than the increase of diagonal part of conductance, as a

result the total conductance is suppressed by spin flip associated tunneling. The

conductance due to off-diagonal processes is negative and can not be neglected.

As the temperature is lower, the blue shift of Kondo resonance peak becomes

important. When T ≤ Tk and the spin flip associated coupling constant Γs is

large enough, the blue shift of Kondo resonance peak will cause a strong suppres-
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sion of the diagonal part of conductance and the total conductance is suppressed

rapidly. The conductance suppressed due to the shift of Kondo resonance peak is

ascribed to the Kondo channel mainly, since the effect occurs as T < TK. The high

temperature Lacroix’s decoupling approximation is used to decouple the two par-

ticle correlation function (or Green function). Our result is quantitatively correct

when T > TK . The Kondo resonance peak is slightly enhanced and blue shifted

as T ≥ TK . On the contrary, the Kondo resonance peak is enhanced prominently

and blue shifted obviously in the case of T = 0.1Tk. Although the decoupling

approximation only gives qualitative result for T < TK, the conductance can be

suppressed strongly by the spin flip associated tunneling effect for T < TK .

3.4 Appendix A

At the first, we derive the general form of Green function for spin flip system.

Assume that the lowest order self-energies corresponding to the non-spin-flip tran-

sition processes σ → σ and σ → σ (the diagonal terms) are Σσσ and Σσσ. And

the lowest order self-energies corresponding to spin flip transition processes σ → σ

and σ → σ (the diagonal terms) are Σσσ and Σσσ. The typical Dyson equation
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can be expressed as :⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦ =
⎡⎢⎢⎣ G0

σσ 0

0 G0
σσ

⎤⎥⎥⎦+
⎡⎢⎢⎣ G0

σσ 0

0 G0
σσ

⎤⎥⎥⎦
⎡⎢⎢⎣ Σσσ Σσσ

Σσσ Σσσ

⎤⎥⎥⎦
⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦
(3.8)

=

⎡⎢⎢⎣ G0
σσ 0

0 G0
σσ

⎤⎥⎥⎦+
⎡⎢⎢⎣ G0

σσΣσσGσσ +G0
σσΣσσGσσ G0

σσΣσσGσσ +G0
σσΣσσGσσ

G0
σσΣσσGσσ +G0

σσΣσσGσσ G0
σσΣσσGσσ +G0

σσΣσσGσσ

⎤⎥⎥⎦
The off-diagonal terms can be rewritten asGσσ = G̃0

σσΣσσGσσ andGσσ = G̃0
σσΣσσGσσ

where G̃0
σσ ≡ [(G0

σσ)
−1 − Σσσ]

−1 and G̃0
σσ ≡ [(G0

σσ)
−1 − Σσσ]

−1. Substitute these

expressions of Gσσ and Gσσ into the diagonal term, the Eq.(3.8) becomes:⎡⎢⎢⎣ Gσσ Gσσ

Gσσ Gσσ

⎤⎥⎥⎦ =
⎡⎢⎢⎣ [(G0

σσ)
−1 − Σσσ − ΣσσG̃

0
σσΣσσ]

−1 Gσσ = G̃0
σσΣσσGσσ

G̃0
σσΣσσGσσ [(G0

σσ)
−1 − Σσσ − ΣσσG̃

0
σσΣσσ0 ]

−1

⎤⎥⎥⎦
(3.9)

The equation Eq.(3.9) is the same as Eq.(5a) and Eq.(5b) in ref.[50] exactly.

3.5 Appendix B

In order to solve Eq.(3.4), one has to decouple the two correlation functions­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
,
­
T
©
c+kαsdσdσ, d

+
σ

ª®
and

­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
etc.. The decou-

pling scheme proposed by Lacroix at high temperature limit:

­
T
©
c+kαs(t)ckβs0(t)dσ(t), d

+
σ (t

0)
ª®
= δkα,kβδs,s0f(εkαs)

­
T
©
dσ(t), d

+
σ (t

0)
ª®

(3.10)­
T
©
c+kαs(t)ckβs0(t)dσ(t), d

+
σ (t

0)
ª®
= δkα,kβδs,s0f(εkαs)

­
T
©
dσ(t), d

+
σ (t

0)
ª®

­
T
©
ckαs(t)ckβs0(t)d

+
σ (t), d

+
σ (t

0)
ª®
=
­
T
©
ckαs(t)ckβs0(t)d

+
σ (t), d

+
σ (t

0)
ª®
= 0
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is used. For example, consider the term
­
ckαsd

+
σ dσ, d

+
σ

®
of Eq.(3.4). Using the

EOM method, and Lacroix’s high temperature decoupling approximation, one

obtains:

(ω − εkαs − εσ + εσ)
­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
(3.11)

= Vkαs,σ
­
T
©
dσd

+
σ dσ, d

+
σ

ª®
+ Vkαs,σ

­
T
©
dσd

+
σ dσ, d

+
σ

ª®
−
X
qαs0

Vqαs0,σ
­
T
©
ckαsc

+
qαs0

d, d+σ
ª®

= −
­
d+σ dσ

®
Vkαs,σ(i)Gσσ + Vkαs,σ(i)(Gσσ −G(2)

σσ )−
X
qαs0

Vqαs0,σ
­
ckαsc

+
qαs0

®
(i)Gσσδkαs,qαs0

,thus

−
X
kαs

V ∗kαs,σ(−i)
­
ckαsd

+
σ dσ, d

+
σ

®
=
­
d+σ dσ

®X
kαs

V ∗kαs,σVkαs,σ

ω − εkαs − εσ + εσ
Gσσ (3.12)

+
X
kαs

|Vkαs,σ|2

ω − εkαs − εσ + εσ
(G(2)

σσ −Gσσ)

+
X
kαs

|Vkαs,σ|2

ω − εkαs − εσ + εσ
(1− fα(εkαs))Gσσ

in the same way, the
­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
term of Eq.(3.4) is:

X
kαs

V ∗kαs,σ(−i)
­
T
©
ckαsd

+
σ dσ, d

+
σ

ª®
(3.13)

=
X
kαs

|Vkαs,σ|2

ω − εkαs
G(2)
σσ − hnσi

V ∗kαs,σVkαs,σ

ω − εkαs
Gσσ +

V ∗kαs,σVkαs,σ

ω − εkαs
fα(εkαs))Gσσ

and the
­
T
©
c+kαsdσdσ, d

+
σ

ª®
term is

X
kαs

V ∗kαs,σ(−i)
­
T
©
c+kαsdσdσ, d

+
σ

ª®
(3.14)

=
X
kαs

− |Vkαs,σ|2

ω + εkαs − εσ − εσ − U
G
(2)
σσ −

|Vkαs,σ|2

ω + εkαs − εσ − εσ − U
G(2)
σσ

+
X
kαs

|Vkαs,σ|2

ω + εkαs − εσ − εσ − U
fα(εkαs)Gσσ +

V ∗kαs,σVkαs,σ

ω + εkαs − εσ − εσ − U
fα(εkαs)Gσσ
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Under the infinite U limit, the Eq.(3.14) is zero. Compare to Eq.(3.5), The self-

energy Y (2)
σσ transfersG

(2)
σσ toG

(2)
σσ , we can recognize that Y

(2)
σσ =

P
kαs
− |Vkαs,σ|2

ω+εkαs−εσ−εσ−U

and can be ignored under the infinite U limit. Hence the Green function G
(2)
σσ is

found as:

(ω − εσ − U)G(2)
σσ (ω) = nσ (3.15)

+
X
kαs

|Vkαs,σ|2

ω − εkαs
G(2)
σσ − hnσi

V ∗kαs,σVkαs,σ

ω − εkαs
Gσσ +

V ∗kαs,σVkαs,σ

ω − εkαs
fα(εkαs)Gσσ

+
­
d+σ dσ

®X
kαs

V ∗kαs,σVkαs,σ

ω − εkαs − εσ + εσ
Gσσ +

|Vkαs,σ|2

ω − εkαs − εσ + εσ
(G(2)

σσ −Gσσ)

+
|Vkαs,σ|2

ω − εkαs − εσ + εσ
(1− fα(εkαs))Gσσ

≡ Y (2)
σσ G

(2)
σσ +X(2)

σσGσσ +X
(2)
σσGσσ

where

Y (2)
σσ ≡

X
kαs

|Vkαs,σ|2

ω − εkαs
+

|Vkαs,σ|2

ω − εkαs − εσ + εσ
(3.16)

X(2)
σσ ≡

X
kαs

­
d+σ dσ

® V ∗kαs,σVkαs,σ

ω − εkαs − εσ + εσ
− |Vkαs,σ|2

ω − εkαs − εσ + εσ
fα(εkαs)

X
(2)
σσ =

X
kαs

− hnσi
V ∗kαs,σVkαs,σ

ω − εkαs
+

V ∗kαs,σVkαs,σ

ω − εkαs
fα(εkαs)

3.6 Appendix C

In this appendix, we will show the detailed derivation of the expression of hnσi

and hnσσi. We follows the derivation proposed by Sun and Guo. Since the system

considered in this paper is steady state, the first derivation of the expectation

values of hd+σ dσi and
­
d+σ dσ

®
over time is zero, i.e.

­
i ∂
∂t
[d+σ dσ]

®
= 0. Use the
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equation of motion method, one can find the time evolution of particle number

hd+σ dσi as:

Hence,

¿
i
∂

∂t
[d+σ dσ]

À
=
X
kαs

−Vkαs,σ
­
c+kαsdσ

®
+ V ∗kαs,σ

­
d+σ ckαs

®
= 0 (3.17)

where
­
c+kαsdσ

®
= −i

R
dε
2π
G<
σ,kαs(ε) and hd+σ ckαsi = −i

R
dε
2π
G<
kαs,σ(ε). The lesser

Green function G<
σ,kαs(ε) and G<

kαs,σ(ε) can be easily calculated by the Dyson

expansion and Langreth theorem. In order to calculate the lesser Green function,

the contour ordered Green function must be found first. The contour Green

function Gkαs,σ(t, t
0) is:

Gkαs,σ(t, t
0) = −iT

­
ckαs(t)d

+
σ (t

0)
®

(3.18)

= (−i)2T
Z

dτ(Vkαs,σ
­
ckαs(t)c

+
kαs(τ)

® ­
dσd

+
σ (t

0)
®
+ Vkαs,σ

­
ckαs(t)c

+
kαs(τ)

® ­
dσd

+
σ (t

0)
®
)

= T

Z
dτ [Vkαs,σgkαs(t, τ)Gσσ(τ , t

0) + Vkαs,σgkαs(t, τ)Gσσ(τ , t
0)]

Then, using the Fourier transformation and Langreth theorem, the lesser Green

function G<
kαs,σ

G<
kαs,σ = Vkαs,σ(g

r
kαsG

<
σσ + g<kαsG

a
σσ) + Vkαs,σ(g

r
kαsG

<
σσ + g<kαsG

a
σσ) (3.19)

In the same way, the lesser Green function G<
σ,kαs is:

G<
σ,kαs = V ∗kαs,σ(G

r
σσg

<
kαs +G<

σσg
a
kαs) + V ∗kαs,σ(G

r
σσg

<
kαs +G<

σσg
a
kαs) (3.20)
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Substitute Eq.(3.19) and Eq.(3.20) into Eq.(3.17), one can obtain:

X
kαs

Z
dε

2π
V ∗kαs,σVkαs,σ[G

r
σσg

<
kαs
(ε) +G<

σσ(ε)g
a
kαs(ε)] + V ∗kαs,σVkαs,σ[G

r
σσ(ε)g

<
kαs
+G<

σσ(ε)g
a
kαs]

(3.21)

=
X
kαs

Z
dε

2π
V ∗kαs,σVkαs,σ[g

r
kαsG

<
σσ + g<kαsG

a
σσ] + V ∗kαs,σVkαs,σ[g

r
kαsG

<
σσ + g<kαsG

a
σσ]

Using the relations:
P

kαs
V ∗kαs,σVkαs,σg

r,a
kαs

=
P

α∓i
Γαn
2
,
P

kαs
V ∗kαs,σVkαs,σg

r,a
kαs

=P
α∓i

Γαs
2

P
kαs

V ∗kαs,σVkαs,σg
<
kαs
(ε) = i

P
α Γ

α
nfα(ε) and

P
kαs

V ∗kαs,σVkαs,σg
<
kαs(ε) =

i
P

α Γ
α
s fα(ε). And after some simple algebra, one finds :

(Γ2n − Γ2s)

Z
dε

2π
G<
σσ(ε) = Γn[

X
α

−iΓαn
Z

dε

2π
fα(ε)[2 ImGr

σσ(ε)]− iΓαs

Z
dε

2π
fα(ε)[2 ImGr

σσ(ε)]]

(3.22)

− Γs[
X
α

−iΓαs
Z

dε

2π
fα(ε)[2 ImGr

σσ(ε)]− iΓαn

Z
dε

2π
fα(ε)[2 ImGr

σσ(ε)]]

where Γn =
P

α Γ
α
n and Γs =

P
α Γ

α
s . In Eq.(3.22), we have used the relation

Gr,a,<
σσ (ε) = Gr,a,<

σσ (ε) since the spin states are degenerate in QD. In the same way

for treating
­
i ∂
∂t
[d+σ dσ]

®
= 0, with the condition

­
i ∂
∂t
[d+σ dσ]

®
= 0, one obtains the

relation

(Γ2n − Γ2s)

Z
dε

2π
G<
σσ(ε) = Γn[

X
α

−iΓαs
Z

dε

2π
fα(ε)[2 ImGr

σσ(ε)]− iΓαn

Z
dε

2π
fα(ε)[2 ImGr

σσ(ε)]]

(3.23)

− Γs[
X
α

−iΓαn
Z

dε

2π
fα(ε)[2 ImGr

σσ(ε)]− iΓαs

Z
dε

2π
fα(ε)[2 ImGr

σσ(ε)]]
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Since the retarded (advanced) Green functions have been solved, the equation

of
R

dε
2π
G<
σσ(ε) and

R
dε
2π
G<
σσ(ε) can be solved also. The results can be checked by

taking the equilibrium limit, i.e. fR(ε) = fL(ε) = f(ε)

hnσi = −i
Z

dε

2π
G<
σσ(ε) =

Z
dε

2π
fα(ε)[−2 ImGr

σσ(ε)] (3.24)

and ­
d+σ dσ

®
= −i

Z
dε

2π
G<
σσ(ε) =

Z
dε

2π
fα(ε)[−2 ImGr

σσ(ε)] (3.25)

The Eq.(3.24) and Eq.(3.25) show that Eq.(3.22) and Eq.(3.23) obey the fluctua-

tion dissipation theorem at equilibrium limit.

Γn

Z
dε

2π
G<
σσ(ε) + Γs

Z
dε

2π
G<
σσ(ε) (3.26)

=
X
α

−Γαn
Z

dε

2π
fα(ε)[G

r
σσ(ε)−Ga

σσ(ε)]− Γαs

Z
dε

2π
fα(ε)[G

r
σσ(ε)−Ga

σσ(ε)]

Γs

Z
dε

2π
G<
σσ(ε) + Γn

Z
dε

2π
G<
σσ(ε) (3.27)

=
X
α

−Γαs
Z

dε

2π
fα(ε)[G

r
σσ(ε)−Ga

σσ(ε)]− Γαn

Z
dε

2π
fα(ε)[G

r
σσ(ε)−Ga

σσ(ε)]
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CHAPTER 4

ELECTRON TRANSPORT THROUGH A

DIPOLE-INTERACTION-DOUBLE-DOT SYSTEM

UNDER NON-WEAK RESERVOIR COUPLING

APPROXIMATION

Due to the progress of the manufacture of semiconductor device and the technique

of microscopic experiment, human can create or detect (count) few photons by a

semiconductor device[55].

The photon-associated electron tunneling (PAT) through quantum dot (QD)

attracts theoretical and experimental researchers in past decades. In a single level

QD system, the energy of electron-photon interaction quasi-particle is found as

εnph = ε0 ± nωph, where n ∈ integer and ωph is the photon frequency[56]. For a

two level QD system interacting with photon via dipole interaction, the electron-

photon interaction quasi-particle energy is εnph,± = (εa − εb ± ωph ± ΩRabi), where

ΩRabi =
q
|∆f |2 + (εa − εb − ωph)2 is the Rabi frequency and |∆f |2 relates to

the coupling strength of electron-photon interaction[20]. In theoretical study,

most of researchers first solved the electron-photon interaction state and then
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coupled the electron-photon interaction state to leads, i.e. they described PAT in

QD system by treating the quantum dot state as an electron-photon interaction

quasi-particle and coupling the quasi-particle to the leads. This treatment is called

weak reservoir coupling approximation[57]. However, the weak reservoir coupling

approximation is appropriated only for the case in which the coupling constant of

electron-photon interaction is much larger than the tunneling matrix between dot

and lead. Under this approximation the electron photon interaction is treated as

a main Hamiltonian and tunneling effect is treated as a perturbation. The higher

order tunneling effect, such as the Kondo effect and co-tunneling effect, is usually

ignored.

When the quantum dot is coupled to lead, the correlation between dot and

lead, i.e. the Kondo effect, will appear when temperature of the system is below

critical temperature, i.e. Kondo temperature[24]. When temperature is below

Kondo temperature, a virtual state is constructed with energy at the vicinity of

the Fermi level of lead. The Kondo effect in Anderson impurity model presents a

sharp peak of the density of state, which is called the Kondo resonant peak. This

Kondo resonant peak is in the vicinity of Fermi level when temperature below

the Kondo temperature due to the electron correlation interaction between the

electron in QD and lead.
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Figure 4.1: Fig.1 The Schematic plot of the system considered in this work. (a)

The two-dot system couples to leads individually and interacts each other via

diploe interaction. (b) The p-n junction system in which the photon is created

(destroyed) by the recombination (creation) of electron-hole pair.

4.1 Model and Formalism

In this chapter, we consider a separate double-dot system in which the two

dots interact with each other via photon field as shown in the Fig.4.1 . The conduc-

tance due to electron transport through each dot is studied. In order to simplify

the problem, we ignore the interdot Coulomb interaction. This is because that

the interdot Coulomb interaction just causes the charge energy of system which

shifts the energy level of quantum dot and the effect to be described in this work

is independent of Coulomb interaction. The neglect of the interdot Coulomb in-
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teraction will not affect the main physical feature described in this work. The

condition of the system is set as: the corresponding Kondo temperature is lower

than the system temperature, hence the Kondo effect will be ignored. We also

assume there is only one electron level (the ground state level) in each QD and

the coupling constants between QDs and leads are the same(Γαm = Γ/2 = 1/2).

The energy difference between QDs can be modulated by a controlling gate be-

tween the QDs. The QDs are assumed to interact with each other via photon

field within the framework of dipole approximation. The QDs system can emit

(absorb) a photon via annihilating (creating) an electron in higher energy QD

(the dot2) and creates (annihilates) an electron in lower energy QD(the dot1)

simultaneously. The Hamiltonian of the system is expressed as:

Htot = Hint +HC +HT (4.1)

where HC =
P

kα∈L,R,m∈1,2 εkα,mc
+
kα,m

ckα,m is the Hamiltonian for the electron in

lead, HT =
P

kα,m∈1,2 V
∗
kα,m

d+mckα,m + h.c. is the tunneling Hamiltonian, and Hint

is the Hamiltonian for the interaction region (dot region)

Hint = He +Hph +He−ph (4.2)

He =
X
m∈1,2

εmd
+
mdm

Hph = ωb+b

He−p = (M∗d+2 d1b+Md+1 d2b
+)
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where d+m (dm) is the creation (annihilation) operator of the electron with state

m in QD (m ∈ 1, 2; 1 indicates the lower energy dot (leads) and 2 indicates

the higher energy dot (leads)), c+kα(ckα) is the creation (annihilation) operator of

electron with momentum k in α lead (where α ∈ L,R) and b+(b) is the creation

(annihilation) operator of photon. The electron tunneling between the lead and

dot is described by the tunneling matrix Vkαs,σ. The Hamiltonian Hep corresponds

to the electron-photon interaction. The electron-photon coupling coefficient M =

−−→p · −→E, where −→p = e h2|−→r |1i, is the electron dipole transition matrix element

and
−→
E is the strength of electric field of the photon field[19]. In order to simplify

the model, the tunneling matrix between dots is incorporated into the electron-

photon coupling coefficient M . M is assumed to be equal to Γ for the non-weak

reservoir coupling limit. In order to avoid the Kondo effect, we consider the case

of Uinter À (εF,m− εm) and (εF,m− εm)À Γ where Uinter is the interdot Coulomb

interaction. In this case the Kondo temperature maybe lower than the system

temperature and the Kondo effect may be ignored.

Since the non-weak reservoir coupling is considered in this work, we use the

equation of motion method to study the electron-photon interaction and tunneling

effect at the same time. Using the equation of motion method, the time evolution

of the electron and photon field operators can be expressed as:

i
·
d2 = ε2d2 +M∗d1b+

X
kα

V ∗2,kαckα (4.3)
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i
·
d+2 = −ε2d+2 −Md+1 b

+ −
X
kα

Vkα,1c
+
kα

(4.4)

i
·
d1 = ε1d1 +Md2b

+ +
X
kα

V ∗kα,1ckα (4.5)

i
·
d+1 = −ε1d+1 −M∗d+2 b−

X
kα

Vkα,1c
+
kα

(4.6)

·
ickα,m = εkαckα + Vkα,mdm (4.7)

·
ic+kα,m = −εkα,mc

+
kα,m − V ∗m,kαd

+
m (4.8)

i
·
b = ωphb+Md+1 d2 (4.9)

i
·
b+ = −ωphb

+ −M∗d+2 d1 (4.10)

By using Fourier transform and Eq.(4.3), we find the Green function G11 satisfies:

(ω − ε1 − ΣT
1 )G11 = 1 +M

­­
d2b

+; d+1
®®

(4.11)

and
­­
d2b

+; d+1
®®
satisfies:

(ω − ε2 + ωph − ΣT
2 )
­­
d2b

+; d+1
®®

(4.12)

= M∗(1 + nph)
­­
d1; d

+
1

®®
−M∗ ­­d2d+2 d1; d+1 ®®−X

kα,2

M∗V ∗kα,2
ω − εkα,2 + ωph

­­
ckα,2d

+
2 d1; d

+
1

®®
In this work, the terms with order higher than |Vkα,m|2 |M |2 will be ignored. Thus,

we need to collect the second and the third terms with M∗
¯̄
V ∗kα,2

¯̄2
. By the EOM

method, we find:

X
kα,2

M∗V ∗kα,2
ω − εkα,2 + ωph

­­
ckα,2d

+
2 d1; d

+
1

®®
(4.13)

= −M
∗

∆

X
kα,2

¯̄
V ∗kα,2

¯̄2
[

1

(ω − εkα,2 + ωph)
− 1

(ω − εkα,2 + ωph +∆)
]

[(1− f(εkα,2))G11 −
­­
d2d

+
2 d1; d

+
1

®®
] (4.14)
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With the help of the equation
P

k1α
fFD(εkα)

|Vkα |
2

ω−εkα+iδ
=
P

α− iΓα

2
−Γα

π
ln [(ω−εF )

2+(πT )2]1/2

|ω−εF+D|

and taking the wideband approximation, the first term is found as:[58]

X
kα,2

¯̄
V ∗kα,2

¯̄2
[

1

(ω − εkα,2 + ωph)
− 1

(ω − εkα,2 + ωph +∆)
](1− f(εkα,2))G11(4.15)

=
Γ2
2π
ln

(ω − εF2 + ωph)
2 + (πT )2

(ω − εF2 + ωph +∆)2 + (πT )2

In a similar way, one can obtain

M∗ ­­d2d+2 d1; d+1 ®® (4.16)

= − M∗

(ω − ε1 − ΣT
1 − 2ΣT

2 )

Γ2
2π
ln
(ω − ε1 − εF2 + ε2)

2 + (πT )2

(ω − ε1 + εεF2 − ε2)2 + (πT )2
G11

Thus,

(ω − ε2 + ωph − ΣT
2 )
­­
d2b

+; d+1
®®

(4.17)

= M∗(1 + nph)G11

+
Γ2
2π
[

M∗

(ω − ε1 − ΣT
1 − 2ΣT

2 )
ln
(ω − ε1 − εF2 + ε2)

2 + (πT )2

(ω − ε1 + εF2 − ε2)2 + (πT )2

+
M∗

∆
ln

(ω − εF2 + ωph)
2 + (πT )2

(ω − εF2 + ωph +∆)2 + (πT )2
]G11

Substitute Eq.(4.17) into Eq.(4.12), we obtain Green G11 :

G11 =
1

(ω − ε1 − ΣT
1 )− |M∗|2

(ω−ε1−∆−ΣT2 )
(nph + 1)− Σ1a − Σ1b

(4.18)

where

Σ1a =
|M∗|2 Γ2

2π(ω − ε1 −∆− ΣT
2 )

1

∆
ln

(ω − εF2 + ωph)
2 + (πT )2

(ω − εF2 + ωph +∆)2 + (πT )2
(4.19)
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Σ1b =
|M∗|2 Γ2

2π(ω − ε1 −∆− ΣT
2 )

1

(ω − ε1 − ΣT
1 − 2ΣT

2 )
ln
(ω − ε1 − εF2 + ε2)

2 + (πT )2

(ω − ε1 + εF2 − ε2)2 + (πT )2
)

(4.20)

Similarly, the Green function of QD2 can be obtained as:

G22 =
1

(ω − ε2 − ΣT
2 )− |M∗|2

(ω−ε2+∆−ΣT1 )
nph − Σ2a − Σ2b

(4.21)

where

Σ2a =
|M∗|2 Γ1

2π(ω − ε2 +∆− ΣT
1 )

1

∆
ln

(ω − εF1 − ωph)
2 + (πT )2

(ω − εF1 − ωph −∆)2 + (πT )2
(4.22)

Σ2b =
|M∗|2 Γ1

2π(ω − ε2 +∆− ΣT
1 )

1

(ω − ε2 − ΣT
2 − 2ΣT

1 )
ln
(ω − ε2 − εF1 + ε1)

2 + (πT )2

(ω − ε2 + εF1 − ε1)2 + (πT )2
)

(4.23)

We assume that the lead-dot coupling constant is the same in the considered

system. The Green function of QD1 and QD2 can be rewritten as

G11 =
(ω − ε01 −∆+ iΓ

2
)

(ω − ε−1 )(ω − ε+1 ) + iΓ(ω − ε01 − ∆
2
)

(4.24)

G22 =
(ω − ε2 +∆+ iΓ

2
)

(ω − ε−2 )(ω − ε+2 ) + iΓ(ω − ε02 +
∆
2
)

(4.25)

where

ε±m = εm + (−1)m−1
∆

2
±
p
∆2 + 4Σ02m
2

;m = 1, 2 (4.26)

Σ021 =
Γ2

4
(4.27)

+ |M |2 [(nph)

+
Γ

2π

1

∆
ln

(ω − εF2 + ωph)
2 + (πT )2

(ω − εF2 + ωph +∆)2 + (πT )2

+
Γ

2π

1

(ω − ε1 − ΣT
1 − 2ΣT

2 )
ln
(ω − ε1 − εF2 + ε2)

2 + (πT )2

(ω − ε1 + εF2 − ε2)2 + (πT )2
]
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Σ022 =
Γ2

4
(4.28)

+ |M |2 [(nph + 1)

+
Γ

2π

1

∆
ln
(ω − εF1 − ωph −∆)2 + (πT )2

(ω − εF1 − ωph)2 + (πT )2

+
Γ

2π

1

(ω − ε2 − ΣT
2 − 2ΣT

1 )
ln
(ω − ε2 − εF1 + ε1)

2 + (πT )2

(ω − ε2 + εF1 − ε1)2 + (πT )2
]

The first term in the square bracket of the term Σ02m contains photon number nph,

and is related to the Rabi oscillation effect. The second and third terms which

contains the logarithm term relates to the correlation between the mth QD and

them0th lead (m 6= m0,m.m0 ∈ 1, 2), i.e. the correlation of dot and nonconnected-

lead. Since the large value of εFm − εF is chosen, the third term can be ignored.

The physical picture mechanism of the dot-nonconnected-lead correlation can be

explained as follow. The electron in dot1 (low energy dot) is excited to dot2

(higher energy dot) with an energy close to εF1 + ωph via absorbing a photon and

tunneling into lead. Simultaneously, there is an electron in lead2 tunneling into

dot2 with energy at vicinity of Fermi energy of lead2 and transits into dot1 via

emitting a photon. The main effect of the term Σ02m depends on the competition

between Rabi oscillation and the dot-nonconnected-lead correlation effect. If the

detuning factor ∆ (which determinates the strength of the dot-nonconnected-lead

correlation ) is large, then the term Σ02m is dominated by Rabi oscillation effect. In

this situation, the correlation between QD and nonconnected-lead can be ignored.

The dot-nonconnected-lead correlation is important when the detuning factor ∆

is small. There is a critical detuning factor ∆C which determines the impor-
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tance of dot-nonconnected-lead correlation. Besides the frequency of photon filed

( the detuning factor ), the dot-nonconnected-lead correlation also depends on

the temperature. From Eq.(4.27) and Eq.(4.28), it can be expected that the dot-

nonconnected-lead correlation will be weak and the self-energy Σ0m is dominated

by the Rabi oscillation effect when temperature is higher than a critical temper-

ature T ph
C . From Eq.(4.19) and Eq.(4.20), it can be expected that the critical

temperature T ph
C can be chosen as πT ph

C = |∆|. Hence the dot-nonconnected-lead

correlation becomes weak when T > T ph
C . From Eq.(4.26), we define the critical

detuning factor for the dot-nonconnected-lead correlation. Assume the resonance

state corresponding to the dot-nonconnected-lead of dot1 is ε0±1 . For the case of¯̄
ε0±1 − εm

¯̄
À |∆| , the Eq.(4.26) for ω = ε0±1 is

(ε
0±
1 − ε1)

2 = Σ021 > 0 (4.29)

where the condition |Σ021 | À |∆| is used, since |Σ021 | grows logarithmically at the

vicinity of ε
0±
1 . Choose ε

0±
1 = εF2 −ωph−∆ which is the singular point of Σ021 when

T = 0 and give the positive value of Σ021 . Using the condition πT ph
C = |∆C|, we

determine the critical detuning factor ∆C as

∆C =
Γ

π

|M |2

(εF2 − ε2)2 − |M |2 (nph)− Γ2

4

ln 2 (4.30)

There is a large value of∆C corresponding the condition (εF2−ε2)2−|M |
2 (nph)−

Γ2

4
= 0. From Eq.(4.27), the dot-nonconnected-lead correlation disappears when

∆C is large. Hence, the condition (εF2 − ε2)
2− |M |2 (nph)− Γ2

4
= 0 is not the solu-

tion corresponding to the dot-nonconnected-lead correlation as discussed in case of
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Figure 4.2: The plot of the Rabi oscillation term and dot-non-connected-lead

correlation term in Eq.(4.27) with |M |2 = Γ = 1 and (εFm − εFm) = 5.

large ∆C. Fig.4.2 shows the plot of Rabi oscillation term (|M |2 nph) and dot-non-

connected-lead term ( Γ
2π

1
∆
ln

(ω−εF2 +ωph)2+(πT )2
(ω−εF2 +ωph+∆)2+(πT )2

) in Eq.(4.27) when ω = εF2 −ωph,

∆ = ∆C(nph) and T = TC with versus nph for the case of |M |2 = Γ = 1 and

εFm − εm = 7Γ. It is obviously that the dot-nonconnected-lead correlation effect is

disappear when nph ≈ 50 and Eq.(4.27) is dominated by the dot-nonconnected-

leadcorrelation when nph ¿ 50 or nph À 50. Fig.4.3 shows the spectral func-
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tion Ai(ω) = −2 ImGii(ω) for dot1 versus photon number nph whenT = TC and

∆ = ∆C.(In follow discussion about the spectral function, the energies of system

are set as ε1 = −5, ε2 = 5, εF1 = 2 and εF1 = 12.) Note that the peak corre-

sponding to dot-nonconnected-lead correlation disappears when nph = 49. The

detuning factor is inverse proportional to the photon number when the photon

number is larger than the one corresponding to the large solution of ∆.For large

|M |2, |∆| is inverse proportional to the strength of electron-photon interaction

and photon number, and TC will be decreased with the increasing of |M |2 and

nph. The bandwidth Γ due to the tunneling effect between dot and lead is an

important quantity in the dot-nonconnected-lead correlation effect. Γ provides a

detuning factor to cause the dot-non-connected lead correlation at finite temper-

ature. It can be expected that the critical temperature and detuning is decreased

with the decreasing of tunneling bandwidth.

The fig.4.4 shows the spectrum function with various detuning factor ∆ for

temperature T = Tc for photon number nph = 9. It shows that the dot-nonconnected-

lead correlation disappears when ∆ > ∆c. For ∆ ≤ ∆c there are two peaks corre-

sponding to the dot-nonconnected lead correlation at the vicinity of Fermi energy

of leads which reflect the poles corresponding to dot-nonconnected-lead correlation

of Green function. Fig.4.5 shows the spectral function for various temperature.

It shows that the QD1-lead2 correlation effect disappears when temperature T

(the detuning factor ∆ ) is higher than the critical temperature TC (the detuning
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Figure 4.3: The plot of spectral function of dot1 versus photon number nph. (a)

The spectral function includes the Rabi oscillation effect. (b) The detial plot with

the energy at the vicinity of ω = εF1 which is the peak position corresponding to

dot-nonconnected-lead correlation
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Figure 4.4: The spectral function Am with various detuning factor for nph = 9 and

T = TC . The red (blue) line represent the spectral function of dot1 (dot2). (a)

Include the peaks corresponding to Rabi frequency and the dot-nonconnected-lead

correlation. (b) The dot-nonconnected-lead peak at the vicinity of Fermi energy

of leads.
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Figure 4.5: The spectral function Am with various temperature for nph = 9 and

∆ = ∆C with energy at vicinity of Fermi energy of leads. The red (blue) line

represent the spectral function of dot1 (dot2).

factor ∆C).

The conductance due to electron transport through dot m is calculated by the

equation:

gm =
e2

}
Γ

Z
dω

2π
f 0FD(ω) ImGr

m(ω) (4.31)

Since the peak height of the spectral function Am = −2 ImGr
m of the QD m-lead

m0 correlation is dependent on the Fermi level of lead m0, the conductance g1

contributed from the QD1-lead2 correlation channel is dependent on the Fermi
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level of lead1 and lead2. Fig.4.6 shows the conductance of QD1 versus the Fermi

level of lead2. The Fermi level of lead2 is modified as εF2 = ε2+∆ε. It shows that

the peak height of the conductance corresponding to the dot1-lead2 correlation

locates at εF1 = ε1+∆ε. The conductance with Fermi level of lead1 far away from

ε1+∆ε is dominated by Rabi oscillation and is independent of the Fermi level of

lead2. Since the image part of self energy is dependent on the energy, the peak

height is decreased with increasing of the energy difference from the resonance

energy of dot2. One can find that the peak height is decreased with the increasing

of ∆ε which reflects the energy dependent of the image part of denominator in

Eq.(4.24) and Eq.(4.25).

In summary, we consider a two quantum dot system in which each dot is

coupled to lead individually and interacts with each other via electron-photon

interaction. The electron-photon interaction is assumed in as the dipole approx-

imation. The strength of electron-photon interaction is considered as the same

order as the dot-lead coupling, i.e. the weak reservoir coupling approximation is

no longer hold. The correlation between quantum dot and non-connected-lead is

constructed via the electron-photon interaction and the image part of self-energy

is energy dependent. There is a critical temperature T ph
C = |∆| /π for the dot-

nonconnected-lead correlation via dipole interaction in the two-dot system con-

sidered in this work. Besides the critical temperature, there is a critical detuning

factor ∆C for the dot-nonconnected-lead correlation. The correlation between dot
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Figure 4.6: The equilibrium conductance (zero bias) for dot1 as function of Fermi

energy εF1 . The resonant energy of dot1 is set as ε1 = −5 and dot2 is set as ε2 = 5.

The Ferim energy of lead2 is set as εF2 = ε2 +∆ε.
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and non-connected lead disappears and the interaction between dots is dominated

by Rabi oscillation effect mainly when the temperature of the system T is higher

than T ph
C or detuning factor ∆ is larger than ∆C . The correlation between dot

and non-connected lead is obviously pronounced when T is below T ph
C and ∆ is

smaller than ∆C. When the correlation between dot and nonconnected-lead is

established, the spectrum function of electron in dot with energy in the vicinity

of ω = εF2 −ωph will grow logarithmically. The absolute value of critical detuning

factor |∆C| is proportional to the dot-lead coupling constant Γ reflects that the

requirement of the strength of dot-lead coupling for the correlation between dot

and non-connected lead. The self-energy originated from the dot-nonconnected-

lead correlation is small as Γ is small. As shown in Eq.(4.30) absolute value of

critical detuning factor |∆C| is inverse proportional to (εFm − εm)
2. for the case of

few photon number or is inverse proportional to nph for the case of large photon

number. And the critical temperature T ph
C is defined asT ph

C = |∆| /π. Since the

Kondo temperature is exponential decreased with (εFm − εm), hence, one can find

a suitable condition that T ph
C > TK, in which the Kondo effect is disappeared.

As the Fig.4.2 shows, for small photon number, the correlation between dot and

non-connected lead is important. In the case consider in this work, if the energy

difference between dot1 and dot2 is set as 10meV (∼ 2500GHz) which is roughly

equal to the required energy of photon field, the critical detuning factor ∆C will

be 0.056meV (∼ 14GHz), and the critical temperature is 225mK for the case of
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nph = 9 and εFm − εm = 7meV as considered in this work. This condition can

be achieved easily in experiment. Note that, unlike the Kondo temperature, the

critical temperature of dot-nonconnected-lead correlation via dipole interaction

is inverse proportional to (εFm − εm)
2.. Hence one can choose a suitable Fermi

energy of lead that the corresponding Kondo temperature TK is much smaller

than the critical temperature T ph
C so that the dot-nonconnected-lead correlation

appears while Kondo effect is nonobvious. In our system, TK = 1.7× 10−4Γ and

T ph
C = 0.0018Γ for ∆ = ∆C.[23] The key argument in our model is that the dot-

lead coupling does not too weak and the electron-photon interaction between dots

is not much strong. Since the strength of electron-photon interaction is a trigono-

metric function of the inter-distance of the dots or the wavelength of photon filed,

the weak dipole interaction will be implemented by choosing a suitable distance

of the dots or the wavelength of the photon filed.[59] Furthermore, although we

model the dipole interaction between two dots as the electron excitation (decay)

and photon absorption (emitting), the system may be constructed in p-n dot

junction system embedded in a microcavity as shown in Fig.4.1.(b). The electron

decay (excited) process in the two-dot system is replaced by the electron-hole

recombination (electron-hole pair creation) in p-n dot junction and the emitted

(absorbed) photon.
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CHAPTER 5

SUMMARY

In chapter 3, we consider the Anderson model with spin flip associated tunneling

in quantum dot system. Under the effect of spin flip associated tunneling, the

quantum dot state can be regarded as the original Anderson model quasiparticle

state scattered via the normal spin-flip channel and Kondo spin-flip channel. For

the temperature higher than the Kondo temperature, the spin-flip scattering is

dominated by the normal channel. The normal channel spin-flip scattering en-

hances the amplitude of spectral function. The diagonal part spectral function

is increased (more positive) and off-diagonal part spectral function is decreased

(more negative) as the strength of the spin-flip associated tunneling is increased.

Since the decrease of the strength of off-diagonal part spectral function is stronger

than the increase of the diagonal part, the conductance is thus decreased as the

strength of spin-flip associated tunneling effect is increased. When the temper-

ature is below Kondo temperature, the effect of spin-flip associated tunneling is

dominated by the Kondo channel. The Kondo cahnnel spin-flip scattering en-

hances the peak height and causes the blue shift of Kondo resonance peak. The

behavior of conductance is dominated by the competition between the peak height

enhancement and the blue shift effect. When the spin-flip associated tunneling
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is weak, the enhancement of peak height is the main effect. The diagonal part

spectral function is increased and stronger than the decrease of the diagonal part

as the strength of spin-flip associated tunneling is increased. Hence, the conduc-

tance is increased as the strength of spin-flip associated tunneling is increased.

When the spin-flip associated tunneling is strong, the blue shift is the main effect.

The peak of Kondo resonance is shifted out of the vicinity of Fermi level of lead.

Hence the conductance is decreased as the strength spin-flip is increased. The

conductance is dominated by the diagonal part spectral function when tempera-

ture is higher than Kondo temperature and scattering is dominated by the normal

channel. Contrast to the case of temperature higher than Kondo temperature, the

conductance is dominated by the diagonal part spectral function when the tem-

perature is lower than Kondo temperature and spin-flip scattering is dominated

by the Kondo channel.

In chapter 4, We consider a double-dot system and studied the dot-nonconnected-

lead correlation induced by the electron-photon interaction. We find that there

is a critical temperature TC = |∆| /π and a critical detuning factor ∆C. The

dot-nonconnected-lead is constructed when T < TC and ∆ < ∆C and the spectral

function will grow logarithmically at the neiborhood of ω = εF2(1)− (+)ωph for dot

1(2). Owing to the dot-nonconnected-lead correlation, the conductance will be af-

fected by the Fermi level of nonconnected-lead. For example, the conductance due

to electron transport between lead1 through dot1 will show a peak corresponding
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to the dot-nonconnected-lead correlation at the neighborhood of εF2 − ωph. The

critical detuning factor ∆C is inversely proportional to the photon number when

photon number is large, hence the critical detuning factor and critical temperature

are very small when photon number is large.
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CHAPTER 6

FUTURE WORKS

In the Anderson model with spin-flip tunneling effect, the resonant energy may

be shifed to a renormalized energy due to the spin-flip associated tunneling ef-

fect. The effect of energy shift will affect the peak position of Kondo resonance

peak and modify the conductance. This effect is one of the important effects in

FM (ferromagnetic)-dot-FM system [46][47][48][49]. One can compare the effect

due to the spin-flip scattering and the energy. Besides, the high temperature

Lacrox’s decouple scheme is used in this dissertation. As it is well known the high

temperature Lacrox’s decouple scheme is suitable quantitatively only when the

temperature is below the Kondo temperature. For more accurate calculation or

lower temperature case, more higher order terms must be included or other more

accurate or rigorous methods must be used.

In the electron-photon induced dot-nonconnected-lead correlation effect, the

on-site and interdot Kondo effect are not included in our calculation. Although one

may choose a situable condition under which the Kondo effect disappears, however,

the study on the competition between the Kondo effect and the electron-photon

interaction including dot-nonconnected-lead correlation is absolutely worth to be

explored in future.
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