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Abstract

Knowledge acquisition isknownmito-be a'.critical bottleneck of building
knowledge based systems. Due to the explosion of knowledge, substantive knowledge
can be classified into static. substantive knowledge and dynamic substantive
knowledge. Many knowledge acquisitionmethodologies have been proposed to
systematically elicit rules of static substantive knowledge from domain experts in the
past twenty years. However, none of these methods discusses the issue of discovering
dynamic substantive knowledge including variant knowledge and evolutional
knowledge due to the lack of sufficient information. Hence, how to collect sufficient
information to help experts notice the occurrence of new evolved objects and to reuse
and extend the original knowledge base becomes increasingly important in the
knowledge acquisition field. Most of the existing systems employ the Repertory-Grid
test originally developed by Personal Construct Theory in eliciting static substantive
knowledge to identify different objects and distinguishing these objects in a selected

domain. EMCUD (Embedded Meaning Capturing and Uncertainty Deciding), one of a



Repertory Grid based knowledge acquisition tools, has been proposed to elicit the
embedded meanings of knowledge (embedded rules bearing on objects and object
attributes) to classify objects and guide experts to decide the certainty degree of each
embedded rule using an attribute ordering table (AOT), which records the relative
importance of each attribute to each object, for extending the coverage of original
rules. However, it till lacks the ability to discover the occurrence of new evolved
objects due to insufficient information. Our idea is to monitor the frequent inference
behaviors and the trend of weak embedded rules with lower certainty degree and learn
the candidates of new evolved objects and then guide the experts to extract the
dynamic knowledge of these objects according the trend of inference behaviors. In
this dissertation, we will propose a new iteratively knowledge acquisition method,
Dynamic EMCUD which includes Log Collecting Stage, Knowledge Learning Stage,
and Knowledge Polishing Stage,to notify experts to, extract the embedded rules of
new evolved objects. The Dynamic:EMCUD-can collect sufficient inference log in
Log Collection Stage and then notify experts the occurrence of evolved objects
through observing the frequent inference behaviors and tracing the trend of
evolutional behaviors over time in a changing environment in Knowledge Learning
Stage. In the Knowledge Polishing Stage, the Dynamic EMCUD can integrate a small
acquisition table increment and a small attribute ordering table (AOT) increment into
the main acquisition table and the main AOT, respectively, for adapting the weak
embedded rules to achieve the ability of grid evolution. Moreover, our method can be
easlly extended as a collaborative framework (including n loca KBSs and a
collaborative KBS) to integrate the new knowledge of new evolved objects generated
from every local KBSs (each KBS deploy a Dynamic EMCUD) and help experts easily
discover some other new evolved objects in the collaborative KBS with sufficient

context. Five algorithms are proposed to help expert easily extract the embedded rules
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of new objects. Two applications including in worms and distributed DoS detection,
and dert classification model construction are used to evaluate the performance of
Dynamic EMCUD. The results show that the new variants can be discovered and
experts can be easily notified to quickly extract the knowledge of new objects

according to the Dynamic EMCUD.

Keywords: Knowledge acquisition, Repertory grid, EMCUD, Intrusion detection,

Computer worm, Distributed DoS



\



Table of Contents

ADSEract (IN CRINESE) ......ooiiie e I
Abstract (IN ENglisn) ..o 1
ACKNOWIEAGEMENT ... VI
Table Of CONTENTS. ..o e VIl
LISt Of FIQUI St e I X
LiSt Of TADIES. ... e e X
List Of AlQOrItNMS ... Xl
Chapter L INtrodUCTION. .......ccueiiiiiiie et 1
Chapter 2 RElated WOrK.........oouiiiiiieeee e 8
2.1 Knowledge ACqUISITION SYStEMS.........coiuiiiieiieriie e 8
2.2 Repertory Grid Methodology and Relevant Systems...........coceeveeiieeieennne 9
2.3 Elicitation of Embedded Meanings..........cccceruiiieerieseenieeie e 12
2.4 Problems of Repertory Grid Knowledge Acquisition Methods.................... 17
Chapter 3 Dynamic Knowledge Acqguisition Based Upon EMCUD........... 24
3.1 The Concept of DynamiGEMCUD ... ..ot 24
3.2 Inference Log Collecting Based gpon MetaRUle.............c.cooeeiiiiiiiiienenne 26
3.3 The NEO-Learning Madule ...l i 27
3.4 GO MEIGING.....coueeiiieneeeertaneeiheianeasseeshee s hBh e aeeeaeeeseeseeeneenseesseesseesneanneens 32
3.5 Collaborative Framewaork of Dynamie-EMCUD ............c.ccooiiiiiiiiiicnnenne 33
3.6 Implementation of DynamiC EMCUD .....ccci.coviiiiiiieeeeeee e 39
Chapter 4 Variant Knowledge ACQUISHHION :............cccorerriiereriieeneenee e 41
0 o L= RPN 41
4.2 Variant Objects Discovering Knowledge Acquisition (VODKA)................. 42
4.3The ANalySISOf VODKA ..ottt 46
4.4 EXPEITIMENES. ..ccteeite et eteesiee ettt sieesie e st sbe e seeesseebeesbeessseeneesbeesnneeneeeneas 48
Chapter 5 Evolutional Knowledge ACqUISItION ..........cccooeereinieeneenenninnne 57
5.1 Trend EVOlULION ANGIYSIS.....c.oiiiiiiieiieeieesie e 57
5.2 Capturing Evolutional Trend USINg AST .......ooiiiiiiiierieeie e 58
5.3 Constructing the DYNamiC AOT .......ccceeiieiiiiieeieesee e 60
5.4 Adjusting Certainty Factor of Collaborative Dynamic Knowledge............... 64
5.5 EXPOITMENTS. ...eietieiiieeie ettt ettt e et n e e sbeesneeanneen 65
Chapter 6 Application in Wormsand DDoS Detection...........ccccevveervennne. 74
6.1 The Background of Worms and DDOS Attack ............ccceeeceerieniieeniieeneeniens 74
6.2 The Framework Worm Immune Service Expert System .........ccccceeeevieiinenne 76
6.3 DDOS INtruSION TOIEIANCE. ......ccoueeiueeriieiie sttt eee e 79
6.4 Knowledge Base MaiNtenanCe.............cccoeeieerienies e 91
6.5 EXPOITMENTS......eiiiiiii ettt ettt n e e sn e e 103
Chapter 7 Application in Alert Classification Model Construction ......... 109
4% R 1 oo (¥ Toxx o] o IO OO PP PRTOT 109
7.2 Decision Support System ArChiteCtUre..........cocveieereeiieeieeseesee e 111
7.3 EXPEITIMENES. ...ttt ettt b e e s neenneennns 121



Chapter 8 Conclusion and FUture Work ..........ccceieeniiieeniene e 126

REFEIONCE.....c e e 129
Appendix A Introduction of DDOS...........cccooiiiieiiiiiee e 136
Appendix B The Example of Knowledge Classin DDoS Intrusion
TOIEIANCE. ...t st sae e e 139
Appendix C The Examplesfor Rule Base Partitioning ...........c.ccceeeenee 147
Appendix D Rule Class Construction Algorithms of Model Constructing
PRASE e et 151
Appendix E The Overview of The Related TOOIS ........cccoceeieiiieriinnnenne 160
Appendix F The Case Sudy of e-Learning Using VODKA .........ccccceuee.... 162

VI



List of Figures

Figure3.2 The FIOW Of VODKA ...ttt 29
Figure3.3TheFIOw Of TEA ... 31
Figure 3.4 The Framework of Collaborative Knowledge Acquisition.................. 34
Figure4.1 The Time of Generating Rules Using Different Grid Size................... 48
Figure 5.1 Unfolding Step of Constructing AST ......ooiiiiiiiiieree e 59
Figure 5.2 Reconstructing Step of Constructing Dynamic AOT .......cccccevveinene 60
Figure 5.3 Worm Ontology Construction FIOW...........cccoiiiriieiiiiienienee e 66
Figure 5.4 Example of Initial Nimda Concept Tree.......ccccveveeieeieinieeieceeseee 69
Figure 5.5 The Updated Nimda Ontology after Discovering Nimda.B................. 71
Figure 5.6 The Updated Nimda Ontology after Discovering Nimda.E................. 72
Figure 6.1 The Collabor ative Framework for Worm Detection............ccccceeeueenee 7
Figure 6.2 The Experimental Environment for Detecting Computer Worms .....78
Figure 6.3 The Ontology Of DDOS. fuu i iilidine e 80
Figure 6.4 Relationships Between of Knowledge Classes ...........occoveeeieeieennene 81
Figure 6.5 The Framework of- KA ProCess. ...t 85
Figure 6.6 An Example of Users Behavior ...........ccftecueeieeieeeieieeeeiee e 89
Figure 6.7 The DDoS I ntrusion Tolerance System Using Dynamic EMCUD ......91
Figure 6.9 An IDS Prototype System Based RP-MES.............ccccoooeniiniiiiienn. 105
Figure 6.11 The Performance CompariSON ..........cccoeereerieeenieesiiee e 108
Figure 7.1 The Framework of Decision SUpport System ........c.cccoceeveeneenieeenen. 112
Figure7.2 An Attack Tool Being Run Against Three Targets..........c.ccceeeeneenen. 114
Figure 7.3 Meta-rules of Classification Rule Classesfor On-line Monitoring...119
Figure 7.4 Decision Support System Prototypein Experiments............ccccoeeneee. 122
Figure 7.5 Alert Reduction Rate of Normal Behavior Classification Modd! ...... 123
Figure 7.6 Observations of Percentages of Different Suspicious Flags.............. 124
Figure A.1 The General Topology of DDOS Attacks.........cccceeereeriieenieneeniceen. 137
Figure B.1 System State Diagram.........ccoceeiiieiiereerieeeeeiee e 139
Figure B.2 Role State Diagram .........ccceeiieiiieiieieesie et 140
Figure C.1 Part of The Network Ontology.........cccceoeeriirieenee i 148
FigureD.1 Three Typesof Alert Behavior Classification Rule Classes.............. 151
Figure D.2 The Procedur e of Normal Behavior Classification Rule Class

CONSETUCTION ...ttt b et e s e bt et sae e asn e e neesneesnneen 154



List of Tables

Table 2.1 The lllustrative Example of a Repertory Grid with Ratings................ 10
Table2.2 An Example of Acquisition Table..........coceiiiiieniiiiiieeeee e 14
Table2.3 An EXample of AOT ... 15
Table 2.4 The Original Rule and Embedded Rules of Nimda3.............c.ccccevennee. 15
Table 2.5 The Original Rule and Embedded Rules of Nimdal and Nimdaz2 ....... 16
Table 2.6 The Acquisition Table of Four Computer WOrms..........ccocceeveeneennenne 19
Table2.7 The AOT Table of Four Computer WOrms.........cccceeeveeeieeniieeneneeseeenns 20
Table 2.8 Partial Detection Rules Generated by EMCUD .........ccccooiiiiiiienineene 21
Table2.9 The Mask Tableof Ignored AttribUtes...........coceviiiieninii e 22
Table4.1 The Partial Inference Logs of BIaster .........ccccovvirieeneeniiiniieieeseenee 44
Table 4.2 The Partial Inference Logs of Nimda .........cccceveirieiniiniiiniieiecseeee 49
Table 4.3 The New Variant Acquisition Table of Nimda.B............cccocriiiiiennne 50
Table 4.4 The Partial Inference Logs of CodeRed ..........cccovveeiiiiiiniienienecne 51
Table 4.5 The New Variant Acquisition;Table of CodeRed.Il ...........ccccoeenirinnnne 52
Table 4.6 The New Variant Acquisition Tableof Blaster.B ............cccoccoviieiiennne 53
Table 4.7 The Adjusted Main Acquisition.Table of Simple Computer Worms....54
Table 4.8 AOT Table of Simple Computer WOrms.........c.cooeereereieieenee e 54
Table 4.9 The Rules Gener ated from Table 4.7 andTable4.8 ...........ccceeeeene. 55
Table5.1 An Example of Original NEmMda AT ...cci e 69
Table5.2 An Exampleof Original NimadaAOT ... 69
Table5.3 An Example of NiMAda AST ... 70
Table 5.4 An Example of Updated Nimda AT After Discovering Nimda.B.......... 71
Table 5.5 An Exampleof Integrated Nimda AT ..o 71
Table 5.6 An Example of Updated Nimda AOT After Discovering Nimda.B....... 71
Table 5.7 An Example of Integrated Nimda AT After Discovering Nimda.E....... 72
Table 5.8 An Example of Updated Nimda AOT After Discovering Nimda.E....... 72
Table 6.1 The Ratio of Discovering New Evolved Worm.........cccoceevieieeiinnnenne 104
Table 6.2 The Cluster Number with Different Similarity Threshold Settings and

NUMDEr Of RUIES......coeiie e e 107
Table 6.3 AcCuracy COMPAriSONS.........coieeieerreerieeriesreereesteesieeseeaseesseesseeseeens 107
Table 6.4 Comparison of Number of CIUSLErS........ccoiiiiiiiiiiiieeeereee 108
TableA.1 TheDDoS Attacks Developed from 1998 t0 2002 ..........cccceeveeierrnenne 136
Table C.1 Encodings of EXPressionsin RB.........cccocoeiiiiiiiieenee e 149
Table F.1 The Learning Sequence of StudentsS.........ccoceveiiiieiieneeniceeeseecene 163
Table F.2 The Maximal Frequent L earning Patterns of Good Students............ 164



List of Algorithms

Algorithm 2.2 EM CUD AlQOrithim .....coueeeiieeee e 14
Algorithm 3.1 The Dynamic EMCUD AIgOrithm ..o 26
Algorithm 3.2 The Grid Merging Algorithm..........ccooiiiiiieneeeee e 32
Algorithm 4.1 VODKA AlQOrithim........couiiiiiiieeeee e 43
Algorithm 6.1 The Characteristic Training Algorithm ... 88
Algorithm 6.2 Rule Base Partitioning Algorithm...........ccccoiiiiiiiiiiceeeee, 100
Algorithm 6.3 Meta Apriori AlgOrithm ........coceiiiiiii e 102
Algorithm D.1 The Normal Behavior Classification Rule Class Construction

ATGOTTENIM L.ttt 155
Algorithm D.2 The Suspicious/Intrusion Behavior Classification Rule Class

Construction AlGOrithm ..o 159

Xl



Chapter 1

| ntroduction

As we know, knowledge based system is an intelligent computer program that
uses knowledge and inference procedures to solve problems that are difficult enough
to require significant human expertise for their solutions, such as disease diagnosis,
investment prediction, and computer science. A well-known fundamental problem to
the development of knowledge based:systems is the acquisition of the expert
knowledge (the formation of real-world knowledge to some computerized knowledge
representation) that makes these systems work: As a matter of fact, knowledge
acquisition is known to be the critical bottleneck inbuilding knowledge based systems

[25].

The knowledge can be divided into two groups: substantive knowledge and
strategic knowledge. Substantive knowledge is used to draw conclusions from the
evidence it has, that is, to interpret input data and identify the current state, and
strategic knowledge is used to decide what to do next according to the state. In [30],
Gruber gave a good example to explain both kinds of knowledge: A military pilot
follows the strategy of taking evasive action when in danger of being fired on. The
pilot must use substantive knowledge to access the situation “Am | in danger of being
attacked?’ and strategic knowledge to respond “Climb to 30000 feet.” In generdl,

substantive knowledge is used to identify relevant states of the world and strategic



knowledge is used to evaluate the utility of possible actions when a state is given. [30]

Substantive knowledge is represented explicitly in knowledge base, and is
acquired directly from experts, manually or with some help from automated tools. For
instance, in a computer worm detection application, the knowledge engineer consults
the literature and interviews domain experts to acquire the knowledge of well-known
worms (objects) using pre-defined attributes. This kind of substantive knowledge is
treated as static because the environment is assumed stable in any time. In other
words, the static knowledge remains the same when the environment is changed as
time goes on. However, the environment of the cyber world is changing rapidly. New
worms will be evolved from old worms or be developed to threaten the Internet and
may cause the failure of worm+detection knowledge based system. This kind of
substantive knowledge is treated- as dynamic knowledge which means that the
knowledge will be updated or derived-from-well-known knowledge due to the

adaptation of the changing environment with the times.

Many knowledge acquisition methodologies and related tools, e.g., NeoETS [10],
AQUINAS [11], KITTEN [64], EMCUD [34], KADS [81], KAMET [14], have been
proposed to improve the quality of the elicited static substantive knowledge (rulesin
knowledge base) in the past twenty years. Most of the existing systems employ the
Repertory-Grid test originally developed by George Kelly’s Personal Construct
Theory [39] in diciting substantive knowledge, which could be used as an efficient
knowledge acquisition technique in identifying different objects and distinguishing

these objectsin adomain.



With time goes on, some substantive knowledge might be modified or evolved
from the original knowledge to adapt in a dynamic environment due to the adoption of
new conditions. Some other substantive knowledge could be incrementally created to
classify new objects due to the explosion of the knowledge. The dynamic knowledge
includes variant knowledge and evolutional knowledge. The variant knowledge is
usually derived from original objects, which means that the knowledge is changed as
time goes on in the stable environment. The evolutional knowledge is changed over
time due to the changing environment. For example, in a computer worm application,
afamous worm, Nimdais the first worm to modify existing web sites to start offering
infected files for download by using Unicode exploit to infect |1S web server. Asthe
time goes by, Nimda.B, a variant of Nimda family, is developed to infect victim hosts
through different attached file in e-mail. Although many knowledge acquisition
methods have been proposed to rapidly build‘the knowledge base, the acquisition of
dynamic knowledge has been ‘hardly discussed- To acquire dynamic knowledge, the
experts are required to be aware of the oceurrence of new objects in knowledge
acquisition systems. However, it is still difficult for experts to be aware of the new

object without any additional related information.

EMCUD (Embedded Meaning Capturing and Uncertainty Deciding) was
proposed to elicit the embedded meanings of knowledge (embedded rules bearing on
m objects and k object attributes) to classify m objects (O1, O, ..., Oy) based upon
repertory grids principles, which represents the information that domain experts take
for granted but are implicit to the people who are not familiar with the application
domain, and guide experts to decide the certainty degree of each embedded rule for

extending the coverage of generated original rules. To simplify our discussion, assume



some objects in O; class, which are classified by original rules of O;, belong to the
original object class (OO;) of O;. The other objects in O; class, which are classified
by embedded rules of O, belong to the extended object class (EO;) of O;. However,
some embedded rules may be with marginally acceptable certainty factor (CF) values
due to the weak suggestions of domain experts. Due to the ability of embedded rules,
some objects can not be classified by the origina rule but might be able to be
classified by the other embedded rules with different certainty degree. Hence, these
objects might be evolved with the times and could be classified by the embedded rules
of Oy with weak CF values. This kind of objects is singled out to be a variant object
class (VO;) of O; because the similar characteristics of these objects (the related
ambiguous attributes or minor attributes) might become more and more important and
need to be classified into a specific variant object class in EO; after refining the
ambiguous attributes or adding some new éttributes to improve the classification
ability. The variant of an original object-in-this-dissertation stands for a subset of the

original object class having some different characteristics.

Although EMCUD extends the ability of knowledge acquisition systems to elicit
substantive knowledge with the embedded rules, it is still limited to discover the
dynamic knowledge of original objects due to the lack of the sufficient information.
Owing to the different background and dynamic knowledge which can be changed as
times goes by, the domain knowledge constructed at a time may become obsolete in
the near future. Moreover, some evolutional knowledge needs to be evolved for
adopting in a dynamic environment. It may result in the difficulty of observing the
occurrence of new knowledge for human experts. Hence, how to collect sufficient

relevant information to help experts notice the occurrence of dynamic knowledge and



reuse the original rule base becomes one important issue. Since the relative
importance of each attribute to each object could be represented using attribute
ordering table, some minor attributes can be relaxed or ignored to capture the
embedded meanings with acceptable CF. In other words, these kinds of attributes can
be ignored to be not used to classify the object with lower CF value. With the
changing environment, new knowledge derived from old objects might be classified
by embedded rules with the ignored attribute-value and marginally acceptable CF, and

can not be distinguished from original objects.

In this dissertation, we will propose new knowledge acquisition methods which
collect useful information to monitor the inference behaviors of weak embedded rules
and to trace information over time in order.to efficiently update the time-related
knowledge in a dynamic environment. A Dynamic:EMCUD which is an iterative
process to assist experts in belng aware.of-the occurrence of dynamic knowledge
according to the analyzing results of iinference behaviors is proposed. Each iteration
consists of three Stages: Log Collecting Stage, Knowledge Learning Stage, and
Knowledge Polishing Phase. A collaborative knowledge acquisition framework
(including local KBSs and a collaborative KBS) based upon Dynamic EMCUD will be
proposed to monitor the frequent inference behaviors of weak embedded rules and to
trace the evolved behaviors of objects with the times from multiple KBSs for assisting
experts in efficiently obtaining the dynamic knowledge. Each loca KBS deploys
Dynamic EMCUD module to monitor the frequent inference behaviors of weak
embedded rules to iteratively construct an acquisition table increment. The AOT
increment could be constructed using entropy or time series analysis technique to

analyze the importance of each attribute to each object with the times to facilitate the



acquisition and adaptation of dynamic knowledge without too many interactions with

experts in a changing environment.

Variant Objects Discovering Knowledge Acquisition (VODKA) will be proposed
to learn the new variant object in classification KB according to the occurrence
frequency of these objects. The goal of the VODKA is to facilitate the acquisition of
new inference rules for a classification KBS which identifies an object from its
attribute-values in a small acquisition table increment. The new rules should be able
to cope with these new objects which are similar to those previous known original
rules in the KBS (they are object variants). Consequently, we enrich the knowledge
base constructed by the VODKA and hence ease the effort of constructing the domain

knowledge in a dynamic environment.

Because the static EMCUD may.-het-be-adaptive to the variant knowledge, a
Trend Evolution Acquisition (TEA) for_constructing dynamic knowledge will be
thirdly proposed to adapt knowledge with time by recording each interested attribute’s
information in each time point and update the evolutional knowledge base if
necessary in a period of time. Consequently, a knowledge base can become more
robust, flexible, and perform more learning from experiences during inference. The
VODKA generates a small acquisition table increment of new objects, and the TEA
generates an AOT increment. Finally, we use a Grid Merging approach to integrate
the acquisition table increment and AOT increment into the original main acquisition
table and the main AOT respectively for generating corresponding embedded rules of

new objects.



However, some new evolved objects might be invisible or insignificant under
each local KBS with Dynamic EMCUD, the profile of each KBS and the infrequent
logs are analyzed in the collaborative KBS to collaboratively assist experts in
discovering new objects. The infrequent inference logs can be analyzed by Dynamic
EMCUD and corresponding profiles to discover the interesting knowledge of new
objects which is unseen in each KBS In order to acquire a meaningful CF value of
each new discovered embedded rule of evolved objects, the CF value of each new
embedded rule of evolved objects could be adjusted in the collaborative KBS based

upon three cases in the CF adjusting function.

Based upon the collaborative framework, the dynamic knowledge could be
elicited from the main acquisition table, which results in the ability of knowledge
evolution. We illustrate two applieations in worm-and DDoS intrusion detection, and
alert model construction to evaluate the-utiity: of Dynamic EMCUD. We setup an
experimental environment consisting-of a firewall to filter computer worm traffic
from Internet (normal traffic) and an attacking traffic generator to randomly generate
various worms to infect a victim according the constructing models. The results show
the Dynamic EMCUD is useful for assisting experts easily to be aware of the new

variant worms and the corresponding knowledge can be quickly extracted.



Chapter 2

Related Work

Several knowledge acquisition methodologies and related systems are introduced
in this chapter. Then Repertory Grid, one of the popular indirect knowledge
acquisition techniques, and the elicitation of embedded meaning and some problems

of traditional knowledge acquisition methodologies are discussed.

2.1 Knowledge Acquisition Systems

Since the knowledge in :many domains, the experience of domain experts, is
continuously growing, many “knowledge acquisition methodologies have been
proposed to help knowledge engineers acquire the useful knowledge and then to
transfer these knowledge into knowledge base or other computerized representation

forms. In general, there are three approaches for knowledge acquisition [21][34][48]:

(2) Interviewing experts by experienced knowledge engineers: interviewing expertsis
usually time-consuming if the communication between domain experts and
knowledge engineers is insufficient.

(2) Machine learning: learning the knowledge by collecting many useful cases and
instances with/ without the involvement of domain experts [57]. However, the
quality of the results usually relies on the selected training cases.

(3) Knowledge acquisition systems: assisting domain experts to generate useful rules

8



using knowledge acquisition systems with/ without the help of knowledge
engineers. These tools could reduce the effort of communication between
knowledge engineers and domain experts and could reduce the risk and difficulty

of selecting the suitable training cases.

The interviewing approach could be used to acquire dynamic knowledge by
manually rebuilding the knowledge base. However, the experts may not be aware of
the occurrence of dynamic knowledge. Since the machine learning is used to learn the
knowledge from useful cases, the discovered knowledge is limited to classify the new
evolutional knowledge. This is caused by the lack of insufficient context information.
In the past decades, many knowledge acquisition systems, e.g., NeoETS [10],
AQUINAS[11], KITTEN [64], EMCUD [34], KADS[81], MCRDR [38], KAMET [14],
MedFrame/CADIAG-IV [7][41][44] have been developed to build prototypes and to
iteratively elicit the knowledge from-demain-experts. However, all of these systems
can not efficiently acquire dynamic. knowledge due to the lack of sufficient
information and the experts may not be aware of the occurrence of evolutional

knowledge.

2.2 Repertory Grid M ethodology and Relevant Systems

Repertory Grid, based on Kelly’s Personal Construct Theory [39] which reports
how people make sense of the world, could be used as an efficient knowledge
acquisition technique in identifying different objects and distinguishing these objects
in adomain. It is the basis of severa computer assisted knowledge acquisition tools,

such as ETS[8][9], AQUINAS[11] and KSSO [26].



A single repertory grid represented as a matrix whose columns have element
objects (labels) and whose rows have construct attributes (labels) can classify a class
of objects, or individuals. The value assigned to an element-construct pair need not be
Boolean. Grid values have numeric ratings, probabilities, and other characteristics,
where each value reflects the degree of a construct to an element. Then, the expert is
asked to fill the grid with 5-scale ratings, where “1” represents the most relevant
attribute to the object; “ 2" represents that the attribute may be relevant to the object;
“3” represents “ unknown” or “no relevance”; “4” represents that the object may have
the opposite characteristic; “5” represents the most relevant opposite characteristic to

the object. The whole concept of Repertory Grid technique can be described as

following steps:

(2) Elicit al of the element objects; €.g., E1, E3; Esy E4, Es from the expert.

(2) Elicit the construct attributes (and their-epposites), e.g., C;, G, Cs, C4 (G, G,
Cs', C), from the expert. Each time. three elements are chosen to ask for a
construct to distinguish one element from the other two.

(3) Rate all of the [element, construct] entries of the grid with value range from 1 to 5.

An illustrative example is given in Table 2.1.

Table 2.1 The lllustrative Example of a Repertory Grid with Ratings

ConSItErI Srgent =] E> Es E4 Es
C, 5 1 5 1 1 C/
C, 4 4 4 1 4 C)
C; 1 4 5 1 4 Cs
C, 1 4 4 5 5 Cy

As Repertory Grid technique has been widely used by researchers, some
extensions have been made to enrich its representative ability for covering more

10



knowledge, the value assigned to an element-construct pair may be Boolean, numeric
ratings, probabilities, etc. For example, Dixit and Pindyck [23], and Hwang [33]
extended the Repertory Grid technique to the fuzzy table, in which constructs were
fuzzy attributes that could be rated by means of fuzzy linguistic terms from afinite set.
Castro-Schez et a. [15] developed a technique using a fuzzy repertory grid for
acquiring the finite set of attributes or variables that the expert used in characterizing

and discriminating a set of elements.

Moreover, several models have been proposed for handling uncertainties in
expert systems through generating more meaningful rules from the Repertory Grid
oriented approaches. EMYCIN certainty factor model was first used to decide on the
degree of the belief of a rule for uncertain reasoning [67]. Embedded Meaning
Capturing and Uncertainty Deciding (EMCWUD) knowledge acquisition system was
proposed to extract rules with embedded-meaning fram repertory girds by defining the
impacts of the constructs to each element [34] and was successive applied in a
medical diagnostic system for acute exanthema [35]. WebGrid, Calgary’s web-based
knowledge modeling and inference tool, is based on Repertory Grid elicitation and

analysis [65].

However, none of these methodologies discusses the issue of discovering
dynamic knowledge. Therefore, a new collaborative knowledge acquisition system
based upon EMCUD is hence proposed in this dissertation to help domain experts be
aware of the occurrence of dynamic knowledge and to create additional attributes for
extracting dynamic knowledge through the observations of the interested inference

results and the time based analysis.

1



2.3 Elicitation of Embedded M eanings

The embedded meanings referred to here represent the information that domain
experts take for granted but are implicit to the people who are not familiar with the
application domain. For example, a physician may describe the typical feature of
Measles to be 3 to 4 days of fever, cough, desquamation, and brick-red macul opapular,
but usually he/she does not mean only when all of these features happen, then the
patient has Meadles. It is possible that patient does not have a cough or desquamation
while Measles can still be implied only with less certainty. Embedded meanings are
likely to be ignored during the process of knowledge acquisition, especially in some
application domains such as medical diagnosis. This is the reason why experts can
usually make a conclusion even when the required information is not complete while
most of expert systems may fail to haveaconclusion if the premise part are only

partially matched.

The lack of embedded meaning will-probably make an expert system fail to infer
some cases being trivial to experts. The initial knowledge and the embedded
meanings will make the same conclusion with different certainties; therefore, their
relationships may be used to guide experts to decide the degree of certainties for
embedded meanings. SEEK [59] and SEEK2 [28] have been proposed to obtain
embedded meanings by some efficient refinement processes. However, the maor
problem with SEEK and SEEK? is the case database being assumed to be available

because it is difficult to collect sufficient cases in some applications.

Moreover, it would be also time-consuming and boring for experts to offer a

conclusion for each case in the database before starting the refinement procedure.

12



Thus, EMCUD is proposed to elicit the embedded meanings of knowledge from the
existing hierarchical repertory grids given by experts [34]. Additionally, it will also
guide experts to decide the certainty degree of each rule with embedded meaning for
extending the coverage of generated original rules. EMCUD can be used to elite part
of dynamic knowledge since the embedded meaning included. However, it is still

weak to acquire more dynamic knowledge due to insufficient context information.

To capture the embedded meanings of the resulting grids, the Attribute Ordering
Table (AOT), which is used to record the relative importance of each attribute to each
object, is employed. The valuesin each AOT entry, a pair of attribute and object, may
be labeled “X”, “D” or an integer number. “X” means no relationship existing
between the attribute and the object. “D”_means that the attribute dominates the object,
i.e, if the attribute is not equal-to,the entry value,-it IS impossible for the object to be
implied. Integer numbers are used to.represent-for the relative important degree of the
attribute to the object instead of dominating the corresponding object. If the attribute
does not equal the attribute-value, it is still for the object to be implied. The larger

integer number implies the attribute being more important to the object.

Using AOT, the original rules generate some rules with embedded meaning, and
the Certainty Factor (CF) of each rule, which is between -1 and 1, could be
determined to indicate the degree of supporting the inference result. The higher CF is,

the more reliable result is. The EMCUD algorithm islisted as Algorithm 2.1.
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Algorithm 2.1 EMCUD Algorithm

Input: The hierarchical grids.
Output: The guiding rules with embedded meaning.

Stepl: Build the corresponding AOT with each grid of the hierarchical multiple
grids.

Step2: Generate the possible rules with embedded meaning.

Step3: Select the accepted rules with embedded meaning through the interaction
with experts.

Step4: Generate automatically the CF of each rule with embedded meaning.

All rules generated by EMCUD could be categorized into two classes: origina
and embedded rules with acceptable CF value, and discarded rules with unacceptable
CF value, according to the confidence degree of domain experts. To decide the CF
value of each embedded rule, we have to first decide on the upper and the lower
bounds of CF values of accepted.embedded rules. CF values of each rule can be
automatically determined by a-fuzzy mapping function. Thus, the useful embedded

rules with corresponding CF values could be used to cover more uncertainty cases.

It is called the Acquisition Table instead of repertory grid to distinguish it from
the grids derived by applying other methods. An example of acquisition table for
Nimda, a worldwide popular computer worm, is shown in Table 2.2, and the other

example of AOT isshownin Table 2.3.

Table 2.2 An Example of Acquisition Table

] Object . . .
e | Nimdan Nimda2 Nimdaz

Mail_Attachment Readme.exe putal!.scr null
Upload_Medium Admin.dll Admin.dll cool.dll
Executed_File Name Riched20.dll Riched20.dll httpodbc.dl|
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Table2.3 An Exampleof AOT

] Object . . .
m Nimdal Nimda2 Nimda3

Mail_Attachment 2 1 X
Upload_Medium 3 4 3
Executed_File Name 3 4 D

The origina and embedded rules generated according to Nimda3 in the third

column of the Table 2.2 are shown as Table 2.4.

Table 2.4 The Original Rule and Embedded Rules of Nimda3

Rule # _ Conditiqns . Conc!usion CF
Mail_Attachment | Upload Medium | Executed_File Name Object

Rnimdas, 0 null cool.dll httpodbc.dll Nimda3 0.8

Rnimdag, 1 - cool.dll httpodbe.dll Nimda 0.6

R Nimdas, 2 - - (cool.dll) httpodbc.dll CodeRed 0.4

The original rule of Nimda3 1s numbered. as Rnimdas, 0 “IF (Mail_Attachment =
null) AND (Upload_Medium = cool.dll) AND (Executed File Name = httpodbc.dll)

THEN Nimda3” with the CF =0.8.

Since the ordering value between Mail_Attachment and Nimda3 is “X”,
Mail_Attachment in the premise of original rule should be eliminated, and
Upload_Medium can be negated as R nimda3, 2 When its ordering value is nether “D”
nor “X”; however, Executed_File Name should aways exist in every embedded rule
because it dominates Nimda3. After that, a Certainty Sequence (CS) value is used to
represent the degree of certainty for an embedded rule, which is calculated by
negating some predicates of its original rule by following formula (2.1),

CSR =SUM(AOTIAL, Ok} ]) (2.1)
where Atty belongs to the attribute set of R;, and Obj; is the object of Ri. So, from

above example, the CS value of R nimgaz, 2i1S3+5=8.
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Finally, after al the CS values are calculated, rules would be sorted according to
the CS vaues and interacted with experts by acquiring upper-bound (UB) and
lower-bound (LB). The CF value can now be generated by the following formula

(2.2),

2GR) ¢ 22
CHRAUBR) M (LB(FQLB(F%))é (2.2)

where MAX(CS) is the maximum CS value in all embedded rules generated from the
original R, with the same object. So, CF value of Rnimdss, 2 iS 0.4 after the calculation,

and part of results followed the example above are shown as Table 2.5.

Table 2.5 The Original Rule and Embedded:Rules of Nimdal and Nimda2

Rule # Conditions Conclusion CE
Mail_Attachment | Upload_Medium.| Executed File Name Object

Rnimdat, 0 Readme.exe Admin.di! Riched20.dll Nimdal 0.8

Ryimdat, 1 -Readme.exe Admin;dh Riched20.dll Nimdal 0.7

Rnimdaz, 0 putal!.scr Admin:dll Riched20.dll Nimda2 0.8

Rnimdaz, 1 —putal!.scr Admin.dl| Riched20.dll Nimda2 0.6

Since embedded rules with weak acceptable CF values usualy mean domain
experts may lack the strong confidence, objects matching weak embedded rules
derived from original objects may be the candidates of new variants. For example, the
object satisfying the conditions of the embedded rules with CF = 0.5 means the expert
might suggest that it would be marginally classified into the object class and the
negated attributes of the embedded rule might be not clearly defined. Therefore, the
fired frequencies of this kind of weak embedded rules should be used to discover the

occurrence of new variant objects.
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With the changing environment, the adaptation of the acquired rules should be
required to cope with the dynamic knowledge. However, experts may not be aware of
the occurrence of the candidates of new variants and may have insufficient evidence
to construct the dynamic knowledge of the variants using conventional repertory grid
approaches. Although EMCUD could be used to generate more useful embedded rules
for covering more similar cases, it still lacks the ability of grid evolution for coping
with new dynamic knowledge; e.g., EMCUD should manually regenerate the original
and embedded rules again by the interaction with domain experts after collecting
sufficient information about these knowledge. Therefore, enhancing the adaptation
ability of embedded rules becomes increasingly important to achieve the ability of

grid evolution in classification KBS

In this dissertation, the embedded rules from-EMCUD are categorized into three
classes: the origina rules with strong-CF;-the embedded rules with marginally
acceptable CF, and the discarded rules with low CF. Hence, a new knowledge
acquisition methodology is proposed to discover the occurrence of new variant

objects using the fired frequency of embedded rules with marginally acceptable CF.

2.4 Problems of Repertory Grid Knowledge Acquisition Methods

With the changing environment, the adaptation of the acquired rules should be
required to cope with the new variants. However, experts may not be aware of the
occurrence of the candidates of new variants and may have insufficient evidence to
construct the knowledge of the variants using conventional Repertory Grid
approaches. Although EMCUD could be used to generate more useful embedded rules

for covering more similar objects in extended object class, it still lacks the ability of
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grid evolution for singling these new variants out; e.g., EMCUD should manually
regenerate the original and embedded rules to classify these variant objects by the
interaction with domain experts after collecting sufficient information about these
variants. Therefore, enhancing the adaptation ability of embedded rules becomes

increasingly important to achieve the ability of grid evolution in classification KBS,

In this dissertation, the embedded rules from EMCUD are categorized into three
classes: the origina rules with strong CF, the embedded rules with marginally
acceptable CF, and the discarded rules with low CF. Hence, a new knowledge
acquisition methodology is proposed to discover the occurrence of new variant
objects using the fired frequency of embedded rules with marginally acceptable CF. A
simple computer worm detection: prototype.in Example 2.1 is used to illustrate the

inability for discovering variants using EMCUD.

Example 2.1 The Example of Classifying Feur. Computer Worms

In recent years, computer worm is dramatically increasing to threaten the
reliability of Internet. Table 2.6 shows the acquisition table of four computer worms
[40[51][50][80] including Nimda, CodeRed, Blaster, and Welchia using five attributes
including 300-thread, System reboot, DoS type, Mail_Attachment, and TCP port. The
300-thread means 300 threads with Boolean are simultaneously executed by one
program. The system reboot Boolean attribute will be set to True if the system has
been automatically rebooted. The attacking methodologies of worms could be
classified into one kind of DoS type with String attribute [50]. The email attached file
attribute with Set data type is also a useful attribute to classify these worms. Most of

worms could communicate each other using different TCP port with Set data type.
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Table 2.6 TheAcquisition Table of Four Computer Worms

Object

Attribute Nimda CodeRed Blaster Welchia

300-thread (A1) X True X X

System reboot (A,) X True True True

DoS type (As) Email flood TCPflood Windows Update | cpp flood

Mail_Attachment (A,) {sample.exe X X X
putal!scr}

TCP port (As) X {80} {135;4444} {80;135}

An example of constructing an AOT table from the acquisition table shown in

Table 2.6 isgiven asfollows:

EMCUD: If DoS type is not equal to Email flood, is it possible for Nimda to be
implied?
EXPERT: No.

The answer means the DaS type dominaie Nimda, and hence AOT [Nimda,DoS
type] =D’
EMCUD: If Email attached file is not equal”to any element of {sample.exe,
putal!scr}, isit possible for Nimdato be implied?

EXPERT: YES.

The answer means that Email attached file does not dominate Nimda. The
questions for 300-thread and Nimda will not be asked, since the entry [Nimda,
100-thread)] is labeled “ X" . Therefore, the entry AOT [Nimda, 300-thread)] is labeled
“X”, too. This is the same as the entries AOT [Nimda, System reboot] and AOT
[Nimda, TCP port]. The entry AOT [Nimda, Mail_Attachment] is set to be 1, since the
Email attached file is the only attribute that does not dominate Nimda. If there are

more than one attributes do not dominate the object, e.g. the System reboot, the DoS

19




type, and the TCP port do not dominate Blaster, the following questions will be asked
by EMCUD.

(1) Is System reboot more important than DoS type?

(2) Is System reboot |less important than DoS type?

(3) Is System reboot as important as DoS type?

The expert indicates that System reboot is as important as DoS type to Blaster.
Moreover, the expert also indicates that System reboot is more important than TCP
port to Blaster; and hence the entries AOT [Blaster, System reboot] = AOT [Blaster,
DoS type] = 2 and AOT [Blaster, TCP port] = 1. After each entry value of AOT is

determined, shown in Table 2.4, the embedded meaning implied by the AOT could be

extracted.
Table 2.7 The AOT Tableoi-Feur Computer Worms
L Oblect | Nimda CodeRed * | Blaster | Waéchia
Attributes

A, X 2 X X

A, X 1 2 2

Az D 1 2 1

A, 1 X X X

As X X 1 2

Now we use the first column of Table 2.6 to show the information implied by an
AQOT. The column expresses the following meanings:
(1) As dominates Nimda: If Az isnot equal to Email flood, it isimpossible for Nimda
to beimplied.
(2) A4 does not dominate Nimda: If A4 is nether equal to sample.exe nor putal!scr, it

isstill possible for Nimdato be implied.
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In practice, the hierarchy rules could be generated while hierarchical grids are
given. To simplify the discussion, Table 2.8 shows partial detection rules (ssmple rules)
of aclassification KBS based upon the Table 2.6 and Table 2.7 to classify these worms
using five attributes in single grids. R, ; represents the j-th highest rank of CF in object
i, and the highest rank is 0. The Ry is the origina rule of Nimda to classify the
origina Nimda objects and R;; is the embedded rule of Nimda to classify the

extended Nimda objects.

Table 2.8 Partial Detection Rules Generated by EMCUD

Rule Conditions Conclusion | CF
# A | A, A, A, As Object
Rio - - Email flood (sample.exe;putal ! scr) - Nimda 0.8
Ri1 - - Email flood Tw(sample.exe;putal ! scr) - Nimda 0.4
Ryo | True | True TCP flood - - CodeRed 0.8
Ry1 | True | Fase TCP flood - - CodeRed 0.6
Ry, | Fase | True TCP flood - - CodeRed 0.4
Ros | True | Fase - (TCP flood) - - CodeRed 0.4
Reo | - | Tree| WV "d‘f)l"(‘;;;‘pdae . {135:4444} | Blaser | 07
Ry | - | Tre| M "d‘f)l"(‘;;;‘pdae ! ~{135:4444} | Blager |057
Rz | - |Fase| ‘Vindowsupdae {1354444) | Blaster | 043
Res | - | True | "W ”ﬁg‘(’)";”pdate {135;4444) Blager | 0.43
Raa | - | False| Windowsupdae (1354444} | Blaser | 0.3
R0 - True ICMP flood - {80;135} Welchia 0.8
R41 - True = (ICMP flood) - {80;135} Welchia | 0.67
Ry42 - True ICMP flood - —{ 80;135} Welchia 0.53
R43 - True = (ICMP flood) - —-{ 80;135} Welchia 04

The Mask Table of minor attributes shown in Table 2.9 indicates the minor
attributes for all embedded rules [76]. Each row in Mask Table is a bit vector of
attributes, where the i"™ bit is set to 1 representing the i minor attribute is negated or
ignored. For example, the Mz3 (0, 1, 1, 0, 0) means the 2™ and 3" minor attributes in

R.3 are ignored.
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Table 2.9 The Mask Table of Ignored Attributes

Mask# | As | As | As | Ay | As
Moo ool o]0 o
My, ol oo 1]o0
Moo ool o]0 o0
Mo, o1 ]o0o]o0]o0
Mo, 1 oo o0]o0
M3 o[ 11 ]o0]o0
Mso ool o]0 o
Mas ool o001
Ms, o100 o0
Mas oo 1]o0]oO
Maa o[ 1001
Mao ool o]o0]oO
Moy o[ 1] o0o]o0]o0
Mo, ool o|o0]1
Mas o100 1

In Internet, each worm can be represented as a set of attribute-value pairs. We
can automatically collect such attribute-value pairs and feed them into our
classification KBS to classify them in the suitable-category. Since new worms might
have been derived from old discovered .worms,= the difference between ther
attribute-values seems to be dight. As'mentioned above, EMCUD could generate lots
of embedded rules with different CF values for accommodating the knowledge of the
changed worms due to the property of minor attributes; e.g., Ry1 “IF (DoS type =
Email flood) AND - (Mail_Attachment = (sample.exe; puta!!scr)) THEN Nimda”, a
marginally acceptable embedded rule with CF = 0.4, may be fired by a new Nimda
variant which is treated as a member of original Nimda class. If this rule has been
fired frequently due to a specific email attached file attribute-value
“readme.exe” (more evidence of the occurrence of the candidates of Nimda variants
have been gathered), a new original rule “IF (DoS type = Email flood) AND
(Mail_Attachment = readme.exe) THEN Nimda.B” , a subset of extended Nimda
object class namely Nimda.B, with CF = 0.8 together with an embedded rule “I1F

(DoStype = Email flood) AND - (Mail_Attachment = readme.exe) THEN Nimda.B”
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with CF = 0.5 could be generated to single the Nimda.B class out of the extended

Nimda object class.

In summary, to acquire dynamic knowledge, the experts are required to be aware
of the occurrence of new objects in the interviewing approach and knowledge
acquisition systems. However, it is still difficult for experts to be aware of the new
object without any additional related information. The machine learning approaches
which can learn the useful model according to the selected training cases aso lack the
ability of discovering dynamic knowledge unless more context information can be
included in the training process. Although many knowledge acquisition
methodologies and related tools have been proposed to improve the quality of the
elicited static knowledge by domain experts with/without knowledge engineers in the
past twenty years, most of them-are lack of the ability of discovering dynamic
knowledge unless rebuilding “the knowledge-base in the dynamic environment.
Therefore, a new knowledge acquisition method to acquire the dynamic knowledge is

required.
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Chapter 3
Dynamic Knowledge Acquisition Based Upon

EMCUD

Although many researchers proposed new knowledge acquisition approaches to
acquire different domain knowledge, few of them discuss the acquisition of dynamic
knowledge due to the changing environment as time goes on. These traditional
knowledge acquisition methodologies are weak to-discover dynamic knowledge due
to the lack of insufficient context information to notice experts the occurrence of
dynamic knowledge. New objects might be discovered using incremental learning
methods with enough new cases and-the experts should be able to be aware of the
occurrence of these objects to acquire the knowledge of them again. The knowledge
acquisition systems should be capable of representing the dynamic knowledge.
Therefore, we propose Dynamic EMCUD combining the advantages of interviewing,
machine learning and knowledge acquisition systems to collect sufficient information

for assisting experts to be aware of dynamic knowledge.

3.1 The Concept of Dynamic EMCUD

As we know, generating rulesin EMCUD would be cost inefficient if the size of
Acquisition Table (AT) and Attribute Ordering Table (AOT) are too large. After

collecting sufficient information of new evolved objects, EMCUD has to manually
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regenerate the original and embedded rules to classify these new objectswith the large
main AT. Therefore, the concept of Dynamic EMCUD shown in Figure 3.1 is
proposed to help experts incrementally generate the dynamic knowledge based upon a
New Evolved Object learning (NEO-learning) module for enhancing the explanation

power of the original embedded knowledge base.

Log Knowledge Knowledge

Collecting Learning Polishing
w Main AT

NED-Iearniﬂgﬁ A Z

- , W, Ord ¥
. E VODKA "'LLI.‘I_LLI Merging Main ACT
4+

e Dynamic
AOT Increment Hase

Figure 3.1 The Coneept of Dynamic EMCUD

The dynamic knowledge base (embedded rule base) will be created according to
the original main AT and AOT table using EMCUD. Then the inference behaviors
(facts/attribute-value pairs) will be collected iteratively based upon the initially
constructed knowledge base to discover the candidates of the variants during Log
Collecting Stage. The NEO-learning module is proposed in Dynamic EMCUD,
including Variant Object Discovering Knowledge Acquisition (VODKA) and Trend
Evolution Acquisition (TEA) to help domain experts construct a small AT increment
and an AOT increment, respectively, after confirming the occurrence of new variant
objects in Knowledge Learning Stage. VODKA and TEA will be detailedly described

in Chapter 4 and Chapter 5, respectively.
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The ignored attribute-value pair of the minor attribute will be treated as an item
and a set of ignored attribute-value pairs will be treated as a transaction to discover
the association between interesting attribute-value pairs. The AT increment, which can
be generated by monitoring the frequency of the weak embedded rules using VODKA,
is used to record the new evolved objects and the attributes which are updated or
added to generate the dynamic knowledge. The AOT increment is used to help experts
to generate the adaptive relative importance of each attribute to each object as time
goes on by tracing the importance evolving trends of all attributes during a time
interval in TEA. Through integrating the AT increment and the AOT increment into
the main AT and the main AOT respectively using Grid Merging agorithm in
Knowledge Polishing Stage, it can generate the rules of new evolved objects with the
grid evolution ability using original EMCUD. The Dynamic EMCUD is shown as

Algorithm 3.1.

Algorithm 3.1 The'Bynamie EM CUD Algorithm

Input: The original main AT, AOT and embedded rule base RB.
Output: The rules with embedded meaning about variants.

Stage |: Collect al facts of the weak embedded rules as inference log of the RB.
Stage |1: Generate the new variants acquisition table AT".
Step 1: Discover largeitemsets L using the inference log.
Step 2: Generate AT’ using L and additional attributes provided by experts.
Step 3: Update the AOT’ according to AT
Stagelll: Use EMCUD to generate rules of new variants.
Step 1: Generate rules according to AT and AOT".
Step 2: Merge AT’ into original main acquisition table AT.
Step 3: Merge AOT into original main AOT.

3.2 Inference Log Collecting Based upon Meta Rule

Without loss of generality, assume there are k attributes to classify m objects in

the main acquisition table. Thus, the total number of the embedded rules used in
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Dynamic EMCUD is limited. In order to assist domain experts in noticing and
analyzing the occurrence of the candidates of variant objects, the following four meta
rules are used in Dynamic EMCUD to collect the frequent inference log (fact/ raw

data) of weak embedded rules to help experts notice the occurrence of new objects.

MRy IF Rjisfired THEN Increase C; ; by one.

MR:: IF CF(R j) £ THcr, THEN Log R.

MRs: IF Cij @ THent AND CR(Rj)) £ THer THEN Run VODKA Algorithm to
acquire the variants acquisition table increment AND Reset TimeOut.

MR4: | F TimeOut = THperiod THEN Run VODKA Algorithm AND Reset TimeOut.

The meta rule MR, is used to count the fired frequency of each embedded rule
(Gi))- The metarule MR, means that all facts (attribute-value pairs) of the embedded
rules with marginally acceptable CF lower than strong CF bound threshold (THcr) are
logged as a record, (Rij, A1, Ao, «4Ak, CH(Ri)). The meta rule MR: means that if
there exists one weak embedded rule with fired frequency exceeding the warning line
threshold (THcnt), new variants may be discovered-iteratively using VODKA. The
meta rule MR, means that VODKA will be executed periodically to refresh the new

variants acquisition table. The TimeOut will be reset when MR; or MRy is triggered.

3.3 TheNEO-Learning Module

As we know, the KBS is proposed to help experts solve the difficult problemsin
a specific domain based upon the pre-constructed static knowledge base. However,
the new objects will be developed or discovered as times goes on and might result in
the inefficiency of KBS. Based upon the embedded rules generated by EMCUD, some
new evolved objects may be classified into well-known object class by the weak
embedded rule with weak CF which is not strongly suggested by experts. Through
monitoring the frequency of these weak embedded rules, the candidates of new

evolutional objects might be discovered to notice the experts. Therefore, the
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characteristics of these candidates of new objects could be extracted from these
collected inference logs. The evidence of the new objects can be confirmed by experts
and some attributes could be modified and added when the dynamic knowledge is
needed to be singled out. Moreover, the relationships between these inference logs
might be represented as the significance of each attribute to each new object. Hence,
analyzing the evolving trends of all attribute should be useful in capturing the realistic

significance of the attribute to the object.

The NEO-learning module can help experts analyze the interesting inference logs
of weak embedded rules to learn the evidence of new evolved objects using the
VODKA to notice experts the occurrence of the new objects. Based upon the
confirmed new objects, the relationships. of all attributes of each object are analyzed
to set the significance of the attribute with the'times using TEA to help experts decide
the CF values of the embedded rules of -hew-objects, which can be generated using
EMCUD according to the discovered objects stored in an AT increment and an AOT
increment. Finaly, the AT increment and the AOT increment will be integrated with

themain AT and the main AOT, respectively.

3.3.1 Frequent Events Analysis

EMCUD lacks the ability of grid evolution for singling the new evolved objects
out of well-known objects since experts may be unaware of the occurrence of the new
evolved objects without sufficient information. Hence, we propose VODKA to
monitor the frequent behaviors of interesting inference logs of the weak embedded
rules with the lower CF values for helping experts notice the occurrence of the new

objects.
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Figure 3.2 The Flow of VODKA

The novelty of the VODKA shown in Figure 3.2 is to collect the inference logs of
weak embedded rules from each KBS to learn the candidates of new evolved objects
for experts to make a confirmation. The minor attribute-value pairs between inference
logs of weak embedded rules are useful to help experts discover new knowledge and
determine whether new object is evolved based upon fired frequency. For each object,
if its inference logs of weak embedded. rules are frequent, the frequent minor
attribute-value pairs could be' treatedjascandidates of new evolved objects.
Furthermore, new attributes or-attribute-values of the hew object could be defined and
used to generate a small AT increment. Hence, these candidates will be used to help
experts single the new objects out of the extended object class using the new object

acquisition module based upon the AT increment.

Therefore, if the new objects are confirmed by experts, the related ambiguous
attributes (minor attributes), which might result in the marginaly acceptable CF
values of weak embedded rules, could be refined or new attributes could be added to
improve the classification ability. If the initial data type of a minor attribute is too
rough to describe the object, a superior data type is recommended and the values of

the attribute in both original object and new evolved object should be modified.

For example, the BOOLEAN data type may be refined to SINGLE VALUE data
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type (Hwang and Tseng, 1990). If changing the data type still can not discriminate the
new variants from original objects, acquiring new attributes from domain experts will
be suggested in the new objects acquisition module. According to the complexity of
relations between objects and attributes or even the relations between different tables,
it is hard for experts to cooperate with each other in building every column and every
row for each table. Finally, the result of new objects and corresponding attributes can

be used to construct the AT increment.

3.3.2 Trend Evolution Analysis

Although the original idea of constructing AOT makes EMCUD more adaptive
to elicit embedded meanings, the relative importance of all attributes to each object
could be adjusted since the dynamic knowledge may change or evolve with the times.
It means that some embedded:-rules, which .are recommended by experts now, may
become uncertain in the near future.\Each-ebject inthe AOT is decomposed to record
the relative importance of each ‘attribute to-the object with the times. Since the
traditional Repertory Grid-based KA methods do not record the evolved trend of each
new object and the EMCUD is difficult in deciding the ordering of all attributes of the
object by experts, the TEA, which can discover the evolution of the relative
importance of each attribute to each object with the times, is proposed to help experts
monitor the significant importance changing of all attributes to each object in a time

interval.

As shown in Figure 3.3, the object can be singled out of the old object according
to the viewpoints of experts or the learning results of the frequency events analysis.

Each attribute can be simply assigned as “0” or “1” in each time point for indicating
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whether it is important to each object or not, where “0” represents the attribute is
considered as the unimportant attribute to the object and “1” represents the attribute is
important to the object. The domain expert can then decide which attributes are
required to be traced with the timesif some ordering values of the attributes are hard

to be decided immediately.

AT Experts

Increment n

of Obiect L "SiA;LiTI]E:lr::ce i Time Series |y I Aot
~ | Selecting SIE ; Analyzing *| Increment
Sequencing

Figure 3.3 The Flow of TEA

The “0” or “1” is called an attribute event & of each object in atime point t, and
the attribute event sequence of “0” ‘and7“L"is recorded in a table to capture the
evolved behavior of each object. Hence, the’ AOT increment can be generated for
evolving the relative importance of each attribute to each object (ordering values)
according to the sequence of “0” and “1” events with the times using a time series
analysis approach. Since the “1” means an attribute is important to an object, the
consecutive “1” recorded in consecutive time points indicates that relative importance
of the object should become higher. On the contrary, the consecutive “0” indicates
that the relative importance of the object should be lower. Hence, a simplified time
series analysis is proposed to capture the trend meaning and incrementally adjust the
CF value of each rule. Let the initial value of each signal sequence be the original

AQT value of the attribute to the object.
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3.4 Grid Merging

In order to maintain the new discovered new object, we propose grid merging
algorithm shown in Algorithm 3.2 to integrate the AT increment and AOT increment
into the main AT and the main AOT, respectively. Therefore, the small AT and the
small AOT instead of the whole large main AT and the main AOT are used to update

the embedded rule base using EMCUD.

Algorithm 3.2 The Grid Merging Algorithm

Input: The main AT, main AOT, AT increment AT, and AOT increment AOT .
Output: The updated main AT and main AOT

Stepl: Integrate the AT increment AT into the main AT.
Stepl.1: Append each new object_and.each new attribute in the AT as a new
column and row in the main AT, respectively.
Stepl.2: Ask expertsto fill the valuesiof:the'modified attributes of other objectsin
themain AT if necessary.
Stepl.3: Ask experts to examine the values of the new attributes of other objectsin
themain AT if necessary.
Step2: Integrate the AOT increment AOT linto the main AOT.
Step2.1: Expand the size of themain AOT according to the main AT updated in the
Stepl.
Step2.2: Fill the corresponding AOT values according to the AOT .
Step2.3: Refine the values of all old attributes to each old object in the main AOT
using the Trend Evolution Acquisition if necessary.
Step3: Reset the AT increment AT and the AOT increment AOT.

To merge the AT increment into the main AT, each new evolved object should be
appended as a new column in the main AT and each new added attribute should be
appended as a new row in Step 1.1. In order to maintain the correctness of the main
AT, the values of all modified or new added attributes to each object should be
acquired by expertsif necessary. Since the size of AOT need equal the size of AT, the
size of the main AOT should be expanded in Step 2.1 according to the main AT
updated in Step 1. Besides the value of all attributes to each new object in AOT

increment, the other values of al old attributes to each old object could also be
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learned using the trend evolution analysis to obtain the relative importance at time t.

3.5 Collaborative Framework of Dynamic EMCUD

Although the VODKA and TEA in Dynamic EMCUD can be used to single the
new objects out of extended object class and to generate their corresponding rules
with adjusted CF values, the CF value of embedded rules of these objects might be
inconsistence since they might be in different environments. Therefore, a
collaborative knowledge acquisition framework, which is consisting of several local
KBSs and a collaborative KBS, based upon Dynamic EMCUD is required to integrate
the knowledge discovered in every local KBS Moreover, some new evolved objects
which may occur infrequently in each local KBS (but may be frequent in the
collaborative KBS) can not be. foundssHence, how to collect sufficient context
information to notify experts-ofi the occurrence of“the dynamic knowledge is an
important issue. Therefore, the collaborative knowledge acquisition framework can
collect the relevant information as time goes onand help experts discover these new

obj ects based upon sufficient context.

3.5.1 The Framework of Collabor ative Dynamic EMCUD

In a dynamic environment, a collaborative Dynamic EMCUD framework shown
in Figure 3.4 is proposed to analyze the correlations of interesting inference logs of
embedded rules between multiple local KBSs in a dynamic environment to discover
the new evolved objects. Each KBS can monitor the frequent inference behaviors of
weak embedded rules to construct an AT increment and analyze the significant change
of the importance to evolved objects to construct an AOT increment for adjusting the

relative importance of each attribute to each object with the times. Several heuristics
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are proposed to help experts adjust the CF values of the discovered knowledge of the

new evolved objects from the collection of inference logs.
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Figure 3.4 The Framework of Collaborative Knowledge Acquisition

Evoututional KB

As we know, the expert system and KBS are usually designed for solving the
difficult problems in a specific domain..In Figure 3.4, each KBS may have different
configurations to represent such'kind of expert systems or KBSs with an embedded
rule bases. When the system is operating, some inference logs of cases including old
and new will be recorded. By analyzing the relationships between these inference logs
using the collaborative heuristics with sufficient context information, the occurrence
of candidates of dynamic knowledge could be discovered. The collaborative
framework consists of log collector, Dynamic EMCUD, collaborative analyss,
knowledge integration, and Profiles to learn the knowledge of dynamic behaviors and

to record the configurations of different environment.

Dynamic EMCUD is deployed in each loca KBS and collaborative KBS to
discover significant variant knowledge by monitoring the inference behaviors of weak
embedded rules. Moreover, the sequence of inference log will be considered to
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discover the relations between similar embedded rules to monitor the occurrence of
evolutional knowledge as time goes on. All discovered information will be collected
and further analysis using collaborative analysis by considering the static profiles and
dynamic behaviors stored in Profiles, since some insignificant variant or evolutional
knowledge might evade the frequency-based and time-based analysis. Finally, the
Dynamic EMCUD will incrementally integrate the discovered evolutional knowledge,

which is confirmed by experts, into the evolutional knowledge base.

Some new evolved objects may occur in some KBSs with similar profiles, e.g.,
the SQL server running on Windows operation system, the correlations between
inference logs and profiles might be useful for helping experts discover them. Finally,
for the discovered object, the CF value of the, new embedded rule should be
recalculated. Hence, a CF adjusting method is proposed to combine the knowledge of

new objects discovered in each- KBS and-the collaborative KBS,

3.5.2 The Category of Context I nformation

Since substantive knowledge can evolve within the dynamic environment as time
goes on, how to acquire and represent the dynamic context information becomes an
important issue. The context information can be classified into two categories: static

profiles and dynamic behaviors information.

(1) Static Profile:
In the real world, the environment includes individuals, the relationships between
individuals, and the related configurations. The environment could be considered as a

collection of network properties and each individual has its own properties in the
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environment. Therefore, the static profile can be considered as environment
configuration and individual configuration. The environment configurations describe
the environment, members in the environment, the status of the environment, and
other relative properties rely on the selected domain. The individual configurations
describe the individual 1D, Location, Role of individual, and other relative properties
depending on the domain. Through the static profile, we could classify the knowledge

occurred in similar configuration.

(2) Dynamic Behaviors:

Some knowledge will evolve to adapt the dynamic environment due to the natural
of knowledge evolution. By clearly representing the behaviors of individual and
environment, the trend of individual and environment can be easily acquired. The
individual trend consists of the,seguence of status of each time period and the
occurrence of events pair. Also; the other-relative properties should be also considered
in each domain. Like the individual trend, the evolutional trend is also combining the
sequence of environment statuses and other properties to analyze the trend of

environment for capturing evolutional knowledge.

Aswe know, XML is a standard language that is understandable. We design an
XML based language that facilitates the machine readability for the collaborative KA
framework to model the context information. In this model, not only the static profile
but also the dynamic behaviors can be modeled using XML based description because
the structure of XML is regular expression. Furthermore, the stored context can be
easily reused, and the representation can be extended to describe new added

properties of individual or environmental profile and behaviors due to the
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standardized property of XML.

3.5.3 The Collaborative Heuristics

Since some invisible or unrecognizable behaviors might be ignored without
sufficient information, collaborative multiple KBSs to collect more evidence of
evolutional knowledge becomes more important. The static profile and dynamic
behaviors of individual and environment could be used to help discover evolutional
knowledge since they could assist experts to trace of changing behaviors. The static
profile can be used to analyze which kinds of behaviors could occur in the different
profiles since some behaviors might exist in similar environment. The dynamic
behavior can be used to analyze the similar behaviorsin different environment as time
goes on. Based upon the collection of the sufficient,context information including the
unrecognizable or invisible behaviors in single sensor to discover the evolutional
knowledge, the static profile and dynamie-behaviors of individua and environment
could be used to help discover evelutional knowledge. Four collaborative heuristics
for discovering dynamic knowledge and three collaborative weighting heuristics for
collecting sufficient evidence from multiple sensors are proposed to analyze the

relationship between them.

Dynamic Knowledge Heuristics:

(1) Environment-Insensitive Heuristic: similar behaviors results to similar
symptoms in different profiles. This is useful to consider the frequency context
information to discover variant knowledge.

(2) Service-Sensitive Heuristic: similar behaviors result to different symptoms due

to different profiles. This is used to analyze the relationships between collected
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3)

(4)

events by comparing with the corresponding profiles.

Symptom-Sensitive Heuristic: different behaviors result to similar symptoms due
to polymorphic (similar) profiles due to the similar living conditions is existence.
These similar behaviors should be considered the same to obtain more evidence
to discover the occurrence of evolutional knowledge.

Time-Sensitive Heuristic: different behaviors result to different symptoms in
polymorphic (similar) profiles due to the evolution of behaviors in the changing

environment. Thisis useful to trace the behaviors for discovering the evolutional

knowledge.

Collabor ative Weighting Heuristics:

(1)

(2)

3)

Half-life-sensitive Heuristic: Adventitious behaviors disappear in a long time
and the significant of the‘behaviors should be degraded for adapting knowledge
base. This is useful to avoid the interference with adventitious events in a time
period for discovering evolutional knowledge.

L ocation-Sensitive Heuristic: behaviors occurred in different sensors should be
considered as different evidence, since different sensor may play different rolein
different location. The importance need to be considered to adjust the discovered
evidence.

Attribute-Sensitive Heuristic: different attributes evolution should be considered
as different evidence since the relative importance of each attribute to each
object is various. An attribute might be the key factor of evolutional knowledge

and hence needs to be considered as the most important evidence.

For example, the SQL Slammer uses UDP port 1434 to exploit a buffer overflow
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inaMS SQL server to simply switch off this port of the victim host. The collaborative
KBS can learn this knowledge based upon the infrequent logs reported from some
local KBSs according to the same service stored in profile. Some new objects may

occur in similar environment.

These heuristics will be applied in the NEO-learning module to assist experts in

being aware of the occurrence of new evolved objects.

3.6 Implementation of Dynamic EM CUD

Dynamic EMCUD is implemented by DRAMA [46], a new object-oriented rule
base system platform implemented using. pure Java language, to refine the embedded
rule base by observing the behaviors ofsweak. embedded rules. It includes DRAMA
Server, Console, Knowledge Extractor, and Rule Editor. Also, it provides Application
Programming Interface (API) to access DRAMA server in DRAMA integrated systems.
There are four basic relations between-knowledge concepts defined in DRAMA:
Reference, Extension-of, Trigger and Acquire. The Reference relation represents the
association of two different knowledge classes (KCs) if the KCs have common piece
of knowledge, which is useful for using original knowledge to construct new
knowledge. Extension-of relation is used to extend or modify the KC constructed by
other people, which is useful for knowledge sharing and exchanging. The Trigger and
Acquire relations are used to represent the interaction of different KCs. The Log
Collecting Stage is encoded by meta-rules according to the specific domain in
DRAMA; the VODKA, TEA, Grid Merging and EMCUD are implemented using the
JSP to make a communication channel using the APl provided by DRAMA. We

implemented a worm detection prototype system to evaluate the performance of
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Dynamic EMCUD to incrementally integrate evolved knowledge into knowledge base

in Chapter 6.

In this chapter, the Dynamic EMCUD based upon Repertory Grid is proposed to
elicit the embedded meanings of knowledge. Dynamic ENCUD can generate an AT
increment and an AOT increment to represent the evolved objects and to record the
relative importance of each attribute to each object for capturing the embedded
meanings with acceptable CF value by relaxing or ignoring some minor attributes.
Dynamic EMCUD can monitor the frequent inference behaviors of weak embedded
rules to construct an AT increment for classifying variant objects and analyze the
significant change of the importance to evolved objects to construct an AOT
increment for evolutional objects by adjusting -the relative importance of each
attribute to each object with the times .Moreover, a collaborative knowledge
acquisition framework will be proposed-to-anayze the correlations of interesting
inference logs of embedded rules between multiple KBSs with Dynamic EMCUD in a

dynamic environment to discover the new evolved objects.
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Chapter 4

Variant Knowledge Acquisition

The Dynamic EMCUD based upon Repertory Grid is proposed in Chapter 3 to
elicit the embedded meanings of knowledge by the generation of the AT increment of
new evolved objects using VODKA by relaxing or ignoring some minor attributes.

The details of VODKA are given as follows.

4.1 1dea

Although EMCUD and other similar approaches could be manualy rerun to
acquire variant knowledge from domain experts'to classify new variant objects, it
might be costly and hard to obtain the knowledge due to the insufficient information
about variants. As mentioned above, assume some objects in O; class belong to the
original object class (O0;) of O,, which can be classified by original rules of O;. The
other objects in O; class classified by embedded rules of O, belong to the extended
object class (EO,) of O;, where OO, I  EO;. Inthe EO,, some evolved objects can
be classified by the embedded rules of O; with weak CF values, which are singled out
to be a variant object class (VO;) of O; with the significant attributes emerged from
minor attributes. That is, VO; I EO; and VO;1 C OO, = f, where 1 £ £ m. Because
the embedded rules with diverse CF values represent different supports to classify
objects, the ones with marginally acceptable CF might be triggered by some candidate

of a new variant. Therefore, our idea is to analyze the inference behaviors of weak
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embedded rules (the weak suggestion by experts) to construct the new variants

acquisition table for extracting new variant knowledge.

4.2 Variant Objects Discovering Knowledge Acquisition (VODKA)

After the interested inference logs are collected, the acquisition table increment
of new objects will be generated through interacting with domain experts based upon
the observation of inference log. An ignored attribute-value pair, i.e. (DoStype= TCP
flood), is treated as an item and the transaction is represented as a set of ignored
attribute-value pairs, i.e., {(DoS type = TCP flood),(TCP port = {135;4444})}. The
inference log could be automatically transformed into the transaction database (D)
and the item set (1) using the Mask Table of .ignored attributes. In order to obtain the
candidates of new variants, we apply Aprioritalgorithm [1][2] to discover the large

itemsets (L) for providing more useful information.

After generating the large itemsets;-new variants acquisition table might be
elicited based upon the new variants acquiring agorithm. The new objects using
unclear attributes would be singled out accordingly, if the experts reconfirm the
addition of the new variant object. Thus, one of three recommendations including
adding a new attribute-value of a minor attribute, modifying the data type of a minor
attribute, adding a new attribute, will be further given to adjust the main acquisition
table. If a new evolved variant object is singled out, the new attribute-value of the
minor attribute could be added to represent the characteristic of new objects. If the
initial data type of certain attribute is too rough to describe the object, a superior data
type is recommended and the values of the attribute in both original object and variant

should be modified.
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For example, the BOOLEAN data type may be refined to SINGLE VALUE data
type [34]. If changing the data type still can not discriminate the new variants from
original objects, acquiring a new attribute from domain experts will be suggested in
VODKA. Thus, the new variants acquisition table will be created iteratively using the
discovered large itemsets of VODKA shown in Algorithm 4.1. However, adding a new
attribute, which is very time consuming to create new row in new variant acquisition

table, is the last choice for classifying variant objects.

Algorithm 4.1 VODKA Algorithm

Input: Inference log and the main acquisition table T, the minimal support d.
Output: The new variant object class' VO, new. attribute set AN, and new variants
acquisition table T".

Step 1: Transform inference log into the transaction data set D.
Step 2: Discover large itemsets L by d using D.
Step 3: For each large itemset, ask experts-to-determine whether it belongs to new
variant or not.
Step 4: If new variant is confirmed, ask.experts to acquire the related information
about new variant.
Store VOnew in VO.
Add a new column to represent the new variant VOyew in T
Ask experts to confirm whether changing the data type of the attribute A is
needed or not, where1 £i £ k.
Step 4.1: If no data type needs to be changed, Suggest the Recommendation |.
Add anew attribute-value of A; of the VOpen.
Else, ask experts to confirm whether adding a new attribute is needed or not.
Step 4.2: If no new attribute needs to be added, Suggest the Recommendation |1 to
modify the data type of A.
Ask experts to acquire the mapping function of values between original
and new data types.
Add a column in T' to represent the origina object with new mapping
values.
Else, Suggest the Recommendation I11.
Ask experts to acquire the values of the new attribute Anew-
Add anew row in T' to represent the new variant Anew.
Store Anew in AN.
Add a column in T to represent the original object with new
attribute-value if needed.
Step 5: Return VO, AN, T
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Besides interaction with domain experts, the computational cost of the algorithm
is dependent on the Step 2. The size of collecting inference log and minimal support
threshold setting will affect the computational cost. For different type of inference log,
different learning methods can be selected to learn and discover the candidate

behaviors of variants.

Example4.1 The Variant L ear ning Example of a Blaster Worm

In this example, assume the fired sequence of some embedded rules of Blaster

worms with marginally acceptable CF values are given in Table 4.1.

Table 4.1 The Partial Infer ence.L ogs of Blaster

Rule # A A, A3 Ay Asg ObjeCt CF
Res | 17 | Fase V\ﬁ”dc;‘l"’o‘:‘)g =" & X | Blaster | 03
Ry, | 100 | False "‘””dof‘l’vof);’pda‘e ~ | {135} | Blaster | 043

Windows Update
Ry, | 119 | Fase V‘””dof‘l’vof)gpdme {4444} | Blaser | 043
Rie | 17 | Fase V\””dof‘l’voﬁpdﬁe X | Blaster | 03
Rz | 100 | Fase | \indows pdae {135} | Blaster | 043
Ry | 11 | False Vw”dof‘l’voﬁpdate X Blaster | 0.3
Riz | 76 | Fase | \MnOwsUpdde {4444y | Blaster | 043
Windows Update
Ry, | 100 | False V‘””dof‘l’vof)gpdme {135} | Blaster | 043

Assume minimal support is set to 30%; the large itemsets L including L; = {(A2=
False); (As= X)} and L= {(Ax= False, As= X)} will be provided to experts for

further recommendation; i.e, L will be used to generate the acquisition table



increment AT according to the recommendations suggested by VODKA.
VODKA: Does the attribute-value pair (A, = False) belong to any new variant
object?
EXPERT: Yes. /* It means that a new variant contains the selected attribute-value
pair (A;= False). Otherwise, the large itemset is discarded and another large itemset
is chosen to examine. */
VODKA: What is the name of the new variant object?
EXPERT: VOpew

A new column will be added in AT’ to represent the variant, VOnew, Separated
from the original object.
VODKA: Isthe datatype of A, required to be changed?
EXPERT: No. /* It means the data type no_need to change after adding new variant
(Recommendation I). Otherwise; VODKA will ask the following question. */

The row representing A, with new-attribute-valtie and one column representing
the variant object will be created in‘AT".
VODKA: Isany new attribute required to be added?
EXPERT: No. /* It means no need to add new attribute and Recommendation 11 is

then suggested. Otherwise, VODKA will suggest Recommendation I11. */

Recommendation 11:
VODKA: What is the new name and new value set of the attribute A?
EXPERT: Npmew Vomew /* For each old value in A;, VODKA will ask experts to
define the mapping between old and new value sets. */
The row representing A, with new mapping values and two columns representing

the original and variant objects will be created in AT".
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Recommendation I11:
VODKA: What is the name and value set of the new attribute-value pair?
EXPERT: Anews AView. I* VODKA will ask experts to provide a set of values (AVnew)
of the new attribute Anew. */

A new row representing the useful attribute namely Anew with a set of vaue
(AVhew) and two columns representing original object and new variant will be added in

AT,

If all large itemsets are confirmed, the acquisition table increment AT’ can be
integrated into the main acquisition table and the corresponding embedded rules of
discovered variant object can be generated using EMCUD in the Knowledge

Polishing Stage.

4.3 TheAnalysisof VODK A

The cost of running VODKA can be divided into two categories. computational
cost and interaction cost. Assume there are k attributes to classify m objects in the
origind main acquisition table, where the grid size is k*m. For simplifying our
discussion, we use ER¢m to represent the total number of embedded rules in the

classification KBS, where ER < N 2~.

In Log Collection Stage, assume n instances are matched by the classification

KBS For each instance, it has Pe probability to be classified by weak embedded rules;

hence the size of interesting inference log database in VODKA isn * Pe.
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In Knowledge Learning Stage, the computational cost of VODKA is dominated
by the learning algorithm we selected. In this dissertation, Apriori algorithm is used to
learn the candidates of variant worms. Hence, the computational cost is O(Aproori).
For example, if the size of database has n transactions (each transaction has k
attributes) and the maximal length of large itemsets is len, then the time complexity of

traditional Apriori algorithm is O(n*k*len).

Assume L large itemsets are discovered and used to notify experts to determine
the existence of the variants. For each embedded rule, assume it has P, probability to
evolve a variant; hence P,* ERm, denoted V, variants might be discovered. Therefore,

the order of interaction with expertsisV, where V< L.

In Knowledge Polishing Stege; the Grid-Merging.integrates new acquisition table
into original acquisition table. The computational cost of Grid Merging for generating
rules is dependent on the size “of ;acquisition- table increment (GRID), denoted
O(GRID). For example, using our Dynamic EMCUD to generate embedded rules, it
costs 0.05 ms ~ 0.15 ms to generate one rule. Figure 4.1 shows that the time of
generating rules using different grid size. The computational time is approximately
linear growing when setting a fixed attribute number with different number of objects
in Figure 4.1 (), and the growth rate is exponential when setting a fixed object

number with different number of attributesin Figure 4.1 (b).
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Figure4.1 The Time of Generating Rules Using Different Grid Size

In short conclusion, the cost of VODKA consists two parts. computational cost
and interaction cost. The size of interesting inference log database: n * Pe.
® Computational cost: O(Apriori) + O(GRID).

® |[nteraction cost: V.

4.4 Experiments

With the rapid development of. network* technology, the network security
becomes one of the most important issues today. To prevent network environment
from intrusions, lots of researches and different systems are proposed to detect, filter,
or prevent intrusions properly. In recent years, computer worms are grown
dramatically to influence the wild computer networks due to the property of easily
modifying the source code of origina computer worms to create new variant for
escaping the detection of related systems, e.g., Symantec Norton [72], Network
Viruswall [74], etc. The detailed description of computer worms will be shown in
Chapter 6. The case study of computer worms is used to evaluate the performance of

VODKA.
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In our worm detection prototype system, the knowledge of computer worms can
be divided into several KCs, including the service provided by host may be infected
by certain worms and then produced some symptoms in host or network. The related
attributes of various computer worms can be collected by some probe tools and used
to evaluate the ability of VODKA, which deployed in the prototype system. The

details will be described in Chapter 7.

The following example shows the variant objects in this domain can be
discovered by VODKA, where THcnr is set to 4, THcr is set to 0.7, and the minimal

support is set to 30%.

Recommendation |: Elicitation.new variants by-adding a new attribute-value of a
minor attribute

Nimda worm, a famous Email. fleeding-worm, can be propagated to victims
through the attached files in email.“By.monitoring the attached filename in email, we
can discover the large itemset L = (A= readme.exe) shown in Table 4.2 according to

the embedded rule Ry 1 in Table 2.6.

Table 4.2 The Partial Inference Logs of Nimda

Rule # A A, Aj Ay Asg ObJeCt CF
Ri1 6 True | Email flood | readmeexe | {137} Nimda | 0.4
Ri1 300 | Fase | Emall flood | samplel.exe | {25} Nimda | 0.4
Ri1 17 True | Email flood | readmeexe | {137} Nimda | 0.4
Ri1 14 False | Email flood | readme.exe {25} Nimda | 0.4
Ri1 4 False | Email flood | readme.exe | {445} Nimda | 0.4
Ri1 19 False | Email flood | readme.exe {80} Nimda | 0.4
Ri1 44 False | Email flood hash.exe {25} Nimda | 0.4
Ri1 38 True | Email flood | readmeexe | {138} Nimda | 0.4
Ri1 300 | Fase | Email flood inter.exe {25} Nimda | 0.4
Ri1 28 False | Email flood | readme.exe {25} Nimda | 0.4
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Based upon the large itemsts, VODKA will ask the following questions.

VODKA: Does the attribute-value pair (A,= readme.exe) belong to any new variant
object?

EXPERT: Yes.

VODKA: What is the name of the new variant object?

EXPERT: Nimda.B.

VODKA: Isthe datatype of A, required to be changed?

EXPERT: No.

Consequently, the new variant acquisition table of Nimda.B shown in Table 4.3

will be generated through interviewing with the experts in this iteration.

Table 4.3 The New Variant-Aequisition Table of Nimda.B

Object 3
Attributes J il
Threads X
System Reboot X
DoSType Email flood
Mail _Attachment |{readme.exe}
TCP Port X

Hence, an original rule “IF (DoS type = Email flood) AND (Mail_Attachment =
(readme.exe)) THEN Nimda.B, CF=0.8" and an embedded rule “IF (DoS type =
Email flood) AND - (Mail_Attachment = (readme.exe)) THEN Nimda.B, CF=0.5" of
the Nimda.B will be generated using EMCUD based upon the Nimda.B acquisition

table.
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Recommendation I1: Elicitation new variants by changing the data types of
attributes

In the priori generation of CodeRed worm, generating numerous threads to attack
the victim through launching TCP flooding is one of the famous characteristics.
Hence, it is useful to detect the CodeRed by analyzing the generated anomaly threads
in the protected system. For the partia inference logs of CodeRed shown in Table 4.4,
the following shows the values in Boolean data type will be logged as the integer

value of the attribute A; instead of True/False value.

Table 4.4 The Partial Inference Logs of CodeRed

Rule# A A, As Ay Asg ObjeCt CF
R, 150 | True | TCRflood - {80} CodeRed | 0.4
R, 600 | True | ,TCPflood - {80} CodeRed | 0.4
Ro1 300 | False [*TCPflood - {80} CodeRed | 0.6
Rz2 600 | Trues| TCPflood k {80} CodeRed | 0.4
Rz2 150 | True=| 'TCPflood - {80} CodeRed | 0.4
Ro1 300 | False | TCRflood - {80} CodeRed | 0.6
R, 600 | True=|. TCP-flood - {80} CodeRed | 0.4
R, 600 | True 1. TCP.flood - {80} CodeRed | 0.4
R, 600 | True | TCRflood - {80} CodeRed | 0.4
R, 300 | True | TCPflood £ {80} CodeRed | 0.4

Using above inference log, the large itemset L = (A1 = 600) can be discovered
based upon the embedded rule R, since the minimal support 30% is satisfied. Then,

VODKA will ask the following questions.

VODKA: Does the attribute-value pair (A; = 600) belong to any new variant object?
EXPERT: Yes.

VODKA: What is the name of the new variant object?

EXPERT: CodeRed.Il.

VODIKA: Isthe datatype of A; required to be changed?
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EXPERT: Yes

VODKA: Isany new attribute required to be added?

EXPERT: No.

VODKA: Can the Sngle Value data type be used to change the original Boolean data
type of A;?

EXPERT: Yes.

VODKA: What isthe new name and new value set of the attribute A;?

EXPERT: Threads, (100, infinite).

VODKA: What is the new vaue of the origina True value of the attribute A; in
CodeRed?

EXPERT: 100.

Therefore, the new variant acquisition table of CodeRed.Il shown in Table 4.5

will be generated.

Table 4.5 The New Variant Acquisition Table of CodeRed.I1

Objects
Attributes CodeRed | CodeRed.Il
Threads 300 600
System Reboot True True
DoSType TCPflood | TCPflood
Mail_Attachment X X
TCP Port X X

Consequently, an original rule “IF (Threads = 600) AND (System reboot = True)
AND (DoS type = TCP flood) THEN CodeRed.Il, CF 0.9” and an embedded rule “IF
- (Threads = 600) AND (System reboot = True) AND (DoStype = TCP flood) THEN

CodeRed.Il, CF=0.3" will be generated to classify the CodeRed.I1.

52



Recommendation I11: Elicitation new object through adding new attributes

As mentioned in Example 4.1, we can obtain the large itemsets L = {(A;= False);
(As= X); (A= False, As= X)}, which will be used to €licit the embedded rules of the
new variant. The symbol “X” means no attribute-value of As islogged, similar to “ Do
not care” attribute, and (A, = False, As= X) will also be pruned too. Therefore, the
VODKA will ask the following questions.
VODKA: Does the attribute-value pair (A; = False) belong to the new variant object?
EXPERT: Yes.
VODKA: What is the name of the new variant object?
EXPERT: Blaster.B.
VODKA: Isthe datatype of A, required to be changed?
EXPERT: Yes.
VODKA: Isany new attributerequired to be added?
EXPERT: Yes
VODKA: What is the name and value set of the new attribute?
EXPERT: UDP port, (0, 65535).
VODKA: What is the value of the UDP port attribute in Blaster.B and Blaster?
EXPERT: 69, X (means Do not care).

Hence, the Blaster.B acquisition table shown in Table 4.6 is generated.

Table 4.6 The New Variant Acquisition Table of Blaster.B

Objects
Attributes Blaster Blaster.B
300-thread (A,) X X
System Reboot (A,) True Fase
Windows Update Windows Update
DoSType (As) flood flood
Mail_Attachment (A4) X X
TCP Port (As) {135;4444} {135;4444}
UDP Port (A) X 69
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Consequently, a new original rule “IF (System reboot = False) AND (DoStype =

Windows update flood) AND (UDP port = {69}) THEN Blaster.B, CF=0.8" and an

embedded rule “1F (System reboot = False) AND (DoS type = Windows update flood)

AND - (UDP port = {69}) THEN Blaster.B, CF=0.5" of new variant Blaster.B will be

generated to classify Blaster.B.

Table 4.7 TheAdjusted Main Acquisition Table of Simple Computer Worms

Objects | Nimda | NimdaB | CodeRed | %R | glager | BlasterB | Welchia | WEChi2
Attributes A1 I
Threads X X 100 600 X X X X
System X X True True True False True True
reboot
Windo
. Windows
Email . TCP. ws ICMP ICMP
DoStype flood Email flood fiood TCPflood Update Update flood flood
flood
flood
Mail_Attac .{samle.exe {readme,exe X X X X X X
hment ; putallscr} }
{135;444 |{135;4444 | {80;135 [{80;135;4
TCP port X X X X 2 ) ) 45:3127)
UDP port X X X X X 69 X X

As shown in Table 4.7, four variants (Nimda.B, CodeRed.Il, Blaster.B, and

Welchiall) have been successfully singled out using VODKA after severa iterations.

Table 4.8 shows the AOT table after interacting with domain experts manually using

EMCUD

Table 4.8 AOT Table of Simple Computer Worms

Objects
Attributes

Nimda

Nimda.B

CodeRed

CodeRed.

Blaster

Blaster.B

Welchia

Welchia.

Threads

X

2

X

System
reboot

DoStype

Mail_Attac
hment

TCP port

X|X| ~ |O| X

X|X| ~ |O| X

XX X (k| », [N

X| X[ X [,k ~

Xk X [N N

R X (M N [X

UDP port

XN X (kN

XN X [k N |X[Z
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Table 4.9 shows the new embedded rule base of the discovered variants and
origina worms. If more real instances can be used, the embedded rule base will

evolve and become more precise for classifying the computer worms.

Table 4.9 The Rules Generated from Table 4.7 and Table 4.8

Rio: IF (DoS type=Email flood) AND (Mail_Attachment=(sample.exe;putal!scr)) THEN Nimda,
CF=0.8

Ry IF (DoS type=Email flood) AND (Mail_Attachment = - (sample.exe;putal!scr)) THEN Nimda,
CF=0.4

Ryo: IF (Threads=300) AND (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed,
CF=0.8

Rz1: IF (Threads=300) AND - (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed,
CF=0.6

R2,: IF = (Threads=300) AND (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed,
CF=0.4

Ry IF (Threads=300) AND - (System reboot=True) AND - (DoS type=TCP flood) THEN CodeRed,
CF=04

Rso: IF (System reboot=True) AND (DoS type=Windows update flood) AND (TCP port={ 135;4444})
THEN Blaster, CF=0.7

Rs1: IF (System reboot=True) ANDB' (DoS type=Windows update flood) AND - (TCP
port={ 135;4444}) THEN Blaster,,CF=0.57

Rs2: IF (System reboot=False) AND (DoS type=Wirndows update flood) AND (TCP port={ 135;4444})
THEN Blaster, CF=0.43

Rss: IF (System reboot=True) ;AND = (DoS type=Windows update flood) AND (TCP
port={ 135;4444}) THEN Blaster, CF=0.43

R IF (System reboot=False) AND k(DoS. type=Windows update flood) AND - (TCP
port={ 135;4444}) THEN Blaster, CF=0.3

Rso: IF (System reboot=True) AND (DoS type=I€MP:flood) AND (TCP port={80;135}) THEN
Welchia, CF=0.8

R41: IF (System reboot=True) AND = (DoS type=ICMP flood) AND (TCP port={80;135}) THEN
Welchia, CF=0.67

R4z IF (System reboot=True) AND (DoS type=ICMP flood) AND - (TCP port={80;135}) THEN
Welchia, CF=0.53

R4 IF (System reboot=True) AND - (DoS type=ICMP flood) AND - (TCP port={80;135}) THEN

Welchia, CF=0.4

Rso: IF (DoS type=Email flood) AND (Mail_Attachment =readme.exe) THEN Nimda.B, CF=0.8

Rs1 IF (DoS type=Email flood) AND - (Mail_Attachment = readme.exe) THEN Nimda.B, CF=0.5

Rso: IF = (Threads=600) AND (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed II,
CF=0.9

Rs1: IF (Threads=600) AND (System reboot=True) AND (DoS type=TCP flood) THEN CodeRed I,
CF=0.3

R;o: IF (System reboot=False) AND (DoS type=Windows update flood) AND (UDP port={69}) THEN
Blaster.B, CF=0.8

R;1: IF (System reboot=False) AND (DoS type=Windows update flood) AND - (UDP port={69})
THEN Blaster.B, CF=0.5

Rso: IF (System reboot=True) AND (DoS type=ICMP flood) AND (TCP port={80;135;445;3127})
THEN Welchiall, CF=0.8

Rg1: IF (System reboot=True) AND (DoS type=ICMP flood) AND - (TCP port={80;135;445;3127})
THEN Welchiall, CF=0.5
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In order to evaluate the effectiveness of VODKA, we apply VODKA on the
e-learning application and replace the sequencing mining approach in this case study

inthe Appendix F.

In this chapter, we proposed VODKA methodology to iteratively discover the
new variants objects through observing the behaviors of those embedded rules with
marginally acceptable CF to assist domain experts in singling the variant objects out.
Each iteration collects the sufficient inference behaviors of weak embedded rules and
proposes three recommendations, including adding a new attribute-value of an
attribute, changing the data type of an attribute, or adding a new attribute, to help
experts discover the new variants according to the learned large itemsets. Additionally,
we use Grid Merging to integrate the new_variants acquisition table into the main
acquisition table for adapting the,weak embedded-rules. A computer worm detection
prototype based upon DRAMA has—been—implemented and deployed in an
experimental environment to evaluate the performance of VODKA. The results show
that new worm variants can be singled out of the corresponding extended worm object
classes after the occurrence of worm instances in collected inference logs. Also, an
e-learning case is shown that the variant learning behaviors can be discovered to assist

teachersin preparing new learning content and learning sequence.
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Chapter 5

Evolutional Knowledge Acquisition

Although VODKA is useful to discover variant knowledge, it is still weak to
discover the insignificant variant or the variant evolutional trend as time goes on.
Hence, we propose Trend Evolution Acquisition (TEA) using time-based tracing
technology to help experts trace the evolution of variants and generate new
evolutional knowledge to adjust the, CF walue of origina embedded rules in each

iteration of Dynamic EMCUD.

5.1 Trend Evolution Analysis

TEA not only applies VODKA to help experts construct the Attribute Signaling
Table (AST) of each object but also offers more robust information to learn the
evolutional knowledge according to the evolved sequences of objects over time in a
dynamic environment. The method focuses on maintaining an AOT increment of
objects in EMCUD to represent the evolutional behaviors of each object which is
evolved as time goes by. An AOT increment records the relative importance of each
attribute to each object for capturing the embedded meanings with acceptable CF

value by relaxing or ignoring some minor attributes.

TEA consists of two Steps including Unfolding Step and Reconstructing Step to

complete the adoption of AOT by monitoring the trend of inference behaviors. The
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Unfolding Step is used to decompose the original AOT into several AST to keep the
trend evolution of each attribute to each object, and The Reconstructing Step is used

to construct the adoption of each AOT value in dynamic AOT according to an AST.

5.2 Capturing Evolutional Trend Using AST

As mentioned before, VODKA did solve severa main problems in EMCUD but
still not enough. Although the original idea of constructing dynamic AOT makes
EMCUD more adaptive to elicit embedded meanings, it may difficult to assign the
ordering valuesto al attributes since the knowledge is considered dynamic not static.
It means that some rules today may become uncertain in the near future and vice versa.
Moreover, VODKA learns the rules without CF values, and if the CF value is not
adaptive in the past few days then it may-encounterinefficiency in learning the variant

object.

Although the AOT using in EMCUD-enhances the ability of partially matchingin
initially embedded rule base to extend the coverage of recognized variant objects,
however, it is still weak to immediately response the changing of environment
according to the anayzing results of inference behaviors. Hence, TEA is to
automatically adjust the AOT value according to tracing the trend of the evolutional
behaviors in the changing environment. The importance of some minor attributes to
each object might change in each time point according to the experts’ point of view or
the learning results from VODKA. Hence, a Boolean value can be simply assigned as
“0” or “1” to each attribute in each time point, where “0” represents the attribute is
considered unimportant to the object while “1” represents important to the object in

this time point.
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The“0” or “1” is called an attribute event e of each object in a time point t, and
the attribute event sequence of “0” and “1” is recorded in AST to capture the evolved
behavior of each object. Hence, the AOT increment can be generated for evolving the
ordering values of attributes according to the sequence of “0” and “1” events recorded

in AST with the times.

Obj1 | Obj2 | Obj3 | Obj4

At e > ? ?

ALt2 ?

A3 ?

PIANN

Obj | Obj | Obj | ... Obj | Obj | Obj | ... Obj | Obj | Obj | ...
11112 |13 21 (22 |23 3132 33

Att1 0 1 1 Aft1 1 0 1 Att1 0 1 0
Att2 1 1 0 .. Att2 0 0 o] Att2 1 1 1
A3 1 1 1 Aft3 0 0 1 A3 | 0 0 0

Figure 5.1 Unfolding Step of Constructing AST

The Unfolding Step of construction AST shown in Figure 5.1 records each
specific information in each time point. Each entry can be filled by experts manually
or by VODKA automatically according the observations of evolutiona evidence of
each object. The importance degree values of attributes to objects might change in

different time points in a dynamic environment.

Not al the attributes are considered to be working well with the mechanism
because of some characteristics of the attribute. The domain expert can decide which
attributes are required to be traced as time goes on if ordering values of the attributes

are hard to be decided immediately. There are two ways of constructing AST:
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(1) Interacted with human experts. It is designed to acquire attribute signals from a
domain expert in every time point for deciding whether the attribute is important
or not.

(2) Interacted with VODKA. As mentioned above, VODKA can be used to learn and
level up the certainty factor of each embedded rule. It can be helpful to decide
attribute signal of importance or unimportance by directly mapping certain

embedded rule to the AST.

After constructing AST, an entropy function or gracefully accumulating function
can be proposed to capture the trend meaning and incrementally adjust the CF value

of each embedded rule.

5.3 Constructing the Dynamic AOT

The reconstructing step shown_in‘ Figure 5.2 reconstructs the dynamic AOT by
renewing the ordering values accordingte-each™0” and “1” signal recorded with the
times. Since the ordering values are recalculated at the present time according to all
the information traced in a time interval, the AOT is considered more flexible and
robust. Hence, to reconstruct the dynamic AOT will obtain the trend of evolutional

knowledge.

Obj | Obj | Obj | ... Obj | Obj | Obj | ... Obj | Obj | Obj | ...
1.1 12 113 21 22 |23 31|32 |33
At a 1 1 Att1 1 a 1 At a 1 o}
AltZ 1 1 o} At a a 0 Att2 1 1 1
Alt3 1 1 1 Att3 a a 1 Att3 o o 0

|

Obj1 | Obj2 | Obj3 | Objd

A1 4 4 2 D
Att2 3 X D 1
Att3 D &) R 2

Figure 5.2 Reconstructing Step of Constructing Dynamic AOT
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Based upon the AOT increment generated in evolutional knowledge acquisition,
the embedded rules generated by Dynamic EMCUD will be classified into original

and embedded rules.

To capture the importance of each attribute to an object in a time interval, two
scoring functions including Entropy Function and Gracefully Accumulating Function
are proposed to learn the trend of evolutional behaviors of new objects. Let theinitial

value of each signal sequence be the original AOT value of the attribute to the object.

(2) Entropy Function

To transform the original AOT value to_the representative values in AOT in a
dynamic environment, the number.of positives (recorded as “1”) surpasses the number
of negatives (recorded as “0”),-the entropy-weight approximates zero and vice versa.
It is obvious to assign higher ordering. value when most of information represent
important; otherwise, the lower ordering value would be assigned. However, medium
ordering, considered uncertain degree of the attribute to objects, would be assigned
when the entropy weight approximates one. That is, it is usually uncertain to decide a
decision when getting half positive advices and half negative advices at a time. When
the set is heterogeneous, but the characteristic of attribute is time relevant then it can

be considered homogenous in some ways.

It is not smple to level up the ordering values of attributes when the attribute
signal event is“1” or level down when it is “0”, instead; the entropy formula (5.1) is

applied in the mechanism of transforming AST to AOT,
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Eriropy =- ——log, (5.1)

p+n - gp+ng p+n

where “p” represents positive and “n” represents negative. In this case, the positive
means that the attribute is decided as an important attribute to this object such as
signa “1” in AST, and the negative is not an important attribute such as signal “0” in

AST.

As you move from perfect balance or perfect homogeneity, entropy moves
smoothly between zero and one. That means, the entropy is zero when the set is
perfectly homogeneous like all positive or negative instances, and the entropy is one
when the set is perfectly heterogeneous like half positive and half negative instances.
Then it is obvious that when entropy approaches zero, the ordering value should be

either “D” or “X* depending on number ef positives and negatives in the set.

For example, suppose there are two sets in AST recorded as “000111” and
“111000". Both of “000111" and “111000” in entropy function are considered
uncertain because of perfectly heterogeneous. Since these two sets can be considered
time relevant, it is very certain that attribute with signals “000111” should be assigned
a higher ordering since it is important in the present time intervals. Hence, there is a
time bonus weighting to adjust each ordering value at final. Accordingly, each CF
value of arule can now be leveled up or down automatically after integrating AOT

increment into the main AOT.

62



(2) Gracefully Accumulating Function

Since the normal behavior may not change rapidly, a behavior scoring function is
designed to calculate the score of each behavior to determine the trend of historical
behaviors. Therefore, besides entropy function, the basic idea of the scoring function
isto incrementally adjust the weight of each behavior. If a current behavior is normal,
the score becomes larger; otherwise, it becomes smaller. The initial score value of

each user isgiven 0.

Since the knowledge will be updated or evolved in a dynamic environment, the
CF value of each embedded rule may be adjusted because the relative importance of
the object may change. A dynamic AOT Adjusting Function (5.2) is designed to
generate the updated AOT value @ time.t by accumulating the collection of attribute
event e at time point t based upon the previous AOT value at time t-1. If the attribute
event & isassigned as 1 then gis set to'L; which-represents the increment is added into
the AOT value at time t-1. Otherwise, gisset to -1 if the g at time t is 0, which
represents the decrement subtracted by the AOT value at time t-1. Hence, the ordering
values can be refined with the times according to the collected information in a

changing environment.

ig=1, ifg=1

AOT()= AOT(t- D9 (EW). [~ 1 i & g

(5.2)

Where f(g(t)), which is formally defined in formula (5.3), is used to decide the
increment or the decrement of the corresponding the AOT value at each time point t,
a, which is used to adjust the curvature of the AOT Delta Function, increases

resulting in rapidly increasing or decreasing of the CF value, and b, which means the
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weight of the number of consecutive “1” or consecutive “0” received, decreases
resulting in larger increment or decrement. In order to limit f(g(t)) between 0 and 1,

the constant c is suggested to be smaller than -3.

} 0 cifete,
f(g(t)) = 1 . (5.3)
@11 ifee,

Where g(t), the Continuous Events Accumulating Function given in formula
(5.4), is used to record the number of consecutive “1” or consecutive “0” received at
timet.

L ifetle,

. (5.4)
g(t' 1)+:L if & =61

o) = i

5.4 Adjusting Certainty Factor of:Cellaborative Dynamic Knowledge

Since Dynamic EMCUD :can be extended to the collaborative framework, each
discovered dynamic knowledge . |earned-from .different local KBSs should be
integrated to further applied. Three cases are\used to assist experts in adjusting the CF
values of the discovered knowledge of the new evolved objects from the collection of
inference logs. Assume there are n local KBSs and each new evolved object may be
discovered in p local KBSs, different CF values of a given embedded rule could be
generated in each KBS. For p > 0, the CF Adjusting Function shown in formula (5.4)
is proposed to help experts obtain the average of different CF value of a given
embedded rule in each local KBS and adjust the scale of the CF increment or
decrement (DCF) according to the discover of the new object in the collaborative

KBS
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For each new embedded rule R, let the CF value be CF(R) and let the CF(R’)

be the CF value of each embedded rule R; discovered in thejth local KBS,

n
o

a CF(R’)
CF(R)=12—+d" DCF
P (5.4)

Depending on whether the new objects are discovered in the collaborative KBS

or not, the coefficient d can be defined as follows.

Case 1: the new object can be discovered in the collaborative KBS.
disset to p/n.
Case 2: the new object can not be discovered inthe collaborative KBS.

disset to (p-n)/n.

For p = 0, since the new object can not be discovered in any loca KBS the new
object could be discovered in the collaborative KBS according to the correlations of

profiles. Therefore, the CF Adjusting Function could be reduced to formula (5.5),

where the CF(R") is the CF vaue of the new discovered rule in the collaborative
KBSdue to different configurations of profile.

| CF(RY)=CF(R")+d" DCF (55

disset to -2.

5.5 Experiments

Up to now, many antivirus products have been developed to discover worms,

virus or Trojan horse in a computer system. However, these products are hard to
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automatically discover the variants of worms because the signature based approach
fails when the signatures are changed. To overcome the weakness, we propose aworm
detection prototype system, which has neo-learning module, to enhance the ability of
commercia antivirus products by the collaborative framework. The case of worm
detection is given to illustrate the idea of TEA. First, the domain ontology

construction flow will be described and then Nimda worm is used as an example.

5.5.1 Computer Worm Ontology Construction

One of the purposes of applying ontology is to provide domain of discourse that
is understandable by human and computers. Since ontology can be represented by
machine readable markup languages such as RDF, the knowledge can be shared for
different knowledge bases automatically_ through-computers processing. Moreover,
the reusability of ontology has:become increasingly important to developers of

intelligent systems.

Skeletal Model Objectsand é

Construction Attributes Extraction| ¥ casesdiagnosis

\/

Domain Concept
Tree Construction

Attribute Ordering
Identification

Attribute Signal
Table Construction

Certain I.—f.xpert
¥

Merge
Procedure

!

Domain
— Ontology
Construction

Figure 5.3 Worm Ontology Construction Flow
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In this experiment, the ontology is not only reusable but also adaptive to the
current environment. Also, we construct the ontology based upon a concept tree
consisting of several prior knowledge including skeletal model and real cases
provided by knowledge engineers and domain expertsin TEA. In Figure 5.3, the flow
of constructing worm ontology is illustrated to help experts construct the ontology

more easily, the following four Steps are proposed:

Step 1. Skeletal model construction.
Create the skeletal worm model by identifying each worm with six general
attributes including the basic information, the service, the exploitation, the carrier, the

symptoms and the defense instruction.

Step 2: Concept tree construction.
Since it is often easier and mare accuraie. for experts to provide critical cases
rather than domain ontology, the power. of critical* cases described in terms of relevant
objects and attributes to build domain ontology is remarkable. Therefore, after case

diagnosing a concept treeis created based upon the skeletal model in Step 1.

Step 3: Concept tree transformation.

After concept tree is created, it is transformed into AOT, and attribute ordering
will be next acquired from experts. Then the original EMCUD can be processed to
generate the initial rules. However, because it is not easy to identify some attribute
ordering values precisely, the attribute which is uncertain to identify the ordering
value should be traced and analyzed with time by constructing an AST. Each attribute

signal is recorded in each time interval, when the attribute appears important the
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signal equals one and when it appears unimportant the signal equals zero. Therefore,
the attribute ordering table will be reconstructed according to the attribute signals

collected with time.

Step 4. Merge procedure.

Two relations “has’ and “is’ are used for constructing worm ontology during the
merge procedure in this paper. The relation of “has’ includes attribute ordering value,
for example, when the attribute ordering value equals 3 then the relation should be
“HAS.3". Therefore, from Step 3, the ordering value would be retrieved from the
reconstructed AOT by AST. Hence, the ontology can be easily transformed into AOT

with updated value in Dynamic EMCUD whenever the variants are discovered.

5.5.2 Example of Nimda Worm Detection

Nimda, an incredibly sophisticated werm-that made headlines worldwide, is taken
as an example. Nimda is the first worm. to modify existing web sites to start offering
infected files for download by using Unicode exploit to infect 11S web server. It isthe
first worm to use normal end user machines to scan the vulnerable web sites. This
technique enables Nimda to easily infect intranet web sites located behind firewalls.
Assume a simple Nimda concept tree is created in Figure 5.4 after series of Nidma
cases diagnosis, and it can be transformed into a worm AT like Table 5.1. The
following attributes are considered: the name of the e-mail attachment used by worms,
the medium used by worms to upload, and the name of the file used by worms to start
execution on servers. After constructing the worm AT, we construct the initial AOT

shown in Table5.2.
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Nimda

Mail_Attachment Upload_Medium Excuted_File Name

Figure 5.4 Example of Initial Nimda Concept Tree

Table 5.1 An Example of Original Nimda AT

Onject | Nimda

Attribute
Mail_Attachment Readme.exe
Upload_M edium Admin.dll

Executed_File Name Riched20.dll

Table 5.2 An Exampleof OriginalNimda AOT

Object |- Nimda
Attribute
Mail_Attachment
Upload Medium

Executed_File Name

With both AT and AOT, the EMCUD can be processed to generate eight
embedded rules and some of them have low CF vaue such as rule Ry “IF Not

Mail_Attachment

Readme.exe and Upload Medium = Admindll and
Executed File Name = Riched20.dll Then Nimda” with CF value = 0.67. Therefore,
suppose that in the inference process, the rule R, above is learned by neo-learning
module almost all the time during a period, and suppose in the last two time points the

embedded rule Rz: “IF Not Mail_Attachment = Readme.exe and Not Upload_Medium
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= Admin.dll and Not Executed File Name = Riched20.dll Then Nimda” with CF
vaue = 04 is fired, the AST in Table 5.3 to record the evolutiona trend can be

obtained.

Suppose that Nimda is the latest worm occurred in the world, its ordering value
of each attribute can not be easily determined because its variants may soon be broken
out. The expert may define an AST with several time points, and then assign O in the
first attribute, Ny, at first time point in Table 5.3. The attribute event N, at the second
time point is set to zero. For simplified discussion, we use gracefully accumulating
function to adjust the AOT value of each attribute to each object according to the

AST.

Table 5:3 An Example of Nimda AST

object | Nt jNa—Ng | Nz | Ns | Ng | N7

Attribute

Mail Attachment 0 0 0 0 0 0 0
Upload Medium 0 1 1 1 0 0 0
Executed File Name |1 0 0 0 1 0 0

In Table 5.3, the Mail_Attachment attribute is calculated by Function 5.2, and the
attribute is assigned a new ordering value = 1 since it is very possible to be changed
again, subsequently, ordering value = 3 are assigned for both attributes
Upload_Medium and Excuted File Name according to the AST. Therefore, the CF
value of the rule R; is leveled up from 0.67 to 0.74. Moreover, severa new
attribute-values are learned by neo-learning module with Mail_Attachment =
putal!.scr in Ry, a new worm variant Nimda.B shown in Table 5.4 can be integrated
into Table 5.5, and also an AOT is updated as shown in Table 5.6. Moreover, the

Nimda ontology after discovering Nimda.B is updated as Figure 5.5.
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Table 5.4 An Example of Updated Nimda AT After Discovering Nimda.B

Object | Nimda.A Nimda.B
Attribute
Mail _Attachment Readme.exe putal!.scr
Upload Medium Admin.dll Admin.dll
Executed File Name | Riched20.dll Riched20.dll

Table 5.5 An Example of Integrated Nimda AT

Object Nimda
Attribute
Mail _Attachment { Readme.exe; putal!.scr}
Upload Medium Admin.dll
Executed_File Name Riched20.dll

Table 5.6 An Example of Updated Nimda AOT After Discovering Nimda.B

Object Nimda
Attriblte
Mail -Attachment 1
Upload 'M edium 3
Executed. File Name | 3

.

\AP~5 \—\P\s'Z HAS?

Mail_Attachment Upload_Medium Excuted_F| le_Name

— o g
- A ‘s b
Coooll

Figure 5.5 The Updated Nimda Ontology after Discovering Nimda.B

Therefore, with the accumulated inference logs from distributed sensors, the TEA

can aso update the knowledge frequently. Assume VODKA learns another new

attribute values including Mail_Attachment = sample.exe, Upload_Medium = cool.dll,

and Executed_File_Name = httpodbc.dll in R, while the rule R, has always been fired
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in each time point in a short period, then a new variant Nimda.E is found. Finally,
based upon the updated tables shown in Table 5.7 and Table 5.8, the built system will
give a whole picture of worms to guide the users who are not familiar in the domain
for preventing or removing the malicious worms. Finally, the updated tables are
shown in Tables 5.7 and 5.8, and the detailed of ontology of Nimda could be aso

updated as Figure 5.6.

Table 5.7 An Example of Integrated Nimda AT After Discovering Nimda.E

Object Nimda
Attribute
Mail _Attachment {Readme.exe; putal!.scr; sample.exe}
Upload Medium {Admin.dll; cool.dll}
Executed File Name {iRiched20.dll; httpodbc.dil }

Table 5.8 An Example of Updated Nimda AOT After Discovering Nimda.E

Object Nimda
Attributée
Mail Attachment 1
Upload Medium 2
Executed File Name |2

Mail_Attachment Upload_Medium Excuted_File Name

- S - »
[ ‘VS & 4 Do S &
httpodbe.dil

Figure 5.6 The Updated Nimda Ontology after Discovering Nimda.E
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Owing to the different background and dynamic knowledge which can change
with the times, the domain knowledge constructed at a time may become degraded in
the near future. In this chapter, we propose a new knowledge acquisition method,
caled TEA, which traces information with times by interacting with human experts
and supported by the learning strategy of VODKA to efficiently update the
time-related domain knowledge according to the current environment. Therefore, we
enrich the knowledge base and ease the effort of constructing the domain knowledge
which is changing with the times and environment. Three cases will be used in
collaborative framework to assist expertsin adjusting the CF values of the discovered
knowledge of the new evolved objects from the collection of inference logs. A worm
detection system is illustrated to ease the experts efforts from analyzing and learning
and to help retrieving meaningful-information. for making proper decisions since the

knowledge bases become more-adaptive for achanging environment by using TEA.
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Chapter 6

Application in Worms and DDoS Detection

A Wbrm Immune Service Expert system (WISE) with Dynamic EMCUD and a
worm classification embedded rule base is implemented to discover the new variant
worms generated by the attacking traffic generator in the experimental environment to
evaluate the performance of our proposed method. A DDoS intrusion tolerance system

is aso implemented.

6.1 The Background of Wormsand DDoS Attack

6.1.1 The Introduction of Computer YWorms

In recent years, computer worms are grown dramaticaly to influence the wide
computer networks due to the property of easily modifying the source code of original
computer worms to create new variant for escaping the detection of related systems,
e.g., Symantec Norton [72], Network Viruswall [74], etc. Generally speaking,
computer worm usually self-propagates through the following four stages: Target
selection, Exploitation, Infection, and Propagation [80]. In Target Selection Stage, a
worm performs reconnaissance and simply probes potential victim to see if it's
running a service on a particular port. If the service is running, the worm goes to
Exploitation Stage, in which aworm compromises the target by exploiting a particular
vulnerability and published exploits. If success, the worm goes to Infection Stage, in

which the worm sets up on the newly infected machine. Finaly, in Propagation Stage,
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the worm starts to spread by choosing new targets. And another victim will enter the

next four Stages cycle.

6.1.2 TheIntroduction of DDoS Intrusions

As mentioned above, many different DDoS attacking tools and defending
methods [17] to help mitigate the malicious traffic developed result in the rapid
growth of complicated characteristics of DDoS intrusion tolerance in recent years.

The introduction of DDoS is given in Appendix A.

As we know, there are two different types of attack technique in DDOS attacks:
bandwidth consumption and resource consumption. The bandwidth consumption
means that the attacking trafficy launched by the compromised hosts, which are
controlled by attackers, is aggregated to a single huge flood and overwhelms the
victim. The resource consumption means-that-attackers make use of the leak of the
network protocol or the system security. such-as the techniques of SYN flood, land

and Teardrop, resulting in the starvation of system resources [16].

As the DDoS attack tools have become more complicated in recent years, the
maintenance of the characteristics of DDoS attacks is becoming more difficult despite
the previously known common characteristics of each category of discovered DDoS
attacks. Therefore, we will propose a knowledge base to store the characteristics of
DDoS attacks, which may be obtained by analyzing the traffic behaviors of the DDoS
attacking tools, for DDoS intrusion tolerance. Besides, two criteria considering the
difference between two types of DDoS attacks will be proposed to evaluate the degree

of intrusion tolerance.
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Intrusion tolerance is the ability of a system to continue providing (possibly
degraded but) adequate services after a penetration [70]. As mentioned above, it is
very hard to detect and prevent the DDoS attacks. Therefore, the intrusion tolerance of
DDoS attacks is an important issue to mitigate the damage during DDoS attacks for
providing the critical services continuously on Internet. Although a variety of methods,
which are given in Appendix A, have been proposed to mitigate the damage during
DDosS attacks for providing the critical services continuously, it is still very difficult
to keep up with the rapid growth of DDoS expertise in their studies. To solve this
problem, a DDoS ontology is proposed to provide a common vocabulary among
domain experts and an integrated knowledge acquisition framework is then proposed
to assist in quickly accumulating:their expertise. We aso use the behaviors of access

control list to evaluate the performance of the: DDoS models.

6.2 The Framework Worm I'mmune Service Expert System

As we know, many antivirus products have been proposed to discover worms,
virus or Trojan horse in a computer system. Although these antivirus softwares are
developed to protect our system well, it is hard to automatically discover the variant
worms without updating their signature database because the signature the worm
signatures may change over times. To overcome the weakness, the worm detection
prototype system, namely WISE, is proposed to enhance the commercial antivirus
products instead of replacing them. WISE is a knowledge-based system. Unlike
pattern matching system, it does not need to write the program again, and therefore is
suitable for worm, which is usually variant quickly that updates knowledge base

frequently. By only updating the knowledge base, WISE can modify the defense me
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chanism for the variants of worm; as a result, the system can be easily maintained.
Besides, WISE contains embedded meanings of knowledge, so it can easily capture
some variant worms that in order to avoid signature-based detection system to modify
characteristic less. Since the growth of the knowledge of worms is very fast, we

propose a collaborative architecture for the adaptive worm detecting problem.

Worm Sensor 1 Waorm Sensor 2 Worm Sensor n

NEO NEO NEOQ
Learning Learning = | Learning
M odule Module Module

Infrequent
Inference Logs

Collaborative Knowledge Integration
Knowledgze Module
Update

Protiles

Figure 6.1 The Collabor ative Framework for Worm Detection

Figure 6.1 shows the collaborative framework for worm detection. In the
architecture, each worm sensor provides a web interface to collect or discover al the
symptoms of worm cases by user and scanning tools. The NEO-learning module helps
each worm sensor constructing AST to reconstruct AOT increment and update main
acquisition table using AT increment (monitoring the frequent inference logs of weak
embedded rules of worms with the times), where each sensor has its own Worm KB.
For example, when worm infects a victim system, the user can scan the host computer

by some general antivirus software or can call for help from the Internet. The system
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collects al the information and infers the information based upon the worm
knowledge with embedded meaning constructed by EMCUD. Consequently, the result
of inferring will be passed to the users to teach the way of recovering the system.
Moreover, the statuses which satisfy certain embedded rules will be considered to
learn the new knowledge of new variant worms by neo-learning module. By
collecting the new worms knowledge and infrequent inference logs and consulting the

Profile, the collaborative framework can integrate the new worm knowledge.

In our WISE system, the knowledge of computer worms can be divided into
severa KCs, including the service provided by host may be infected by certain worms
and then produced some symptoms in host or network. Some worm lifecycle, Profile
model, and dynamic behaviors: knowledge. classes are also created. The Log
Collecting Stage will be encoded: by four meta-rules in DRAMA; the Knowledge
Learning Stage and Dynamic-EMCUD-are-implemented using the JSP to make a
communication channel using the ‘ARl provided by DRAMA. The related attributes of
various computer worms can be collected by some probe tools and used to evaluate

the ability of Dynamic EMCUD, which deployed in the prototype system.
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Figure 6.2 The Experimental Environment for Detecting Computer Worms
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In order to evaluate the WISE, an experimental environment shown in Figure 6.2
for detecting various computer worms is built. In this environment, the victim is
received both the normal traffic and the attacking traffic (various worm behaviors).
All received traffic can be treated as normal or attacking behavior, which can be
transformed as attribute-value pairs. The network traffic collected from Internet is
assumed as normal traffic since most attacking behaviors with significant signatures
will be filtered by firewall. The attacking traffic generator is designed to randomly
generate various worms attacking traffic to infect the victim. Besides the attacking
traffic, some signatures, e.g., the system status, host vulnerability information, and
large e-mailing behavior, of the victim infected by worms can be also collected. The
probe, such as Nessus [73], is aso used to automatically collect these worm related
attributes (symptoms). Then, ‘these attributes Is-used to trigger the corresponding
classification rules in worm KB. If variant-woerms occurred frequently in a period,
some candidate worm variants may be discovered by Dynamic EMCUD. Finally, the
corresponding embedded rules of variant worms confirmed by experts will be

generated to update the worm KB.

6.3 DDoS Intrusion Tolerance

As we know, the traditional methods for detecting and filtering DDoS attacks [27]
are monitoring the status of network and system, specifying the aert thresholds,
defining detection rules, and setting filter policies by domain experts. Based upon
interviewing with domain experts, the DDoS ontology proposed to models the

behaviors of system and users, the methodologies of defense, and the strategies of
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evaluation are described as follows.
6.3.1 Ontology of DDoS

Before understanding the more complicated DDoS knowledge, an ontology,
which is needed for sharing knowledge with a common terminology among numerous
experts of the DDoS domain, could be divided into three parts: Profile model,
Defense model, and Evaluation strategy as shown in Figure 6.3. The Profile model is
proposed to describe the behaviors of system and users according to the state and user
state diagrams. The Defense model consisting of Detection and Filter methodologies
is then used to resist the DDoS attacking. Finally, the Evaluation strategy including
system and network evaluations is proposed to evaluate the performance of our
proposed DDoS model. Hence, the ontology includes Profile model, Detection
methodology, Filter methodology:-and Evaluation strategy knowledge classes (KCs),
each may include several sub-KCs-and may be obtained by interviewing with domain

experts, e.g., Attack predicting and Attack-éetecting are sub-K Cs of the Detection KC.

Figure 6.3 The Ontology of DDoS

6.3.2 The Relationships Between Knowledge Classes

Four basic relations between KCs have been defined in Drama/NORM [46]:
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Acquire, Trigger, Reference, and Extension-of relation. These relations are helpful in
describing the relationships among KCs. Trigger relation triggers another KC with
current facts as knowledge transfer. In other words, the remnant knowledge in original
K C should not be necessarily considered. Acquire represents the acquirement relation.
After Acquire process, the original inference process will continue and only facts
predefined in the acquired KC will be carried back in Acquire relationship. Reference
is used to represent the associations between different KCs. Through the Reference
relation, the knowledge contained in referred KC is regarded as the base knowledge
and will be taken into consideration together with the knowledge defined in the KC.
On the other hand, Reference can be thought as an unconditional Acquire relation
between KCs. Unlike the Reference relation, the Extension-of relation makes a new
KC to include all the knowledge contents of an existent KC. The activities of
Extension-of relation include extension and modification. Therefore, it must support

the overriding mechanism, including:the everriding of facts and rules.

Attack
Predicting

Filter
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Figure 6.4 Relationships Between of Knowledge Classes

As shown in Figure 6.4, the Filter KC referencing the Profile KC can be treated

as afilter to filter out the malicious traffic and can be triggered by the outside traffic
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events. Also, it can set the new filter policy and acquire the Evaluation KC to evaluate
the system performance. The Detection KC triggered by the Filter KC could be
treated as a detector to detect the occurrence of DDoS attacks and could trigger the
Filter KC according to the specific detection events for dynamically setting the new
filtering policy to filter the malicious packets. Also, the Detection KC can acquire the
Profile KC to set the suitable attack detecting or attack predicting sub-KCs, which are

included by the Extension-of relation.

6.3.3 Profile M odel and Evaluation Strategy

According to the expert’s experiences of defending DDoS attacks, the Profile
model including system state and role state diagrams shown in Appendix B are
proposed to represent the behaviors of system and users through interviewing with

domain experts.

As mentioned above, there are two different types of DDoS attacking technique:
bandwidth consumption and resource consumption. Since the only way can stop a
DDosS attack once it starts is to identify the addresses of al agents (zombies) sending
DDoS packets and to shut off traffic from them, the behaviors of black list and white
list are considered to monitor the potential latency of the network and the CPU usage
and memory usage are used to monitor the degrading rate of system performance
when suffering the DDoS attack and the Tolerance of theinitial ACL is assumed to be

maximal in this chapter.

During resource consumption DDoS attacks, the system capacity of the victim is

always decreasing (i.e., the system resource usage r isincreasing), causing Tolerance
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low. On the other hand, the bandwidth consumption DDoS attacks may increase the
members of the black list and decrease the members of the white list due to filtering
the malicious traffic; hence the Tolerance will become small if the filter policy could
not be performed well. Thus, the formula 6.1 combining network tolerance
(Tolerancenemork) and system tolerance (Tolerancessen) iS given to represent the
degree of DDoS intrusion tolerance, where a and b are used to indicate the weights of
the tolerance. If we focus on protecting network performance, a is set to be larger
than b. Otherwise, alarge b is recommended to protect the system performance.

Tolerance=a "~ Tolerance,y,, +b " Tolerance .,

(6.2)

Since the members in the white list. (WL)-may represent they could be served and
the members in the black list (BL) may represent they could be blocked by the victim,
the ratio of the WL and the BL is'used to evaluate the network bandwidth utilization
(Bw). A large BL implies the filtering policies are set to be more restricted and the
tolerance may become small; otherwise, alarge WL may represent the system is with
more tolerance since more users can access the services of the victim. The number of
users who have been moved from white list to black list (W2B) is further regarded as a
penalty weight for network tolerance. The formula of the Toleranceysem and the

Tolerancenework are shown as 6.2. and 6.3 respectively.

Toleranceyge, =1- 1 (6.2)
WL
Toleranc =—(1- Bw 6.3
enetwork BL +WZB( ) ( )

The system state will be set as NORMAL when the Tolerance is larger than the
predefined thresholds. Otherwise, the system state will be in SURVIVAL state and the

new filter policy based upon Evaluation knowledge will be generated to move the
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state to NORMAL.

As mentioned above, each KC may include several sub-KCs due to the hierarchy
of the knowledge in DDoS intrusion tolerance. In order to obtain the knowledge of
each KC, an integrated knowledge acquisition (KA) framework including
interviewing with domain experts, training the predicting and detecting features, and
learning the filter policies for adaptively filtering malicious traffic is proposed. All
knowledge of DDoS intrusion tolerance can be represented as a natural rule format, IF
Conditions Then Conclusions. The bodies of Conditions are the facts generated from
network traffic flow, detecting results, and filtering policy. The Conclusions may
include the alarming events, system state changing events, and user state changing
events. Furthermore, constructing the knowledge base can facilitate the maintenance
of the knowledge for defending DDeS and can help the administrators manage their

networks.

6.3.4 Knowledge Base Construction
Dueto the difficulty of acquiring and collecting the various DDoS characteristics

from domain experts, an integrated KA framework including three related KA
methods is used for reducing the effort of accumulating the expertise and speeding up

the knowledge collection of DDoS characteristics.

TheIntegrated Knowledge Acquisition (KA) Framework
The problems that we are faced with during the KA process are usually very hard.

In general, KA involves: (1) dicitation (gathering) of data from the expert, (2)

interpretation of the data to infer the underlying knowledge or reasoning procedure
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and (3) guided by this interpretation, creation of a model of the expert's domain
knowledge and performance. Although quite many different kinds of KA approaches
have been proposed in many research studies [61][31][83][54][75][79] including
interviewing with experts, Repertory Grids, and machine learning, few studies have
focused on integrating various kinds KA approaches for an application due to the lack
of a common vocabulary. Based upon the DDoS ontology we mentioned above, an
integrated KA framework is proposed in this paper. Through the KA framework
shown in Figure 7.5, four kinds of KCs including Profile KC, Evaluation KC,
Detection KC, and Filter KC could be easily obtained by various KA processes. Other
new discovered or defined KCs can aso be easily added or modified in our

knowledge base due to the nature of KBS.
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Figure 6.5 The Framework of KA Process

As shown in Figure 6.5, all of these KCs of expertise can be obtained in the

integrated KA framework, which includes modeling the DDoS environment through
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interviewing with domain experts, selecting useful features by analyzing the attacking
tools in the Characteristic Trainer, and adaptively learning filter policies in the User’'s
Behavior Learner. The behaviors of users, communication signatures, and other useful
features are the characteristics of the Detection KC, so called detecting rules, which
can be obtained by the Characteristic Trainer. On the other hand, the User’s Behavior
Learner is responsible for generating the various filtering policies in Filter KC. All
other KCs including Profile KC and Evaluation KC can be directly obtained by

interviewing with experts.

(1) The Knowledge Obtained by Interviewing With Domain Experts

As interviewing is one of the traditional approaches to acquire the expertise from
domain experts by knowledge engineers, many: approaches have been proposed to
acquire expertise from expertsthreugh interviewing. As mentioned above, the Profile
KC and the Evaluation KC could be-modeled-by domain experts using interviewing
approach. Besides, the default knowledge including default communication ports and
the white list and black list policy in the Detection KC and the Filter KC could be also
acquired by interviewing with domain experts. Because the characteristics of DDoS
attacking tools and the filtering knowledge are dramatically increasing, the
Characteristic Trainer and the User’s Behavior Learner are proposed to obtain the

useful knowledge for DDoS intrusion tolerance.

(2) Training The Detection KC by Characteristic Trainer
To obtain the previously undiscovered DDoS characteristics/behaviors, a training
process, namely Characteristic Trainer, is proposed to learn the useful, new features

and store them into the Detection KC for predicting and detecting DDoS attacks.
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The new features of DDoS attacks can be selected by comparing the normal
behaviors during the NORMAL system state with the attacking behaviors launched by
DDoS attacking tools in the systematic training process of Characteristic Trainer.
Thus, to distinguish attacking behaviors from norma behaviors, each kind of
characteristics represented from the DDoS behaviors could be easily identified using a
Repertory Grids approach, which is a table with four attributes including the feature,
the feature threshold d, the feature operation g, and the corresponding actions. The d
is a parameter adaptively determined in a short period by different features. For
example, if one feature value is larger than d, it needs to be considered as abnormal
behaviors. Therefore, the small d will increase more false alarms. On the contrary,
larger d will treat more attacking behaviorsasnormal. After a DDoS attacking feature
is detected, the corresponding-action e.g., trigger the Filter KC, alarm the attacking
traffic coming, or specify the attacking:type, must be taken. The characteristic training

algorithm is shown as Algorithm 6.1.

In addition to the above previously known features, new characteristics/features
may be observed by using the Repertory Grids approach after analyzing fingerprints
of DDoS attacks such as spoofing, flooding-based and communication techniques and
more attacks could then be detected and predicted. More training DDoS

characteristics are shown in Appendix B.
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Algorithm 6.1 The Characteristic Training Algorithm

Input: Training Cases TC, Actions A, and feature set F with n features
Output: The Detection KC

Stepl: Select a skeleton feature set Fy = {fy, fo, ..., fi} I F by interviewing with
domain experts.

Step2: Set d, for each feature fi in F in each TC.

Step3: Choose the proper actions A; for the feature f; selected in Step2.

Step4: Generate the detectionruleas “IF fi g d THEN A”.

Step5: Repeat Steps 2~4 until all detection rules have been generated.

(3) Learning The Filter Knowledge Class by User's Behavior Learner
In traditional network management system such as firewall, intrusion detection

system (IDS), network management system (NMS), etc, ACL iswidely used not only
to filter suspected connection from untrusted sources but also to admit the access from
trusted sources. Black list andwhite liststrategies used in ACL are included in the
Filter KC. The former is used to interdict the access right, but the latter is used to
permit the access right. Moreover, the various filtering policies can be set according to

the configurations of current system and network environments.

In order to dynamically construct suitable ACL to mitigate the damage of DDoS
attack, alearning processis also proposed to generate appropriate filtering policies for
various network environments. The black list is used to drop the malicious attacking
traffic and the white list is used to alow the trusted IP to access the critical service of
the victim server. The principles of the User’s Behavior Learner for ACL are twofold
in this paper. One is to keep the legal users, whose behaviors are determined as
normal, in the ACL. The other is to remove the possible suspected users or the users,

who do not request critical service for along time, from the ACL.
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Since the normal user may not change his’her behavior rapidly, a user behavior
scoring function is designed to calculate the score of each user by his/her own
behavior to determine hisher status of historical behavior. The basic idea of the
scoring function is to incrementally adjust the weight. If a current network status is
normal, the score becomes larger; otherwise, it becomes smaller. The initia score
value of each user is given 0 and the behavior of user changes from Ato N or from N
to A, the score is no change. To evaluate the historical network status of the user g, G
is defined by expertise to determine the user’s historical behavior network status. The
historical behavior of the user ranging from [MAX, MIN] is determined as normal
(M(q)) if the score is larger than G. Otherwise, it is judged as abnormal (M(q)') when

the value is smaller than -G
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Figure 6.6 An Example of Users Behavior

In Figure 6.6, an exampleof P=<N, N, N, N, A, A, A, N, N, A, N, N> and Q = <A,
N, A A A AN, A N, A A N>isgivento explain our proposed scoring function. The
final score of P and Q are4 and -5, respectively. If G= 3, the behavior of P is M and

the behavior of Q isM’ in this example.
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To more accurately categorize the user behavior, a penalty weight (PW) could be
attached when the characteristic of DDoS attack is discovered from individual user.

The range of PW could be also defined according to the degree of dangerous behavior.

6.3.5 The Verification of Selected Features/Characteristics of DDoS

To evaluate the selected features/characteristics of DDoS attacks, the selected
characteristics of DDoS which are similar to the normal behaviors will be eliminated
due to the reduction of the false detection rate in the DDoS intrusion tolerance system.
And then the Drama-based DDoS intrusion tolerance system will be implemented to

evaluate the performance of detection power by the selected characteristics.

(1) NORM-based DDoS I ntrusion Tolerance System Using KCs

In order to evauate the efficiency-of-the -KCs, the DDoS intrusion tolerance
system using KCs is implemented by an_inference engine Drama for detecting and
predicting the occurrence of DDoS attacks. As shown in Figure 6.7 the four KCs
could be easily used to infer the other system components through the inference
engine, and each component can be easily replaced according to different
configurations of the network environment. The network traffic can be characterized
as feature vectors [45] by Feature Vector Constructor. The Facts Collection is used to
store al facts including the feature vectors, detecting results, system status, user states,

and system evaluation results.
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Figure 6.7 The DDoS Intrusion Tolerance System Using Dynamic EM CUD

When the anomaly network traffic is detected in the Detection KC, the event of
attacking traffic coming is triggered and the Profile KC is acquired to change the state
of system. And the alarm event is thus triggered to set the suitable ACL in Flter KC
for dropping the huge traffic from the attackers and alow the legitimate traffic from
trusted users. Since then, the event of updating:filter rules would be triggered to
generate a new filter policy- for. dropping.the. malicious traffic. It implies the
Evaluation KC will be acquired and. used to compute the tolerance of the system for
updating the filtering policy of “the Filter KC. Finally, the Profile KC would be
triggered to indicate the proper system state. However, the complex attacking
behaviors sometimes make the filtering policy fail. When it failing, the event of
generating new filter policy would be triggered again until system state in Profile KC

is stable. Otherwise, experts are asked to solve the problem of DDoS attacks.

6.4 Knowledge Base M aintenance

Due to the growth of rule base usage, the scale of rule base is increasing, and
hence the performance degradation becomes an important issue about constructing the
rule base arise. The performance can be dramatically decreased and hence more

resources may be required by the inference engine of the knowledge base when the
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number of rulesin the rule base increases. In this section, a Rule base Partitioning for
Meta-knowledge Extraction System (RP-MES) combining both rule base partitioning
and meta-rule construction mechanisms is proposed to solve these issues. As for rule
base partitioning [62], RP-MES considers not only the structural relatedness between
rules but aso the semantic relatedness of rules by caculating the semantic
relationship between rules in the rule base. In order to maintain the increasing
knowledge base, the meta-knowledge is useful to help select suitable rules in

inference process in the KBS.

6.4.1 Rule Base Partitioning and Meta-rule Extraction System

Meta-rules provide some related information about each rule cluster. Metarules
can be used to select appropriatesrule clusters whieh increase the performance of the
usage of rule base in inference:process. With.meta-rules, the structure of the rule base
can be easily understood. However, meta-rules-can not be easily obtained. In previous
applications about meta-rules, the set-of metasrules are usually provided by domain
experts, acquiring meta-rules can be time consuming or the expertise may be not

available. Therefore, a systematic mechanism is desirable to generate meta-rules.

The Automatic Meta-rule Constructor shown in Figure 6.8 consists of Rule Base
Partitioning Process and Metarule Construction Process. Rule Base Partitioning
Process considers syntactic and semantic structures of given rule base, and then
partitions rule base into several rule clusters. In Meta-rule Construction Process,

meta-rules will be extracted from the rule clusters obtained in previous phase.
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Figure 6.8 Automatic Meta-rule Construction

6.4.2 Rule Base Partitioning Process

Rule Base Partitioner is used to group rules into rule clusters from a plain rule
base without any structure. At the beginning, each rule of the origina rule base is
allocated into a single rule cluster. Cluster. Similarity Calculator calculates cluster
similarity of al pairs of two-distinct rule clusters and builds a Cluster Similarity
Matrix (CSM). And the rule clusters:will be-merged according to the information in
Cluster Similarity Matrix. The merging process works iteratively until all similar rule

clusters are merged. And the rule clusters generated will be the result of this process.

However, the similarity calculation can seriously affect the result of this process,
and the merge process of rule cluster is also an important task. In the following
paragraphs of this section, similarity calculation will be introduced first. After that,
rule base partitioning algorithm will be detailedly described in the forthcoming

section.
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B Rule Similarity

Rule similarity is a key factor to the clustering result. Severa kinds of rule
similarity definitions considering structural relatedness only [36][43], or with
semantic relatedness (hybrid approach) [42][77] are defined in previous work. In this
paper, we incorporate hybrid approach to deal with rule similarity calculation. In the
following, we give an example to present the rule similarity calculation.
Before discussing the rule similarity calculation, some notations are given in

Definition 1 to be used in following discussions.

Definition 1. Expressions, conditions, actions, rules, and rule base.
A = {attribute,, attribute,, ..., attributey} is the set of N attributes in the rule base.
O0={=,?,>,<,>=,<=} istheset of all operators.used in the expressions.

Vativue, is the set of possible values of attributen,

en = (attribute, operator,, valuey) is.an expression, where attributen, 1 A, operatorm

1 O, and valuen1 Vattivue, )

ri isarule of two-tuple (CONDITIONS, ACTIONS) which can be represented as “1F
CONDITIONS THEN ACTIONS”, where CONDITIONS is a set of expressions of
rule r;, and expressions in the set are connected with conjunction operator (AND) and
ACTIONS is a set of expressions of rule r;, and expressions in the set are connected

with conjunction operator (AND), where the operator of the expressions must be “=".

RB isthe set of rulesin the rule base. We illustrate the Example in Appendix C.

As we have mentioned before, rule similarity calculation containing structural

relatedness and semantic relatedness is described as follows.
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(i) Structural relatedness

The structural relatedness considers the reference of attributes between rules,
that is, evaluating the same attributes or asserting new values to the same attributes.
When considering the reference of attributes, only the name of attribute is considered
instead of attribute value. In the definition of structural relatedness, two rules are
related if there exists one attribute used by both rules (either on left- or right-hand
sides); otherwise they are independent. The structural relatedness between two rules
is thus measured by the number of attributes that are mentioned in both rules.
Definition 2 defines four situations of rule dependency, including in-out, share-in,
share-out, and not-shared, and four corresponding functions, inout(), sharein(),

shareout(), and notshared().

Definition 2. inout(), sharein(); shareout();-and-notshared() Functions.

Given two rules r; = (CONDITIONS, ACTIONS), and r; = (CONDITIONS;,
ACTIONS), their definitions are defined as below:

inout(r;, ;) : the set of attributes that are used in CONDITIONS and ACTIONS, or
ACTIONS and CONDITIONS.

sharein(r, r;) : the set of attribute names that are common to both the CONDITIONS
and CONDITIONS.

shareout(r;, ;) : the set of attribute names that are common to both the ACTIONS and
ACTIONS,

notshared(r;, r;) : the set of all attributes used in r; or r; but not in inout(r;, rj),

sharein(r;, r;), and shareout(r;, r;).
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The counts of attributes of the four sets, generated by above four functions, are
used to calculate the structural relatedness. And the weight of each count is given as a
variable in our rule similarity calculation. Hence, the structural relatedness L(r;, r;)

between two rules, rj, rj, can be formulated as (6.4).

L(I’ J)_|InOUt(|7 Jl |nout+|Share|r(|7 JX share|n+
|shareout(,, J) notsharedr, J) W

shar eout

(6.4)

Where 0 £ Winout, Wsharein, Weshareouts Wrotshared £ 1 aNd Winout + Weharein + Wehareout +
Whotshared = 1. FOr example, the Winout, Wenarein, Wehareout, @0 Whotshared COUlD be set to 0.4,

0.2, 0.3, and 0.1, respectively.

(if) Semantic Relatedness

In some cases, rules are very similar.in syntactic-structure, but they may be used
to deal with different problems. Considering only:structural relatedness between rules
cannot effectively distinguish them. Asfor therules, r3, r4, and rs, listed in Example 1
in Appendix C, structural relatedness between every pair of rules is the same. Even
though the rules with only structural relatedness are used to detect different network
attacks, no additional information can help separate those rules. Therefore, semantic
relatedness is defined and used to complement structural relatedness for calculating

rule similarity.

When considering structural relatedness between rules, only the names of
attributes are taken into consideration instead of the values or the operators of
attributes. In order to capture the semantic meaning between rules, attribute values

and operators of the expressions are also considered. The expressions of rules can be
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divided into two categories, categorical and numerical, according to the data type of
values. For agiven expression, if its value is categorical data, it belongs to categorical
expression, e.g., (protocol = TCP); otherwise, it belongs to numerical expression, e.g.,
(destination_ port > 1023). The semantic relatedness calculations of these two types

of expressions are different in our method.

Ontologies of knowledge-based system are often used for content explication or
as common dictionary. The semantic relatedness between categorical expressions can
be measured by the conceptual similarity between their values. That is, for two
categorical values, x and y, the semantic similarity of two categorical values can be
measured by conceptual similarity function s(x, y), which depends on both the
distance between them in the ontelogy and their generality. The conceptual similarity

function between x and y is defined as (6.5).

< c i
T ,if %, yl ontol
(x,y) = | a0y ! oo
’ N Ls
¥ d(x,y ==1 7 ,if x, yI ontology
T 10 xty

(6.5)

The d(x, y) isthe number of “hops’ between x and y, D(X) is the number of al its
descendants, and c is the boundary constant. If x and y are not located on the ontol ogy,

the Kronecker delta function d(x, y) is used to determine their similarity.

Besides, different operators, e.g. “=" and “?”, may influence the evaluations of
semantic relatedness between two expressions. Hence, two cases of operator
combinations for two categorical expressions must be considered when calculating

the semantic relatedness. Therefore, the semantic relatedness is formulated as (6.6).

97



al )_1 slvalue,,valug) ,if operator=operator
G & ~11- svalue, value ) , otherwise (66)

On the other hand, both expressions must be transformed into mathematical
intervals before evaluating semantic relatedness between two numerical expressions.
For instance, expression ¢; = (port > 1023) is transformed to (1023, max] , where max
is the maximum value of Vport, Which is the value range of “port”. The semantic
relatedness is measured by ¥em, e,) based on the overlapping of two mathematical

intervals, which is defined as (6.7).

b(em, &) = |im G inl/|im E in| (6.7

The im’|‘ Vattributem and in’|‘ Vattribute, .

Therefore, the semantic ‘relatedness-between each two expressions can be
formally defined as (6.8).

ia(e,,e,), bothe and e arecateorica expressions
S(e,.e) = |l b(e,.e ), bothe, and e arenumerica expressions

I 0, if attribute,, * attribute, (6.8)

Based upon the semantic and structural relatedness defined for expressions of

rules as (6.4) and (6.8), the definition of the similarity of two rules, r; and rj, R(ri, r;)

isthus given in Definition 3.
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Definition 3. Rule similarity between rules.
Given two rules, r; = (CONDITIONS, ACTIONS), r; = (CONDITIONS, ACTIONS),

the rule similarity between r; and r; is defined as formula (6.9).

o
R(ri ’ I’j ) - a. S(emien) xvvinout
€yl CONDITION ; e, ACTION ; , attribute , ,attribute ,T inout (r; ;)
+ a sle,.e,)
a. em’en vair‘lOUt
enl ACTION; e, CONDITION ; ,attribute , , attribute ,T inout (r; ,r;)
* a Sle,.e)
a. em’en >qNsharein
enl CONDITION ; ,e,1 CONDITION ; ,attribute , ,attribute ,T sharin(r; ;)
+ a Sle,.e,)
a. em’en X\Nshareout

eml ACTION; eI ACTION | ,attribute ,,attribute T ishareout (r; ,r;)

- I notshared (I'i 1rj ) I Wootshared (69)

B Cluster Similarity

As mentioned before, Rule Base Partitioner iteratively merges the most similar
rule clusters to construct the resulting' rule clusters: Besides, in order to avoid too
small or too large rule clusterS generated, the quantity of rules in rule cluster is aso
considered when calculating the clusters.” Therefore, similarity between two rule
clusters, gsand g, is defined as (6.10).

o 2
CS(QS!gt) =g:‘|rt( a. R(ri!rj))+—
il gs.ril g, | gs |+ | gt | (610)

Given the set of rule clusters, the similarity between each pair of rule clusters
can be calculated in advance and stored in Cluster Similarity Matrix (CSM), an
m-by-m upper triangular matrix, where m is the number of rule clusters. Each entry is

the cluster similarity between rule clusters, gs and gt, that is, CSgs, O)-

99



B RuleBase Partitioning Algorithm

Once the similarity for rule clusters can be calculated, the Rule Base Partitioning
Algorithm is used to partition a rule base into rule clusters. The algorithm derives a
high-level structure for the rule base based on the information of rule similarity. The
stopping criterion is to stop when the cluster similarities between al pairs of rule
clusters are no longer larger than a user defined similarity threshold (st). The rule base

partitioning algorithm is presented as Algorithm 6.2.

Algorithm 6.2 Rule Base Partitioning Algorithm

Input: A set of rules, similarity threshold st
Output: A set of rule clusters

Stepl: Group each rule as a single rule cluster:

Step2: Generate CSM based upon the cluster result.

Step3: Choose the entry n;; with thé largest value (most similar) from the CSM.
Step4: Terminate and output therule clusters;if ny; isless than or equal to <.
Step5: Combine g; and g; into-a cluster by-merging the rulesinside the clusters.
Step6: Repeat Step 2 to Step 5.

(2) Meta-rule Construction Process

The meta-rule construction is used to extract meta-rules from the partitioned rule
clusters by Metarule Extractor which consists of Meta-Apriori Algorithm and
Confidence Calculator. The Meta-Apriori agorithm is modified from Apriori
algorithm [2] to generate the meta-rules, and Confidence Calculator calculates the
confidence value of each meta-rule. The meta-rule generated by Meta-rule Extractor

is then stored in the Meta-rule base for further usage.
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B Meta-Apriori Algorithm

The Meta-Apriori algorithm tries to discover the most frequent combinations of
expressions to describe the rule cluster. The basic idea is that those most frequent
combinations of expressions are used in many rules of the rule clusters, and once the
combination is met, those rules may be related to the result. The transactions and
itemsets defined in Meta-Apriori algorithm are rule conditions and expressions,

which is given in Definition 4.

Definition 4. Transaction and itemset.

Given arule cluster gi = {ri, riz, ..., rin}, where N is the number of rulesin g;, the
transaction and itemset are defined below:

tj; = CONDITIONS;, where CONDITIONS;; 1 rij, ji. [1...N], is a set of expressionsto
be used as one transaction, eg., ti= {(protocol = TCP), (protected
network_direction = A), (source_port>-8080);(string = NetBus)}.

disthe itemset of a set of expressions.

In Meta-Apriori agorithm, the support count of the itemset is defined as the
number of transactions that the itemset subsumes. That is, the set of expressions of
the itemset subsume those of the transactions. For two expressions, e, and €, ey
subsumes &, if sub(en, ) = 1, where sub() is caled expression subsume function

shown as (6.11).

’$VI Vattributen’VI V,

il ,
SUb e ,e — ¢ : attribute,,
(& 1) %O , otherwise

(6.12)
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Moreover, an itemset subsumes the transaction if each expression of itemset
subsumes at least one expression of transaction. The itemset subsumption is defined

in Definition 5.

Defnition 5. Itemset subsumption function.
Given an itemset d and a transaction t, the itemset subsumption function is defined as

formula (6.12).

i, "e,l t|sub(e,,e,) =1
s.Jbsum(d,t)::'l S | t]suble,.e,)

10, otherwise (6.12)

After discussing the notations and subsumption issues, the complete Meta-

Apriori algorithm is given as Algorithm 6:3:

Algorithm 6.3 MetaApriori Algorithm

Input: A set of transactions, T; minimum support threshold, min_sup.
Output: A set of frequent itemset, D.

Stepl: Generate the set of frequent 1-itemsets, D1, by scanning T.

Step2: Setinitial value of k to 2.

Step3: Generate candidate k-itemsets Cik from Dj(k-1).

Step4: For each k-itemset di T Cix, compute the support count, that is, d.support =

4 subsumed, 1, )
=1

Step5: Remove those k-itemsets that their support counts are less than min_sup*N
from Cix. Theremaining itemsetsare stored in D.
Step6: If Dix* {f}, increase k and goto Step 2.

Moreover, an itemset subsumes the transaction if each expression of itemset
subsumes at least one expression of transaction. The Example 6 in Appendix C shows

the process of Meta-Apriori agorithm.
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B Meta-rule Generation

The meta-rule generation is based on the concept of constraint-based association
mining [53]. The meaning of the metarule, mr; = (CONDITIONS,
(RULE_CLUSTER = g;), conf), is that if all expressions of CONDITIONS are

satisfied, the rule cluster g; will be selected with confidence value, conf;.

The frequent sets of expressions generated from one rule cluster may be the
same with those generated from the other rule clusters. Therefore, once the frequent
itemsets of al rule clusters are generated by Meta Apriori agorithm shown in
Algorithm 6.4, the Confidence Calculator is used to calculate the confidence value of
each meta-rule generated from frequent itemsets by accumulating the total support
count of all selected metarules from_meta rule base based upon Confidence

Calculation Algorithm.

Algorithm 6.4 Confidence Calculation Algorithm

Input: A set of metarrules, MRB, without confidence values.
Output: A set of meta-rules, MRB’, with confidence val ues.

Stepl: Set MRB' is an empty set.

Step2: For each meta-rule mr; from MRB which have the same set of expressions
in the CONDITION,.

Step3: Accumulate the total support count of all selected meta-rules.

Step4: For each cluster g;, set the confidence value of mr; in gi via dividing its
support count by total support count.

Step5: Remove those selected meta-rules from MRB to MRB'.

6.5 Experiments

We implemented a Dynamic EMCUD web based system, and used computer
worm as an experimental domain, where three computers equipped with the Dynamic

EMCUD system constructed their own KBs to evauate the performance of
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discovering variants. As shown in Figure 6.2, we implemented a simple computer
worm sampl e generator to generate the test samples of worms. The classification rules
of 15 kinds of worm families including origina worms and some variant worms
(polymorphic worms) are extracted by domain experts using EMCUD, where the
initial AOT value is given directly by experts and these worm classification rules are
stored into knowledge base. To evaluate the effectiveness of Dynamic EMCUD, we
generated 20 kinds of test samples including the behaviors of 15 origina worm
familiesand 5 new worm families to randomly attack the victims. The experimental
result in Table 6.1 shows that the collaborative framework can successfully discover
the variants by NEO-learning module. Snce some critical weak embedded rules may
be ignored in the beginning of knowledge based construction, some specific variants
which can not be discovered by any individual NEO-sensor can be detected by the

rules.

Table 6.1 The Ratio of Discovering New Evolved Worm

Original | Variant New Inference
Worms | Worms Families Cost
Dynamic EMCUD 100% 85% 80% 193
Collaborative 100% 92% 80% 200

Both Dynamic EMCUD and Collaborative framework can detect the 100% of
original worms since the classification rules are stored in worm KB. For detecting the
occurrence of variant worms, the Dynamic EMCUD can learn the 85% of variant
worms. If the Dynamic EMCUD is extended to the collaborative framework, 92% of
variant worms can be discovered due to the highly complementary configurations
between collaborative NEO-sensors. However, both Dynamic EMCUD and

collaborative can detect the 80% of new worm families in our experiments. Our
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collaborative framework can learn the 92% of the variants, it needs only 7 extra
inference costs to reach the goal in our experiments. However, the significant
difference of new family can not be discovered easily. Thus, deploying the more
complementary configurations between collaborative sensors could be efficient in

discovering the knowledge of new worms.

Moreover, an Intrusion Detection System (IDS) prototype based upon RP-MES
is proposed, and the partitioning result as well as performance analysis of the

prototype system is a so introduced.

6.5.1 Experiment Environment

m @ m
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Figure6.9 An IDS Prototype System Based RP-MES

Figure 6.9 illustrates the system architecture of the IDS prototype system
including the DRAMA System [46] and Automatic Meta-rule Constructor. DRAMA is
used to store, represent, process the knowledge of the IDS. Moreover, the NORM
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knowledge model used in DRAMA provides the ability of inferring meta-rules and
rule selection by the ACQUIRE knowledge relation, which is a dynamic knowledge
relation to include rule cluster only when meta-rule is matched. DRAMA Rule Verifier

is used to verify rules within the knowledge classes.

Automatic Meta-rule Constructor is also implemented in JAVA. The knowledge
can be the rule base of any other IDS, eg., Snort [68], Dragon Sensor [24], etc.
Automatic Meta-rule Constructor can partition the rule base into rule clusters, which
are represented as knowledge classes in DRAMA, and generate meta-rules from those
knowledge classes. Those generated knowledge classes can be processed by DRAMA
Server for detecting network intrusions. Packet Preprocessor collects the packets from
network and translates into the facts for DRAMA te.infer. Administration Panel of the
prototype system provides a usersinterface for. administrator to monitor the situation

of network environment.

6.5.2 Experimental Results

The rule base of Dragon Sensor consists of 646 rules, which is used as our
experimental knowledge source. In the first experiment, various numbers of rules are
partitioned by Automatic Meta-rule Constructor according to different similarity
threshold (st) settings, which are used as the criteria to stop clustering process. The
partitioning result is shown in Table 6.2. It can be observed that similarity threshold =
1.2 produces more reasonable number of rule clusters since the average size of rule
clusters is satisfied with Miller’s magic number [49], which says that human beings

have a meaningful chunking sizeupto 7 + 2.
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Table 6.2 The Cluster Number with Different Similarity Threshold Settings and

Number of Rules

st
Rules 1.0 11 1.2 13
200 3 5 28 48
300 3 5 32 82
400 3 7 52 112
500 3 5 57 139
600 4 7 56 172
646 3 6 59 188

The experiment is conducted to analyze the accuracy according to different
similarity threshold (st) settings, the criteria to stop clustering process. For each
partitioning result with different cluster similarity setting, Automatic Meta-rule
Constructor also generates corresponding meta-rules and stores those meta-rules in a
knowledge class. Those knowledge classes are loaded into the IDS prototype system
for accuracy experiment. The-accuracy ={Fp| / |Fog| is obtained by comparing the
result of original rule base and partitioned rule-base.~The F is the set of rulesfired in
partitioned rule base, and Fps is the set'of rules fired in original rule base. The result

isshown in Table 6.3.

Table 6.3 Accuracy Comparisons

1.0 11 12 13

Rules

200 98% 99% 100% 100%
300 98.33% 100% 100% 100%
400 96.25% 96.75% 98.75% 99.25%
500 94.20% 94.20% 97% 97.60%
600 95.33% 95.67% 97.33% 98.00%
646 95.51% 95.82% 97.37% 98.14%

We also use the traditional rule base partitioning approach, which only considers

structural relatedness of rule, to partition the same rule base used in previous
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experiments. Table 6.4 shows the number of rule clusters partitioned for both
approaches to meet the same accuracy (the accuracy for RP-MES approach with st =
1.2).

Table 6.4 Comparison of Number of Clusters

Ru 200 | 300 | 400 | 500 | 600 | 646
RP-MES 28 |32 |52 [57 |56 |59
TRADITIONAL |51 |85 |113|139|170 | 188

The final experiment is to evaluate the performance between the rule base not
partitioned and the rule base partitioned by RP-MES. The result of the experiment is
shown in Figure 6.11.

7000

—&— original
—— RP-MES

6000 - =1

5000 - B

sec)

4000 - A

Execution Time (
o
o
[=3
(=]
L

2000 - o

1000 =

0 Il Il 1 I Il Il i
100 150 200 250 300 350 400 450 500
Number of Rules

Figure 6.11 The Perfor mance Comparison

When the number of rules is small, the performance difference is not obvious.
But if the number of rules becomes large, the execution time of original rule base
increases greatly. However, the execution time of RP-MES increases more smoothly

than that of original rule base.
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Chapter 7
Application in Alert Classification M odel

Construction

7.1 Introduction

In order to detect and prevent anomay network behaviors, many Intrusion
Detection Systems (IDS) or Firewalls have been developed to focus on well-known
intrusion patterns through packet-based infermation, connection-base information, or
some statistical network information [29][32][47][52][55][56]. Although these kinds
of approaches can be useful to defend the-obvious activity patterns of intrusions,
many intrusions are still hard to be detected by IDSs to notice human experts because
of numerous noises and insufficient information among different intrusions. In other
words, existing IDS tools just tag suspicious network behaviors into IDS aerts, but
can not avoid generating false aerts. For domain experts, it is time-consuming to
classify IDS alerts into true or false aert sequences precisely due to numerous noisy
IDS derts; for junior administrators, it is difficult to generate aggregated IDS alert
sequences according to the similarities of intrusion patterns due to the lack of domain

knowledge.

Although several methods [4][18][60][66][78] such as generic algorithm, neural

networks, and data mining approaches, have been used to discover either unknown or
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useful patterns for experts, lots of hidden and concealed intrusion patterns may still be
escaped because of insufficient and dirty information. None of them discusses on
discovering intrusion patterns thoroughly from IDS information data, called IDS
alerts. Therefore, we are concerned with how to design a systematic framework to
assist administrators discovering intrusion patterns with IDS aerts. Our idea is to
construct a decision support system to help experts construct an aert classification
model for on-line intrusion detection of IDS aerts. For domain experts, the built aert
classification model will reduce experts efforts on how to precisely and quickly fix
the root causes; for junior administrators, aert classification model will help them
reuse the embedded domain expertise as references, and the domain knowledge will

be no longer alimitation for intrusion detection.

As we know, too many:false alerts result from IDS tools in present network
environments because IDS toals should-be-designed as powerful as possible not to
miss any detection of real intrusions; This means |DS tools become more and more
sensitive to generate false aerts which are noise to discover real intrusion patterns in
some network environments. In this chapter, we collect alert transactions in an
attack-free environment, which is a virtual intranet with severa hosts in laboratories
to simulate real Internet behaviors in the training stage. Accordingly, al alerts are
treated as false alerts in this virtual intranet, and the frequent patterns to be mined in
this case are treated as patterns of normal behaviors, or caled patterns of false alert.
In other words, we can use these data to construct normal behavior patterns to remove
false aerts. Besides, using some specific rootkits to simulate the real intrusions of
networks, we can also construct known intrusion patterns in the training stage to

classify existing intrusion patterns.
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The proposed decision support system consists of three phases in the training
stage: Alert Preprocessing Phase, Model Constructing Phase and Rule Refining Phase
to assist administrators construct three kinds of rule classes (normal rule class,
intrusion rule class and suspicious rule class) to remove fase alert patterns and
analyze each existing or unknown alert pattern, where each rule class represents a set
of classification rules. Because flags of alert patterns may change between two
consecutive time intervals, so the differences of specific patterns must be highlighted
and refreshed again to experts in each time interval. A least recently used (LRU) rule
replacement policy is used to replace the rules which are less used recently in each

classification rule class to ensure the performance of our system.

7.2 Decision Support System:/Architecture

Although many IDS have been proposed to/assist administrators in detecting
intrusion, false alarms are still huge and result in the difficulty of analysis. Traditional
intrusion pattern analysis methods use different data sources with their own data
formats according to different methods of IDS alert analysis. Different analysis
methods have different characteristics to get the desired intrusion patterns. However,
most of these researches are conceptual deficient and mutually independent; some of
them provide sufficient data formats, and some others are conspicuous on analysis
performance. Each intrusion pattern analysis method has its own limitation, so
integrating advantages of different methods seems better than redesigning a new
analysis framework to take the advantage of these methods. Hence, we propose a
decision support system for constructing alert classification behavior patterns to help

experts easily to construct an alert classification model using the huge amount alerts.
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The main purposes of IDS alerts collection and analysis are finding more
meaningful alert information and discovering the information relation between real
alerts to verify system vulnerabilities and to infer attack causes. Some issues are
derived from these purposes:

(1) How to choose appropriate analysis targets and data formats.

(2) How tofilter false alerts efficiently.

(3 How to discover attack patterns and display appropriate data types for

administrators to make policies.

7.2.1 The Framework of Decision Support System

Training Stage

User

User Interface

? A

Set l Display Flagging

Alert Model Rule Updijte fhles
Proprocessing  peegise  CONSMICHNET  fe—je Refining 2 Classaficaty
Phase Phase Phiase 1

Decision Support Inference Engine

Figure7.1 The Framework of Decision Support System

In the training stage, a decision support system for constructing an alert
classification model consists of alert preprocessing phase, model constricting phase,
and rule refining phase as shown in Figure 7.1. As we know, most attack patterns are a

sequence of actions, which can be represented as a sequence of IDS alerts. In alert
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preprocessing phase, al alerts triggered by IDS sensors are stored in the alert
warehouse and would be transformed into alert sequences for each IDS sensor during
a period of time which could be set by experts for batch training. Without alert
preprocessing, the time complexity of pattern analyzing will become huge and the
accuracy of pattern discovering will low down due to the huge among of false alerts.
In model constructing phase, filtering and analysis methods are proposed to assist
experts construct different classification rule classes to remove false alert patterns and
analyze each existing or novel aert pattern. The normal alert behavior patterns will be
trained firstly in an attack-free environment by sequential miming algorithm and used
to reduce the affect of noise on intrusion patterns as more as possible because the
normal behavior pattern will occur periodically and frequently. Then, the suspicious
behavior patterns will be trained in a_simulated attacking environment and the
corresponding classification |abels-could be flagged by experts according to the alert
patterns in model constructing phasé:. These-obtained behavior patterns could be used
to help administrator identify intrusiens in the on-line stage. If new alert behavior
patterns are discovered, they will be integrated into the alert classification model;

otherwise, the alert model could be refined in rule refining phase.

7.2.2 Alert Preprocessing Phase

Since most part of present attacks are target-specific and stealthy intrusions
instead of large-scale violence [72] and alert transactions in alert warehouse are large,
it is necessary to transform raw aert transactions into pre-defined alert transaction
formats for further analyzing. Some characteristics of attack tools can be discovered
by analyzing alert sequences [37]. As shown in Figure 7.2, assume a source host

triggers the same sequence of alerts against different target hosts in a noise-free
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environment without false alerts. In genera, it can be easily seem these scenarios

from an attacker try out his or her attack tool against different targets.
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Batch_Time_Window may be an hour, a day, a week, or a month; but we suggest that
to set the value of Batch_Time Window as one day will be better in our experience.
Besides, most intrusions will not continue for a very long time in its own attack
lifecycle, so we set a short-term time period Short_Time_Window as the time period of
our alert sequence transactions. We assume that every intrusion will finish its whole
lifecycle in this short-term time period. The value of Short_Time Window may be 1
minute, several minutes, or even an hour; but we suggest that we set the value of

Short_Time_Window as half of an hour will be better in our experience.

After explaining the definition of Batch_Time_Window and Short_Time_Wndow,
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there are still some issues for alert transaction construction. First, for a single aert
transaction, it is difficult to classify it into true aert or false aert because some alerts
are used to be triggered. Second, it is still not appropriate for alert sequences to be too
long because long sequential patterns are not easy to be frequent. Our ideaisto design
proper policies corresponding to different environments, and some policies of alert
sequence partition are proposed to construct alert sequence transactions for model
constructing phase with different requirements. These policies are used to partition
alert sequences into subseguences in each Short_Time Window. According to
different purposes, the corresponding policies are designed to obtain desired aert

subsequence transactions. Three policies are shown as follows.

CASE 1: Left-To-Right Non-Repeat Policy
Step 1. Scan every aert fromthe first (left) to the end (right) of sequence.
Step 2: Partition sequence into'scanned-part and unscanned part; IF next alert to
be scanned is equal to some alert in the scanned part, Do partition from
the first element to the present element and set the unscanned part as a
new sequence.

Step 3: IF thereis still any element in the unscanned part, GOTO Step 1.

CASE 2: Right-To-L eft Non-Repeat Policy
Step 1: Scan every aert from the end (right) to the first (Ieft) of sequence.
Step 2: Partition sequence into scanned part and unscanned part; IF next alert to
be scanned is equal to some alert in the scanned part, Do partition from
the first scanned element to the present element and set the unscanned

part as a new sequence.

115



Step 3: IF thereis still any element in the unscanned part, GOTO Step 1.

CASE 3: Equi-Length Policy
Step 1: Ask administrators to set a value of the subsequence length.
Step 2: Partition each aert sequence into several subsequences with the fixed

length.

Here ‘Left-To-Right Non-Repeat Policy’ is used as our partition policy for
example. We suppose that there is an aert sequence of sensor H1 in short-term slice

t1 asfollowing:

Sensor ID | Short_Time Window(1)
H1 XABYXCYC

At first, let AS[7] be aert sequence: XABY XCY; because AS[4] equals AS[0],
so this sequence is divided inte two alert-subsequences: the scanned part XABY and
the unscanned part XCYC, and ‘executes partittoning again in the unscanned part
XCYC as new sequence, or consider as new AS[4]. In AS[4], we can find that AS[4]
equals AS[2] again, so this sequence AS[4] is divided into two alert subsequences: the
scanned part XCY and the unscanned part C. After whole origina aert sequence
being scanned, we can get three new aert sub-sequence transactions such as XABY,

XCY and C asfollows.

Sensor ID | Short_Time Windows(1)
H1 XABY | XCY | C

7.2.3 Modédl Constructing Phase
There are some researches discussing about how to filter false alerts efficiently,

and different data characteristics and different filtering heuristics brings quite different
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filtering results. Generally speaking, most of these researches use specific analysis
methods or compile expert experiences to construct filter models, and use this filter

model to discard those highly-possible false alerts to get clearer data.

Besides, to find specific patterns in these kinds of numerous sources is like to
discover meaningful patterns in distributed databases or data warehouses for decision
support. Many researches have been proposed to analyze behavior models in
databases, and different alert pattern analysis methods with different data source
formats cause different outcomes. In our thought, none of these analysis algorithms is

powerful enough for correctly detecting intrusions.

There are two different purposes for_alert pattern discovering obviously: false
alert filtering and useful alert jpattern discovering: Itsis common to filter false alerts
before alert pattern discovering because these-noisy alerts will affect the accuracy of
alert pattern discovering. In other words, our-approach tries to discover patterns of
false aerts first, and then continue to discover useful patterns of suspicious or known

derts.

In the training stage, we design some rule class construction methods to build
specific behavior rule classes. We construct three types of behavior classification rule
classes with domain experts: normal behavior rule class, intrusion behavior rule class,
and suspicious behavior rule class. Each type of rule classes is constructed by

individual methods, which use different data sources as their data inputs.
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For example, if we want to construct normal behavior rule class which is the
collection of false alert patterns, we may collect IDS alerts in an attack-free network
environment and use specific normal behavior rule class construction method to
discover false alert sequences. Besides, if we want to construct intrusion rule class
and suspicious rule class, we may collect IDS aerts in a simulated network
environment using some existing intrusion tools to generate simulated intrusions, to
discover interim suspicious behavior rule class by specific rule class construction
method. We will provide all interim classification rules of intrusion/suspicious
behavior rule classes to experts, and the system will interact with them to flag these
suspicious alert sequences with specific tags. If one suspicious pattern is a known
attack, experts will flag it as a specific classification name and seem it as a kind of
intrusion behavior classification rules; if one suspieious pattern is never verified, then
it is realy an unknown suspicious-pattern and is-considered as a kind of suspicious

behavior classification rules.

The procedure of behavior classification rule class construction in the training
stage is shown as following:

(1) Construct Normal Behavior Classification Rule Class.

(2) Construct Suspicioug/Intrusion Classification Rule Class.

(3) Classify Classification Rules of Suspicious/Intrusion Rule Class into

Suspicious Behavior Rule class and Intrusion Behavior Rule Class.

These behavior classification rule classes are used to monitor IDS aert behaviors
in the on-line stage. IDS sensors trigger alerts at any moment, and it is not easy for

experts to classify these consecutive alert sequences into normal behaviors or
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suspicious behaviors without our decision support system. With these three types of
rule classes, it is possible for real-time monitoring IDS alert sequences to discover
most intrusion behaviors. The decision support system lightens the load of expertsin
analyzing IDS derts and assist them focusing on how to explain the intrusion
principles and how to fix the root causes. The rule class construction algorithms are

detailedly described in Appendix D.

The activation flow of each rule class is shown as follows: in the on-line stage,
alert sequences are triggered by IDS tools and will be forwarded to aert warehouse.
Before being stored into alert warehouse, each alert sequence will be matched by
classification rule classes of classification model first. After interviewing with domain
experts, the normal behavior patterns will be firstly-used to filter out most part of false
alerts. Then, the intrusion behavier patterns.will be used to detect the true intrusion
alerts. Finaly, the remaining: aerts ‘should-be classified into known suspicious

behavior patterns or unknown suspicious alerts:

Suspiciows
Behevior
Classification

Intrusion Behavior
Classification

Rule Class

Normal Behavior
Classification

Bule Class

Condition ol sequence, Flag,  Time Laindk [ sequeniz, Fl Codition el segasce, Flag T
AR Skl T1 YYE Rouotkil T UK Suspicius. 1

(] Mormal Tl 51 D T2 LE Suspicicus TU
EFG Mocmal T2 VEY Woom T3 LN Suspicious T2

Figure 7.3 Meta-rulesof Classification Rule Classesfor On-line Monitoring

The activation flow of each rule class is shown in Figure 7.3. If there is any aert

subsegquence matching the classification rules in normal behavior classification rule
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class, it will be filtered out immediately; if there is no aert subsequence matching,
classification rules of intrusion behavior classification rule class will be triggered to
verify these on-line aert sequences. In the similar way, if there is any alert
subsequence matching the classification rules of intrusion behavior classification rule
class, system will highlight the aert subsequence to notice experts; if not,
classification rules of suspicious behavior classification rule class will be triggered to
verify these aert sequences again. If there is still no classification rule matched by
alert subsequences, these aert sequences will be stored in alert warehouse as new

batch data sources of the next time window.

7.2.4 Rule Refining Phase

These obtained behavior rule classes could beused to help administrator identify
intrusions in the on-line stage. 1f new aert behavior classification rules are discovered,
they will be integrated into the @lert classification rule classes,; otherwise, the alert rule

classes could be refined in the rule refining phase:

First, for the efficiency of rule inference, the maximum number of classification
rule in each classification rule class needs to be limited. If new classification rules are
incrementally added into rule classes, the inference performance of on-line
monitoring will be decreased due to the huge of rules. The initial number of

maximum rule number of each classification rule classin our experiment is set to 200.

If the quotas of classification rule class are full with classification rules, it is
necessary to find replacement strategies for rule replacement. It is possible for each

classification rule class to use different rule replacement policies to implement rule
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replacement according to individual data characteristics. In the field of operating
system, the LRU policy is often used as a page-replacement algorithm and is
considered to be quite good. In this paper, a least recently used (LRU) replacement
policy is used in each classification rule class. LRU replacement associates with each
rule the time of that rule’s last use. When a rule must be replaced, LRU chooses that
rule that has not been matched for the longest period of time. This strategy is the

optimal rule-replacement policy looking backward in time, rather than forward.

For the rule contradiction checking issue, two classification rules with the same
alert sequence may be flagged in different classification labels (e.g., norma or
intrusion) in two consecutive batch interactions. For example, in one time interval,
alert sequence ABC are flagged as*“normal”, but ABC are flagged as “ Suspicious’ in
the next time interval. In this case;-system will interact with experts to make sure the

flag of this alert sequence instead of 'simple-and-fixed replacement.

7.3 Experiments

In order to evaluate the efficiency of the obtained behavior pattern, we set up an
experimental environment equipped with one server and eight hosts to simulate real
network.

7.3.1 The Design of The Experimental Environment

The knowledge-based architecture of collaborative discovering of suspicious
network behaviors is implemented as shown in Figure 7.7. All the related tools
described above are one server, which plays the role of IDS Alert Analysis Server,
including IDS center for alert warehouse, web-based analysis console and alert

analysis console. Besides, eight hosts al play the role of IDS sensors to trigger aerts
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as our data sources. The system and network profiles of these sensors are shown in

Figure 7.4.
{ Interriet o On-line Stage

| 5

o — —
l ! J’ Administrator
2 Analysis Server r
~
Cnline

Monitoring Module

J Alert Warchouse

Figure 7.4 Decision Support System Prototypein Experiments

We have conceptualized alerts according to Snort rule set, which is a
network-based IDS whose alerts are triggered by a collection of signature-based rules.
Each Snort rule is composed of a Snort identification number, a message that is
included in the alert when the rule is triggered, an attack signature, and references to
sources of information about the attack. Each alert is provided with an identifier, time
and data, sensor identifier, triggered signature, IP and TCP headers and payload.
These alerts will be stored in the relational database as our aert warehouse. Alertsin
one period of time, e.g., 24 hours, are collected by IDS center as data source in this

experiment. For easy reading, we replace the origina aert signature names with

122



different capital letters.

The training data set collection in our experiment is shown as follows. The total

number of IDS alertsis 164 collected in aday and the Short_Time Window isset to 1

hour. The total number of aert sequence transactions is 295.

Total number | Batch_Time_ | Short_Time_ Total number of alert
of IDSalerts Window Window seguence transactions
1640 24 hours 1 hour 295

7.3.2 Experimental Results

To verify the feasibility of our decision support system, we use the data set to
execute our alert classification model. We construct an alert classification model in
the training stage, and use this alert classification model for on-line monitoring. After
filtering false aerts with normal behavior classification rule class, the result of alert
reduction is shown in Figure 7.5. The classification rules of normal behavior

classification rule class which are used in this experiment would change their time

flags for rule refining.
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Figure 7.5 Alert Reduction Rate of Normal Behavior Classification Model
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The filtered alert sequences are used to discover suspicious/intrusion alert
sequences. We used pre-defined suspicious aert classification rule class and intrusion
alert classification rule class to discover useful alert patterns for experts. Suspicious
alert classification rule class and intrusion alert classification rule class are used to
verify the on-line alert sequences. The result of suspicious/intrusion alert sequence
verification is shown in Figure 7.6. 29% of candidate IDS aert sequences are known
alert sequences, 42% of candidate IDS alert sequences are sugpicious alert sequences,
and 29% of candidate IDS alert sequences are unknown alert sequences. The aert
sequences triggered as suspicious alert sequences or intrusion alert sequences would
be highlighted to notice experts for on-line detection, and these used alert
classification rules would change their_time flags for rule refining. The part of
unknown alert sequences would he forward to alert warehouse as the data sources of

next batch model construction in the training-stage.

29 %
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BSuspicious aler
OUnknown
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Figure 7.6 Observations of Percentages of Different Suspicious Flags
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In this chapter, we proposed a decision support system for constructing an aert
classification model, which consists of three phases: aert preprocessing phase, model
constructing phase and rule refining phase. In aert preprocessing phase, raw IDS
alerts are collected into alert warehouse and will be transformed into alert transactions.
Three kinds of alert classification rule classes including normal behavior classification
rule class, intrusion behavior classification rule class and suspicious behavior
classification rule class, are constructed in model constructing phase to filter normal
alert patterns and then discover each known or novel alert pattern based upon the
remaining alert transactions. Each classification rule class consists of fixed number of
classification rules. An AprioriAll-like sequential pattern mining algorithm is
proposed to construct classification rules of normal, behavior classification rule class.
A set of intrusion tools to collect data sources of suspicious/intrusion behavior
classification rule class construction in the-simul ated attacking network environment.
Our experiment demonstrates that the accuracy ofour decision support system is well.
This decision support system will construct a classification model for on-line
monitoring. The alert classification model is useful for experts to discover suspicious
or intrusion patterns quickly and precisely, and lightens the load of on-line aert
analysis for experts obviously. The current implementation of our research constructs
rule classes in the aert classification model. In the near future, more types of

classification rule classes will be created for enhancing the performance of detection.
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Chapter 8

Conclusion and Future Work

In this dissertation, we proposed new knowledge acquisition methodologies,
Dynamic EMCUD which is an iteratively knowledge acquisition method to monitor
the inference behaviors of weak embedded rules, including variant knowledge
acquisition (VODKA), and evolutional knowledge acquisition (TEA) for dynamic
knowledge by collecting these sufficientieomtexts to notify experts the occurrence of
evolved objects. VODKA is proposed to iteratively-discover the variants knowledge
through observing the frequent inference behaviors of those weak embedded rules
with marginaly acceptable CF to fassist domain’ experts to single out ambiguous
objects. Three recommendations, including no change, changing the data type of an
attribute, or adding a new attribute, are proposed to help them easily discover the new

variants according to the learned large itemsets.

Moreover, TEA is aso proposed to learn the evolutional knowledge which is
evolved with the changing environment by adjusting the AOT value over times based
upon the trend of behaviors. Two methods are applied to trace the evolutional
knowledge and calculate the suitable CF value of each discovered rules: entropy
based calculating and gracefully accumulating, to make the knowledge more adaptive
for the current environment. Based upon the acquisition table increment of variant

knowledge generated by VODKA and AOT increment of evolutional knowledge
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generated by TEA, we proposed Grid Merging algorithm to integrate the acquisition
table increment into the main acquisition table for adapting the weak embedded rules

to archive the knowledge evolution.

Moreover, a collaborative knowledge acquisition framework is also proposed to
integrate the new knowledge generated from local KBSs and help experts easily
discover the new evolved knowledge which are unseen in every local KBSs based
upon the Dynamic EMCUD and the designed context which is designed to describe
the static profile and dynamic behaviors of individual and environment. Consequently,
six collaborative heuristics are proposed to help experts be aware of the occurrence of

dynamic knowledge with the changing environment as time goes on.

Two applications including- in worms and. DDoS detection, and alert
classification model construction are-used-to-evaluate the performance of Dynamic
EMCUD. Since the knowledge base can be evolved as time goes on, the evolutional
knowledge base can become huge and hard to maintain. We proposed RP-MES to
solve the issues by designing a new approach combining both rule base partitioning
and meta-rule construction mechanisms. As for rule base partitioning, RP-MES not
only takes care of the structural relatedness between rules, but also considers the
semantic relatedness of rulesin the rule base. Based upon the clustering result, we can
easily extract the meta rule of each rule cluster using meta-Apriori algorithm for
improve the usage of knowledge base system. A Worm Immune Service Expert system
(WM SE) based upon DRAMA has been implemented and deployed in an experimental
environment to evaluate the performance of our collaborative knowledge acquisition

methodologies. The results show that new variants can be discovered after the
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occurrence of a series of worm instances.

In the near future, we will improve WI SE system with a collaborative knowledge
acquisition ability to evaluate our idea by developing compatible pre-specified
ontology of worms related domain knowledge. More robust knowledge acquisition
methods for acquiring dynamic knowledge will be designed. More applications such
as intrusion detection, ubiquitous learning will be also considered to evaluate the

performance of collaborative knowledge acquisition methodologies.
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Appendix A

I ntroduction of DD0S

(1) DDoS Basic

Table A.1 The DDoS Attacks Developed from 1998 to 2002

Date Attack Attack method
DP Flood|ICME Flood [Srf] TCF SYN[TCP ACK[TCP RST|TCP SYMIACK
19085 [FAFI o o o
1990/6~1999/7 [Trind0 -
1999/8-1599/9 [TFN ° ° o o o
1095/9. 199910 |Stagheldracht | o o o o
199911  [TFN 2K 5 - s °
2000/1-2000/2 [Shatt ° o o
0002 [Trinity ° 5 5 o
0021 |DRDoS o
0024 [Wlstrean s

The DDoS appeared in June of | 1998 firstly means that many attackers launch

malicious traffic to the same victims together .and make the victims too busy to

respond all the traffic including legitimate requests. Severa different DDoS attacks

which were developed [13][12][5][20][22] from 1998 to 2002 can be divided into

several categories including UDP flood, ICMP flood, TCP flood, and Smurf as shown

in Table A.1, so the common characteristics of each category of DDoS attacks could

be easily observed and extracted. For example, the TFN2K, discovered in November

1999, isakind of DDoS attacking tools. It can launch UDP flood, ICMP flood, Smurf,

or TCP SYN flood attacking method to attack victimsin one time. All of the observed

knowledge can be represented as a natural rule format and stored into a knowledge

base.
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-~ Controlling ==pafAtitcacking traffic

FigureA.1 The General Topology of DDoS Attacks

The general topology of DDoS attack shown in Figure A.1 could be divided into
control stage and attack stage. In control stage; a scan is performed in large ranges of
network to find the list of vulnerable hosts. Generally speaking, the vulnerable hosts
consist of handlers and agents;where the handlers (the first level vulnerable hosts) are
controlled by attackers and agents (the second level vulnerable hosts) are also
controlled by attackers through handlers. Most of the controlling traffic, the traffic of
communication in control stage, is signal direction between attacker and handler but
is bi-direction between handlers and agents. The two level topology results in the
locations of attackers can be hidden. After the control stage, the list of vulnerable
hosts is then used to launch the distributed attacking traffic in attack stage. The
attacking traffic including UDP flood, ICMP flood, Smurf, TCP SYN, TCP ACK, TCP

RST, and TCP SYN/ACK asshown in Table A.1 could overwhelm the victim.

(2) DDoS Intrusion Tolerance
Intrusion tolerance is the ability of a system to continue providing (possibly

degraded but) adequate services after a penetration (Stavridou, 2001). As mentioned
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above, it is very hard to detect and prevent the DDoS attacks. Therefore, the intrusion
tolerance of DDoS attacks is an important issue to mitigate the damage during DDoS
attacks for providing the critical services continuously on Internet. Park and Lee [58]
suggested a method to install packet filters at different autonomous system on the
Internet to filter out attacking traffic traveling between them. The method is very
effective but not practical to defend DDoS attacks because of requiring the

cooperation of thousands of autonomous systems on Internet.

Chang [CHAOQ1] aso introduced the concept of Internet firewall and four
detecting and filtering approaches consisting of ubiquitous ingress packet filtering,
router-based packet filtering, local attack detecting, and distributed attack detecting
for defending flooding based DD0S attacks. .He @ so indicated that more effective
detect-and-filter approaches, such.as distributed attack detecting, should be developed
for DDoS intrusion tolerance.-However;-all-of. them lack a systematic approach to

integrate the knowledge of DDoS intrusion tolerance.

Xu and Lee [82] proposed a DDoS intrusion tolerance system to sustain the
availability of web service under DDoS attacks. The main idea is to isolate and
protect legitimate traffic from huge volumes of DDoS traffic when an attack occurs.
Unfortunately, it only aims on protecting web service instead of protecting the

network.
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Appendix B

The Example of Knowledge Classin DDoS Intrusion Tolerance

(1) System State Diagram

In the traditional systems, NORMAL and DEAD states are usualy enough to
describe the system status, because the time is too short to respond the DDoS attacks
for the administrator before the victim system moving to DEAD state. Therefore, the
behaviors of the most traditional information systems will be NORMAL-DEAD
pattern when they are attacked. By applying the various filtering polices for DDoS
attacks according to the users behaviors, the survival time of the system can then be
extended and the SURVIVAL state is further added to represent such situation. With
the heuristic of setting more restricted filtering policies, the system will tend to move
SURVIVAL state quickly backed to NORMAL-state. On the other hand, the behaviors
of the DDoS intrusion tolerance system will be expected to be NORMAL-

SURVIVAL-NORMAL pattern during DDoS attacks.

Mormal traffic New policy setting
coming

System

Attacking traffic
coming

FigureB.1 System State Diagram

To describe the relationships between states of the system conceptually, the
system state diagram including NORMAL, SURVIVAL, and DEAD states are

proposed as shown in Figure B.1. A system capability and the bandwidth utilization
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could be computed by the CPU load, the memory usage and the behaviors of access
control list (ACL) to determine the transition of the system state diagram according to
the new policy setting event, the attacking traffic coming event, and the system

overloading event.

(2) Role State Diagram

We assume the behaviors of normal users may not be changed dramatically in a
short period of time. To represent the behaviors of each user, a role state diagram
based upon an efficient ACL including white list and black list policy is proposed. We
assume the DDoS attackers may frequently request service during the abnormal
network status instead of normal ones. To monitor users behaviors, the historical
behaviors of the users based upon the current network status in a short time slice are
proposed to distinguish the abnormal users from normal users efficiently, where each

historical behavior is represented as asequence of current network status.

Figure B.2 Role Sate Diagram

According to the white list and black list shown in Figure B.2, al users could be
categorized into TRUSTED, UNTRUSTED and CANDIDATE states. The N and A
indicate that the current network status is normal and abnormal respectively, and the
user in CANDIDATE or SUSPECTED state is moved to CANDIDATE state when
current network status is N; otherwise, he/she is moved to SUSPECTED state. Then,
the M(g) and M(q)' indicate that the historical behavior of the user g, which is
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acquired from Users Log DB, is norma and abnormal respectively. The user in
CANDIDATE state will be moved into TRUSTED state if he/she has accumulated
sufficient normal behaviors; it means that the historical behavior of the user g should
be normal, M(q). On the other hand, the user in SUSPECTED state will be switched
to UNTRUSTED state if he/she has accumulated sufficient abnormal behaviors,
M(Q)'. The users in TRUSTED and UNTRUSTED states will be moved to
CANDIDATE and SUSPECTED states respectively if their historical behaviors match
the corresponding constraints. With the role state diagram, the filtering policies could

be adaptively generated based upon dynamically changing network environment.

(3) Examples of Detailed Rules Obtained by The Characteristic Trainer
According to the Characteristic Training algerithm shown in Algorithm 6.1, the
following six examples show: the obtained partial ‘characteristics/features and the

corresponding detection rules.

B ExampleB.1: Theratiosof untrusted |P addresses and ports

Since the attacking traffic of DDoS is launched from the compromised hosts
which disperse on Internet, most of the attacking traffic comes from the untrusted 1P
addresses. Also, some DDoS attacking tools may generate the destination port of
attack packets randomly. Therefore, we select the ratios of traffic from untrusted IP
addresses and ports as two important characteristics in Step 1 to detect the occurrence
of DDoS attacking traffic, set dangerous ratio d = 50 by comparing the list of ports
and ACL defined by 1SPsin Step 2, and the action “Trigger Filter KC” for these two
detecting features is chosen in Step 3. Findly, the rule “IF (the ratio of untrusted IP

addresses > 50) OR (the ratio to untrusted ports > 50) Then (Spoofing DDoS
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attacking) AND (Trigger Filter KC)” is generated to discover DDoS attacks.

B Example B.2: Number of flows from the same source increase rapidly

Generally speaking, the number of flows from one source normally does not
increase dramatically if the attacks without spoofing did not occur. Hence we select
the number of flows from one specific source as acharacteristic of suspected user to
detect the DDoS attacks in Step 1. Next, the rapidly increasing rate d = 50 in Step 2.
In Step 4, the rule “IF (Number of flows from the same source > 50) Then (Same
source DDoS attacking) AND (Trigger Filter KC)” is generated to discover DDoS

attacks.

B Example B.3: Number of flows in the state of“.SYN_RECEIVED”

Resource consumption attacks often use the SYN flood technique (Criscuolo,
2000), such as TFN, TFN2K, stacheldracht-and:so on, to overwhelm the victim, where
client sends a fake packet to Server; and Server accepts this SYN packet, responds the
SYN/ACK packet to the fake address, and waits for the response of SYN/ACK packet.
But the response will never arrive due to the faked source address. Therefore, the
number of flows in the state of SYN_RECEIVED is first selected to detect the DDoS
attacks in Step 1 and the d is set to 1000 in Step 2 in this example. Finaly, the rule
such as “IF (#SYN_RECIEIVED > 1000) Then (SYN flooding DDoS attacking) AND

(Trigger Filter KC)” is generated to discover DDoS attacks.

B Example B.4: Percentages of UDP and ICMP packets
The percentages of UDP and ICMP packets usually representing the error control

messages during communications are always small in normal traffic and they will
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become large if the bandwidth consumption DDoS attack, the UDP or ICMP flood,
could be launched to overwhelm victims. Since the percentages of UDP and ICMP
packets are various for different autonomous systems, the environment-dependent
characteristics on monitoring the huge traffic of UDP and ICMP packets are required
and selected to detect the DDoS attacks in Step 1. The d is then set to be 30 in Step 2.
Finally, the corresponding detection rules such as “1F (P(UDP) > 30) OR (P(ICMP) >
30) Then (Flooding-based DDoS attacking) AND (Trigger Filter KC)” are generated

to discover DDOS attacks.

B Example B.5: Oversize of UDP packets and ICMP packets

As mentioned above, the UDP and ICMP packets are usually the error control
messages during communication,‘the encryption of payload in packet for DDoS tools
is usualy used for communication between attackers, handlers, and agents in
controlling traffic, since the controlling traffie stores the source addresses of attackers,
handlers and victims and attacks do net-want 1o be revealed. Besides, the accounts,
the passwords, and the commands to control handlers and agents from attackers are
also necessarily encrypted. Since encrypting the information may enlarge the size of
UDP and ICMP packets, the ratio of oversize UDP and ICMP packets might be
selected as good features in Step 1 and set threshold value = 100. Finally, the
corresponding prediction rules such as “IF (#Oversize > 100) Then (Controlling
traffic attacking) AND (Trigger DDoS Prediction KC)” are generated to predict the

DDoS attacks.

B ExampleB.6: Percentage of BASE64 encoding packets

Once the communication packets are encrypted, the resulting special characters
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should be encoded to avoid the occurrence of errors in communication during DDoS
attacks. BASE64 encoding is very popular in solving this problem, but the payload of
packet contains only aphanumeric character and Ox41(* A') always appears at the end
of the BASEG64 encoding packet in the TFN2K attack. Both may be selected as useful
features to predict the occurrence of DDoS attacks in Step 1. Finally, the predicting
rule “IF (AlphaBeta = Yes) AND (Tailing = *A’) Then (TFK2K Communication traffic
attacking) AND (Trigger Filter KC)” is generated.

The following table shows the summarization of Example B.1 to Example B.6.

Feature Name (f) Operator (g) | Threshold (d) Actions (A)
ratio of untrusted |P > 50 (Spoofing DDoS attacking) AND (Trigger Filter KC)
ratio of untrusted ports > 50 (Spoofing DDoS attacking) AND (Trigger Filter KC)
ratio of same IP > 50 (Same |P DDoS attacking) AND (Trigger Filter KC)
#SYN_RECIEIVED > 1000 (SYN flooding attacking) AND (Trigger Filter KC)
UDP percentage > 30 (Flooding-based attacking) AND (Trigger Filter KC)
#Oversize packets > 100 (Controlling traffic) AND (Trigger Prediction KC)
AlphaBeta = Yes (Communication traffic) AND (Trigger Filter KC)
Packet Tailing = A (Communication traffic) AND (Trigger Filter KC)

(4) An Example of Knowledge Classes

The following shows a simple example of ' KC to defend the TFN2K attack,
where the Profile KC includes system state transition rules and user state transition
rules, the Detection KC includes attack detecting and attack predicting sub-KCs, the
Detection KC includes rules focusing on detecting TFN2K  attack, the Filter KC lists
the heuristics of policy learning proposed in this paper, and the Evaluation KC
illustrates the evaluating rules including system performance evaluating rules and the
network performance evaluating rules.

B A Partia ProfileKC

System state transition rules

IF Ss= NORMAL AND Traffic = Norma Then Ss= NORMAL /[Ssis system state
IF Ss= NORMAL AND Traffic = Attack Then Ss= SURVIVAL

IF Ss= SURVIVAL AND Policy_Set = Enable Then Ss= NORMAL

IF Ss= SURVIVAL AND System = Overload Then Ss= DEAD

User statetransition rules

IF Us=TRUSTED AND Uhb =M’ Then Us= CANDIDATE /IUsis user state
IF Us= CANDIDATE AND Uhb =M Then Us= TRUSTED //Uhbis historical user behavior
IF Us= CANDIDATE AND Ncb =N Then Us= CANDIDATE /INch is current user behavior
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IF Us= CANDIDATE AND Ncb = A Then Us = SUSPECTED
IF Us= SUSPECTED AND Ncb = N Then Us=CANDIDATE
IF Us= SUSPECTED AND Ncb = A Then Us = SUSPECTED
IF Us= SUSPECTED AND Uhb = M’ Then Us= UNTRUSTED
IF Us= UNTRUSTED AND Uhb = M Then Us= SUSPECTED

B A Partial Detection KC

Attack detecting sub-KC
IF P(Protocol) > dprotocol Then Flooding-based DDoS attacking AND Trigger Filter KC
/I P(Protocol) is the percentage of protocol
IF IR(U) > 50% Then Same source DDoS attacking AND Trigger Filter KC
/IIR(V) is the increase rate of the user
IF (Untrusted > 50%) AND (#Request > 200) Then Spoofing DDoS attacking AND Trigger Filter KC
/I Untrusted is the rate of usersin UNTRUSTED
IF#SYN_RECEIVED > dsyn Then SYN-flooding DDoS attacking AND Trigger Filter KC
Attack predicting sub-KC
IF AlphaBeta= Yes AND Tailing = ‘A’ Then TFK2K Communication traffic attacking AND Trigger Filter KC
/IBASE64 encoding
IF #OverSize > 10 Then Controlling traffic attacking AND Trigger DDoS Prediction KC  //Oversize packet

B A Partial Filter KC

Acquire Evaluation KC

IF Ng, = N AND Us= CANDIDATE Then S(W) =S(U) + 1 /IS(V) isthe historical behavior score of user
IF Noo = A AND Us = SUSPECTED Then S(U) = S(U)=1

IF Ngo = N AND Ng(U) =N AND Us= TRUSTED Then S(U) = S(U) + 1 /INg isthe last network state
IF Noo = AAND Ng(U) = AAND Us = TRUSTED Then S(U)= S(U) =1

IF Ngo = N AND Ng(U) =N AND Us= UNTRUSTED Then'S(U) = S(U) + 1

IF N = AAND Ny (U) = AAND Us=UNTRUSTED Then S(U) = S(U) - 1

IFS(U) 3 GThen Uy, =M

IF Us=TRUSTED Then Set U in WL

IFS(U) £ -GThen Uy =M’

IF Us=UNTRUSTED Then Put U in BL

IFU in BL Then (Block U) AND (Policy Set = Enable)

IF Policy_Set = Enable Then Acquire Evaluation KC

IF U in WL Then Trigger Detection KC

B A Partial Evaluation KC

IFCPU =X AND MEM =Y Thenr =AVG(X, Y)

IFr 3 90 Then System = Overload

IFr £ 45 Then Traffic = Normal AND Policy_Set = Disable
IF (r >45) AND (r <90) Then Traffic = Attack

IFBw3 50 ThenNg, = A

IFBw<50ThenNg =N

When the TFN2K traffic is coming, the Filter KC will be firstly triggered to filter
the users in black list. Next, it will acquire the Evaluation KC to obtain the current
network situation and then report abnormal (N¢, = A). In the meanwhile, the Filter KC

will also trigger the Detection KC for detecting the users who pass the Filter KC. If
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the attacker lunched “TCP-SY N flood” attack, then the rule “(IF #SYN_RECEIVED >
dsw Then SYN-flooding DDoS attacking AND Trigger Filter KC)” will be matched;
hence the Filter KC is triggered to adapt the ACL. If one user’s behavior is abnormal
comparing to his/her historical behavior, he/she is gradually moved to black list and
the Policy_Set is enabled. After new policy is set, the Filter KC will trigger
Evaluation KC to determine the performance of the policy. If the system capacity
become high, then system state will be transformed into NORMAL; otherwise, the

policy will be reset if necessary.

146



Appendix C

The Examplesfor Rule Base Partitioning

Example C.1: The following five rules for detecting different network anomalies

form arule base RB; that is, RB ={ry, I, I'3, I'4, I's}.

ry : IF {(protocol = TCP), (protected_network_ direction = A), (source_port > 8080),
(string = NetBus)} THEN {(name = NETBUS)};

r2 : IF {(protocol = TCP), (protected_network_ direction = A), (source_port > 1023,
(string = NetBus2)} THEN {(name = NETBUS2)};

r; : IF {(protocol = UDP), (protected_network__ direction = A), (destination_ port >
1023), (string = /ce/63/d1/d2/16/e7/13/cf/3clab/ab/86)} THEN { (name = DIR)};

rs : IF {(protocol = UDP), (protected network ' direction = A), (destination_ port >
1023), (string = /ce/63/d1/d2/16/e7/13/cf/39/ab/ab/86)} THEN {(name =
INFO)};

rs : IF {(protocol = TCP), (protected_network_ direction = A), (destination_ port =

53), (string = /00/00/ff)} THEN {(name = ANY-TCP)}.

Example C.2: For the rules r; and r, listed in Example C.1, the set of common
atribute names in both conditions is sharein(ri, r) = {protocol, protected
network_direction, source_port, string}, and the set of common attribute name in both

actionsis shareout(r;, r;) = { name}, while inout(r;, r;) = f, and notshared(ri, r;) = f .
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Example C.3: Given the ontology illustrated in Figure C.1, suppose the constant c is
set to 0.9; the semantic relatedness between e; = (name = NETBUS) and e, = (name =

NETBUS?) is 0.25.

NETWORK
MANAGEMENT

PROTOCOL

( ATTACK )

NETBUS ) ((NETBUS2) ..  ((BACK-ORIFICE )

DIR INFO

Figure C.1 Part of The Network Ontology

( NETSPHERE )

Example C.4: Given two numerical expressions e; = (port >1023) and e, = (port >
8080), and the corresponding imntervals i; = (1023,.65535] and i, = (8080, 65535], the

semantic relatedness between these two-expressions is 0.89.

Example C.5 For two rules, r; and r, listed in Example C.1, the rule similarity

betweenr; and r2 isR(ry, r2) = 0¥0.4 + (1+1+0.89+0)*0.2 + 0.25*0.3 - 0*0.1 = 0.653.

Example C.6 Assume that al rules listed in Example C.1 are partitioned according
to the Rule Base Partitioning Algorithm. The similarity threshold st is set to 1.5.

At first, each rule is assigned to a single rule cluster, i.e.,, gt ={ri}, @ ={r2}, &
={r3}, ga ={rq}, and gs = {rs}. The CSM for this configuration is shown as below:

60 181 137 137 145y
S8l 0 142 142 145
CSM,=@.37 142 0 186 1544
837 142 186 0 154]
g.45 145 154 154 0§
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By reviewing CSM1, ng, has the largest value of the matrix and is larger than st; gs
and g, are combined to form a new rule cluster. The remaining rule clusters are g; =
{ri}, g2 = {r2}, 93 = {rs, ra}, and g4 = {rs}. The CSM; in this iteration is shown as
below:

60 181 1.20 1.45)
& a
cav 221.81 0 127 145,

? @20 127 0 1430

Q.45 145 143 0

The largest value within the CSM3, ny, can be discovered. Two rule clusters g; and g,
are thus combined since ny; is larger than 2. After grouping g and @, the CSM3 can
be generated and shown as below;

&0 1291300
CSV,=gl29 0 143/
830143 0§

No more grouping is needed because that al entries of CSM3 are less than

similarity threshold st. The process is terminated and output the result, set of the rule

clusters, {{r1, r2}, {rs, ra}, {rs}}.
Example C.7 In the Example C.6, rule base RB is partitioned into three rule clusters.
The minimum support threshold, min_sup, is set to 0.9. For the sake of simplicity,

every expression occurred in the RB is encoded in Table C.1.

Table C.1 Encodings of Expressionsin RB

| encoding | Expression |
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(protocol = TCP)
(protected_network_direction = A)
(source_port > 8080)

(source port > 1023)

(string = NetBus)

(string = NetBus?)

PPICIP|P|P

There are two rulesin gi, T1 consists of two transactions, ti1 = {e1, &, €3, s} and
tio= {e1, e, &, es}. After severd iterations, we can obtain the candidate 3-itemsets,
Ci3, and the process is thus terminated since |D;3| = 1, no more candidate itemsets of
C14 can be generated. Therefore, the final output is Di3 = {{e1, &, e}}. According to
Table C.1, the frequent combination of expressions is {(protocol = TCP),

(protected_network_direction = A), (source_ port > 1023)} .
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Appendix D

Rule Class Construction Algorithms of Model Constructing Phase

(2) The Concept of Constructing Alert Models

Itis very difficult for experts and administrators to monitor on-line IDS alerts to
discover useful intrusion patterns. Nowadays, experts are still using their own
knowledge and experience to defend intrusions, but the efficiency and effectiveness of
intrusion detection are hard to improve. Our idea is to construct a model to classify
the collected aert patterns into several classifications with different flags, and experts
can discover on-line suspicious or intrusion patterns easily and quickly. The model
consists of normal, intrusion and suspicious behavior classification rule classes, where
each rule class consists of hundreds to thousands classification rules depending on the
computational ability of each-detection-sensor. As shown in Figure D.1, each rule
class is constructed with individual: construction method, and use individual data

source in specific network environments as their data input.

=

-\-‘-‘_‘—-_-—'-'-rr
! dt e Ruleclass
Traing
. _: Alert Warchouse it
i (SRR 0
'

Attackers

Intermet

FigureD.1 Three Typesof Alert Behavior Classification Rule Classes
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Normal behavior classification rule class represents the set of false alert patterns.
Frequent behaviors of IDS aerts in an attack-free environment are the most alerts in
experience, and these aerts are exactly false aderts. We use an AprioriAll-like
sequentia pattern mining algorithm to discover frequent sequences of IDS adertsin an
attack-free environment in laboratories, and these frequent sequences are used to

construct classification rules of normal rule class.

As we know, some intrusions which have fixed patterns can be easily discovered
by simple pattern matching approach on-line. However, varied intrusions become too
sophisticated to detect, our suspicious/intrusion classification rule construction
method is hence focusing on these kinds of intrusions. We design a score based
method in this approach to discover varied alert subsequences as suspicious patterns.
Some rootkit tools are used to simulate real-world attacks in a period of time, and
these IDS derts are collected-as training-data-of suspicious/intrusion classification
rule class construction. Some suspicious alert-sequences will be discovered with this
method, and system will interact with experts to classify these sequences into
intrusion rule class or suspicious rule class; if one sequence is considered as a known
intrusion, it is classified by intrusion rule class, and then used to update the
classification rule of intrusion rule class; if one discovered alert subsequence is not
considered as a known intrusion, it is highly possible to be a novel intrusion and
should be classified into suspicious rule class to construct a new suspicious

classification rule.

(2) Normal Behavior Rule Class Construction

To achieve an objective of high detection rate without missing any intrusion, the
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design of IDS signature-based rules is asked to be as powerful as possible, but that
makes IDS become more sensitive. Filtering of dirty alerts has two advantages
including reducing the accuracy of alert analysis and the complex of data execution at
the same time. Generally speaking, most of these researches use special analysis
methods or compile expert experiences to construct filter models, and use this filter
model to discard those highly-possible false aerts to get clear data. Before discussing

the design of procedure, we must consider the characteristics of alerts and attacks.

(i) Alert Frequency
According to different importance and bandwidth of hosts, their numbers of
triggered aerts are very different obvioudy. Besides, the scale of subnets
aggregate the difference of ‘dert frequencies;.the bigger scale a subnet is, the
more total aert number is in-that subnet. It is common to collect thousands of

alertsin abusy subnet.

(i) FalseAlert Frequency

There are full of false aerts in alert warehouse. According to the results of
most researches, it is indicated that false alert rates of different IDSs are lain in
between 60% to 90%. The most important concept of all, some researches
indicate that some of these false alerts occur with similar patterns in the same
network, such as specific alert sequences or frequent source IP addresses, and
those normal behaviors are triggered as alerts but they are not intrusions in fact.
In other words, the idea of these researches is that if we can discover frequent
behavior patterns of alerts, these frequent patterns are most likely to be false

derts.
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(iif) Attack Characteristic
There are also some characteristics in attacks, so some filtering methods
using specific intrusion’s characteristics to efficiently detect the corresponding
intrusion. For an example, some specific Rootkits will usually give rise to fix
alert sequences, so it is more appropriate for these intrusions to use Sequential
Pattern Mining to filter out false alerts. For another example, worm is a kind of
variable intrusions, so using Generic Algorithm to filter false aerts seems better

than others.

Our ideais to construct classification rules of normal behavior classification rule
class, and then we can execute filtering by _comparing al on-line alert sequences with

the normal behavior classification rule class.

as

Virtual Intranet 135 Sensor

sequential || Classification
Pattern Rules
Mfining Construction

—)

Figure D.2 The Procedur e of Normal Behavior Classification Rule Class

Construction

A Norma Behavior Classification Rule Class Construction (NBCRC) algorithm
shown in Figure D.2 is proposed to discover attack sequences of normal network
behaviors. This algorithm consists of two steps of sequential pattern mining and
classification rule construction. At first, we assume frequent behavior, over an

extended period of time, is likely to be normal. In other words, a modified AprioriAll
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sequential pattern mining method (Valdes and Skinner, 2001) is used to discover
frequent sequences of alertsin single sensor, and these frequent sequences are seen as
false alert patterns and collected as a rule class. At last, all frequent sequences are
flagged with ‘normal’ and transformed to classification rules of normal behavior
classification rule class. The norma behavior classification rule class is used to
reduce false alert sequences in on-line stage. The specific algorithm proposed by usis
shown in Algorithm D.1. To fit in with requirements of flexibility and robustness for
administrators in such a decision support system, system interacts with administrators
to decide the value of minimum support in AprioriAll agorithm dynamically. That
makes it possible for administrators to make proper decisions according to different
situations.
Algorithm D.1 The Normal Behavior_Classification Rule Class Construction

Algorithm

Input: Alert sequences of individual- DS sensers.
Output: Normal rule class with classification rules:

Step 1: For each sensor, Ask administrators to decide the appropriate val ues of
minimum support in AprioriAll.

Step 2: Generate frequent sequences of one sensor by AprioriAll with specific value
of minimum support.

Step 3: Flag each frequent aert sequences with ‘normal’ and use these flagged alert
seguences to construct classification rules of normal behavior patterns.

(3) Intrusion/Suspicious Behavior Rule Class Construction

As shown in Figure D.3, the procedure of suspicious/intrusion behavior
classification rule class construction, including aert sequence transformation,
suspicious scoring and classification rule construction, is proposed to construct
suspicious/intrusion behavior dassification rule class, where each rule is represented
as a suspicioug/intrusion alert sequence.
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Since the false alerts have been filtered out in this phase, al aert sequence
transactions into 2-candidate alert subsequences (2-candidate means the length of this
sequence is 2) to inspect each possible alert sequence strictly. Besides, we propose the
specific suspicious scoring method to model possible behaviors of intrusions where
two variables are designed to record locations and frequency of each 2-candidate alert
subsequences respectively between several .consecutive time short-term windows.
According to the characteristics of intrusions, higher the scoring value is, more
suspicious the aert pattern is. “If @ subseguence is continuously repeated and

discovered in the same host set, it will be treated as a suspicious behavior of intrusion.

For each 2-candidate alert subsequence, Host(t), a set of hosts, represents the
locations which discovered this subsequence in the time period t; and the [Host(t;)|, the
number of hosts, represents the frequency which discovered this subsequence in t;.
Assume there are n hosts in the simulated environment. The scoring policy could be
divided into three cases according to Host(t;) and [Host(t;)|. In case 2 and case 3, A is

an exclusive-or operator.
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Scoring Policies

CASE 1: Host(t;) = Host(ti-1). // Continuous attacking
Set Score=0 AND Repeat++.

CASE 2: Host(t)!= Host(ti.1) & |Host(t;)|= [Host(t;-1)|. //Light variation
Set Score = Score + %[ | Host(t;) A Host(ti.1)| * (1/n) ]

AND Repeat=0.

CASE 3: Host(t;)!= Host(ti-1) & | Host(ti)|'= | Host(ti-1)|. // Heavy variation

Set Score = Score + | Host(t)) A Host(ti-1)| * [|[Host(ti)]- | Host(ti-1)|l]

*(1/n) AND Repeat=0.

Finaly, specific thresholds are set to flag some special Situations as suspicious
attack patterns, and then administrators are-neticed to trace the causes of suspicious
patterns and fix intruded hosts' Four flagging rules are proposed as follows to
determine 2-candidate aert Seguences withr suspicious patterns if there is any
2-candidate aert sequence conforming:te-one of these rules. Therefore, al aert
sequences of suspicious behaviors are constructed into classification rules of

suspicious/intrusion behavior classification rule class.

Flagging rules

RULE 1: IF Score > Threshold(score),
THEN flag as* Suspicious’.

RULE 2.ELSE IF (Repeat > Threshold(repeat) & |Host(i)|!=0),
THEN flag as*Suspicious’.

RULE 3: ELSE IF [Host(i)| == n,
THEN flag as*Suspicious’.

RULE 4. ELSE  flag as*“Unkonwn’.

After the procedure of suspicious/intrusion behavior classification rule class

construction, we can construct lots of suspicious alert sequences, and then experts are
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asked to flag these suspicious aert sequences with tags of specific intrusions

System provides each suspicious aert sequence to experts, and experts flag these
alert sequences by their own experiences and domain knowledge to construct
classification rules of suspicious behavior classification rule class or intrusion
behavior classification rule class. If one aert sequence is considered as a known
intrusion pattern, it is necessary for experts to flag this aert sequence with specific
intrusion signature tag which represents a name of known attack; if one alert sequence
is not considered as a known intrusion by experts, it is perhaps a kind of novel
intrusion patterns, and this alert sequence is still flagged as ‘suspicious to be
constructed as a new classification rule of suspicious behavior classification rule

class.

According to scoring policies and flagging: rules, the agorithm of the
suspicioug/intrusion behavior ~classification--fule /class construction is shown in
Algorithm 2. After calculating the Host(t;) and" [Host(ti)| at time t; in Step 2, the
scoring policy is applied to calculate the values of variation score and repeat score of
the 2-subsequence. Then, the Scoring Policies and Flagging Rules are used to help
experts construct the classification rules in Step 4 and Step 5. In order to discover
complete intrusions patterns, we will string up 2-candidates alert subsegquences into all
k-subsequences in Step 6 if two subsequences have the end to end relation. For
example, if a set of 2-candidate subsequences is {AB, BC}, then the extended
subsequences { ABC} will be generated. After all extended aert subsequences are
discovered, experts are asked to flag the classification label in each alert subsequence

in Step 7.
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Algorithm D.2 The Suspicious/Intrusion Behavior Classification Rule Class

Construction Algorithm

Input:  Candidate alert sequences, Threshold(score) and Threshold(repeat).
Output: Alert behavior classification rules of suspicious and intrusion behavior.

Step 1. For each sensor,
Transform the candidate alert sequences into 2-candidate subsequences.
Step 2. For each 2-subsequence, Calculate the Host(t;) and the |Host(t;)| values.
Step 3:  Storeresults of all 2-candidate subsequence transactions.
Step 4:  Apply Scoring Policies to calculate the values of Score and Repeat.
Step 5:  Fag classification label using the Flagging Rules.
Step 6:  Aggregate the extended alert subsequences.
Step 7:  Interact with experts to flag all suspicious alert sequences to classify
these aert sequences into suspicious aert classification rules and
intrusion alert classification rules.

159




Appendix E

The Overview of The Related Tools

Snort [68] is a signature-based intrusion detection system and open source
software. It represents a cost-effective and robust NIDS solution that fits the needs of
many organizations. Snort is very flexible in the ways it can be deployed. Many
security industry watchdogs use the Snort signatures as part of their security
announcements (such as CERT). Intrusions are ravaging the Internet since they are
constantly evolving to new variants by multiple updates weekly. The Snort mailing
lists are fantastic resource for people who are trying to write their own signatures to

develop the applications of centralsmonitoring and-alerting consoles.

BASE [6] isthe Basic Analysis.and-Security Engine. It is based on the code from
the Anaysis Console for Intrusion Databases (ACID) project. This application
provides a web front-end to query and anayze intrusions from the alerts coming

generated by Snort.

To post processing of alert transactions requires commercial databases, e.g., the
MS-SQL 2000 server, which is used to automatically extract, transform and load data
from heterogeneous sources. The MS-SQL 2000 Server Analysis Services includes
OLAP, data mining and data warehouse tools, which makes better decisions, performs
rapidly, and executes analysis on large and complex data sets using multi-dimensional

storage.

160



The DRAMA [19] is applied for building up the decision support inference
engine. DRAMA is a rule-based, client-server tool/environment for knowledge-based
system development. It can assist knowledge engineers in building up an rule-based
decision support system. Using the client-server architecture of DRAMA, the rule
base is maintained on a server and clients could access DRAMA server for inference

Services.
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Appendix F

The Case Study of e-L earning UsingVODKA

In e-learning, the learning behaviors of students and their learning achievements
are usually different even if they study the same learning content (the knowledge of
teachers). Therefore, teachers want to apply appropriate teaching strategy to provide
personalized learning content and learning sequence for students to improve their
learning performance. In this case, the objects to be classified is defined as learning
behaviors of students, where each behavior consists of profiles, learning sequence,
and quiz grade of the student. The students can be firstly clustered into several groups
according to the similarity of the learning behaviors, and teachers can provide
appropriate learning content for each group.in advance. However, students might
change their learning sequence due-to different learning situation, learning
equipments (desktop, PDA, etc.),"eourse content (text, video, etc.), learning time (day
or night). This causes the evolution of learning behaviors and results in various
learning achievements. As we know, the quiz for students is useful to evaluate their
learning achievement. For example, teachers should provide easier learning content or

learning sequence for the students with lower learning achievement.

Hence, VODKA provides a good idea to assist teachers in observing the
occurrence of variant learning behaviors through a sequence of online quiz to
evaluate the learning performance of each student with different learning sequence,
and then to notify them for generating suitable learning sequence for further

applying. Here, each learning sequence deviated from one of predefined learning
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sequences will be treated as a variant learning behavior. In e-learning, it is important
for student to gain a good grade after learning some materials with a specific
learning sequence. Hence, the grade of quiz is treated as a CF for collecting these
good variant learning sequences. If many students gained grades larger than a
threshold with similar or same learning sequence (high frequency), some good
variant learning sequences will be discovered to notify teachers to determine these
new learning sequences. Therefore, the log is collected as the pair of <LS, CF>,
where LS is the leaning sequence of the student i; and the CF; is the grade of this

student. Example 4.2 illustrates the concept of e-learning using VODKA.

Example F.1 The Concept of e-learning Using VODKA

To simplify our discussion,we assume VODKA collects several good learning
behaviors of students and their grades of quiz are larger than a threshold. For the
learning sequence log shown in Table EL;-LS=<B, C, A, D, E, F, G H, I, 2> denotes
that Student 1 studies the learning content B first and then studies the learning
contentsC, A, D, E, F, G H, |, Jsequentially.

Table F.1 The Learning Sequence of Students

Sudent L ear ning Sequence
ID

1 <B,C,A,D,E,FFGH, I, >
2 <A,B,H,D,E,FEC, G|, >
3 <A,D,FGH,B,C, I, >
4 <A,B,D,E,C,F GH>

5 <A,C,J FB,H D,EI G>
6 <B,H,FED,E A GC,I>

7 <A,J E H,B,C D, G>

8 <B,C,GE,AHD,IJF>
9 <C,E,GF JB,HA, D>
10 <B,C,A,J D,E,GH,FI>

In this example, the sequential pattern mining algorithm instead of the origina

Apriori algorithm is applied [3][69]. Therefore, we use the Modified GSP agorithm to
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discover the maximal frequent learning patterns as shown in Table F.2. The details can
be found in [71]. For example, in L4, we have discovered that one candidate of new
learning sequence of good students is to learn B course content first and then to study
the learning contents D, E, G sequentially. Hence, these candidates of various learning
sequence will be suggested by VODKA for teachers to generate new variant learning

sequence.

Table F.2 The Maximal Frequent L earning Patter ns of Good Students

Ilt_ear;\ggt Maximal Frequent L earning Patterns

L, A->F A>H A>J | B>H | C>D | COF | C>H | EDF | F>G | G>H
Ls A->D->G B>C->G

Ly B>D2>E>G

In this case study, we illustrate that-VOPKA can collect all interesting learning
behaviors (learning sequences) 'of students' whaose testing grade from online quiz
system is good; hence, then the maximal frequent learning sequence, a part of whole
learning sequence, will be used to recommend teachers to adapt course materia for

variant learning behaviors if necessary.
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