
國立交通大學

資訊工程學系

博士論文

動態知識擷取方法之研究

A Study of Knowledge Acquisition Methodologies

for Dynamic Knowledge

 研 究 生: 林順傑

 指導教授: 曾憲雄 博士

中華民國 九十五 年 十 月

動態知識擷取方法之研究

A Study of Knowledge Acquisition Methodologies

for Dynamic Knowledge

研 究 生: 林順傑 Student: Shun-Chieh Lin

指導教授: 曾憲雄 博士 Advisor: Dr. Shian-Shyong Tseng

國 立 交 通 大 學

資 訊 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

October 2006

Hsinchu, Taiwan, Republic of China

中華民國 九十五 年 十 月

 I

動態知識擷取方法之研究

學 生: 林順傑 指導教授: 曾憲雄 博士

國立交通大學 資訊學院

資訊工程系

摘要

知識擷取是在建立知識庫系統中的一個主要瓶頸。由於知識爆炸，知識可以

被歸納成靜態知識（Static Substantive Knowledge）和動態知識（Dynamic

Substantive Knowledge）兩大類。在過去 20多年中，有很多的研究學者提出很多

知識擷取方法，從專家那邊萃取出靜態的知識，然而，這些方法在擷取知識的過

程中，因為缺乏足夠多的資訊，所以並沒有討論到如何發覺包括變種知識（Variant

Knowledge）和演化性知識（Evolutional Knowledge）兩類的動態知識。因此，

如何蒐集到足夠多的資訊，並用來通知專家有新演化的物件產生，而且可以利用

並擴展舊有的知識庫，在知識擷取的領域中，也逐漸變成一個重要的議題。部分

現存的知識擷取系統，採取建構個人建構理論（Personal Construct Theory）上發

展出來的知識表格（Repertory Grid）技術來擷取在一個限定領域間，分辨並區分

開不同物件的靜態知識。EMCUD（Embedded Meaning Capturing and Uncertainty

Deciding）是一種用來擷取隱含知識的技術。它在 1990 年被提出來協助專家萃

取知識的隱含意義並協助專家決定每一條隱含規則（embedded rule）的信賴程

度，用來擴展使用傳統知識表格方法產生的原始規則（original rule）。然而，

EMCUD一樣因為缺乏足夠多的資訊而無法擁有發現新演化物件產生的能力。我

 II

們的想法是希望可以藉由觀察知識庫各個低信賴程度的隱含規則被推論的行

為，包括頻率以及趨勢變化並藉此用來學習可能的新演化物件，然後再引導專家

根據這些推論行為的趨勢來萃取便是這些物件的動態知識。在這篇博士論文中，

我們將提出一個包含推論記錄檔蒐集階段、知識學習階段以及知識精鍊階段等三

個階段新的知識擷取方法，Dynamic EMCUD，來協助專家察覺到新演化物件的

產生並萃取出這些物件的隱含規則。Dynamic EMCUD在推論記錄檔蒐集階段可

以協助專家蒐集足夠的推論記錄。在隨著時間改變的環境中，在知識學習階段中

可以透過觀察頻繁的推論行為和演化行為的趨勢，讓專家察覺到新演化物件的產

生。最後，在知識精鍊的階段，Dynamic EMCUD可以將一個小的多資料型態知

識表格和一個小的屬性序列表格（Attribute Ordering Table，AOT）個別整合到一

個主要的多資料型態知識表格和主要的屬性序列表格中，並用來調整弱隱含知識

來達到表格演化的能力。進一步來說，我們的方法可以很容易的延伸成包括多個

區域的知識庫系統和一個聯合的知識庫系統的聯合式的架構來協助整合從各個

搭載 Dynamic EMCUD的區域知識庫系統所產生的演化物件的知識。並且協助專

家可以容以的利用足夠多的環境資訊來發覺更多其它新的物件知識。我們提出五

個演算法來幫助專家容易的萃取新物件的隱含規則。電腦蠕蟲和分散式阻斷服務

偵測以及警報分類模式建立兩個應用可以用來評估 Dynamic EMCUD的效能，結

果顯示新的變種物件可以被快速發覺並可以快速的通知專家，並協助他們利用

Dynamic EMCUD萃取出新演化物件的隱含規則。

關鍵詞: 知識擷取、知識表格、隱含知識擷取、入侵偵測、電腦蠕蟲、分散式阻

絕服務

 III

A Study of Knowledge Acquisition Methodologies

for Dynamic Knowledge

Student: Shun-Chieh Lin Advisor: Dr. Shian-Shyong Tseng

Department of Computer Science

College of Computer Science

National Chiao Tung University

Abstract

. Knowledge acquisition is known to be a critical bottleneck of building

knowledge based systems. Due to the explosion of knowledge, substantive knowledge

can be classified into static substantive knowledge and dynamic substantive

knowledge. Many knowledge acquisition methodologies have been proposed to

systematically elicit rules of static substantive knowledge from domain experts in the

past twenty years. However, none of these methods discusses the issue of discovering

dynamic substantive knowledge including variant knowledge and evolutional

knowledge due to the lack of sufficient information. Hence, how to collect sufficient

information to help experts notice the occurrence of new evolved objects and to reuse

and extend the original knowledge base becomes increasingly important in the

knowledge acquisition field. Most of the existing systems employ the Repertory-Grid

test originally developed by Personal Construct Theory in eliciting static substantive

knowledge to identify different objects and distinguishing these objects in a selected

domain. EMCUD (Embedded Meaning Capturing and Uncertainty Deciding), one of a

 IV

Repertory Grid based knowledge acquisition tools, has been proposed to elicit the

embedded meanings of knowledge (embedded rules bearing on objects and object

attributes) to classify objects and guide experts to decide the certainty degree of each

embedded rule using an attribute ordering table (AOT), which records the relative

importance of each attribute to each object, for extending the coverage of original

rules. However, it still lacks the ability to discover the occurrence of new evolved

objects due to insufficient information. Our idea is to monitor the frequent inference

behaviors and the trend of weak embedded rules with lower certainty degree and learn

the candidates of new evolved objects and then guide the experts to extract the

dynamic knowledge of these objects according the trend of inference behaviors. In

this dissertation, we will propose a new iteratively knowledge acquisition method,

Dynamic EMCUD which includes Log Collecting Stage, Knowledge Learning Stage,

and Knowledge Polishing Stage, to notify experts to extract the embedded rules of

new evolved objects. The Dynamic EMCUD can collect sufficient inference log in

Log Collection Stage and then notify experts the occurrence of evolved objects

through observing the frequent inference behaviors and tracing the trend of

evolutional behaviors over time in a changing environment in Knowledge Learning

Stage. In the Knowledge Polishing Stage, the Dynamic EMCUD can integrate a small

acquisition table increment and a small attribute ordering table (AOT) increment into

the main acquisition table and the main AOT, respectively, for adapting the weak

embedded rules to achieve the ability of grid evolution. Moreover, our method can be

easily extended as a collaborative framework (including n local KBSs and a

collaborative KBS) to integrate the new knowledge of new evolved objects generated

from every local KBSs (each KBS deploy a Dynamic EMCUD) and help experts easily

discover some other new evolved objects in the collaborative KBS with sufficient

context. Five algorithms are proposed to help expert easily extract the embedded rules

 V

of new objects. Two applications including in worms and distributed DoS detection,

and alert classification model construction are used to evaluate the performance of

Dynamic EMCUD. The results show that the new variants can be discovered and

experts can be easily notified to quickly extract the knowledge of new objects

according to the Dynamic EMCUD.

Keywords: Knowledge acquisition, Repertory grid, EMCUD, Intrusion detection,

Computer worm, Distributed DoS �

 VI

誌謝
盼呀盼的，終於取得夢寐以求的博士學位，對自己來說，算是完成小時候的

夢想。對於家人，也算是有個交代，尤其是陪在身邊一直默默支持鼓勵我的可愛

老婆 念怡，以及在去年才向這個世界報到的寶貝女兒 宸妤。猶記得七年前，從

未離開家鄉的我，帶著忐忑不安的心情，進入了交大校園就讀，在這浩瀚的學術

殿堂裡開始了我的求學生活，期間雖然經歷了許多的風風雨雨，但仍感謝妳的體

諒與包容，讓我可以無後顧之憂來完成這篇論文。對妳們無盡的感謝，絕非筆墨

可以形容。

回首這碩博士班七年多的求學過程中，從對新環境的適應、人際關係的培

養、資格考的歷練、領袖風範的訓練以及同儕間對於問題真理的激烈討論等，一

切均一步步扎扎實實的走過。而完成這篇博士論文，最應該感謝的便是從碩士班

期間，就一直旁邊諄諄教誨的恩師 曾憲雄教授，在浩瀚無涯的研究學海中，引

導我朝著正確的方向前進。他不僅奠定了我在研究領域上的基礎，訓練我獨立思

考解決問題以及批判突破的能力。更透過產學計畫的執行，培養我那些許的領導

與統御的能力。而在待人處事方面，他也以自身為典範，讓我們在不斷的磨練與

修正，讓我可以潛移默化的學習到面面俱到的解決問題的技巧。這些一切的收

穫，遠遠超過完成博士論文，取得博士學位所帶來的意義；溢於文字外的心情僅

能在此致上最深的感激。

此博士論文的完成，也非常感謝從論文研究計劃書口試、校內口試到校外

口試一路給予我許多論文修改建議的 孫春在教授與 胡毓志教授，讓我可以用

全新的觀點，重新檢視我的研究貢獻；在校內口試中，感謝 彭文志博士對論文

的研究方法分析的重要；以及在校外口試中給予我寶貴意見的高雄大學 蘇豐文

教授以及 洪宗貝教授、台南大學 黃國禎教授、與成功大學 朱治平教授，對

於論文方法與結果呈現，給於精闢的見解與指導，由於他們的協助，讓此論文最

後的成果能夠更加完整並增加整體論文的可讀性。

更不能忘記的，是一起奮鬥的知識工程實驗室的夥伴們，雖然每一年相處

的夥伴都不盡相同，但不變的是彼此的交誼與切磋，都是我能夠順利走到這裡的

助力，我也將帶著這裡的種種的回憶，往下一個人生旅程持續邁進。

僅將本篇論文的完成，獻給每一位給予我幫助及支持我的家人與朋友。

 VII

Table of Contents

Abstract (In Chinese) ... I
Abstract (In English) ... III
Acknowledgement.. VI
Table of Contents ..VII
List of Figures .. IX
List of Tables ..X
List of Algorithms .. XI
Chapter 1 Introduction.. 1
Chapter 2 Related Work.. 8

2.1 Knowledge Acquisition Systems...8
2.2 Repertory Grid Methodology and Relevant Systems9
2.3 Elicitation of Embedded Meanings ...12
2.4 Problems of Repertory Grid Knowledge Acquisition Methods17

Chapter 3 Dynamic Knowledge Acquisition Based Upon EMCUD 24
3.1 The Concept of Dynamic EMCUD ...24
3.2 Inference Log Collecting Based upon Meta Rule ..26
3.3 The NEO-Learning Module ..27
3.4 Grid Merging..32
3.5 Collaborative Framework of Dynamic EMCUD ...33
3.6 Implementation of Dynamic EMCUD...39

Chapter 4 Variant Knowledge Acquisition... 41
4.1 Idea ..41
4.2 Variant Objects Discovering Knowledge Acquisition (VODKA).................42
4.3 The Analysis of VODKA ..46
4.4 Experiments..48

Chapter 5 Evolutional Knowledge Acquisition .. 57
5.1 Trend Evolution Analysis..57
5.2 Capturing Evolutional Trend Using AST...58
5.3 Constructing the Dynamic AOT..60
5.4 Adjusting Certainty Factor of Collaborative Dynamic Knowledge64
5.5 Experiments..65

Chapter 6 Application in Worms and DDoS Detection.............................. 74
6.1 The Background of Worms and DDoS Attack ...74
6.2 The Framework Worm Immune Service Expert System76
6.3 DDoS Intrusion Tolerance...79
6.4 Knowledge Base Maintenance ..91
6.5 Experiments..103

Chapter 7 Application in Alert Classification Model Construction109
7.1 Introduction..109
7.2 Decision Support System Architecture.. 111
7.3 Experiments..121

 VIII

Chapter 8 Conclusion and Future Work ...126
Reference...129
Appendix A Introduction of DDoS...136
Appendix B The Example of Knowledge Class in DDoS Intrusion
Tolerance...139
Appendix C The Examples for Rule Base Partitioning147
Appendix D Rule Class Construction Algorithms of Model Constructing
Phase ...151
Appendix E The Overview of The Related Tools160
Appendix F The Case Study of e-Learning Using VODKA......................162

 IX

List of Figures

Figure 3.2 The Flow of VODKA ..29
Figure 3.3 The Flow of TEA ..31
Figure 3.4 The Framework of Collaborative Knowledge Acquisition..................34
Figure 4.1 The Time of Generating Rules Using Different Grid Size...................48
Figure 5.1 Unfolding Step of Constructing AST ...59
Figure 5.2 Reconstructing Step of Constructing Dynamic AOT60
Figure 5.3 Worm Ontology Construction Flow...66
Figure 5.4 Example of Initial Nimda Concept Tree ..69
Figure 5.5 The Updated Nimda Ontology after Discovering Nimda.B.................71
Figure 5.6 The Updated Nimda Ontology after Discovering Nimda.E.................72
Figure 6.1 The Collaborative Framework for Worm Detection...........................77
Figure 6.2 The Experimental Environment for Detecting Computer Worms78
Figure 6.3 The Ontology of DDoS..80
Figure 6.4 Relationships Between of Knowledge Classes81
Figure 6.5 The Framework of KA Process ..85
Figure 6.6 An Example of Users’ Behavior ...89
Figure 6.7 The DDoS Intrusion Tolerance System Using Dynamic EMCUD91
Figure 6.9 An IDS Prototype System Based RP-MES...105
Figure 6.11 The Performance Comparison ...108
Figure 7.1 The Framework of Decision Support System.................................... 112
Figure 7.2 An Attack Tool Being Run Against Three Targets............................. 114
Figure 7.3 Meta-rules of Classification Rule Classes for On-line Monitoring ... 119
Figure 7.4 Decision Support System Prototype in Experiments.........................122
Figure 7.5 Alert Reduction Rate of Normal Behavior Classification Model......123
Figure 7.6 Observations of Percentages of Different Suspicious Flags124
Figure A.1 The General Topology of DDoS Attacks..137
Figure B.1 System State Diagram..139
Figure B.2 Role State Diagram ..140
Figure C.1 Part of The Network Ontology..148
Figure D.1 Three Types of Alert Behavior Classification Rule Classes151
Figure D.2 The Procedure of Normal Behavior Classification Rule Class
Construction...154

 X

List of Tables

Table 2.1 The Illustrative Example of a Repertory Grid with Ratings10
Table 2.2 An Example of Acquisition Table...14
Table 2.3 An Example of AOT ...15
Table 2.4 The Original Rule and Embedded Rules of Nimda3.............................15
Table 2.5 The Original Rule and Embedded Rules of Nimda1 and Nimda216
Table 2.6 The Acquisition Table of Four Computer Worms19
Table 2.7 The AOT Table of Four Computer Worms..20
Table 2.8 Partial Detection Rules Generated by EMCUD21
Table 2.9 The Mask Table of Ignored Attributes...22
Table 4.1 The Partial Inference Logs of Blaster..44
Table 4.2 The Partial Inference Logs of Nimda ..49
Table 4.3 The New Variant Acquisition Table of Nimda.B....................................50
Table 4.4 The Partial Inference Logs of CodeRed ..51
Table 4.5 The New Variant Acquisition Table of CodeRed.II52
Table 4.6 The New Variant Acquisition Table of Blaster.B53
Table 4.7 The Adjusted Main Acquisition Table of Simple Computer Worms54
Table 4.8 AOT Table of Simple Computer Worms..54
Table 4.9 The Rules Generated from Table 4.7 and Table 4.855
Table 5.1 An Example of Original Nimda AT..69
Table 5.2 An Example of Original Nimda AOT ..69
Table 5.3 An Example of Nimda AST ..70
Table 5.4 An Example of Updated Nimda AT After Discovering Nimda.B..........71
Table 5.5 An Example of Integrated Nimda AT ..71
Table 5.6 An Example of Updated Nimda AOT After Discovering Nimda.B.......71
Table 5.7 An Example of Integrated Nimda AT After Discovering Nimda.E.......72
Table 5.8 An Example of Updated Nimda AOT After Discovering Nimda.E.......72
Table 6.1 The Ratio of Discovering New Evolved Worm....................................104
Table 6.2 The Cluster Number with Different Similarity Threshold Settings and
Number of Rules...107
Table 6.3 Accuracy Comparisons...107
Table 6.4 Comparison of Number of Clusters...108
Table A.1 The DDoS Attacks Developed from 1998 to 2002136
Table C.1 Encodings of Expressions in RB..149
Table F.1 The Learning Sequence of Students...163
Table F.2 The Maximal Frequent Learning Patterns of Good Students164

 XI

List of Algorithms

Algorithm 2.1 EMCUD Algorithm ..14
Algorithm 3.1 The Dynamic EMCUD Algorithm ...26
Algorithm 3.2 The Grid Merging Algorithm...32
Algorithm 4.1 VODKA Algorithm...43
Algorithm 6.1 The Characteristic Training Algorithm...88
Algorithm 6.2 Rule Base Partitioning Algorithm..100
Algorithm 6.3 Meta Apriori Algorithm ...102
Algorithm D.1 The Normal Behavior Classification Rule Class Construction
Algorithm ...155
Algorithm D.2 The Suspicious/Intrusion Behavior Classification Rule Class
Construction Algorithm...159

 1

Chapter 1

Introduction

As we know, knowledge based system is an intelligent computer program that

uses knowledge and inference procedures to solve problems that are difficult enough

to require significant human expertise for their solutions, such as disease diagnosis,

investment prediction, and computer science. A well-known fundamental problem to

the development of knowledge based systems is the acquisition of the expert

knowledge (the formation of real-world knowledge to some computerized knowledge

representation) that makes these systems work. As a matter of fact, knowledge

acquisition is known to be the critical bottleneck in building knowledge based systems

[25].

The knowledge can be divided into two groups: substantive knowledge and

strategic knowledge. Substantive knowledge is used to draw conclusions from the

evidence it has, that is, to interpret input data and identify the current state, and

strategic knowledge is used to decide what to do next according to the state. In [30],

Gruber gave a good example to explain both kinds of knowledge: A military pilot

follows the strategy of taking evasive action when in danger of being fired on. The

pilot must use substantive knowledge to access the situation “Am I in danger of being

attacked?” and strategic knowledge to respond “Climb to 30000 feet.” In general,

substantive knowledge is used to identify relevant states of the world and strategic

 2

knowledge is used to evaluate the utility of possible actions when a state is given. [30]

Substantive knowledge is represented explicitly in knowledge base, and is

acquired directly from experts, manually or with some help from automated tools. For

instance, in a computer worm detection application, the knowledge engineer consults

the literature and interviews domain experts to acquire the knowledge of well-known

worms (objects) using pre-defined attributes. This kind of substantive knowledge is

treated as static because the environment is assumed stable in any time. In other

words, the static knowledge remains the same when the environment is changed as

time goes on. However, the environment of the cyber world is changing rapidly. New

worms will be evolved from old worms or be developed to threaten the Internet and

may cause the failure of worm detection knowledge based system. This kind of

substantive knowledge is treated as dynamic knowledge which means that the

knowledge will be updated or derived from well-known knowledge due to the

adaptation of the changing environment with the times.

Many knowledge acquisition methodologies and related tools, e.g., NeoETS [10],

AQUINAS [11], KITTEN [64], EMCUD [34], KADS [81], KAMET [14], have been

proposed to improve the quality of the elicited static substantive knowledge (rules in

knowledge base) in the past twenty years. Most of the existing systems employ the

Repertory-Grid test originally developed by George Kelly’s Personal Construct

Theory [39] in eliciting substantive knowledge, which could be used as an efficient

knowledge acquisition technique in identifying different objects and distinguishing

these objects in a domain.

 3

With time goes on, some substantive knowledge might be modified or evolved

from the original knowledge to adapt in a dynamic environment due to the adoption of

new conditions. Some other substantive knowledge could be incrementally created to

classify new objects due to the explosion of the knowledge. The dynamic knowledge

includes variant knowledge and evolutional knowledge. The variant knowledge is

usually derived from original objects, which means that the knowledge is changed as

time goes on in the stable environment. The evolutional knowledge is changed over

time due to the changing environment. For example, in a computer worm application,

a famous worm, Nimda is the first worm to modify existing web sites to start offering

infected files for download by using Unicode exploit to infect IIS web server. As the

time goes by, Nimda.B, a variant of Nimda family, is developed to infect victim hosts

through different attached file in e-mail. Although many knowledge acquisition

methods have been proposed to rapidly build the knowledge base, the acquisition of

dynamic knowledge has been hardly discussed. To acquire dynamic knowledge, the

experts are required to be aware of the occurrence of new objects in knowledge

acquisition systems. However, it is still difficult for experts to be aware of the new

object without any additional related information.

EMCUD (Embedded Meaning Capturing and Uncertainty Deciding) was

proposed to elicit the embedded meanings of knowledge (embedded rules bearing on

m objects and k object attributes) to classify m objects (O1, O2, … , Om) based upon

repertory grids principles, which represents the information that domain experts take

for granted but are implicit to the people who are not familiar with the application

domain, and guide experts to decide the certainty degree of each embedded rule for

extending the coverage of generated original rules. To simplify our discussion, assume

 4

some objects in O1 class, which are classified by original rules of O1, belong to the

original object class (OO1) of O1. The other objects in O1 class, which are classified

by embedded rules of O1, belong to the extended object class (EO1) of O1. However,

some embedded rules may be with marginally acceptable certainty factor (CF) values

due to the weak suggestions of domain experts. Due to the ability of embedded rules,

some objects can not be classified by the original rule but might be able to be

classified by the other embedded rules with different certainty degree. Hence, these

objects might be evolved with the times and could be classified by the embedded rules

of O1 with weak CF values. This kind of objects is singled out to be a variant object

class (VO1) of O1 because the similar characteristics of these objects (the related

ambiguous attributes or minor attributes) might become more and more important and

need to be classified into a specific variant object class in EO1 after refining the

ambiguous attributes or adding some new attributes to improve the classification

ability. The variant of an original object in this dissertation stands for a subset of the

original object class having some different characteristics.

Although EMCUD extends the ability of knowledge acquisition systems to elicit

substantive knowledge with the embedded rules, it is still limited to discover the

dynamic knowledge of original objects due to the lack of the sufficient information.

Owing to the different background and dynamic knowledge which can be changed as

times goes by, the domain knowledge constructed at a time may become obsolete in

the near future. Moreover, some evolutional knowledge needs to be evolved for

adopting in a dynamic environment. It may result in the difficulty of observing the

occurrence of new knowledge for human experts. Hence, how to collect sufficient

relevant information to help experts notice the occurrence of dynamic knowledge and

 5

reuse the original rule base becomes one important issue. Since the relative

importance of each attribute to each object could be represented using attribute

ordering table, some minor attributes can be relaxed or ignored to capture the

embedded meanings with acceptable CF. In other words, these kinds of attributes can

be ignored to be not used to classify the object with lower CF value. With the

changing environment, new knowledge derived from old objects might be classified

by embedded rules with the ignored attribute-value and marginally acceptable CF, and

can not be distinguished from original objects.

In this dissertation, we will propose new knowledge acquisition methods which

collect useful information to monitor the inference behaviors of weak embedded rules

and to trace information over time in order to efficiently update the time-related

knowledge in a dynamic environment. A Dynamic EMCUD which is an iterative

process to assist experts in being aware of the occurrence of dynamic knowledge

according to the analyzing results of inference behaviors is proposed. Each iteration

consists of three Stages: Log Collecting Stage, Knowledge Learning Stage, and

Knowledge Polishing Phase. A collaborative knowledge acquisition framework

(including local KBSs and a collaborative KBS) based upon Dynamic EMCUD will be

proposed to monitor the frequent inference behaviors of weak embedded rules and to

trace the evolved behaviors of objects with the times from multiple KBSs for assisting

experts in efficiently obtaining the dynamic knowledge. Each local KBS deploys

Dynamic EMCUD module to monitor the frequent inference behaviors of weak

embedded rules to iteratively construct an acquisition table increment. The AOT

increment could be constructed using entropy or time series analysis technique to

analyze the importance of each attribute to each object with the times to facilitate the

 6

acquisition and adaptation of dynamic knowledge without too many interactions with

experts in a changing environment.

Variant Objects Discovering Knowledge Acquisition (VODKA) will be proposed

to learn the new variant object in classification KB according to the occurrence

frequency of these objects. The goal of the VODKA is to facilitate the acquisition of

new inference rules for a classification KBS which identifies an object from its

attribute-values in a small acquisition table increment. The new rules should be able

to cope with these new objects which are similar to those previous known original

rules in the KBS (they are object variants). Consequently, we enrich the knowledge

base constructed by the VODKA and hence ease the effort of constructing the domain

knowledge in a dynamic environment.

Because the static EMCUD may not be adaptive to the variant knowledge, a

Trend Evolution Acquisition (TEA) for constructing dynamic knowledge will be

thirdly proposed to adapt knowledge with time by recording each interested attribute’s

information in each time point and update the evolutional knowledge base if

necessary in a period of time. Consequently, a knowledge base can become more

robust, flexible, and perform more learning from experiences during inference. The

VODKA generates a small acquisition table increment of new objects, and the TEA

generates an AOT increment. Finally, we use a Grid Merging approach to integrate

the acquisition table increment and AOT increment into the original main acquisition

table and the main AOT respectively for generating corresponding embedded rules of

new objects.

 7

However, some new evolved objects might be invisible or insignificant under

each local KBS with Dynamic EMCUD, the profile of each KBS and the infrequent

logs are analyzed in the collaborative KBS to collaboratively assist experts in

discovering new objects. The infrequent inference logs can be analyzed by Dynamic

EMCUD and corresponding profiles to discover the interesting knowledge of new

objects which is unseen in each KBS. In order to acquire a meaningful CF value of

each new discovered embedded rule of evolved objects, the CF value of each new

embedded rule of evolved objects could be adjusted in the collaborative KBS based

upon three cases in the CF adjusting function.

Based upon the collaborative framework, the dynamic knowledge could be

elicited from the main acquisition table, which results in the ability of knowledge

evolution. We illustrate two applications in worm and DDoS intrusion detection, and

alert model construction to evaluate the utility of Dynamic EMCUD. We setup an

experimental environment consisting of a firewall to filter computer worm traffic

from Internet (normal traffic) and an attacking traffic generator to randomly generate

various worms to infect a victim according the constructing models. The results show

the Dynamic EMCUD is useful for assisting experts easily to be aware of the new

variant worms and the corresponding knowledge can be quickly extracted.

 8

Chapter 2

Related Work

Several knowledge acquisition methodologies and related systems are introduced

in this chapter. Then Repertory Grid, one of the popular indirect knowledge

acquisition techniques, and the elicitation of embedded meaning and some problems

of traditional knowledge acquisition methodologies are discussed.

2.1 Knowledge Acquisition Systems

Since the knowledge in many domains, the experience of domain experts, is

continuously growing, many knowledge acquisition methodologies have been

proposed to help knowledge engineers acquire the useful knowledge and then to

transfer these knowledge into knowledge base or other computerized representation

forms. In general, there are three approaches for knowledge acquisition [21][34][48]:

(1) Interviewing experts by experienced knowledge engineers: interviewing experts is

usually time-consuming if the communication between domain experts and

knowledge engineers is insufficient.

(2) Machine learning: learning the knowledge by collecting many useful cases and

instances with/ without the involvement of domain experts [57]. However, the

quality of the results usually relies on the selected training cases.

(3) Knowledge acquisition systems: assisting domain experts to generate useful rules

 9

using knowledge acquisition systems with/ without the help of knowledge

engineers. These tools could reduce the effort of communication between

knowledge engineers and domain experts and could reduce the risk and difficulty

of selecting the suitable training cases.

The interviewing approach could be used to acquire dynamic knowledge by

manually rebuilding the knowledge base. However, the experts may not be aware of

the occurrence of dynamic knowledge. Since the machine learning is used to learn the

knowledge from useful cases, the discovered knowledge is limited to classify the new

evolutional knowledge. This is caused by the lack of insufficient context information.

In the past decades, many knowledge acquisition systems, e.g., NeoETS [10],

AQUINAS [11], KITTEN [64], EMCUD [34], KADS [81], MCRDR [38], KAMET [14],

MedFrame/CADIAG-IV [7][41][44] have been developed to build prototypes and to

iteratively elicit the knowledge from domain experts. However, all of these systems

can not efficiently acquire dynamic knowledge due to the lack of sufficient

information and the experts may not be aware of the occurrence of evolutional

knowledge.

2.2 Repertory Grid Methodology and Relevant Systems

Repertory Grid, based on Kelly’s Personal Construct Theory [39] which reports

how people make sense of the world, could be used as an efficient knowledge

acquisition technique in identifying different objects and distinguishing these objects

in a domain. It is the basis of several computer assisted knowledge acquisition tools,

such as ETS [8][9], AQUINAS [11] and KSSO [26].

 10

A single repertory grid represented as a matrix whose columns have element

objects (labels) and whose rows have construct attributes (labels) can classify a class

of objects, or individuals. The value assigned to an element-construct pair need not be

Boolean. Grid values have numeric ratings, probabilities, and other characteristics,

where each value reflects the degree of a construct to an element. Then, the expert is

asked to fill the grid with 5-scale ratings, where “1” represents the most relevant

attribute to the object; “2” represents that the attribute may be relevant to the object;

“3” represents “unknown” or “no relevance”; “4” represents that the object may have

the opposite characteristic; “5” represents the most relevant opposite characteristic to

the object. The whole concept of Repertory Grid technique can be described as

following steps:

(1) Elicit all of the element objects, e.g., E1, E2, E3, E4, E5 from the expert.

(2) Elicit the construct attributes (and their opposites), e.g., C1, C2, C3, C4 (C1’, C2’,

C3’, C4’), from the expert. Each time three elements are chosen to ask for a

construct to distinguish one element from the other two.

(3) Rate all of the [element, construct] entries of the grid with value range from 1 to 5.

An illustrative example is given in Table 2.1.

Table 2.1 The Illustrative Example of a Repertory Grid with Ratings

Element
Construct E1 E2 E3 E4 E5

C1 5 1 5 1 1 C1’
C2 4 4 4 1 4 C2’
C3 1 4 5 1 4 C3’
C4 1 4 4 5 5 C4’

As Repertory Grid technique has been widely used by researchers, some

extensions have been made to enrich its representative ability for covering more

 11

knowledge, the value assigned to an element-construct pair may be Boolean, numeric

ratings, probabilities, etc. For example, Dixit and Pindyck [23], and Hwang [33]

extended the Repertory Grid technique to the fuzzy table, in which constructs were

fuzzy attributes that could be rated by means of fuzzy linguistic terms from a finite set.

Castro-Schez et al. [15] developed a technique using a fuzzy repertory grid for

acquiring the finite set of attributes or variables that the expert used in characterizing

and discriminating a set of elements.

Moreover, several models have been proposed for handling uncertainties in

expert systems through generating more meaningful rules from the Repertory Grid

oriented approaches. EMYCIN certainty factor model was first used to decide on the

degree of the belief of a rule for uncertain reasoning [67]. Embedded Meaning

Capturing and Uncertainty Deciding (EMCUD) knowledge acquisition system was

proposed to extract rules with embedded meaning from repertory girds by defining the

impacts of the constructs to each element [34] and was successive applied in a

medical diagnostic system for acute exanthema [35]. WebGrid, Calgary’s web-based

knowledge modeling and inference tool, is based on Repertory Grid elicitation and

analysis [65].

However, none of these methodologies discusses the issue of discovering

dynamic knowledge. Therefore, a new collaborative knowledge acquisition system

based upon EMCUD is hence proposed in this dissertation to help domain experts be

aware of the occurrence of dynamic knowledge and to create additional attributes for

extracting dynamic knowledge through the observations of the interested inference

results and the time based analysis.

 12

2.3 Elicitation of Embedded Meanings

The embedded meanings referred to here represent the information that domain

experts take for granted but are implicit to the people who are not familiar with the

application domain. For example, a physician may describe the typical feature of

Measles to be 3 to 4 days of fever, cough, desquamation, and brick-red maculopapular,

but usually he/she does not mean only when all of these features happen, then the

patient has Measles. It is possible that patient does not have a cough or desquamation

while Measles can still be implied only with less certainty. Embedded meanings are

likely to be ignored during the process of knowledge acquisition, especially in some

application domains such as medical diagnosis. This is the reason why experts can

usually make a conclusion even when the required information is not complete while

most of expert systems may fail to have a conclusion if the premise part are only

partially matched.

The lack of embedded meaning will probably make an expert system fail to infer

some cases being trivial to experts. The initial knowledge and the embedded

meanings will make the same conclusion with different certainties; therefore, their

relationships may be used to guide experts to decide the degree of certainties for

embedded meanings. SEEK [59] and SEEK2 [28] have been proposed to obtain

embedded meanings by some efficient refinement processes. However, the major

problem with SEEK and SEEK2 is the case database being assumed to be available

because it is difficult to collect sufficient cases in some applications.

Moreover, it would be also time-consuming and boring for experts to offer a

conclusion for each case in the database before starting the refinement procedure.

 13

Thus, EMCUD is proposed to elicit the embedded meanings of knowledge from the

existing hierarchical repertory grids given by experts [34]. Additionally, it will also

guide experts to decide the certainty degree of each rule with embedded meaning for

extending the coverage of generated original rules. EMCUD can be used to elite part

of dynamic knowledge since the embedded meaning included. However, it is still

weak to acquire more dynamic knowledge due to insufficient context information.

To capture the embedded meanings of the resulting grids, the Attribute Ordering

Table (AOT), which is used to record the relative importance of each attribute to each

object, is employed. The values in each AOT entry, a pair of attribute and object, may

be labeled “X”, “D” or an integer number. “X” means no relationship existing

between the attribute and the object. “D” means that the attribute dominates the object,

i.e., if the attribute is not equal to the entry value, it is impossible for the object to be

implied. Integer numbers are used to represent for the relative important degree of the

attribute to the object instead of dominating the corresponding object. If the attribute

does not equal the attribute-value, it is still for the object to be implied. The larger

integer number implies the attribute being more important to the object.

Using AOT, the original rules generate some rules with embedded meaning, and

the Certainty Factor (CF) of each rule, which is between -1 and 1, could be

determined to indicate the degree of supporting the inference result. The higher CF is,

the more reliable result is. The EMCUD algorithm is listed as Algorithm 2.1.

 14

Algorithm 2.1 EMCUD Algorithm

Input: The hierarchical grids.
Output: The guiding rules with embedded meaning.

Step1: Build the corresponding AOT with each grid of the hierarchical multiple

grids.
Step2: Generate the possible rules with embedded meaning.
Step3: Select the accepted rules with embedded meaning through the interaction

with experts.
Step4: Generate automatically the CF of each rule with embedded meaning.

All rules generated by EMCUD could be categorized into two classes: original

and embedded rules with acceptable CF value, and discarded rules with unacceptable

CF value, according to the confidence degree of domain experts. To decide the CF

value of each embedded rule, we have to first decide on the upper and the lower

bounds of CF values of accepted embedded rules. CF values of each rule can be

automatically determined by a fuzzy mapping function. Thus, the useful embedded

rules with corresponding CF values could be used to cover more uncertainty cases.

It is called the Acquisition Table instead of repertory grid to distinguish it from

the grids derived by applying other methods. An example of acquisition table for

Nimda, a worldwide popular computer worm, is shown in Table 2.2, and the other

example of AOT is shown in Table 2.3.

 Table 2.2 An Example of Acquisition Table

Object
Attribute Nimda1 Nimda2 Nimda3

Mail_Attachment Readme.exe puta!!.scr null
Upload_Medium Admin.dll Admin.dll cool.dll

Executed_File_Name Riched20.dll Riched20.dll httpodbc.dll

 15

Table 2.3 An Example of AOT

Object
Attribute Nimda1 Nimda2 Nimda3

Mail_Attachment 2 1 X
Upload_Medium 3 4 3

Executed_File_Name 3 4 D

The original and embedded rules generated according to Nimda3 in the third

column of the Table 2.2 are shown as Table 2.4.

Table 2.4 The Original Rule and Embedded Rules of Nimda3

Conditions Conclusion Rule # Mail_Attachment Upload_Medium Executed_File_Name Object CF

RNimda3, 0 null cool.dll httpodbc.dll Nimda3 0.8
RNimda3, 1 - cool.dll httpodbc.dll Nimda 0.6
R Nimda3, 2 - ¬ (cool.dll) httpodbc.dll CodeRed 0.4

The original rule of Nimda3 is numbered as RNimda3, 0 “IF (Mail_Attachment =

null) AND (Upload_Medium = cool.dll) AND (Executed_File_Name = httpodbc.dll)

THEN Nimda3” with the CF = 0.8.

Since the ordering value between Mail_Attachment and Nimda3 is “X”,

Mail_Attachment in the premise of original rule should be eliminated, and

Upload_Medium can be negated as R Nimda3, 2 when its ordering value is nether “D”

nor “X”; however, Executed_File_Name should always exist in every embedded rule

because it dominates Nimda3. After that, a Certainty Sequence (CS) value is used to

represent the degree of certainty for an embedded rule, which is calculated by

negating some predicates of its original rule by following formula (2.1),

i k iCS(R)=SUM(AOT[Att , Obj]) (2.1)

where Attk belongs to the attribute set of Ri, and Obji is the object of Ri. So, from

above example, the CS value of R Nimda3, 2 is 3 + 5 = 8.

 16

Finally, after all the CS values are calculated, rules would be sorted according to

the CS values and interacted with experts by acquiring upper-bound (UB) and

lower-bound (LB). The CF value can now be generated by the following formula

(2.2),

()i
i a a a

i

CS(R)
CF(R)=UB(R)- UB(R)-LB(R)

MAX(CS)
 

× 
 

 (2.2)

where MAX(CSi) is the maximum CS value in all embedded rules generated from the

original Ra with the same object. So, CF value of R Nimda3, 2 is 0.4 after the calculation,

and part of results followed the example above are shown as Table 2.5.

Table 2.5 The Original Rule and Embedded Rules of Nimda1 and Nimda2

Conditions Conclusion Rule # Mail_Attachment Upload_Medium Executed_File_Name Object CF

RNimda1, 0 Readme.exe Admin.dll Riched20.dll Nimda1 0.8
RNimda1, 1 ¬Readme.exe Admin.dll Riched20.dll Nimda1 0.7
RNimda2, 0 puta!!.scr Admin.dll Riched20.dll Nimda2 0.8
RNimda2, 1 ¬puta!!.scr Admin.dll Riched20.dll Nimda2 0.6

Since embedded rules with weak acceptable CF values usually mean domain

experts may lack the strong confidence, objects matching weak embedded rules

derived from original objects may be the candidates of new variants. For example, the

object satisfying the conditions of the embedded rules with CF = 0.5 means the expert

might suggest that it would be marginally classified into the object class and the

negated attributes of the embedded rule might be not clearly defined. Therefore, the

fired frequencies of this kind of weak embedded rules should be used to discover the

occurrence of new variant objects.

 17

With the changing environment, the adaptation of the acquired rules should be

required to cope with the dynamic knowledge. However, experts may not be aware of

the occurrence of the candidates of new variants and may have insufficient evidence

to construct the dynamic knowledge of the variants using conventional repertory grid

approaches. Although EMCUD could be used to generate more useful embedded rules

for covering more similar cases, it still lacks the ability of grid evolution for coping

with new dynamic knowledge; e.g., EMCUD should manually regenerate the original

and embedded rules again by the interaction with domain experts after collecting

sufficient information about these knowledge. Therefore, enhancing the adaptation

ability of embedded rules becomes increasingly important to achieve the ability of

grid evolution in classification KBS.

In this dissertation, the embedded rules from EMCUD are categorized into three

classes: the original rules with strong CF, the embedded rules with marginally

acceptable CF, and the discarded rules with low CF. Hence, a new knowledge

acquisition methodology is proposed to discover the occurrence of new variant

objects using the fired frequency of embedded rules with marginally acceptable CF.

2.4 Problems of Repertory Grid Knowledge Acquisition Methods

With the changing environment, the adaptation of the acquired rules should be

required to cope with the new variants. However, experts may not be aware of the

occurrence of the candidates of new variants and may have insufficient evidence to

construct the knowledge of the variants using conventional Repertory Grid

approaches. Although EMCUD could be used to generate more useful embedded rules

for covering more similar objects in extended object class, it still lacks the ability of

 18

grid evolution for singling these new variants out; e.g., EMCUD should manually

regenerate the original and embedded rules to classify these variant objects by the

interaction with domain experts after collecting sufficient information about these

variants. Therefore, enhancing the adaptation ability of embedded rules becomes

increasingly important to achieve the ability of grid evolution in classification KBS.

In this dissertation, the embedded rules from EMCUD are categorized into three

classes: the original rules with strong CF, the embedded rules with marginally

acceptable CF, and the discarded rules with low CF. Hence, a new knowledge

acquisition methodology is proposed to discover the occurrence of new variant

objects using the fired frequency of embedded rules with marginally acceptable CF. A

simple computer worm detection prototype in Example 2.1 is used to illustrate the

inability for discovering variants using EMCUD.

Example 2.1 The Example of Classifying Four Computer Worms

In recent years, computer worm is dramatically increasing to threaten the

reliability of Internet. Table 2.6 shows the acquisition table of four computer worms

[40[51][50][80] including Nimda, CodeRed, Blaster, and Welchia using five attributes

including 300-thread, System reboot, DoS type, Mail_Attachment, and TCP port. The

300-thread means 300 threads with Boolean are simultaneously executed by one

program. The system reboot Boolean attribute will be set to True if the system has

been automatically rebooted. The attacking methodologies of worms could be

classified into one kind of DoS type with String attribute [50]. The email attached file

attribute with Set data type is also a useful attribute to classify these worms. Most of

worms could communicate each other using different TCP port with Set data type.

 19

Table 2.6 The Acquisition Table of Four Computer Worms

 Object
Attribute Nimda CodeRed Blaster Welchia

300-thread (A1) X True X X
System reboot (A2) X True True True

DoS type (A3) Email flood TCP flood Windows Update
flood ICMP flood

Mail_Attachment (A4) {sample.exe;
puta!!scr} X X X

TCP port (A5) X {80} {135;4444} {80;135}

An example of constructing an AOT table from the acquisition table shown in

Table 2.6 is given as follows:

EMCUD: If DoS type is not equal to Email flood, is it possible for Nimda to be

implied?

EXPERT: No.

The answer means the DoS type dominate Nimda, and hence AOT [Nimda,DoS

type] = ”D”.

EMCUD: If Email attached file is not equal to any element of {sample.exe,

puta!!scr}, is it possible for Nimda to be implied?

EXPERT: YES.

The answer means that Email attached file does not dominate Nimda. The

questions for 300-thread and Nimda will not be asked, since the entry [Nimda,

100-thread] is labeled “X”. Therefore, the entry AOT [Nimda, 300-thread] is labeled

“X”, too. This is the same as the entries AOT [Nimda, System reboot] and AOT

[Nimda, TCP port]. The entry AOT [Nimda, Mail_Attachment] is set to be 1, since the

Email attached file is the only attribute that does not dominate Nimda. If there are

more than one attributes do not dominate the object, e.g. the System reboot, the DoS

 20

type, and the TCP port do not dominate Blaster, the following questions will be asked

by EMCUD.

(1) Is System reboot more important than DoS type?

(2) Is System reboot less important than DoS type?

(3) Is System reboot as important as DoS type?

The expert indicates that System reboot is as important as DoS type to Blaster.

Moreover, the expert also indicates that System reboot is more important than TCP

port to Blaster; and hence the entries AOT [Blaster, System reboot] = AOT [Blaster,

DoS type] = 2 and AOT [Blaster, TCP port] = 1. After each entry value of AOT is

determined, shown in Table 2.4, the embedded meaning implied by the AOT could be

extracted.

Table 2.7 The AOT Table of Four Computer Worms

Object
Attributes Nimda CodeRed Blaster Welchia

A1 X 2 X X
A2 X 1 2 2
A3 D 1 2 1
A4 1 X X X
A5 X X 1 2

Now we use the first column of Table 2.6 to show the information implied by an

AOT. The column expresses the following meanings:

(1) A3 dominates Nimda: If A3 is not equal to Email flood, it is impossible for Nimda

to be implied.

(2) A4 does not dominate Nimda: If A4 is nether equal to sample.exe nor puta!!scr, it

is still possible for Nimda to be implied.

 21

In practice, the hierarchy rules could be generated while hierarchical grids are

given. To simplify the discussion, Table 2.8 shows partial detection rules (simple rules)

of a classification KBS based upon the Table 2.6 and Table 2.7 to classify these worms

using five attributes in single grids. Ri,j represents the j-th highest rank of CF in object

i, and the highest rank is 0. The R1,0 is the original rule of Nimda to classify the

original Nimda objects and R1,1 is the embedded rule of Nimda to classify the

extended Nimda objects.

Table 2.8 Partial Detection Rules Generated by EMCUD

Conditions Conclusion CF Rule
A1 A2 A3 A4 A5 Object

R1,0 - - Email flood (sample.exe;puta!!scr) - Nimda 0.8
R1,1 - - Email flood ¬ (sample.exe;puta!!scr) - Nimda 0.4
R2,0 True True TCP flood - - CodeRed 0.8
R2,1 True False TCP flood - - CodeRed 0.6
R2,2 False True TCP flood - - CodeRed 0.4
R2,3 True False ¬ (TCP flood) - - CodeRed 0.4

R3,0 - True Windows update
flood - {135;4444} Blaster 0.7

R3,1 - True Windows update
flood - ¬{135;4444} Blaster 0.57

R3,2 - False Windows update
flood - {135;4444} Blaster 0.43

R3,3 - True ¬ (Windows update
flood) - {135;4444} Blaster 0.43

R3,4 - False Windows update
flood - ¬{135;4444} Blaster 0.3

R4,0 - True ICMP flood - {80;135} Welchia 0.8
R4,1 - True ¬ (ICMP flood) - {80;135} Welchia 0.67
R4,2 - True ICMP flood - ¬{80;135} Welchia 0.53
R4,3 - True ¬ (ICMP flood) - ¬{80;135} Welchia 0.4

The Mask Table of minor attributes shown in Table 2.9 indicates the minor

attributes for all embedded rules [76]. Each row in Mask Table is a bit vector of

attributes, where the ith bit is set to 1 representing the ith minor attribute is negated or

ignored. For example, the M2,3 (0, 1, 1, 0, 0) means the 2nd and 3rd minor attributes in

R2,3 are ignored.

 22

Table 2.9 The Mask Table of Ignored Attributes

Mask # A1 A2 A3 A4 A5
M1,0 0 0 0 0 0
M1,1 0 0 0 1 0
M2,0 0 0 0 0 0
M2,1 0 1 0 0 0
M2,2 1 0 0 0 0
M2,3 0 1 1 0 0
M3,0 0 0 0 0 0
M3,1 0 0 0 0 1
M3,2 0 1 0 0 0
M3,3 0 0 1 0 0
M3,4 0 1 0 0 1
M4,0 0 0 0 0 0
M4,1 0 1 0 0 0
M4,2 0 0 0 0 1
M4,3 0 1 0 0 1

In Internet, each worm can be represented as a set of attribute-value pairs. We

can automatically collect such attribute-value pairs and feed them into our

classification KBS to classify them in the suitable category. Since new worms might

have been derived from old discovered worms, the difference between their

attribute-values seems to be slight. As mentioned above, EMCUD could generate lots

of embedded rules with different CF values for accommodating the knowledge of the

changed worms due to the property of minor attributes; e.g., R1,1 “IF (DoS type =

Email flood) AND ¬ (Mail_Attachment = (sample.exe; puta!!scr)) THEN Nimda”, a

marginally acceptable embedded rule with CF = 0.4, may be fired by a new Nimda

variant which is treated as a member of original Nimda class. If this rule has been

fired frequently due to a specific email attached file attribute-value

“readme.exe”(more evidence of the occurrence of the candidates of Nimda variants

have been gathered), a new original rule “IF (DoS type = Email flood) AND

(Mail_Attachment = readme.exe) THEN Nimda.B” , a subset of extended Nimda

object class namely Nimda.B, with CF = 0.8 together with an embedded rule “IF

(DoS type = Email flood) AND ¬ (Mail_Attachment = readme.exe) THEN Nimda.B”

 23

with CF = 0.5 could be generated to single the Nimda.B class out of the extended

Nimda object class.

In summary, to acquire dynamic knowledge, the experts are required to be aware

of the occurrence of new objects in the interviewing approach and knowledge

acquisition systems. However, it is still difficult for experts to be aware of the new

object without any additional related information. The machine learning approaches

which can learn the useful model according to the selected training cases also lack the

ability of discovering dynamic knowledge unless more context information can be

included in the training process. Although many knowledge acquisition

methodologies and related tools have been proposed to improve the quality of the

elicited static knowledge by domain experts with/without knowledge engineers in the

past twenty years, most of them are lack of the ability of discovering dynamic

knowledge unless rebuilding the knowledge base in the dynamic environment.

Therefore, a new knowledge acquisition method to acquire the dynamic knowledge is

required.

 24

Chapter 3

Dynamic Knowledge Acquisition Based Upon

EMCUD

Although many researchers proposed new knowledge acquisition approaches to

acquire different domain knowledge, few of them discuss the acquisition of dynamic

knowledge due to the changing environment as time goes on. These traditional

knowledge acquisition methodologies are weak to discover dynamic knowledge due

to the lack of insufficient context information to notice experts the occurrence of

dynamic knowledge. New objects might be discovered using incremental learning

methods with enough new cases and the experts should be able to be aware of the

occurrence of these objects to acquire the knowledge of them again. The knowledge

acquisition systems should be capable of representing the dynamic knowledge.

Therefore, we propose Dynamic EMCUD combining the advantages of interviewing,

machine learning and knowledge acquisition systems to collect sufficient information

for assisting experts to be aware of dynamic knowledge.

3.1 The Concept of Dynamic EMCUD

As we know, generating rules in EMCUD would be cost inefficient if the size of

Acquisition Table (AT) and Attribute Ordering Table (AOT) are too large. After

collecting sufficient information of new evolved objects, EMCUD has to manually

 25

regenerate the original and embedded rules to classify these new objects with the large

main AT. Therefore, the concept of Dynamic EMCUD shown in Figure 3.1 is

proposed to help experts incrementally generate the dynamic knowledge based upon a

New Evolved Object learning (NEO-learning) module for enhancing the explanation

power of the original embedded knowledge base.

Figure 3.1 The Concept of Dynamic EMCUD

The dynamic knowledge base (embedded rule base) will be created according to

the original main AT and AOT table using EMCUD. Then the inference behaviors

(facts/attribute-value pairs) will be collected iteratively based upon the initially

constructed knowledge base to discover the candidates of the variants during Log

Collecting Stage. The NEO-learning module is proposed in Dynamic EMCUD,

including Variant Object Discovering Knowledge Acquisition (VODKA) and Trend

Evolution Acquisition (TEA) to help domain experts construct a small AT increment

and an AOT increment, respectively, after confirming the occurrence of new variant

objects in Knowledge Learning Stage. VODKA and TEA will be detailedly described

in Chapter 4 and Chapter 5, respectively.

 26

The ignored attribute-value pair of the minor attribute will be treated as an item

and a set of ignored attribute-value pairs will be treated as a transaction to discover

the association between interesting attribute-value pairs. The AT increment, which can

be generated by monitoring the frequency of the weak embedded rules using VODKA,

is used to record the new evolved objects and the attributes which are updated or

added to generate the dynamic knowledge. The AOT increment is used to help experts

to generate the adaptive relative importance of each attribute to each object as time

goes on by tracing the importance evolving trends of all attributes during a time

interval in TEA. Through integrating the AT increment and the AOT increment into

the main AT and the main AOT respectively using Grid Merging algorithm in

Knowledge Polishing Stage, it can generate the rules of new evolved objects with the

grid evolution ability using original EMCUD. The Dynamic EMCUD is shown as

Algorithm 3.1.

Algorithm 3.1 The Dynamic EMCUD Algorithm

Input: The original main AT, AOT and embedded rule base RB.
Output: The rules with embedded meaning about variants.

Stage I: Collect all facts of the weak embedded rules as inference log of the RB.
Stage II: Generate the new variants acquisition table AT’.

Step 1: Discover large itemsets L using the inference log.
Step 2: Generate AT’ using L and additional attributes provided by experts.
Step 3: Update the AOT’ according to AT’.

Stage III: Use EMCUD to generate rules of new variants.
Step 1: Generate rules according to AT’ and AOT’.
Step 2: Merge AT’ into original main acquisition table AT.
Step 3: Merge AOT’ into original main AOT.

3.2 Inference Log Collecting Based upon Meta Rule

Without loss of generality, assume there are k attributes to classify m objects in

the main acquisition table. Thus, the total number of the embedded rules used in

 27

Dynamic EMCUD is limited. In order to assist domain experts in noticing and

analyzing the occurrence of the candidates of variant objects, the following four meta

rules are used in Dynamic EMCUD to collect the frequent inference log (fact/ raw

data) of weak embedded rules to help experts notice the occurrence of new objects.

MR1: IF Ri,j is fired THEN Increase Ci,j by one.
MR2: IF CF(Ri,j) ≤ THCF, THEN Log Ri,j.
MR3: IF Ci,j ≥ THcnt AND CF(Ri,j) ≤ THCF THEN Run VODKA Algorithm to

acquire the variants acquisition table increment AND Reset TimeOut.
MR4: IF TimeOut = THPeriod THEN Run VODKA Algorithm AND Reset TimeOut.

The meta rule MR1 is used to count the fired frequency of each embedded rule

(Ci,j). The meta rule MR2 means that all facts (attribute-value pairs) of the embedded

rules with marginally acceptable CF lower than strong CF bound threshold (THCF) are

logged as a record, (Ri,j, A1, A2, … .,Ak, CF(Ri,j)). The meta rule MR3 means that if

there exists one weak embedded rule with fired frequency exceeding the warning line

threshold (THCNT), new variants may be discovered iteratively using VODKA. The

meta rule MR4 means that VODKA will be executed periodically to refresh the new

variants acquisition table. The TimeOut will be reset when MR3 or MR4 is triggered.

3.3 The NEO-Learning Module

As we know, the KBS is proposed to help experts solve the difficult problems in

a specific domain based upon the pre-constructed static knowledge base. However,

the new objects will be developed or discovered as times goes on and might result in

the inefficiency of KBS. Based upon the embedded rules generated by EMCUD, some

new evolved objects may be classified into well-known object class by the weak

embedded rule with weak CF which is not strongly suggested by experts. Through

monitoring the frequency of these weak embedded rules, the candidates of new

evolutional objects might be discovered to notice the experts. Therefore, the

 28

characteristics of these candidates of new objects could be extracted from these

collected inference logs. The evidence of the new objects can be confirmed by experts

and some attributes could be modified and added when the dynamic knowledge is

needed to be singled out. Moreover, the relationships between these inference logs

might be represented as the significance of each attribute to each new object. Hence,

analyzing the evolving trends of all attribute should be useful in capturing the realistic

significance of the attribute to the object.

The NEO-learning module can help experts analyze the interesting inference logs

of weak embedded rules to learn the evidence of new evolved objects using the

VODKA to notice experts the occurrence of the new objects. Based upon the

confirmed new objects, the relationships of all attributes of each object are analyzed

to set the significance of the attribute with the times using TEA to help experts decide

the CF values of the embedded rules of new objects, which can be generated using

EMCUD according to the discovered objects stored in an AT increment and an AOT

increment. Finally, the AT increment and the AOT increment will be integrated with

the main AT and the main AOT, respectively.

3.3.1 Frequent Events Analysis

EMCUD lacks the ability of grid evolution for singling the new evolved objects

out of well-known objects since experts may be unaware of the occurrence of the new

evolved objects without sufficient information. Hence, we propose VODKA to

monitor the frequent behaviors of interesting inference logs of the weak embedded

rules with the lower CF values for helping experts notice the occurrence of the new

objects.

 29

Figure 3.2 The Flow of VODKA

The novelty of the VODKA shown in Figure 3.2 is to collect the inference logs of

weak embedded rules from each KBS to learn the candidates of new evolved objects

for experts to make a confirmation. The minor attribute-value pairs between inference

logs of weak embedded rules are useful to help experts discover new knowledge and

determine whether new object is evolved based upon fired frequency. For each object,

if its inference logs of weak embedded rules are frequent, the frequent minor

attribute-value pairs could be treated as candidates of new evolved objects.

Furthermore, new attributes or attribute-values of the new object could be defined and

used to generate a small AT increment. Hence, these candidates will be used to help

experts single the new objects out of the extended object class using the new object

acquisition module based upon the AT increment.

Therefore, if the new objects are confirmed by experts, the related ambiguous

attributes (minor attributes), which might result in the marginally acceptable CF

values of weak embedded rules, could be refined or new attributes could be added to

improve the classification ability. If the initial data type of a minor attribute is too

rough to describe the object, a superior data type is recommended and the values of

the attribute in both original object and new evolved object should be modified.

For example, the BOOLEAN data type may be refined to SINGLE VALUE data

 30

type (Hwang and Tseng, 1990). If changing the data type still can not discriminate the

new variants from original objects, acquiring new attributes from domain experts will

be suggested in the new objects acquisition module. According to the complexity of

relations between objects and attributes or even the relations between different tables,

it is hard for experts to cooperate with each other in building every column and every

row for each table. Finally, the result of new objects and corresponding attributes can

be used to construct the AT increment.

3.3.2 Trend Evolution Analysis

Although the original idea of constructing AOT makes EMCUD more adaptive

to elicit embedded meanings, the relative importance of all attributes to each object

could be adjusted since the dynamic knowledge may change or evolve with the times.

It means that some embedded rules, which are recommended by experts now, may

become uncertain in the near future. Each object in the AOT is decomposed to record

the relative importance of each attribute to the object with the times. Since the

traditional Repertory Grid-based KA methods do not record the evolved trend of each

new object and the EMCUD is difficult in deciding the ordering of all attributes of the

object by experts, the TEA, which can discover the evolution of the relative

importance of each attribute to each object with the times, is proposed to help experts

monitor the significant importance changing of all attributes to each object in a time

interval.

As shown in Figure 3.3, the object can be singled out of the old object according

to the viewpoints of experts or the learning results of the frequency events analysis.

Each attribute can be simply assigned as “0” or “1” in each time point for indicating

 31

whether it is important to each object or not, where “0” represents the attribute is

considered as the unimportant attribute to the object and “1” represents the attribute is

important to the object. The domain expert can then decide which attributes are

required to be traced with the times if some ordering values of the attributes are hard

to be decided immediately.

Figure 3.3 The Flow of TEA

 The “0” or “1” is called an attribute event et of each object in a time point t, and

the attribute event sequence of “0” and “1” is recorded in a table to capture the

evolved behavior of each object. Hence, the AOT increment can be generated for

evolving the relative importance of each attribute to each object (ordering values)

according to the sequence of “0” and “1” events with the times using a time series

analysis approach. Since the “1” means an attribute is important to an object, the

consecutive “1” recorded in consecutive time points indicates that relative importance

of the object should become higher. On the contrary, the consecutive “0” indicates

that the relative importance of the object should be lower. Hence, a simplified time

series analysis is proposed to capture the trend meaning and incrementally adjust the

CF value of each rule. Let the initial value of each signal sequence be the original

AOT value of the attribute to the object.

 32

3.4 Grid Merging

In order to maintain the new discovered new object, we propose grid merging

algorithm shown in Algorithm 3.2 to integrate the AT increment and AOT increment

into the main AT and the main AOT, respectively. Therefore, the small AT and the

small AOT instead of the whole large main AT and the main AOT are used to update

the embedded rule base using EMCUD.

Algorithm 3.2 The Grid Merging Algorithm

Input: The main AT, main AOT, AT increment AT’, and AOT increment AOT’.
Output: The updated main AT and main AOT

Step1: Integrate the AT increment AT’ into the main AT.

Step1.1: Append each new object and each new attribute in the AT’ as a new
column and row in the main AT, respectively.

Step1.2: Ask experts to fill the values of the modified attributes of other objects in
the main AT if necessary.

Step1.3: Ask experts to examine the values of the new attributes of other objects in
the main AT if necessary.

Step2: Integrate the AOT increment AOT’ into the main AOT.
Step2.1: Expand the size of the main AOT according to the main AT updated in the

Step1.
Step2.2: Fill the corresponding AOT values according to the AOT’.
Step2.3: Refine the values of all old attributes to each old object in the main AOT

using the Trend Evolution Acquisition if necessary.
Step3: Reset the AT increment AT’ and the AOT increment AOT’.

To merge the AT increment into the main AT, each new evolved object should be

appended as a new column in the main AT and each new added attribute should be

appended as a new row in Step 1.1. In order to maintain the correctness of the main

AT, the values of all modified or new added attributes to each object should be

acquired by experts if necessary. Since the size of AOT need equal the size of AT, the

size of the main AOT should be expanded in Step 2.1 according to the main AT

updated in Step 1. Besides the value of all attributes to each new object in AOT

increment, the other values of all old attributes to each old object could also be

 33

learned using the trend evolution analysis to obtain the relative importance at time t.

3.5 Collaborative Framework of Dynamic EMCUD

Although the VODKA and TEA in Dynamic EMCUD can be used to single the

new objects out of extended object class and to generate their corresponding rules

with adjusted CF values, the CF value of embedded rules of these objects might be

inconsistence since they might be in different environments. Therefore, a

collaborative knowledge acquisition framework, which is consisting of several local

KBSs and a collaborative KBS, based upon Dynamic EMCUD is required to integrate

the knowledge discovered in every local KBS. Moreover, some new evolved objects

which may occur infrequently in each local KBS (but may be frequent in the

collaborative KBS) can not be found. Hence, how to collect sufficient context

information to notify experts of the occurrence of the dynamic knowledge is an

important issue. Therefore, the collaborative knowledge acquisition framework can

collect the relevant information as time goes on and help experts discover these new

objects based upon sufficient context.

3.5.1 The Framework of Collaborative Dynamic EMCUD

In a dynamic environment, a collaborative Dynamic EMCUD framework shown

in Figure 3.4 is proposed to analyze the correlations of interesting inference logs of

embedded rules between multiple local KBSs in a dynamic environment to discover

the new evolved objects. Each KBS can monitor the frequent inference behaviors of

weak embedded rules to construct an AT increment and analyze the significant change

of the importance to evolved objects to construct an AOT increment for adjusting the

relative importance of each attribute to each object with the times. Several heuristics

 34

are proposed to help experts adjust the CF values of the discovered knowledge of the

new evolved objects from the collection of inference logs.

Figure 3.4 The Framework of Collaborative Knowledge Acquisition

As we know, the expert system and KBS are usually designed for solving the

difficult problems in a specific domain. In Figure 3.4, each KBS may have different

configurations to represent such kind of expert systems or KBSs with an embedded

rule bases. When the system is operating, some inference logs of cases including old

and new will be recorded. By analyzing the relationships between these inference logs

using the collaborative heuristics with sufficient context information, the occurrence

of candidates of dynamic knowledge could be discovered. The collaborative

framework consists of log collector, Dynamic EMCUD, collaborative analysis,

knowledge integration, and Profiles to learn the knowledge of dynamic behaviors and

to record the configurations of different environment.

Dynamic EMCUD is deployed in each local KBS and collaborative KBS to

discover significant variant knowledge by monitoring the inference behaviors of weak

embedded rules. Moreover, the sequence of inference log will be considered to

 35

discover the relations between similar embedded rules to monitor the occurrence of

evolutional knowledge as time goes on. All discovered information will be collected

and further analysis using collaborative analysis by considering the static profiles and

dynamic behaviors stored in Profiles, since some insignificant variant or evolutional

knowledge might evade the frequency-based and time-based analysis. Finally, the

Dynamic EMCUD will incrementally integrate the discovered evolutional knowledge,

which is confirmed by experts, into the evolutional knowledge base.

Some new evolved objects may occur in some KBSs with similar profiles, e.g.,

the SQL server running on Windows operation system, the correlations between

inference logs and profiles might be useful for helping experts discover them. Finally,

for the discovered object, the CF value of the new embedded rule should be

recalculated. Hence, a CF adjusting method is proposed to combine the knowledge of

new objects discovered in each KBS and the collaborative KBS.

3.5.2 The Category of Context Information

Since substantive knowledge can evolve within the dynamic environment as time

goes on, how to acquire and represent the dynamic context information becomes an

important issue. The context information can be classified into two categories: static

profiles and dynamic behaviors information.

(1) Static Profile:

In the real world, the environment includes individuals, the relationships between

individuals, and the related configurations. The environment could be considered as a

collection of network properties and each individual has its own properties in the

 36

environment. Therefore, the static profile can be considered as environment

configuration and individual configuration. The environment configurations describe

the environment, members in the environment, the status of the environment, and

other relative properties rely on the selected domain. The individual configurations

describe the individual ID, Location, Role of individual, and other relative properties

depending on the domain. Through the static profile, we could classify the knowledge

occurred in similar configuration.

(2) Dynamic Behaviors:

Some knowledge will evolve to adapt the dynamic environment due to the natural

of knowledge evolution. By clearly representing the behaviors of individual and

environment, the trend of individual and environment can be easily acquired. The

individual trend consists of the sequence of status of each time period and the

occurrence of events pair. Also, the other relative properties should be also considered

in each domain. Like the individual trend, the evolutional trend is also combining the

sequence of environment statuses and other properties to analyze the trend of

environment for capturing evolutional knowledge.

As we know, XML is a standard language that is understandable. We design an

XML based language that facilitates the machine readability for the collaborative KA

framework to model the context information. In this model, not only the static profile

but also the dynamic behaviors can be modeled using XML based description because

the structure of XML is regular expression. Furthermore, the stored context can be

easily reused, and the representation can be extended to describe new added

properties of individual or environmental profile and behaviors due to the

 37

standardized property of XML.

3.5.3 The Collaborative Heuristics

Since some invisible or unrecognizable behaviors might be ignored without

sufficient information, collaborative multiple KBSs to collect more evidence of

evolutional knowledge becomes more important. The static profile and dynamic

behaviors of individual and environment could be used to help discover evolutional

knowledge since they could assist experts to trace of changing behaviors. The static

profile can be used to analyze which kinds of behaviors could occur in the different

profiles since some behaviors might exist in similar environment. The dynamic

behavior can be used to analyze the similar behaviors in different environment as time

goes on. Based upon the collection of the sufficient context information including the

unrecognizable or invisible behaviors in single sensor to discover the evolutional

knowledge, the static profile and dynamic behaviors of individual and environment

could be used to help discover evolutional knowledge. Four collaborative heuristics

for discovering dynamic knowledge and three collaborative weighting heuristics for

collecting sufficient evidence from multiple sensors are proposed to analyze the

relationship between them.

Dynamic Knowledge Heuristics:

(1) Environment-Insensitive Heuristic: similar behaviors results to similar

symptoms in different profiles. This is useful to consider the frequency context

information to discover variant knowledge.

(2) Service-Sensitive Heuristic: similar behaviors result to different symptoms due

to different profiles. This is used to analyze the relationships between collected

 38

events by comparing with the corresponding profiles.

(3) Symptom-Sensitive Heuristic: different behaviors result to similar symptoms due

to polymorphic (similar) profiles due to the similar living conditions is existence.

These similar behaviors should be considered the same to obtain more evidence

to discover the occurrence of evolutional knowledge.

(4) Time-Sensitive Heuristic: different behaviors result to different symptoms in

polymorphic (similar) profiles due to the evolution of behaviors in the changing

environment. This is useful to trace the behaviors for discovering the evolutional

knowledge.

Collaborative Weighting Heuristics:

(1) Half-life-sensitive Heuristic: Adventitious behaviors disappear in a long time

and the significant of the behaviors should be degraded for adapting knowledge

base. This is useful to avoid the interference with adventitious events in a time

period for discovering evolutional knowledge.

(2) Location-Sensitive Heuristic: behaviors occurred in different sensors should be

considered as different evidence, since different sensor may play different role in

different location. The importance need to be considered to adjust the discovered

evidence.

(3) Attribute-Sensitive Heuristic: different attributes evolution should be considered

as different evidence since the relative importance of each attribute to each

object is various. An attribute might be the key factor of evolutional knowledge

and hence needs to be considered as the most important evidence.

For example, the SQL Slammer uses UDP port 1434 to exploit a buffer overflow

 39

in a MS SQL server to simply switch off this port of the victim host. The collaborative

KBS can learn this knowledge based upon the infrequent logs reported from some

local KBSs according to the same service stored in profile. Some new objects may

occur in similar environment.

These heuristics will be applied in the NEO-learning module to assist experts in

being aware of the occurrence of new evolved objects.

3.6 Implementation of Dynamic EMCUD

Dynamic EMCUD is implemented by DRAMA [46], a new object-oriented rule

base system platform implemented using pure Java language, to refine the embedded

rule base by observing the behaviors of weak embedded rules. It includes DRAMA

Server, Console, Knowledge Extractor, and Rule Editor. Also, it provides Application

Programming Interface (API) to access DRAMA server in DRAMA integrated systems.

There are four basic relations between knowledge concepts defined in DRAMA:

Reference, Extension-of, Trigger and Acquire. The Reference relation represents the

association of two different knowledge classes (KCs) if the KCs have common piece

of knowledge, which is useful for using original knowledge to construct new

knowledge. Extension-of relation is used to extend or modify the KC constructed by

other people, which is useful for knowledge sharing and exchanging. The Trigger and

Acquire relations are used to represent the interaction of different KCs. The Log

Collecting Stage is encoded by meta-rules according to the specific domain in

DRAMA; the VODKA, TEA, Grid Merging and EMCUD are implemented using the

JSP to make a communication channel using the API provided by DRAMA. We

implemented a worm detection prototype system to evaluate the performance of

 40

Dynamic EMCUD to incrementally integrate evolved knowledge into knowledge base

in Chapter 6.

In this chapter, the Dynamic EMCUD based upon Repertory Grid is proposed to

elicit the embedded meanings of knowledge. Dynamic ENCUD can generate an AT

increment and an AOT increment to represent the evolved objects and to record the

relative importance of each attribute to each object for capturing the embedded

meanings with acceptable CF value by relaxing or ignoring some minor attributes.

Dynamic EMCUD can monitor the frequent inference behaviors of weak embedded

rules to construct an AT increment for classifying variant objects and analyze the

significant change of the importance to evolved objects to construct an AOT

increment for evolutional objects by adjusting the relative importance of each

attribute to each object with the times. Moreover, a collaborative knowledge

acquisition framework will be proposed to analyze the correlations of interesting

inference logs of embedded rules between multiple KBSs with Dynamic EMCUD in a

dynamic environment to discover the new evolved objects.

 41

Chapter 4

Variant Knowledge Acquisition

The Dynamic EMCUD based upon Repertory Grid is proposed in Chapter 3 to

elicit the embedded meanings of knowledge by the generation of the AT increment of

new evolved objects using VODKA by relaxing or ignoring some minor attributes.

The details of VODKA are given as follows.

4.1 Idea

Although EMCUD and other similar approaches could be manually rerun to

acquire variant knowledge from domain experts to classify new variant objects, it

might be costly and hard to obtain the knowledge due to the insufficient information

about variants. As mentioned above, assume some objects in O1 class belong to the

original object class (OO1) of O1, which can be classified by original rules of O1. The

other objects in O1 class classified by embedded rules of O1 belong to the extended

object class (EO1) of O1, where OO1 ⊂ EO1. In the EO1, some evolved objects can

be classified by the embedded rules of O1 with weak CF values, which are singled out

to be a variant object class (VO1) of O1 with the significant attributes emerged from

minor attributes. That is, VO1 ⊂ EO1 and VO1 ∩ OOi = φ, where 1 ≤ i ≤ m. Because

the embedded rules with diverse CF values represent different supports to classify

objects, the ones with marginally acceptable CF might be triggered by some candidate

of a new variant. Therefore, our idea is to analyze the inference behaviors of weak

 42

embedded rules (the weak suggestion by experts) to construct the new variants

acquisition table for extracting new variant knowledge.

4.2 Variant Objects Discovering Knowledge Acquisition (VODKA)

After the interested inference logs are collected, the acquisition table increment

of new objects will be generated through interacting with domain experts based upon

the observation of inference log. An ignored attribute-value pair, i.e. (DoS type = TCP

flood), is treated as an item and the transaction is represented as a set of ignored

attribute-value pairs, i.e., {(DoS type = TCP flood),(TCP port = {135;4444})}. The

inference log could be automatically transformed into the transaction database (D)

and the item set (I) using the Mask Table of ignored attributes. In order to obtain the

candidates of new variants, we apply Apriori algorithm [1][2] to discover the large

itemsets (L) for providing more useful information.

After generating the large itemsets, new variants acquisition table might be

elicited based upon the new variants acquiring algorithm. The new objects using

unclear attributes would be singled out accordingly, if the experts reconfirm the

addition of the new variant object. Thus, one of three recommendations including

adding a new attribute-value of a minor attribute, modifying the data type of a minor

attribute, adding a new attribute, will be further given to adjust the main acquisition

table. If a new evolved variant object is singled out, the new attribute-value of the

minor attribute could be added to represent the characteristic of new objects. If the

initial data type of certain attribute is too rough to describe the object, a superior data

type is recommended and the values of the attribute in both original object and variant

should be modified.

 43

For example, the BOOLEAN data type may be refined to SINGLE VALUE data

type [34]. If changing the data type still can not discriminate the new variants from

original objects, acquiring a new attribute from domain experts will be suggested in

VODKA. Thus, the new variants acquisition table will be created iteratively using the

discovered large itemsets of VODKA shown in Algorithm 4.1. However, adding a new

attribute, which is very time consuming to create new row in new variant acquisition

table, is the last choice for classifying variant objects.

Algorithm 4.1 VODKA Algorithm

Input: Inference log and the main acquisition table T, the minimal support δ.
Output: The new variant object class VO, new attribute set AN, and new variants

acquisition table T’.

Step 1: Transform inference log into the transaction data set D.
Step 2: Discover large itemsets L by δ using D.
Step 3: For each large itemset, ask experts to determine whether it belongs to new

variant or not.
Step 4: If new variant is confirmed, ask experts to acquire the related information

about new variant.
Store VOnew in VO.
Add a new column to represent the new variant VOnew in T’.
Ask experts to confirm whether changing the data type of the attribute Ai is

needed or not, where 1 ≤ i ≤ k.
Step 4.1: If no data type needs to be changed, Suggest the Recommendation I.

Add a new attribute-value of Ai of the VOnew.
Else, ask experts to confirm whether adding a new attribute is needed or not.

Step 4.2: If no new attribute needs to be added, Suggest the Recommendation II to
modify the data type of Ai.
Ask experts to acquire the mapping function of values between original

and new data types.
Add a column in T’ to represent the original object with new mapping

values.
Else, Suggest the Recommendation III.

Ask experts to acquire the values of the new attribute Anew.
Add a new row in T’ to represent the new variant Anew.
Store Anew in AN.
Add a column in T’ to represent the original object with new
attribute-value if needed.

Step 5: Return VO, AN, T’.

 44

Besides interaction with domain experts, the computational cost of the algorithm

is dependent on the Step 2. The size of collecting inference log and minimal support

threshold setting will affect the computational cost. For different type of inference log,

different learning methods can be selected to learn and discover the candidate

behaviors of variants.

Example 4.1 The Variant Learning Example of a Blaster Worm

In this example, assume the fired sequence of some embedded rules of Blaster

worms with marginally acceptable CF values are given in Table 4.1.

Table 4.1 The Partial Inference Logs of Blaster

Rule # A1 A2 A3 A4 A5 Object CF

R3,4 17 False Windows Update
flood - X Blaster 0.3

R3,2 100 False Windows Update
flood - {135} Blaster 0.43

R3,4 8 False Windows Update
flood - X Blaster 0.3

R3,2 119 False Windows Update
flood - {4444} Blaster 0.43

R3,4 17 False Windows Update
flood - X Blaster 0.3

R3,2 100 False Windows Update
flood - {135} Blaster 0.43

R3,4 11 False Windows Update
flood - X Blaster 0.3

R3,2 76 False Windows Update
flood - {4444} Blaster 0.43

R3,4 66 False Windows Update
flood - X Blaster 0.3

R3,2 100 False Windows Update
flood - {135} Blaster 0.43

Assume minimal support is set to 30%; the large itemsets L including L1 = {(A2 =

False); (A5 = X)} and L2 = {(A2 = False, A5 = X)} will be provided to experts for

further recommendation; i.e., L will be used to generate the acquisition table

 45

increment AT’ according to the recommendations suggested by VODKA.

VODKA: Does the attribute-value pair (A2 = False) belong to any new variant

object?

EXPERT: Yes. /* It means that a new variant contains the selected attribute-value

pair (A2 = False). Otherwise, the large itemset is discarded and another large itemset

is chosen to examine. */

VODKA: What is the name of the new variant object?

EXPERT: VOnew.

A new column will be added in AT’ to represent the variant, VOnew, separated

from the original object.

VODKA: Is the data type of A2 required to be changed?

EXPERT: No. /* It means the data type no need to change after adding new variant

(Recommendation I). Otherwise, VODKA will ask the following question. */

The row representing A2 with new attribute-value and one column representing

the variant object will be created in AT’.

VODKA: Is any new attribute required to be added?

EXPERT: No. /* It means no need to add new attribute and Recommendation II is

then suggested. Otherwise, VODKA will suggest Recommendation III. */

Recommendation II:

VODKA: What is the new name and new value set of the attribute A2?

EXPERT: NDTnew, VDTnew. /* For each old value in A2, VODKA will ask experts to

define the mapping between old and new value sets. */

The row representing A2 with new mapping values and two columns representing

the original and variant objects will be created in AT’.

 46

Recommendation III:

VODKA: What is the name and value set of the new attribute-value pair?

EXPERT: Anew, AVnew. /* VODKA will ask experts to provide a set of values (AVnew)

of the new attribute Anew. */

A new row representing the useful attribute namely Anew with a set of value

(AVnew) and two columns representing original object and new variant will be added in

AT’.

If all large itemsets are confirmed, the acquisition table increment AT’ can be

integrated into the main acquisition table and the corresponding embedded rules of

discovered variant object can be generated using EMCUD in the Knowledge

Polishing Stage.

4.3 The Analysis of VODKA

The cost of running VODKA can be divided into two categories: computational

cost and interaction cost. Assume there are k attributes to classify m objects in the

original main acquisition table, where the grid size is k*m. For simplifying our

discussion, we use ERk,m to represent the total number of embedded rules in the

classification KBS, where ERk,m< m*2k.

In Log Collection Stage, assume n instances are matched by the classification

KBS. For each instance, it has Pe probability to be classified by weak embedded rules;

hence the size of interesting inference log database in VODKA is n * Pe.

 47

In Knowledge Learning Stage, the computational cost of VODKA is dominated

by the learning algorithm we selected. In this dissertation, Apriori algorithm is used to

learn the candidates of variant worms. Hence, the computational cost is O(Aproori).

For example, if the size of database has n transactions (each transaction has k

attributes) and the maximal length of large itemsets is len, then the time complexity of

traditional Apriori algorithm is O(n*k*len).

Assume L large itemsets are discovered and used to notify experts to determine

the existence of the variants. For each embedded rule, assume it has Pv probability to

evolve a variant; hence Pv*ERk,m, denoted V, variants might be discovered. Therefore,

the order of interaction with experts is V, where V < L.

In Knowledge Polishing Stage, the Grid Merging integrates new acquisition table

into original acquisition table. The computational cost of Grid Merging for generating

rules is dependent on the size of acquisition table increment (GRID), denoted

O(GRID). For example, using our Dynamic EMCUD to generate embedded rules, it

costs 0.05 ms ~ 0.15 ms to generate one rule. Figure 4.1 shows that the time of

generating rules using different grid size. The computational time is approximately

linear growing when setting a fixed attribute number with different number of objects

in Figure 4.1 (a), and the growth rate is exponential when setting a fixed object

number with different number of attributes in Figure 4.1 (b).

 48

Attributes = 10

0

500

1000

1500

2000

5 10 15 20 25 30

Objects

T
i
m
e

(
m
s
)

Objects = 10

0
500
1000
1500
2000
2500
3000

5 7 9 10 11 12

Attributes

T
i
m
e

(
m
s
)

(a) Various number of objects (b) Various number of attributes

Figure 4.1 The Time of Generating Rules Using Different Grid Size

In short conclusion, the cost of VODKA consists two parts: computational cost

and interaction cost. The size of interesting inference log database: n * Pe.

l Computational cost: O(Apriori) + O(GRID).

l Interaction cost: V.

4.4 Experiments

With the rapid development of network technology, the network security

becomes one of the most important issues today. To prevent network environment

from intrusions, lots of researches and different systems are proposed to detect, filter,

or prevent intrusions properly. In recent years, computer worms are grown

dramatically to influence the wild computer networks due to the property of easily

modifying the source code of original computer worms to create new variant for

escaping the detection of related systems, e.g., Symantec Norton [72], Network

Viruswall [74], etc. The detailed description of computer worms will be shown in

Chapter 6. The case study of computer worms is used to evaluate the performance of

VODKA.

 49

In our worm detection prototype system, the knowledge of computer worms can

be divided into several KCs, including the service provided by host may be infected

by certain worms and then produced some symptoms in host or network. The related

attributes of various computer worms can be collected by some probe tools and used

to evaluate the ability of VODKA, which deployed in the prototype system. The

details will be described in Chapter 7.

The following example shows the variant objects in this domain can be

discovered by VODKA, where THCNT is set to 4, THCF is set to 0.7, and the minimal

support is set to 30%.

Recommendation I: Elicitation new variants by adding a new attribute-value of a

minor attribute

Nimda worm, a famous Email flooding worm, can be propagated to victims

through the attached files in email. By monitoring the attached filename in email, we

can discover the large itemset L = (A4 = readme.exe) shown in Table 4.2 according to

the embedded rule R1,1 in Table 2.6.

Table 4.2 The Partial Inference Logs of Nimda

Rule # A1 A2 A3 A4 A5 Object CF
R1,1 6 True Email flood readme.exe {137} Nimda 0.4
R1,1 300 False Email flood sample1.exe {25} Nimda 0.4
R1,1 17 True Email flood readme.exe {137} Nimda 0.4
R1,1 14 False Email flood readme.exe {25} Nimda 0.4
R1,1 4 False Email flood readme.exe {445} Nimda 0.4
R1,1 19 False Email flood readme.exe {80} Nimda 0.4
R1,1 44 False Email flood hash.exe {25} Nimda 0.4
R1,1 38 True Email flood readme.exe {138} Nimda 0.4
R1,1 300 False Email flood inter.exe {25} Nimda 0.4
R1,1 28 False Email flood readme.exe {25} Nimda 0.4

 50

Based upon the large itemsts, VODKA will ask the following questions.

VODKA: Does the attribute-value pair (A4 = readme.exe) belong to any new variant

object?

EXPERT: Yes.

VODKA: What is the name of the new variant object?

EXPERT: Nimda.B.

VODKA: Is the data type of A4 required to be changed?

EXPERT: No.

Consequently, the new variant acquisition table of Nimda.B shown in Table 4.3

will be generated through interviewing with the experts in this iteration.

Table 4.3 The New Variant Acquisition Table of Nimda.B

Object
Attributes Nimda.B

Threads X
System Reboot X

DoS Type Email flood
Mail_Attachment {readme.exe}

TCP Port X

Hence, an original rule “IF (DoS type = Email flood) AND (Mail_Attachment =

(readme.exe)) THEN Nimda.B, CF=0.8” and an embedded rule “IF (DoS type =

Email flood) AND ¬ (Mail_Attachment = (readme.exe)) THEN Nimda.B, CF=0.5” of

the Nimda.B will be generated using EMCUD based upon the Nimda.B acquisition

table.

 51

Recommendation II: Elicitation new variants by changing the data types of

attributes

In the priori generation of CodeRed worm, generating numerous threads to attack

the victim through launching TCP flooding is one of the famous characteristics.

Hence, it is useful to detect the CodeRed by analyzing the generated anomaly threads

in the protected system. For the partial inference logs of CodeRed shown in Table 4.4,

the following shows the values in Boolean data type will be logged as the integer

value of the attribute A1 instead of True/False value.

Table 4.4 The Partial Inference Logs of CodeRed

Rule # A1 A2 A3 A4 A5 Object CF
R2,2 150 True TCP flood - {80} CodeRed 0.4
R2,2 600 True TCP flood - {80} CodeRed 0.4
R2,1 300 False TCP flood - {80} CodeRed 0.6
R2,2 600 True TCP flood - {80} CodeRed 0.4
R2,2 150 True TCP flood - {80} CodeRed 0.4
R2,1 300 False TCP flood - {80} CodeRed 0.6
R2,2 600 True TCP flood - {80} CodeRed 0.4
R2,2 600 True TCP flood - {80} CodeRed 0.4
R2,2 600 True TCP flood - {80} CodeRed 0.4
R2,2 300 True TCP flood - {80} CodeRed 0.4

Using above inference log, the large itemset L = (A1 = 600) can be discovered

based upon the embedded rule R2,2 since the minimal support 30% is satisfied. Then,

VODKA will ask the following questions.

VODKA: Does the attribute-value pair (A1 = 600) belong to any new variant object?

EXPERT: Yes.

VODKA: What is the name of the new variant object?

EXPERT: CodeRed.II.

VODIKA: Is the data type of A1 required to be changed?

 52

EXPERT: Yes.

VODKA: Is any new attribute required to be added?

EXPERT: No.

VODKA: Can the Single Value data type be used to change the original Boolean data

type of A1?

EXPERT: Yes.

VODKA: What is the new name and new value set of the attribute A1?

EXPERT: Threads, (100, infinite).

VODKA: What is the new value of the original True value of the attribute A1 in

CodeRed?

EXPERT: 100.

Therefore, the new variant acquisition table of CodeRed.II shown in Table 4.5

will be generated.

Table 4.5 The New Variant Acquisition Table of CodeRed.II

Objects
Attributes CodeRed CodeRed.II

Threads 300 600
System Reboot True True

DoS Type TCP flood TCP flood
Mail_Attachment X X

TCP Port X X

Consequently, an original rule “IF (Threads = 600) AND (System reboot = True)

AND (DoS type = TCP flood) THEN CodeRed.II, CF 0.9” and an embedded rule “IF

¬ (Threads = 600) AND (System reboot = True) AND (DoS type = TCP flood) THEN

CodeRed.II, CF=0.3” will be generated to classify the CodeRed.II.

 53

Recommendation III: Elicitation new object through adding new attributes

As mentioned in Example 4.1, we can obtain the large itemsets L = {(A2 = False);

(A5 = X); (A2 = False, A5 = X)}, which will be used to elicit the embedded rules of the

new variant. The symbol “X” means no attribute-value of A5 is logged, similar to “Do

not care” attribute, and (A2 = False, A5 = X) will also be pruned too. Therefore, the

VODKA will ask the following questions.

VODKA: Does the attribute-value pair (A2 = False) belong to the new variant object?

EXPERT: Yes.

VODKA: What is the name of the new variant object?

EXPERT: Blaster.B.

VODKA: Is the data type of A2 required to be changed?

EXPERT: Yes.

VODKA: Is any new attribute required to be added?

EXPERT: Yes.

VODKA: What is the name and value set of the new attribute?

EXPERT: UDP port, (0, 65535).

VODKA: What is the value of the UDP port attribute in Blaster.B and Blaster?

EXPERT: 69, X (means Do not care).

Hence, the Blaster.B acquisition table shown in Table 4.6 is generated.

Table 4.6 The New Variant Acquisition Table of Blaster.B

Objects
Attributes Blaster Blaster.B

300-thread (A1) X X
System Reboot (A2) True False

DoS Type (A3)
Windows Update

flood
Windows Update

flood
Mail_Attachment (A4) X X

TCP Port (A5) {135;4444} {135;4444}
UDP Port (A6) X 69

 54

Consequently, a new original rule “IF (System reboot = False) AND (DoS type =

Windows update flood) AND (UDP port = {69}) THEN Blaster.B, CF=0.8” and an

embedded rule “IF (System reboot = False) AND (DoS type = Windows update flood)

AND ¬ (UDP port = {69}) THEN Blaster.B, CF=0.5” of new variant Blaster.B will be

generated to classify Blaster.B.

Table 4.7 The Adjusted Main Acquisition Table of Simple Computer Worms

Objects
Attributes Nimda Nimda.B CodeRed CodeRed

.II Blaster Blaster.B Welchia Welchia.
II

Threads X X 100 600 X X X X
System
reboot X X True True True False True True

DoS type Email
flood Email flood TCP

flood TCP flood

Windo
ws

Update
flood

Windows
Update
flood

ICMP
flood

ICMP
flood

Mail_Attac
hment

{samle.exe
; puta!!scr}

{readme,exe
} X X X X X X

TCP port X X X X {135;444
4}

{135;4444
}

{80;135
}

{80;135;4
45;3127}

UDP port X X X X X 69 X X

As shown in Table 4.7, four variants (Nimda.B, CodeRed.II, Blaster.B, and

Welchia.II) have been successfully singled out using VODKA after several iterations.

Table 4.8 shows the AOT table after interacting with domain experts manually using

EMCUD

Table 4.8 AOT Table of Simple Computer Worms

Objects
Attributes Nimda Nimda.B CodeRed CodeRed.

II Blaster Blaster.B Welchia Welchia.
II

Threads X X 2 2 X X X X
System
reboot X X 1 1 2 2 2 2

DoS type D D 1 1 2 2 1 1
Mail_Attac

hment 1 1 X X X X X X

TCP port X X X X 1 1 2 2
UDP port X X X X X 1 X X

 55

Table 4.9 shows the new embedded rule base of the discovered variants and

original worms. If more real instances can be used, the embedded rule base will

evolve and become more precise for classifying the computer worms.

Table 4.9 The Rules Generated from Table 4.7 and Table 4.8

R1,0: IF (DoS type=Email flood) AND (Mail_Attachment=(sample.exe;puta!!scr)) THEN Nimda,
CF=0.8

R1,1: IF (DoS type=Email flood) AND (Mail_Attachment = ¬ (sample.exe;puta!!scr)) THEN Nimda,
CF=0.4

R2,0: IF (Threads=300) AND (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed,
CF=0.8

R2,1: IF (Threads=300) AND ¬ (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed,
CF=0.6

R2,2: IF ¬ (Threads=300) AND (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed,
CF=0.4

R2,3: IF (Threads=300) AND ¬ (System reboot=True) AND ¬ (DoS type=TCP flood) THEN CodeRed,
CF=0.4

R3,0: IF (System reboot=True) AND (DoS type=Windows update flood) AND (TCP port={135;4444})
THEN Blaster, CF=0.7

R3,1: IF (System reboot=True) AND (DoS type=Windows update flood) AND ¬ (TCP
port={135;4444}) THEN Blaster, CF=0.57

R3,2: IF (System reboot=False) AND (DoS type=Windows update flood) AND (TCP port={135;4444})
THEN Blaster, CF=0.43

R3,3: IF (System reboot=True) AND ¬ (DoS type=Windows update flood) AND (TCP
port={135;4444}) THEN Blaster, CF=0.43

R3,2: IF (System reboot=False) AND (DoS type=Windows update flood) AND ¬ (TCP
port={135;4444}) THEN Blaster, CF=0.3

R4,0: IF (System reboot=True) AND (DoS type=ICMP flood) AND (TCP port={80;135}) THEN
Welchia, CF=0.8

R4,1: IF (System reboot=True) AND ¬ (DoS type=ICMP flood) AND (TCP port={80;135}) THEN
Welchia, CF=0.67

R4,2: IF (System reboot=True) AND (DoS type=ICMP flood) AND ¬ (TCP port={80;135}) THEN
Welchia, CF=0.53

R4,3: IF (System reboot=True) AND ¬ (DoS type=ICMP flood) AND ¬ (TCP port={80;135}) THEN
Welchia, CF=0.4
R5,0: IF (DoS type=Email flood) AND (Mail_Attachment =readme.exe) THEN Nimda.B, CF=0.8
R5,1 IF (DoS type=Email flood) AND ¬ (Mail_Attachment = readme.exe) THEN Nimda.B, CF=0.5
R6,0: IF ¬ (Threads=600) AND (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed II,

CF=0.9
R6,1: IF (Threads=600) AND (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed II,

CF=0.3
R7,0: IF (System reboot=False) AND (DoS type=Windows update flood) AND (UDP port={69}) THEN

Blaster.B, CF=0.8
R7,1: IF (System reboot=False) AND (DoS type=Windows update flood) AND ¬ (UDP port={69})

THEN Blaster.B, CF=0.5
R8,0: IF (System reboot=True) AND (DoS type=ICMP flood) AND (TCP port={80;135;445;3127})

THEN Welchia II, CF=0.8
R8,1: IF (System reboot=True) AND (DoS type=ICMP flood) AND ¬ (TCP port={80;135;445;3127})

THEN Welchia II, CF=0.5

 56

In order to evaluate the effectiveness of VODKA, we apply VODKA on the

e-learning application and replace the sequencing mining approach in this case study

in the Appendix F.

In this chapter, we proposed VODKA methodology to iteratively discover the

new variants objects through observing the behaviors of those embedded rules with

marginally acceptable CF to assist domain experts in singling the variant objects out.

Each iteration collects the sufficient inference behaviors of weak embedded rules and

proposes three recommendations, including adding a new attribute-value of an

attribute, changing the data type of an attribute, or adding a new attribute, to help

experts discover the new variants according to the learned large itemsets. Additionally,

we use Grid Merging to integrate the new variants acquisition table into the main

acquisition table for adapting the weak embedded rules. A computer worm detection

prototype based upon DRAMA has been implemented and deployed in an

experimental environment to evaluate the performance of VODKA. The results show

that new worm variants can be singled out of the corresponding extended worm object

classes after the occurrence of worm instances in collected inference logs. Also, an

e-learning case is shown that the variant learning behaviors can be discovered to assist

teachers in preparing new learning content and learning sequence.

 57

Chapter 5

Evolutional Knowledge Acquisition

Although VODKA is useful to discover variant knowledge, it is still weak to

discover the insignificant variant or the variant evolutional trend as time goes on.

Hence, we propose Trend Evolution Acquisition (TEA) using time-based tracing

technology to help experts trace the evolution of variants and generate new

evolutional knowledge to adjust the CF value of original embedded rules in each

iteration of Dynamic EMCUD.

5.1 Trend Evolution Analysis

 TEA not only applies VODKA to help experts construct the Attribute Signaling

Table (AST) of each object but also offers more robust information to learn the

evolutional knowledge according to the evolved sequences of objects over time in a

dynamic environment. The method focuses on maintaining an AOT increment of

objects in EMCUD to represent the evolutional behaviors of each object which is

evolved as time goes by. An AOT increment records the relative importance of each

attribute to each object for capturing the embedded meanings with acceptable CF

value by relaxing or ignoring some minor attributes.

TEA consists of two Steps including Unfolding Step and Reconstructing Step to

complete the adoption of AOT by monitoring the trend of inference behaviors. The

 58

Unfolding Step is used to decompose the original AOT into several AST to keep the

trend evolution of each attribute to each object, and The Reconstructing Step is used

to construct the adoption of each AOT value in dynamic AOT according to an AST.

5.2 Capturing Evolutional Trend Using AST

As mentioned before, VODKA did solve several main problems in EMCUD but

still not enough. Although the original idea of constructing dynamic AOT makes

EMCUD more adaptive to elicit embedded meanings, it may difficult to assign the

ordering values to all attributes since the knowledge is considered dynamic not static.

It means that some rules today may become uncertain in the near future and vice versa.

Moreover, VODKA learns the rules without CF values, and if the CF value is not

adaptive in the past few days then it may encounter inefficiency in learning the variant

object.

Although the AOT using in EMCUD enhances the ability of partially matching in

initially embedded rule base to extend the coverage of recognized variant objects,

however, it is still weak to immediately response the changing of environment

according to the analyzing results of inference behaviors. Hence, TEA is to

automatically adjust the AOT value according to tracing the trend of the evolutional

behaviors in the changing environment. The importance of some minor attributes to

each object might change in each time point according to the experts’ point of view or

the learning results from VODKA. Hence, a Boolean value can be simply assigned as

“0” or “1” to each attribute in each time point, where “0” represents the attribute is

considered unimportant to the object while “1” represents important to the object in

this time point.

 59

 The “0” or “1” is called an attribute event et of each object in a time point t, and

the attribute event sequence of “0” and “1” is recorded in AST to capture the evolved

behavior of each object. Hence, the AOT increment can be generated for evolving the

ordering values of attributes according to the sequence of “0” and “1” events recorded

in AST with the times.

Figure 5.1 Unfolding Step of Constructing AST

The Unfolding Step of construction AST shown in Figure 5.1 records each

specific information in each time point. Each entry can be filled by experts manually

or by VODKA automatically according the observations of evolutional evidence of

each object. The importance degree values of attributes to objects might change in

different time points in a dynamic environment.

Not all the attributes are considered to be working well with the mechanism

because of some characteristics of the attribute. The domain expert can decide which

attributes are required to be traced as time goes on if ordering values of the attributes

are hard to be decided immediately. There are two ways of constructing AST:

 60

(1) Interacted with human experts. It is designed to acquire attribute signals from a

domain expert in every time point for deciding whether the attribute is important

or not.

(2) Interacted with VODKA. As mentioned above, VODKA can be used to learn and

level up the certainty factor of each embedded rule. It can be helpful to decide

attribute signal of importance or unimportance by directly mapping certain

embedded rule to the AST.

After constructing AST, an entropy function or gracefully accumulating function

can be proposed to capture the trend meaning and incrementally adjust the CF value

of each embedded rule.

5.3 Constructing the Dynamic AOT

The reconstructing step shown in Figure 5.2 reconstructs the dynamic AOT by

renewing the ordering values according to each “0” and “1” signal recorded with the

times. Since the ordering values are recalculated at the present time according to all

the information traced in a time interval, the AOT is considered more flexible and

robust. Hence, to reconstruct the dynamic AOT will obtain the trend of evolutional

knowledge.

Figure 5.2 Reconstructing Step of Constructing Dynamic AOT

 61

Based upon the AOT increment generated in evolutional knowledge acquisition,

the embedded rules generated by Dynamic EMCUD will be classified into original

and embedded rules.

To capture the importance of each attribute to an object in a time interval, two

scoring functions including Entropy Function and Gracefully Accumulating Function

are proposed to learn the trend of evolutional behaviors of new objects. Let the initial

value of each signal sequence be the original AOT value of the attribute to the object.

(1) Entropy Function

To transform the original AOT value to the representative values in AOT in a

dynamic environment, the number of positives (recorded as “1”) surpasses the number

of negatives (recorded as “0”), the entropy weight approximates zero and vice versa.

It is obvious to assign higher ordering value when most of information represent

important; otherwise, the lower ordering value would be assigned. However, medium

ordering, considered uncertain degree of the attribute to objects, would be assigned

when the entropy weight approximates one. That is, it is usually uncertain to decide a

decision when getting half positive advices and half negative advices at a time. When

the set is heterogeneous, but the characteristic of attribute is time relevant then it can

be considered homogenous in some ways.

It is not simple to level up the ordering values of attributes when the attribute

signal event is “1” or level down when it is “0”, instead; the entropy formula (5.1) is

applied in the mechanism of transforming AST to AOT,

 62

2 2log log
p p n n

Entropy
p n p n p n p n

   
=− −   + + + +   

, (5.1)

where “p” represents positive and “n” represents negative. In this case, the positive

means that the attribute is decided as an important attribute to this object such as

signal “1” in AST, and the negative is not an important attribute such as signal “0” in

AST.

As you move from perfect balance or perfect homogeneity, entropy moves

smoothly between zero and one. That means, the entropy is zero when the set is

perfectly homogeneous like all positive or negative instances, and the entropy is one

when the set is perfectly heterogeneous like half positive and half negative instances.

Then it is obvious that when entropy approaches zero, the ordering value should be

either “D” or “X“ depending on number of positives and negatives in the set.

For example, suppose there are two sets in AST recorded as “000111” and

“111000”. Both of “000111” and “111000” in entropy function are considered

uncertain because of perfectly heterogeneous. Since these two sets can be considered

time relevant, it is very certain that attribute with signals “000111” should be assigned

a higher ordering since it is important in the present time intervals. Hence, there is a

time bonus weighting to adjust each ordering value at final. Accordingly, each CF

value of a rule can now be leveled up or down automatically after integrating AOT

increment into the main AOT.

 63

(2) Gracefully Accumulating Function

Since the normal behavior may not change rapidly, a behavior scoring function is

designed to calculate the score of each behavior to determine the trend of historical

behaviors. Therefore, besides entropy function, the basic idea of the scoring function

is to incrementally adjust the weight of each behavior. If a current behavior is normal,

the score becomes larger; otherwise, it becomes smaller. The initial score value of

each user is given 0.

Since the knowledge will be updated or evolved in a dynamic environment, the

CF value of each embedded rule may be adjusted because the relative importance of

the object may change. A dynamic AOT Adjusting Function (5.2) is designed to

generate the updated AOT value at time t by accumulating the collection of attribute

event et at time point t based upon the previous AOT value at time t-1. If the attribute

event et is assigned as 1 then γ is set to 1, which represents the increment is added into

the AOT value at time t-1. Otherwise, γ is set to -1 if the et at time t is 0, which

represents the decrement subtracted by the AOT value at time t-1. Hence, the ordering

values can be refined with the times according to the collected information in a

changing environment.





==
==

×+−=
0 if -1,
1 if 1,

 ,)1()(
t

t

e
e

f(g(t))tAOTtAOT
γ
γ

γ (5.2)

 Where f(g(t)), which is formally defined in formula (5.3), is used to decide the

increment or the decrement of the corresponding the AOT value at each time point t,

α, which is used to adjust the curvature of the AOT Delta Function, increases

resulting in rapidly increasing or decreasing of the CF value, and β, which means the

 64

weight of the number of consecutive “1” or consecutive “0” received, decreases

resulting in larger increment or decrement. In order to limit f(g(t)) between 0 and 1,

the constant c is suggested to be smaller than -3.







=
+

≠
=

−×+×

−

1))((

1

 if ,
1

1
 if , 0

tttgc

tt

ee
e

ee
f(g(t))

βα

 (5.3)

 Where g(t), the Continuous Events Accumulating Function given in formula

(5.4), is used to record the number of consecutive “1” or consecutive “0” received at

time t.





=+−
≠

=
1

1

 if ,11
 if ,1

t-t

t-t

ee)g(t
ee

g(t) (5.4)

5.4 Adjusting Certainty Factor of Collaborative Dynamic Knowledge

Since Dynamic EMCUD can be extended to the collaborative framework, each

discovered dynamic knowledge learned from different local KBSs should be

integrated to further applied. Three cases are used to assist experts in adjusting the CF

values of the discovered knowledge of the new evolved objects from the collection of

inference logs. Assume there are n local KBSs and each new evolved object may be

discovered in p local KBSs, different CF values of a given embedded rule could be

generated in each KBS. For p > 0, the CF Adjusting Function shown in formula (5.4)

is proposed to help experts obtain the average of different CF value of a given

embedded rule in each local KBS and adjust the scale of the CF increment or

decrement (∆CF) according to the discover of the new object in the collaborative

KBS.

 65

For each new embedded rule Ri, let the CF value be CF(Ri) and let the)(j
iRCF

be the CF value of each embedded rule Ri discovered in the jth local KBS.

CF
p

RCF
RCF

n

j

j
i

i ∆×+=
∑

= δ1

)(
)(

 (5.4)

Depending on whether the new objects are discovered in the collaborative KBS

or not, the coefficient δ can be defined as follows.

Case 1: the new object can be discovered in the collaborative KBS.

δ is set to p/n.

Case 2: the new object can not be discovered in the collaborative KBS.

δ is set to (p-n)/n.

For p = 0, since the new object can not be discovered in any local KBS, the new

object could be discovered in the collaborative KBS according to the correlations of

profiles. Therefore, the CF Adjusting Function could be reduced to formula (5.5),

where the)(c
iRCF is the CF value of the new discovered rule in the collaborative

KBS due to different configurations of profile.

. CFRCFRCF c
i

c
i ∆×+= δ)()((5.5)

δ is set to -2.

5.5 Experiments

Up to now, many antivirus products have been developed to discover worms,

virus or Trojan horse in a computer system. However, these products are hard to

 66

automatically discover the variants of worms because the signature based approach

fails when the signatures are changed. To overcome the weakness, we propose a worm

detection prototype system, which has neo-learning module, to enhance the ability of

commercial antivirus products by the collaborative framework. The case of worm

detection is given to illustrate the idea of TEA. First, the domain ontology

construction flow will be described and then Nimda worm is used as an example.

5.5.1 Computer Worm Ontology Construction

 One of the purposes of applying ontology is to provide domain of discourse that

is understandable by human and computers. Since ontology can be represented by

machine readable markup languages such as RDF, the knowledge can be shared for

different knowledge bases automatically through computers processing. Moreover,

the reusability of ontology has become increasingly important to developers of

intelligent systems.

Cases diagnosis

Merge
Procedure

Expert

Attribute Ordering
Identification

Attribute Signal
Table Construction

Uncertain

Certain

Objects and
Attributes Extraction

Skeletal Model
Construction

Domain Concept
Tree Construction

Domain
Ontology

Construction

Figure 5.3 Worm Ontology Construction Flow

 67

 In this experiment, the ontology is not only reusable but also adaptive to the

current environment. Also, we construct the ontology based upon a concept tree

consisting of several prior knowledge including skeletal model and real cases

provided by knowledge engineers and domain experts in TEA. In Figure 5.3, the flow

of constructing worm ontology is illustrated to help experts construct the ontology

more easily, the following four Steps are proposed:

Step 1: Skeletal model construction.

Create the skeletal worm model by identifying each worm with six general

attributes including the basic information, the service, the exploitation, the carrier, the

symptoms and the defense instruction.

Step 2: Concept tree construction.

 Since it is often easier and more accurate for experts to provide critical cases

rather than domain ontology, the power of critical cases described in terms of relevant

objects and attributes to build domain ontology is remarkable. Therefore, after case

diagnosing a concept tree is created based upon the skeletal model in Step 1.

Step 3: Concept tree transformation.

 After concept tree is created, it is transformed into AOT, and attribute ordering

will be next acquired from experts. Then the original EMCUD can be processed to

generate the initial rules. However, because it is not easy to identify some attribute

ordering values precisely, the attribute which is uncertain to identify the ordering

value should be traced and analyzed with time by constructing an AST. Each attribute

signal is recorded in each time interval, when the attribute appears important the

 68

signal equals one and when it appears unimportant the signal equals zero. Therefore,

the attribute ordering table will be reconstructed according to the attribute signals

collected with time.

Step 4: Merge procedure.

 Two relations “has” and “is” are used for constructing worm ontology during the

merge procedure in this paper. The relation of “has” includes attribute ordering value,

for example, when the attribute ordering value equals 3 then the relation should be

“HAS:3”. Therefore, from Step 3, the ordering value would be retrieved from the

reconstructed AOT by AST. Hence, the ontology can be easily transformed into AOT

with updated value in Dynamic EMCUD whenever the variants are discovered.

5.5.2 Example of Nimda Worm Detection

Nimda, an incredibly sophisticated worm that made headlines worldwide, is taken

as an example. Nimda is the first worm to modify existing web sites to start offering

infected files for download by using Unicode exploit to infect IIS web server. It is the

first worm to use normal end user machines to scan the vulnerable web sites. This

technique enables Nimda to easily infect intranet web sites located behind firewalls.

Assume a simple Nimda concept tree is created in Figure 5.4 after series of Nidma

cases diagnosis, and it can be transformed into a worm AT like Table 5.1. The

following attributes are considered: the name of the e-mail attachment used by worms,

the medium used by worms to upload, and the name of the file used by worms to start

execution on servers. After constructing the worm AT, we construct the initial AOT

shown in Table 5.2.

 69

Nimda

Mail_Attachment Upload_Medium Excuted_File_Name

Symptoms Carrier

Readme.exe cool.dllputa!!.scr Admin.dll

Figure 5.4 Example of Initial Nimda Concept Tree

Table 5.1 An Example of Original Nimda AT

Onject
Attribute

Nimda

Mail_Attachment Readme.exe

Upload_Medium Admin.dll

Executed_File_Name Riched20.dll

Table 5.2 An Example of Original Nimda AOT

Object
Attribute

Nimda

Mail_Attachment 2

Upload_Medium 3

Executed_File_Name 4

With both AT and AOT, the EMCUD can be processed to generate eight

embedded rules and some of them have low CF value such as rule R1: “IF Not

Mail_Attachment = Readme.exe and Upload_Medium = Admin.dll and

Executed_File_Name = Riched20.dll Then Nimda” with CF value = 0.67. Therefore,

suppose that in the inference process, the rule R1 above is learned by neo-learning

module almost all the time during a period, and suppose in the last two time points the

embedded rule R2: “IF Not Mail_Attachment = Readme.exe and Not Upload_Medium

 70

= Admin.dll and Not Executed_File_Name = Riched20.dll Then Nimda” with CF

value = 0.4 is fired, the AST in Table 5.3 to record the evolutional trend can be

obtained.

Suppose that Nimda is the latest worm occurred in the world, its ordering value

of each attribute can not be easily determined because its variants may soon be broken

out. The expert may define an AST with several time points, and then assign 0 in the

first attribute, N1, at first time point in Table 5.3. The attribute event N2 at the second

time point is set to zero. For simplified discussion, we use gracefully accumulating

function to adjust the AOT value of each attribute to each object according to the

AST.

Table 5.3 An Example of Nimda AST

Object

Attribute

N1 N2 N3 N4 N5 N6 N7

Mail_Attachment 0 0 0 0 0 0 0
Upload_Medium 0 1 1 1 0 0 0
Executed_File_Name 1 0 0 0 1 0 0

In Table 5.3, the Mail_Attachment attribute is calculated by Function 5.2, and the

attribute is assigned a new ordering value = 1 since it is very possible to be changed

again, subsequently, ordering value = 3 are assigned for both attributes

Upload_Medium and Excuted_File_Name according to the AST. Therefore, the CF

value of the rule R1 is leveled up from 0.67 to 0.74. Moreover, several new

attribute-values are learned by neo-learning module with Mail_Attachment =

puta!!.scr in R1, a new worm variant Nimda.B shown in Table 5.4 can be integrated

into Table 5.5, and also an AOT is updated as shown in Table 5.6. Moreover, the

Nimda ontology after discovering Nimda.B is updated as Figure 5.5.

 71

Table 5.4 An Example of Updated Nimda AT After Discovering Nimda.B

Object

Attribute

Nimda.A Nimda.B

Mail_Attachment Readme.exe puta!!.scr
Upload_Medium Admin.dll Admin.dll
Executed_File_Name Riched20.dll Riched20.dll

Table 5.5 An Example of Integrated Nimda AT

Object

Attribute

Nimda

Mail_Attachment {Readme.exe; puta!!.scr}
Upload_Medium Admin.dll
Executed_File_Name Riched20.dll

Table 5.6 An Example of Updated Nimda AOT After Discovering Nimda.B

Object

Attribute

Nimda

Mail_Attachment 1
Upload_Medium 3
Executed_File_Name 3

Nimda

HAS:1
HAS:2 HAS:2

IS

IS

Mail_Attachment Upload_Medium Excuted_File_Name

Readme.exe
Admin.dll

IS

puta!!.scr

IS

cool.dll

Figure 5.5 The Updated Nimda Ontology after Discovering Nimda.B

Therefore, with the accumulated inference logs from distributed sensors, the TEA

can also update the knowledge frequently. Assume VODKA learns another new

attribute values including Mail_Attachment = sample.exe, Upload_Medium = cool.dll,

and Executed_File_Name = httpodbc.dll in R2 while the rule R2 has always been fired

 72

in each time point in a short period, then a new variant Nimda.E is found. Finally,

based upon the updated tables shown in Table 5.7 and Table 5.8, the built system will

give a whole picture of worms to guide the users who are not familiar in the domain

for preventing or removing the malicious worms. Finally, the updated tables are

shown in Tables 5.7 and 5.8, and the detailed of ontology of Nimda could be also

updated as Figure 5.6.

Table 5.7 An Example of Integrated Nimda AT After Discovering Nimda.E

Object

Attribute

Nimda

Mail_Attachment {Readme.exe; puta!!.scr; sample.exe}
Upload_Medium {Admin.dll; cool.dll}
Executed_File_Name {Riched20.dll; httpodbc.dll }

Table 5.8 An Example of Updated Nimda AOT After Discovering Nimda.E

Object

Attribute

Nimda

Mail_Attachment 1
Upload_Medium 2
Executed_File_Name 2

Nimda

HAS:1
HAS:2 HAS:2

IS IS
IS

Mail_Attachment Upload_Medium Excuted_File_Name

Readme.exe
Admin.dll

Riched20.dll

IS

puta!!.scr

IS

sample.exe

IS

IS

cool.dll

httpodbc.dll

Figure 5.6 The Updated Nimda Ontology after Discovering Nimda.E

 73

Owing to the different background and dynamic knowledge which can change

with the times, the domain knowledge constructed at a time may become degraded in

the near future. In this chapter, we propose a new knowledge acquisition method,

called TEA, which traces information with times by interacting with human experts

and supported by the learning strategy of VODKA to efficiently update the

time-related domain knowledge according to the current environment. Therefore, we

enrich the knowledge base and ease the effort of constructing the domain knowledge

which is changing with the times and environment. Three cases will be used in

collaborative framework to assist experts in adjusting the CF values of the discovered

knowledge of the new evolved objects from the collection of inference logs. A worm

detection system is illustrated to ease the experts’ efforts from analyzing and learning

and to help retrieving meaningful information for making proper decisions since the

knowledge bases become more adaptive for a changing environment by using TEA.

 74

Chapter 6

Application in Worms and DDoS Detection

A Worm Immune Service Expert system (WISE) with Dynamic EMCUD and a

worm classification embedded rule base is implemented to discover the new variant

worms generated by the attacking traffic generator in the experimental environment to

evaluate the performance of our proposed method. A DDoS intrusion tolerance system

is also implemented.

6.1 The Background of Worms and DDoS Attack

6.1.1 The Introduction of Computer Worms

In recent years, computer worms are grown dramatically to influence the wide

computer networks due to the property of easily modifying the source code of original

computer worms to create new variant for escaping the detection of related systems,

e.g., Symantec Norton [72], Network Viruswall [74], etc. Generally speaking,

computer worm usually self-propagates through the following four stages: Target

selection, Exploitation, Infection, and Propagation [80]. In Target Selection Stage, a

worm performs reconnaissance and simply probes potential victim to see if it's

running a service on a particular port. If the service is running, the worm goes to

Exploitation Stage, in which a worm compromises the target by exploiting a particular

vulnerability and published exploits. If success, the worm goes to Infection Stage, in

which the worm sets up on the newly infected machine. Finally, in Propagation Stage,

 75

the worm starts to spread by choosing new targets. And another victim will enter the

next four Stages cycle.

6.1.2 The Introduction of DDoS Intrusions

As mentioned above, many different DDoS attacking tools and defending

methods [17] to help mitigate the malicious traffic developed result in the rapid

growth of complicated characteristics of DDoS intrusion tolerance in recent years.

The introduction of DDoS is given in Appendix A.

As we know, there are two different types of attack technique in DDoS attacks:

bandwidth consumption and resource consumption. The bandwidth consumption

means that the attacking traffic launched by the compromised hosts, which are

controlled by attackers, is aggregated to a single huge flood and overwhelms the

victim. The resource consumption means that attackers make use of the leak of the

network protocol or the system security such as the techniques of SYN flood, land

and Teardrop, resulting in the starvation of system resources [16].

As the DDoS attack tools have become more complicated in recent years, the

maintenance of the characteristics of DDoS attacks is becoming more difficult despite

the previously known common characteristics of each category of discovered DDoS

attacks. Therefore, we will propose a knowledge base to store the characteristics of

DDoS attacks, which may be obtained by analyzing the traffic behaviors of the DDoS

attacking tools, for DDoS intrusion tolerance. Besides, two criteria considering the

difference between two types of DDoS attacks will be proposed to evaluate the degree

of intrusion tolerance.

 76

Intrusion tolerance is the ability of a system to continue providing (possibly

degraded but) adequate services after a penetration [70]. As mentioned above, it is

very hard to detect and prevent the DDoS attacks. Therefore, the intrusion tolerance of

DDoS attacks is an important issue to mitigate the damage during DDoS attacks for

providing the critical services continuously on Internet. Although a variety of methods,

which are given in Appendix A, have been proposed to mitigate the damage during

DDoS attacks for providing the critical services continuously, it is still very difficult

to keep up with the rapid growth of DDoS expertise in their studies. To solve this

problem, a DDoS ontology is proposed to provide a common vocabulary among

domain experts and an integrated knowledge acquisition framework is then proposed

to assist in quickly accumulating their expertise. We also use the behaviors of access

control list to evaluate the performance of the DDoS models.

6.2 The Framework Worm Immune Service Expert System

As we know, many antivirus products have been proposed to discover worms,

virus or Trojan horse in a computer system. Although these antivirus softwares are

developed to protect our system well, it is hard to automatically discover the variant

worms without updating their signature database because the signature the worm

signatures may change over times. To overcome the weakness, the worm detection

prototype system, namely WISE, is proposed to enhance the commercial antivirus

products instead of replacing them. WISE is a knowledge-based system. Unlike

pattern matching system, it does not need to write the program again, and therefore is

suitable for worm, which is usually variant quickly that updates knowledge base

frequently. By only updating the knowledge base, WISE can modify the defense me

 77

chanism for the variants of worm; as a result, the system can be easily maintained.

Besides, WISE contains embedded meanings of knowledge, so it can easily capture

some variant worms that in order to avoid signature-based detection system to modify

characteristic less. Since the growth of the knowledge of worms is very fast, we

propose a collaborative architecture for the adaptive worm detecting problem.

Figure 6.1 The Collaborative Framework for Worm Detection

Figure 6.1 shows the collaborative framework for worm detection. In the

architecture, each worm sensor provides a web interface to collect or discover all the

symptoms of worm cases by user and scanning tools. The NEO-learning module helps

each worm sensor constructing AST to reconstruct AOT increment and update main

acquisition table using AT increment (monitoring the frequent inference logs of weak

embedded rules of worms with the times), where each sensor has its own Worm KB.

For example, when worm infects a victim system, the user can scan the host computer

by some general antivirus software or can call for help from the Internet. The system

 78

collects all the information and infers the information based upon the worm

knowledge with embedded meaning constructed by EMCUD. Consequently, the result

of inferring will be passed to the users to teach the way of recovering the system.

Moreover, the statuses which satisfy certain embedded rules will be considered to

learn the new knowledge of new variant worms by neo-learning module. By

collecting the new worms knowledge and infrequent inference logs and consulting the

Profile, the collaborative framework can integrate the new worm knowledge.

In our WISE system, the knowledge of computer worms can be divided into

several KCs, including the service provided by host may be infected by certain worms

and then produced some symptoms in host or network. Some worm lifecycle, Profile

model, and dynamic behaviors knowledge classes are also created. The Log

Collecting Stage will be encoded by four meta-rules in DRAMA; the Knowledge

Learning Stage and Dynamic EMCUD are implemented using the JSP to make a

communication channel using the API provided by DRAMA. The related attributes of

various computer worms can be collected by some probe tools and used to evaluate

the ability of Dynamic EMCUD, which deployed in the prototype system.

Figure 6.2 The Experimental Environment for Detecting Computer Worms

 79

In order to evaluate the WISE, an experimental environment shown in Figure 6.2

for detecting various computer worms is built. In this environment, the victim is

received both the normal traffic and the attacking traffic (various worm behaviors).

All received traffic can be treated as normal or attacking behavior, which can be

transformed as attribute-value pairs. The network traffic collected from Internet is

assumed as normal traffic since most attacking behaviors with significant signatures

will be filtered by firewall. The attacking traffic generator is designed to randomly

generate various worms attacking traffic to infect the victim. Besides the attacking

traffic, some signatures, e.g., the system status, host vulnerability information, and

large e-mailing behavior, of the victim infected by worms can be also collected. The

probe, such as Nessus [73], is also used to automatically collect these worm related

attributes (symptoms). Then, these attributes is used to trigger the corresponding

classification rules in worm KB. If variant worms occurred frequently in a period,

some candidate worm variants may be discovered by Dynamic EMCUD. Finally, the

corresponding embedded rules of variant worms confirmed by experts will be

generated to update the worm KB.

6.3 DDoS Intrusion Tolerance

As we know, the traditional methods for detecting and filtering DDoS attacks [27]

are monitoring the status of network and system, specifying the alert thresholds,

defining detection rules, and setting filter policies by domain experts. Based upon

interviewing with domain experts, the DDoS ontology proposed to models the

behaviors of system and users, the methodologies of defense, and the strategies of

 80

evaluation are described as follows.

6.3.1 Ontology of DDoS

Before understanding the more complicated DDoS knowledge, an ontology,

which is needed for sharing knowledge with a common terminology among numerous

experts of the DDoS domain, could be divided into three parts: Profile model,

Defense model, and Evaluation strategy as shown in Figure 6.3. The Profile model is

proposed to describe the behaviors of system and users according to the state and user

state diagrams. The Defense model consisting of Detection and Filter methodologies

is then used to resist the DDoS attacking. Finally, the Evaluation strategy including

system and network evaluations is proposed to evaluate the performance of our

proposed DDoS model. Hence, the ontology includes Profile model, Detection

methodology, Filter methodology and Evaluation strategy knowledge classes (KCs),

each may include several sub-KCs and may be obtained by interviewing with domain

experts, e.g., Attack predicting and Attack detecting are sub-KCs of the Detection KC.

Figure 6.3 The Ontology of DDoS

6.3.2 The Relationships Between Knowledge Classes

Four basic relations between KCs have been defined in Drama/NORM [46]:

 81

Acquire, Trigger, Reference, and Extension-of relation. These relations are helpful in

describing the relationships among KCs. Trigger relation triggers another KC with

current facts as knowledge transfer. In other words, the remnant knowledge in original

KC should not be necessarily considered. Acquire represents the acquirement relation.

After Acquire process, the original inference process will continue and only facts

predefined in the acquired KC will be carried back in Acquire relationship. Reference

is used to represent the associations between different KCs. Through the Reference

relation, the knowledge contained in referred KC is regarded as the base knowledge

and will be taken into consideration together with the knowledge defined in the KC.

On the other hand, Reference can be thought as an unconditional Acquire relation

between KCs. Unlike the Reference relation, the Extension-of relation makes a new

KC to include all the knowledge contents of an existent KC. The activities of

Extension-of relation include extension and modification. Therefore, it must support

the overriding mechanism, including the overriding of facts and rules.

Figure 6.4 Relationships Between of Knowledge Classes

As shown in Figure 6.4, the Filter KC referencing the Profile KC can be treated

as a filter to filter out the malicious traffic and can be triggered by the outside traffic

 82

events. Also, it can set the new filter policy and acquire the Evaluation KC to evaluate

the system performance. The Detection KC triggered by the Filter KC could be

treated as a detector to detect the occurrence of DDoS attacks and could trigger the

Filter KC according to the specific detection events for dynamically setting the new

filtering policy to filter the malicious packets. Also, the Detection KC can acquire the

Profile KC to set the suitable attack detecting or attack predicting sub-KCs, which are

included by the Extension-of relation.

6.3.3 Profile Model and Evaluation Strategy

According to the expert’s experiences of defending DDoS attacks, the Profile

model including system state and role state diagrams shown in Appendix B are

proposed to represent the behaviors of system and users through interviewing with

domain experts.

As mentioned above, there are two different types of DDoS attacking technique:

bandwidth consumption and resource consumption. Since the only way can stop a

DDoS attack once it starts is to identify the addresses of all agents (zombies) sending

DDoS packets and to shut off traffic from them, the behaviors of black list and white

list are considered to monitor the potential latency of the network and the CPU usage

and memory usage are used to monitor the degrading rate of system performance

when suffering the DDoS attack and the Tolerance of the initial ACL is assumed to be

maximal in this chapter.

During resource consumption DDoS attacks, the system capacity of the victim is

always decreasing (i.e., the system resource usage ρ is increasing), causing Tolerance

 83

low. On the other hand, the bandwidth consumption DDoS attacks may increase the

members of the black list and decrease the members of the white list due to filtering

the malicious traffic; hence the Tolerance will become small if the filter policy could

not be performed well. Thus, the formula 6.1 combining network tolerance

(Tolerancenetwork) and system tolerance (Tolerancesystem) is given to represent the

degree of DDoS intrusion tolerance, where α and β are used to indicate the weights of

the tolerance. If we focus on protecting network performance, α is set to be larger

than β. Otherwise, a large β is recommended to protect the system performance.

systemnetwork ToleranceToleranceTolerance ×+×= βα (6.1)

Since the members in the white list (WL) may represent they could be served and

the members in the black list (BL) may represent they could be blocked by the victim,

the ratio of the WL and the BL is used to evaluate the network bandwidth utilization

(Bw). A large BL implies the filtering policies are set to be more restricted and the

tolerance may become small; otherwise, a large WL may represent the system is with

more tolerance since more users can access the services of the victim. The number of

users who have been moved from white list to black list (W2B) is further regarded as a

penalty weight for network tolerance. The formula of the Tolerancesystem and the

Tolerancenetwork are shown as 6.2. and 6.3 respectively.

ρ−=1systemTolerance (6.2)

)1(
2

Bw
BWBL

WL
Tolerancenetwork −

+
= (6.3)

The system state will be set as NORMAL when the Tolerance is larger than the

predefined thresholds. Otherwise, the system state will be in SURVIVAL state and the

new filter policy based upon Evaluation knowledge will be generated to move the

 84

state to NORMAL.

As mentioned above, each KC may include several sub-KCs due to the hierarchy

of the knowledge in DDoS intrusion tolerance. In order to obtain the knowledge of

each KC, an integrated knowledge acquisition (KA) framework including

interviewing with domain experts, training the predicting and detecting features, and

learning the filter policies for adaptively filtering malicious traffic is proposed. All

knowledge of DDoS intrusion tolerance can be represented as a natural rule format, IF

Conditions Then Conclusions. The bodies of Conditions are the facts generated from

network traffic flow, detecting results, and filtering policy. The Conclusions may

include the alarming events, system state changing events, and user state changing

events. Furthermore, constructing the knowledge base can facilitate the maintenance

of the knowledge for defending DDoS and can help the administrators manage their

networks.

6.3.4 Knowledge Base Construction

Due to the difficulty of acquiring and collecting the various DDoS characteristics

from domain experts, an integrated KA framework including three related KA

methods is used for reducing the effort of accumulating the expertise and speeding up

the knowledge collection of DDoS characteristics.

The Integrated Knowledge Acquisition (KA) Framework

The problems that we are faced with during the KA process are usually very hard.

In general, KA involves: (1) elicitation (gathering) of data from the expert, (2)

interpretation of the data to infer the underlying knowledge or reasoning procedure

 85

and (3) guided by this interpretation, creation of a model of the expert’s domain

knowledge and performance. Although quite many different kinds of KA approaches

have been proposed in many research studies [61][31][83][54][75][79] including

interviewing with experts, Repertory Grids, and machine learning, few studies have

focused on integrating various kinds KA approaches for an application due to the lack

of a common vocabulary. Based upon the DDoS ontology we mentioned above, an

integrated KA framework is proposed in this paper. Through the KA framework

shown in Figure 7.5, four kinds of KCs including Profile KC, Evaluation KC,

Detection KC, and Filter KC could be easily obtained by various KA processes. Other

new discovered or defined KCs can also be easily added or modified in our

knowledge base due to the nature of KBS.

Figure 6.5 The Framework of KA Process

As shown in Figure 6.5, all of these KCs of expertise can be obtained in the

integrated KA framework, which includes modeling the DDoS environment through

 86

interviewing with domain experts, selecting useful features by analyzing the attacking

tools in the Characteristic Trainer, and adaptively learning filter policies in the User’s

Behavior Learner. The behaviors of users, communication signatures, and other useful

features are the characteristics of the Detection KC, so called detecting rules, which

can be obtained by the Characteristic Trainer. On the other hand, the User’s Behavior

Learner is responsible for generating the various filtering policies in Filter KC. All

other KCs including Profile KC and Evaluation KC can be directly obtained by

interviewing with experts.

(1) The Knowledge Obtained by Interviewing With Domain Experts

As interviewing is one of the traditional approaches to acquire the expertise from

domain experts by knowledge engineers, many approaches have been proposed to

acquire expertise from experts through interviewing. As mentioned above, the Profile

KC and the Evaluation KC could be modeled by domain experts using interviewing

approach. Besides, the default knowledge including default communication ports and

the white list and black list policy in the Detection KC and the Filter KC could be also

acquired by interviewing with domain experts. Because the characteristics of DDoS

attacking tools and the filtering knowledge are dramatically increasing, the

Characteristic Trainer and the User’s Behavior Learner are proposed to obtain the

useful knowledge for DDoS intrusion tolerance.

(2) Training The Detection KC by Characteristic Trainer

To obtain the previously undiscovered DDoS characteristics/behaviors, a training

process, namely Characteristic Trainer, is proposed to learn the useful, new features

and store them into the Detection KC for predicting and detecting DDoS attacks.

 87

The new features of DDoS attacks can be selected by comparing the normal

behaviors during the NORMAL system state with the attacking behaviors launched by

DDoS attacking tools in the systematic training process of Characteristic Trainer.

Thus, to distinguish attacking behaviors from normal behaviors, each kind of

characteristics represented from the DDoS behaviors could be easily identified using a

Repertory Grids approach, which is a table with four attributes including the feature,

the feature threshold δ, the feature operation θ, and the corresponding actions. The δ

is a parameter adaptively determined in a short period by different features. For

example, if one feature value is larger than δ, it needs to be considered as abnormal

behaviors. Therefore, the small δ will increase more false alarms. On the contrary,

larger δ will treat more attacking behaviors as normal. After a DDoS attacking feature

is detected, the corresponding action e.g., trigger the Filter KC, alarm the attacking

traffic coming, or specify the attacking type, must be taken. The characteristic training

algorithm is shown as Algorithm 6.1.

In addition to the above previously known features, new characteristics/features

may be observed by using the Repertory Grids approach after analyzing fingerprints

of DDoS attacks such as spoofing, flooding-based and communication techniques and

more attacks could then be detected and predicted. More training DDoS

characteristics are shown in Appendix B.

 88

Algorithm 6.1 The Characteristic Training Algorithm

Input: Training Cases TC, Actions A, and feature set F with n features
Output: The Detection KC

Step1: Select a skeleton feature set Fk = {f1, f2, … , fk} ⊆ F by interviewing with

domain experts.
Step2: Set δi, for each feature fi in F in each TC.
Step3: Choose the proper actions Ai for the feature fi selected in Step2.
Step4: Generate the detection rule as “IF fi θI δi THEN Ai”.
Step5: Repeat Steps 2~4 until all detection rules have been generated.

(3) Learning The Filter Knowledge Class by User’s Behavior Learner

In traditional network management system such as firewall, intrusion detection

system (IDS), network management system (NMS), etc, ACL is widely used not only

to filter suspected connection from untrusted sources but also to admit the access from

trusted sources. Black list and white list strategies used in ACL are included in the

Filter KC. The former is used to interdict the access right, but the latter is used to

permit the access right. Moreover, the various filtering policies can be set according to

the configurations of current system and network environments.

In order to dynamically construct suitable ACL to mitigate the damage of DDoS

attack, a learning process is also proposed to generate appropriate filtering policies for

various network environments. The black list is used to drop the malicious attacking

traffic and the white list is used to allow the trusted IP to access the critical service of

the victim server. The principles of the User’s Behavior Learner for ACL are twofold

in this paper. One is to keep the legal users, whose behaviors are determined as

normal, in the ACL. The other is to remove the possible suspected users or the users,

who do not request critical service for a long time, from the ACL.

 89

Since the normal user may not change his/her behavior rapidly, a user behavior

scoring function is designed to calculate the score of each user by his/her own

behavior to determine his/her status of historical behavior. The basic idea of the

scoring function is to incrementally adjust the weight. If a current network status is

normal, the score becomes larger; otherwise, it becomes smaller. The initial score

value of each user is given 0 and the behavior of user changes from A to N or from N

to A, the score is no change. To evaluate the historical network status of the user q, Γ

is defined by expertise to determine the user’s historical behavior network status. The

historical behavior of the user ranging from [MAX, MIN] is determined as normal

(M(q)) if the score is larger than Γ. Otherwise, it is judged as abnormal (M(q)’) when

the value is smaller than -Γ.

-6

-4

-2

0

2

4

6

12 345 67 89101112

Time

S
c
o
r
e

User P
User Q

Figure 6.6 An Example of Users’ Behavior

In Figure 6.6, an example of P = <N, N, N, N, A, A, A, N, N, A, N, N> and Q = <A,

N, A, A, A, A, N, A, N, A, A, N> is given to explain our proposed scoring function. The

final score of P and Q are 4 and -5, respectively. If Γ = 3, the behavior of P is M and

the behavior of Q is M’ in this example.

 90

To more accurately categorize the user behavior, a penalty weight (PW) could be

attached when the characteristic of DDoS attack is discovered from individual user.

The range of PW could be also defined according to the degree of dangerous behavior.

6.3.5 The Verification of Selected Features/Characteristics of DDoS

To evaluate the selected features/characteristics of DDoS attacks, the selected

characteristics of DDoS which are similar to the normal behaviors will be eliminated

due to the reduction of the false detection rate in the DDoS intrusion tolerance system.

And then the Drama-based DDoS intrusion tolerance system will be implemented to

evaluate the performance of detection power by the selected characteristics.

(1) NORM-based DDoS Intrusion Tolerance System Using KCs

In order to evaluate the efficiency of the KCs, the DDoS intrusion tolerance

system using KCs is implemented by an inference engine Drama for detecting and

predicting the occurrence of DDoS attacks. As shown in Figure 6.7 the four KCs

could be easily used to infer the other system components through the inference

engine, and each component can be easily replaced according to different

configurations of the network environment. The network traffic can be characterized

as feature vectors [45] by Feature Vector Constructor. The Facts Collection is used to

store all facts including the feature vectors, detecting results, system status, user states,

and system evaluation results.

 91

Figure 6.7 The DDoS Intrusion Tolerance System Using Dynamic EMCUD

When the anomaly network traffic is detected in the Detection KC, the event of

attacking traffic coming is triggered and the Profile KC is acquired to change the state

of system. And the alarm event is thus triggered to set the suitable ACL in Filter KC

for dropping the huge traffic from the attackers and allow the legitimate traffic from

trusted users. Since then, the event of updating filter rules would be triggered to

generate a new filter policy for dropping the malicious traffic. It implies the

Evaluation KC will be acquired and used to compute the tolerance of the system for

updating the filtering policy of the Filter KC. Finally, the Profile KC would be

triggered to indicate the proper system state. However, the complex attacking

behaviors sometimes make the filtering policy fail. When it failing, the event of

generating new filter policy would be triggered again until system state in Profile KC

is stable. Otherwise, experts are asked to solve the problem of DDoS attacks.

6.4 Knowledge Base Maintenance

Due to the growth of rule base usage, the scale of rule base is increasing, and

hence the performance degradation becomes an important issue about constructing the

rule base arise. The performance can be dramatically decreased and hence more

resources may be required by the inference engine of the knowledge base when the

 92

number of rules in the rule base increases. In this section, a Rule base Partitioning for

Meta-knowledge Extraction System (RP-MES) combining both rule base partitioning

and meta-rule construction mechanisms is proposed to solve these issues. As for rule

base partitioning [62], RP-MES considers not only the structural relatedness between

rules but also the semantic relatedness of rules by calculating the semantic

relationship between rules in the rule base. In order to maintain the increasing

knowledge base, the meta-knowledge is useful to help select suitable rules in

inference process in the KBS.

6.4.1 Rule Base Partitioning and Meta-rule Extraction System

Meta-rules provide some related information about each rule cluster. Meta-rules

can be used to select appropriate rule clusters which increase the performance of the

usage of rule base in inference process. With meta-rules, the structure of the rule base

can be easily understood. However, meta-rules can not be easily obtained. In previous

applications about meta-rules, the set of meta-rules are usually provided by domain

experts; acquiring meta-rules can be time consuming or the expertise may be not

available. Therefore, a systematic mechanism is desirable to generate meta-rules.

The Automatic Meta-rule Constructor shown in Figure 6.8 consists of Rule Base

Partitioning Process and Meta-rule Construction Process. Rule Base Partitioning

Process considers syntactic and semantic structures of given rule base, and then

partitions rule base into several rule clusters. In Meta-rule Construction Process,

meta-rules will be extracted from the rule clusters obtained in previous phase.

 93

Figure 6.8 Automatic Meta-rule Construction

6.4.2 Rule Base Partitioning Process

Rule Base Partitioner is used to group rules into rule clusters from a plain rule

base without any structure. At the beginning, each rule of the original rule base is

allocated into a single rule cluster. Cluster Similarity Calculator calculates cluster

similarity of all pairs of two distinct rule clusters and builds a Cluster Similarity

Matrix (CSM). And the rule clusters will be merged according to the information in

Cluster Similarity Matrix. The merging process works iteratively until all similar rule

clusters are merged. And the rule clusters generated will be the result of this process.

However, the similarity calculation can seriously affect the result of this process,

and the merge process of rule cluster is also an important task. In the following

paragraphs of this section, similarity calculation will be introduced first. After that,

rule base partitioning algorithm will be detailedly described in the forthcoming

section.

 94

n Rule Similarity

Rule similarity is a key factor to the clustering result. Several kinds of rule

similarity definitions considering structural relatedness only [36][43], or with

semantic relatedness (hybrid approach) [42][77] are defined in previous work. In this

paper, we incorporate hybrid approach to deal with rule similarity calculation. In the

following, we give an example to present the rule similarity calculation.

Before discussing the rule similarity calculation, some notations are given in

Definition 1 to be used in following discussions.

Definition 1. Expressions, conditions, actions, rules, and rule base.

A = {attribute1, attribute2, … , attributeN}is the set of N attributes in the rule base.

O = {=, ?, >, <, >=, <=} is the set of all operators used in the expressions.

mattributeV is the set of possible values of attributem.

em = (attributem operatorm valuem) is an expression, where attributem ∈ A, operatorm

∈ O, and valuem ∈ mattributeV .

ri is a rule of two-tuple (CONDITIONSi, ACTIONSi) which can be represented as “IF

CONDITIONSi THEN ACTIONSi”, where CONDITIONSi is a set of expressions of

rule ri, and expressions in the set are connected with conjunction operator (AND) and

ACTIONSi is a set of expressions of rule ri, and expressions in the set are connected

with conjunction operator (AND), where the operator of the expressions must be “=”.

RB is the set of rules in the rule base. We illustrate the Example in Appendix C.

As we have mentioned before, rule similarity calculation containing structural

relatedness and semantic relatedness is described as follows.

 95

(i) Structural relatedness

The structural relatedness considers the reference of attributes between rules,

that is, evaluating the same attributes or asserting new values to the same attributes.

When considering the reference of attributes, only the name of attribute is considered

instead of attribute value. In the definition of structural relatedness, two rules are

related if there exists one attribute used by both rules (either on left- or right-hand

sides); otherwise they are independent. The structural relatedness between two rules

is thus measured by the number of attributes that are mentioned in both rules.

Definition 2 defines four situations of rule dependency, including in-out, share-in,

share-out, and not-shared, and four corresponding functions, inout(), sharein(),

shareout(), and notshared().

Definition 2. inout(), sharein(), shareout(), and notshared() Functions.

Given two rules ri = (CONDITIONSi, ACTIONSi), and rj = (CONDITIONS j,

ACTIONSj), their definitions are defined as below:

inout(ri, rj) : the set of attributes that are used in CONDITIONS i and ACTIONSj, or

ACTIONSi and CONDITIONSj.

sharein(ri, rj) : the set of attribute names that are common to both the CONDITIONSi

and CONDITIONSj.

shareout(ri, rj) : the set of attribute names that are common to both the ACTIONSi and

ACTIONSj.

notshared(ri, rj) : the set of all attributes used in ri or rj but not in inout(ri, rj),

sharein(ri, rj), and shareout(ri, rj).

 96

The counts of attributes of the four sets, generated by above four functions, are

used to calculate the structural relatedness. And the weight of each count is given as a

variable in our rule similarity calculation. Hence, the structural relatedness L(ri, rj)

between two rules, ri, rj, can be formulated as (6.4).

() () ()
() () notsharedjishareoutji

shareinjiinoutjiji

wrrnotsharedwrrshareout

wrrshareinwrrinoutrrL

⋅−⋅

+⋅+⋅=

,,

,,,

 (6.4)

Where 0 ≤ winout, wsharein, wshareout, wnotshared ≤ 1 and winout + wsharein + wshareout +

wnotshared = 1. For example, the winout, wsharein, wshareout, and wnotshared could be set to 0.4,

0.2, 0.3, and 0.1, respectively.

(ii) Semantic Relatedness

In some cases, rules are very similar in syntactic structure, but they may be used

to deal with different problems. Considering only structural relatedness between rules

cannot effectively distinguish them. As for the rules, r3, r4, and r5, listed in Example 1

in Appendix C, structural relatedness between every pair of rules is the same. Even

though the rules with only structural relatedness are used to detect different network

attacks, no additional information can help separate those rules. Therefore, semantic

relatedness is defined and used to complement structural relatedness for calculating

rule similarity.

When considering structural relatedness between rules, only the names of

attributes are taken into consideration instead of the values or the operators of

attributes. In order to capture the semantic meaning between rules, attribute values

and operators of the expressions are also considered. The expressions of rules can be

 97

divided into two categories, categorical and numerical, according to the data type of

values. For a given expression, if its value is categorical data, it belongs to categorical

expression, e.g., (protocol = TCP); otherwise, it belongs to numerical expression, e.g.,

(destination_ port > 1023). The semantic relatedness calculations of these two types

of expressions are different in our method.

Ontologies of knowledge-based system are often used for content explication or

as common dictionary. The semantic relatedness between categorical expressions can

be measured by the conceptual similarity between their values. That is, for two

categorical values, x and y, the semantic similarity of two categorical values can be

measured by conceptual similarity function s(x, y), which depends on both the

distance between them in the ontology and their generality. The conceptual similarity

function between x and y is defined as (6.5).

()
()

() () ()()







=
∈

+++

∉




≠
=

=

ontology y x,if ,
1log,

ontology y x,if ,
0
1

,

2, yDxDyxd
c

yx
yx

yx
yxs

δ

 (6.5)

The d(x, y) is the number of “hops” between x and y, D(x) is the number of all its

descendants, and c is the boundary constant. If x and y are not located on the ontology,

the Kronecker delta function δ(x, y) is used to determine their similarity.

Besides, different operators, e.g. “=” and “?”, may influence the evaluations of

semantic relatedness between two expressions. Hence, two cases of operator

combinations for two categorical expressions must be considered when calculating

the semantic relatedness. Therefore, the semantic relatedness is formulated as (6.6).

 98

() ()
()




−
=

=
otherwise ,,1

 if ,,
,

nm

nmnm
nm valuevalues

operatoroperatorvaluevalues
eeα

 (6.6)

On the other hand, both expressions must be transformed into mathematical

intervals before evaluating semantic relatedness between two numerical expressions.

For instance, expression c1 = (port > 1023) is transformed to (1023, max], where max

is the maximum value of Vport, which is the value range of “port”. The semantic

relatedness is measured by ß(em, en) based on the overlapping of two mathematical

intervals, which is defined as (6.7).

β(em, en) = |im ∩ in|/|im ∪ in| (6.7)

The im ∈ mattributeV and in ∈ nattributeV .

Therefore, the semantic relatedness between each two expressions can be

formally defined as (6.8).









≠
=

n

nmnm

nmnm

nm

attribute
eandeee
eandeee

eeS

mattribute if ,0
sexpression numerical are both),,(
sexpression cateorical are both),,(

),(β
α

 (6.8)

Based upon the semantic and structural relatedness defined for expressions of

rules as (6.4) and (6.8), the definition of the similarity of two rules, ri and rj, R(ri, rj)

is thus given in Definition 3.

 99

Definition 3. Rule similarity between rules.

Given two rules, ri = (CONDITIONSi, ACTIONSi), rj = (CONDITIONSj, ACTIONSj),

the rule similarity between ri and rj is defined as formula (6.9).

() ()

()

()

()

() notsharedji

shareout
rrishareoutattributeattributeACTIONeACTIONe

nm

sharein
rrsharinattributeattributeCONDITIONeCONDITIONe

nm

inout
rrinoutattributeattributeCONDITIONeACTIONe

nm

inout
rrinoutattributeattributeACTIONeCONDITIONe

nmji

wrrnotshared

weeS

weeS

weeS

weeSrrR

jinmjnim

jinmjnim

jinmjnim

jinmjnim

⋅−

⋅+

⋅+

⋅+

⋅=

∑

∑

∑

∑

∈∈∈

∈∈∈

∈∈∈

∈∈∈

|,|

,

,

,

,,

),(,,,

),(,,,

),(,,,

),(,,,

 (6.9)

n Cluster Similarity

As mentioned before, Rule Base Partitioner iteratively merges the most similar

rule clusters to construct the resulting rule clusters. Besides, in order to avoid too

small or too large rule clusters generated, the quantity of rules in rule cluster is also

considered when calculating the clusters. Therefore, similarity between two rule

clusters, gs and gt, is defined as (6.10).

||||
2

)),((),(
, tsgrgr

jits gg
rrRsqrtggCS

tjsi
+

+= ∑
∈∈ (6.10)

Given the set of rule clusters, the similarity between each pair of rule clusters

can be calculated in advance and stored in Cluster Similarity Matrix (CSM), an

m-by-m upper triangular matrix, where m is the number of rule clusters. Each entry is

the cluster similarity between rule clusters, gs and gt, that is, CS(gs, gt).

 100

n Rule Base Partitioning Algorithm

Once the similarity for rule clusters can be calculated, the Rule Base Partitioning

Algorithm is used to partition a rule base into rule clusters. The algorithm derives a

high-level structure for the rule base based on the information of rule similarity. The

stopping criterion is to stop when the cluster similarities between all pairs of rule

clusters are no longer larger than a user defined similarity threshold (st). The rule base

partitioning algorithm is presented as Algorithm 6.2.

Algorithm 6.2 Rule Base Partitioning Algorithm

Input: A set of rules, similarity threshold st
Output: A set of rule clusters

Step1: Group each rule as a single rule cluster.
Step2: Generate CSM based upon the cluster result.
Step3: Choose the entry nij with the largest value (most similar) from the CSM.
Step4: Terminate and output the rule clusters, if nij is less than or equal to st.
Step5: Combine gi and gj into a cluster by merging the rules inside the clusters.
Step6: Repeat Step 2 to Step 5.

(2) Meta-rule Construction Process

The meta-rule construction is used to extract meta-rules from the partitioned rule

clusters by Meta-rule Extractor which consists of Meta-Apriori Algorithm and

Confidence Calculator. The Meta-Apriori algorithm is modified from Apriori

algorithm [2] to generate the meta-rules, and Confidence Calculator calculates the

confidence value of each meta-rule. The meta-rule generated by Meta-rule Extractor

is then stored in the Meta-rule base for further usage.

 101

n Meta-Apriori Algorithm

The Meta-Apriori algorithm tries to discover the most frequent combinations of

expressions to describe the rule cluster. The basic idea is that those most frequent

combinations of expressions are used in many rules of the rule clusters, and once the

combination is met, those rules may be related to the result. The transactions and

itemsets defined in Meta-Apriori algorithm are rule conditions and expressions,

which is given in Definition 4.

Definition 4. Transaction and itemset.

Given a rule cluster gi = {ri1, ri2, … , riN}, where N is the number of rules in gi, the

transaction and itemset are defined below:

tij = CONDITIONSij, where CONDITIONSij ∈ rij, j∈ [1… N], is a set of expressions to

be used as one transaction, e.g., t11 = {(protocol = TCP), (protected_

network_direction = A), (source_port > 8080), (string = NetBus)}.

d is the itemset of a set of expressions.

In Meta-Apriori algorithm, the support count of the itemset is defined as the

number of transactions that the itemset subsumes. That is, the set of expressions of

the itemset subsume those of the transactions. For two expressions, em and en, em

subsumes en if sub(em, en) = 1, where sub() is called expression subsume function

shown as (6.11).



 ∈∈∃

=
 otherwise , 0

 , , 1
),(mn attributeattribute

nm

VvVv
eesub

 (6.11)

 102

Moreover, an itemset subsumes the transaction if each expression of itemset

subsumes at least one expression of transaction. The itemset subsumption is defined

in Definition 5.

Defnition 5. Itemset subsumption function.

Given an itemset d and a transaction t, the itemset subsumption function is defined as

formula (6.12).



 =∈∀

=
 otherwise ,0

1),(| ,1
),(nmm eesubte

tdsubsum
 (6.12)

After discussing the notations and subsumption issues, the complete Meta-

Apriori algorithm is given as Algorithm 6.3.

Algorithm 6.3 Meta Apriori Algorithm

Input: A set of transactions, T; minimum support threshold, min_sup.
Output: A set of frequent itemset, D.

Step1: Generate the set of frequent 1-itemsets, D1, by scanning T.
Step2: Set initial value of k to 2.
Step3: Generate candidate k-itemsets Cik from Di(k-1).
Step4: For each k-itemset dk ∈ Cik, compute the support count, that is, dk.support =

()∑
=

N

l
ilk tdsubsume

1

,
.

Step5: Remove those k-itemsets that their support counts are less than min_sup*N
from Cik. The remaining itemsets are stored in Dik.

Step6: If Dik ≠ {φ}, increase k and goto Step 2.

Moreover, an itemset subsumes the transaction if each expression of itemset

subsumes at least one expression of transaction. The Example 6 in Appendix C shows

the process of Meta-Apriori algorithm.

 103

n Meta-rule Generation

The meta-rule generation is based on the concept of constraint-based association

mining [53]. The meaning of the meta-rule, mrj = (CONDITIONSj,

(RULE_CLUSTER = gi), confj), is that if all expressions of CONDITIONSj are

satisfied, the rule cluster gi will be selected with confidence value, confj.

The frequent sets of expressions generated from one rule cluster may be the

same with those generated from the other rule clusters. Therefore, once the frequent

itemsets of all rule clusters are generated by Meta Apriori algorithm shown in

Algorithm 6.4, the Confidence Calculator is used to calculate the confidence value of

each meta-rule generated from frequent itemsets by accumulating the total support

count of all selected meta-rules from meta rule base based upon Confidence

Calculation Algorithm.

Algorithm 6.4 Confidence Calculation Algorithm

Input: A set of meta-rules, MRB, without confidence values.
Output: A set of meta-rules, MRB’, with confidence values.

Step1: Set MRB’ is an empty set.
Step2: For each meta-rule mrj from MRB which have the same set of expressions

in the CONDITIONj.
Step3: Accumulate the total support count of all selected meta-rules.
Step4: For each cluster gi, set the confidence value of mrj in gi via dividing its

support count by total support count.
Step5: Remove those selected meta-rules from MRB to MRB’.

6.5 Experiments

We implemented a Dynamic EMCUD web based system, and used computer

worm as an experimental domain, where three computers equipped with the Dynamic

EMCUD system constructed their own KBs to evaluate the performance of

 104

discovering variants. As shown in Figure 6.2, we implemented a simple computer

worm sample generator to generate the test samples of worms. The classification rules

of 15 kinds of worm families including original worms and some variant worms

(polymorphic worms) are extracted by domain experts using EMCUD, where the

initial AOT value is given directly by experts and these worm classification rules are

stored into knowledge base. To evaluate the effectiveness of Dynamic EMCUD, we

generated 20 kinds of test samples including the behaviors of 15 original worm

families and 5 new worm families to randomly attack the victims. The experimental

result in Table 6.1 shows that the collaborative framework can successfully discover

the variants by NEO-learning module. Since some critical weak embedded rules may

be ignored in the beginning of knowledge based construction, some specific variants

which can not be discovered by any individual NEO-sensor can be detected by the

rules.

Table 6.1 The Ratio of Discovering New Evolved Worm

 Original
Worms

Variant
Worms

New
Families

Inference
Cost

Dynamic EMCUD 100% 85% 80% 193
Collaborative 100% 92% 80% 200

Both Dynamic EMCUD and Collaborative framework can detect the 100% of

original worms since the classification rules are stored in worm KB. For detecting the

occurrence of variant worms, the Dynamic EMCUD can learn the 85% of variant

worms. If the Dynamic EMCUD is extended to the collaborative framework, 92% of

variant worms can be discovered due to the highly complementary configurations

between collaborative NEO-sensors. However, both Dynamic EMCUD and

collaborative can detect the 80% of new worm families in our experiments. Our

 105

collaborative framework can learn the 92% of the variants, it needs only 7 extra

inference costs to reach the goal in our experiments. However, the significant

difference of new family can not be discovered easily. Thus, deploying the more

complementary configurations between collaborative sensors could be efficient in

discovering the knowledge of new worms.

Moreover, an Intrusion Detection System (IDS) prototype based upon RP-MES

is proposed, and the partitioning result as well as performance analysis of the

prototype system is also introduced.

6.5.1 Experiment Environment

Figure 6.9 An IDS Prototype System Based RP-MES

Figure 6.9 illustrates the system architecture of the IDS prototype system

including the DRAMA System [46] and Automatic Meta-rule Constructor. DRAMA is

used to store, represent, process the knowledge of the IDS. Moreover, the NORM

 106

knowledge model used in DRAMA provides the ability of inferring meta-rules and

rule selection by the ACQUIRE knowledge relation, which is a dynamic knowledge

relation to include rule cluster only when meta-rule is matched. DRAMA Rule Verifier

is used to verify rules within the knowledge classes.

Automatic Meta-rule Constructor is also implemented in JAVA. The knowledge

can be the rule base of any other IDS, e.g., Snort [68], Dragon Sensor [24], etc.

Automatic Meta-rule Constructor can partition the rule base into rule clusters, which

are represented as knowledge classes in DRAMA, and generate meta-rules from those

knowledge classes. Those generated knowledge classes can be processed by DRAMA

Server for detecting network intrusions. Packet Preprocessor collects the packets from

network and translates into the facts for DRAMA to infer. Administration Panel of the

prototype system provides a user interface for administrator to monitor the situation

of network environment.

6.5.2 Experimental Results

The rule base of Dragon Sensor consists of 646 rules, which is used as our

experimental knowledge source. In the first experiment, various numbers of rules are

partitioned by Automatic Meta-rule Constructor according to different similarity

threshold (st) settings, which are used as the criteria to stop clustering process. The

partitioning result is shown in Table 6.2. It can be observed that similarity threshold =

1.2 produces more reasonable number of rule clusters since the average size of rule

clusters is satisfied with Miller’s magic number [49], which says that human beings

have a meaningful chunking size up to 7 ± 2.

 107

Table 6.2 The Cluster Number with Different Similarity Threshold Settings and

Number of Rules

 st
Rules 1.0 1.1 1.2 1.3

200 3 5 28 48
300 3 5 32 82
400 3 7 52 112
500 3 5 57 139
600 4 7 56 172
646 3 6 59 188

The experiment is conducted to analyze the accuracy according to different

similarity threshold (st) settings, the criteria to stop clustering process. For each

partitioning result with different cluster similarity setting, Automatic Meta-rule

Constructor also generates corresponding meta-rules and stores those meta-rules in a

knowledge class. Those knowledge classes are loaded into the IDS prototype system

for accuracy experiment. The accuracy = |Fp| / |FDS| is obtained by comparing the

result of original rule base and partitioned rule base. The Fp is the set of rules fired in

partitioned rule base, and FDS is the set of rules fired in original rule base. The result

is shown in Table 6.3.

Table 6.3 Accuracy Comparisons

� st
Rules 1.0 1.1 1.2 1.3

200 98% 99% 100% 100%
300 98.33% 100% 100% 100%
400 96.25% 96.75% 98.75% 99.25%
500 94.20% 94.20% 97% 97.60%
600 95.33% 95.67% 97.33% 98.00%
646 95.51% 95.82% 97.37% 98.14%

We also use the traditional rule base partitioning approach, which only considers

structural relatedness of rule, to partition the same rule base used in previous

 108

experiments. Table 6.4 shows the number of rule clusters partitioned for both

approaches to meet the same accuracy (the accuracy for RP-MES approach with st =

1.2).

Table 6.4 Comparison of Number of Clusters

Rules 200 300 400 500 600 646
RP-MES 28 32 52 57 56 59
TRADITIONAL 51 85 113 139 170 188

The final experiment is to evaluate the performance between the rule base not

partitioned and the rule base partitioned by RP-MES. The result of the experiment is

shown in Figure 6.11.

Figure 6.11 The Performance Comparison

When the number of rules is small, the performance difference is not obvious.

But if the number of rules becomes large, the execution time of original rule base

increases greatly. However, the execution time of RP-MES increases more smoothly

than that of original rule base.

 109

Chapter 7

Application in Alert Classification Model

Construction

7.1 Introduction

In order to detect and prevent anomaly network behaviors, many Intrusion

Detection Systems (IDS) or Firewalls have been developed to focus on well-known

intrusion patterns through packet-based information, connection-base information, or

some statistical network information [29][32][47][52][55][56]. Although these kinds

of approaches can be useful to defend the obvious activity patterns of intrusions,

many intrusions are still hard to be detected by IDSs to notice human experts because

of numerous noises and insufficient information among different intrusions. In other

words, existing IDS tools just tag suspicious network behaviors into IDS alerts, but

can not avoid generating false alerts. For domain experts, it is time-consuming to

classify IDS alerts into true or false alert sequences precisely due to numerous noisy

IDS alerts; for junior administrators, it is difficult to generate aggregated IDS alert

sequences according to the similarities of intrusion patterns due to the lack of domain

knowledge.

Although several methods [4][18][60][66][78] such as generic algorithm, neural

networks, and data mining approaches, have been used to discover either unknown or

 110

useful patterns for experts, lots of hidden and concealed intrusion patterns may still be

escaped because of insufficient and dirty information. None of them discusses on

discovering intrusion patterns thoroughly from IDS information data, called IDS

alerts. Therefore, we are concerned with how to design a systematic framework to

assist administrators discovering intrusion patterns with IDS alerts. Our idea is to

construct a decision support system to help experts construct an alert classification

model for on-line intrusion detection of IDS alerts. For domain experts, the built alert

classification model will reduce experts’ efforts on how to precisely and quickly fix

the root causes; for junior administrators, alert classification model will help them

reuse the embedded domain expertise as references, and the domain knowledge will

be no longer a limitation for intrusion detection.

 As we know, too many false alerts result from IDS tools in present network

environments because IDS tools should be designed as powerful as possible not to

miss any detection of real intrusions. This means IDS tools become more and more

sensitive to generate false alerts which are noise to discover real intrusion patterns in

some network environments. In this chapter, we collect alert transactions in an

attack-free environment, which is a virtual intranet with several hosts in laboratories

to simulate real Internet behaviors in the training stage. Accordingly, all alerts are

treated as false alerts in this virtual intranet, and the frequent patterns to be mined in

this case are treated as patterns of normal behaviors, or called patterns of false alert.

In other words, we can use these data to construct normal behavior patterns to remove

false alerts. Besides, using some specific rootkits to simulate the real intrusions of

networks, we can also construct known intrusion patterns in the training stage to

classify existing intrusion patterns.

 111

 The proposed decision support system consists of three phases in the training

stage: Alert Preprocessing Phase, Model Constructing Phase and Rule Refining Phase

to assist administrators construct three kinds of rule classes (normal rule class,

intrusion rule class and suspicious rule class) to remove false alert patterns and

analyze each existing or unknown alert pattern, where each rule class represents a set

of classification rules. Because flags of alert patterns may change between two

consecutive time intervals, so the differences of specific patterns must be highlighted

and refreshed again to experts in each time interval. A least recently used (LRU) rule

replacement policy is used to replace the rules which are less used recently in each

classification rule class to ensure the performance of our system.

7.2 Decision Support System Architecture

Although many IDS have been proposed to assist administrators in detecting

intrusion, false alarms are still huge and result in the difficulty of analysis. Traditional

intrusion pattern analysis methods use different data sources with their own data

formats according to different methods of IDS alert analysis. Different analysis

methods have different characteristics to get the desired intrusion patterns. However,

most of these researches are conceptual deficient and mutually independent; some of

them provide sufficient data formats, and some others are conspicuous on analysis

performance. Each intrusion pattern analysis method has its own limitation, so

integrating advantages of different methods seems better than redesigning a new

analysis framework to take the advantage of these methods. Hence, we propose a

decision support system for constructing alert classification behavior patterns to help

experts easily to construct an alert classification model using the huge amount alerts.

 112

The main purposes of IDS alerts collection and analysis are finding more

meaningful alert information and discovering the information relation between real

alerts to verify system vulnerabilities and to infer attack causes. Some issues are

derived from these purposes:

(1) How to choose appropriate analysis targets and data formats.

(2) How to filter false alerts efficiently.

(3) How to discover attack patterns and display appropriate data types for

administrators to make policies.

7.2.1 The Framework of Decision Support System

Figure 7.1 The Framework of Decision Support System

In the training stage, a decision support system for constructing an alert

classification model consists of alert preprocessing phase, model constricting phase,

and rule refining phase as shown in Figure 7.1. As we know, most attack patterns are a

sequence of actions, which can be represented as a sequence of IDS alerts. In alert

 113

preprocessing phase, all alerts triggered by IDS sensors are stored in the alert

warehouse and would be transformed into alert sequences for each IDS sensor during

a period of time which could be set by experts for batch training. Without alert

preprocessing, the time complexity of pattern analyzing will become huge and the

accuracy of pattern discovering will low down due to the huge among of false alerts.

In model constructing phase, filtering and analysis methods are proposed to assist

experts construct different classification rule classes to remove false alert patterns and

analyze each existing or novel alert pattern. The normal alert behavior patterns will be

trained firstly in an attack-free environment by sequential miming algorithm and used

to reduce the affect of noise on intrusion patterns as more as possible because the

normal behavior pattern will occur periodically and frequently. Then, the suspicious

behavior patterns will be trained in a simulated attacking environment and the

corresponding classification labels could be flagged by experts according to the alert

patterns in model constructing phase. These obtained behavior patterns could be used

to help administrator identify intrusions in the on-line stage. If new alert behavior

patterns are discovered, they will be integrated into the alert classification model;

otherwise, the alert model could be refined in rule refining phase.

7.2.2 Alert Preprocessing Phase

Since most part of present attacks are target-specific and stealthy intrusions

instead of large-scale violence [72] and alert transactions in alert warehouse are large,

it is necessary to transform raw alert transactions into pre-defined alert transaction

formats for further analyzing. Some characteristics of attack tools can be discovered

by analyzing alert sequences [37]. As shown in Figure 7.2, assume a source host

triggers the same sequence of alerts against different target hosts in a noise-free

 114

environment without false alerts. In general, it can be easily seem these scenarios

from an attacker try out his or her attack tool against different targets.

Figure 7.2 An Attack Tool Being Run Against Three Targets

Alert sequences can be represented as specific characteristics of specific attack

tools or attackers, so we select alert sequence as our target data format. We collect

IDS alert transactions from many IDS sensors as our training data sources, and set an

appropriate time period Batch_Time_Window for batch preprocessing. The value of

Batch_Time_Window may be an hour, a day, a week, or a month; but we suggest that

to set the value of Batch_Time_Window as one day will be better in our experience.

Besides, most intrusions will not continue for a very long time in its own attack

lifecycle, so we set a short-term time period Short_Time_Window as the time period of

our alert sequence transactions. We assume that every intrusion will finish its whole

lifecycle in this short-term time period. The value of Short_Time_Window may be 1

minute, several minutes, or even an hour; but we suggest that we set the value of

Short_Time_Window as half of an hour will be better in our experience.

 After explaining the definition of Batch_Time_Window and Short_Time_Window,

 115

there are still some issues for alert transaction construction. First, for a single alert

transaction, it is difficult to classify it into true alert or false alert because some alerts

are used to be triggered. Second, it is still not appropriate for alert sequences to be too

long because long sequential patterns are not easy to be frequent. Our idea is to design

proper policies corresponding to different environments, and some policies of alert

sequence partition are proposed to construct alert sequence transactions for model

constructing phase with different requirements. These policies are used to partition

alert sequences into subsequences in each Short_Time_Window. According to

different purposes, the corresponding policies are designed to obtain desired alert

subsequence transactions. Three policies are shown as follows.

CASE 1: Left-To-Right Non-Repeat Policy

Step 1: Scan every alert from the first (left) to the end (right) of sequence.

Step 2: Partition sequence into scanned part and unscanned part; IF next alert to

be scanned is equal to some alert in the scanned part, Do partition from

the first element to the present element and set the unscanned part as a

new sequence.

Step 3: IF there is still any element in the unscanned part, GOTO Step 1.

CASE 2: Right-To-Left Non-Repeat Policy

Step 1: Scan every alert from the end (right) to the first (left) of sequence.

Step 2: Partition sequence into scanned part and unscanned part; IF next alert to

be scanned is equal to some alert in the scanned part, Do partition from

the first scanned element to the present element and set the unscanned

part as a new sequence.

 116

Step 3: IF there is still any element in the unscanned part, GOTO Step 1.

CASE 3: Equi-Length Policy

Step 1: Ask administrators to set a value of the subsequence length.

Step 2: Partition each alert sequence into several subsequences with the fixed

length.

Here ‘Left-To-Right Non-Repeat Policy’ is used as our partition policy for

example. We suppose that there is an alert sequence of sensor H1 in short-term slice

t1 as following:

At first, let AS[7] be alert sequence: XABYXCY; because AS[4] equals AS[0],

so this sequence is divided into two alert subsequences: the scanned part XABY and

the unscanned part XCYC, and executes partitioning again in the unscanned part

XCYC as new sequence, or consider as new AS[4]. In AS[4], we can find that AS[4]

equals AS[2] again, so this sequence AS[4] is divided into two alert subsequences: the

scanned part XCY and the unscanned part C. After whole original alert sequence

being scanned, we can get three new alert sub-sequence transactions such as XABY,

XCY and C as follows.

Sensor ID Short_Time_Windows(1)
H1 XABY XCY C

7.2.3 Model Constructing Phase

There are some researches discussing about how to filter false alerts efficiently,

and different data characteristics and different filtering heuristics brings quite different

Sensor ID Short_Time_Window(1)
H1 XABYXCYC

 117

filtering results. Generally speaking, most of these researches use specific analysis

methods or compile expert experiences to construct filter models, and use this filter

model to discard those highly-possible false alerts to get clearer data.

Besides, to find specific patterns in these kinds of numerous sources is like to

discover meaningful patterns in distributed databases or data warehouses for decision

support. Many researches have been proposed to analyze behavior models in

databases, and different alert pattern analysis methods with different data source

formats cause different outcomes. In our thought, none of these analysis algorithms is

powerful enough for correctly detecting intrusions.

There are two different purposes for alert pattern discovering obviously: false

alert filtering and useful alert pattern discovering. It is common to filter false alerts

before alert pattern discovering because these noisy alerts will affect the accuracy of

alert pattern discovering. In other words, our approach tries to discover patterns of

false alerts first, and then continue to discover useful patterns of suspicious or known

alerts.

In the training stage, we design some rule class construction methods to build

specific behavior rule classes. We construct three types of behavior classification rule

classes with domain experts: normal behavior rule class, intrusion behavior rule class,

and suspicious behavior rule class. Each type of rule classes is constructed by

individual methods, which use different data sources as their data inputs.

 118

For example, if we want to construct normal behavior rule class which is the

collection of false alert patterns, we may collect IDS alerts in an attack-free network

environment and use specific normal behavior rule class construction method to

discover false alert sequences. Besides, if we want to construct intrusion rule class

and suspicious rule class, we may collect IDS alerts in a simulated network

environment using some existing intrusion tools to generate simulated intrusions, to

discover interim suspicious behavior rule class by specific rule class construction

method. We will provide all interim classification rules of intrusion/suspicious

behavior rule classes to experts, and the system will interact with them to flag these

suspicious alert sequences with specific tags. If one suspicious pattern is a known

attack, experts will flag it as a specific classification name and seem it as a kind of

intrusion behavior classification rules; if one suspicious pattern is never verified, then

it is really an unknown suspicious pattern and is considered as a kind of suspicious

behavior classification rules.

The procedure of behavior classification rule class construction in the training

stage is shown as following:

(1) Construct Normal Behavior Classification Rule Class.

(2) Construct Suspicious/Intrusion Classification Rule Class.

(3) Classify Classification Rules of Suspicious/Intrusion Rule Class into

Suspicious Behavior Rule class and Intrusion Behavior Rule Class.

These behavior classification rule classes are used to monitor IDS alert behaviors

in the on-line stage. IDS sensors trigger alerts at any moment, and it is not easy for

experts to classify these consecutive alert sequences into normal behaviors or

 119

suspicious behaviors without our decision support system. With these three types of

rule classes, it is possible for real-time monitoring IDS alert sequences to discover

most intrusion behaviors. The decision support system lightens the load of experts in

analyzing IDS alerts and assist them focusing on how to explain the intrusion

principles and how to fix the root causes. The rule class construction algorithms are

detailedly described in Appendix D.

 The activation flow of each rule class is shown as follows: in the on-line stage,

alert sequences are triggered by IDS tools and will be forwarded to alert warehouse.

Before being stored into alert warehouse, each alert sequence will be matched by

classification rule classes of classification model first. After interviewing with domain

experts, the normal behavior patterns will be firstly used to filter out most part of false

alerts. Then, the intrusion behavior patterns will be used to detect the true intrusion

alerts. Finally, the remaining alerts should be classified into known suspicious

behavior patterns or unknown suspicious alerts.

Figure 7.3 Meta-rules of Classification Rule Classes for On-line Monitoring

The activation flow of each rule class is shown in Figure 7.3. If there is any alert

subsequence matching the classification rules in normal behavior classification rule

 120

class, it will be filtered out immediately; if there is no alert subsequence matching,

classification rules of intrusion behavior classification rule class will be triggered to

verify these on-line alert sequences. In the similar way, if there is any alert

subsequence matching the classification rules of intrusion behavior classification rule

class, system will highlight the alert subsequence to notice experts; if not,

classification rules of suspicious behavior classification rule class will be triggered to

verify these alert sequences again. If there is still no classification rule matched by

alert subsequences, these alert sequences will be stored in alert warehouse as new

batch data sources of the next time window.

7.2.4 Rule Refining Phase

These obtained behavior rule classes could be used to help administrator identify

intrusions in the on-line stage. If new alert behavior classification rules are discovered,

they will be integrated into the alert classification rule classes; otherwise, the alert rule

classes could be refined in the rule refining phase.

First, for the efficiency of rule inference, the maximum number of classification

rule in each classification rule class needs to be limited. If new classification rules are

incrementally added into rule classes, the inference performance of on-line

monitoring will be decreased due to the huge of rules. The initial number of

maximum rule number of each classification rule class in our experiment is set to 200.

If the quotas of classification rule class are full with classification rules, it is

necessary to find replacement strategies for rule replacement. It is possible for each

classification rule class to use different rule replacement policies to implement rule

 121

replacement according to individual data characteristics. In the field of operating

system, the LRU policy is often used as a page-replacement algorithm and is

considered to be quite good. In this paper, a least recently used (LRU) replacement

policy is used in each classification rule class. LRU replacement associates with each

rule the time of that rule’s last use. When a rule must be replaced, LRU chooses that

rule that has not been matched for the longest period of time. This strategy is the

optimal rule-replacement policy looking backward in time, rather than forward.

For the rule contradiction checking issue, two classification rules with the same

alert sequence may be flagged in different classification labels (e.g., normal or

intrusion) in two consecutive batch interactions. For example, in one time interval,

alert sequence ABC are flagged as “normal”, but ABC are flagged as “Suspicious” in

the next time interval. In this case, system will interact with experts to make sure the

flag of this alert sequence instead of simple and fixed replacement.

7.3 Experiments

In order to evaluate the efficiency of the obtained behavior pattern, we set up an

experimental environment equipped with one server and eight hosts to simulate real

network.

7.3.1 The Design of The Experimental Environment

The knowledge-based architecture of collaborative discovering of suspicious

network behaviors is implemented as shown in Figure 7.7. All the related tools

described above are one server, which plays the role of IDS Alert Analysis Server,

including IDS center for alert warehouse, web-based analysis console and alert

analysis console. Besides, eight hosts all play the role of IDS sensors to trigger alerts

 122

as our data sources. The system and network profiles of these sensors are shown in

Figure 7.4.

Figure 7.4 Decision Support System Prototype in Experiments

We have conceptualized alerts according to Snort rule set, which is a

network-based IDS whose alerts are triggered by a collection of signature-based rules.

Each Snort rule is composed of a Snort identification number, a message that is

included in the alert when the rule is triggered, an attack signature, and references to

sources of information about the attack. Each alert is provided with an identifier, time

and data, sensor identifier, triggered signature, IP and TCP headers and payload.

These alerts will be stored in the relational database as our alert warehouse. Alerts in

one period of time, e.g., 24 hours, are collected by IDS center as data source in this

experiment. For easy reading, we replace the original alert signature names with

 123

different capital letters.

The training data set collection in our experiment is shown as follows. The total

number of IDS alerts is 164 collected in a day and the Short_Time_Window is set to 1

hour. The total number of alert sequence transactions is 295.

Total number
of IDS alerts

Batch_Time_
Window

Short_Time_
Window

Total number of alert
sequence transactions

1640 24 hours 1 hour 295

7.3.2 Experimental Results

To verify the feasibility of our decision support system, we use the data set to

execute our alert classification model. We construct an alert classification model in

the training stage, and use this alert classification model for on-line monitoring. After

filtering false alerts with normal behavior classification rule class, the result of alert

reduction is shown in Figure 7.5. The classification rules of normal behavior

classification rule class which are used in this experiment would change their time

flags for rule refining.

Alert Reduction

0
20
40
60
80
100

1 2 3 4 5 6 7 8

Sensor

P
e
r
c
e
n
t
a
g
e

Alert Reduction Rate

Figure 7.5 Alert Reduction Rate of Normal Behavior Classification Model

 124

 The filtered alert sequences are used to discover suspicious/intrusion alert

sequences. We used pre-defined suspicious alert classification rule class and intrusion

alert classification rule class to discover useful alert patterns for experts. Suspicious

alert classification rule class and intrusion alert classification rule class are used to

verify the on-line alert sequences. The result of suspicious/intrusion alert sequence

verification is shown in Figure 7.6. 29% of candidate IDS alert sequences are known

alert sequences, 42% of candidate IDS alert sequences are suspicious alert sequences,

and 29% of candidate IDS alert sequences are unknown alert sequences. The alert

sequences triggered as suspicious alert sequences or intrusion alert sequences would

be highlighted to notice experts for on-line detection, and these used alert

classification rules would change their time flags for rule refining. The part of

unknown alert sequences would be forward to alert warehouse as the data sources of

next batch model construction in the training stage.

The Classificaiton of Suspicious Flags in Group 2.

29%

42%

29%

Intrusion alert sequences

Suspicious aler sequences

Unknown

Figure 7.6 Observations of Percentages of Different Suspicious Flags

 125

In this chapter, we proposed a decision support system for constructing an alert

classification model, which consists of three phases: alert preprocessing phase, model

constructing phase and rule refining phase. In alert preprocessing phase, raw IDS

alerts are collected into alert warehouse and will be transformed into alert transactions.

Three kinds of alert classification rule classes including normal behavior classification

rule class, intrusion behavior classification rule class and suspicious behavior

classification rule class, are constructed in model constructing phase to filter normal

alert patterns and then discover each known or novel alert pattern based upon the

remaining alert transactions. Each classification rule class consists of fixed number of

classification rules. An AprioriAll-like sequential pattern mining algorithm is

proposed to construct classification rules of normal behavior classification rule class.

A set of intrusion tools to collect data sources of suspicious/intrusion behavior

classification rule class construction in the simulated attacking network environment.

Our experiment demonstrates that the accuracy of our decision support system is well.

This decision support system will construct a classification model for on-line

monitoring. The alert classification model is useful for experts to discover suspicious

or intrusion patterns quickly and precisely, and lightens the load of on-line alert

analysis for experts obviously. The current implementation of our research constructs

rule classes in the alert classification model. In the near future, more types of

classification rule classes will be created for enhancing the performance of detection.

 126

Chapter 8

Conclusion and Future Work

 In this dissertation, we proposed new knowledge acquisition methodologies,

Dynamic EMCUD which is an iteratively knowledge acquisition method to monitor

the inference behaviors of weak embedded rules, including variant knowledge

acquisition (VODKA), and evolutional knowledge acquisition (TEA) for dynamic

knowledge by collecting these sufficient contexts to notify experts the occurrence of

evolved objects. VODKA is proposed to iteratively discover the variants knowledge

through observing the frequent inference behaviors of those weak embedded rules

with marginally acceptable CF to assist domain experts to single out ambiguous

objects. Three recommendations, including no change, changing the data type of an

attribute, or adding a new attribute, are proposed to help them easily discover the new

variants according to the learned large itemsets.

Moreover, TEA is also proposed to learn the evolutional knowledge which is

evolved with the changing environment by adjusting the AOT value over times based

upon the trend of behaviors. Two methods are applied to trace the evolutional

knowledge and calculate the suitable CF value of each discovered rules: entropy

based calculating and gracefully accumulating, to make the knowledge more adaptive

for the current environment. Based upon the acquisition table increment of variant

knowledge generated by VODKA and AOT increment of evolutional knowledge

 127

generated by TEA, we proposed Grid Merging algorithm to integrate the acquisition

table increment into the main acquisition table for adapting the weak embedded rules

to archive the knowledge evolution.

Moreover, a collaborative knowledge acquisition framework is also proposed to

integrate the new knowledge generated from local KBSs and help experts easily

discover the new evolved knowledge which are unseen in every local KBSs based

upon the Dynamic EMCUD and the designed context which is designed to describe

the static profile and dynamic behaviors of individual and environment. Consequently,

six collaborative heuristics are proposed to help experts be aware of the occurrence of

dynamic knowledge with the changing environment as time goes on.

Two applications including in worms and DDoS detection, and alert

classification model construction are used to evaluate the performance of Dynamic

EMCUD. Since the knowledge base can be evolved as time goes on, the evolutional

knowledge base can become huge and hard to maintain. We proposed RP-MES to

solve the issues by designing a new approach combining both rule base partitioning

and meta-rule construction mechanisms. As for rule base partitioning, RP-MES not

only takes care of the structural relatedness between rules, but also considers the

semantic relatedness of rules in the rule base. Based upon the clustering result, we can

easily extract the meta rule of each rule cluster using meta-Apriori algorithm for

improve the usage of knowledge base system. A Worm Immune Service Expert system

(WISE) based upon DRAMA has been implemented and deployed in an experimental

environment to evaluate the performance of our collaborative knowledge acquisition

methodologies. The results show that new variants can be discovered after the

 128

occurrence of a series of worm instances.

In the near future, we will improve WISE system with a collaborative knowledge

acquisition ability to evaluate our idea by developing compatible pre-specified

ontology of worms related domain knowledge. More robust knowledge acquisition

methods for acquiring dynamic knowledge will be designed. More applications such

as intrusion detection, ubiquitous learning will be also considered to evaluate the

performance of collaborative knowledge acquisition methodologies.

 129

Reference

[1] R. Agrawal, T. Imielinksi, and A. Swami, “Mining association rules between sets

of items in large database,” in Proceedings of the ACM SIGMOD Conference,

1993.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in

Proceedings of International Conference on Very Large Data Bases (VLDB’94),

pp. 487-499, 1994.

[3] R. Aggrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of

International Conference on Data Engineering (ICDE), pp. 3-14, 1996.

[4] A. Alharby and H. Imai, “IDS false alarm reduction using continuous and

discontinuous patterns,” in Proceedings of ACNS 2005, pp.192-205, 2005.

[5] J. Barlow and W. Thrower, “TFN2K – An analysis by Jason Barlow and Woody

Thrower.” http://www2.axent.com/swat/swat.htm, 2001.

[6] Basic Analysis and Security Engine (BASE), http://secureideas.sourceforge.net/,

2005.

[7] K. Boegl. Design and implementation of a web-based knowledge acquisition

toolkit for medical expert consultation systems. Doctorial thesis, Technical

University of Vienna, Austria, 1997.

[8] J. H. Boose, “Personal construct theory and the transfer of human expertise,” in

Proceedings of AAAI Conference, California,1984.

[9] J, H. Boose, “A knowledge acquisition program for expert systems based on

personal construct psychology,” International Journal of Man-Machine Studies,

Vol. 23, 1985.

[10] J. H. Boose and J. M. Bradshaw, “NeoETS: Capturing expert system knowledge

in hierarchical rating grids,” IEEE Expert System in Government Symposium,

1986.

[11] J. H. Boose and J. M. Bradshaw, “Expertise transfer and complex problems:

using AQUINAS as a knowledge-acquisition workbench for knowledge-based

systems,” International Journal of Man-Machine Studies, Vol. 26, No. 1, pp. 3-28,

1987.

[12] T. Bridis, “Powerful attack cripples majority of key Internet computers,” Yahoo!

News, Oct. 22, 2002.

 130

[13] J. B. D. Cabreraa, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichandran,

and R. K. Mehra, “Proactive detection of distributed denial of service attacks

using MIB traffic variables - A feasibility study,” in Proceedings of the 7th

IFIP/IEEE International Symposium on Integrated Network Management, pp.

609-622, 2001.

[14] O. Cairo, “KAMET: A comprehensive methodology for knowledge acquisition

from multiple knowledge sources,” Expert Systems with Applications, Vol. 14, No.

1, pp. 1-16, 1998.

[15] J. J. Castro-Schez, N. R. Jennings, X. D. Luo, and N. R. Shadbolt, “Acquiring

domain knowledge for negotiating agents: a case of study,” International Journal

of Human-Computer Studies, Vol.64, pp. 3-31, 2004.

[16] CERT Coordination Center. “DDoS attacks,” http://www.cert.org, 2003.

[17] K. C. Chang, “Defending against flooding-based distributed denial of service

attacks: A tutorial,” IEEE Communications Magazine, Vol. 40, Iss. 10, 2002.

[18] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A scalable continuous

query system for internet databases,” in Proceedings of ACM SIGMOD 2000,

pp.379-390, 2000.

[19] CORETECH Inc., DRAMA Expert System,

http://www.coretech.com.tw/c_DRAMA.htm, 2006.

[20] P. J. Criscuolo, “Distributed denial of service-Trin00, Tribe Flood Network, Tribe

Flood Network 2000, and Stacheldraht,” Technical Report CIAC-2319,

Department of Energy - Computer Incident Advisory Capability, 2000.

[21] P. Crowther and J. Hartnett, “Using repertory grids for knowledge acquisition for

spatial expert system,” in Proceedings of Australia and New Zealand Conference

on Intelligent Information Systems, Adelaide, SA, Australia, Nov. 18-20, pp.14-17.

1996.

[22] D. Dittrich, (2000) “DDoS: Is there really a threat?” in Proceedings of USENIX

Security Symposium, Aug. 16, 2000.

[23] A. K. Dixit and R. S. Pindyck, Investment under uncertainty, Princeton

University Press, 1994.

[24] Dragon Sensor, Enterasys Networks, Inc. http://www.enterasys.com, 2004.

[25] E. A. Feigenbaum, Knowledge Engineer: The applied Side of Artificial

Intelligence, Stanford, California: Stanford University, 1980.

[26] B. R. Gaines, “An overview of knowledge-acquisition and transfer,”

 131

International Journal of Man-Machine Studies, Vol. 26, pp. 453-472, 1987.

[27] L. Garber, “Denial-of-Service attacks rip the Internet,” IEEE Computer, Vol. 33,

Iss. 4, pp.12-17, 2000.

[28] A. Ginsberg, S. M. Weiss, and P. Politakis, “Automatic knowledge base

refinement for classification systems,” Artificial Intelligence, Vol. 35, No. 2, pp.

197-226,1988.

[29] R. P. Goldman, W. Heimerdinger, S. A. Harp, C. W. Geib, V. Thomas, and R. L.

Carter, “Information modeling for intrusion report aggregation,” in Proceedings of

DARPA Information Survivability Conference and Exposition II, pp. 115-137,

2001.

[30] S. T. Gruber, The acquisition of strategic knowledge, Academic Press Inc, 1988.

[31] S. Hirasawa and W. W. Chu, “Knowledge acquisition from documents with both

fixed and free formats,” in Proceedings of IEEE Internatoinal Conference on

Systems, Man and Cybernetics 2003, Vol. 5 , pp. 4694 -4699, 2003.

[32] W. Y. Hsin, S. S. Tseng, S. C. Lin, “A study of alert-based collaborative defense,”

in Proceedings of The 8th International Symposium on Parallel Architectures,

Algorithms & Networks (ISPAN 2005), Las Vegas, Nevada, U.S.A., pp. 148-153,

2005.

[33] G. J. Hwang, “Knowledge acquisition for fuzzy expert systems,” International

Journal of Intelligent Systems, Vol. 10, 541-560, 1995.

[34] G. J. Hwang and S. S. Tseng, ”EMCUD: A knowledge acquisition method which

captures embedded meanings under uncertainty,” International Journal of

Man-Machine Studies, Vol. 33, 431-451, 1990.

[35] G. J. Hwang and Tseng, “On building a medical diagnostic system of acute

exanthema,” Journal of Chinese Institute of Engineers, Vol. 14, No. 2, 185-195,

1991.

[36] R. J. K. Jacob and J. N. Froscher, “A software engineering methodology for

rule-based systems,” IEEE Transactions on Knowledge and Data Engineering,

Vol. 2, 1990, pp. 173-189, 1990.

[37] K. Julisch and M. Dacier, “Mining intrusion detection alarms for actionable

knowledge, in Proceedings of the 8th ACM International Conference on

Knowledge Discovery and Data Mining, pp. 366-375, 2002.

[38] B. Kang, Multiple classification ripple down rules. Ph.D Dissertation, University

of New South Wales, 1996.

 132

[39] G. A. Kelly, The psychology of personal constructs, Norton, New York, 1955.

[40] D. M. Kienzle and M. C. Elder, ”Recent worms: A survey and trends,” in

Proceedings of WORM’03, Washington DC, U.S.A, 2003.

[41] G. Kolousek, “The system architecture of an integrated medical consultation

system and its implementation based on fuzzy technology,” Doctoral Dissertation,

Technical University of Vienna, Austria, 1997.

[42] T. T. Kuo, S. S. Tseng, and Y. T. Lin, “Ontology-based knowledge fusion

framework using graph partitioning,” in Proceeding of IEA/AIE’2003, pp. 11-20,

2003.

[43] O. Lee and P. Gray, “Knowledge base clustering for KBS maintenance,” Journal

of Software Maintenance: Research and Practice, Vol. 10, pp. 395-414, 1998.

[44] H. Leitich, H. P. Kiener, G. Kolarz, C. Schuh, W. Graninger, and K. P.Adlassnig,

“A prospective evaluation of the medical consultation system

CADIAG-II/RHEUMA in a rheumatological outpatient clinic,” Methods Inform

Med, Vol. 40, pp. 213-220, 2001.

[45] S. C. Lin, S. S. Tseng, and Y. T. Lin, “A new mechanism of mining network

behavior,” Lecture Notes in Artificial Intelligence 2336, pp. 218-223, 2002.

[46] Y. T. Lin, S. S. Tseng, and C. F. Tsai, “Design and implementation of new

object-oriented rule base management system,” Expert Systems with Applications,

Vol. 25, pp. 369-385, 2003.

[47] S. R. Madden, M. A. Shah, and J. M., “Hellerstein continuously adaptive

continuous queries over streams,” in Proceedings of ACM SIGMOD 2002, pp.

49-60, 2002.

[48] K. L. Mcgraw and K. Harbison-Briggs, Knowledge Acquisition: Principles and

Guidelines, Prentice-Hill International Editions, pp. 1-27, 1989.

[49] G. Miller, “The magical number seven, plus or minus two: some limits on our

capacity for processing information,” The Psychological Review, Vol. 63, pp.

81-97, 1956.

[50] J. Mirkovic, J. Martin, and P. Reiher, “A taxonomy of DDoS attacks and DDoS

defense mechanisms,” TR. 020018, Computer Science Department, University of

California, Los Angeles, 2002.

[51] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet quarantine:

requirements for containing self-propagating code,” in Proceedings of INFOCOM

2003, Mar. 30 - Apr. 3, San Francisco, U.S.A., 2003.

 133

[52] B. Morin and H. Debar, “Correlation of intrusion symptoms: an application of

chronicles,” in Proceedings of the 6th symposium on Recent Advances in Intrusion

Detection (RAID 2003), pp. 92-112, 2003.

[53] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang, “Exploratory mining and

pruning optimizations of constrained associations rules,” in Proceedings of

International Conference on Management of Data (SIGMOD’98), pp. 13-24,

1998.

[54] S. Nikiforou and E. Fink, “Knowledge acquisition for clinical-trial selection,” in

Proceedings of IEEE Int’l Conf. on Systems, Man and Cybernetics 2002, Vol. 1,

pp. 66 -71, 2002.

[55] P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios through

correlation of intrusion alerts,” in Proceedings of 9th ACM Conference on

Computer and Communications Security, pp.245-154, 2002.

[56] P. Ning, D. Xu, C. G. Healey, and R. A. St. Amant, “Building attack scenarios

through integration of complementary alert correlation methods,” in Proceedings

of the 11th Annual Network and Distributed System Security Symposium

(NDSS'04), 2004.

[57] D. Pan, Q. L. Zheng, A. Zeng, and J. S. Hu, ”A novel self-optimizing approach

for knowledge acquisition,” IEEE Transactions on Systems, Man, and Cybernetics,

Part A, Vol. 32, No. 4, 505-514, 2002.

[58] K. Park and H. Lee, “On the effectiveness of route-based packet filtering for

distributed DoS attack prevention in power-law Internets,” in Proceedings of the

2001 conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, pp.15-26. 2001.

[59] P. Politakis and S. M. Weiss, “Using empirical analysis to refine expert system

knowledge bases,” Artificial Intelligence, Vol. 22, pp. 673-680, 1984.

[60] P. A. Porras, M. W. Fong, and A. Valdes, “A mission-impact-based approach to

INFOSEC alarm correlation,” in Proceedings Recent Advances in Intrusion

Detection, pp.95-114, 2002.

[61] A. Rafea and H. Hassen, “Automatic knowledge acquisition tool for irrigation

and fertilization expert systems,” Expert Systems with Applications, Vol. 24, Iss. 1,

Jan. 2003, pp. 49-57, 2003.

[62] T. Raz and N. Botten, “The knowledge base partitioning problem: Mathematical

formulation and heuristic clustering,” Data and Knowledge Engineering, Vol. 8,

 134

pp. 329-337, 1998.

[63] M. Sabhnani and G. Serpen, G., “Application of machine learning algorithms to

KDD intrusion detection dataset within misuse detection,” in Proceedings of the

International Conference on Machine Learning; Models, Technologies and

Applications (MLMTA'03), pp. 209-215, 2003.

[64] M. L. G.. Shaw and B. R. Gaines, “KITTEN: Knowledge initiation and transfer

tools for experts and novices,” International Journal of Man-Machine Studies, Vol.

27, pp. 251-280, 1987.

[65] M. L. G.. Shaw and B. R. Gaines, “Web Grid: Knowledge modeling and

inference through the world wide web,” in Proceedings of tenth knowledge

acquisition workshop, pp. 65-1-65-14, 1996.

[66] M. S. Shin, E. H. Kim, and K. H. Ryu, “False alarm classification model for

network-based intrusion detection system,” in Proceedings of IDEAL 2004,

pp.259-265, 2004.

[67] E. H. Shortliffe and B. G. Buchanan, “A model of inexact reasoning in

medicine,” Math. Bioscience, Vol. 23, pp. 351-379, 1975.

[68] Snort, Intrusion Detection/Prevention System, http://www.snort.org, 2006.

[69] R. Srikant and R. Aggrawal, “Mining sequential patterns: generalizations and

performance improvements,” in Proceedings of the Fifth International Conference

on Extending Database Technology,1996.

[70] V. Stavridou, B. Dutertre, R. A. Riemenschneider, and H. Sa, “Intrusion tolerant

software architectures,” in Proceedings. of DARPA Information Survivability

Conference and Exposition (DISCEX II'01), Vol. 2, Anaheim, California, U.S.A.,

2001.

[71] J. M. Su, S. S. Tseng, W. Wang, J. F. Weng, D. J. T. Yang, and W. N. Tsai,

“Learning portfolio analysis and mining for SCORM compliant environment,”

Journal of Educational Technology & Society (ETS), Vol. 9, Iss. 1, pp. 262-275,

2006.

[72] Symantec Corp., “Symantec Internet Security Threat Report: Trends for July

05-Decamber 05,” http://www.symantec.com/index.htm, 2005.

[73] Tenable Network SecurityTM, 2005. Nessus Open Source Vulnerability Scanner

Project. http://www.nessus.org/.

[74] Trend Micro Co., Trend Mirco Network Viruswall,

http://www.trendmicro.com/tw/products/ network/overview.htm, 2005.

 135

[75] J. J. P. Tsai and A. Liu, “Knowledge-based software architectures: acquisition,

specification, and verification,” IEEE Transactions on Knowledge and Data

Engineering, Vol. 11, Iss. 1, pp. 187 -201, 1999.

[76] S. S. Tseng and S. C. Lin “VODKA: Variant objects discovering knowledge

acquisition,” submitted to International Journal of Human Computer Studies,

2006. (under revision)

[77] S. Tsumoto and S. Hirano, “Visualization of rule’s similarity using

multidimensional scaling,” in Proceedings of the Third IEEE International

Conference on Data Mining (ICDM’03), 2003.

[78] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Proceedings of the

4th International Symposium on Recent Advances in Intrusion Detection, pp.54-68,

2001.

[79] G. Webb and J. Wells, “An experimental evaluation of integrating machine

learning with knowledge acquisition,” Machine Learning, Vol. 35, No. 1, pp. 5-23,

1999.

[80] N. Weaver, V. Paxson, S. Staniford, R. Cunningham, and U. Maulik, “A

taxonomy of computer worms,” in Proceedings of WORM’03, Washington DC,

U.S.A, 2003.

[81] B. Wielinga, A. Schreiber, and J. Breuker, “KADS: A modeling approach to

knowledge engineering,” Journal of Knowledge Acquisition, Vol. 4, No. 1, pp.

5-53, 1992.

[82] J. Xu and W. Lee, “Sustaining availability of web services under distributed

denial of service attacks.” IEEE Transactions on Computers, Vol. 52, Iss. 2, pp.

195-208, 2003.

[83] H. M. Yan and Y. T. Jiang, “Internet-based knowledge acquisition and

management method to build large-scale medical expert systems,” in Proceedings

of the Second Joint Conference on EMBS/BMES, Vol. 3, pp. 1885 -1886, 2002.

 136

Appendix A

Introduction of DDoS

(1) DDoS Basic

Table A.1 The DDoS Attacks Developed from 1998 to 2002

The DDoS appeared in June of 1998 firstly means that many attackers launch

malicious traffic to the same victims together and make the victims too busy to

respond all the traffic including legitimate requests. Several different DDoS attacks

which were developed [13][12][5][20][22] from 1998 to 2002 can be divided into

several categories including UDP flood, ICMP flood, TCP flood, and Smurf as shown

in Table A.1, so the common characteristics of each category of DDoS attacks could

be easily observed and extracted. For example, the TFN2K, discovered in November

1999, is a kind of DDoS attacking tools. It can launch UDP flood, ICMP flood, Smurf,

or TCP SYN flood attacking method to attack victims in one time. All of the observed

knowledge can be represented as a natural rule format and stored into a knowledge

base.

 137

ATTACKER

Agent Agent Agent Agent Agent Agent Agent Agent

Handler Handler Handler

Victim

Controlling trafficAttacking traffic

Figure A.1 The General Topology of DDoS Attacks

The general topology of DDoS attack shown in Figure A.1 could be divided into

control stage and attack stage. In control stage, a scan is performed in large ranges of

network to find the list of vulnerable hosts. Generally speaking, the vulnerable hosts

consist of handlers and agents, where the handlers (the first level vulnerable hosts) are

controlled by attackers and agents (the second level vulnerable hosts) are also

controlled by attackers through handlers. Most of the controlling traffic, the traffic of

communication in control stage, is signal direction between attacker and handler but

is bi-direction between handlers and agents. The two level topology results in the

locations of attackers can be hidden. After the control stage, the list of vulnerable

hosts is then used to launch the distributed attacking traffic in attack stage. The

attacking traffic including UDP flood, ICMP flood, Smurf, TCP SYN, TCP ACK, TCP

RST, and TCP SYN/ACK as shown in Table A.1 could overwhelm the victim.

(2) DDoS Intrusion Tolerance

Intrusion tolerance is the ability of a system to continue providing (possibly

degraded but) adequate services after a penetration (Stavridou, 2001). As mentioned

 138

above, it is very hard to detect and prevent the DDoS attacks. Therefore, the intrusion

tolerance of DDoS attacks is an important issue to mitigate the damage during DDoS

attacks for providing the critical services continuously on Internet. Park and Lee [58]

suggested a method to install packet filters at different autonomous system on the

Internet to filter out attacking traffic traveling between them. The method is very

effective but not practical to defend DDoS attacks because of requiring the

cooperation of thousands of autonomous systems on Internet.

Chang [CHA01] also introduced the concept of Internet firewall and four

detecting and filtering approaches consisting of ubiquitous ingress packet filtering,

router-based packet filtering, local attack detecting, and distributed attack detecting

for defending flooding based DDoS attacks. He also indicated that more effective

detect-and-filter approaches, such as distributed attack detecting, should be developed

for DDoS intrusion tolerance. However, all of them lack a systematic approach to

integrate the knowledge of DDoS intrusion tolerance.

Xu and Lee [82] proposed a DDoS intrusion tolerance system to sustain the

availability of web service under DDoS attacks. The main idea is to isolate and

protect legitimate traffic from huge volumes of DDoS traffic when an attack occurs.

Unfortunately, it only aims on protecting web service instead of protecting the

network.

 139

Appendix B

The Example of Knowledge Class in DDoS Intrusion Tolerance

(1) System State Diagram

In the traditional systems, NORMAL and DEAD states are usually enough to

describe the system status, because the time is too short to respond the DDoS attacks

for the administrator before the victim system moving to DEAD state. Therefore, the

behaviors of the most traditional information systems will be NORMAL-DEAD

pattern when they are attacked. By applying the various filtering polices for DDoS

attacks according to the users’ behaviors, the survival time of the system can then be

extended and the SURVIVAL state is further added to represent such situation. With

the heuristic of setting more restricted filtering policies, the system will tend to move

SURVIVAL state quickly backed to NORMAL state. On the other hand, the behaviors

of the DDoS intrusion tolerance system will be expected to be NORMAL-

SURVIVAL-NORMAL pattern during DDoS attacks.

Figure B.1 System State Diagram

To describe the relationships between states of the system conceptually, the

system state diagram including NORMAL, SURVIVAL, and DEAD states are

proposed as shown in Figure B.1. A system capability and the bandwidth utilization

 140

could be computed by the CPU load, the memory usage and the behaviors of access

control list (ACL) to determine the transition of the system state diagram according to

the new policy setting event, the attacking traffic coming event, and the system

overloading event.

(2) Role State Diagram

We assume the behaviors of normal users may not be changed dramatically in a

short period of time. To represent the behaviors of each user, a role state diagram

based upon an efficient ACL including white list and black list policy is proposed. We

assume the DDoS attackers may frequently request service during the abnormal

network status instead of normal ones. To monitor users’ behaviors, the historical

behaviors of the users based upon the current network status in a short time slice are

proposed to distinguish the abnormal users from normal users efficiently, where each

historical behavior is represented as a sequence of current network status.

Figure B.2 Role State Diagram

According to the white list and black list shown in Figure B.2, all users could be

categorized into TRUSTED, UNTRUSTED and CANDIDATE states. The N and A

indicate that the current network status is normal and abnormal respectively, and the

user in CANDIDATE or SUSPECTED state is moved to CANDIDATE state when

current network status is N; otherwise, he/she is moved to SUSPECTED state. Then,

the M(q) and M(q)’ indicate that the historical behavior of the user q, which is

 141

acquired from Users’ Log DB, is normal and abnormal respectively. The user in

CANDIDATE state will be moved into TRUSTED state if he/she has accumulated

sufficient normal behaviors; it means that the historical behavior of the user q should

be normal, M(q). On the other hand, the user in SUSPECTED state will be switched

to UNTRUSTED state if he/she has accumulated sufficient abnormal behaviors,

M(q)’. The users in TRUSTED and UNTRUSTED states will be moved to

CANDIDATE and SUSPECTED states respectively if their historical behaviors match

the corresponding constraints. With the role state diagram, the filtering policies could

be adaptively generated based upon dynamically changing network environment.

(3) Examples of Detailed Rules Obtained by The Characteristic Trainer

According to the Characteristic Training algorithm shown in Algorithm 6.1, the

following six examples show the obtained partial characteristics/features and the

corresponding detection rules.

n Example B.1: The ratios of untrusted IP addresses and ports

Since the attacking traffic of DDoS is launched from the compromised hosts

which disperse on Internet, most of the attacking traffic comes from the untrusted IP

addresses. Also, some DDoS attacking tools may generate the destination port of

attack packets randomly. Therefore, we select the ratios of traffic from untrusted IP

addresses and ports as two important characteristics in Step 1 to detect the occurrence

of DDoS attacking traffic, set dangerous ratio δ = 50 by comparing the list of ports

and ACL defined by ISPs in Step 2, and the action “Trigger Filter KC” for these two

detecting features is chosen in Step 3. Finally, the rule “IF (the ratio of untrusted IP

addresses > 50) OR (the ratio to untrusted ports > 50) Then (Spoofing DDoS

 142

attacking) AND (Trigger Filter KC)” is generated to discover DDoS attacks.

n Example B.2: Number of flows from the same source increase rapidly

Generally speaking, the number of flows from one source normally does not

increase dramatically if the attacks without spoofing did not occur. Hence we select

the number of flows from one specific source as a characteristic of suspected user to

detect the DDoS attacks in Step 1. Next, the rapidly increasing rate δ = 50 in Step 2.

In Step 4, the rule “IF (Number of flows from the same source > 50) Then (Same

source DDoS attacking) AND (Trigger Filter KC)” is generated to discover DDoS

attacks.

n Example B.3: Number of flows in the state of “SYN_RECEIVED”

Resource consumption attacks often use the SYN flood technique (Criscuolo,

2000), such as TFN, TFN2K, stacheldracht and so on, to overwhelm the victim, where

client sends a fake packet to Server, and Server accepts this SYN packet, responds the

SYN/ACK packet to the fake address, and waits for the response of SYN/ACK packet.

But the response will never arrive due to the faked source address. Therefore, the

number of flows in the state of SYN_RECEIVED is first selected to detect the DDoS

attacks in Step 1 and the δ is set to 1000 in Step 2 in this example. Finally, the rule

such as “IF (#SYN_RECIEIVED > 1000) Then (SYN flooding DDoS attacking) AND

(Trigger Filter KC)” is generated to discover DDoS attacks.

n Example B.4: Percentages of UDP and ICMP packets

The percentages of UDP and ICMP packets usually representing the error control

messages during communications are always small in normal traffic and they will

 143

become large if the bandwidth consumption DDoS attack, the UDP or ICMP flood,

could be launched to overwhelm victims. Since the percentages of UDP and ICMP

packets are various for different autonomous systems, the environment-dependent

characteristics on monitoring the huge traffic of UDP and ICMP packets are required

and selected to detect the DDoS attacks in Step 1. The δ is then set to be 30 in Step 2.

Finally, the corresponding detection rules such as “IF (P(UDP) > 30) OR (P(ICMP) >

30) Then (Flooding-based DDoS attacking) AND (Trigger Filter KC)” are generated

to discover DDoS attacks.

n Example B.5: Oversize of UDP packets and ICMP packets

As mentioned above, the UDP and ICMP packets are usually the error control

messages during communication, the encryption of payload in packet for DDoS tools

is usually used for communication between attackers, handlers, and agents in

controlling traffic, since the controlling traffic stores the source addresses of attackers,

handlers and victims and attacks do not want to be revealed. Besides, the accounts,

the passwords, and the commands to control handlers and agents from attackers are

also necessarily encrypted. Since encrypting the information may enlarge the size of

UDP and ICMP packets, the ratio of oversize UDP and ICMP packets might be

selected as good features in Step 1 and set threshold value = 100. Finally, the

corresponding prediction rules such as “IF (#Oversize > 100) Then (Controlling

traffic attacking) AND (Trigger DDoS Prediction KC)” are generated to predict the

DDoS attacks.

n Example B.6: Percentage of BASE64 encoding packets

Once the communication packets are encrypted, the resulting special characters

 144

should be encoded to avoid the occurrence of errors in communication during DDoS

attacks. BASE64 encoding is very popular in solving this problem, but the payload of

packet contains only alphanumeric character and 0x41(‘A’) always appears at the end

of the BASE64 encoding packet in the TFN2K attack. Both may be selected as useful

features to predict the occurrence of DDoS attacks in Step 1. Finally, the predicting

rule “IF (AlphaBeta = Yes) AND (Tailing = ‘A’) Then (TFK2K Communication traffic

attacking) AND (Trigger Filter KC)” is generated.

The following table shows the summarization of Example B.1 to Example B.6.

Feature Name (f) Operator (θ) Threshold (δ) Actions (A)
ratio of untrusted IP > 50 (Spoofing DDoS attacking) AND (Trigger Filter KC)
ratio of untrusted ports > 50 (Spoofing DDoS attacking) AND (Trigger Filter KC)
ratio of same IP > 50 (Same IP DDoS attacking) AND (Trigger Filter KC)
#SYN_RECIEIVED > 1000 (SYN flooding attacking) AND (Trigger Filter KC)
UDP percentage > 30 (Flooding-based attacking) AND (Trigger Filter KC)
#Oversize packets > 100 (Controlling traffic) AND (Trigger Prediction KC)
AlphaBeta = Yes (Communication traffic) AND (Trigger Filter KC)
Packet Tailing = ‘A’ (Communication traffic) AND (Trigger Filter KC)

(4) An Example of Knowledge Classes

The following shows a simple example of KC to defend the TFN2K attack,

where the Profile KC includes system state transition rules and user state transition

rules, the Detection KC includes attack detecting and attack predicting sub-KCs, the

Detection KC includes rules focusing on detecting TFN2K attack, the Filter KC lists

the heuristics of policy learning proposed in this paper, and the Evaluation KC

illustrates the evaluating rules including system performance evaluating rules and the

network performance evaluating rules.

n A Partial Profile KC

System state transition rules
IF Ss = NORMAL AND Traffic = Normal Then Ss = NORMAL //Ss is system state
IF Ss = NORMAL AND Traffic = Attack Then Ss = SURVIVAL
IF Ss = SURVIVAL AND Policy_Set = Enable Then Ss = NORMAL
IF Ss = SURVIVAL AND System = Overload Then Ss = DEAD
User state transition rules
IF Us = TRUSTED AND Uhb = M’ Then Us = CANDIDATE //Us is user state
IF Us = CANDIDATE AND Uhb = M Then Us = TRUSTED //Uhb is historical user behavior
IF Us = CANDIDATE AND Ncb = N Then Us = CANDIDATE //Ncb is current user behavior

 145

IF Us = CANDIDATE AND Ncb = A Then Us = SUSPECTED
IF Us = SUSPECTED AND Ncb = N Then Us = CANDIDATE
IF Us = SUSPECTED AND Ncb = A Then Us = SUSPECTED
IF Us = SUSPECTED AND Uhb = M’ Then Us = UNTRUSTED
IF Us = UNTRUSTED AND Uhb = M Then Us = SUSPECTED

n A Partial Detection KC

Attack detecting sub-KC
IF P(Protocol) > δProtocol Then Flooding-based DDoS attacking AND Trigger Filter KC

// P(Protocol) is the percentage of protocol
IF IR(U) > 50% Then Same source DDoS attacking AND Trigger Filter KC

//IR(U) is the increase rate of the user
IF (Untrusted > 50%) AND (#Request > 200) Then Spoofing DDoS attacking AND Trigger Filter KC

// Untrusted is the rate of users in UNTRUSTED
IF #SYN_RECEIVED > δSYN Then SYN-flooding DDoS attacking AND Trigger Filter KC
Attack predicting sub-KC
IF AlphaBeta = Yes AND Tailing = ‘A’ Then TFK2K Communication traffic attacking AND Trigger Filter KC

//BASE64 encoding
IF #OverSize > 10 Then Controlling traffic attacking AND Trigger DDoS Prediction KC //Oversize packet

n A Partial Filter KC

Acquire Evaluation KC
IF Ncb = N AND Us = CANDIDATE Then S(U) = S(U) + 1 //S(U) is the historical behavior score of user
IF Ncb = A AND Us = SUSPECTED Then S(U) = S(U) -1
IF Ncb = N AND Ncl(U) = N AND Us = TRUSTED Then S(U) = S(U) + 1 //Ncl is the last network state
IF Ncb = A AND Ncl(U) = A AND Us = TRUSTED Then S(U) = S(U) – 1
IF Ncb = N AND Ncl(U) = N AND Us = UNTRUSTED Then S(U) = S(U) + 1
IF Ncb = A AND Ncl(U) = A AND Us = UNTRUSTED Then S(U) = S(U) - 1
IF S(U) ≥ Γ Then Uhb = M
IF Us = TRUSTED Then Set U in WL
IF S(U) ≤ -Γ Then Uhb = M’
IF Us = UNTRUSTED Then Put U in BL
IF U in BL Then (Block U) AND (Policy_Set = Enable)
IF Policy_Set = Enable Then Acquire Evaluation KC
IF U in WL Then Trigger Detection KC

n A Partial Evaluation KC

IF CPU = X AND MEM = Y Then ρ=AVG(X, Y)
IF ρ ≥ 90 Then System = Overload
IF ρ ≤ 45 Then Traffic = Normal AND Policy_Set = Disable
IF (ρ > 45) AND (ρ < 90) Then Traffic = Attack
IF Bw ≥ 50 Then Ncb = A
IF Bw < 50 Then Ncb = N

When the TFN2K traffic is coming, the Filter KC will be firstly triggered to filter

the users in black list. Next, it will acquire the Evaluation KC to obtain the current

network situation and then report abnormal (Ncb = A). In the meanwhile, the Filter KC

will also trigger the Detection KC for detecting the users who pass the Filter KC. If

 146

the attacker lunched “TCP-SYN flood” attack, then the rule “(IF #SYN_RECEIVED >

δSYN Then SYN-flooding DDoS attacking AND Trigger Filter KC)” will be matched;

hence the Filter KC is triggered to adapt the ACL. If one user’s behavior is abnormal

comparing to his/her historical behavior, he/she is gradually moved to black list and

the Policy_Set is enabled. After new policy is set, the Filter KC will trigger

Evaluation KC to determine the performance of the policy. If the system capacity

become high, then system state will be transformed into NORMAL; otherwise, the

policy will be reset if necessary.

 147

Appendix C

The Examples for Rule Base Partitioning

Example C.1: The following five rules for detecting different network anomalies

form a rule base RB; that is, RB = {r1, r2, r3, r4, r5}.

r1 : IF {(protocol = TCP), (protected_network_ direction = A), (source_port > 8080),

(string = NetBus)} THEN {(name = NETBUS)};

r2 : IF {(protocol = TCP), (protected_network_ direction = A), (source_port > 1023,

(string = NetBus2)} THEN {(name = NETBUS2)};

r3 : IF {(protocol = UDP), (protected_network_ direction = A), (destination_ port >

1023), (string = /ce/63/d1/d2/16/e7/13/cf/3c/a5/a5/86)} THEN {(name = DIR)};

r4 : IF {(protocol = UDP), (protected_network_ direction = A), (destination_ port >

1023), (string = /ce/63/d1/d2/16/e7/13/cf/39/a5/a5/86)} THEN {(name =

INFO)};

r5 : IF {(protocol = TCP), (protected_network_ direction = A), (destination_ port =

53), (string = /00/00/ff)} THEN {(name = ANY-TCP)}.

Example C.2: For the rules ri and r2 listed in Example C.1, the set of common

attribute names in both conditions is sharein(ri, rj) = {protocol, protected_

network_direction, source_port, string}, and the set of common attribute name in both

actions is shareout(ri, rj) = {name}, while inout(ri, rj) = φ, and notshared(ri, rj) = φ.

 148

Example C.3: Given the ontology illustrated in Figure C.1, suppose the constant c is

set to 0.9; the semantic relatedness between e1 = (name = NETBUS) and e2 = (name =

NETBUS2) is 0.25.

Figure C.1 Part of The Network Ontology

Example C.4: Given two numerical expressions e1 = (port >1023) and e2 = (port >

8080), and the corresponding intervals i1 = (1023, 65535] and i2 = (8080, 65535], the

semantic relatedness between these two expressions is 0.89.

Example C.5 For two rules, r1 and r2, listed in Example C.1, the rule similarity

between r1 and r2 is R(r1, r2) = 0*0.4 + (1+1+0.89+0)*0.2 + 0.25*0.3 - 0*0.1 = 0.653.

Example C.6 Assume that all rules listed in Example C.1 are partitioned according

to the Rule Base Partitioning Algorithm. The similarity threshold st is set to 1.5.

At first, each rule is assigned to a single rule cluster, i.e., g1 = {r1}, g2 = {r2}, g3

= {r3}, g4 = {r4}, and g5 = {r5}. The CSM for this configuration is shown as below:























=

054.154.145.145.1
54.1086.142.137.1
54.186.1042.137.1
45.142.142.1081.1
45.137.137.181.10

1CSM

 149

.

By reviewing CSM1, n34 has the largest value of the matrix and is larger than st; g3

and g4 are combined to form a new rule cluster. The remaining rule clusters are g1 =

{r1}, g2 = {r2}, g3 = {r3, r4}, and g4 = {r5}. The CSM2 in this iteration is shown as

below:



















=

043.145.145.1
43.1027.120.1
45.127.1081.1
45.120.181.10

2CSM

.

The largest value within the CSM2, n12, can be discovered. Two rule clusters g1 and g2

are thus combined since n12 is larger than 2. After grouping g1 and g2, the CSM3 can

be generated and shown as below:
















=

043.130.1
43.1029.1
30.129.10

3CSM

.

No more grouping is needed because that all entries of CSM3 are less than

similarity threshold st. The process is terminated and output the result, set of the rule

clusters, {{r1, r2}, {r3, r4}, {r5}}.

Example C.7 In the Example C.6, rule base RB is partitioned into three rule clusters.

The minimum support threshold, min_sup, is set to 0.9. For the sake of simplicity,

every expression occurred in the RB is encoded in Table C.1.

Table C.1 Encodings of Expressions in RB

encoding Expression

 150

e1 (protocol = TCP)
e2 (protected_network_direction = A)
e3 (source_port > 8080)
e4 (source_port > 1023)
e5 (string = NetBus)
e6 (string = NetBus2)

There are two rules in g1, T1 consists of two transactions, t11 = {e1, e2, e3, e5} and

t12= {e1, e2, e4, e6}. After several iterations, we can obtain the candidate 3-itemsets,

C13, and the process is thus terminated since |D13| = 1, no more candidate itemsets of

C14 can be generated. Therefore, the final output is D13 = {{e1, e2, e4}}. According to

Table C.1, the frequent combination of expressions is {(protocol = TCP),

(protected_network_direction = A), (source_ port > 1023)}.

 151

Appendix D

Rule Class Construction Algorithms of Model Constructing Phase

(1) The Concept of Constructing Alert Models

It is very difficult for experts and administrators to monitor on-line IDS alerts to

discover useful intrusion patterns. Nowadays, experts are still using their own

knowledge and experience to defend intrusions, but the efficiency and effectiveness of

intrusion detection are hard to improve. Our idea is to construct a model to classify

the collected alert patterns into several classifications with different flags, and experts

can discover on-line suspicious or intrusion patterns easily and quickly. The model

consists of normal, intrusion and suspicious behavior classification rule classes, where

each rule class consists of hundreds to thousands classification rules depending on the

computational ability of each detection sensor. As shown in Figure D.1, each rule

class is constructed with individual construction method, and use individual data

source in specific network environments as their data input.

Figure D.1 Three Types of Alert Behavior Classification Rule Classes

 152

Normal behavior classification rule class represents the set of false alert patterns.

Frequent behaviors of IDS alerts in an attack-free environment are the most alerts in

experience, and these alerts are exactly false alerts. We use an AprioriAll-like

sequential pattern mining algorithm to discover frequent sequences of IDS alerts in an

attack-free environment in laboratories, and these frequent sequences are used to

construct classification rules of normal rule class.

As we know, some intrusions which have fixed patterns can be easily discovered

by simple pattern matching approach on-line. However, varied intrusions become too

sophisticated to detect, our suspicious/intrusion classification rule construction

method is hence focusing on these kinds of intrusions. We design a score based

method in this approach to discover varied alert subsequences as suspicious patterns.

Some rootkit tools are used to simulate real-world attacks in a period of time, and

these IDS alerts are collected as training data of suspicious/intrusion classification

rule class construction. Some suspicious alert sequences will be discovered with this

method, and system will interact with experts to classify these sequences into

intrusion rule class or suspicious rule class; if one sequence is considered as a known

intrusion, it is classified by intrusion rule class, and then used to update the

classification rule of intrusion rule class; if one discovered alert subsequence is not

considered as a known intrusion, it is highly possible to be a novel intrusion and

should be classified into suspicious rule class to construct a new suspicious

classification rule.

(2) Normal Behavior Rule Class Construction

To achieve an objective of high detection rate without missing any intrusion, the

 153

design of IDS signature-based rules is asked to be as powerful as possible, but that

makes IDS become more sensitive. Filtering of dirty alerts has two advantages

including reducing the accuracy of alert analysis and the complex of data execution at

the same time. Generally speaking, most of these researches use special analysis

methods or compile expert experiences to construct filter models, and use this filter

model to discard those highly-possible false alerts to get clear data. Before discussing

the design of procedure, we must consider the characteristics of alerts and attacks.

(i) Alert Frequency

According to different importance and bandwidth of hosts, their numbers of

triggered alerts are very different obviously. Besides, the scale of subnets

aggregate the difference of alert frequencies; the bigger scale a subnet is, the

more total alert number is in that subnet. It is common to collect thousands of

alerts in a busy subnet.

(ii) False Alert Frequency

There are full of false alerts in alert warehouse. According to the results of

most researches, it is indicated that false alert rates of different IDSs are lain in

between 60% to 90%. The most important concept of all, some researches

indicate that some of these false alerts occur with similar patterns in the same

network, such as specific alert sequences or frequent source IP addresses, and

those normal behaviors are triggered as alerts but they are not intrusions in fact.

In other words, the idea of these researches is that if we can discover frequent

behavior patterns of alerts, these frequent patterns are most likely to be false

alerts.

 154

(iii) Attack Characteristic

There are also some characteristics in attacks, so some filtering methods

using specific intrusion’s characteristics to efficiently detect the corresponding

intrusion. For an example, some specific Rootkits will usually give rise to fix

alert sequences, so it is more appropriate for these intrusions to use Sequential

Pattern Mining to filter out false alerts. For another example, worm is a kind of

variable intrusions, so using Generic Algorithm to filter false alerts seems better

than others.

Our idea is to construct classification rules of normal behavior classification rule

class, and then we can execute filtering by comparing all on-line alert sequences with

the normal behavior classification rule class.

Figure D.2 The Procedure of Normal Behavior Classification Rule Class

Construction

A Norma Behavior Classification Rule Class Construction (NBCRC) algorithm

shown in Figure D.2 is proposed to discover attack sequences of normal network

behaviors. This algorithm consists of two steps of sequential pattern mining and

classification rule construction. At first, we assume frequent behavior, over an

extended period of time, is likely to be normal. In other words, a modified AprioriAll

 155

sequential pattern mining method (Valdes and Skinner, 2001) is used to discover

frequent sequences of alerts in single sensor, and these frequent sequences are seen as

false alert patterns and collected as a rule class. At last, all frequent sequences are

flagged with ‘normal’ and transformed to classification rules of normal behavior

classification rule class. The normal behavior classification rule class is used to

reduce false alert sequences in on-line stage. The specific algorithm proposed by us is

shown in Algorithm D.1. To fit in with requirements of flexibility and robustness for

administrators in such a decision support system, system interacts with administrators

to decide the value of minimum support in AprioriAll algorithm dynamically. That

makes it possible for administrators to make proper decisions according to different

situations.

Algorithm D.1 The Normal Behavior Classification Rule Class Construction

Algorithm

Input: Alert sequences of individual IDS sensors.
Output: Normal rule class with classification rules.

Step 1: For each sensor, Ask administrators to decide the appropriate values of
minimum support in AprioriAll.

Step 2: Generate frequent sequences of one sensor by AprioriAll with specific value
of minimum support.

Step 3: Flag each frequent alert sequences with ‘normal’ and use these flagged alert
sequences to construct classification rules of normal behavior patterns.

(3) Intrusion/Suspicious Behavior Rule Class Construction

As shown in Figure D.3, the procedure of suspicious/intrusion behavior

classification rule class construction, including alert sequence transformation,

suspicious scoring and classification rule construction, is proposed to construct

suspicious/intrusion behavior classification rule class, where each rule is represented

as a suspicious/intrusion alert sequence.

 156

Figure D.3 The Procedure of Suspicious/Intrusion Classification Rule Class

Construction

Since the false alerts have been filtered out in this phase, all alert sequence

transactions into 2-candidate alert subsequences (2-candidate means the length of this

sequence is 2) to inspect each possible alert sequence strictly. Besides, we propose the

specific suspicious scoring method to model possible behaviors of intrusions where

two variables are designed to record locations and frequency of each 2-candidate alert

subsequences respectively between several consecutive time short-term windows.

According to the characteristics of intrusions, higher the scoring value is, more

suspicious the alert pattern is. If a subsequence is continuously repeated and

discovered in the same host set, it will be treated as a suspicious behavior of intrusion.

For each 2-candidate alert subsequence, Host(ti), a set of hosts, represents the

locations which discovered this subsequence in the time period ti and the |Host(ti)|, the

number of hosts, represents the frequency which discovered this subsequence in ti.

Assume there are n hosts in the simulated environment. The scoring policy could be

divided into three cases according to Host(ti) and |Host(ti)|. In case 2 and case 3, ⊕ is

an exclusive-or operator.

 157

Scoring Policies

CASE 1: Host(ti) = Host(ti-1). // Continuous attacking

 Set Score=0 AND Repeat++.

CASE 2: Host(ti)!= Host(ti-1) & |Host(ti)|= |Host(ti-1)|. //Light variation

Set Score = Score + ½ [| Host(ti) ⊕ Host(ti-1)| * (1/n)]

AND Repeat=0.

CASE 3: Host(ti)!= Host(ti-1) & | Host(ti)|!= | Host(ti-1)|. // Heavy variation

Set Score = Score + | Host(ti) ⊕ Host(ti-1)| * [||Host(ti)|- | Host(ti-1)||]

*(1/n) AND Repeat=0.

Finally, specific thresholds are set to flag some special situations as suspicious

attack patterns, and then administrators are noticed to trace the causes of suspicious

patterns and fix intruded hosts. Four flagging rules are proposed as follows to

determine 2-candidate alert sequences with suspicious patterns if there is any

2-candidate alert sequence conforming to one of these rules. Therefore, all alert

sequences of suspicious behaviors are constructed into classification rules of

suspicious/intrusion behavior classification rule class.

Flagging rules

RULE 1: IF Score > Threshold(score),
THEN flag as “Suspicious”.

RULE 2: ELSE IF (Repeat > Threshold(repeat) & |Host(i)|!=0),
THEN flag as “Suspicious”.

RULE 3: ELSE IF |Host(i)| == n,
THEN flag as “Suspicious”.

RULE 4: ELSE flag as “Unkonwn”.

 After the procedure of suspicious/intrusion behavior classification rule class

construction, we can construct lots of suspicious alert sequences, and then experts are

 158

asked to flag these suspicious alert sequences with tags of specific intrusions

System provides each suspicious alert sequence to experts, and experts flag these

alert sequences by their own experiences and domain knowledge to construct

classification rules of suspicious behavior classification rule class or intrusion

behavior classification rule class. If one alert sequence is considered as a known

intrusion pattern, it is necessary for experts to flag this alert sequence with specific

intrusion signature tag which represents a name of known attack; if one alert sequence

is not considered as a known intrusion by experts, it is perhaps a kind of novel

intrusion patterns, and this alert sequence is still flagged as ‘suspicious’ to be

constructed as a new classification rule of suspicious behavior classification rule

class.

According to scoring policies and flagging rules, the algorithm of the

suspicious/intrusion behavior classification rule class construction is shown in

Algorithm 2. After calculating the Host(ti) and |Host(ti)| at time ti in Step 2, the

scoring policy is applied to calculate the values of variation score and repeat score of

the 2-subsequence. Then, the Scoring Policies and Flagging Rules are used to help

experts construct the classification rules in Step 4 and Step 5. In order to discover

complete intrusions patterns, we will string up 2-candidates alert subsequences into all

k-subsequences in Step 6 if two subsequences have the end to end relation. For

example, if a set of 2-candidate subsequences is {AB, BC}, then the extended

subsequences {ABC} will be generated. After all extended alert subsequences are

discovered, experts are asked to flag the classification label in each alert subsequence

in Step 7.

 159

Algorithm D.2 The Suspicious/Intrusion Behavior Classification Rule Class

Construction Algorithm

Input: Candidate alert sequences, Threshold(score) and Threshold(repeat).
Output: Alert behavior classification rules of suspicious and intrusion behavior.

Step 1: For each sensor,

Transform the candidate alert sequences into 2-candidate subsequences.
Step 2: For each 2-subsequence, Calculate the Host(ti) and the |Host(ti)| values.
Step 3: Store results of all 2-candidate subsequence transactions.
Step 4: Apply Scoring Policies to calculate the values of Score and Repeat.
Step 5: Flag classification label using the Flagging Rules.
Step 6: Aggregate the extended alert subsequences.
Step 7: Interact with experts to flag all suspicious alert sequences to classify

these alert sequences into suspicious alert classification rules and
intrusion alert classification rules.

 160

Appendix E

The Overview of The Related Tools

Snort [68] is a signature-based intrusion detection system and open source

software. It represents a cost-effective and robust NIDS solution that fits the needs of

many organizations. Snort is very flexible in the ways it can be deployed. Many

security industry watchdogs use the Snort signatures as part of their security

announcements (such as CERT). Intrusions are ravaging the Internet since they are

constantly evolving to new variants by multiple updates weekly. The Snort mailing

lists are fantastic resource for people who are trying to write their own signatures to

develop the applications of central monitoring and alerting consoles.

BASE [6] is the Basic Analysis and Security Engine. It is based on the code from

the Analysis Console for Intrusion Databases (ACID) project. This application

provides a web front-end to query and analyze intrusions from the alerts coming

generated by Snort.

To post processing of alert transactions requires commercial databases, e.g., the

MS-SQL 2000 server, which is used to automatically extract, transform and load data

from heterogeneous sources. The MS-SQL 2000 Server Analysis Services includes

OLAP, data mining and data warehouse tools, which makes better decisions, performs

rapidly, and executes analysis on large and complex data sets using multi-dimensional

storage.

 161

The DRAMA [19] is applied for building up the decision support inference

engine. DRAMA is a rule-based, client-server tool/environment for knowledge-based

system development. It can assist knowledge engineers in building up an rule-based

decision support system. Using the client-server architecture of DRAMA, the rule

base is maintained on a server and clients could access DRAMA server for inference

services.

 162

Appendix F

The Case Study of e-Learning Using VODKA

In e-learning, the learning behaviors of students and their learning achievements

are usually different even if they study the same learning content (the knowledge of

teachers). Therefore, teachers want to apply appropriate teaching strategy to provide

personalized learning content and learning sequence for students to improve their

learning performance. In this case, the objects to be classified is defined as learning

behaviors of students, where each behavior consists of profiles, learning sequence,

and quiz grade of the student. The students can be firstly clustered into several groups

according to the similarity of the learning behaviors, and teachers can provide

appropriate learning content for each group in advance. However, students might

change their learning sequence due to different learning situation, learning

equipments (desktop, PDA, etc.), course content (text, video, etc.), learning time (day

or night). This causes the evolution of learning behaviors and results in various

learning achievements. As we know, the quiz for students is useful to evaluate their

learning achievement. For example, teachers should provide easier learning content or

learning sequence for the students with lower learning achievement.

Hence, VODKA provides a good idea to assist teachers in observing the

occurrence of variant learning behaviors through a sequence of online quiz to

evaluate the learning performance of each student with different learning sequence,

and then to notify them for generating suitable learning sequence for further

applying. Here, each learning sequence deviated from one of predefined learning

 163

sequences will be treated as a variant learning behavior. In e-learning, it is important

for student to gain a good grade after learning some materials with a specific

learning sequence. Hence, the grade of quiz is treated as a CF for collecting these

good variant learning sequences. If many students gained grades larger than a

threshold with similar or same learning sequence (high frequency), some good

variant learning sequences will be discovered to notify teachers to determine these

new learning sequences. Therefore, the log is collected as the pair of <LSi, CFi>,

where LSi is the leaning sequence of the student i; and the CFi is the grade of this

student. Example 4.2 illustrates the concept of e-learning using VODKA.

Example F.1 The Concept of e-learning Using VODKA

To simplify our discussion, we assume VODKA collects several good learning

behaviors of students and their grades of quiz are larger than a threshold. For the

learning sequence log shown in Table F.1, LS1 = <B, C, A, D, E, F, G, H, I, J> denotes

that Student 1 studies the learning content B first and then studies the learning

contents C, A, D, E, F, G, H, I, J sequentially.

Table F.1 The Learning Sequence of Students

Student
ID

Learning Sequence

1 <B, C, A, D, E, F, G, H, I, J>
2 <A, B, H, D, E, F, C, G, I, J>
3 <A, D, F, G, H, B, C, I, J>
4 <A, B, D, E, C, F, G, H>
5 <A, C, J, F, B, H, D, E, I, G>
6 <B, H, F, D, E, A, G, C, I>
7 <A, J, E, H, B, C, I, D, G>
8 <B, C, G, E, A, H, D, I, J, F>
9 <C, E, G, F, J, B, H, A, D>
10 <B, C, A, J, D, E, G, H, F, I>

In this example, the sequential pattern mining algorithm instead of the original

Apriori algorithm is applied [3][69]. Therefore, we use the Modified GSP algorithm to

 164

discover the maximal frequent learning patterns as shown in Table F.2. The details can

be found in [71]. For example, in L4, we have discovered that one candidate of new

learning sequence of good students is to learn B course content first and then to study

the learning contents D, E, G sequentially. Hence, these candidates of various learning

sequence will be suggested by VODKA for teachers to generate new variant learning

sequence.

Table F.2 The Maximal Frequent Learning Patterns of Good Students

Large
Itemset Maximal Frequent Learning Patterns

L2 AàF AàH AàJ BàH CàD CàF CàH EàF FàG GàH
L3 AàDàG BàCàG
L4 BàDàEàG

In this case study, we illustrate that VODKA can collect all interesting learning

behaviors (learning sequences) of students whose testing grade from online quiz

system is good; hence, then the maximal frequent learning sequence, a part of whole

learning sequence, will be used to recommend teachers to adapt course material for

variant learning behaviors if necessary.

