

國 立 交 通 大 學

資訊工程學系

博 士 論 文

加速深層封包檢查的字串比對演算法

Accelerating String Matching Algorithms

for Deep Packet Inspection

研 究 生：林柏青

指導教授：林盈達 教授

中 華 民 國 九 十 七 年 六 月

加速深層封包檢查的字串比對演算法

Accelerating String Matching Algorithms
for Deep Packet Inspection

研 究 生：林柏青 Student：Po-Ching Lin

指導教授：林盈達 Advisor：Ying-Dar Lin

國 立 交 通 大 學
資 訊 工 程 學 系

博 士 論 文

A Dissertation Submitted to

Department of Computer Science

College of Computer Science

National Chiao Tung University

for the Degree of

Doctor of Philosophy

in

Computer Science
June 2008

Hsinchu, Taiwan

中華民國九十七年六月

誌 謝

 還記得那時要考碩士班時，只是抱著增加經驗的心態去試試看。現在竟然也到走到

了博士畢業的階段。在這段歷程中，經歷了許多人事物。沒有這麼多人的協助，恐怕也

很難走到這一步。

 最重要的，要感謝我的指導教授林盈達教授。從他身上學到了按部就班，有條有理

的去完成一件事。以及不斷的去嘗試新的事物，提升自己的歷練。在研究上疑似無路可

走的階段，能在我混亂的思緒中開挖出一條可走的路。這些能力，我想此生都會受用無

窮。

 感謝賴源正教授、李程輝教授。在論文的修訂上，給了很多寶貴的建議。讓我可以

更順利的投出論文。

 感謝我的父母，在這個漫長的階段在各方面讓我無後顧之憂，可以專心的在學業

上。如果眾多事情沒有他們幫忙處理，恐怕我就很難做任何研究了。走到畢業階段，順

利去工作，也了卻了他們的一個心願。

 感謝旻芳，幫我招了不少論文。結婚之後，投論文的運氣好像真的有好了不少，不

然還得繼續撐。在美國生活的時候，也做了多道好吃的菜，讓我自己都想開始學著做。

 感謝資源超級豐富的高速網路實驗室及諸位伙伴：義能、世強、國坤、慶明、煥雲、

明道、一瑋、志祥、伊君、岱穎、思豪、孟甫、碩彥、銘康、福祥、振洲、俊男、其衡、

宗寰、宗憲、又賢。陪伴了我渡過這一時光，並給予相當多的協助。並感謝助理耀萱在

畢業最後階段大力的幫忙。

 最後也感謝 UCB 的 Vern Paxson 教授、Richard Karp 教授，給了我一些不同的想

法和觀點。以及在 ICSI 的好伙伴，Robin, Christian, Nick，他們投注在工作上的精

神讓人感動。Diane, Maria, Jaci, Jacob, Whitney 在 ICSI 參訪期間所給予的各項協

助和支援。

 1

加速深層封包檢查的字串比對演算法

學生：林柏青

指導教授：林盈達

國立交通大學資訊工程學系博士班

摘 要

為數增多的網路設備會檢視封包的內容來找尋違背安全的特徵字串。加速這

個稱為深層封包檢查(Deep Packet Inspection; DPI)的程序，可從兩個方面進行：

演算法及封包流程。這個研究著眼在前者。我們首先檢閱了現有用來做 DPI 的字

串比對演算法，來看哪些已經做了以及哪些應該要解決的。在這個檢閱當中，我

們指出每種演算法的優缺點，以及一個適合各種應用之不同的樣式集合的高延展

性、有效率的設計仍是一種挑戰。我們也剖析了字串比對在各種不同樣式個數、

長度及字元分佈的應用下的效能，以了解影響有效率的字串比對的重要因素。剖

析的結果顯示出了哪種 DPI 的應用適合哪種演算法。在考慮了前述的議題後，我

們設計了一個可以利用演算法啟示法則的硬體字串比對引擎，以及給擁有龐大樣

式集合的應用，如掃毒應用的一種混合的軟體方法。然而，單是字串比對不足以

加速某些 DPI 的應用，例如網頁過濾器。所以我們提出了一個機率方法，稱為早

期決定演算法，來加速網頁過濾的分類。

這個研究有幾點重要的觀察與貢獻。首先，所做的檢閱和剖析研究了數個主

要的 DPI 應用，包含入侵偵測、掃毒和網頁過濾，而不像大部分現有的方法集中

在入侵偵測上。這個研究也顯示了字串比對在入侵偵測上並非那麼嚴重，因此字

串比對的發展在其他的應用也應受到關注。所做的剖析指出記憶體的存取(因此

含快取的區域性)、驗證的頻率、和搜尋視窗的移動距離是影響效能的主要因素。

 2

其次，所呈現的字串比對硬體架構，稱之為 Bloom Filter Accelerated Sub-linear

Time (BFAST)，能從 Bloom filter 中獲得演算法的啟示法則，在次線性的時間內

掃描內容。BFAST 當中的 bad-block 啟示法則能比過去使用查表的方式保留精確

的資訊在 Bloom filter 當中，以得到較好的效能。我們也提出了處理最壞情況的

一些務實的技巧，以及一個在理論上可以達到線性時間的方法。模擬顯示出使用

8 個字元的區塊，可以讓單一字串比對引擎的效能在 16,384 個樣式下達到 9.34

Gbps。此外我們也提出了一個混合的掃描病毒方法，用於無法使用硬體方法時。

我們把 ClamAV 中的樣式依他們的長短做區隔，並使用衍生自 Wu-Manber (WM)

演算法的 Backward-Hashing (BH)演算法來負責長樣式，以加長平均的移動距離，

並讓 Aho-Corasick 演算法只處理短樣式以縮小自動機的大小。前者使用了

bad-block 啟示法則以獲取更長的移動距離並減少驗證的頻率，所以比 ClamAV

原先用的 WM 演算法更快。後者則因較好的快取區域性而提高了 AC 演算法約

50%的效能。

除了加速字串比對外，我們也提出了一個簡單但有效的早期決定演算法，透

過只檢查一部分的網頁內容來加速過濾流程。這個演算法能儘快做出要阻擋或是

通過網頁內容的決定，只要有夠高的機率來判定該內容是屬於該阻擋或是該通過

的種類。實驗結果顯示這個演算法平均能只看 1/4 的網頁內容就已足夠做決定，

而仍能保持相當好的準確度。這個演算法可與其他網頁過濾的方法互補來高效率

地過濾網頁內容。

關鍵字：字串比對、演算法、深層封包檢查

 3

Accelerating String Matching Algorithms
for Deep Packet Inspection

Student：Po-Ching Lin Advisors：Dr. Ying-Dar Lin

Department of Computer Science
National Chiao Tung University

ABSTRACT
An increasing number of network devices inspect the packet content for various

signatures of security violation. Accelerating the process, namely deep packet

inspection (DPI), can be in two aspects: algorithm and packet flow. This work focuses

on the former. We first review existing string matching algorithms for DPI to see what

work has been done and what should be addressed. In the review, we indicate the pros

and cons of each algorithm, and a scalable, efficient design to meet the different

characteristics of the pattern set in various applications is still a challenge. We also

profile the performance of string matching in practical applications for various

numbers, lengths and character distributions of the patterns to realize the key factors

in efficient string matching. The results shed light on which approach is appropriate

for each DPI application. Considering the above study, we design a hardware-based

string-matching engine that can exploit algorithmic heuristics for acceleration, and a

hybrid software method for applications with a large pattern set, say anti-virus

applications. However, it is insufficient to accelerate some DPI applications, such as

Web filter, with string matching alone. We thus present a probabilistic approach,

namely the early decision algorithm to accelerate the classification in Web filtering.

This work features a number of observations and contributions. First, the review

and profiling study several major DPI applications, including intrusion detection,

anti-virus and Web filtering, unlike most existing work that focuses on intrusion

detection. The study shows string matching is not so critical in intrusion detection, and

 4

its development for DPI should also cover other applications more. The profiling

indicates memory access (thus also cache locality), verification frequency and shift

distance of the search window are major factors that affect the performance.

Second, the presented hardware architecture of string matching, namely Bloom

Filter Accelerated Sub-linear Time (BFAST), can exploit algorithmic heuristics with

Bloom filters to scan the content in sub-linear time. The bad-block heuristic in the

BFAST has better performance than that from the conventional table due to the

precise information kept in the Bloom filters. We also propose practical techniques to

handle the worst case, and the theoretical method to achieve linear worst-case time.

The simulation shows that the peak throughput of a single match engine can achieve

up to 9.34 Gbps for 16,384 patterns with an eight-character block in the heuristics. A

hybrid method for virus scanning is also presented since the hardware approach may

be not applicable. We partition the patterns in ClamAV into long and short ones. An

algorithm enhanced from the Wu-Manber (WM) algorithm, namely the

Backward-Hashing algorithm (BH), is responsible for only long patterns to lengthen

the average skip distance, while the Aho-Corasick algorithm scans for only short

patterns to reduce the automaton sizes. The former utilizes the bad-block heuristic to

exploit long shift distance and reduce the verification frequency, so it is much faster

than the original WM implementation in ClamAV. The latter increases the AC

performance by around 50% due to better cache locality.

Besides speeding up string matching, we present a simple, but effective early

decision algorithm to accelerate the filtering process by examining only part of the

Web content. The algorithm can make the filtering decision, either to block or to pass

the Web content, as soon as it is confident with a high probability that the content

should belong to a banned or an allowed category. The experiments show the

algorithm can examine only around one-fourth of Web content on average, while the

accuracy remains fairly good. This algorithm can complement other Web filtering

approaches to filter the Web content with high efficiency.

Keywords: string matching, algorithm, deep packet inspection

Table of Contents

1 Introduction: string matching for deep packet inspection (DPI) 1

1.1 Development of string matching algorithms 1

1.1.1 Automaton-based approach 4

1.1.2 Heuristic-based approach 7

1.1.3 Filtering-based approach 10

1.2 Current trends in DPI . 11

1.2.1 Matching expressive pattern specifications 11

1.2.2 Accelerating packet content processing 13

1.2.3 Parsing content in high-level semantics 14

1.3 Objective, methodology and road map of research 14

2 Profiling and Accelerating String Matching in Three Network

Content Security Applications . 16

2.1 Introduction . 16

2.2 Related works . 17

2.2.1 Categories of string matching algorithms 17

2.2.2 Selected packages and their algorithms 18

2.3 The Verification algorithm . 20

2.3.1 The CRKBT algorithm . 21

2.3.2 Experiments on the CRKBT algorithm 22

2.3.3 Analysis of the CRKBT algorithm 23

iii

2.4 Profiling algorithms of string matching algorithms 24

2.4.1 External profiling . 24

2.4.2 Internal profiling . 25

2.4.3 Profiling for short patterns and summary 29

2.5 Experiments on real applications 30

2.5.1 Implementation in three content security packages 30

2.5.2 Benchmarking of the revised implementation 32

2.6 Conclusion . 35

3 Realizing a Sub-linear Time String-Matching Algorithm with a

Hardware Accelerator Using Bloom Filters 36

3.1 Introduction . 36

3.2 Existing Works and Literature Background 38

3.2.1 String Matching Algorithms 39

3.2.2 Hardware Accelerators . 41

3.3 The BFAST architecture . 42

3.3.1 Drawbacks of using a shift table 42

3.3.2 Deriving shift distance using Bloom filters 43

3.3.3 Bad-block heuristic in the search window 46

3.3.4 Performance in the worst case 49

3.3.5 Hash functions and the parameters in the design 53

3.3.6 The analysis of the BFAST algorithm 55

3.4 Implementation details . 57

iv

3.4.1 Main components in the BFAST architecture 57

3.4.2 Pipelining design . 60

3.5 Experimental results and comparisons 60

3.5.1 Simulation in C . 61

3.5.2 HDL simulation result . 66

3.5.3 Comparisons with other works 67

3.6 Conclusion and future work . 73

4 A Hybrid Algorithm of Backward Hashing and Automaton Track-

ing for Virus Scanning . 74

4.1 Introduction . 74

4.2 Review of existing work . 77

4.2.1 String matching algorithms 77

4.2.2 Virus signatures and string matching in ClamAV 79

4.3 The hybrid algorithm and practical issues 82

4.3.1 The BH algorithm . 82

4.3.2 The hybrid method . 87

4.4 Parameter selection and evaluation 89

4.4.1 Parameter selection . 89

4.4.2 Performance evaluation . 91

4.4.3 Discussion of worst-case performance 93

4.5 Conclusion . 94

5 Accelerating Web Content Filtering by the Early Decision Algo-

v

rithm . 95

5.1 Introduction . 95

5.2 Related Work in Web Filtering 97

5.2.1 Approaches of Web Filtering 97

5.2.2 Text Classification Algorithms 98

5.3 The Early Decision Algorithm . 100

5.3.1 Keyword Distribution . 100

5.3.2 Näıve Bayesian Classification 102

5.3.3 Keyword Extraction in The Training Stage 104

5.3.4 The Filtering Stage . 105

5.4 Experiments . 107

5.4.1 Performance Metrics . 107

5.4.2 Experimental Results and Discussion 107

5.4.3 Practical Consideration in Deployment 112

5.5 Conclusion . 113

6 Conclusions and future works . 115

References . 118

vi

List of Figures

1.1 A simple heuristic in a heuristic-based approach. 8

2.1 The operations of the RKBT algorithm (left) and the Classified

RKBT algorithm (right). 22

2.2 The execution time of the RKBT and CRKBT algorithm. 23

2.3 Comparison of execution time of selected string matching algorithms. 25

2.4 Comparison of the profiling results of average shift distance. . . . 26

2.5 Comparison of the percentage of possible matches for each algorithm. 27

2.6 Comparison of the number of memory accesses in the each algorithm. 28

2.7 Comparison of the number of cache misses in each algorithm. . . . 29

2.8 Comparison of the memory consumption in each algorithm. 29

2.9 Comparison of the execution time for LSP = 1, 2 and 3. (FNPw2

denotes FNP with w = 2.) . 30

2.10 The profiling summary of each algorithm. (C denotes |Σ|.) 31

2.11 The performance improvement for both random and real data in

the revised version of ClamAV. 33

2.12 The performance improvement for both random and real data in

the revised version of DansGuardian. (C denotes |Σ|.) 33

2.13 The benchmarking result of Snort. 35

vii

3.1 The blocks in the patterns are grouped for deriving the shift value

from querying Bloom filters in parallel. If a block is a member of

some group Gj, BF (Gj) must report a hit. The priority encoder

(PE) determines the shift value. 45

3.2 An illustration of the bad-block heuristic. 49

3.3 The procedure to maintain the linear time performance. 53

3.4 The false-positive rate with respect to k and the ratio of z = v/r. 55

3.5 Overview of the modules in the BFAST architecture. 58

3.6 The layout of memory block to support multiple Bloom filters and

the priority encoder. 59

3.7 The comparison of the operation without and with pipelining for

` = 1024 and m = 10. The four phases are text position controlling

(TP), block reading (BR), computing hash functions (HA) and bit

vector reading (BV). S1 and S2 denote the shift values of the first

two segments. 61

3.8 Average shift values for various number of patterns in four cases.

An asterisk after the ‘Real text’ denotes the shift values are derived

without the bad-block heuristic. 62

3.9 Average number of characters per checked block for various number

of patterns in the four cases for b = 4. 63

3.10 Average number of characters per checked block for various number

of patterns in four cases for various block sizes. 64

3.11 Average shift values for various lengths of bit vectors in the Bloom

filters, where v/r = 4, 8, 16 and 32. 65

3.12 Comparisons between the BFAST and other architectures. 68

viii

4.1 The illustration of a missed match. 83

4.2 The heuristic in the bad-block heuristic. 86

4.3 An example to illustrate the information lost in the shift table. . . 87

5.1 The keyword distribution in the Web content of both the banned

and the allowed categories. 102

5.2 The pseudo-code of the early decision algorithm. 108

ix

List of Tables

1.1 Number of the IEEE/ACM publications for each application of

string matching. 2

1.2 Number of the IEEE/ACM publications for each specific imple-

mentation method other than ordinary implementation. 2

1.3 Summary of approaches to string matching for DPI. 12

3.1 Important notations throughout this paper. 39

3.2 The average number of scanned characters to meet a verification

for various numbers of patterns in the practical case. 64

4.1 The number of parts or basic patterns and their minimum/maxmum

lengths in each target type. 80

4.2 The number of parts or basic patterns in each target type after

sorting out them. 88

4.3 The shift values for various table sizes and length thresholds. . . . 90

4.4 The execution time (in seconds) for various table sizes and length

thresholds. 91

4.5 Comparing the throughput (Mb/s) between the hybrid method

and the original implementation in ClamAV. 93

5.1 Comparison of classification accuracy in four banned categories. . 109

5.2 Average accuracy and scan rate in the early decision algorithm. . 110

5.3 Accuracy in the setting of no false positives in allowed content. . . 110

x

5.4 Comparison of the throughput of the early decision algorithm and

the original Bayesian classifier. 111

xi

CHAPTER 1

Introduction: string matching for deep packet

inspection (DPI)

1.1 Development of string matching algorithms

A classical algorithm for decades, string matching has recently proven useful

for deep packet inspection (DPI) to detect intrusions, scan for viruses, and fil-

ter Internet content. However, the algorithm must still overcome some hurdles,

including becoming efficient at multi-gigabit processing speeds and scaling to

handle large volumes of signatures. Researchers in packet processing used to be

most interested in longest-prefix matching in the routing table on Internet routers

and multi-field packet classification in the packet header for firewalls and quality-

of-service applications. However, DPI for various signatures is now of greater

interest. Intrusion detection, virus scanning, content filtering, instant-messenger

management and peer-to-peer identification all can use string matching for in-

spection. Much work has been done in both algorithm design and hardware

implementation to accelerate the inspection, reduce pattern storage space, and

efficiently handle regular expressions.

According to our survey of recent publication about string matching from

IEEE Xplore (ieeexplore.ieee.org) and ACM digital library (portal.acm.

org/dl.cfm) in Table 1.1 and 1.2, researchers formerly were more interested in

1

Table 1.1: Number of the IEEE/ACM publications for each application of string

matching.
IEEE/ACM 2004 - 2000 - 2003 1990s 1980s 1970s

DPI 49 12 0 0 0

computational biology 13 16 15 0 0

information retrieval 24 19 26 0 0

pattern recognition 17 20 24 2 0

DBMS 4 11 1 0 0

compression 3 10 18 2 0

other app. 11 11 9 5 5

pure algorithm 31 39 110 22 12

total 152 138 203 31 17

Table 1.2: Number of the IEEE/ACM publications for each specific implementa-

tion method other than ordinary implementation.
IEEE/ACM 2004 - 2000 - 2003 1990s 1980s 1970s
ASIC/FPGA 34 9 9 2 0
network processors 3 0 0 0 0
multiple processors 10 3 10 2 0

pure algorithms for either theoretical interest or general applications, while al-

gorithms for DPI have attracted more attention lately. Likewise, to meet the

demand for higher processing speeds, researchers are focusing on hardware im-

plementation in application-specific integrated circuits and field-programmable

gate arrays, as well as parallel multiple processors.

In DPI, automaton, heuristic and filtering approaches are common. We leave

out the bit parallelism approach and only offer pointers to it for completeness

because it is often used in computational biology but rarely in networking. We

assume the text length to be n characters and the pattern length (or the shortest

length in case of multiple patterns) to be m characters. Other characteristics of

2

string-matching algorithms are listed in the following:

Characteristics of string-matching algorithms

Times of searches Some applications, such as search engines, search the same

text many times for different querying strings. Building an indexing data

structure from the text in advance is therefore worthwhile to perform in-

dexed search with the time complexity as low as O(m). In contrast, the

applications in networking and biological sequences search throughout the

text on-line only once without the indexing structure and the time com-

plexity is linear in n.

Text compression Some algorithms directly search the compressed text with

minimum (or no) decompression, while others scan over the plain text.

Matching criteria A match can be exact or approximate. The pattern and

the matched piece of text should be identical in the former, while a limited

number of differences between them is allowed in the latter.

Time complexity Some algorithms have deterministic time complexity of linear

time, while others achieve sub-linear time by skipping characters not in a

match. The latter may be faster on average, but not in the worst case.

Number of patterns An algorithm can scan for a single pattern or multiple

patterns simultaneously.

Expressiveness in pattern specifications Pattern specifications range from

fixed strings to regular expressions in various syntax options. Besides prim-

itive notations of alternation, catenation and Kleene closure, extensions in

the syntax of regular expressions include the UNIX representations, the ex-

3

tended forms in POSIX 1003.2, and Perl Compatible Regular Expression

(PCRE) [Fro06]. An increasing number of signatures are specified in regular

expressions for their expressiveness.

1.1.1 Automaton-based approach

An automaton-based approach tracks partially matched patterns in the text by

state transition in either a deterministic or a non-deterministic finite automaton

(DFA or NFA) that accepts the strings in the pattern set. A DFA implemen-

tation generally has lower time complexity but demands more space for pattern

storage, while an NFA implementation is the opposite [YCD06]. The automaton-

based approach is popular in DPI for two reasons: (1) The deterministic execution

time guarantees the worst-case performance even when algorithmic attacks delib-

erately generate text to exploit an algorithm’s worst-case scenario. (2) Building

an automaton to accept regular expressions is systematic and well studied.

Given the wide data bus of 32 or 64 bits in modern computer architectures,

tracking the automaton with one input character at a time poorly utilizes the

bus width and degrades the throughput. Extending the transition table to store

transitions for two or more characters is plausible, but it is impractical without

proper table compression. Storing a large pattern set is also memory-consuming

due to the large number of states. Recent research therefore tries to reduce the

data-structure space and simultaneously inspect multiple characters. A compact

data structure in software implementation also increases performance due to the

good cache locality.

Reducing sparse transition tables A transition table is generally sparse be-

cause most states, particularly those away from the root state, have only

few valid next states. The table can be compressed by storing only links

4

to valid next states after one or more input characters and failure links

of each state. The state transition table, the failure links and the lists

of matched patterns in the final states can be stored separately in a soft-

ware implementation to improve the cache locality during tracking. Snort

(www.snort.org), a popular open-source intrusion-detection package, has

carefully tuned the data structure in this way to improve the cache perfor-

mance. The latest revision uses a basic NFA construction as the default

search method (src/sfutil/bnfa search.c in the source tree of Snort 2.6.1).

Reducing transitions With the extended ASCII alphabet, an automaton has

a maximum of 256 transitions from a state. Splitting an automaton into

several smaller ones at the bit level can reduce the number of transitions.

For example, suppose the automaton is split into eight, and then one au-

tomaton is fed with b7, one is fed with b6, and so on, where b7b6 . . . b0 denotes

the eight bits of the input characters.

This method is implemented in hardware to efficiently track these automata

in parallel. These automata are compact because each state has at most

two valid transitions for input bits of 0 and 1. Expanding the automata to

read multiple characters at a time is also facilitated due to the significantly

reduced fanout — in this example, only at most 16 valid transitions from

a state for four input characters at once.

Because groups of states in an automaton generally have common outgoing

transitions that lead to the same set of states for the same input characters,

the delayed input DFA (D2FA) method can effectively reduce these common

transitions. A state in a group can maintain only its unique transitions

and make a default transition to the state in the group responsible for the

common transitions. This method claims to reduce more than 95 percentage

5

of transitions for regular expressions on practical products and tools.

Hash tables A hash table can store the transitions from the states in an au-

tomaton to their corresponding valid next states (or failure links) after

several input characters. Tracking multiple characters at a time becomes a

table lookup. Because only a few input characters can lead to valid next

states, the hash table size is still manageable. A filtering approach can

weed out unsuccessful searches in the hash table to further accelerate this

method. Ternary Content Addressable Memory (TCAM) is an alternative

for a table lookup.

Rewriting and grouping Some combinations of wildcards and repetitions in

regular expressions will generate a complex automaton that grows exponen-

tially [YCD06]. It is possible to rewrite the regular expressions to simplify

the automaton because we do not have to find every match in the text in

some networking applications. Finding an appearance of certain signatures

suffices. For example, every string s identified by “ab+” (“+” denotes one

or more) can be identified by “ab” as s itself or a prefix of s, so reporting

a match against “ab” is sufficient to report an appearance of “ab+”.

Furthermore, compiling all the regular expressions in a single automaton

can result in a complex automaton. In a multiprocessing environment,

regular expressions can be grouped in separate automata according the in-

teraction between them. For example, grouping regular expressions sharing

the same prefix can merge common states of the prefix and save the storage.

An individual processing unit then process each automaton.

Hardwiring regular expressions Some designs use building blocks on the FPGA

to match various patterns. The implementation typically prefers an NFA

6

to a DFA because an NFA has fewer states, and the inherent concurrency

of hardware can easily track multiple active states. A few techniques can

reduce the area cost of building blocks. For example, identical substrings

from different patterns can share common blocks. Specific hardware logics

can directly handle notations in regular expressions such as class of charac-

ters, repetitions, wildcard characters and so on.

1.1.2 Heuristic-based approach

A heuristic-based approach can skip characters not in a match to accelerate the

search according to certain heuristics. During the search, a search window of

m characters covers the text under inspection and slides throughout the text. A

heuristic can check a block of characters in the window suffix for their appearance

in the patterns. It determines whether a suspicious match occurs, and moves the

search window to the next window position if not.

Shift values Because the positions or the shift values corresponding to possible

blocks are computed and stored in a table beforehand, a table lookup drives

shifting the search window in the search stage. Figure 1.1 illustrates a

simple but generic heuristic for only one pattern to visualize why skipping

is efficient. In the upper part, because “FGH” is not a substring of the

pattern and its suffix is not a prefix of the pattern, shifting the search

window by m = 6 characters without examining the remaining characters

in the window will not miss a match. After the shift, “XYZ” becomes the

suffix of both the pattern and the window, meaning a suspicious match

occurs. The entire window is then verified, and a match is found.

However, if a suffix of the block is the prefix of some pattern, the shift

value should be less than m because the suffix may be the prefix of that

7

2

ZYXWVUHGFEDCBA

ZYXWVUpattern

text

search window

ZYXWVUHGFEDCBA

ZYXWVU

search window

shift

6 characters

21ZYXWVUFEDCBA

ZYXWVUpattern

text

search window

21ZYXWVUFEDCBA

ZYXWVU

search window

shift

4 characters

Figure 1.1: A simple heuristic in a heuristic-based approach.

pattern after the shift. Figure 1.1 illustrates this case. This heuristic can

be easily extended to handle patterns shorter than the block size. If a

short pattern is a substring of the block, looking up the block can claim a

match. In addition to the heuristic for matching fixed strings, Navarro and

Raffinot presented a heuristic to skip text characters for regular-expression

matching [NR04].

Ideally, most shift values are equal or close to the pattern length m, so the

time complexity is sublinear, i.e., O(n/m). However, the time complexity

could be O(nm) in the worst case, in which each entire search window is

examined after a shift of only one character. Although methods exist to

guarantee the linear worst-case time complexity for a single fixed string or

regular expression [NR04, Gal79], they are rarely adopted in DPI, which

looks for multiple patterns.

Due to their vulnerability to algorithmic attacks, heuristic-based algorithms

usually are not preferable for network-security applications because an at-

tacker might manipulate the text to degrade performance. Because appli-

cations such as Snort have short patterns of only one or two characters,

the small value of m makes the advantage of skipping marginal. Nev-

8

ertheless, for applications with long patterns such as the signatures of

non-polymorphic viruses in the anti-virus package ClamAV (http://www.

clamav.net), skipping over the text is still helpful.

Implementation details Block size, mapping from the blocks to derive shift

values, and other implementation details can significantly affect practical

performance. When choosing proper parameter values, considerations in-

clude the size of the pattern set, block distribution, cache locality and verifi-

cation frequency. For example, a large block has fewer chances to appear in

the patterns, resulting in less frequent verification. However, a large block

also generally implies a large shift table, and so reduces the cache local-

ity. Careful experimenting should properly tune these parameters. When

suspicious matches frequently appear, implementing an efficient method to

identify the matched pattern is also important.

Because the block distribution may be non-uniform in practice, some blocks

may appear much more often than expected, shortening the shift distance

and increasing the verification frequency. Checking the matches in addi-

tional blocks within the search window can reduce the verification frequency.

Using a heuristic similar to that in Figure 1.1 to look for the longest suffix

of the search window that is also a substring of some pattern might result

in long shift distance even with non-uniform block distribution. However,

longer shift distance does not always imply better performance. The over-

heads due to the extra examination should be carefully evaluated.

9

1.1.3 Filtering-based approach

A filtering-based approach searches text for necessary features of the patterns

and quickly excludes the content not containing the features. For example, if

a packet misses any of the two-character substrings of a pattern, the packet

must not have that pattern. Because the efficiency relies on the assumption that

the signatures rarely appear in normal packets, this approach may suffer from

algorithmic attacks if the attacker carefully manipulates the text.

Text filtering A common method of filtering the text is using the Bloom filter,

characterized by a bit vector and a set of k hash functions h1, h2, . . . , hk

mapped to that vector. When multiple patterns are present, the patterns

of a specific length are stored in a separate Bloom filter by setting to 1

the bits the the patterns’ hash values address. The search queries the set

of Bloom filters by mapping the substrings in the text under inspection to

them with the same set of hash functions. Specifically, a substring x under

inspection is mapped to the Bloom filter storing the patterns of length |x|.

If one of the bits in h1(x), h2(x), . . . , hk(x) are not set to 1, x certainly is not

in the pattern set; otherwise, x might be in the pattern set, and the match

must be further verified. The uncertainty comes from different patterns

setting checked bits. The false-positive rate is a function of the bit vector

size, the number of patterns and the number of hash functions. Properly

controlling these parameters can reduce the false-positive rate.

Parallel queries Parallel queries to the Bloom filters are generally implemented

in hardware for efficiency, but efficient software implementation of sequen-

tial queries is also possible. For example, the implementation can sequen-

tially query with a set of hash functions, from simple to complex ones, to

10

look for pattern prefixes of a certain length and verify a match if a prefix

is found. The simple hash functions are designed to be rapidly computed

and can filter most of the text, so the search is still fast. There might be

many Bloom filters for a wide range of pattern lengths, because each length

requires one. A solution is to limit the maximum pattern length allowed

and break a long pattern into short ones. If all substrings of a long pattern

appear contiguously and in order, that pattern is present.

The filtering-based approach does not directly support some notations in

regular expressions such as wildcards and repetitions. An indirect solu-

tion is extracting the necessary substrings from the regular expressions,

searching for them, and verifying the match if these substrings appear. For

example, ClamAV divides the signatures of polymorphic viruses into or-

dered parts (i.e., substrings of the signatures), and tracks the orders and

positions of these parts (with a variant of the Aho-Corasick algorithm) in

the text to determine whether a signature occurs. Table 1.3 summarizes

the key methods as well as the pros and cons of each.

1.2 Current trends in DPI

Matching expressive pattern specifications with a scalable and efficient design,

accelerating the entire flow, and string matching with the high-level semantics

are promising topics for further study.

1.2.1 Matching expressive pattern specifications

Expressive pattern specifications, such as regular expressions, can accurately de-

fine the signatures. Efficient solutions to matching regular expressions in DPI are

11

Table 1.3: Summary of approaches to string matching for DPI.

Automaton-based

Pros: Deterministic linear execution time, direct support of regular expressions
Cons: Might consume much memory without compressing data structure
1. Rewrite and group regular expressions
2. Reduce number of transitions
3. Hardwire regular expressions on FPGA
4. Track a DFA that accepts the patterns (Aho-Corasick)
5. Reduce sparse transition table (Bitmap-AC, BNFA in Snort)
6. Reduce fanout from the states (split automata)
7. Track multiple characters at a time in an NFA (JACK-NFA)
Heuristic-based

Pros: Can skip characters not in a match, sublinear execution time on average
Cons: Might suffer from algorithmic attacks in the worst case
1. Heuristics based on the automaton that recognizes the reverse prefixes
of a regular expression (RegularBNDM)
2. Heuristics from fixed block in suffix of search window (Wu-Manber)
3. Heuristics from the longest suffix of search window (BG)
Filtering-based

1. Extracting substrings in regular expressions, filter text
with them (MultiFactRE)
2. Filter with a set of Bloom filters for different pattern lengths.
3. Filter with a set of hash functions sequentially (HashAV)

therefore attracting considerable interest. Bispo et al. compared several designs

for regular expression matching [BSC06]. Most of them were can perform regu-

lar expression matching on the order of several gigabits per second. Commercial

products, including Cavium Octeon MIPS64 processor family (www.cavium.com/

OCTEON_MIPS64.html), SafeNet Xcel 4850 (www.safenet-inc.com/products/

chips/safeXcel4850.asp) and Tarari RegEx5 content processor (www.lsi.com/

documentation/networking/tarari_content_processors/Tarari_RegEx_Whitepaper.

pdf), all claim to support regular-expression matching at gigabit rates. String

matching, a problem once believed to be a bottleneck, has become less critical

12

given the latest advances.

Most existing research aims at intrusion-detection applications, especially

Snort, which has thousands of signatures, but antivirus applications such as Cla-

mAV claim a signature set of more than 200,000 patterns to date. We believe a

more scalable and efficient design for matching a huge set of expressive patterns

deserves further study. Moreover, some patterns may belong to only a specific

protocol, file type, etc., and some are significant only when they appear in spec-

ified positions of the text. Rather than assuming a simple model of searching

for the whole pattern set throughout the entire text, a design can consider the

additional information to optimize the performance. An efficient software imple-

mentation for these cases is also desired as hardware accelerators are not always

affordable in practical applications.

1.2.2 Accelerating packet content processing

Although numerous research efforts have been dedicated to string matching,

packet processing in DPI involves even more effort. Paxson et al. described

the insufficiency of string matching in intrusion detection due to its stateless na-

ture [PAD06], and envisioned a framework of architecture that attempts to exploit

the parallelism in network analysis and intrusion detection for acceleration.

Similarly, virus scanning applications might reassemble packets, unpack and

decompress file archives, handle character encoding before scanning a transferred

file. Accelerating only one stage is insufficient due to Amdahl’s law. Meeting the

high-speed demand in networking applications requires an integrated architecture

with hardware supported functions.

Commercial products are on this track. For example, the Cavium Octeon

MIPS64 processor family involves a TCP unit, a compression/decompression en-

13

gine and 16 regular expression engines on a single chip, and claims the per-

formance to be up to 5 Gbps for regular-expression matching plus compres-

sion/decompression.

1.2.3 Parsing content in high-level semantics

String matching in network applications may refer to contextual information

parsed from high-level semantics [SP03]. For example, some patterns are signifi-

cant only within the URIs. Spam and Web filtering also demand intelligence in

high-level semantics to analyze the content, so does XML processing [GGM04].

String matching with high-level semantic extraction and analysis from the text

is therefore beneficial.

For example, because Tarari random access XML (RAX) content proces-

sor (www.lsi.com/documentation/networking/tarari_content_processors/

Tarari_RAX_Whitepaper.pdf) can help applications to directly access informa-

tion inside XML documents without parsing, it accelerate XML applications sig-

nificantly. The acceleration of semantic extraction from the text (perhaps with

hardware support) and matching patterns with the semantic contextual informa-

tion is worth studying, and will be helpful for numerous network applications.

1.3 Objective, methodology and road map of research

This objective of this dissertation is to accelerate string matching for DPI. We

believe addressing all the aforementioned issues still has way to go, and the efforts

in this dissertation is on the right track toward this goal.

After reviewing existing solutions, to better understand the characteristics

of existing string-matching algorithms and their performance on practical appli-

14

cations, we implemented them in open-source packages and profiled their per-

formance to know which algorithm is suitable for each application, as well as

the key factors that affect the performance. Following the profile, we devised a

hardware architecture to accelerate string matching for a large pattern set. The

architecture features a solution to exploiting algorithmic heuristics in hardware

and realizing string matching in sub-linear time. Some practice issues that might

lead to the worst case are also addressed. However, only hardware solutions are

insufficient because they may not be applicable in some situations. Therefore,

we designed a hybrid algorithm for anti-virus applications. The algorithm splits

the patterns into long and short ones, to exploit algorithmic heuristics for long

patterns, while keeping good cache locality for short patterns. We also presented

an early decision algorithm to accelerate Web filtering beyond string matching,

since solely accelerating string matching is not enough in Web filtering.

The road map of the dissertation is as follows. Chapter 2 presents the profiling

of each string-matching algorithm on DPI applications. The key factors to the

performance are also discussed. Chapter 3 presents the hardware architecture

for string matching in sub-linear time with algorithmic heuristics. Chapter 4

presents the hybrid algorithm for virus scanning in software. Chapter 5 presents

the early decision algorithm for accelerating Web filtering. The conclusion and

future work are given in Chapter 6.

15

CHAPTER 2

Profiling and Accelerating String Matching in

Three Network Content Security Applications

2.1 Introduction

Detecting and filtering intrusions, worms, viruses and inappropriate Web pages

involve string matching for designated signatures in the packet content, as op-

posed to packet classification that matches fixed fields in the packet header

[GM01]. The position and length of the signatures are unknown beforehand,

so scanning the packet payload for signatures is less efficient than packet clas-

sification. String matching was reported to be a bottleneck for these applica-

tions [FV01,LJL06], so its efficiency is critical.

Signatures in content security applications are represented as patterns in some

forms. For clarifying the terminology, a string is a sequence of characters, and a

pattern is an occurrence of a string in the text [NR02]. Signature characteristics

in different applications may vary wildly in the number, length and character

distribution in the alphabet. For instance, anti-virus systems feature a large

number of long signatures, while intrusion detection systems may have short

signatures of one or two characters. No existing string matching algorithms can

search for signatures of various characteristics faster than others can, so choosing

a proper algorithm becomes important.

16

This work reviews existing string matching algorithms and their applications

in network content security. The characteristics of signatures in three typical

open source packages are investigated: ClamAV (www.clamav.net) for anti-virus,

DansGuardian (dansguadian.org) for Web filtering and Snort (www.snort.org)

for intrusion detection systems (IDS). This work profiles the performance of

various algorithms, identifying and implementing the fastest algorithm for each

package. The improved packages are then benchmarked for sample sets of both

synthetic and real data. The impact of memory and cache accesses on perfor-

mance is also measured quantitatively. This work also proposes classified RKBT

(Rabin-Karp with binary search and two-level hashing) to accelerate the RKBT

algorithm [MM96], which can verify a possible match [KST03], and its efficiency

becomes critical as the number of possible matches increases.

2.2 Related works

2.2.1 Categories of string matching algorithms

Single string matching searches the text T = t1t2 . . . tn for all the occurrences of a

string p, called the pattern, where n is the text length. Multiple string matching

extends to search text for the pattern set P = {p1, p2 . . . , pr} simultaneously. Ex-

act matching stipulates that the pattern and the matched text should be exactly

the same, while an approximate matching algorithm allows a limited number of

errors between a pattern and the matched text. This work focuses on only the

former because the majority of content security applications use exact matching.

Exact string matching algorithms can be categorized in various ways, one

of which is grouping them into three general approaches: prefix searching, suffix

searching and factor searching, depending on which part of the pattern is searched

17

for within the search window [NR02]. A string X is the prefix, suffix and factor

of XY , Y X and Y XZ, respectively, where Y and Z are also strings. The time

complexity of an algorithm can be linear or sub-linear. The latter is feasible by

skipping characters that do not need to be examined in the text.

This work categorizes the algorithms to emphasize the data structure. The

categories include automaton, heuristics, filtering and bit-parallelism approaches.

An automaton-based algorithm builds a finite state automaton from the patterns

and tracks in the text the partial match of the pattern prefixes by state transi-

tion. A heuristics-based algorithm skips the characters to accelerate the search

according to certain heuristics, and a verification algorithm follows a possible

match to verify if a true match occurs. A filtering-based algorithm looks for

characteristics of the patterns in the text to see whether or not a possible match

occurs, and also verifies it for a true match. A bit-parallelism-based algorithm

simulates the operation of a non-deterministic finite automaton that tracks the

partial match of the prefix or the factor of the pattern by means of the parallel bit

operations inside a computer register word in which the state transition status is

encoded [NR00]. Chapter 1 of this dissertation reviews common algorithms for

network content security applications.

2.2.2 Selected packages and their algorithms

2.2.2.1 ClamAV

ClamAV contains two types of virus patterns: basic patterns that are a simple se-

quence of characters, and multi-part patterns composed of multiple sub-patterns.

ClamAV scans basic patterns by the Wu-Manber algorithm. If no virus is found,

a variant of the Aho-Corasick algorithm then scans for the multi-part patterns,

in which the automaton is represented as a two-level trie [MDW04]. The sub-

18

patterns with common two-character prefixes are stored in a linked list under

the leaf that represents the common prefix. ClamAV uses a table to keep the

sub-patterns and their positions that have been found for each pattern. All sub-

patterns of a multi-part pattern must be matched in sequence to assert a virus.

ClamAV also supports a simplified form of regular expressions. For example,

ClamAV allows “bounded gaps” that specify the minimum and maximum dis-

tances allowed between two consecutive sub-patterns. Recording the position of

a sub-pattern and calculating the distance from its last sub-pattern can verify

whether the bounded gaps are satisfied.

2.2.2.2 DansGuardian

DansGuardian searches the Web content for all keywords, and determines whether

the content belongs to a banned category. DansGuardian implements the Hor-

spool algorithm and a deterministic finite automata (DFA) algorithm. In the

preprocessing, it builds a two-dimensional array, called the graph data, to repre-

sent a transition table of the DFA that accepts the keywords. The pattern set

keeps only one copy for redundant keywords from different categories. The graph

data is then searched for the nodes that have common prefixes but have fewer

than 12 branches (i.e., fewer than 12 keywords from that node). The keywords

represented by traversing from the root through these nodes to leaves are moved

into another group for searching with the Horspool algorithm one by one. After

the Horspool search, DansGuardian continues to search for all the keywords in

the graph data. Because at least 12 keywords share each prefix in the graph

data, traversing the DFA can search for these keywords simultaneously. Finally,

DansGuardian determines whether the content should be banned according to the

matched keywords. If the forcequicksearch option is enabled in the configuration,

19

the Horspool algorithm will search for all the keywords one by one.

2.2.2.3 Snort

Snort divides its rules into subsets associated with unique characteristics in the

packet header, such as port numbers, ICMP types and transport protocol iden-

tifiers. Snort first examines the packet header for the unique characteristics to

determine which rule subset to be referred to, and then searches for the signatures

in that rule subset [NRa]. The basic NFA algorithm searches for the signatures

by default. If the signatures in a rule are found, the rest of the rule, represented

as options in the rule specification, is verified to claim a true match. If a complete

rule match has been found, Snort inserts the rule into the event queue. Finally,

Snort processes the event queue and selects a single event for alert. Snort also

supports signatures in regular expressions conforming to the specification of Perl

Compatible Regular Expressions (PCRE) (www.pcre.org). PCRE matching is

one of the options in the rule specification, and like the other options, it is per-

formed after the search of the rule subset. To accelerate the search, necessary

factors of a regular expression are manually added into the rule subset as a hint of

possible appearance of the regular expression. For example, ‘abcd’ is a necessary

factor of the regular expression ‘(abc)+d’. PCRE matching is performed only

when the hint is found to avoid unnecessary PCRE matching.

2.3 The Verification algorithm

Some algorithms such as the BG and WM algorithms rely on a verification al-

gorithm to assert a true match when a possible match is found. The RKBT

algorithm can serve this purpose [KST03], but it is inefficient for a large pat-

20

tern set due to its data structure discussed below. We propose Classified RKBT

(CRKBT) to accelerate the verification.

2.3.1 The CRKBT algorithm

Figure 2.1 (left) illustrates the operation of the RKBT algorithm. Each pattern

is viewed as consecutive blocks of four bytes, so each block can form a 32-bit

integer. If the pattern length is not a multiple of four, the last block is padded

with zeros. The first hash function is defined by xor’ing the integers in these

blocks. In the preprocessing, an ordered table stores the first 32-bit hash values

of the patterns. A second hash function is derived by xor’ing the lower and the

upper 16 bits of the first hash values. A bitmap of 216 entries is then built to

store the second hash values. The i’th bit of the bitmap is 1 if at least one

pattern has i as its second hash value, and is 0 otherwise. The bitmap indicates

whether binary search in the ordered table is necessary. If the the second hash

value of a search window in the bitmap is 0, no possible match will occur and the

verification fails; otherwise, say the 2345th bit in Figure 2.1, the ordered table

is looked up in the first hash value with binary search. If the first hash value

is found, the patterns with that value are compared with the search window to

check if a true match occurs; otherwise, the verification fails.

The performance of the RKBT algorithm is degraded significantly for a large

pattern set, due to the high probability that a bit in the bitmap is set to 1. For

example, nearly 80% of the bits in the bitmap are 1 for 100,000 patterns from

the probabilistic estimation. Consequently, binary search in the ordered table of

the large pattern set becomes frequent and dominates the verification time.

We propose a classified variant, namely CRKBT, to accelerate RKBT. Fig-

ure 2.1 (right) illustrates its operation. CRKBT divides the ordered table for

21

 RKBT algorithm

32bits
32bits

0

1

32bits32bits 32bits

Classified RKBT algorithm

1

2 Binary search
1 2

Binary search

32bits32bits

2345

2345

First hash value

Bitmap of the second hash value

NULL

Pointer table

Figure 2.1: The operations of the RKBT algorithm (left) and the Classified

RKBT algorithm (right).

binary search into several small tables associated with the second hash values.

The search scope is reduced to only a subset of the patterns that have the same

second hash value, so the binary search is much faster. A pointer table replaces

the bitmap in RKBT. The i’th pointer points to an ordered table of only pat-

terns that have the second hash value i, and points to NULL if there is none.

The pointer table is looked up in verification. If the pointer of the second hash

value is not NULL, the ordered table that the pointer points to is searched with

binary search. The overhead of the CRKBT algorithm is 256 KB of the pointer

table (216 entries * 4-byte pointer) and at most 256 KB (4-byte integer for the

length) to store the sizes of the divided ordered table.

2.3.2 Experiments on the CRKBT algorithm

The execution time of both the RKBT and CRKBT algorithms is benchmarked

as follows. The text of 32 MB and the patterns are randomly generated from the

alphabet of 8-bit characters. The shortest pattern length is 8. The tests run on

22

0

2

4

6

8

10

12

14

16

18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

se
co

nd
s

RKBT
CRKBT

Figure 2.2: The execution time of the RKBT and CRKBT algorithm.

a computer with a 2.8 GHz Pentium 4 processor, 1 GB of memory and 512 KB

L2 cache. Both algorithms are implemented in C, and run on Linux kernel 2.6.5.

Figure 2.2 presents the benchmark results.

The execution time of both algorithms for small pattern sets is close because

of few possible matches and thus few chances of binary search in the ordered

table. The number of possible matches and thus the difference in the execution

time increase with the number of patterns. The scope for binary search is small

in the CRKBT algorithm (only the subset of patterns with the same second hash

values), so the binary search is fast. CRKBT is four times faster than RKBT for

a pattern set of 100,000 patterns, so it is more scalable to a large pattern set.

2.3.3 Analysis of the CRKBT algorithm

Binary search in a large pattern set can dominate the verification time. The

CRKBT algorithm reduces the ordered table size by dividing the patterns into

subsets. Assume the number of patterns is r. Both algorithms check the bitmap

or the pointer table first. In RKBT, the probability that a bit is set to 1 is p,

23

where p is estimated to be 1− (65535
65536

)r. If the bit is set to 1, binary search in the

ordered table follows, and the expected number of memory accesses in the table

is log2 r + 1. Otherwise, the verification fails. Therefore, the expected number

of memory accesses in the RKBT algorithm is p(log2 r + 1) + (1 − p). Because

the expected size of each ordered table to which a pointer points in CRKBT is

1 + 1
65536

, the expected number of memory accesses in the binary search becomes

only log2(1 + 1
65536

) + 1, which is much smaller than log2 r + 1 in RKBT for a

large r. The expected number of memory accesses in the binary search of the

CRKBT algorithm is then p(log2(1+ 1
65536

)+1)+(1−p). Therefore, the CRKBT

algorithm is more scalable than the RKBT algorithm.

2.4 Profiling algorithms of string matching algorithms

In the external and internal profiling, the benchmarking environment and con-

figuration are the same as those described in Section 2.3.2. The algorithms in-

volved in the profiling include the Wu-Manber algorithm [WM94], Aho-Corasick

algorithm [AC75], the SOG and BG algorithms [KST03], and some variants of

them (including Modified-WM and Optimized AC in Snort [NRa]). We also use

CRKBT as the verification algorithms of SOG and BG, and denote both revised

version by SOG+ and BG+. These algorithms are profiled for various pattern

lengths and pattern set sizes.

2.4.1 External profiling

The external profiling measures the execution time of scanning text of 32 MB.

Figure 2.3 presents the benchmark results for LSP = 8 first, where LSP denotes

the length of the shortest pattern. The benchmark results for LSP < 8 will be

24

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

se
co

nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
Classified RKBT

(a) part 1

0
1
2
3
4
5
6
7
8
9

10
11
12

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

se
co

nd
s

Modified-WM
Classified RKBT
2-gram SOG+
2-gram BG+
3-gram SOG
3-gram BG

(b) part 2

Figure 2.3: Comparison of execution time of selected string matching algorithms.

discussed in Section 2.4.3.

Figure 2.3(a) presents that the Modified-WM algorithm is the fastest for the

pattern set size smaller than 20,000. When the pattern set is larger, the CRKBT

algorithm is the fastest. The execution time of the Optimized AC for the pat-

tern set size larger than 5,000 is not presented because the execution takes too

long to stop. The problem might be due to a bug in the Snort implementation.

Figure 2.3(b) compares the execution time of the Modified-WM and CRKBT

algorithms with that of the BG+ and SOG+ algorithms. The 2-gram BG+ al-

gorithm is the fastest for the pattern set size smaller than 50,000. For a larger

pattern set, the 3-gram BG+ algorithm is the fastest.

2.4.2 Internal profiling

The internal profiling intends to justify the observations in the external profiling.

For example, why is the Modified-WM algorithm faster than the WM algorithm?

Why is the BG+ algorithm very efficient? The effects of the average shift distance,

the percentage of possible matches and the number of memory accesses of each

algorithm are profiled as follows.

25

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

ch
ar

.

Wu-Manber
Modified-WM
2-gram BG+
3-gram BG+

Figure 2.4: Comparison of the profiling results of average shift distance.

2.4.2.1 Shift distance

Both the WM and BG+ algorithms can skip certain characters in the search

window. Figure 2.4 presents their average shift distance. The average shift

distance of the WM algorithm is close to one character for the pattern set size

between 5,000 and 100,000, so this algorithm can barely skip a character in this

case. The average shift distance of the Modified-WM algorithm is greater than

that of the WM algorithm, which can explain why the Modified-WM algorithm

is faster. The results also explain why the 2-gram BG+ algorithm is the fastest

for a small pattern set, and why the 3-gram BG+ algorithm is the fastest for a

large pattern set due to the long average shift distance.

2.4.2.2 The percentage of possible matches

Some algorithms use a filtering approach, and verification may dominate the

execution as the number of possible matches increases. Figure 2.5 shows the

percentage of possible matches for each algorithm. The Modified-WM algorithm

has fewer possible matches than the WM algorithm, so it is faster. The fast

increase of possible matches in the WM algorithm indicates that it is not scalable

to a large pattern set. The figure also explains why the BG+ algorithm is faster

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

p
er
ce
nt
ag
e

RKBT
Wu-manber
Modified-WM
2-gram SOG+
2-gram BG+

Figure 2.5: Comparison of the percentage of possible matches for each algorithm.

than the Modified-WM algorithm because of its fewer possible matches.

2.4.2.3 Memory accesses

It is insufficient to justify the external profiling results solely from the shift

distance and the percentage of possible matches. For example, why does the

CRKBT algorithm is the fastest in Figure 2.3(a) for the pattern set size larger

than 50,000? Figure 2.6(a)-2.6(c) each presents the number of memory accesses

of the algorithms in the same category (categorized in Section 2.2.1) profiled by

Valgrind (valgrind.org) to observe the reason. For algorithms in the same cat-

egory, the fewer the memory accesses, the faster the algorithm in the profiling.

However, it is not the case for algorithms in different categories, as presented in

Figure 2.6(d). For instance, the CRKBT algorithm has more memory accesses

than the AC algorithm, but the former is faster. The number of memory accesses

is still insufficient to justify the results.

More memory accesses do not imply longer time spent in accessing the mem-

ory due to cache locality. Figure 2.7 presents the cache misses for the CRKBT

algorithm are fewer than those for the Modified-WM and AC algorithms. The

number of cache misses for the 2-gram BG+ algorithm is the least. We can jus-

27

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

nu
m

b
er

 o
f

m
em

or
y

ac
ce

ss
es

RKBT
CRKBT

(a)

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

nu
m

b
er

 o
f

m
em

or
y

 a
cc

es
se

s

Wu-manber
Modified-WM

(b)

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

1.00E+09

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

1
00

k

of pat.

n
um

b
er

 o
f

m
em

or
y

ac
ce

ss
es

2-gram SOG

2-gram BG

2-gram SOG+

2-gram BG+

3-gram SOG

3-gram BG

(c)

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

1.00E+09

1.10E+09

1.20E+09

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.
n

um
b

er
 o

f
m

em
or

y
ac

ce
ss

es

CRKBT
Modified-WM
Aho-Corasick
2-gram BG+

(d)

Figure 2.6: Comparison of the number of memory accesses in the each algorithm.

tify the prior results from the cache misses, including that the CRKBT algorithm

is faster than the Modified-MW and AC algorithms for a large pattern set. In

addition, the efficiency of the 2-gram BG+ algorithm is also justified.

In addition to the number of memory accesses, the memory consumption of

each algorithm is also observed in Figure 2.8. The CRKBT and 2-gram BG+

algorithms have slow growth in memory consumption, primarily due to the in-

creasing ordered table sizes for binary search. The Modified-WM algorithm uses

fixed memory size to build the shift table and hash table for verification. The

memory consumption in both the AC and Optimized-AC algorithms grows faster

than that in the others as the pattern set increases. The memory consumption

of the Optimized AC algorithm for the pattern set size larger than 5,000 is not

presented because a possible bug impedes the correct execution.

28

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

1.10E+08

10k 20k 50k 100k

of pat.

nu
m
be

r
of

 c
ac

he
 m

is
se

s

Aho-Corasick
2-gram BG+
Modified-WM
CRKBT

Figure 2.7: Comparison of the number of cache misses in each algorithm.

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

100 200 500 1k 2k 5k 10k 20k 50k 100k

of patterns

m
em

or
y
co

ns
um

pt
io

n
(k

by
te
s)
.

CRKBT
Modified-WM
2-gram BG+
AC
Optimized-AC

Figure 2.8: Comparison of the memory consumption in each algorithm.

2.4.3 Profiling for short patterns and summary

The external and internal profiling presents that the 2-gram BG+ algorithm is

the fastest for LSP = 8 for the pattern set size smaller than 50,000, and the

3-gram BG+ algorithm is the fastest for LSP = 8 for a larger pattern set size.

We also profile the performance for the LSP between 1 and 7. The ranks of each

algorithm in efficiency for LSP between 4 and 7 are similar to that for LSP =

8, so the results are not presented. However, the ranks for LSP between 1 and

3 differ. Figure 2.9 shows the AC, FNPw2 and Modified-WM algorithms are the

29

fastest for LSP = 1, 2 and 3, respectively. Figure 2.10 summarizes the fastest

algorithm for various pattern set sizes and pattern lengths.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 20 50 10
0

20
0

of pat.

se
co

n
ds

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

(a) LSP=1

0

2

4

6

8

10

12

14

16

18

20

22

24

1
00

2
00

5
00 1k 2k 5k

1
0k

2
0k

5
0k

of pat.

se
co

n
ds

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

(b) LSP=2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1
00

2
00

5
00 1k 2k 5k

1
0k

2
0k

5
0k

10
0k

of pat.

se
co

n
ds

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

(c) LSP=3

Figure 2.9: Comparison of the execution time for LSP = 1, 2 and 3. (FNPw2

denotes FNP with w = 2.)

2.5 Experiments on real applications

2.5.1 Implementation in three content security packages

Each application has different pattern lengths and pattern set size. The shadow

area in Figure 2.10 also indicates the range of pattern lengths and pattern set

size of each application, overlapping with the profiling results. The shaded arrows

indicate an application has patterns longer than the lengths in the the shadow

area. This figure suggests which algorithm be better implemented in each appli-

cation. We revised the packages in Section 2.2.2 by implementing the suggested

algorithms and observed the acceleration below.

ClamAV The LSP of basic patterns in ClamAV is 10 and the number of patterns

30

pattern length

of pat.

1 2 3 4 5 6 7 8

5k

200

500

1k

2k

100

10k

20k

50k

100k

C=256

2-gram BG+

3-gram BG+

Anti-VirusAnti-Virus

A
ho

-C
or

as
ic

k

M
od

ifi
ed

W
M

9 10
FN

Pw
2

A
ho

-C
or

as
ic

k

IDSIDS

CFCF

Figure 2.10: The profiling summary of each algorithm. (C denotes |Σ|.)

is larger than 30,000 to date. We replace the WM algorithm with the 2-

gram BG+ algorithm to match basic patterns. When the pattern set is even

larger in the future, the 3-gram BG+ algorithm can be used to enhance

the efficiency. The AC algorithm is still responsible for matching regular

expressions of multi-part patterns.

DansGuardian According to our investigation, the Horspool algorithm scans

25 content keywords one by one in the current implementation. If the

forcequicksearch option is enabled, every pattern in the pattern set will all

be searched for with the Horspool algorithm. We do not enable this option

because enabling this option will have the text scanned as many times as

the number of patterns, and will actually slow down the search. We group

all the patterns together and implement the Modified-WM algorithm to

handle short patterns with LSP = 2 and 3, and the 2-gram BG+ algorithm

to handle the longer patterns.

Snort Snort groups patterns into rule sets according to the packet header. The

LSP of every rule set is not the same. We implement a hybrid method

instead of enabling the default method, the Modified-WM algorithm. The

31

AC algorithm is selected for LSP=1; otherwise, the Modified-WM algorithm

still handles the pattern matching.

2.5.2 Benchmarking of the revised implementation

The speedup of the revised packages are benchmarked in this section. The per-

formance for both the real and synthetic sample data is also compared, where the

synthetic data are generated from uniformly distributed random characters. The

comparison of both types of sample data can exhibit whether the observation for

the synthetic data is also applied to real situations.

2.5.2.1 Benchmarking for ClamAV

We select 10 Windows execution files whose sizes are between 32 KB and 16

MB as real data in the benchmark, which also tests for synthetic data of the

same size. Figure 2.11 compares the execution time of both the original ClamAV

and its revised version. The difference in scanning time between both versions

becomes obvious with increasing file size. For example, the revision is five times

faster than the original one when the file size is 16 MB. The acceleration comes

primarily from that reduction of verification during the search. Figure 2.11 also

compares the execution time for real and synthetic data in both versions. The

difference between both data types is almost unnoticeable because the character

distribution in the patterns and files is close to random in ClamAV.

2.5.2.2 Benchmarking for DansGuardian

We use wget (www.gnu.org/software/wget/wget.html) to mirror an RFC Web

site at asg.web.cmu.edu/rfc/rfc-index.html that contains more than 8,000

32

0

5

10

15

20

25

30

32
 K

B

64
 K

B

12
8

K
B

25
6

K
B

51
2

K
B

1
M

B

2
M

B

4
M

B

8
M

B

16
 M

B file size

se
co

nd
s

random + original
random + revised
real + original
real + revised

Figure 2.11: The performance improvement for both random and real data in the

revised version of ClamAV.

714

292

1708

867

388

2128

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

synthetic data
(C=26)

synthetic data
(C=256)

real data

se
co

nd
s

revised
original

Figure 2.12: The performance improvement for both random and real data in the

revised version of DansGuardian. (C denotes |Σ|.)

files, including HTML files and ordinary text files. DansGuardian’s content filter-

ing function scans these files. Figure 2.12 shows the original implementation takes

2128 seconds to mirror the entire site while the revised implementation takes 1708

seconds. The acceleration is insignificant because the verification algorithm has

to find every possible match that has the same hash value. The filtering part in

the searching process becomes less significant, and so is its acceleration.

We also generate synthetic Web pages of the same sizes for comparison with

the real Web pages. First, we generate data from the character set of 256 char-

33

acters. The execution for synthetic data is faster than that for real data, because

the character distribution of synthetic data is close to uniform but that of real

data is biased towards English character set. Because the characters in real data

concentrate more on English characters, the character set is effectively to be a

small one. More possible matches occur and more verification is required than

those for a uniformly distributed character set.

The character set of only 26 characters is also tested. The number of possible

matches increases, and the processing time of content inspection is three times

longer than that in the last experiment. However, the speed in this case is still

much faster than that for the real data because keywords are more likely to

appear in real data than in randomly generated synthetic data, so more possible

matches occur and more verification is required.

2.5.2.3 Benchmarking for Snort

The HTTP traffic accounts for a large quantity of the Internet traffic, so we

feed HTTP traffic to Snort. Snort is configured to run in the inline mode to

easily measure its throughput. Figure 2.13 presents the benchmarking result of

the throughput. First, we use a single client to mirror the entire site, but the

acceleration is insignificant. We then add up to five clients for more traffic, and

the acceleration becomes a little more obvious. However, the enhancement is

still insignificant because Snort inspects only the HTTP header instead of HTTP

body in most cases [NRb], and only a small portion of the traffic is inspected.

34

4
8
.6

1
2
1

2
7
.0

0
6
7

5
0
.9

7
9

2
7
.6

6
5
4

0
5

10
15
20
25
30
35
40
45
50
55

1 client 5 clients

th
ro

ug
hp

u
t (

M
b
its

/s
)

Snort (original)
Snort (revised)

Figure 2.13: The benchmarking result of Snort.

2.6 Conclusion

This study reviews and profiles typical string matching algorithms to observe

their performance under various conditions and sheds light on choosing the most

efficient algorithm for network content security applications. The AC algorithm

is suitable for LSP=1. For LSP=2, the Modified-WM algorithm is suitable when

the pattern set size is smaller than 1,000, and the FNPw2 algorithm is suitable

for a larger pattern set. The Modified-WM algorithm is suitable for LSP=3, and

the BG+ algorithm is suitable for LSP≥4. Implementing the algorithms into real

applications also justifies the results by improving the performance. The results

also help to select an efficient algorithm for future applications.

String matching on intrusion detection is not so critical in the profiling be-

cause the detection should scan only the content for only the patterns that are

significant. Therefore, we believe accelerating the entire process, not only string

matching, should deserve further study in the near future.

35

CHAPTER 3

Realizing a Sub-linear Time String-Matching

Algorithm with a Hardware Accelerator Using

Bloom Filters

3.1 Introduction

Deep content inspection at the application layer to detect proliferating intrusions

and viruses on the Internet is a known critical part to the performance. The

inspection involves string matching for multiple patterns of malicious signatures.

Numerous algorithms have been developed for efficiency over the past decades

[NR02]. Software implementation of string-matching algorithms to handle the

increasing Internet traffic becomes more challenging than ever. Extensive study

thus turns to specialized hardware accelerators to meet the high-speed demand

on the order of multi-giga bits per second.

Many FPGA accelerators hardwire signatures into logic cells [CNM02,SP04],

and match several characters in the text per cycle with pipelining for high

throughput. However, the gate count constrains the number of signatures that

can be hardwired. Frequent dynamic signature updating is also costly due to

long re-programming time. Implementing the designs in ASIC is infeasible since

an ASIC chip is not reconfigurable. Storing signatures in the memory simplifies

the updating [ACF05,BP05]. The size of external memory on the order of GBs

36

also increases the scalability of the number of signatures.

A common memory-based approach sequentially reads each character in the

text to track a finite automaton that accepts the patterns in the pattern set, so

its time complexity is linear [AC75]. Some designs can accelerate the process by

tracking multiple characters at once [SIH04,DL05,BCT06], but the hardware or

space complexity also increases with the number of characters under tracking.

Another approach moves a search window through the text to check whether it

contains a suspicious match or not [DKS04, PP05, SPW05]. Assuming most of

the data is legitimate, this approach can quickly exclude the legitimate data, and

verifies only the suspicious matches. The window is generally advanced by only

one character at once for not missing any possible match. Duplicating multiple

copies of hardware engines can advance the window faster, but the degree of

parallelism is subject to availability of hardware resources.

A class of algorithms can skip characters not in a match based on algorithmic

heuristics to inspect multiple characters at once in effect, and have been widely

implemented in practical software [LLL06]. This work borrows the idea of al-

gorithmic heuristics, instead of sheer relying on duplicating hardware engines or

high operating frequency. These algorithms are rarely realized in hardware so far,

perhaps due to two reasons. (1) Calculating algorithmic heuristics involves look-

ing up a large table, which may not fit in the embedded memory, but accessing

the table in the external memory is slow. (2) The worst-case performance of such

algorithms may be worse than that of linear-time algorithms. Such algorithms are

less resilient to some bad cases, such as non-uniform character distribution that

shortens the skipping distance and algorithmic attacks that attempt to exploit

the worst case. Despite the drawbacks, we believe sub-linear time algorithms de-

serve the study since they are generally fast and do not rely on massive hardware

37

parallelism for their speed.

We propose an innovative architecture to realize a sub-linear time algorithm,

namely the Bloom Filter Accelerated Sub-linear Time (BFAST) algorithm. This

architecture uses a set of Bloom filters [Blo70], each representing a group of strings

in a space-efficient bit vector for membership query. The algorithmic heuristics

are derived from simultaneous queries to the Bloom filters to determine the shift

distance of the search window. A suspicious match is handed over to a verification

engine for verification without blocking the scan. Pipelining is also implemented

to further increase the throughput by four times. A heuristic similar to the bad-

character heuristic in the Boyer-Moore algorithm [BM77], namely the bad-block

heuristic, can reduce the verification frequency and exploit larger shift values. A

linear worst-case time option is also proposed to guarantee the time complexity.

The rest of this work is organized as follows. Section 3.2 reviews typical

string matching algorithms and hardware accelerators. Section 3.3 presents the

architecture of the BFAST algorithm. Section 3.4 presents the detailed hardware

implementation. Section 3.5 evaluates this architecture and compares it with

existing works. Section 3.6 concludes this work.

3.2 Existing Works and Literature Background

A multiple-string matching algorithm searches the text T = t1t2 . . . tn for occur-

rences of the patterns in a pattern set P = {P1, P2, . . . , Pr} on the same alphabet

Σ, where r is the number of patterns. We use m to denote the shortest pattern

length and assume |Σ| = 256 (number of values in a byte). Table 3.1 summarizes

the notations in this paper.

38

Table 3.1: Important notations throughout this paper.
notation description
P The pattern set.
P ′ The set of pattern prefixes under consideration during pre-

processing and scanning.
Pi The i-th pattern in the pattern set.
Pi[j . . . k] A substring from the j-th to the k-th character of Pi.
Σ The character set. |Σ| = 256 in this paper.
r The number of patterns in the pattern set.
n The text length.
m The shortest pattern length in the pattern set. Also the

length of the search window.
b The block size. b = 4 in this paper.
s The shift value.
v The size of the bit vector in a Bloom filter.
BF (Gj) The Bloom filter storing the group Gj.
Bj The block that is j characters backward away from the last

character in the search window.

3.2.1 String Matching Algorithms

The Aho-Corasick (AC) algorithm [AC75] feeds a finite automaton that accepts

the patterns in the pattern set with the input characters one by one, so its time

complexity is O(n). A match is claimed if one of the final states is reached. Such

automaton-based approaches, either Deterministic Finite Automaton (DFA) or

Non-deterministic Finite Automaton (NFA), are common due to their flexibil-

ity in representing the patterns [Tar06,Cav05] and deterministic execution time

for robustness to algorithmic attacks. The transition table of an automaton is

compressed to reduce the memory requirement [TSC04,Nor04]. Given the wide

data bus in modern architectures, tracking one character at a time is inefficient.

Several designs can determine the next state after reading a block of characters

39

to boost the performance [SIH04,DL05], but they have two drawbacks. (1) Com-

pressing the transition table may need tricky techniques, if feasible, as the table

grows with a large block. (2) Because a signature may not start from a block

boundary, the match engine should be duplicated several copies at the offset of

one more character from the block boundary [DL05].

The Boyer-Moore (BM) algorithm is the first that can skip characters not in

a match based on algorithmic heuristics [BM77], which are illustrated in [BMI].

Among the heuristics of the BM algorithm and its derivatives, we specifically

mention the bad-character heuristic for its relevance to our work. This heuristic

matches the characters backward from the suffix of the search window one by one,

until either a mismatched character is found or the entire pattern is matched. If

a mismatched character is found, the heuristic looks up a table to decide the

shift distance of the window according to whether the character is in the pattern

or not, and its position. However, the heuristic will significantly decrease the

shift distance for a large pattern set due to the high probability of a character

appearing in one of the patterns.

The WM algorithm matches a block of characters instead of a character to

greatly reduce the chances that a block appears in the patterns. The algorithm

assumes equal pattern lengths. If not, it considers only the first m characters

of each pattern during pre-processing and scanning. The search window of m

characters slides along the text during scanning according to the heuristics: if

the rightmost block of b characters in the search window appears in none of the

patterns, a window shift by a maximum of m − b + 1 characters is safe without

missing any match; otherwise, the shift value is m − j, where the rightmost

occurrence of the block in the patterns ends at position j. If the shift value is

0, i.e., the block is the suffix of some pattern, the occurrence of a true match

40

is verified. The algorithm builds a shift table that keeps the shift values for

indexing by the rightmost block. Different blocks may be mapped to the same

table entry, in which the minimum shift value of them is filled. This mapping

saves the table space at the cost of smaller shift values. The worst performance of

the WM algorithm may be poor. For example, if a pattern is aaaaa and the text

is all a’s, the search window cannot skip any character. The time complexity is

O(mn) because the verification takes O(m) in every text position. Nonetheless,

variants of the algorithm can be found in popular software, such as ClamAV

(www.clamav.net) for anti-virus.

A Bloom filter compactly stores the patterns in a v-bit bit vector for member-

ship queries [Blo70]. For each pattern X, the filter sets to 1 the bits addressed

by the k hash values h1(X), h2(X), . . . , hk(X) ranging from 0 to v − 1. When

a substring W in the text is matched, a membership query looks up the bits

addressed by W ’s hash values. If one of the bits is unset, W must not be in the

pattern set; otherwise, verification follows to see whether a true match occurs.

The uncertainty comes from different patterns setting checked bits. Properly

choosing v and k can control the false-positive rate.

3.2.2 Hardware Accelerators

String-matching hardware accelerators either hardwire the patterns into logic

cells on FPGA or store them in memory. Updating the patterns in the former

may take hours to regenerate a bit-stream and a few minutes to download it

onto the chip. Partial reconfiguration can reduce the cost [Xil04]. Besides the

reconfiguration cost, the number of available gate counts limits the size of the

pattern set. Several examples use this approach. For example, four scanning

modules run in parallel to scan multiple packets concurrently in [MLL03], and

41

the throughput is up to 1.184 Gbps. Cho et. al. designed a pipelining architecture

of discrete comparators [CNM02]. A pattern match unit involves four sets of four

8-bit comparators to directly compare four consecutive characters in each stage.

The matching results from each stage are fed to the next in the pipelining. The

design was later enhanced by fully pipelining the entire system [SP03], and the

throughput can be up to 11 Gbps at 344 MHz, but its area cost is still high.

Several following studies were devoted to area reduction, such as [SP04].

Reconfiguration in memory-based accelerators involves only updating the

memory content, and the logics either remain intact or experience only a slight

change. The designs may utilize an AC-style automaton [TS06,Lun06,TLLar,LT-

Lar,LTH07,TLL05], a filtering search window [DKS04,PP05,SPW05,AC07], or

both [DL05]. Whatever approach they take, a fundamental issue is that if the

scanning proceeds by only one character at once, it demands high operating fre-

quency for high speed. Some of them can advance several characters at once by

multiple parallel engines, but the available hardware resources restrict the degree

of parallelism.

3.3 The BFAST architecture

3.3.1 Drawbacks of using a shift table

The block size in the WM algorithm is critical to the performance for a large

pattern set. Given r patterns, the verification probability is 1 − (1 − 1/|Σ|b)r,

i.e., the probability that the rightmost block is a pattern suffix. Increasing b can

reduce the probability, but also demands a larger shift table (e.g., 2563 entries in

an uncompressed table for b = 3). A block size larger than three is impractical due

to the huge table size. Mapping multiple blocks to the same entry filled with the

42

minimum shift value of these blocks can compress the table, but the compression

reduces the shift values and increases the verification frequency [WM94].

The shift table keeps little information about the patterns but the shift values.

The information such as whether a block appears in a specific position or appears

multiple times in the patterns is lost, but the information is important to exploit

larger shift distance. Moreover, if a shift value is zero, nothing can be done but

moving the search window by one character after verification. We therefore abort

using a shift table.

3.3.2 Deriving shift distance using Bloom filters

The BFAST algorithm enhances the heuristics from the WM algorithm. Let

Pi[j . . . k] denote a substring from the j-th character to the k-th character of Pi.

We define a function

Preτ (Pi) =


Pi[1 . . . τ] if τ < |Pi|,

Pi otherwise.

(3.1)

The BFAST algorithm searches for patterns in P ′ during scanning, where P ′ is

the set of Prem(Pi) if m ≥ b, or the set of Preb(Pi) otherwise. If any pattern in P ′

is found, whether a true match in P occurs is verified. Let B0 be the rightmost

block in the search window. The heuristic for B0 is described as follows.

1. If neither B0 appears in the patterns nor any suffix of B0 is a prefix of some

pattern, the shift value is m if m ≥ b, or b otherwise.

2. If B0 does not appear in the patterns, but it has a suffix that is also the

prefix of some pattern. Let k be the longest length of such a suffix. The

shift value is m− k if m ≥ b, or b− k otherwise1.

1We noticed Liu et. al [LHC04] had a similar observation, but their heuristic based on the

43

3. B0 is a substring of some pattern if m ≥ b, or a pattern is a substring of

B0. In the former, if the rightmost occurrence of B0 ends at position j of

some pattern, the shift value is m− j. The bad-block heuristic depicted in

Section 3.3.3 then evaluates whether additional checks are worthwhile to

exploit a larger shift value. In the latter, a match is claimed directly.

This heuristic considers not only B0 but also its suffix so that the maximum shift

value can be m rather than m− b + 1. Patterns shorter than b characters can be

also handled.

The BFAST algorithm groups blocks in the patterns by their positions, so

we can derive the position of every block in the search window by checking its

membership in the groups. This method retains more information than a shift

table, so it can use versatile heuristics. The shift value is derived by membership

queries to a set of parallel Bloom filters, each of which stores an individual group.

Figure 3.1 illustrates how to derive the shift value for b = 4 in a trivial

example. The blocks in the pattern set {P1, P2, P3} are grouped by position: G0

is {efgh,mnop,vuts}, G1 is {defg,lmno,wvut}, and so on. Let BF (Gj) denote

the Bloom filter storing Gj. These Bloom filters are queried in parallel for the

membership of B0 = cdef. Because cdef is a member of G2, BF (G2) must

report a hit. If no false positives occur in BF (G1) or BF (G0), the shift value is

2 according to the aforementioned heuristic. If none of the Bloom filters report

a hit (i.e., neither B0 appears in the patterns nor any suffix of B0 is the prefix of

some pattern), the maximum shift of m = 8 characters is safe.

prefix rather than the suffix of the search window may skip over and overlook a suspicious
match.

44

BF(G0)

BF(G1)

BF(G2)

BF(G7)

cdef
…

hit

Patterns:
• P1 = abcdefgh
• P2 = ijklmnop
• P3 = zyxwvuts

Grouping:
G0 = {efgh,mnop,vuts} G1 = {defg,lmno,wvut}
G2 = {cdef,klmn,xwvu} G3 = {bcde,jklm,yxwv}
G4 = {abcd,ijkl,zyxw} G5 = {abc,ijk,zyx}
G6 = {ab,ij,zy} G7 = {a,i,z}

uvwxyzabcdef

search window

text

PE

…

m=8

Figure 3.1: The blocks in the patterns are grouped for deriving the shift value

from querying Bloom filters in parallel. If a block is a member of some group Gj,

BF (Gj) must report a hit. The priority encoder (PE) determines the shift value.

In general, when m ≥ b, the groups are defined by

Gj =



{Pi[m− j − b + 1 . . . m− j] |Pi ∈P ′},

if 0 ≤ j ≤ m− b,

{Pi[1 . . . m− j] |Pi ∈P ′},

if m− b + 1 ≤ j ≤ m− 1.

(3.2)

The queries check in parallel whether B0 is a member of G0 . . . Gm−b and whether

the k-character suffix of B0 is a member of Gm−k, for k = 1 . . . b − 1. Because

Gm−1 and Gm−2 contain only one or two characters, the Bloom filters of both are

implemented as directly mapped tables for simplicity. When m < b, the groups

45

are defined by

Gj =


P ′, if j = 0,

{Preb−j(Pi)|Pi ∈P ′ and |Pi| > b− j},

if 1 ≤ j ≤ b− 1.

(3.3)

The patterns in G0 are further divided into G
(1)
0 . . . G

(b)
0 , where G

(l)
0 are patterns

of l characters. The queries check whether each substring of l characters in B0 is

in G
(l)
0 in parallel and whether the k-character suffix of B0 is a member of Gm−k.

More than one Bloom filter may report a hit if a block makes multiple appear-

ances in the patterns or false positives occur. A priority encoder can arbitrate

and determine the shift value s as follows: If at least one Bloom filter reports a

hit, s = min{j| BF (Gj) reports a hit}; otherwise, s = m. If no false positives

occur, s is equal to that from the aforementioned heuristic because the Bloom

filters report the exact membership of B0. Otherwise, the false positive reported

from a Bloom filter may make the shift shorter than it should be, but it is still

safe — no match will be missed.

3.3.3 Bad-block heuristic in the search window

In practice, some blocks may appear much more frequently than the others. In the

Windows executable files under our investigation, for example, the most frequent

block ‘0x00 0x00 0x00 0x00’ alone occupies 4.46% of the total blocks. If the

suffix of some Pi ∈ P ′ happens to be a frequent block, the verification will be

also frequent, following immediately after a hit in BF (G0). A verification failure

also tells nothing but shifts the search window by only one character.

The BFAST algorithm avoids immediate verification by checking additional

blocks B1,B2,. . . ,Bm−b to exploit a larger shift value if needed, where Bj denotes

46

the block that is j characters away from the last character backward in the search

window. A heuristic similar to the bad-character heuristic, namely the bad-block

heuristic, is described as follows.

1. Let H be {i|BF (Gi) reports a hit and i ≥ j}. (1) If H 6= ∅, the shift

value derived by checking Bj is i′ − j, where i′ is the smallest value in H .

(2) Otherwise, the shift value is m − j. In (1), if i′ = j, more checks may

be needed as described below.

Theorem 1. The shift value derived here is safe.

Proof. Suppose a match occurs when the search window is shifted by a

shorter distance, meaning that either Bj or a suffix of Bj must be in one of

the groups from Gi′−1 to Gj (in the first rule) or from Gm−1 to Gj (in the

second rule), implying that a Bloom filter between BF (Gi′−1) and BF (Gj)

or between BF (Gm−1) and BF (Gj) will report a hit. This contradicts

either that i′ is the smallest such that BF (Gi′) reports a hit or that none

of BF (Gi) report a match for i ≥ j. Therefore, the shift value will not miss

a match. The heuristic in Section 3.3.2 is a special case for j = 0.

Implementing the rules is simple. The priority encoder just ignores the

report from BF (G0) . . . BF (Gj−1) when Bj is checked. False positives in

the Bloom filters may occur, but like the query from B0, the shift is just

shorter, but is still safe.

2. After Bj has been checked, where j < m − b, whether Bj+1 should be

checked next is evaluated based on the cost of additional checks to exploit

a larger shift value. Let maxj(s) be the largest shift value derived since B0

was checked, and Ej+1[s] be the expected shift value when Bj+1 is checked.

47

The criterion

bEj+1[s]c
j + 2

>
maxj(s)

j + 1
or maxj(s) = 0 (3.4)

is evaluated (with integer division) to see if checking Bj+1 is worthwhile.

If the criterion is true, Bj+1 will be checked next; otherwise, the search

window will be moved by maxj(s) characters.

The estimate of Ej+1[s] is pre-computed for each j according to the anal-

ysis in Section 3.3.6, and maxj(s) is updated after each block is checked.

Because every shift value from B0 to Bj is safe, maxj(s) is surely safe. If

every Bloom filter from BF (G0) to BF (Gj) reports a hit, a match may

occur, and the checks should go on. In this case, maxj(s) = 0 because the

shift values derived from B0 to Bj are all zeros. The equation maxj(s) = 0

ensures the checks will continue. Only the inequality on the left-hand side

is insufficient because
bEj+1[s]c

j+2
might be zero due to integer division, even if

bEj+1[s]c > 0. The inequality may fail even though maxj(s) = 0.

3. The verification procedure is invoked only if every block from B0 to Bm−b

gives rise to a hit in BF (G0), . . . , BF (Gm−b), respectively. The verification

probability becomes only
∏m−b

j=0 pj for m ≥ b, where pj is the probability that

BF (Gj) reports a hit for Bj. The probability is normally low, particularly

for long patterns such as virus signatures.

Figure 3.2 illustrates the bad-block heuristic with two trivial examples of only

one pattern. In the upper example, we find MPLE in G0, AMPL in G1, but XAMP

is in G5. Then the shift distance of 5 − 2 = 3 characters is safe. In the lower

example, because neither XAMP nor its suffixes are in the groups from G2 to G8,

the shift distance can be 9− 2 = 7 characters.

48

ELPMAPMAX

ELPMAXEDRIEW

pattern

text

3 characters

ELPMAENON

ELPMAXEDRIEW

pattern

text

7 characters

search window

search window

Figure 3.2: An illustration of the bad-block heuristic.

3.3.4 Performance in the worst case

The worst time complexity is O(mn), when every block in the search window

must be queried after each shift by one character. Manipulating to the worst

case is not always feasible in practice. For example, an attacker knows a signa-

ture malicious and generates a string nalicious in the search window to force

backward checks throughout the entire window. After the verification and the

shift by one character, the rightmost block in the next window becomes ousα,

where α ∈ Σ. The next shift distance will be at least m − 1 = 8 characters

according to the heuristic in Section 3.3.2. The manipulation fails, even though a

series of strings nalicious are in the text. Galil discussed the general condition

leading to the worst case in terms of the periodicity of a pattern [Gal79]. Shortly

put, properly specifying a signature to avoid a short period (i.e., it is not a prefix

of ui for i > 1, where u is a short string called a period) can reduce the risk of

an algorithmic attack, as demonstrated above.

Several methods can guarantee the linear worst-case time complexity for a

single fixed string or regular expression [Gal79, NR04], but none of them can

guarantee so for multiple strings as far as we know. We thus suggest two alter-

natives to handle this problem. First, the worst case of O(mn) is easily detected

by calculating the average number of blocks that have been checked in the last η

49

characters from the current text position, say η = 100. (A block may be counted

more than once if it is revisited.) If the average is higher than a threshold, say

mη
2

, which is unusual in normal traffic, the available bandwidth of that flow is

constrained to avoid a possible algorithmic attack. The approach has low cost,

but may not work well when the attacks are from multiple flows.

Second, the worst time complexity is resulted from revisiting the blocks in

the text many times during scanning. In Section 5.1 of [NR04], an approach

of forward and backward scanning can assure no blocks are revisited in either

direction to guarantee the linear time. This approach seems tantalizing, but

its space complexity exponential to the number of characters in the patterns is

prohibitively high for a large pattern set. We propose to borrow its concept of

forward and backward scanning without revisiting in either direction, and use

an assisting Aho-Corasick automaton instead of its original data structure. The

procedure is described as follows.

1. The BFAST architecture searches the text until a suspicious match is found.

Let the first character of the search window be the critical position.

2. The AC automaton tracks forward the characters from the critical position

until the end of the window. The tracking will either (1) find the longest

prefix of some pattern in the window suffix, or (2) go back to the initial state

of the automaton (if a failure occurs). In case (1), if the entire window is

the pattern prefix, the tracking should be resumed beyond the window until

the entire pattern is matched or a failure occurs somewhere. In both cases,

the current automaton state is recorded, and the current text position plus

one becomes the new critical position.

3. The search window is aligned with the prefix found in step 2) (i.e., their

50

first characters are aligned.), or to begin at the position where the failure

occurs.

4. The BFAST architecture resumes its backward scanning in the new window.

Two possibilities may occur.

(a) The backward scanning reaches the critical position (See Figure 3.3(a)).

The procedure then goes back to step 2), in which the AC automaton

resumes forward scanning from the critical position with the recorded

state.

(b) The backward scanning gets a shift value from the heuristics before

reaching the critical position, and the search window is shifted accord-

ingly (See Figure 3.3(b)). The AC automaton then tracks the overlap-

ping part of the new window and the last window. After the tracking,

the current automaton state is recorded, and the current text position

plus one becomes the new critical position. The procedure then goes

back step 4).

Theorem 2. The procedure is correct, and its time complexity is linear in the

worst case.

Proof. Correctness The search window is shifted according to either forward

scanning in Figure 3.3(a) or bad-block heuristics in Figure 3.3(b). In the former,

if a pattern starts within the search window, its prefix must be in the window

suffix, and the AC tracking in step 2) will find it. After the search window is

shifted in step 3), the backward scanning in step 4) will reach the critical position

because the search window is now aligned with the pattern. The AC tracking will

be resumed from the critical position and eventually match the entire pattern.

51

The shift thus will not miss a match. In the latter, we proved the shift will not

miss a match in Section 3.3.3.

Linear time In each shift, the forward scanning is resumed either from or

after the critical position where it is stopped last time (See Figure 3.3), so the

scanning never revisits the blocks in the text. Note that this algorithm looks for a

non-overlapping match, which is sufficient for most network security applications

[YCD06]. When a match is found, the forward scanning will not revisit the

blocks inside the match. Similarly, the backward scanning traverses before or

until reaching the critical point, which is behind the end of the last window, so

the backward scanning never revisits the blocks in the last window. Since neither

direction revisits the blocks in the text, the blocks are read at most 2n times,

and the worst time complexity is O(n).

Although the second alternative can guarantee linear worst-case time and

offer sub-linear time performance on average, it has two overheads. First, it

needs the space to store the AC automaton for forward scanning. Second, it

needs forwarding scanning in each shift to exclude blocks from being revisited

by backward scanning, but the forward scanning is an overhead if the backward

scanning gets a shift value before reaching the critical position. This alternative

will slow down the average performance due to the overheads. We thus suggest

it be used when the linear time guarantee is a must. In this paper, we leave the

second alternative optional, and implement only the BFAST architecture and the

verification module to be introduced in Section 3.4.

3.3.5 Hash functions and the parameters in the design

The hash functions in the Bloom filters are from a slight modification to a

class of universal hash functions, namely the H3 class of functions. Let X =

52

window

forward backward

critical position

window

forward

critical position

new window
new critical position

(a) Backward scanning reaches the critical position. Forward scanning starts

from the critical position to the end of the search window, which is then aligned

to the found pattern prefix or to begin at the position where the failure occurs.

window

forward backward

critical position

new window
new critical position

forward

(b) Backward scanning gets a shift value before reaching the critical position.

The search window is shifted accordingly, and then the forward scanning tracks

the overlapping part of the new window and the last window.

Figure 3.3: The procedure to maintain the linear time performance.

{0, 1, . . . , 2c − 1} be a set of key values in c bits and V = {0, 1, . . . , 2ν − 1} be

addresses of a bit vector of ν bits. It is presented in [RFB97] that the H3 class

has uniform mapping, meaning that the probability of a hash function mapping

a key to a specific position is 1/2ν . The implementation is also very simple.

Consider the block X as a bit string of < x1, x2, . . . , xc >∈ X . This work

defines the hash function hd : X −→ V for the Bloom filters by

hd(X) = d1 • x1 ⊕ d2 • x2 ⊕ . . .⊕ dc • xc ⊕ dc+1, (3.5)

where • is an AND operator, ⊕ is a bitwise XOR operator, and di is a random

53

number ranging from 0 to 2ν − 1. Each of the k hash functions in a Bloom filter

chooses a different set of di. We add an extra term dc+1 in this equation because

if a block X contains all zeros, the k hash functions will all map the block to

zero. Hence the false-positive rate will depend only on bit 0 of the bit vector,

and the benefit of using k hash functions will be voided.

The modification keeps the uniform mapping of the H3 class. Let X ′ be a

set of strings of c + 1 bits. The hash function h′
d : X ′ −→ V , where

h′
d(X

′) = d1 • x′
1 ⊕ d2 • x′

2 ⊕ . . .⊕ dc • x′
c ⊕ dc+1 • x′

c+1. (3.6)

is a function in the H3 class by definition, so the mapping to V is uniform. Since

the key space of hd, i.e., X , can be viewed as a subset of X ′, where x′
c+1 is

always 1, the mapping of hd is also uniform.

Properly choosing k and the ratio of v/r can control the false-positive rate of

a Bloom filter, f = (1−e−rk/v)k. Although setting k = (v/r)ln2 can minimize the

rate to f = (1/2)k [DKS04], the hardware complexity and simultaneous memory

accesses also increase with a large k. Figure 3.4 presents the false-positive rate

with respect to k and v/r. To balance between the hardware complexity and the

false-positive rate, we arbitrarily choose k = 4 and v/r to be around 10 so that

f is around 0.012, which is low enough in practice. For restricted memory space,

v/r can be reduced at the cost of higher false-positive rate.

If the block consists of only one or two characters, the probability that it is

a pattern suffix is high, let alone the chances of occurrence in other positions of

the patterns. Therefore, the Bloom filters are likely to report a hit, and the shift

distance is generally short. A larger block size can reduce the probability, but

it also complicates matching a pattern shorter than b, as every substring of the

block should be matched against the patterns in G0 (See the discussion below

Equation 3.3). We arbitrarily choose b = 4 herein because it fits well on a 32-bit

54

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

pr
ob

ab
ili

ty

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10 1

 2
 3

 4
 5

 6
 7

 8

 0

 0.02

 0.04

 0.06

 0.08

 0.1

probability of false positives

(1-exp(-k/z))**k

z

k

Figure 3.4: The false-positive rate with respect to k and the ratio of z = v/r.

data bus and is a good balance. The probability is tiny for a block to appear in

a specific position of the patterns (or equivalently, a group), say around 7× 10−6

for r = 30, 000.

3.3.6 The analysis of the BFAST algorithm

We consider the performance when the characters are uniformly distributed in

the analysis. The probability that a block is in a group Gj, j = 0 . . . m − b + 1

is tiny, so the probability of a hit in a Bloom filter is approximately the false-

positive rate f . To simplify the analysis, we assume that an additional check for

Bj+1 is performed only when BF (Gj) reports a hit for Bj. The assumption will

underestimate the shift value because the bad-block heuristic is more aggressive,

but it is sufficient to show the time complexity of the BFAST algorithm.

Let Sm denote the expected shift value for the shortest pattern length m, and

P(s = i) denote the probability that the shift value s by querying from a single

55

block is i. Sm can be recursively derived by

Sm =

 P(s = 0)Sm−1 +
∑m

i=1P(s = i)i for m > b∑m
i=1P(s = i)i for m = b

. (3.7)

If s = 0, additional checks will determine the shift value; otherwise, the search

window is shifted by s. We consider only the case that m ≥ b for simplicity. The

case that m < b can be derived similarly. P(s = i) is derived considering the

following three conditions.

1. B0 is a factor of some pattern in P ′. The shift value is derived according

to the position of the rightmost occurrence of B0, so

P(s = i) = (1− f)if for i = 0 . . . m− b. (3.8)

2. B0 is not a factor of any pattern in P ′, but a suffix of B0 is the prefix

of some pattern. Let the longest length of such a suffix be m − i, i =

m− b + 1 . . . m− 1.

P(s = i) = (1− f)m−b+1(1− P(Ni))∏i−1
j=m−b+1 P(Nj),

for i = m− b + 1 . . . m− 1, (3.9)

where P(Nj) is the probability that BF (Gj) reports no hit from B0’s suffix

of m− j characters, and

P(Nj) = 1− (f + (1− (1− 1

|Σ|m−j
)r)). (3.10)

3. Neither B0 is a factor of any pattern in P ′ nor its suffix is a prefix of any

pattern. In this case,

P(s = m) = 1−
m−1∑
i=0

P(s = i). (3.11)

56

If the false-positive rate f is low enough, the probability in Equation 3.8 will be

small, meaning most shifts can be at least m− b+1. For long patterns such that

m � b, the shift values are close to m, so the sub-linear time of O(n/m) can

be expected for random text and patterns. As mentioned earlier, the worst-case

performance is O(mn), but it is unusual in practice. One of the two options we

propose can ensure the linear time complexity in the worst case.

3.4 Implementation details

3.4.1 Main components in the BFAST architecture

Figure 3.5 presents the three main components in the BFAST architecture. (1)

The scanning module reads the text into the buffer, selects the block to query

the Bloom filters, shifts the search window according to the querying results,

and requests for verification of a suspicious match. (2) The verification interface

receives a verification job packed in a descriptor and fills an entry in the job

queue. (3) The verification module reads a job from the queue and performs the

verification. The sub-modules in the scanning module are described as follows.

• Text buffer The text buffer on the embedded memory loads the text from

the external memory in batch. Two buffers are in the system to hide the

latency in text transfer. While one buffer is being scanned, the other is

loaded with the next batch of text. Because a pattern in P ′ may span two

contiguous batches, the last m−1 characters in the last batch are prepended

to the current batch in the buffer. Therefore, a pattern will not be missed

if this case occurs.

• Bloom filters plus priority encoder Parallel queries to the Bloom filters

57

Verification
module

(unspecified)

Verification interface

Scanning module

Text buffer

Bloom filters +
Priority encoder

Text
position

controller

Job queue

Job
dispatcher

External
memory

text

bit
vector

position

query
result text

block

job
descriptor

job
descriptor

job descriptor

Figure 3.5: Overview of the modules in the BFAST architecture.

mean simultaneous access to the memory. In our prototype system of Xilinx

XC2VP30 are 136 dual-port 18 kb memory blocks that can be accessed in-

dependently [Xil05]. Figure 3.6 illustrates the layout of the memory blocks

to support multiple Bloom filters. Each memory block is configured as a

16k×1 bit vector. The dual-port architecture can support simultaneously

accessing two hash values, so two sets of memory blocks to simultaneously

access k = 4 hash values in a Bloom filter. The priority encoder determines

the shift value according to the reports from the Bloom filters and evalu-

ates whether more checks should be done. Figure 3.6 skips the detail of the

logics for inferring the shift distance for simplicity.

• Text position controller The text position controller keeps the position

of the search window and the block for the queries according to the feedback

from the Bloom filters and the current matching status.

A non-blocking interface is located between the scanning module and the

verification module. The scanning module can offload verification and move on

58

Priority Encoder

shift value

Bloom filters

…
…

BF(G1)

BF(G2)

BF(Gm-1)

BF(G0)
32Block

BF(Gj)

v/2
hi1(x)

hi2(x)

hi3(x)

hi4(x)

32

hit

bit vector

Priority Encoder
shift dis.

…
…

0

11

0

10

0

12

…

0

17

Verify

3

8

Bloom filter
Group 1

Bloom filter
Group 2

Bloom filter
Group

Bloom filter
Group 0

32

Block

(a)

14

H1(x)

H2(x)

H3(x)

H4(x)

32

Block

Hit

M-bit vector

(b)

前一版備份

j

more checks

Figure 3.6: The layout of memory block to support multiple Bloom filters and

the priority encoder.

the scanning without blocking when finding a suspicious match. This approach

parallelizes the scanning and the verification to better utilize the hardware com-

ponents. The detail of the verification module is left unspecified as long as it can

the match in real time.

Our implementation in the verification module is an Anchored-AC algorithm

that groups the patterns having the same prefix of length m into an individual

trie. The prefixes serve as the keys to store these tries in a hash table. When

the scanning module identifies a suspicious match, it instructs the job dispatcher

to enter a verification job descriptor, including the starting position of the search

window in the text, i.e., the anchor, and the window text into the job queue. If

the verification module is available for the non-empty queue, it fetches a job to

verify a match. The module then traverses the trie(s) indexed by the window

to identify a true match. If the option to guarantee the linear worst-case time

is implemented, the verification module should be modified to work with the

59

scanning module as described in Section 3.3.4.

3.4.2 Pipelining design

The process of deriving the shift value and moving the search window is divided

into four phases for pipelining: text position controlling (TP), block reading

(BR), computing hash functions (HA) and bit vector reading (BV). The text

buffer is also logically divided into four segments. Assume the buffer length is `,

where ` is a multiple of 4. The four segments are located in the ranges of [1, `
4
],

[`
4
−m + 2, `

2
], [`

2
−m + 2, 3`

4
] and [3`

4
−m + 2, `]. Every pair of two contiguous

segments overlap slightly to avoid missing a pattern in the boundary of the two

segments. The overlapping part of m − 1 characters can ensure the patterns in

P ′ must completely fall inside a segment. Figure 3.7 illustrates the pipelining

operation for ` = 1024 and m = 10. The text position controller initializes

the starting positions to the (m− b + 1)-th character of the four segments in the

beginning. The next position of the search window or the next block to be queried

in the first segment is derived in the fifth cycle, that in the second segment in

the sixth cycle, and so on.

3.5 Experimental results and comparisons

This work conducts a behavior simulation in C to estimate the performance, and

runs a timing simulation in HDL to estimate the clock rate.

3.5.1 Simulation in C

The C simulation of the BFAST architecture was performed in four cases: (1)

random patterns and text, (2) random patterns and text in Windows executable

60

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6cycles

7

7+S17

7 7+S1

7

TP

BR

HA

BV

(a) Without pipelining.
cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6cycles

TP

BR

HA

BV

7 766510 254+S2254 7+S1

7+S17 766254 510

7 510 766254

5107 254

(b) With pipelining.

Figure 3.7: The comparison of the operation without and with pipelining for

` = 1024 and m = 10. The four phases are text position controlling (TP), block

reading (BR), computing hash functions (HA) and bit vector reading (BV). S1

and S2 denote the shift values of the first two segments.

files, (3) patterns in ClamAV and random text, and (4) patterns in ClamAV

and text in Windows executable files. The Windows executable files come from

typical Windows applications without viruses. Because most practical files are

clean and a virus signature is much shorter than the total file sizes even if it is

present, using uninfected files is sufficient to estimate the performance. The ratio

of v/r is set to 8 because it is close to the good compromise of 10 discussed in

Section 3.3.5. Both v and r are 2 to the power of some integer.

61

3.5.1.1 Performance for various number of patterns

Figure 3.8 presents the average shift values for various numbers of patterns. The

values in the first three cases are all above 8, and decrease only slightly for a large

pattern set because the blocks in the text are unlikely to appear in the patterns

in the random cases. The values in the fourth case are degraded significantly

for more than 10,000 patterns. A deep observation reveals that the blocks near

or in the suffix of the patterns in P ′ happen to include the block ‘0x00 0x00

0x00 0x00’, which is frequent in some executable files. The shift values derived

without the bad-block heuristic is also compared. In this case, the values start

to drop significantly for more than 1,000 patterns because the search window can

advance only one character after a verification failure without the heuristic.

5

6

7

8

9

10

256 512 1024 2048 4096 8192 16384 32768

number of patterns

av
er

ag
e

sh
if

t
va

lu
es

Totally random Random pattern, Real text

Real pattern, Random text Real pattern, Real text

Real pattern, Real text*

Figure 3.8: Average shift values for various number of patterns in four cases.

An asterisk after the ‘Real text’ denotes the shift values are derived without the

bad-block heuristic.

Deciding a shift value may need to check more than one block. Let s be the

average shift value and ns be the average number of checked blocks to derive s.

62

3

4

5

6

7

8

9

256 512 1024 2048 4096 8192 16384 32768

number of patterns

ch
ar

ac
te

rs
 p

er
 c

he
ck

ed
 b

lo
ck

Totally random Random pattern, Real text

Real pattern, Random text Real pattern, Real text

Figure 3.9: Average number of characters per checked block for various number

of patterns in the four cases for b = 4.

The performance is estimated by s/ns, which is the average number of characters

per checked block. Figure 3.9 examines the values in the above cases. In the first

three cases, the values are close to those in Figure 3.8, meaning checking only one

block can derive most shift values. In the fourth case, the values are degraded

with increasing number of patterns. For example, 1.57 blocks are checked on

average to derive a shift value for r = 8, 192, so effectively 5.03 characters are

inspected in parallel.

We also test the average number of characters per checked block for various

block sizes. Figure 3.10 presents the results. There are trade-offs in choosing the

proper block size. A large block size has better performance, but may complicate

matching a pattern shorter the block size. It depends on the actual need to

choose the optimal block size.

Another concern is the verification frequency. In the first three cases, we did

not find even a verification in our experiment. After all, the probability that

63

2

3

4

5

6

7

8

9

10

4096 8192 16384 32768 65536 131072

number of patterns

ch
ar

ac
te

rs
 p

er
 c

he
ck

ed
 b

lo
ck

b=4 (ClamAV + Win) b=5 (ClamAV + Win) b=6 (ClamAV + Win)

b=7 (ClamAV + Win) b=8 (ClamAV + Win) b=9 (ClamAV + Win)

b=10 (ClamAV + Win) b=4 (Random)

Figure 3.10: Average number of characters per checked block for various number

of patterns in four cases for various block sizes.

all the blocks in the search window are in their corresponding groups (e.g., the

rightmost block in G0) is tiny for b = 4. In the fourth case, Table 3.2 lists

the average number of characters that have been scanned to meet a verification

for various numbers of patterns. When r = 8, 192 and b = 8, for example,

the verification module has a margin of around 769 cycles (given 7.4 characters

inspected in parallel effectively) to verify a match without blocking.

Table 3.2: The average number of scanned characters to meet a verification for

various numbers of patterns in the practical case.
r(b = 4) 1,024 2,048 4,096 8,192 16,384 32,768
char. 1,156 1,111 578 561 187 55

r(b = 8) 4,096 8,192 16,384 32,768 65,536 131,072
char. 7,190 5,694 1,318 768 133 32

64

ratio=4 (random) ratio=8 (random) ratio=16 (random) ratio=32 (random)

256 6.430753 8.887571 9.295973 9.339052 256

512 6.383717 8.700295 9.084156 9.124608 512

1024 6.267349 8.579782 8.960623 9.000185 1024

2048 6.238792 8.551924 8.927058 8.965811 2048

4096 6.239178 8.526675 8.896857 8.935638 4096

8192 6.203832 8.477489 8.839719 8.878263 8192

16384 6.164802 8.379916 8.736148 8.773769 16384

32768 6.007455 8.22142 8.56341 8.599985 32768

4->8(random) 8->6(random) 16->32(random)

256 38.20% 4.60% 0.46%

512 36.29% 4.41% 0.45%

1024 36.90% 4.44% 0.44%

2048 37.08% 4.39% 0.43%

4096 36.66% 4.34% 0.44%

8192 36.65% 4.27% 0.44%

16384 35.93% 4.25% 0.43%

32768 36.85% 4.16% 0.43%

average 36.82% 4.36% 0.44%

5

6

7

8

9

10

256 512 1024 2048 4096 8192 16384 32768

number of patterns

sh
if

t
va

lu
es

ratio=4 (real) ratio=8 (real) ratio=16 (real) ratio=32 (real)

5

6

7

8

9

10

256 512 1024 2048 4096 8192 16384 32768

number of patterns

sh
if

t
va

lu
es

ratio=4 (random) ratio=8 (random)

ratio=16 (random) ratio=32 (random)

(a) random patterns and text.

ratio=4 (random) ratio=8 (random) ratio=16 (random) ratio=32 (random)

256 6.430753 8.887571 9.295973 9.339052 256

512 6.383717 8.700295 9.084156 9.124608 512

1024 6.267349 8.579782 8.960623 9.000185 1024

2048 6.238792 8.551924 8.927058 8.965811 2048

4096 6.239178 8.526675 8.896857 8.935638 4096

8192 6.203832 8.477489 8.839719 8.878263 8192

16384 6.164802 8.379916 8.736148 8.773769 16384

32768 6.007455 8.22142 8.56341 8.599985 32768

4->8(random) 8->6(random) 16->32(random)

256 38.20% 4.60% 0.46%

512 36.29% 4.41% 0.45%

1024 36.90% 4.44% 0.44%

2048 37.08% 4.39% 0.43%

4096 36.66% 4.34% 0.44%

8192 36.65% 4.27% 0.44%

16384 35.93% 4.25% 0.43%

32768 36.85% 4.16% 0.43%

average 36.82% 4.36% 0.44%

5

6

7

8

9

10

256 512 1024 2048 4096 8192 16384 32768

number of patterns

sh
if

t
va

lu
es

ratio=4 (real) ratio=8 (real) ratio=16 (real) ratio=32 (real)

5

6

7

8

9

10

256 512 1024 2048 4096 8192 16384 32768

number of patterns

sh
if

t
va

lu
es

ratio=4 (random) ratio=8 (random)

ratio=16 (random) ratio=32 (random)(b) real patterns and text.

Figure 3.11: Average shift values for various lengths of bit vectors in the Bloom

filters, where v/r = 4, 8, 16 and 32.

3.5.1.2 The impact of the length of the Bloom filters

Figure 3.11 compares the shift values for various lengths of bit vectors in the

Bloom filters. Because the first three cases perform quite similarly, we consider

only random patterns and text. The ratio of v/r = 8 is the best compromise

between the efficiency and the memory space. This result coincides with the

theoretical estimation in Section 3.3.5. Raising the ratio up to 16 and 32 helps

little to the performance, but increases the required memory space. Reducing the

ratio to 4 leads to noticeable degradation. This observation justifies the choice

of v/r = 8.

65

Except Gm−2 and Gm−1 that are stored for direct indexing and demand 65,536

and 256 bits, respectively, each of the other groups contain r substrings of the

patterns. Let z = v/r. The total memory space required is

zr(m− 2) + 65, 536 + 256. (3.12)

For example, if z = 8 and r = 10, 000, the memory space in the Bloom filters are

only around 86 kB, which can be easily accommodated in the embedded memory

on a typical FPGA. The tries in the Anchored-AC algorithm are compressed in

the fashion similar to that in [Nor04]. They take 0.94 MB for 10,000 patterns,

and had better be stored in the external memory.

3.5.2 HDL simulation result

The Xilinx XCVP30 FPGA on which the architecture is implemented has 136

dual-port embedded memory blocks, each of which can be configured as a 16,384-

bit long bit vector. A set of two memory blocks work together to support 4 hash

functions in a Bloom filter. Given v/r = 8, each set of memory blocks can store

16, 384 ∗ 2/8 = 4, 096 pattern blocks in a group. If m = 10, 8 Bloom filters store

the groups from G0 to G7, and two more bit vectors of 65,536 bits and 256 bits

store G8 and G9. In other words, a set of 4,096 patterns takes 2 ∗ 8 = 16 memory

blocks for the groups from G0 to G7, and 65, 536/16, 384 + d256/16, 384e = 5

memory blocks for G8 and G9.

It is suggested that a BFAST scanning module handles around 10,000 patterns

to keep high efficiency, so we allocate 3*16+5=53 memory blocks to store 3*4,096

= 12,288 patterns since 12,288 is close to 10,000. We allocate 64 memory blocks

to the two text buffers, each of which takes 64 kB. The data structure in the

verification module is stored in the external memory to avoid the restriction in

memory space. A larger pattern set can be split into several subsets of 12,288

66

patterns, and multiple BFAST scanning modules, each responsible for a subset,

can scan in parallel for the match. The strategy is feasible given a large FPGA,

say Xilinx XC2VP100, which has 444 embedded memory blocks [Xil05].

The system can operate at 150 MHz. The design utilizes 7,560 logic cells,

which amount to 24% of the available logic cells on the XC2VP30 FPGA. Given

an average of 4.7 characters inspected effectively in parallel for 12,288 patterns

(See Figure 3.9), the throughput of the scanning module is up to 150*4.7*8 =

5.64 Gbps. If b = 8, an average of 7.78 characters can be effectively inspected

in parallel for 16,384 patterns, and the throughput becomes up to 150*7.78*8 =

9.34 Gbps. If the signatures are properly specified, as discussed in Section 3.3.4,

the worst-case throughput is 150*1*8 = 1.2 Gbps. It is suggested that long

signatures of at least 15 characters be used in virus-scanning applications to avoid

false positives [KA94]. In that case, the throughput could be higher because more

characters are inspected per checked block for the long signatures.

3.5.3 Comparisons with other works

We categorize existing designs into filtering-based and automata-based architec-

tures. Figure 3.12 summarizes their characteristics. Due to the limited table

space, we leave the comparisons with some designs only in the text, but do not

list them all in the table.

3.5.3.1 Compared with filtering-based architectures

A filtering-based architecture maps a search window in the text using hash func-

tions (including Bloom filters) to exclude the characters not in a match and verify

only suspicious matches. In [DKS04] and [ADL04], inspecting G positions in par-

allel needs G sets of Lmax − Lmin Bloom filters, where the pattern lengths range

67

TABLE III
COMPARISONS BETWEEN THE BFAST AND OTHER ARCHITECTURES.

architecture BFAST [DKS04] [DL05] [AC07] [PP05] [TS06] [Lun06]
target application anti-virus IDS
of Bloom filtersa m(= 10) G(t−m + 1) k2 N/A N/A N/A N/A
of text characters
read in parallel

b(= 8) G(t−m + 1) k2 k variable 1 2

max. advance dis-
tance per iteration

m G k 1 2e 1e 2

of patterns in the
implementationb

16,384 35,475 2,259 1,655 ≈1,500 1,000 ≈2,000

embedded memory
space

136 kB 400*4 kbc 754 kb 540 kb 288∼612 kb 0.4 MB 128 kB

external memory
space

≈1.5 MB unknown a few MBs unknown 0 0 0

platform Xilinx Virtex II
XC2VP30

Xilinx Virtex
2000E

Xilinx Virtex 4 Xilinx Virtex II
Pro

Xilinx Virtex
2/4 , Spartan 3

unknown Xilinx Virtex 4

number of parallel
engines

1 4 8 (for k = 8) 4 (for k = 4) 2 # of split au-
tomata

2

operating frequency
(MHz)

150 62.8 250 300 ≈ 330 unknown ≈ 125

throughput (Gbps) 9.34d(9.34) 2 (0.5) 14.1 (1.76) 10 (2.5) 1.7∼5.7 (2.85) 10 (1.25) ≈ 2 (1)
a Notations— G: number of parallel engines, t: maximum length (may be a threshold) of signatures, m: minimum length of signatures, k: number of

positions inspected in parallel.
b The values can be higher if more memory space is allocated.
c Each parallel engine takes 400 kb.
d The value can be higher with longer m.
e The value can be larger with higher hardware cost.

[8] L. Tan and T. Sherwood, “Architectures for bit-split string scanning in
intrusion detection,” IEEE Micro, vol. 26, no. 1, pp. 110–117, Jan. 2006.

[9] J. van Lunteren, “High-performance pattern-matching for intrusion detec-
tion,” in Proc. of the 25th IEEE Infocom Conference, Barcelona, Spain,
Apr. 2006.

[10] K.-K. Tseng, Y.-C. Lai, T.-H. Lee, and Y.-D. Lin, “A fast scalable
automaton matching accelerator for embedded content processors,” ACM
Trans. Embedded Comput. Syst., to appear.

[11] G. Papadopoulos and D. Pnevmatikatos, “Hashing + memory = low
cost, exact pattern matching,” in Proc. of 15th International Conference
on Field Programmable Logic and Applications (FPL), Tampere, Finland,
Aug. 2005, pp. 39–44.

[12] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A recon-
figurable perfect-hashing scheme for packet inspection,” in Proc. of 15th
International Conference on Field Programmable Logic and Applications
(FPL), Tampere, Finland, Aug. 2005, pp. 644–647.

[13] N. S. Artan and H. J. Chao, “Tribica: Trie bitmap content analyzer
for high-speed network intrusion detection,” in Proc. of the 26th IEEE
Infocom Conference, Anchorage, AL, May 2007.

[14] S. Dharmapurikar and J. W. Lockwood, “Fast and scalable pattern
matching for content filtering,” in Symposium on Architectures for Net-
working and Communications Systems (ANCS), Princeton, NJ, Oct. 2005,
pp. 183–192.

[15] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Commun. of the ACM, vol. 18, no. 6, pp. 333–343,
June 1975.

[16] J. Kytöjoki, L. Salmela, and J. Tarhio., “Tuning string matching for huge
pattern sets,” in Proc. of 15th Combinatorial Pattern Matching (CPM),
Morelia, Mexico, June 2004, pp. 211–224.

[17] R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao, “A fast pattern-
match engine for network processor-based network intrusion detection
system,” in Proceedings of Information and Technology: Coding and
Computing (ITCC), Las Vegas, NV, Apr. 2004, pp. 97–101.

[18] Z. Galil, “On improving the worst case running time of the Boyer-
Moore string matching algorithm,” Commun. of the ACM, vol. 22, no. 9,
pp. 505–508, Sept. 1979.

[19] G. Navarro and M. Raffinot, “New techniques for regular expression
searching,” Algorithmica, vol. 41, no. 2, pp. 89–116, Nov. 2004.

[20] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspec-
tion,” in Proc. of ACM/IEEE symposium on Architecture for networking

and communications systems (ANCS), San Jose, CA, Dec. 2006, pp. 93–
102.

[21] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware hash-
ing functions for high performance computers.” IEEE Trans. Comput.,
vol. 46, no. 12, pp. 1378–1381, Dec. 1997.

[22] Virtex-II Pro and Virtex-II Pro X platform FPGAs: complete data sheet,
Xilinx Inc., Oct. 2005.

[23] M. Norton, “Optimizing pattern matching for intrusion detection,”
Sourcefire, Inc., Tech. Rep., 2004. [Online]. Available: http://www.snort.
org/docs.

[24] J. O. Kaphart and W. C. Arnold, “Automatic extraction of computer virus
signatures,” in Proc. of 4th Virus Bulletin of International Conference,
Abingdon, England, Sept. 1994, pp. 178–184.

[25] H. Song and J. W. Lockwood, “Multi-pattern signature matching for
hardware network intrusion detection systems,” in Proc. of the 48th IEEE
Globecom Conference, St. Louis, MO, Nov. 2005.

[26] N. S. Artan and H. J. Chao, “Tribica: Trie bitmap content analyzer
for high-speed network intrusion detection,” in Proc. of the 26th IEEE
Infocom Conference, Anchorage, AL, May 2007.

[27] Y. H. Cho and W. H. MangioneSmith, “A pattern matching coprocessor
for network security,” in Proc. of ACM/IEEE Design Automation Confer-
ence (DAC), Anaheim, CA, June 2005, pp. 234–239.

Figure 3.12: Comparisons between the BFAST and other architectures.

from Lmin to Lmax. Because the lengths may range from a few characters to

hundreds, implementing so many Bloom filters is impractical. Splitting a long

string into substrings of t characters and seeking the partial matches can solve

the problem [SL05], but the number of Bloom filters is still G(t−m+1) (e.g., 96

Bloom filters for G = 4 in [SL05]). G is constrained by reading so many strings

from the text simultaneously for parallel queries. The throughput is only around

2 Gbps with four parallel engines. The design also requires more logic cells than

the BFAST architecture.

Dharmapurikar and Lockwood combine Bloom filters with an NFA represent-

ing the patterns2 [DL05], and use the pairs of (q, x) as keys to index a hash table

for the next states and failure links, where q denotes the current state and x de-

notes a string of at most k characters. Tracking the NFA by k characters at once

involves looking for the longest match of the next k characters in the table. The

design assumes real matches are rare and Bloom filters can exclude unsuccessful

2The method is a combination of finite automata and filtering. We arbitrarily discuss it in
the filtering-based category.

68

searches. Because a match may fall across a k-character boundary, k state ma-

chines are deployed, each of which starts at the offset of one more character from

the beginning of the text. Generally, inspecting k characters in parallel requires

k2 Bloom filters, and k2 characters are read from the text buffer simultaneously

because each state machine reads k characters at once. The number of Bloom

filters and the characters read in parallel will grow fast as k increases, while in

the BFAST architecture, the number of Bloom filters is linear to the number of

characters effectively inspected in parallel and only b = 4 characters are read in

each iteration. The design uses similar amount of memory to ours, even though

only around 2,000 patterns are inside.

Papadopoulos and Pnevmatikatos [PP05] use Cyclic Redundancy Check (CRC)

functions generated from the patterns as the hash functions. A replicated struc-

ture is in charge of each pattern length. Splitting long patterns into several

short ones and reusing structures for the short patterns can reduce the number

of structures. This strategy may be rather complex for a pattern set of many long

patterns, such as that in ClamAV. Sourdis et al. [SPW05] select a unique sub-

string from each pattern, and extract only necessary bits from the substrings that

can distinguish themselves from others. The bits in the text are mapped with a

perfect hash function for information of a pattern. The perfect hash functions

exist by grouping the patterns so that each pattern has unique bits to distinguish

itself from the others in the same group. This design avoids the problem with

long patterns, but the hash trees should be replicated as many copies as the num-

ber of groups. Both designs can filter two characters at once, but the replicated

structures increase with the number of characters. The required logic cells for

filtering only two characters at once are more than or slightly fewer than those

of the BFAST architecture, let alone more characters at once. An ASIC imple-

mentation also could be a problem, as the hash functions cannot be reconfigured

69

with updated patterns.

The TriBiCa (Trie Bitmap Content Analyzer) that builds a trie structure to

identify whether a window of characters belong to a set or not [AC07]. TriBiCa

features member identification that can indicate the matched member if the win-

dow is in the set, so the verification becomes trivial when a suspicious match is

found. Because the window advances only one character at once, a single match-

ing engine achieves the throughput of 2.5 Gps at 300 MHz. Four engines should

work in parallel can achieve 10-Gbps throughput. The Snort signature set in this

design takes around 540 kb of memory.

3.5.3.2 Compared with automata-based architectures

We compare the BFAST architecture with the automata-based architectures in

terms of the solutions to inspecting multiple characters at once. Tan and Sher-

wood [TS06] split an automaton into several small ones in the bit level. Because

the number of transitions is greatly reduced with one or a few input bits, ex-

panding the automata to track multiple characters at once is facilitated. For

example, at most 16 transitions are from a state in an one-bit automaton when

four input characters are read. This design is not scalable to a large pattern set.

Due to the length of state encoding and the partial match vector, the patterns

must be partitioned into rule modules, each of which needs circuit overhead such

as decoders and multiplexers. Even though we use their suggested values to min-

imize the memory space, i.e., 16 patterns and 4 state machines per rule module,

and 8 bits in state encoding, accommodating 12,288 patterns needs totally 768

rule modules, meaning that the input characters will be simultaneously fed to so

many modules. The total memory requirement becomes 4.6 MB in their calcu-

lation method. When k characters are tracked at once, the number of next state

70

pointers in a rule module will be exponential to k. The rule modules should be

also duplicated k copies for each character offset in the block of k characters. The

overall cost is therefore prohibitively high for large k.

Sugawara et. al. [SIH04] proposed a compact data structure of the transition

table for tracking multiple characters at once with hardware assistance. Their

observation is that only a subset of k-character blocks and their suffixes suffice

to determine the next states after k characters. However, the number of different

blocks and their suffixes still increases significantly for large k in a large pattern

set, making the scalability a problem. They tested the design on three rather

small pattern sets of at most 180 patterns, and the table size is nearly 600 kb for

only 180 patterns with k = 4, let alone a much larger pattern set.

Tseng et al. [TLLar,LTLar,LTH07,TLL05] build root-index tables to derive

the next state after several characters from the root state, and pre-hashing tables

to find a failure in the other states that leads to the root state. However, it has

two limitations in scalability. (1) Concatenating the addresses in the root-index

tables may lead to a long address to index the next table. For example, if each

index table takes 8 bits to encode the characters in a given position, tracking four

characters needs a 32-bit address (from four index tables), meaning 4G entries

in the next table. (2) A failure in the tracking is unlikely to go back to the root

state for a large pattern set, since the input character leading to a failure is likely

to be the first character of some pattern, and the state transition should go to

the next state from the root state according to the input character. Therefore,

the benefit of tracking multiple characters from the root state diminishes.

The work of Lunteren [Lun06] features high efficiency in storage by compress-

ing the AC automaton in a B-FSM data structure, which contains transition rules

for fast lookup, given the current state and input character. Running from 100

71

to 125 MHz, a single B-FSM that reads only one input character for each state

transition can achieve from 0.8 to 1 Gb/s. The design relies on aggregating the

processing rate from multiple data structures of transition rules.

3.5.3.3 Linear time vs. sub-linear time

We do not intend to compare with all of existing architectures, but discuss the

pros and cons of realizing a sub-linear time algorithm in hardware. The longer

the patterns, the longer the distance that the search window can slide in a sub-

linear time algorithm, while the cost of a long shift distance is low. The anti-virus

applications typically have long patterns [KA94], so they could be a good target

application. In applications such as Snort, the patterns may be as short as only

one character. The BFAST architecture can still work for short patterns, but

its performance is not optimal. This is a general weakness of a sub-linear time

algorithm, which cannot skip longer than the shortest pattern length without

inspection, or it may miss a match. However, a very short pattern has its own

pitfall. An obvious problem is that false positives are likely to occur. Although

verifying the context information in the rules can reduce the number of false

positives, an attacker can infuse the short patterns in the text to force frequent

verification. Therefore, we believe such performance degradation is common for

existing designs, and should be addressed in research beyond string matching.

Another often criticized weakness is the worst-case performance. An attacker

can exploit the weakness with an algorithmic attack. Although it is possible to

implement a design that normally performs in sub-linear time and keeps in linear

time in the worst case, as we have demonstrated in Section 3.3.4, the design

has additional overheads. Reducing the overheads deserves future study. In

comparison, a linear-time algorithm can guarantee the worst performance, but at

72

the cost of replicated hardware components for parallel matching and thus higher

limitation in scalability. There is a tradeoff between scalability and the need of

deterministic performance. For most ordinary traffic, BFAST has an edge over

other architectures. Unlike most of existing designs aiming at 2, 000 ∼ 3, 000

patterns in Snort, BFAST can support more than 10,000 patterns in a single

engine. In summary, we believe such sub-linear time algorithms in hardware is

promising, just like those in some software packages.

3.6 Conclusion and future work

This work designs the BFAST architecture using Bloom filters to realize a sub-

linear time algorithm in hardware. It can inspect multiple characters at once in

effect based on algorithmic heuristics to boost the throughput up to 5.64 Gbps for

more than 10,000 virus signatures, while the worst throughput is 1.2 Gbps with

properly specified signatures. If the block size is eight characters, the throughput

can be up to 9.34 Gbps for 16,384 patterns. The architecture needs only m Bloom

filters and reads a block of only b = 4 characters from the text per iteration, and

features low hardware cost and memory usage for high throughput. Although a

method to guarantee linear worst-case time complexity is proposed, a more light-

weight solution to reduce the overheads deserves further study in the future.

An increasing number of signatures are represented in regular expressions.

This architecture can support regular expressions by filtering the text with nec-

essary substrings in the regular expressions. The presence of a regular expression

is verified only if the substrings in it are all found. This filtration-then-verification

method is common in open-source packages such as Snort and ClamAV. Support-

ing regular-expression matching all in hardware is the next work we will pursue.

73

CHAPTER 4

A Hybrid Algorithm of Backward Hashing and

Automaton Tracking for Virus Scanning

4.1 Introduction

Scanning the content on network or storage devices for viruses involves com-

putationally intensive string matching against a pattern set of virus signatures.

Although designing an efficient method for high-speed content inspection has

sparked a number of innovations lately, most of them look to hardware approaches

that offload string matching to a specialized hardware engine [LLLar], especially

for Snort-style intrusion detection (www.snort.org); however, as many anti-virus

applications run on software environment (e.g., a commodity computer), deploy-

ing a hardware accelerator is costly and inflexible. Compared with intrusion

detection, anti-virus applications are relatively inconspicuous as a target to be

accelerated. Therefore, we believe a scalable and fast string-matching algorithm

and its efficient software implementation are still desired for anti-virus scanning.

Modern computer architecture brings new challenges to software implementa-

tion. A compact data structure to improve cache locality becomes critical because

of the “memory wall” — memory access is slow [WM95]. Anti-virus applications

have a much larger pattern set than Snort, which has only thousands of patterns.

For example, ClamAV (www.clamav.net) has claimed a set of more than 200,000

74

patterns. A large pattern set not only demands large memory space, but also

significantly slows down string matching. Carefully tuning the data structure is

getting critical to the performance.

A common class of methods track a finite automaton that accepts the patterns

in the pattern set, such as the Aho-Corasick (AC) algorithm [AC75]. The track-

ing generally reads one character in the text per iteration. Although some can

track multiple characters per iteration with hardware assistance for high perfor-

mance [DL05,SIH04], implementing them in software is not so efficient. The data

structure of the automaton contains the transitions from each state and the fail-

ure links, and should be compressed in a compact representation [TSC04,Nor04].

The existing compression methods have two limitations. First, many of them

rely on hardware assistance for fast tracking, but their software implementation

is sequential and much slower. Second, the pattern set in anti-virus applications

is much larger than that in intrusion detection, and virus signatures are gener-

ally long (may be up to hundreds of characters) to avoid false positives, making

compression even challenging.

Another class of methods moves a search window through the text to check

whether it contains a suspicious match or not [EC05, WM94]. Assuming most

of the text is legitimate, these methods can quickly exclude the legitimate text,

and verify only the suspicious matches. The patterns can be represented in a

compact data structure such as a shift table or a Bloom filter. There is a tradeoff

in deciding the window size [EC05]. A large window size is preferred because

matching a long window implies large likelihood of a true match and thus reduces

the verification frequency. However, matching a short pattern within the window

becomes difficult. Some of the methods can accelerate the scanning by skipping

the characters not in a match based on algorithmic heuristics from a block of

75

characters within the search window, such as the Wu-Manber algorithm [WM94].

They are generally fast, but have the Achilles’ heel — the maximum skip distance

is bounded by the shortest pattern length in the pattern set. These methods

therefore have the problem with short patterns.

According to the above observation, either class of methods has its limitations.

Because most of the patterns in anti-virus applications are long to reduce false

positives [KA94], we can exploit the feature to increase the efficiency while reduc-

ing the memory requirement. This work presents a hybrid method that combines

the AC algorithm and a variant of the WM algorithm, namely the backward

hashing (BH) algorithm. The patterns of virus signatures are partitioned into

long and short ones, separated by a length threshold. The BH algorithm can scan

for only long patterns to derive long shift distance of the search window. The

character distribution in both the patterns and the text is non-uniform, mak-

ing the shift distance shorter and the verification frequency higher than those in

theoretical analysis, so the performance is slowed down. The backward-hashing

mechanism can effectively reduce the verification frequency and exploit long shift

distance if there is a chance. After the partition, the AC algorithm can scan only

the relatively small set of short patterns. The data structure of the automaton

is compact and saves the memory space. The method is applied to ClamAV to

improve its performance. Some factors in software implementation such as cache

locality will drastically affect the overall performance, and this work will also

discuss them in practical implementation.

The rest of this paper is organized as follows. Section 4.2 reviews the existing

work for string matching for virus scanning. Section 4.3 presents the details

of the hybrid method and the practical implementation issues, followed by the

performance evaluation of the algorithm in Section 4.4.1. Section 4.5 concludes

76

this work and points out future work.

4.2 Review of existing work

4.2.1 String matching algorithms

Scanning the text for multiple patterns typically tracks the partially matched

prefixes with a finite automaton that accepts the patterns, or filters the text with

a search window to weed out unsuccessful matches and verifies only suspicious

matches. The former features the deterministic execution time that guarantees

the worst performance even though algorithmic attacks are present to exploit the

worst case of an algorithm, but may require large memory space to store the

transition information. The latter features memory economy and fast average

execution time, but must carefully deal with possible attacks.

Recent automaton approaches focus on fast tracking a compressed automaton

with hardware assistance [DL05,Lun06,AC07,TS06,BCT06], but their software

implementation is not as efficient as the hardware counterpart. Although some

compression methods are independent of hardware [Nor04,YCD06], their scala-

bility to a large pattern set of long virus signatures could be a problem. First,

the transition table is not so sparse due to the large pattern set. Second, the

method to simplify repetitions in the patterns [YCD06] is unable to compress the

characters in the long patterns.

A filtering approach can map the search window along the text with one or

more hash functions to see whether the window matches an entire pattern or part

of a long pattern. If a suspicious match occurs, whether a true match with that

pattern is verified. This approach is very memory efficient because a pattern is

stored as only a hash value or the bits in a few addresses. The window must

77

be long enough to reduce the verification frequency, but has two side effects:

longer time in hash computation and inability to match shorter patterns [EC05].

Moreover, the window can slide by only one character per iteration.

The algorithms such as the WM algorithm can map only the suffix of the

search window, ignore the remaining characters in the window, and shift the

window to the next position according to certain heuristics in the search stage.

To be specific, suppose the window is m characters long, and let X be the block

of b characters in the window suffix. The heuristic can look up the block in a shift

table (built in the preprocessing stage) to derive the shift distance as follows.

1. The search window can be shifted by m − b + 1 characters if X is not a

substring of any patterns. Any shift shorter than m − b + 1 cannot lead

to a match because this would contradict that X does not appear in any

patterns.

2. Otherwise, the shift value is m − j, assuming the rightmost occurrence of

X ends in position j of some pattern. If j = m (i.e., zero shift value), X is

the suffix of one or more patterns, so whether a true match occurs should

be verified.

The maximum shift distance is m−b+1, meaning it is bounded by the shortest

pattern length. Although using a heuristic like that in [?] allows the maximum

distance up to m characters, building the shift table becomes extremely time-

consuming for large b because up to |Σ|b possible blocks should be considered to

build the table, where Σ is usually the ASCII character set and |Σ| is 256.

Mapping multiple blocks to the same entry, in which the minimum shift value

of these blocks is filled in, can compress the shift table [WM94]. There are

tradeoffs in the table compression. Reducing the table size can improve the cache

78

locality, but at the cost of smaller shift values (due to the minimum shift values of

multiple blocks) and more frequent verification (due to the increasing likelihood

of a zero shift value). On the contrary, expanding the shift table can derive

larger shift values, but at the cost of worse cache locality. Therefore, the table

size should be carefully tuned to achieve the optimal performance. Moreover, the

non-uniform character distribution in the text and the patterns means that some

characters or blocks appear more frequently than that in probabilistic analysis. A

frequent block may happen to be the suffix of some pattern, resulting in frequent

verification. The possibility increases with the size of pattern set. This problem

should be solved, or the verification frequency may be high.

4.2.2 Virus signatures and string matching in ClamAV

The virus database in ClamAV grows very fast lately, containing more than

200,000 signatures at the time of writing (April 2008). The database contains four

types of virus signatures: basic patterns, multi-part patterns, MD5 patterns and

phishing patterns (See clamdoc.pdf and signatures.pdf in the source package).

A basic pattern is simply a string of characters for exact match, while a multi-part

pattern consists of multiple parts of basic patterns to be matched in sequence for

virus identification. The former is sufficient to detect non-polymorphic viruses,

and the latter allows specifications such as wildcard characters and bounded gaps

(the minimum or maximum distance between two consecutive parts) to detect

polymorphic viruses. MD5 matching spends most of the time in MD5 computa-

tion, and then checks whether the 16-byte output is a MD5 signature. Phishing

matching checks whether a URL is in a URL list. The latter two types are be-

yond the scope of this work because matching them differs from ordinary multiple

string matching that scans long text for multiple patterns.

79

Table 4.1: The number of parts or basic patterns and their minimum/maxmum

lengths in each target type.
Aho-Corasick (AC) Wu-Manber (WM)

Type num. min max. num. min. max.
Generic 4,704 2 144 29,794 10 246
MS PE 2,878 2 176 48,852 4 392

MS OLE2 1,474 2 134 177 23 176
HTML 3,142 2 140 1,629 5 355
Mail 390 3 120 838 12 172

Graphics 2 3 26 0 N/A N/A
ELF 0 N/A N/A 15 17 198

Subtotal 12,590 2 176 81,305 4 392
MD5 0 N/A N/A 143,641 0 0

Phishing 206 6 43 0 N/A N/A
Total 12,796 2 176 224,946 4 392

The patterns can come with context information such as target file type,

virus position in the text and so on to reduce false positives. For example, the

signature W32.Deadc0de is a four-character basic pattern: 0xdec0adde. The

pattern is required to start from the 64th byte in a file of Portable Executable

(PE) format, or the match will not be claimed. ClamAV separates the patterns

other than generic ones into individual data structures according to the target

type. Therefore, after determining the target type of the text, ClamAV can scan

for only the patterns associated with that type, besides the generic patterns.

The current version of ClamAV (version 0.92) scans the text with both the AC

algorithm for parts in the multi-part patterns and the WM algorithm 1 for basic

patterns. Table 4.1 summarizes the number of parts or basic patterns, as well as

their minimum/maximum lengths for the two algorithms in each target type.

An old version of ClamAV simplified the AC automaton to a trie structure up

to a maximum height h. The patterns with identical prefixes of h characters are

1ClamAV calls it the Boyer-Moore (BM) algorithm, but the algorithm actually operates in
the same way as the WM algorithm.

80

stored in a linked list pointed by a leaf node at level h. Because the minimum

pattern length for the AC algorithm is only two characters, h was set to 2, and

the linked list was increasingly longer as the pattern set grows. Traversing the

long linked list is time-consuming. Miretskiy et al. [MDW04] proposed a trie

structure that can stores a pattern at the lowest possible level as soon as the

pattern’s unique prefix is identified, but the automaton still needs the space to

accommodate thousands of patterns. The scalability issue still remains unsolved.

The trie structure is inherently expensive in space because each node in it must

contain 256 pointers, each of which either points to the next node or is null. If a

pointer takes 4 bytes, the pointers alone in a node take 1 KB space.

Erdogan and Cao [EC05] presented a filtering approach named Hash-AV to

weed out most of the legitimate text with a Bloom filter [Blo70], which can

reside in the L2 cache due to its space efficiency. The design selects a window of

seven characters for the filtering and four hash functions to reduce the number of

false positives. Because the Bloom filter is unable to handle the patterns shorter

than seven characters, they are left to the AC algorithm for multi-part patterns.

The search window in Hash-AV does not skip any characters in the text, unlike

the original WM algorithm in ClamAV. Hash-AV prefers to abort the benefit

of skipping because the search window is rather short in ClamAV due to the

short patterns, and the short window significantly limits the skip distance. Using

only three characters to derive the distance also results in high false-positive

rate. However, we believe the skipping is still beneficial to high performance if

the search window could be somehow lengthened. Moreover, Hash-AV does not

improve the AC algorithm in ClamAV at all.

81

4.3 The hybrid algorithm and practical issues

This work partitions the patterns in ClamAV into long and short ones. The

BH algorithm is responsible for only long patterns to lengthen the average skip

distance, while the AC algorithm scans for only short patterns to reduce the

automaton sizes.

4.3.1 The BH algorithm

The WM algorithm implementation in ClamAV faces several practical perfor-

mance issues. First, the block to derive the shift distance consists of only three

characters (i.e., b = 3). Although the block size seems sufficient to weed out most

false positives (i.e., suspicious matches that should be verified) from a probabilis-

tic aspect, it is not the case in practice due to non-uniform block distribution.

For example, the block ‘0x00 0x00 0x00’ is frequent in Windows executable files.

The false-positive rate will be higher than expected if the block is the suffix of

some pattern. For example, the rate is around 37% in our study on a sample

set of Windows executable files. Extending the block size can reduce the false-

positive rate, but it has three side effects. (1) Computing the hash function to

look up a large block in the shift table takes longer time. (2) The maximum

shift distance in the WM algorithm is m − b + 1. Increasing b will also shorten

the maximum distance. (3) Although the heuristic such as that in [?] allows the

maximum distance up to m characters, filling up the shift table in the preprocess-

ing stage will be time-consuming for large b. We will discuss this point in detail

later. Second, the search window in the implementation is rather short because

the pattern set has a pattern as short as only four characters (See Table 4.1).

Skipping longer than the shortest pattern length may miss the shortest pattern

because it may happen to appear in a position between two consecutive skips.

82

Fig. 1 The illustration of a missed match in the FNP2 algorithm

This example illustrates that the shift of the search window should not go beyond the PSW.

H C R A ESERHCTAM G N I R T S

HCT A M

PSW
search window

text

pattern

Figure 4.1: The illustration of a missed match.

This factor restricts the effectiveness of applying the WM algorithm to ClamAV.

We use the following methods in the backward hashing (BH) algorithm to

solve the aforementioned problems.

4.3.1.1 A better heuristic to determine the shift distance

The heuristic in the WM algorithm is conservative because it considers only the

entire block to derive the shift distance — If the rightmost block X does not

appear in the pattern set, the shift value is m− b + 1. The value could be larger

if X’s suffix is also considered. For example, if neither X appears in the patterns

nor any X’s suffix is a prefix of some pattern, the shift value of m is safe, i.e., no

match will be missed. Liu et al. have a similar observation in their method that

indexes the shift table from the prefix sliding window (PSW) [LHC04], but the

forward search may result in false negatives. Figure 4.1 illustrates an example to

show the shift should not go beyond the PSW. If the characters beyond the PSW

are not examined, no match should be excluded. In this example, the pattern

‘MATCH’ will be missed if the shift distance is longer than three characters.

The BH algorithm looks backward in the search window instead. Because the

characters in the suffix have been examined, shifting beyond them is safe.

The new heuristic is formally stated as follows.

83

1. If neither X appears in the pattern set nor any suffix of X is a prefix of

any pattern, the shift value can be m if m ≥ b, or b otherwise.

2. X does not appear in the pattern set, but it has at least one suffix that is

also the prefix of some pattern. Let k be the longest length of such a suffix.

The shift value can be m− k if m ≥ b, or b− k otherwise.

3. X is a substring of some pattern if m ≥ b, or some pattern is a substring

of X otherwise. In the former case, the shift value is m − j, assuming the

rightmost occurrence of X ends in position j of some pattern. If j = m, X

is the suffix of some pattern, and whether a true match occurs should be

verified, after which the search window is shifted by one character. In the

latter case, a match is claimed.

The shift value for every different X is calculated and stored in a shift table

in preprocessing, so a simple table lookup can derive the shift distance, just as

simple as that in the WM algorithm. The maximum shift value is m, rather than

m− b + 1.

Like the WM algorithm, the BH algorithm builds a shift table in the prepro-

cessing stage according to the above heuristic. Suppose a block X is mapped to

the table with the hash function h. The steps are as follows.

1. Initialize each entry in the shift table to max(m, b). This value is filled

because the maximum shift distance is m if m ≥ b, and b otherwise.

2. For all x = x1 . . . xq that is a prefix of some pattern, where 1 ≤ q <

min(m, b), set SHIFT[h(yx)] to max(m, b)− q, for all y ∈
∑b−q.

3. For every block X that is a substring of some pattern, set SHIFT[h(X)] to

m − j, where the rightmost occurrence of X ends at position j. If b > m,

84

this step will be ignored because no such X exists.

4.3.1.2 The bad-character heuristic

Increasing the block size b can reduce the false-positive rate, but the increase

also complicates the build-up of the shift table. For example, the preprocessing

stage needs to map all possible blocks whose last character (a suffix) is also

the first character (a prefix) of some pattern to fill in the shift value of m − 1.

For each pattern, totally |Σ|b−1 blocks have the last character that is also the

first character of that pattern. In other words, the number of blocks increases

exponentially to b, making building the shift table with a large block size very

expensive in preprocessing.

The bad-character heuristic intends to reduce the false-positive rate while

keeping the block size manageable. Moreover, it attempts to exploit a large shift

value if possible. The block size is still 3, while the heuristic avoids immediate

verification by checking the additional blocks B1,B2,. . . ,Bbm/bc to exploit a larger

shift value if needed, where Bj denotes the j-th non-overlapping block counted

backward from the window suffix. We give a trivial example in Figure 4.2 to

justify the derivation of a safe shift from Bj. Suppose the algorithm scans for only

a pattern XAMPAMPLE. The rightmost block PLE in the search window matches the

the pattern suffix, so the hashing goes on to the next block XAM, whose position

is 3 characters away from its rightmost appearance in the pattern. Therefore,

shifting the search window by 3 character is safe.

The heuristic also looks up Bj in the shift table. Let SHIFT[Bj] be the shift

value derived by mapping Bj to the table. Because the shift values in the table

are computed with respect to B0, they are not directly applicable to Bj. However,

we still have a chance to exploit the shift values for Bj. In the above example,

85

ELPMAPMAX

ELPMAXEDRIEW

pattern

text

3 characters

ELPMAENON

ELPMAXEDRIEW

pattern

text

7 characters

search window

search window

Figure 4.2: The heuristic in the bad-block heuristic.

SHIFT[XAM] is 6 because XAM ends at position 3 and the pattern length is 9. From

the value in the shift table, we can derive XAM’s position and infer the safe shift

distance.

Two subtleties are in the heuristic. (1) To compress the shift table, multiple

blocks are mapped to the same entry, in which the minimum shift values of them

is filled in. Therefore, the shift value derived in the heuristic may be smaller

than it should be, but it is still safe — no match will be missed. (2) The shift

table implies only the position of a block’s rightmost occurrence, and it losses the

exact information such as whether a block appears in a specific position or appears

multiple times in the patterns. Figure 4.3 illustrates an example to illustrate the

information lost in the shift table. In this example, because PLE is the pattern

suffix, SHIFT[PLE] is 0. When the heuristic checks the block B1 =PLE in the table,

it knows only that PLE appears in the pattern suffix. Whether PLE also appears at

position 4–6 is unknown from the table, even though a shift of 6 characters is safe

in this case. In general, if SHIFT[Bj]> jb, a shift of SHIFT[Bj]−jb characters

is safe; otherwise, the bad-block heuristic has better be conservative and keeps

on checking Bj+1 for not missing any match. The correctness of the bad-block

heuristic is proved as follows.

Theorem 1. The shift value derived in the bad-block heuristic is safe. That is,

if SHIFT[Bj]> jb, a shift of SHIFT[Bj]−jb characters is safe.

86

ELPMAPMAX

ELPMAXEDRIEW

pattern

text

3 characters

ELPEDRNON

ELPELPEDRIEW

pattern

text

search window

search window

1 2 3 4 5 6 7 8 9 position

Figure 4.3: An example to illustrate the information lost in the shift table.

Proof. Suppose a match occurs when the search window is shifted by a shift s,

where s < SHIFT[Bj] − jb . This means there is a Bj that ends at position

m− jb− s, which implies

SHIFT[Bj] ≤ jb + s

< jb + SHIFT[Bj]− jb

= SHIFT[Bj].

(4.1)

Equation 4.1 leads to a contradiction, i.e., if the search window is shifted by

less than SHIFT[Bj]−jb, no match should occur. A shift of SHIFT[Bj]−jb is

thus safe.

4.3.2 The hybrid method

The performance of the BH algorithm is subject to the shortest pattern length,

so we leave out the patterns shorter than ` to the AC algorithm. On the contrary,

patterns whose lengths are longer than or equal to ` in the AC algorithms are

left to the BH algorithm. This approach is feasible because both algorithms

track with basic patterns without special characters such as wildcards, which

are left to the verification stage. The only difference is that the AC algorithms

need to track multiple parts of basic patterns in the multi-part patterns after

the individual parts are matched. In the hybrid method, therefore, the patterns

transferred to the AC algorithm can be thought of as single-part patterns with

87

Table 4.2: The number of parts or basic patterns in each target type after sorting

out them.
` = 9 ` = 12 ` = 15

Type AC BH AC BH AC BH
Generic 1,011 33,487 1,335 33,163 2,038 32,460
MS PE 1,398 50,332 1,626 50,104 1,859 49,871

MS OLE2 90 1,561 145 1,506 226 1,425
HTML 452 4,319 725 4,046 854 3,917
Mail 156 1,072 175 1,053 231 997

Graphics 1 1 1 1 1 1
ELF 0 15 0 15 0 15
Total 3,108 90,787 4,007 89,888 5,209 88,686

orig. total 12,590 81,305 12,590 81,305 12,590 81,305

optional context information, and the multi-part tracking function is duplicated

in the BH algorithm when the individual parts are found.

Because the block size is 3, the length threshold is chosen to be a multiple

of 3 for easy implementation. Here we set ` = 9, 12 and 15, and sort out the

patterns according to the threshold. Table 4.2 lists the number of parts or basic

patterns in each target type after the re-arrangement. In the table, the number of

AC patterns is only 24.7% ∼ 41.4% of the original number on average, meaning

the pattern set becomes only one-fourth to half of the original set. Although

the decreased patterns are moved to the BH algorithm, they contribute just

9.1% ∼ 11.7% more patterns to it. Given that the maximum shift distance is

three to five times longer, the change is still beneficial.

88

4.4 Parameter selection and evaluation

4.4.1 Parameter selection

The hybrid method should properly chooses several parameters to optimize the

performance, including the size of the shift table for good cache locality and the

length threshold to separate the patterns. The following subsections will discuss

the choices. We run the experiments on a PC with a 1.6 GHz Xeon E5310 quad-

core CPU, which has L1 cache of 64 kbytes for each core and 2x4 MB L2 cache

on the chip. The characteristics of the patterns from ClamAV version 0.92 has

been list in Table 4.1. We collected a set of Windows executable files of around

70 MB to be scanned for the patterns because the generic signatures and those

for files of Microsoft Portable Executable (PE) format dominate the total pattern

set in ClamAV.

The WM algorithm in ClamAV maps a three-character block with the hash

function h(x1, x2, x3) = 211x1 +37x2 +x3, where x1, x2 and x3 are the characters

in a block. The search window consists of only three characters due to the shortest

pattern length2. According to the heuristic in the WM algorithm, the shift values

are very short, consisting of only 0 and 1. Around 46.6% of the entries are 0 in the

shift table for generic signatures, and around 75.9% are 0 for signatures associated

with MS PE format. Therefore, the average shift value is only 0.28 characters on

average, meaning that most of the scanning time is spent in verification and the

benefits of skipping in a typical WM algorithm is sacrificed.

We tested the performance for various table sizes and the length thresholds.

The experiment controls the table sizes by tuning the hash functions. The size is

roughly doubled by the hash function h(x1, x2, x3) = 422x1 + 74x2 + x3, quadru-

2The shortest pattern length in the WM algorithm is 4, so the implementation could be a
little bit more aggressive to set m = 4

89

Table 4.3: The shift values for various table sizes and length thresholds.
0.5x 1x 2x 4x 8x

` = 9 1.56 2.22 3.10 4.1 4.93
` = 12 1.78 2.47 3.65 5.11 6.37
` = 15 1.90 2.70 4.09 5.96 7.61

pled by h(x1, x2, x3) = 844x1 + 148x2 + x3, and so on. The larger the table size,

the larger the average shift values because fewer blocks are mapped to the same

table entry. However, a large table also reduces the cache locality. The length

thresholds are set at ` = 9, 12 and 15. Table 4.3 presents the shift values for var-

ious cases in the experiment, where 1x denotes the original table size in ClamAV

implementation, 2x denotes double the size, and so on.

Two observations are in Table 4.3. First, scanning for only the long pat-

terns can significantly increase the average shift distance. Second, the average

shift distance is still much shorter than the maximum one (i.e., `) because of the

compressed table. Despite the short shift distance on average, the verification

frequency is significantly decreased. The backward hashing checks all the char-

acters in a long search window, and can reduce the probability of verification,

which is invoked only when checking every blocks in the search windows derives

a shift value of 0.

Table 4.4 presents the execution time of the BH algorithm in each case. The

execution time includes only that in buffer scanning to make the effect of the BH

algorithm obvious. The other stages, such as buffer loading, decompression and

so on are not counted. Although the shift values increase with `, as presented in

Table 4.3, the differences in the execution time is insignificant. Because of the

non-uniform character distribution, checking only the rightmost block, as that

in the WM algorithm, could lead to frequent verification, but the BH algorithm

checks every block in the search window. The insignificance of the execution

90

Table 4.4: The execution time (in seconds) for various table sizes and length

thresholds.
0.5x 1x 2x 4x 8x

` = 9 0.83 0.14 0.21 0.35 0.53
` = 12 0.83 0.14 0.21 0.33 0.49
` = 15 0.83 0.14 0.20 0.32 0.45

time has two implications. First, checking the blocks in a search window of

` = 9 characters is sufficient to reduce the verification frequency. Increasing `

contributes little to reduce the frequency and in turn the execution time. Second,

the bottleneck is the verification, and the backward hashing can effectively reduce

its frequency. Combining the benefits of a long search window and backward

hashing, the BH algorithm is much faster than the original implementation, which

takes 14.19 seconds.

Because the AC algorithm has fewer patterns, its execution is also faster than

the original implementation, but the acceleration is not so significant as that in

the WM algorithm. The original AC algorithm takes 15.74 seconds to scan these

executable files. The execution time becomes 10.55, 10.71 and 10.78 seconds for

` = 9, 12 and 15, respectively. The results again shows ` = 9 is a proper length

threshold. The AC algorithm is still much slower than the WM algorithm, and

a bottleneck to be further improved in the future work.

4.4.2 Performance evaluation

Three major factors affect the execution time in the BH scanning: (1) shift

distance, (2) cache locality and (3) verification frequency. The three factors

interact with each other. For example, increasing cache locality means smaller

data structure, implying more information is “compressed” and higher verification

frequency. Reducing verification frequency needs a long search window, implying

91

the chance to exploit long shift distance.

Because the BH algorithm, which reduces the verification frequency, is much

faster than the ClamAV implementation, even when the table size is larger, which

implies worse locality. For example, when the table size is eight times larger in

Table 4.4, the BH algorithm is still much faster than the original implemen-

tation. We can infer reducing the verification frequency is more effective than

cache locality. Also note that reducing the table size too much has a negative

effect because compressing the information in the table size too much increases

verification frequency, even though the locality of accessing the table increases.

Looking at both Table 4.3 and Table 4.4, it can be seen that longer shift

distance does not imply better performance because the cache locality becomes

worse due to a larger shift table. But if we fix the table size, we can still see

the benefits of longer shift distance when the table size is large enough, e.g., the

table size 8x. Therefore, reducing cache locality is more effective than increasing

shift distance. The importance of the three factor becomes

verification frequency > cache locality > shift distance.

Note that reducing verification frequency needs a long search window. Al-

though long shift distance looks not very beneficial, it is a bonus and can be

“piggybacked” in the implementation of a long search window. There is no rea-

son not to allow longer shift distance for a fixed table size when we have a long

search window.

Table 4.5 compares the throughput between the original method and the hy-

brid method. The BH algorithm is 109 times faster than the original WM algo-

rithm, due to the longer shift distance and the verification frequency. Despite the

impressive acceleration for scanning non-polymorphic viruses, the improvement

92

Table 4.5: Comparing the throughput (Mb/s) between the hybrid method and

the original implementation in ClamAV.
(Mb/s) The original implementation The hybrid algorithm

Only WM/BH 41.26 4,197
Only AC 37.19 55.44

WM/BH+AC 19.56 54.72

over the AC algorithm is only 49% faster for polymorphic viruses. Because virus

scanning contains two passes of the WM/BH algorithm and the AC algorithm,

the overall improvement of the hybrid algorithm is 2.8 times faster.

4.4.3 Discussion of worst-case performance

It is theoretically possible to dramatically reduce the performance of a sub-linear

time algorithm such as the BH algorithm in some extreme cases. For example,

if the pattern set has a pattern aaaaa and the text consists of all a’s, then a

verification is needed for every shift of only one character in the text, and the

time complexity becomes super-linear. Although worst performance in linear time

for such algorithms is possible for single-string matching [Gal79], it is non-trivial

to guarantee so for multiple-string matching.

Things are not so bad in practice. A virus scanner can stop the scanning after

one or a few viruses are found, so the aforementioned worst case will not happen.

The algorithm can also detect an algorithmic attack by counting the number of

blocks that have been revisited in backward hashing. If the number of revisited

blocks in a piece of text is larger than a threshold, an algorithmic attack is likely

to happen, and an alarm is raised. By carefully scheduling the process of a slow

virus scanner, the negative impact from a slow process can be contained [EC05].

93

4.5 Conclusion

This work presents a hybrid algorithm that combines the backward hashing (BH)

algorithm for long patterns and automaton tracking in the AC algorithm for

short patterns to scan the large set of virus signatures in ClamAV. The former

can reduce the verification frequency and exploit long shift distance by backward

hashing in the search window. It also compresses the shift table for good cache

locality. The latter can effectively reduce the number of patterns in an AC

automaton. The hybrid algorithm is an efficient one to combine the benefits of

the traditional AC algorithm and the WM algorithm.

As multi-core processors become popular in the market, how to exploit the

parallelism in the processors to accelerate virus scanning becomes interesting.

Because the data structure is independent in both algorithms, and the pattern

set in ClamAV is classified according to the target type, virus scanning could be

a good candidate for parallelization on a multi-core processor. When the files or

network traffic consists of a mix of content that belongs to various types, there is

a potential of scanning each type on different processor cores. The two algorithms

can also independently run on two separate processors. The method to explore

the potential of parallelism is left for further study.

94

CHAPTER 5

Accelerating Web Content Filtering by the

Early Decision Algorithm

5.1 Introduction

A huge amount of Web content is widely accessible nowadays. As inappropriate

content such as pornography proliferates with the growth of World Wide Web,

access control of the content is demanded in some situations. For example, an

employer does not want the employees to watch stock information during working

hours, or parents do not want their children to browse pornographic content. Web

filtering products that enforce access control are therefore popular on the market.

They can be deployed either on a host computer (e.g., in a family), or on the

gateway for central management in a company or an Internet service provider.

Four major approaches are generally adopted in Web filtering nowadays:

Platform for Internet Content Selection (PICS), URL-based, keyword-based and

content analysis [LHF02]. According to a recent review of up-to-date Internet

filters, commercial products have widely adopted content analysis besides the

URL-based approach (internet-filter-review.toptenreviews.com). Con-

tent analysis automatically classifies the Web content into a category first, and

then makes the filtering decision, either to block or to pass the content, according

to the management policy. The analysis generally complements the URL-based

95

approach to relieve the effort of frequently updating the URL list and to reduce

the number of false negatives due to an outdated URL database.

The efficiency of content analysis algorithms is essential due to their com-

plexity. Slow analysis in Web filtering leads to long user response time and

also degrades the throughput of Web filtering systems. We therefore focus on

text classification, which remains an important and efficient approach to Web

content analysis, despite the research on image content analysis for Web filter-

ing [Wan01,Wan]. Moreover, image content analysis in Web filtering is mostly

designed for pornography recognition, but not as effective for content in other

banned categories.

Numerous text classification algorithms with high accuracy have been pro-

posed. They are designed primarily for off-line applications, such as Web catego-

rization for catalogs hosted by Internet portals. The research on these algorithms

mostly emphasizes on classification accuracy, but their efficiency on execution is

rarely addressed. However, their efficiency should deserve attention for on-line

applications such as Web filtering so that text classification will not slow down

these applications significantly.

This work presents a simple, but effective early decision algorithm to acceler-

ate Web filtering. The algorithm is based on the observation that it is possible to

make the filtering decision before scanning the entire content, as soon as the con-

tent can be confirmed with a high probability that it really belongs to a certain

category. The fast decision is particularly important, since most Web content is

normally allowed and should pass the filter as soon as possible.

96

5.2 Related Work in Web Filtering

5.2.1 Approaches of Web Filtering

A Web filtering system can either block HTTP requests according to their URLs,

or block the Web content using several approaches to be discussed later. The

former approach maintains a large database of banned URLs. If the URL in

a request is found in the database, the request is blocked. The database is

frequently updated by the collaborative effort of human reviewers.

URL blocking is very efficient in processing, and the content on the banned

sites will not occupy the bandwidth of the download link. However, since Web

sites on the Internet change very often and new sites grow extremely fast, the

database is unlikely to keep pace with the dynamic change of Web sites. Hence

the system may fail to ban some sites that should be banned.

Blocking the Web content can remedy the insufficiency of URL blocking.

Several types of information can help to determine whether a Web page should be

blocked. The Platform for Internet Content Selection (PICS) specification (www.

w3.org/PICS/) allows the content publishers to rate and label Web content so

that a Web filtering system can identify the category and judge the offensiveness

of the content according to the PICS information. However, labeling the Web

content is voluntary. Publishers of banned content may not want to label the

content and let their sites be banned. Hence a system cannot rely solely on the

PICS information to judge whether the content should be blocked or not.

Another simple approach is looking for offensive keywords in the Web content.

The keywords should be carefully selected, or false positives are likely to happen.

For example, using ‘sex’ as a keyword could possibly block Web content about

sex education. Therefore, detailed content analysis is often desired rather than

97

simple keyword blocking.

Content analysis is generally based on machine-learning methods. It involves

looking for representative features that tell the category of the content. The

features could be keywords, hyperlinks, images and so on [HCC06]. The classifier

on a Web filtering system first learns the features from a training set of Web pages

collected from both banned and allowed categories off-line. After the learning, the

classifier is able to judge the Web content according to the features. Most features

are text-based in practice, because text classification is more efficient than image

analysis and can classify content in categories other than pornography.

5.2.2 Text Classification Algorithms

Text classification is an important part in Web filtering because the text in

Web content provide rich features for filtering. Yang et al. and Sebastiani

[YL99,Seb02] surveyed and compared comprehensively existing text classification

algorithms, such as support vector machine (SVM), k-nearest neighbor (kNN),

neural network (NNet), decision tree and näıve Bayesian (NB). These algorithms

are shown to achieve around 80% or higher in accuracy, measured by the har-

monic average of recall and precision, where recall is defined to be the ratio of

the number of correct positive predictions divided by the number of positive ex-

amples, and precision is the ratio of the number of correct positive predictions

divided by the number of positive predictions.

Support vector machine (SVM) uses a process to find a decision surface that

can separate positive examples and negative examples in a multi-dimensional

feature space, in which training documents are represented as vectors. SVM

is efficient and can handle a large number of training examples, but it would be

difficult to find a kernel function to map vectors to the multi-dimensional space so

98

that both positive and negative examples are roughly linearly separable [HCC06].

The k-nearest neighbor (kNN) method labels the training examples in the

feature space to their categories. In the classification stage, the kNN method

selects k most similar documents (measured by the distance in the feature space)

in the training examples, and assigns the test document to the label that is the

most frequent one among the k nearest training documents. The kNN method is

very simple, but it had better allow the possibility that a document is assigned

to more than one category, or the accuracy may be degraded [YL99].

The neural network method (NNet) has been widely studied in artificial in-

telligence. A neural network is an adaptive system that consists of a group of

interconnected artificial neurons. The system can be trained to change its internal

states to reflect the association of the documents and their categories. Although

neural networks are efficient in handling both linearly and non-linearly separable

examples, the classification decision is not easily understandable because of the

“black-box” nature of the neural network.

A decision tree represents a test on an attribute as an internal node and

the test results as outgoing branches of that node. A document is classified by

traversing from the root node to a set of internal nodes successively based on

the test results on the attributes, until a leaf node is reached. The decision is

easily interpretable, but requires to carefully choose the attributes to avoid the

over-fitting problem.

Näıve Bayesian classification uses a probabilistic model, in which the proba-

bilities of words in a document that belongs to each category are estimated. The

probabilities can be used to estimate the most likely category of a test document.

We leave the details of NB in Section 5.3.2 because our work is based on NB.

Some research work has attempted to exploit the structural information, such

99

as hyperlinks and meta-information to improve the accuracy [GTL02, AGS99].

These methods require parsing the Web content to extract the semantical infor-

mation. This direction is currently beyond the scope of this work because the

parsing takes more time than our model of viewing the text as a sequence of

words, and may not be so efficient for real-time filtering.

5.3 The Early Decision Algorithm

This key idea of the early decision algorithm to accelerate Web filtering is that

making the filtering decision is possible before scanning the entire content, as

soon as the content is confirmed to really belongs to a certain category with a

high probability. The fast decision is particularly important for on-line filtering

because most Web content is allowed and should pass the filter as soon as possible.

Among the aforementioned algorithms in Section 5.2.2, we herein choose näıve

Bayesian classification to be the basis of the early decision algorithm because its

computation can be easily turned into score accumulation. The probability that

a test document belongs to each category can be easily estimated as the classifier

scans along the document. However, we believe that NB classification is by no

means the only algorithm that can make an early decision from part of the Web

content. Other text classification algorithms can follow the similar principle to

be introduced in this section to accelerate Web content classification.

5.3.1 Keyword Distribution

The early decision algorithm can make the filtering decision as soon as possible,

by scanning only the front part of the Web content. Because the algorithm does

not have to scan the entire content, the filtering is much faster. The trick is just

100

like one may not have to wait until the end of a speech to know its topic, as long

as the front part of the speech provides sufficient information about the topic.

The feasibility of the early decision algorithm comes from the observation that

the front part of the Web content has adequate keywords to indicate whether the

content should be blocked or passed. The keywords herein are defined to be words

from the banned categories with high “information gain” (www-2.cs.cmu.edu/

~mccallum/bow/rainbow), which, simply put, measures how indicative a word is

to help distinguish the category of content from the others. To justify the feasi-

bility, we investigated the keyword distribution in typical Web content collected

from the YAHOO directory service (www.yahoo.com). Figure 5.1 presents the

average distribution in Web content of both the banned and allowed categories.

On the horizontal axis is the keyword position normalized by the content length

of each Web page. The position is represented in percentage. For example, if a

keyword is the 50-th word in a 100-word Web page, then its position is at 50%.

On the vertical axis is the appearance probability of keywords in the positions

throughout the Web content. The probability is also represented in percentage.

According to Figure 5.1, the keywords in the banned categories start to appear

more frequently than those in the allowed categories since the front part of the

Web content. In other words, keywords from the front partial content can provide

the clue to identify the category that the entire content belong to. Therefore, it

is feasible to make the filtering decision before scanning the entire content.

Although the above observation is generally true in normal conditions, a ma-

licious user may deliberately stuff irrelevant content in the front part of the Web

page to deceive the filter. The deception is not difficult to avoid. First, the

early decision algorithm strips the HTML tags during the content analysis be-

cause the tags are generally used to specify the attributes of the content, and

101

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

keyword position in content (%)

A
pp

ea
re

nc
e

pr
ob

ab
il

it
y

Block

Pass

Figure 5.1: The keyword distribution in the Web content of both the banned and

the allowed categories.

will not be displayed on the browser. If the irrelevant content is hidden inside

the HTML tags, it will be ignored and unable to deceive the filter. Second, if

the irrelevant content is in the Web text outside the tags, it will be displayed

on the browser, and will also confuse the viewer who browses the content. This

deception approach will lead to a great limitation on the layout design of the

Web pages.

5.3.2 Näıve Bayesian Classification

The NB classification is divided into two stages: training and classification. In the

training stage, the classifier learns the probabilistic parameters of the generative

model from a set of training documents, D = {d1, . . . , d|D|}. Each document con-

sists of an ordered sequence of words from a vocabulary set V = {w1, w2, . . . w|V |}

and is associated with some category from a set of categories C = {c1, c2, . . . , c|C|}.

Two types of parameters are included in the model [Mit96]: (1) P (wt|cj): the

estimated probability that word wt appears in the documents of category cj and

102

(2) P (cj): the estimated probability of category cj in the training documents.

The former parameter is derived by

P (wt|cj) =
1 +

∑|D|
i=1 N1(wt, di|di ∈ cj)

|V |+
∑|V |

t=1

∑|D|
i=1 N1(wt, di|di ∈ cj)

, (5.1)

where N1(wt, di) is the times word wt appears in document di, and

P (cj) =
1 +

∑|D|
i=1 N2(di, cj)

|C|+ |D|
, (5.2)

where N2(di, cj) is 1 if di ∈ cj, or 0 otherwise.

Notably, the above two equations are filtered by Laplace smoothing to avoid

estimating probabilities to be zero. In the classification stage, the posterior prob-

ability P (cj|di) that a test document di belongs to each category cj is computed.

The category cj that maximizes P (cj|di) is the one that document di belongs to

most likely. P (cj|di) is derived by

P (cj|di) =
P (cj)P (di|cj)

P (di)

=
P (cj)

∏|di|
k=1 P (wdi,k|cj)

P (di)
,

(5.3)

where wdi,k is the k-th word in document di. The document di is viewed as

an ordered sequence < wdi,1, wdi,2, . . . , wdi,|di| >, with the assumption that the

probability of a word occurrence is independent of its position in the document,

given the category cj. Therefore, P (di|cj) can be written as the product of

P (wdi,k|cj), for k = 1 . . . |di|. Taking the logarithm on both sides of Equation 5.3

simplifies the computation of the posterior probability P (cj|di) from a series of

multiplications to a series of additions. The computation then becomes

logP (cj|di) = log
P (cj)

P (di)
+

|di|∑
k=1

logP (wdi,k|cj). (5.4)

Since the logarithm function is increasing and log
P (cj)

P (di)
is kept constant in

the classification stage, accumulating only the term logP (wdi,k|cj) during text

103

scanning is sufficient to derive the maximum of P (cj|di). The score of each word

wt ∈ V that belongs to category cj can be defined by logP (wt|cj). These scores

are pre-computed in the training stage and accumulated for each word wdi,k,

while the content is scanned from the beginning to the end. The computation

in Equation 5.4 is very fast because only the addition operation is performed for

each word. This is why we select NB as the basis of the early decision algorithm.

5.3.3 Keyword Extraction in The Training Stage

The classifier of the early decision algorithm is trained off-line from sample Web

content in both the banned and allowed categories. We used the Rainbow program

(www-2.cs.cmu.edu/~mccallum/bow/rainbow) and its library, Bow, to train the

classifier. They can extract keywords with high information gain as the features

from the training categories. Common words, such as “the”, “of” and so on

(called stop words), should be dropped from the keyword set because they help

little in classification (with low information gain).

Automatic keyword extraction could become complex for Web content in some

oriental languages. Unlike in western languages (e.g., English), no space charac-

ters delimit the words in these languages. Hence it is unclear how many characters

compose a semantic “word”, not to mention a keyword.

We suggest the N -gram method [PS03,CL96] for extracting keywords in CJK

(Chinese, Japanese and Korean) languages, where N -gram means N characters.

The tool to extract keywords, Rainbow, is modified to do so. The modified

algorithm for the N -gram keyword extraction is detailed in [HL03]. Simply put,

the N -gram algorithm looks for keywords of various lengths (i.e., the N -gram)

and determines the best length of each keyword.

A simple rule can eliminate redundant keywords in the N -gram extraction:

104

If (1) a string s is a substring of another string t, and (2) every appearance of

s implies the appearance of t, only t is left as the keyword. We prefer leaving

only the long keyword (i.e., t) to reduce the false-positive possibility due to short

keywords. Eliminating the word s causes no harm because s provides no more

clues for classification than t does. The score of a concatenated string is defined

to be the maximum score of each composite substring. For instance, Score(st) =

max{Score(s), Score(t)}, where Score(s) denotes the score of string s.

5.3.4 The Filtering Stage

In the filtering stage, the incoming content of a Web page is scanned from the

beginning for the extracted keywords. Suppose n% of the page content has been

scanned. The event En,m denotes that the accumulated score has reached m

when the filter has scanned n% of the content. The probability that this content

belongs to a category cj ∈ C is derived from

P (cj|En,m) =
P (En,m|cj)P (cj)

P (En,m|cj)P (cj) + P (En,m|c′j)P (c′j)
. (5.5)

• En,m: the event that when the filter has scanned n% of the content, the

accumulated score has reached m.

• P (cj): the estimated probability that category cj appears in typical Web

content. P (cj) can be estimated from sample traffic beforehand or dynami-

cally measured in a running environment by recording and analyzing actual

Web content.

• P (c′j): the estimated probability that category cj does not appear in typical

Web content. P (c′j) = 1 - P (cj).

• P (En,m|cj): the estimated probability that En,m happens given that the

content belongs to category cj. The estimate of P (En,m|cj) is the number

105

of Web pages in cj that En,m happens divided by the number of Web pages

in cj.

• P (En,m|c′j): defined similarly as P (En,m|cj), except that cj is replaced with

c′j.

To accelerate the computation of P (cj|En,m), two two-dimensional tables of

P (En,m|cj) and P (En,m|c′j) are built for each n and m from the training sets in

the training stage, for each cj ∈ C. Note that the table look-up is a little bit

tricky herein. The accumulated score of m in the filtering may not exactly match

any subscripts of m on the tables because the subscripts of m on the tables are

discrete and finite. Therefore, the probabilities P (En,m|cj) and P (En,m|c′j) are

derived in practice by looking up the tables with n and the maximum subscript

of m no larger than the accumulated score of m.

Figure 5.2 presents the pseudo-code of the early decision algorithm. Two

thresholds, Tbypass and Tblock, are set arbitrarily to be 0.1 and 0.9 herein. Let

PCEj be the estimate of P (cj|En,m). If PCEj < Tbypass, for all cj in the list of

banned categories, the content is unlikely to be in a banned category, and the

remaining content can be bypassed. On the contrary, if there exists some cj in the

list of banned categories such that PCEj > Tblock, the content is likely to belong

to cj, and should be blocked by the filter. The computation overhead in Equation

5.5 is nearly negligible, occupying less than 0.1% of the total classification time

in our profiling.

The classifier should scan a minimum amount of the content in a Web page to

avoid deciding too early from only the very front part of the content. If the content

in a banned category happens to not have keywords in this part, false negatives

may occurs. The parameter min scan in Figure 5.2 denotes the minimum amount

in percentage. We set min scan=15 arbitrarily since it is sufficient to effectively

106

avoid false negatives in our experiment.

5.4 Experiments

5.4.1 Performance Metrics

To measure the accuracy of the early decision algorithm, we use the F1 measure

that combines the recall and the precision by taking the harmonic average of

them with equal weight [Van79]. We also use two metrics: the average scan rate

(ASR) and the throughput, defined by

ASR =
Total bytes that are scanned

Total bytes in the content
× 100% (5.6)

and

Throughput =
Total bits in the content

Total execution time (sec)
, (5.7)

to measure the effectiveness of acceleration. The former reflects the percentage

of the Web content that is scanned in the early decision algorithm, and the latter

shows the actual throughput in Web content filtering.

5.4.2 Experimental Results and Discussion

From the experiment, totally 300 sample Web pages in four typically banned

categories, Pornography, Game, Online-Shopping and Finance, are randomly col-

lected from the YAHOO directory service, and another 300 pages are from other

categories to serve as the allowed content. The early decision algorithm searches

the Web content with a multiple-string matching algorithm for the keywords ex-

tracted in the training stage. A sub-linear time algorithm (e.g., the Wu-Manber

algorithm, which can skip characters in the text by nearly the length of the short-

est keywords [WM94]) hardly helps the performance here because short keywords

107

Earlybypass← False;

Earlyblock ← False;

n← 0;

while not end of content do

Skip stop words and the HTML tags.

Read the next keyword;

n ← percentage of the content that has been scanned; {scanning at least

min scan% of content}

if n > min scan then

m← the accumulated score;

for each banned category cj do

PECj ← P (En,m|cj) of current scanning position;

PEC ′
j ← P (En,m|c′j) of current scanning position;

PCEj ← (PECjP (cj))/(PECjP (cj) + PEC ′
jP (c′j));

end for

if (∀cj, PCEj ≤ Tbypass) then

Earlybypass← True;

Exit;

end if

if (∃cj, PCEj ≥ Tblock) then

Earlyblock ← True;

Exit;

end if

end if

end while

Figure 5.2: The pseudo-code of the early decision algorithm.

108

Table 5.1: Comparison of classification accuracy in four banned categories.
Category Original Bayesian classifier Early decision

Pr Re F1 Pr Re F1
Porn 1.00 .993 .996 .977 .918 .947
Game 1.00 .971 .985 .958 .819 .883
Shopping 1.00 .975 .987 .866 .750 .804
Finance .896 1.00 .945 .964 .900 .931

are not uncommon in natural languages. The filtering routine is implemented on

Lex [LS75], which uses the linear-time Aho-Corasick algorithm [AC75], and thus

its performance is independent of the keyword lengths.

The accuracy of the original Bayesian classifier, which scans the entire con-

tent, is compared with that of the early decision algorithm for the four banned

categories in Table 5.1, in which Pr denotes the precision, Re denotes the recall,

and F1 denotes the F1 measure, which is the harmonic average of Pr and Re.

Among the categories in comparison, only the shopping category presents notice-

able accuracy degradation, while the others remain fairly good accuracy. After a

careful examination, we observed that the Web pages in the shopping category

have many common words that also appear in allowed categories. Therefore,

the score accumulation from keywords is slow. Lacking representative keywords

reduces the accuracy if the scanned part is not long enough. We consider the

categorization should be more specific in this case so that precise keywords can

be extracted.

Table 5.2 presents the average filtering accuracy of the content in the four

banned categories (summarized from Table 5.1) and the allowed categories. The

accuracy of both types of content with the early decision algorithm is close to

that when the entire content is scanned. The speed-up is obvious because the

early decision algorithm scans only 17.22% of content in the banned categories

109

Table 5.2: Average accuracy and scan rate in the early decision algorithm.
Banned Allowed ASR ASR

Pr Re F1 Pr Re F1 (Banned) (Allowed)
.941 .847 .892 .947 .920 .934 17.22% 26.51%

Table 5.3: Accuracy in the setting of no false positives in allowed content.
Category Original Bayesian classifier Early decision

Pr Re F1 Pr Re F1
Porn .977 .918 .947 1.00 .773 .871
Game .958 .819 .883 1.00 .623 .767
Shopping .866 .750 .804 1.00 .55 .709
Finance .964 .900 .931 1.00 .730 .843

and 26.51% in the allowed categories on average. A large portion of the Web

content is bypassed, and the classification time is significantly shortened.

False positives of allowed content may be considered unacceptable in a practi-

cal environment, and a high threshold Tblock is set. Lifting the threshold Tblock to

1.0 can effectively avoid false positives in the allowed categories, as shown from

the high precision in Table 5.3. Note that lifting Tblock also leads to more false

negatives in the banned categories because some banned content is unable to

reach such a high threshold. Therefore, deciding a proper threshold is a tradeoff

in practice.

Both the execution time and throughput of the early decision algorithm are

compared with those of the original Bayesian classifier to manifest the improve-

ment. Both classifiers are implemented on a PC with Intel Pentium III 700 MHz

and 64MB of RAM. Table 5.4 presents the comparison results of filtering both

the banned and allowed content. The results show a significant improvement in

throughput, about five times higher than that of the original Bayesian classifier

for banned content and nearly four times higher for allowed content.

110

Table 5.4: Comparison of the throughput of the early decision algorithm and the

original Bayesian classifier.
Algorithm Execution time (ms) Throughput (Mb/s)
Original Bayesian

classifier

1333.77 41.05

Early decision for

banned content

241.89 226.36

Early decision for

allowed content

239.90 156.68

Many commercial products and open source packages in our investigation,

such as DansGuardian dansguardian.org, can block a page as soon as the score

accumulation achieves the given threshold configured arbitrarily by the user. In

contrast, the early decision algorithm compares the threshold with the probability

estimation of the classification, rather than the score itself. This approach has

two advantages over that in DansGuardian. First, the two parameters, Tbypass

and Tblock, have stronger association with the accuracy than the threshold on the

score in DansGuardian. Therefore, it is easier to customize the thresholds in the

early decision algorithm to achieve the desired accuracy. In comparison, deciding

a proper threshold in DansGuardian to get the desired accuracy will take more

efforts in trial and error, since the threshold provides few clues to the accuracy.

Second, the early decision algorithm accelerates not only filtering blocked Web

pages, but also filtering allowed pages. The advantage is particularly significant

when the Web accesses are mostly allowed content.

The early decision algorithm is also implemented on the content analysis

of DansGuardian by modifying its filtering code. In our testing samples, the

throughput is about three times higher than that in the original version of Dans-

111

Guardian. The increasing primarily comes from the better criterion in the con-

tent filtering and the acceleration of filtering the allowed content. The principle

of early decision can also be implemented into the content filtering process in

other Web filtering products.

5.4.3 Practical Consideration in Deployment

With the increasing number of categories to be classified, ambiguity between

these categories may increase. In our opinion, the proper place to perform Web

content filtering is restricted to the edge devices for performance reason. Such

edge devices usually require fewer banned categories, and thus the problem with

increasing number of categories is not that serious.

The two thresholds, Tbypass and Tblock, can be tuned according to the tradeoffs

between accuracy and efficiency. The accuracy can be increased at the cost of

less efficiency by decreasing Tbypass or increasing Tblock, and the efficiency can be

increased at the cost of less accuracy by increasing Tbypass or decreasing Tblock.

The tuning depends on which is more important for an organization: accuracy

or efficiency. For example, if the Web filter is overloaded, it may trade a little

accuracy for efficiency to avoid overburdening the system; otherwise, it can adjust

the two parameters for better accuracy.

Even though the early decision algorithm significantly speed up the filtering

decision, we believe that it should complement other Web filtering approaches,

especially URL blocking, but not to replace them. First, URL blocking is faster

than content analysis since a URL has much fewer characters to be processed than

the Web content. Besides, if a banned URL is successfully blocked, no network

bandwidth will be wasted to download the banned content. As discussed in

Section 5.2.1, content analysis is still needed to successfully catch the banned

112

content. The early decision can accelerate this part significantly. Second, Web

content may contain images, video, Flash objects, Java applets and so on, which

are non-trivial to analyze. Analyzing these objects is beyond the scope of this

paper, but it is still helpful to increase the accuracy in filtering the Web content.

In summary, a Web filtering system can support various approaches in prac-

tice. The system first blocks URLs according to the database of banned URLs

that is constantly maintained. To reduce false negatives due to the outdated

database, content analysis can catch the banned content whose source is not in

the URL database. The early decision algorithm can speed up content analysis to

reduce the latency perceived by the user and to increase the system throughput.

Although analyzing other types of objects in the Web content, such as images,

could increase the accuracy, it is still a trade-off between performance and pro-

cessing effort so far. It depends on the user to evaluate whether turning on such

an analysis is worthwhile.

5.5 Conclusion

This work addresses the problem with possibly long delay in text classification

algorithms that perform run-time content analysis in Web filtering. We present

an early decision algorithm to decide to either block or pass the content as early

as possible. A significant performance improvement is observed. The throughput

is increased by about five times higher for banned content and nearly four times

higher for allowed content, while the accuracy remains fairly good. In the F1

measure, the accuracy is about 89% for filtering banned content, and about 93%

for allowed content.

The early decision algorithm is simple but effective. The same rationale be-

113

hind this algorithm can be applied to other content filtering applications as well,

such as anti-spam. The algorithm can be combined with more features other than

keywords from the text to further increase the overall accuracy of the content fil-

ter. Besides, the filtering can be further accelerated by combining the URL-based

method with the cached results. That is, by caching the decisions on URLs of

the filtered Web pages, duplicate filtering on the same Web page can be avoided.

Content analysis can be skipped if the cached URL is matched. The maintenance

of the URL database is also facilitated.

114

CHAPTER 6

Conclusions and future works

To accelerate deep packet inspection, we review existing string matching algo-

rithms, and profile their performance on various DPI applications. From the

study, we have two major observations:

1. Verification frequency, memory access (thus cache locality) and shift dis-

tance are the three major factors that affect the performance of string

matching.

2. String matching on intrusion detection is not so critical as that addressed

in the literature because it is common that only part of the traffic, say the

HTTP requests, is scanned in practice. Therefore, we focus more on anti-

virus since improving string matching is significant to its performance and

the size of its pattern set challenges the scalability of a design.

We therefore design a hardware architecture, namely BFAST, and a hybrid

algorithm based on the observations. The BFAST architecture exploits algorith-

mic heuristic with Bloom filters to scan the content in sub-linear time, so that

the hardware does not sheer rely on hardware parallelism or high frequency for

acceleration. The architecture also avoids some practical hurdles with the bad-

block heuristic, and proposes a method that can achieve linear time in the worst

case. The throughput of the design is up to 9.34 Gbps for 16,384 patterns and the

block size b = 8. In the hybrid algorithm, we separate the pattern set by length

115

so that the backward hashing (BH) algorithm, which is good at long patterns,

can scan for only the long patterns. The Aho-Corasick then has only a relatively

small set of short patterns, and the reduced automaton improves the performance

due to good cache locality. The overall performance is three times faster than

the original implementation in ClamAV.

We also propose a probabilistic approach, namely the early decision algo-

rithm, to accelerate classification of Web filtering. The algorithm can make the

classification decision early before scanning the entire content of both allowed

and banned Web pages. The thresholds for passing and blocking a Web pages

are also easily configured because they are directly associated with the accuracy.

The algorithm increases the throughput by around five times for banned content

and nearly four times for allowed content, while the accuracy remains fairly good

— about 89% for filtering banned content, and about 93% for allowed content.

There are still some practical issues in the dissertation for further study in

the future:

1. The entire packet processing involves not only string matching for DPI.

Although the throughput of scanning a buffer could be up to several giga-

bits per second, the other stages, e.g., loading data into the buffer, could

become a bottleneck. A total solution is needed besides accelerating string

matching.

2. String matching with an automaton approach is still a bottleneck in soft-

ware implementation. Although many hardware accelerators can accelerate

the automaton tracking significantly, they are not applicable in software im-

plementation, which is unable to take the parallelism in a hardware solution.

3. The packet content in applications such as spam filtering is structured, and

116

the patterns are significant only in a certain context. Therefore, parsing

the content to learn the contextual information, instead of sheer scanning

the text stream for the patterns, should be also accelerated in the future.

117

References

[AC75] Alfred V. Aho and Margaret J. Corasick. “Efficient string match-
ing: an aid to bibliographic search.” Communications of the ACM,
18(6):333–343, June 1975.

[AC07] N. Sertac Artan and H. Jonathan Chao. “TriBiCa: Trie Bitmap Con-
tent Analyzer for High-Speed Network Intrusion Detection.” In Proc.
of the 26th IEEE Infocom Conference, Anchorage, AL, May 2007.

[ACF05] Monther Aldwairi, Thomas Conte, and Paul Franzon. “Configurable
string matching hardware for speeding up intrusion detection.” ACM
SIGARCH Computer Architecture News, 33(1):99–107, March 2005.

[ADL04] Michael Attig, Sarang Dharmapurikar, and John Lockwood. “Imple-
mentation Results of Bloom Filters for String Matching.” In Proc.
12th Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), Napa Valley, CA, April 2004.

[AGS99] Giuseppe Attardi, Antonio Gulli, and Fabrizio Sebastiani. “Automatic
Web page categorization by link and context Analysis.” In Proc. of
THAI-99, First European Symp. Telematics, Hypermedia, and Artifi-
cial Intelligence, pp. 105–119, Varese, Italy, 1999.

[BCT06] Benjamin C. Brodie, Ron K. Cytron, and David E. Taylor. “A scalable
architecture for high-throughput regular-expression pattern match-
ing.” In Proc. of 33rd International Symposium on Computer Ar-
chitecture (ISCA), pp. 191–202, Boston, MA, July 2006.

[Blo70] Burton H. Bloom. “Space/time tradeoffs in hash coding with allowable
errors.” Commun. of the ACM, 13(7):422–426, July 1970.

[BM77] Robert S. Boyer and J Strother Moore. “A fast string searching algo-
rithm.” Commun. of the ACM, 20(10):762–772, October 1977.

[BMI] Illustrations of the Boyer-Moore algorithm.

[BP05] Zachary K. Baker and Viktor K. Prasanna. “A computationally effi-
cient engine for flexible intrusion detection.” 13(10):1179–1189, Oc-
tober 2005.

[BSC06] Joao Bispo, Ioannis Sourdis, Joao M. P. Cardoso, and Stamatis Vassil-
iadis. “Regular expression matching for reconfigurable packet inspec-
tion.” In Proc. IEEE International Conference on Field Programmable
Technology (FPT), Bangkok, Thailand, December 2006.

118

[Cav05] Cavium Networks. OCTEON NSP - network services processor family,
2005.

[CL96] Hsin-Hsi Chen and Jen-Chang Lee. “Identification and classification of
proper nouns in Chinese texts.” In Proc. of 25th European Conference
on Information Retrieval Research (ECIR), pp. 222–229, Copenhagen,
Denmark, August 1996.

[CM05] Young H. Cho and William H. MangioneSmith. “A Pattern Match-
ing Coprocessor for Network Security.” In Proc. of ACM/IEEE De-
sign Automation Conference (DAC), pp. 234–239, Anaheim, CA, June
2005.

[CNM02] Young H. Cho, Shiva Navab, and William H. Mangione-Smith. “Spe-
cialized hardware for deep network packet filtering.” In Proc. of 12th
International Conference on Field Programmable Logic and Applica-
tions (FPL), pp. 452–461, La Grand Motte, France, September 2002.

[DKS04] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and
John W. Lockwood. “Deep packet inspection using parallel Bloom
filters.” IEEE Micro, 24(1):52–61, January 2004.

[DL05] Sarang Dharmapurikar and John W. Lockwood. “Fast and scalable
pattern matching for content filtering.” In Symposium on Architec-
tures for Networking and Communications Systems (ANCS), pp. 183–
192, Princeton, NJ, October 2005.

[EC05] Ozgun Erdogan and Pei Cao. “Hash-AV: fast virus signature scanning
by cache-resident filters.” In Proc. Globecom, pp. 1767–1772, St. Louis,
MO, November 2005.

[Fro06] Jeffery E.F. Froedl. Mastering Regular Expressions. O’Reilly, third
edition, 2006.

[FV01] Mike Fisk and George Varghese. “Fast content-based packet handling
for intrusion detection.” Technical Report CS2001-0670, UCSD, 2001.

[Gal79] Zvi Galil. “On improving the worst case running time of the Boyer-
Moore string matching algorithm.” Communications of the ACM,
22(9):505–508, 1979.

[GGM04] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuku, and
Dan Suciu. “Processing XML streams with deterministic automata
and stream indexes.” ACM Trans. Database Systems, 29(4):752–788,
December 2004.

119

[GM01] Pankaj Gupta and Nick McKeown. “Algorithms for packet classifica-
tion.” IEEE Network, 15(2):529–551, March/April 2001.

[GTL02] Eric J. Glover, Kostas Tsioutsiouliklis, Steve Lawrence, David M. Pen-
nock, and Gary W. Flake. “Using Web Structure for classifying and
describing Web pages.” In Proc. of World Wide Web (WWW), pp.
562 – 569, Honolulu, HI, May 2002.

[HCC06] Mohamed Hamammi, Youssef Chahir, and Liming Chen. “Web-
Guard: A Web filtering engine combining textual, structural and vi-
sual content-based analysis.” IEEE Trans. Knowledge and Data En-
gineering, 18(2):272–284, February 2006.

[HL03] Fu-Hsiang Huang and Ying-Dar Lin. “Evaluating the accuracy and ef-
ficiency of a multi-language content filter.”. Master’s thesis, National
Chiao Tung University, 2003.

[KA94] Jeffrey O. Kaphart and William C. Arnold. “Automatic extraction
of computer virus signatures.” In Proc. of 4th Virus Bulletin of In-
ternational Conference, pp. 178–184, Abingdon, England, September
1994.

[KST03] Jari Kytojoki, Leena Salmela, and Jorma Tarhio. “Tuning String
Matching for Huge Pattern Sets.” In Proc. of Symposium on Com-
binatorial Pattern Matching (CPM), pp. 211–224, Morelia, Mexico,
2003.

[LHC04] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen, and Chia-Nan Kao.
“A fast pattern-match engine for network processor-based network
intrusion detection system.” In Proceedings of Information and Tech-
nology: Coding and Computing (ITCC), pp. 97–101, Las Vegas, NV,
April 2004.

[LHF02] Pui Y. Lee, Siu C. Hui, and Alvis Cheuk M. Fong. “Neural networks
for Web content filtering.” IEEE Intelligent Systems, 17(5):48–57,
September/October 2002.

[LJL06] Ying-Dar Lin, Chi-Wei Jan, Po-Ching Lin, and Yuan-Cheng Lai. “De-
signinig an integrated architecture for network content security gate-
ways.” IEEE Computer, 39(11):66–72, November 2006.

[LLL06] Po-Ching Lin, Zhi-Xiang Li, Ying-Dar Lin, Yuan-Cheng Lai, and
Frank C. Lin. “Profiling and accelerating string matching algorithms
in three network content security applications.” IEEE Commu. Sur-
veys and Tutorials, 8(2), Second Quarter 2006.

120

[LLLar] Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai, and Tsern-Huei Lee.
“Using string matching for deep packet inspection.” IEEE Computer,
to appear.

[LS75] Mike Lesk and Eric Schmidt. “Lex — A lexical analyzer generator.”
Technical Report Comp. Sci. Tech. Rep. No. 39, Bell Laboratories,
1975.

[LTH07] Ying-Dar Lin, Kuo-Kun Tseng, Chen-Chou Hung, and Yuan-Cheng
Lai. “Scalable Automaton Matching for High-Speed Deep Content
Inspection.” In 21th IEEE Advanced Information Networking and Ap-
plications (AINA), Niagara Falls, Canada, May 2007.

[LTLar] Ying-Dar Lin, Kuo-Kun Tseng, Tseng-Huei Lee, Chen-Chou Hung,
and Yuan-Cheng Lai. “A Platform-Based SoC Design and Implemen-
tation of Scalable Automaton Matching for Deep Packet Inspection.”
Journal of Syst. Arch., to appear.

[Lun06] Jan van Lunteren. “High-Performance Pattern-Matching for Intrusion
Detection.” In Proc. of the 25th IEEE Infocom Conference, Barcelona,
Spain, April 2006.

[MDW04] Yevgeniy Miretskiy, Abhijith Das, Charles P. Wright, and Erez Zadok.
“Avfs: An On-Access Anti-Virus File System.” In USENIX Security
Symposium, pp. 73–88, San Diego, CA, August 2004.

[Mit96] Tom Mitchell. Machine learning. McGraw Hill, 1996.

[MLL03] James Moscola, John W. Lockwood, Ronald Loui, and Michael Pa-
chos. “Implementation of a content-scanning module for an Internet
firewall.” In Proc. of IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pp. 31–38, Napa Valley, CA, April
2003.

[MM96] Robert Muth and Udi Manber. “Approximate Multiple Strings
Search.” In Proc. of Symposium on Combinatorial Pattern Matching
(CPM), pp. 75–86, Laguna Beach, CA, 1996.

[Nor04] Mark Norton. “Optimizing pattern matching for intrusion detection.”
Technical report, Sourcefire, Inc., 2004.

[NRa] Marc Norton and Dan Roelker. Multi-rule inspection engine.
http://www.snort.org/docs.

121

[NRb] Marc Norton and Dan Roelker. Snort 2.0 protocol flow analyzer.
http://www.snort.org/docs.

[NR00] Gonzalo Navarro and Mathieu Raffinot. “Fast and flexible string
matching by combining bit-parallelism and suffix automata.” ACM
Journal of Experimental Algorithms, 5(4):1–36, 2000.

[NR02] Gonzalo Navarro and Mathieu Raffinot. Flexible Pattern Matching in
Strings. Cambridge University Press, 2002.

[NR04] Gonzalo Navarro and Mathieu Raffinot. “New techniques for regular
expression searching.” Algorithmica, 4(2):89–116, November 2004.

[PAD06] Vern Paxson, Krste Asanović, Sarang Dharmapurikar, John Lock-
wood, Ruoming Pang, Robin Sommer, and Nicholas Weaver. “Re-
thinking Hardware Support for Network Analysis and Intrusion Pre-
vention.” In USENIX Workshop on Hot Topics in Security, pp. 63–68,
Vancouver, Canada, August 2006.

[PP05] Giorgos Papadopoulos and Dionisios Pnevmatikatos. “Hashing +
memory = low cost, exact pattern matching.” In Proc. of 15th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), pp. 39–44, Tampere, Finland, August 2005.

[PS03] Fuchun Peng and Dale Schuurmans. “Combining naive Bayes and n-
gram language models for text classification.” In Proc. of 25th Euro-
pean Conference on Information Retrieval Research (ECIR), pp. 105–
119, Pisa, Italy, April 2003.

[RFB97] M. V. Ramakrishna, E. Fu, and E. Bahcekapili. “Efficient hardware
hashing functions for high performance computers.” 46(12):1378–
1381, December 1997.

[Seb02] Fabrizio Sebastiani. “Machine learning in automated text categoriza-
tion.” ACM Computing Survey, 34(1):1–47, March 2002.

[SIH04] Yutaka Sugawara, Mary Inaba, and Kei Hiraki. “Over 10 Gbps string
matching mechanism for multi-stream packet scanning systems.” In
Proc. of 14th International Conference on Field Programmable Logic
and Applications (FPL), pp. 484–493, Antwerp, Belgium, September
2004.

[SL05] Haoyu Song and John W. Lockwood. “Multi-pattern signature match-
ing for hardware network intrusion detection systems.” In Proc. of the
48th IEEE Globecom Conference, St. Louis, MO, November 2005.

122

[SP03] Robin Sommer and Vern Paxson. “Enhancing byte-level network
intrusion detection signatures with context.” In Proc. ACM Com-
puter and Communications Security (CCS), Washington D.C., Octo-
ber 2003.

[SP04] Ioannis Sourdis and Dionisios Pnevmatikatos. “Pre-decoded CAMs
for efficient and high-speed NIDS pattern matching.” In Proc. 12th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 258–267, Napa Valley, CA, April 2004.

[SPW05] Ioannis Sourdis, Dionisios Pnevmatikatos, Stephan Wong, and Stama-
tis Vassiliadis. “A reconfigurable perfect-hashing scheme for packet
inspection.” In Proc. of 15th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 644–647, Tampere, Fin-
land, August 2005.

[Tar06] Tarari Inc. Tarari RegEx5 product brief, 2006.

[TLL05] Kuo-Kun Tseng, Ying-Dar Lin, Tseng-Huei Lee, and Yuan-Cheng Lai.
“A Parallel Automaton String Matching with Pre-Hashing and Root-
Indexing Techniques for Content Filtering Coprocessor.” In 16th IEEE
International Conference on Application-Specific Systems, Architec-
tures, and Processors (ASAP), Samos, Greece, 2005.

[TLLar] Kuo-Kun Tseng, Yuan-Cheng Lai, Tsern-Huei Lee, and Ying-Dar Lin.
“A Fast Scalable Automaton Matching Accelerator for Embedded
Content Processors.” ACM Trans. Embedded Comput. Syst., to ap-
pear.

[TS06] Lin Tan and Timothy Sherwood. “Architectures for bit-split string
scanning in intrusion detection.” IEEE Micro, 26(1):110–117, January
2006.

[TSC04] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese.
“Deterministic memory-efficient string matching algorithms for intru-
sion detection.” In Proc. of the 23th IEEE Infocom Conference, pp.
333–340, HongKong, China, March 2004.

[Van79] C. J Van Rijsbergen. Information Retrieval. Dept. of Computer Sci-
ence, University of Glasgow, second edition, 1979.

[Wan] James Z. Wang. WIPE: Wavelet image pornography elimination.
http://wang.ist.psu.edu/docs/projects/wipe.html.

123

[Wan01] James Z. Wang. Integrated region-based image retrieval. Kluwer Aca-
demic Publishers, Dordrecht, Holland, 2001.

[WM94] Sun Wu and Udi Manber. “A fast algorithm for multi-pattern search-
ing.” Technical Report TR94-17, Dept. Comput. Sci., Univ. Arizona,
1994.

[WM95] Wm A. Wolf and Sally McKee. “Hitting the memory wall: impli-
cations of the obvious.” Computer Architecture News, 23(1):20–24,
March 1995.

[Xil04] Xilinx Inc. Two flows for partial reconfiguration: module based and
difference based, September 2004.

[Xil05] Xilinx Inc. Virtex-II Pro and Virtex-II Pro X platform FPGAs: com-
plete data sheet, October 2005.

[YCD06] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H.
Katz. “Fast and memory-efficient regular expression matching for deep
packet inspection.” In Proc. of ACM/IEEE symposium on Architec-
ture for networking and communications systems (ANCS), pp. 93–102,
San Jose, CA, December 2006.

[YL99] Yiming Yang and Xin Liu. “A re-examination of text categorization
methods.” In Proc. of 22nd ACM International Conference on Re-
search and Development in Information Retrieval, pp. 42–49, Berkeley,
CA, August 1999.

124

