PS5 AR i TR SRR R S DML R b2
e 7 St

The Design and Implementation of a Translator for Translating
Multimedia Visual Requirements Representation into UML
Representation

GE =R LY 3

.
—_—

R mEE g4

PERRE 4L & -

S iR AL 1 s S DML R 2 R

2r 21 17
K32 F v

The Design and Implementation of a Translator for Translating
Multimedia Visual Requirements Representation into UML
Representation

oy o4 1%k’ Student : Cheng-Lung Chang

R I mEE B Advisor : Deng-Jyi Chen

A Thesis
Submitted to College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in
Computer Science
February 2008

Hsinchu, Taiwan, Republic of China

PEAR L LS & D8

BB F R EF5 ML K itz
HEER 2RI
§4 1%L K hErE MmEE #L
Box 2 d + F FagEmr F R 8 & q
® &

B R EALY A EE AR HF R ER PR TP
TARA[I-3] 0 AR N A T TR EER Y PF Rw 4
PEE SRR T R PRV RATIRA A R 3 F Asita A
LR AR AR AE 0 FRFEN AT WA B
UMLIS] e & & 47 ~ K3héha & > & = 5 — fE48% » Xa > ¥ i 517 I faih
2R R TSR AR B A A RS R AL gk a R £

R —
AN —‘F‘fﬁsi}dﬁl(Use Case Diagram) - it m i@ F B2 50 A B s R B 3 0

(\‘

FAE S A TR F R [l R s gy
FormERRr FFR R TFENFLMRTHRORL T My EEFL
UML iz 202 > e E rHB g Ay P mh B RELEH
B @R hE 2 o RS E o 4 BT - - e R

B RBEE BRSSOV A APR - BEFE BT F
Fqm it Fs UML kit 5 ©2 XML Metadata Interchange(XMI)# 3¢
(6] %k pv75 » 2 12 UML CASE Tool % % 3 UML Diagrams ° " #& 3§ 7~
FEXMI Fa2 A 4 p A5 7% o @ * UML CASE Tool # 2 #25:V #2281 » &

F AP M AR A k22 4 target system o 4rpt 0 A T B F N

A2 o

The Design and Implementation of a Translator for Translating
Multimedia Visual Requirements Representation into UML
Representation

Student: Cheng-Lung Chang Advisor: Dr. Deng-Jyi Chen

Degree Program of Computer Science
National Chiao Tung University

Abstract

In the software system development, eliciting the requirements from user is an
important phase. It had been shown that using visual approach to represent user requirements
not only can receive user’s early feedback for obtaining user’s correct requirements, but also
can avoid reading large amount of text-based requirements that usually lead to misunderstand
on requirements between user and.‘developer[1-2]. After requirement discovery phase,
software developers will start analyzing -and desighing the target software system. Using
Unified Modeling Language (UML) approach' [5] to: analyze and design the target system
become more and more popular; However-due, to the incorrect user requirements, domain
knowledge issues, or limitation on‘software developer’s experience, Revision of requirement
become unavoidable. Eventually, the whole software development process will be affected.

In view of that, this thesis quotes the visual requirement authoring system (VRAS) [1]
to resolve above-mentioned issues such that we can collect and confirm user requirement as
early as possible. This thesis research focuses on the translation of multimedia visual
requirement representation into UML representation such that the software development
process can be improved. There are important issues (such as translating rules building and
proposed system model presenting) will be elaborated in this thesis.

To demonstrate the applicability of the proposed model, a translation system is
designed and implemented for translating multimedia visual requirements representation into
UML representation. The target code is saved as XML Metadata Interchange (XMlI) format
[6], which can be used to represent UML notations by UML CASE Tool. Through this
translation system, we generate the UML design representation automatically. Developer can
use UML CASE tool to generate code framework to reconstruct the target system. Eventually,

we can improve software development process.

I

=1 >4
T Sl
Koo A BRI X b fy R HET 8)

=3
™ o%?r‘%]‘{&%é WE;\ s MERF] R RAERE LAY el E s A
VUL R HERREOR- B AT ERY T DEEP

SRR RSP A ch R A (X H BAEUE)E T B PR A
R 13 A =3 N gj;)ﬁji\. ° /gj— 1—

I

Contents

:}ﬁ B Lot eeeeaeeaeeaeeeaeeaeeaeeeteeaseeeeeterateaseaeterateattaea e ieaaeaaia—as I
PN = Y I X 1
Y = TR Il
(@0 @] NI I =t N 1 v
LIST OF FIGURES ..ottt ettt e e et e e e e e e eeanas VI
LIST OF TABLES ... et e e e e aens Vil
CHAPTER L INTRODUCTIONttt r e e e 1
LA IMOTIVAEION. ...ttt bttt sttt ettt st be bt st ettt e st benas 1
1.2 The goal Of thiS tNESIS..........c.ovieeeee s i B ittt ettt b st 2
1.3 Organization Of thiS theSis........... 0 e ettt ettt 3
CHAPTER 2 RELATED WORK ... et 4
2.1 Unified Modeling Language (UMLE) i ittt ettt seee ettt ssee sttt sttt st ssessessssssesssaneas 4
2.2 Visual Requirement AUtNOTING SYSIEM (VRAS) ...t eeeeeeeeeee et s et se e ss s s ssesaesstsseeeessas 6
2.3 XML Metadata INterchange (XIMI) ..ottt sess sttt st sssssss s s st sessnes 7
CHAPTER 3SYSTEM ANALYSIS AND SYSTEM MODELccooviiiiiiiceean, 10
3.1 SYSLEIM ANBIYSIS ..ottt sttt a sttt et sntesas 12
UL L VRAS SCHIPL...ioieieeeeeeeeeteeee sttt et es st ss et s e seses e st st tsta st asesassesesesesesesesssetssstssatasesstssssssasasasassens 12

3.1.2 TranSIating FUIES GNAIYSIS.........c.cvveveeeeeeeeee ettt et eeresesets st s e oo sesesetstststst sttt esasaesenesesesesesessssesestssseas 14

3.1.3 TransSIating rUIES EXAMPIES.........c.ooeeeeee ettt e ee et s et s eteeeseeeteestatstat s seseeseaesesesesesesesseseseseasaeas 16

3.2 Translation System RESPONSIDIIILIESc.oveveviieieeeerieeseeeee ettt tst ettt tesae s tsse e eessessesssaseenssas 22
3.3 Proposed Translation SYSEM IMOUEN ..ottt e tse et s s tes st s et sesssessssenssas 23
3.4 ATCHITECTUIE IMIOUEL ..ottt bbbt a st s bt sas ssasaetesasaetns 24
CHAPTER 4 SYSTEM DESIGN AND IMPLEMENTATION ..o, 26
4.1 SYSEEIM ATCRITECIUIE.........oovvieeeeeeee ettt bbb bbbt b bbb a et s st bbb snssteseens 26
4.2 SYSTEIM SEIUCTUIEoovviieeeee ettt ettt sttt st s e bbbttt et st e st st s st s s s s sasaesebatetesessassesetetetetenas 27

I\Y%

4.3 System Conceptual model and Detail DESIGN..............cccceiveiereiiieeeeieeeee ettt asenn 28

4.3.1 CONIOIEr PACKAGE..........coecvieveeeecteeete ettt bbbt s st bbb s ssaenas 29

4.3.2 MOUEI PACKAGE ..ottt sttt bbbttt bbb ene 32

4,33 VIBW PACKAGE........coieeveeeieereeeieeeee ettt sesae et s e a et ae s s s s s e st s s et astesaesessasassstesasassesassnaasans 33

4.4 Related IMPIEMENTALION ISSUESc.ccueveivieeicecietcee ettt as st sss st esas s ses s s s sssassensans 38
4.4.1 Development environment, cooperating tools, and HmItation...............ccccoveeeereeeeeeeeeeeee e 38

4.4.2 User Interface (UI) INTTOQUCLION..............c.ooueviviieeiciecetece ettt ae s bbb 39
CHAPTER 5 DEMONSTRATION AND APPLICATION EXAMPLES...........c..c....... 41
5.1 DemONSLIrating PrOCEAUIEcccoveeveieerieeieeeie ettt ettt e st sae st st sas s s st s b ae st sassntes st esssansans 41
5.2 Example - A video player Ul application SYSIEMccooeviieiiieice ettt 42
5.2.1 Multimedia Visual requirements representation by VRAS t001...........ocoveeeeeeeeeeeeeeeeeeeeeeesees e 42

5.2.2 XM translating operation for XMI File generationcccccceeveeeeereeerreeeiereieseeeeesese e 45

5.2.3 UML representation through UML CASE TOOIcccoceiiiireieieeeeeeeeeeeesee e s 47

5.2.4 Sample code generation through translation SYSIEM............ccevvieeireeeeeee s 53

5.2.5 Verification 0f UML diaQramccocoiviiiiiiiiiiie ettt sssss s s sssssans 54
CHAPTER 6 CONCLUSION AND FUTURE WORK ...t 59
6.1 Conclusion of this theSIS STUAY ...l i oottt ettt et s et seeseseseetees 59
6.2 FULUIE WOTK. ..o BBt srarton bbb et vt es et ess st s s s s st esae s s s et esassesaesnsesansenassansns 59
o et N [0 R e 61

APPENDIX A VIDEO PLAYER Ul APPLICATION CONSTRUCTION THROUGH

VRAS TOOL oo i e 63
AL USEr reqUIremMents AeSCIIPTIONcc.oveveveieieeeeteteseet ettt sttt se st es st sas s s e s st s sesassenes 63
A.2 Scenes creation and ACLOT TAYOULcocuvviieeiiiieeeee et sttt ettt 63
AL INTEIACTION BUILING ...ttt ettt ettt sttt et e s st s e s s tss e s s et e sesss e seaesesssaeneseas 65
AL FUNCHON DINGING ...ttt ettt ettt sttt et e et s s et e e et sessaesessnaeneseas 66

APPENDIX B VRAS SCRIPTS FOR VIDEO PLAYER Ul APPLICATION SYSTEM

APPENDIX C UML DIAGRAM REPRESENTATION FOR VIDEO PLAYER UI
APPLICATION SYSTEM ..o 77

List of Figures

FIGURE 1 THE GENERAL SOFTWARE PROCESS USING UML NOTATIONS ... 1
FIGURE 2 THE GAP BETWEEN REQUIREMENT AND DESIGN REPRESENTATION........ccocvtnineniniinireineireenes 2
FIGURE 3 RESEARCH WORK IN THIS THESIScoeiiiiireisreirtiseireisintietieeiseiesiensessessenaessessessessessensessesssssessessens 2
FIGURE 4 VISUAL REQUIREMENT AUTHORING SYSTEM [1] c..coeureirtirieeeeeieieeneeieieneieiseeseiseiseesesseesesseenes 7
FIGURE 5 XMI INTEGRATE THREE INDUSTRY STANDARDSc.ccvieiieieieieieeeieeeneeeeseneeseseiseiennes 7
FIGURE 6 REDUCING COMMUNICATION COMPLEXITIES AMONG APPLICATIONS THROUGH XMI [9] ... 8
FIGURE 7 A TRANSLATING FLOW ..ottt et s e 10
FIGURE 8 A DETAILED PROCESS OF THE PROPOSED TRANSLATION SYSTEMccccvuvivenerinrenrieneeneereenne 11
FIGURE 9 COMPONENTS OF THE TRANSLATION PROCESScccevoeieirnenetneneneineeiseiseiseiseisesseeseesessesseeees 12
FIGURE 10 THE STRUCTURE OF THE VRAS SCRIPT FILE.......cecoeoiitenerenreneneneinesciseeseineeseieeseseensenaensesseans 13
FIGURE 11 GENERAL CONNECTIVE RELATIONS AMONG SCENES [1] ...ovoiiiiiniirirresereeieeesieeees 13
FIGURE 12 VRAS STORY CLASSIFIED BY SPATIAL AND TEMPORAL........ccoovinnnrinrresereseeseeeeiesienenes 15
FIGURE 13 UML DIAGRAM CLASSIFIED BY STRUCTURE AND BEHAVIORccoovevinirininirininienerienenee 15
FIGURE 14 AN EXAMPLE OF MAPPING FROM SCRIPT INTO STATE DIAGRAM OF UML......ccccccovvveevrenenn 17
FIGURE 15 AN EXAMPLE OF MAPPING FROM ACTORS INTO CLASS DIAGRAMccvvvieverreerinierrenieriennnne 18
FIGURE 16 AN EXAMPLE OF SEQUENCE REPRESENTATION MAPPING INTO SEQUENCE FRAGMENT OF
SEQUENCE DIAGRAM ..ottt e e e s 19
FIGURE 17 AN EXAMPLE OF PARALLEL REPRESENTATION MAPPING INTO PARALLEL FRAGMENT OF
SEQUENCE DIAGRAM......cotititiriineiniieiriisieniietieriesie i ettt sesnens 19
FIGURE 18 AN EXAMPLE OF REPEAT REPRESENTATFION MAPPING INTO LOOP FRAGMENT OF
SEQUENCE DIAGRAM......couiiis it ettt e s 20
FIGURE 19 AN EXAMPLE OF CONDITION REPRESENTATION MAPPING INTO ALTERNATIVE
COMBINATION FRAGMENT OESEQUENCE DIAGRAMFOR ~ “IF-ELSE”ovvvivreriierinerisenieriens 21
FIGURE 20 AN EXAMPLE OF ALTERNATIVE REPRESENTATION MAPPING INTO ALTERNATIVE
COMBINATION FRAGMENT OE SEQUENCE DIAGRAMFOR “SWITCH - CASE” ...ovevverrrieriis 22
FIGURE 21 THE PROPOSED TRANSLATING B OW i ittt ssesise e 22
FIGURE 22 THE PROPOSED TRANSLATION:SYSTEM MODEL OF THIS THESIScocvvvieivirireiererenas 23
FIGURE 23 THE ARCHITECTURE MODEL...... i it 25
FIGURE 24 THE MVC ARCHITECTURE OF TRANSLATION SYSTEM ...covuntvtiinereinineneineeneineiseeseeseeseeeeeeeeeneenes 26
FIGURE 25 THE STRUCTURE OF TRANSLATION SYSTEM....ccecvtutiieireireireineineineineiseiseiseeseiseseesessessensensensensenns 27
FIGURE 26 CONCEPTUAL MODEL OF THE PROPOSED TRANSLATION SYSTEM......cconvvvemmecrirecneierenenne. 29
FIGURE 27 UML MODEL CREATION FLOWcoviiiieieieiereeieireeieiee e ssssssessssessesesssssseens 30
FIGURE 28 THE PROCESS OF BUILDING VRAS PARSER TREE AND GENERATE TARGET UML
DIAGRAMIS ..ottt s e s e 30
FIGURE 29 AN EXAMPLE OF UML CLASS NOTATION REPRESENTED BY THREE XMI ELEMENTS.......... 32
FIGURE 30 THE HIERARCHY OF UML/XMI MODEL ELEMENTSccccoeiiiiircrirenceeeseeeseeeeseseeeeees 33
FIGURE 31 THE XMI FILE REPRESENTATION FLOW........ccceneimiiemiceneneneeeeisessiessesssesesessesseseesaesessens 34
FIGURE 32 THE PARTIAL XMI FILE OUTPUTTED BY XMIFILE CLASS.......ooiirrrrereeeeeeeeieeees 35
FIGURE 33 AN EXAMPLE OF BY XMI TREE REPRESENTATIONccceeurimiiieineineinineineseineiseeseeseeseeseeeeeeeenes 36
FIGURE 34 THE RELATIONSHIP BETWEEN UML MODEL, XMI AND CODE FRAMEWORKccccccevunneee. 37
FIGURE 35 THE SAMPLE CODE REPRESENTATION FLOWcovviintreiniirininneceninesieeieniecinenesesenesesesensesenns 38
FIGURE 36 THE UI OF XMI FILE GENERATION.........ccceveieiemeiereieieieieeereeieise e eessasessssess e 39
FIGURE 37 THE UI OF SAMPLE CODE GENERATIONcccvioeieiiiieeneneieieieeiseessisessesssesssessesseneesaesseseans 40
FIGURE 38 THE DEMONSTRATING PROCEDURE........cceccsuiueieirereiieieireieneintieieieiseiseeseeseeseesessesseseseesesanesneens 42
FIGURE 39 UI-1 AND UI-2 FOR VIDEO PLAYER UI APPLICATIONccceoenimitieineireineneineireeneeseiseiseeseeseseceseenees 43
FIGURE 40 INTERACTION FOR VIDEO PLAYER UI APPLICATIONcccceoimiiicririeereeeeeseeeeesienees 44
FIGURE 41 PARTIAL SCRIPTS FOR VIDEO PLAYER BUTTON AND ITS SCENARIO.......ccccoovurivirinieiennanns 45
FIGURE 42 THE TRANSLATING PROCEDURE FROM VRAS SCRIPT INTO XMI FOR THE APPLICATION
EXAMPLE OF THE UI VIDEO PLAYER APPLICATION........ccceeemmimreiminiiieneineneieiseiseiseiseeseeseeseessssesseeeees 46
FIGURE 43 USING TRUFUN UML CASE TOOL TO REPRESENT UML DIAGRAMScoccvuvevererrerrerrenienanne 47

VI

FIGURE 44 CLASS DIAGRAM FOR INHERITANCE-HIERARCHY OF SCENES........cccooonnininirnieieieieeenns 48

FIGURE 45 FINITE STATE MACHINE DIAGRAM FOR SCENES BRANCHooecnimcnicnirrscirenecinenecenenne. 49
FIGURE 46 CLASS DIAGRAM FOR CAST HIERARCHY WITHIN SCENE 1cccoconninrinirnirnreniesienienenee 50
FIGURE 47 SEQUENCE DIAGRAM FOR GO TO = “SCENE 27 ..ottt ssssssens 51
FIGURE 48 LINK A WEB PAGE ..ottt st st 51
FIGURE 49 CLASS DIAGRAM FOR CAST HIERARCHY WITHIN SCENE 2......ccocovinniiiriirirenrieeeceeeees 52
FIGURE 50 SEQUENCE DIAGRAM FOR THE PRELUDE SCENARIO OF SCENE 2........cccoovuvivinivinieienenanns 52
FIGURE 51 SEQUENCE DIAGRAM FOR PLAY VIDEO SCENARIO......cccoiniirerereeeeeeeseeeeieseeeeees 53
FIGURE 52 STEPS OF THE CODE GENERATION OF THE EXAMPLING APPLICATION SYSTEM 54
FIGURE 53 THE PROPOSED TRANSLATING PROCESSccoviiiieirininiessiseesisse s sesssesesesesenesnans 55
FIGURE 54 THE VERIFICATION FLOW FOR REPRESENTED UML DIAGRAM.......ccccovvinininininiieierienennes 55
FIGURE 55 STEPS FOR CODE GENERATION THROUGH UML CASE TOOL........cccvumenimrnirrerirenecenensenenenne. 56
FIGURE 56 FILL INTO CODE IN THE TFACTORY CLASS CONSTRUCTION TO NEW TWO SCENE
INSTANCES. ...ttt sttt sttt nsenienae 57
FIGURE 57 FILL INTO CODE IN THE SCENE 1 CLASS CONSTRUCTION TO NEW ACTOR INSTANCES
WITHIN SCENE T . se s st 57
FIGURE 58 FILL INTO CODE IN THE HOOKONCLICK() OF TSCIBTNVP CLASS TO INVOKE “GOTO
SCENE 27 ACTION....cutiuurirerimeriseesseeesesssessse st sessse s st bbb bbbt 57
FIGURE 59 FILL INTO CODE IN THE HOOKONCLICK() OF TSC2BTNPLAY CLASS TO CALL ITS RELATED
DLL FILE. oot 57
FIGURE 60 THE RESULT OF RECONSTRUCTED VIDEO PLAYER UI APPLICATIONccconvvvinimecerirmecenenne. 58
FIGURE 61 MAIN UI OF VRAS TOOLcevviirircerimeeiniinrecisemeseneiressensssesssemsesssesesssssessesssessessssssesessesssssesssssessans 64
FIGURE 62 IMPORT PICTURE DIALOG ..ot msgseccsersesersemsemsemsensensensenenenessessisesessessssssssssssssessssesessessessssons 64
FIGURE 63 SCENE 1 AND SCENE 2 FOR VIDEO PLAYERUI APPLICATION.....cocvtneniineirineineereineeneeeeeeeienenes 65
FIGURE 64 EDIT SCENE 1 AND SCENE#2 RELAHONSHIPS FOR VIDEO PLAYER UI APPLICATION 66
FIGURE 65 SCENE 1 AND SCENE 2 INTERACTION RELATIONSHIPS..........coconirecmmecnimecniereseireniesesensecenennes 66
FIGURE 66 VIDEO PLAYER UI APPLICATIONocofiiitiirs it ssesssensesesssasensens 67
FIGURE 67 CLASS DIAGRAM FOR STORY SCENES HIERARCEHYcceoeriirernrercceeeeeeeieeenes 77
FIGURE 68 STATE DIAGRAM STORY SCENESTBRANCHL... .l cccouveieereecneeiseseiseeseeseiesieeseneeneensensenseans T
FIGURE 69 CLASS DIAGRAM FOR ACTORS HIERARCHY WITHIN SCENE 1.....ccccooevvimininnirieinceienne. 71
FIGURE 70 SEQUENCE DIAGRAM FOR “VIDEQPLAY™ SCENARIO IN THE SCENE 1 ...ccconuvvvmmrrrinerrrnnee. T
FIGURE 71 SEQUENCE DIAGRAM FOR “HELP” SCENARIO IN THE SCENE 1cccocommtrummrrimerirserieseernnnee. 71
FIGURE 72 CLASS DIAGRAM FOR ACTORS HIERARCHY WITHIN SCENE 2.......ccoovivinrininininnierereenenes 71
FIGURE 73 SEQUENCE DIAGRAM FOR “PRELUDE” SCENARIO OF SCENE 2......cocccostiimmrrirmeirnrirnrenenenne 71
FIGURE 74 SEQUENCE DIAGRAM FOR “BACK” SCENARIO IN THE SCENE 2......cocccomvvrmrrirmrirnrirnrennrenns 71
FIGURE 75 SEQUENCE DIAGRAM FOR “PLAY VIDEO” SCENARIO IN THE SCENE 2......oecomvevievriennnne 78
FIGURE 76 SEQUENCE DIAGRAM FOR “IMAGE ZOOM IN” SCENARIO IN THE SCENE 2......cccoucuuevnen. 78
FIGURE 77 SEQUENCE DIAGRAM FOR “IMAGE NORMAL SIZE” SCENARIO IN THE SCENE 2............ 78
FIGURE 78 SEQUENCE DIAGRAM FOR “IMAGE ZOOM OUT” SCENARIO IN THE SCENE 2.................. 78
FIGURE 79 SEQUENCE DIAGRAM FOR “SOUND PLUS” SCENARIO IN THE SCENE 2.....ccocovsvvvrnrienrenn. 78
FIGURE 80 SEQUENCE DIAGRAM FOR “SOUND MINUS” SCENARIO IN THE SCENE 2.....c.coeccmvvuennen. 78

VII

List of Tables

TABLE 1 UML DIAGRAMS AND THEIR PURPOSEScooii s essenaens 5
TABLE 2 THE CORRESPONDING RELATIONSHIPS BETWEEN VRAS SCRIPT AND UML DIAGRAM 16
TABLE 3 IMAGE AND ITS FUNCTION.......enttrtitineirieniietiesetierieeieriersensessessesese et ssessessssssssssssse e ssessessssnsans 65
TABLE 4 ACTORS AND ITS BINDING DLL FILE LIST ...coocviieeireiererereseicseseseiseiseiseineesessesseseseenscenesneens 66

VIII

Chapter 1
Introduction

1.1 Motivation

Using Object Oriented concept to construct and develop software system has become
more and more popular. Consequently, the Unified Modeling Language (UML) [5] becomes
the de facto standard to represent object-oriented analysis and design. Figure 1 illustrates the
general process for the software system development by UML. In the Analysis phase,
developers use Use-Case Model to represent functional requirements. At the same time,
developers also build the Domain Model according to the domain knowledge and
requirements description. In the design phase, developers usually use Class Diagram to

represent the system static view and use Sequence Diagram to represent system dynamic view.

% _/\, o
T

VAVEY

Dynamic

o
=
allocate : - :

| Use Case i
Sequence

]
&'\7 : Madel Dingram 'race m
! " Document
]
I

¥y
{ R/‘ =" = eI, ‘ s
Functional : _":.
Requirements =
!) Static E‘h
i . !
' %’ £\ ;
:

allocate
T = !
=3 B ﬁ
1 Domain ol
i Model Dia;rs:m |

Figure 1 The general software process using UML notations

From above general software process, we find that user and system requirements are
depicted using natural language and then are mapped into UML representation eventually
generated the target codes using code generation tool. There is a big gap from requirements
analysis to code, and design is used to bridge the gap. User requirements always change. Once
requirement is changed, developer must re-analysis, re-design, and re-coding. All stages of
process must be repeated again. Figure 2 illustrates that there exists the big gap between user

requirements and UML design representation.

User UML
Requirements Biz Gap Representation

Figure 2 The gap between requirement and design representation

The incomplete requirements, inaccurate requirements, the big gap between analysis
phase and design phase can spend developers a lot of design time. It has been shown that
multimedia visual requirements representation is better than traditional text-based
requirements representation [1]. The text-based requirements are easy to result ambiguity due
to the different domain knowledge between user and software developer. The multimedia
visual requirements can be viewed as an animation sequence instead of reading text based
user requirements. The multimedia visual requirements representation technique let users and
software developer communicate more easily and let software developer receive early
feedback of requirements from users. Section. 2.2 gives more detailed information. However,
even if determined requirements gathered, software-developers still have to spend a lot of time
to develop the software system under consideration.

1.2 The goal of this thesis

In order to reduce the gap between user functional requirements and UML design
representation, this thesis takes visual requirements authoring system (VRAS) [1] to get
multimedia visual requirements representation and research how to translate it into UML
representation. Figure 3 illustrates the research work in this thesis. We focus on the translation

from multimedia visual requirements representation into UML representation.

Multimedia
User Visual UML
Requirements Requirements Representation
Representation
- J - /
T VT

Visual Requirement This thesis focus on this
Authoring System research work

Figure 3 Research work in this thesis

1.3 Organization of this thesis

This thesis is organized as follows.

Chapter 1 introduces the research motivation, goal, and organization of this research
work.

Chapter 2 reviews some related work on co-design flow for the translation of
multimedia visual requirements representation into UML representation.

Chapter 3 gives the detailed feasibility study for translation, find out the
responsibilities of translating system, and present the proposal system model.

Chapter 4 designs the system architecture, defines the functional blocks of translating
system and details the system implementation.

Chapter 5 uses an example to demonstrate how to translate from multimedia visual
requirement representation into UML representation and verify correctness of translated target
code.

Chapter 6 presents the conclusion in :the-research and possible future research
directions.

Chapter 2
Related Work

In this chapter, the related works on co-design flow for the translation from
multimedia visual requirement representation into UML representation are visited.
Specifically, Unified Modeling Language (UML), Visual Requirements Authoring System
(VRAS), and XML Metadata Interchange (XMI) are discussed.

2.1 Unified Modeling Language (UML)

The first version of UML [5] was created in November 1997 as standard language for
object oriented analysis and design by QMG [22]. The UML has become a de facto standard
for design model language. UML+«may be-used. to model structures and processes for many
domains but it is most often associated with object-oriented software modeling. System
analyst, software developers, project manager, customers, and vendors can communicate with
common modeling language through. UML and simplify the development process. UML can
let user force on every aspect of system view and these resulting could evolve the system
development life cycle.

UML can describe a blueprint of real system that gives user and system designer a
conceptual view for the whole system. According to the definitions by OMG [22], it has
following characteristics:

1. The UML uses tools to elicit better requirements. Either incomplete or inaccurate
requirements are ubiquitous in the field of software development. It is composed of
visualized graphical notation in most part so let user capture the information of
system more easy.

2. The UML gives a way to determine whether it is the same as others' for
understanding of the system. Because systems are more complex and have more
different types of information that must be conveyed, it offers different diagrams

specializing in the different types of information.

3. It can be used to support system analysis and design phase, concept phase, and
system implementation. Therefore, all project members, customers, and vendor can
use UML to communicate with each other.

4. It is completely language independent and maybe used to model applications
regardless of whether or not they are to be deployed in Java, C++, or any other

languages.

The UML defines several different diagrams some for analysis, others for design, and
still others for implementation or deployment. Table 1 illustrates that each diagram shows the
relations among the different sets of entities, depending on the purpose of the diagrams during
different phase. Here it is general catalog; actually, UML does not stipulate how to use those

diagrams. The content of Table is referred to [10].

Table 1 UML Diagrams and their purposes

Phase Use the UML Diagram

Use Case diagrams, which involve entities interacting with the
system (say, users and other systems) and the function points
that what to implement.

Analysis phase Activity diagrams, which focus on workflow of the problem

domain (the actual space where people and other agents are
working, the subject area of the program) rather than the logic
flow of the program.

Class diagrams represent the relationships between the classes.

State diagrams represent the different states an object may be
n as well as the transitions between these states.

Design phase [nteraction diagrams show how specific objects interact with

each other. Because they deal with specific cases rather than
general situations, they prove helpful both when checking
requirements and when checking designs. The most popular
kind of Interaction diagram 1s the Sequence diagram.

Some basic modeling diagrams are recalled here: Class Diagram, Interaction Diagram,

and State Machine Diagram.
® Class Diagram: The most basic of UML diagrams is the Class diagram. It both
describes classes and shows the relationships among them. It is design

representation for static view.

® Interaction Diagram: Class diagrams show static relationships between classes. In
other words, they do not show us any activities. The diagram that shows how the
object interacts with others is Interaction diagram. The most common type of
Interaction diagram is the Sequence diagram. Sequence diagrams focus on the
dynamic view and emphasize the timing of event occurred order.

® State Machine Diagram: State machine shows the state of system or an object
during its life cycle and the transition between states when external event occurred.

Other diagrams are referred to [10, 13].

2.2 Visual Requirement Authoring System (VRAYS)

Visual requirement authoring system [1] is a visual requirement representation
technology. This system uses visual scenarios to depict requirements instead of reading
amount of text-based representation of the requirements. Through this system, customer and
system analyst can communicate not.@nly in a more nature and in easy way, but also system
analyst can receive early feedback of requirements from customers. Figure 4 shows the visual
requirement authoring system.

System analyst use VRAS ta. create visual forms and select Multimedia Reusable
Components (MRCs) to construct”customer.requirements. When existing MRCs are not
adequate to describe customer requirements, MRCs Manager uses the Component
Constructor to add new MRCs to create new representation. System analyst also uses VRAS
to play back the prototyping system to customer and capture customer’s requirements.
Determined Requirements would be automatically converted into text script file including
static and dynamic information by VRAS. This scripting language is designed and

implemented by the Software Engineering Laboratory of NCTU [23].

Customer

L3

Component System Visual Requirement . .
Constructor Analvst Authoring System — | Determined
' i (VRAS) Requirements

MRCs
Manager

Figure 4 Visual Requirement authoring system [1]

2.3 XML Metadata Interchange (XMl)

XML Metadata Interchange (XMI) [6] is a set of standards published by the OMG [22]
in February 1999. It is used to interchange metadata among applications. XMI produces XML
schema for any meta-model that is compliant with the OMG’s Meta Object Facility (MOF)
and produces an XML document instantiating from the meta-model. The UML based
modeling tools can exchange their metadata using XMl standards. XMI integrates three key
industry standards: XML, UML, and OMF (See figure 5).

UML XML
Understand Exchange

MOF
Manage

Figure 5 XMI integrate three industry standards

e XML - eXtensible Markup Language, a W3c standard.

e UML - Unified Modeling Language, an OMG modeling specification, with is now an
ISO/IEC standard (ISO/IEC 19501).

e MOF - Meta Object Facility (ISO/IEC 19502).

By using an industry standard for storing and sharing object programming information,
development team using tools from multiple vendors can collaborate on applications. The
XMI standard will allow developers to leverage the Web to exchange object-oriented data
among applications, and to create secure, distributed applications built in a team development
environment.

Using XMI also could reduce the relation complexity between communications with
applications [9]. Figure 6 illustrates the complexity reduced from n2 — n to n through XMl
format interchange. Originally, there are six applications (Appl to App6) and one needs to
implement thirty relations totally. Every application must know the format of other five

applications. Now, through XMI, every,application just needs to face the only one format —

XMI.
—
LR A
’\/ St N
/// 6. /-:’}\"\..__ \ f

A

f’
/

.'//.-- _\ / ?'_\.
: \/ 2

e A) | (o)y xua
— ‘-\ ’."_//.

k! N] /

. I
~L / \
M~ / ¥ /
i \]
?xk X s
/T
=

\
\
\-. \\ /

Figure 6 Reducing communication complexities among applications through XM [9]

App4

XMI provides a basis for the development of XMI schema. It specifies the elements that
should be declared in an XMI schema such as XMI header, XMI content and so on. The
declarations are composed of XMI document structure. The following is the partial XMl

document.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" xmIns:trufun="http://trufun"
xmins:uml="http://www.eclipse.org/uml2/2.0.0/UML" xmi:id="f18310ed-5599-4bbe-9c49"
name="model">

<eAnnotations xmi:id="38f9346d-481c-4f22-84f7" source=""TaggedValues">

<details xmi:id="dd0f90e5-3476-4d1d-a39c" key="ProjectType" value="UML2Project"/>
</eAnnotations>
<eAnnotations xmi:id="e44e7723-1b99-47ce-850a" source="Diagrams">

<packagedElement xmi:type="uml:Class" xmi:id="7678db6b-504d-4be3-b1f2"
name="TScene">
<eAnnotations xmi:id="elca4225-eade-46db-9345" source="TaggedValues">
<ownedOperation xmi:id="5e3f988e-1612-4b00-a3b2" name="Display" visibility="public">
<ownedParameter xmi:id="f4a677d4-555b-45a8-9e12" name="Parameterl"
type="49899437-f107-4687-8083" direction="return"/>
</ownedOperation>

Chapter 3

System Analysis and System model

The goal of this research work focus on the translating of multimedia visual
requirement representation into UML representation. Figure 7 illustrates translation flow from

multimedia visual requirements representation to UML diagram representation.

Multimedia UML
V.lsual |:> Translation |::> Diagram
Requirements Tool Representation

Representation

Figure 7 A translating flow

In the translating flow,=the input::and output of translation tool are two chief
considerations. Figure 8 depicts a detailed- translation process in this thesis study. For the
input of translation tool, Visual requirement-authoring system (VRAS) produces multimedia
visual requirements representation. 1t s considered as a communication bridge with users.
VRAS can be used to create multimedia visual requirements. It helps system developer to
capture user requirements and save those multimedia visual requirements representation
(MVRR) as text-based script automatically. Translation tool uses this script as input. For the
output of translation tool, we adopt XML Metadata Interchange (XMI) as target code. XMl
can be used to represent UML notations by UML CASE Tool.

10

Present I raltimedia UML
I}) Visual Diagram
Visual Requirements Representation
Requirement Representation

Authoring | |
System

(VRAS) Save as Sctipt for UML
—— MvRR Notations
J

Translation
ol | ot o

Figure 8 A detailed process of the proposed translation system

Figure 9 presents components.dn’the translation process. These components will be
described in the following:

VRAS: Visual requirementrauthoring-system-is visual requirements representation
technology. It can represent user;requirements by visual, provide an easy communication way
between users and system analyst,‘and help systemanalyst to capture user requirements.

MVRR: MVRR is the output of VRAS. It is multimedia visual representation.

Script for MVRR: The script file is also the output of VRAS. VRAS saves those
MVRR as text-based script language.

Translation tool: This tool is in charge of translating from VRAS script into XMl
format.

XMI: 1t is the output of translation system and used to represent UML notations by
UML CASE TOOL.

UML CASE TOOL.: Itis a computer aided software engineering tool for UML.

UML diagram representation: Represent UML diagram by UML through UML CASE
TOOL.

Specifically, we need to implement a tool that takes the script language generated by

VRAS and produces the XMI corresponding script language.

11

Multimedia
Visual
Requirements
Representation

Start ﬁ
9

VRAS

1

Script for
MVRR

J

=

Translation
Tool

UML
Diagram
Representation

U

UML CASE
TOOL

=

i)

XMI format

Figure 9 Components of the translation process

3.1 System Analysis

3.1.1 VRAS Script

Visual requirement authoring system saves multimedia visual
representation as text-based script file. Figure 10 illustrates the structure of the script file. In
the script file, requirements are described as “Story”. A story includes at least one scene, and
each scene may contain several actors and several scenarios. The actor is basic requirement
multimedia reusable component (MRC) to represent a requirement segment. It can be an
image, video, sound, or text. The scenario may represent the interaction among actors, the

prelude, and finale of one scene and branch among scenes. The detailed information is

referred to [1].

12

requirements

Within multimedia visual requirements; there may have several scenes. Script file also
can represent the branch among scenes inythesscenario. Figure 11 shows the three kinds of
general connective relations ameng-scenes, which.are required to be mapped into the UML

corresponding representations.

Story

Scene

Actor
(MRC)

I

Scenario

Figure 10 The structure of the VRAS script file

Scene 1

-

Scene 2

-

Scene 1

Scene 2

~

-~

Scene 4

» Scenel [3
(a) List
Scene 1
— Scene 3
(b) Granh

()

Scene 3

~,

Scene 5

Tree

Figure 11 General connective relations among scenes [1]

13

3.1.2 Translating rules analysis

In general, the program language is composed of data declaration and control
statement. The data declaration defines data structure in the design phase. The data structure
is a kind of static view of the system. The control statement is program of the system. It is a
dynamic view of the system. The program is a serial of flow control to present the system
behavior. In section 3.1.1, we have introduced the VRAS script structure. The script structure
is composed of Scenes, MRCs, and interaction relationship among them (scenarios). Scenes
and MRCs present the structure view of the system, and scenarios present behavior view of
the system. Therefore, we can classify the content of VRAS script according to spatial and
temporal relationship. The same, we can classify UML diagram according to structure and
behavior. Through classification, we can find the mapping relationship easy between VRAS
script and UML diagram.

VRAS script can be classified according to spatial and temporal relationship. Figure
12 shows the catalog by tree structure. For spatial view, one story contains at least one scene.
Each scene may contain several actors and their-relationship. Each actor has its properties and
operations. For temporal view, one story may have different scenario levels. For story (system)
level, there are scenarios to describe the translation-among scenes. For scene level, each scene
has two special scenarios named prelude‘and finale. System invokes a prelude scenario before
enter one scene and execute a finale scenario before exit one scene. For scene internal level,

there are several actor scenarios. Actor scenario describes user events and interaction among

actors.
Story
. Spatial
L Scene (container)
| Temporal L Multimedia Actor

L Scenario

. Actor scenario

L Scene scenario (prelude/finale)

L Story scenario (scenes branch)

14

Figure 12 VRAS Story classified by spatial and temporal

The same as above, UML diagrams can be classified according to structure and
behavior [13]. Figure 13 shows the catalog by tree structure. The common structure diagram
defined in the UML is class diagram. Class diagram is composed of several classes and
relationships among classes. It is static view of system. For the dynamic view of system, there
are two common behavior diagrams defined in the UML. They are sequence diagram and
state machine diagram. Sequence diagram presents the interaction among objects of system.
State machine diagram emphasizes the state and state translation within object or system.
From the view for VRAS story and UML diagram classified, there exist some mapping rules.
When a scene is viewed as a container, it is mapped into class diagram. The actors within
scene are mapped into classes. Actor’s properties and operations are mapped into “attributes”
and “operations” of class. At the same time, abstracting for different actors is necessary. Actor
scenarios, prelude and finale scenarios are suitable to map into sequence diagram. Actor
within scenario is mapped into “object”snotation of sequence diagram. The user event and
interaction among actors are mapped into “call0r “message” notation. For special interaction
representation, for example, parallel presentation; repeat presentation, and condition
presentation, we can use “combined fragment” notation to emphasis them. For story scenario,
we can use state diagram to represent branch among-scenes. Here, a scene would be regard as

one state.
Diagram

| Structure

. Class diagram

L Class

L Behavior
Sequence diagram

State diagram

Figure 13 UML diagram classified by structure and behavior

15

Table 2 summarizes the corresponding relationships between VRAS script and UML

diagram.

Table 2 The corresponding relationships between VRAS script and UML Diagram

VRAS Script

UML Diagram

Scene as container

UML Class Diagram

Multimedia actor

Class

Actor’s event
Actor’s operation

Operation of class

Actor’s properties

Attributes of class

Actors scenario
Scenes scenario (prelude/finale)

UML Sequence Diagram

Actor Object notation
Interaction between Call or Message
actors

sequential presentation
parallel presentation
repeat presentation
condition presentation

combined fragment w/ different
operator (seq, par, loop, alt)

Story scenario (scenes branch)

State Diagram

Scene

State

Scenes branch

transition of state

Prelude of scene

Enter action of state

Finale of scene

Exit action of state

3.1.3 Translating rules examples

In the section, we use several examples to illustrate the translating rules. The first
example is for system scenario. The scene of story is viewed as a state of system. Now scene
IS mapped into “state” notation and scene branch is mapped into “transition” notation. The
prelude of scene is mapped into “entry action” of state and the finale of scene is mapped into
“exit action”. The interaction within scene can be mapped into “do action” of state. Using
state diagram to represent scene branches of whole system is suitable. Figure 14 illustrates an
example of mapping from scripts to state diagram of UML. Form partial script; there are two
scenes named “Sc001” and “Sc002”. “GotoScene” keyword presents the scene branch when
LMOUSECLICK event trigged by user. Therefore, branches between “Sc001” and “Sc002”

will be translated into state transitions.

16

Partial script for translation between :
P State Diagram

EBook.GotoScene("@Sc002");

}
Sc002.ebs I::':“>

Scenes |

Sc001.ebs :
I Theene_1

e I =] Tnternal-Parts:

LMOUSECLICK: | entry Prelude IMenseClick / GotaSeene

{ : ol Pl |

|
|

| Theene_2
= Tnteons]-Parts
LMOUSECLICK: : en!l’];-l# Prelnde
{ | IMouseClick /Gotoloene | il Fiale
EBook.GotoScene("@Sc0001"); :
} I
|
|
|

Figure 14 An example of mapping from script into State Diagram of UML

A scene also can be viewed as a container. including many actors. Now scene is
mapped into “class diagram” and actors are mapped into “class”. The actor’s properties are
mapped into class attributes and events are mapped.into class operations. Figure 15 illustrates
an example of mapping actors into"class notation. In the partial script, there are two actors
named “MCAnim” and “MCText”. They are mapped into TMCAnin and TMCText classes. At
the same time, an abstract class named TCast is also presented. Both classes should inherit
from “TCast” class. Two actors’ properties are mapped into their attributes. The common
parts (events and properties) of two actors would be extracting to their abstract layer class

named TCast.

17

Partial script for Animate Class Diagram
and Text actors

|
|
| TCast
[CAST] MCAnim : H=] Attributes
Begin | - Name
& I —[=] Dperatiogm—

Name = Actor + LMouseClickd
NowValue = 0 ——>

11

[CAST] MCText TMCAnim TMCText
Name = Actor000 - Mo Value - Pozition

Position = 0

|
|
|
|
Begin : =] Attributes— -] A ttribites—
|
|
|
|

Figure 15 An example of mapping from actors into class diagram

Either prelude/finale scenario or interactive scenario with user is mapped into
interaction of “sequence diagram”. The actor in the scenario is mapped into “object” notation
of sequence diagram. The behavior between actors can be mapped into “call” or “message”

notation. Figure 16 to 20 present five general requirements representation cases.

Figure 16 illustrates an ‘example-of mapping rule from sequence representation in
VRAS script and the “sequence tcombined fragment” notation of sequence diagram in the
UML. In the VRAS partial script, it shows the sequence representation (Actor000.play and
EBook.GotoURL in order) after user click Actor001 through left button of mouse
(LMOUSECLICK). Therefore, there are four objects - User, TMCText (Actor001), TMMovie
(Actor000), and TScene (EBook) in the sequence diagram. The event invoked by user clicks
mouse is mapped into “LMouseClick” function-call notation. Two executed actions are also
mapped into function-calls notation. We use “sequence combination fragment” notation with
represented two executed actions within the same “interaction operand” notation to emphasize

two actions executed in order.

Partial script for sequential presentation Sequence fragment of Sequence Diagram

|
|
: sd_Interaction J
e | User [TMC Text TMCMoavie TScens
ANCHOR Actor001 : |
{ ' : : .
LMOUSECLICK: I:If> Lot |
{ 3 :
Actor000.play(); : | ot . .
EBook..GotoURL("labscript.exe™); | "
ook..Goto ("labscript.exe"); : § y
I : GotoURL("lah%mpt.a{e") .
¥ | i] .
P I i E
| : :
|

Figure 16 An example of sequence representation mapping into sequence fragment of

sequence diagram

Figure 17 illustrates an example of mapping rule from parallel representation in VRAS
script and the “parallel combined fragment” notation of sequence diagram in the UML. In the
VRAS partial script, it shows the parallel representation (Actor000.play and EBook.GotoURL
paralleled execution) after user. click Actor001 through left button of mouse
(LMOUSECLICK). Therefore, there are four objects - User, TMText (Actor001), TMMovie
(Actor000) and TScene (EBook)-in the sequence diagram. The event invoked by user clicks
mouse is mapped into “LMouseClick® function-call notation. Two executed actions are also
mapped into function-calls notation.”We use “parallel combination fragment” notation with
represented two actions executed in the different “interaction operand” notation to emphasize

two actions executed at the same time.

Partial script for parallel presentation | Parallel fragment of Sequence diagram
: sd_Interaction J
ANCHOR Actorool . : I ‘TMiC Text (TMCMoie Tleene
{ |
LMOUSECLICK: l | IMewscig |

parallel(Actor000.play(),
EBook.GotoURL("labscript.exe");

{ — ' -,

}

|

|

|

|

I : . .

| : | GotoURL('labscripters")
| : : i
|

|

|

I

Figure 17 An example of parallel representation mapping into parallel fragment of

sequence diagram

19

Figure 18 illustrates an example of mapping rule from repeat representation in VRAS
script and the “loop combined fragment” notation of sequence diagram in the UML. In the
VRAS partial script, it shows the repeat representation (Actor000.play and EBook.GotoURL
repeated 6 times) after user click Actor001 through left button of mouse (LMOUSECLICK).
Therefore, there are four objects - User, TMCText (Actor001), TMMovie (Actor000) and
TScene (EBook) in the sequence diagram. The Invoked event by user clicks mouse is mapped
into “LMouseClick” function-call notation. Two executed actions are also mapped into
function-calls notation. We use “loop combination fragment” notation with represented two
actions executed in the same interaction operand notation to emphasize two actions executed

in specific looping.

Partial script for repeat presentation Loop fragment of Sequence diagram

|
|
: >d Tateraction)
e | TTser THC Test TMCMovie Térenes
ANCHOR Actor001 : |
|
{ | B - : :
. | t DMonseclick) : 3
LMOUSECLICK: |::> |]
{ | : ; ¢ i
repeat(6){ | : mwo
Actor001.play(); | . D
EBook.GotoURL("labscript.exe") ; : . Gl RLCrite)
| :
I ‘
; |
! |

Figure 18 An example of repeat representation mapping into loop fragment of sequence
diagram

Figure 19 illustrates an example of mapping rule from condition representation in
VRAS script and the “alternative combined fragment” notation of sequence diagram in the
UML. In the VRAS partial script, it shows the condition representation (if - else condition)
after user click Actor001 through left button of mouse (LMOUSECLICK). Therefore, there are
four objects - User, TMCText (Actor001), TMMovie (Actor000), and TScene (EBook) in the
sequence diagram. The event invoked by user clicks mouse is mapped into “LMouseClick”
function-call notation. We use “alternative combination fragment” notation with represented
two actions executed in the different interaction operand notation. Regard condition as the
guard of the first interaction operand and add specific guard named ‘else’ to second

interaction operand to emphasize two actions executed under specific condition.

20

Partial script for condition Alternative fragment of Sequence

|
|
. I . .
presentation | diagram (if - else)
: sd_Interaction]
fen |
ANCHOR ACtOfOO1 . | Tser TMC Text TMCMovie Ticene
{ |
LMOUSECLICK: | : !
{ | ' LMouseClick() '
I
if (i==0) { | .; D;

else {
EBook.GotoURL("labscript.exe");

v

Actor000.play(; :' S| ' -
} | 0 by
| ‘
! |
| ‘
I
|
|
|
|
|
I

Figure 19 An example of condition representation mapping into alternative combination
fragment of sequence.diagram for “if-else”

Figure 20 illustrates an example-of mapping rule from multiple cases representation in
VRAS script and the “alternative .combined fragment” notation of sequence diagram in the
UML. In the VRAS partial script, it shows-the-multiple cases representation (switch - case)
after user click Actor001 through left button of mouse (LMOUSECLICK). Therefore, there are
four objects - User, TMCText (Actor001), TMMovie (Actor000), and TScene (EBook) in the
sequence diagram. The event invoked by user clicks mouse is mapped into “LMouseClick”
function-call notation. We use “alternative combination fragment” notation with represented
two executed actions in the different interaction operand notation under different case. Add
specific guard named “default” to first interaction operand and add guard for each case
interaction operand to emphasize different case has its specific composed actions.

21

Alternative fragment of Sequence
diagram (switch - case)

Partial script for multiple
conditions presentation

|

|

|

: 5d_Interaction)
ANCHOR ACtOfOOl . : Tser ‘TMCText ‘TMCHovie Ticens
{ |

| ; "

I
switch(i){ | Ds | |
default : { ! ; ot — ¢ ¢
Actor000.play(); |::::> T
EBook.GotoURL("labscript.exe"); | : el

' : GotolURL{"lahécript.exe") o

; | ' [] | []
case 1:{ | . T
Actor000.play(); : = I
case 2:{ ! | i e s o e e
EBook.GotoURIL("labscript.exe") ; | : ' R =I_:I
} | :

I '
} |

|

|

!

Figure 20 An example of alternative representation mapping into alternative combination

fragment of'sequence diagram for “switch - case”

3.2 Translation System Responsibitities

After finish system analysis, we focus.on the implementation of the translation system.
Figure 21 illustrates the proposed translating flow. The script that represents the multimedia
visual requirements generated by VRAS is the input of translation system. XMI
representation is the output instead of UML representation in order to interchange metadata
with other applications more easily in the future. The translation system will translate from
scripts for MVRR into XMI format.

Script for Translation XMI

MVRR |::> Sys tem |::> F11e

Figure 21 The proposed translating flow

We summarize the responsibilities of translation system in the following:
1). Find out the properties and operations of multimedia reusable components
(MRCs), and internal scenarios among MRCs, and interaction scenarios with user

from script content.

22

2). Follow the transiting mapping rules to translate static information and dynamic
information into UML/XMI metadata.
3). Follow the XMI format to save the UML/XMI metadata as XMl file.

3.3 Proposed Translation System Model

Figure 22 depicts the proposed translation system model. It is based on visual
requirement authoring system. We add four parts shown on the right-hand separated by dash-
line. These new added parts are used to translate VRAS script that represents the determined
requirements. Those un-shadowed diagrams in the Figure 22 had been described in [1]. The
following will describe the shadowed parts:

XMI Translation System: this system can be considered as a bridge between
multimedia visual requirements and UML representation. According to UML translating rules
and XMI format, it translates the VRAS script that represents multimedia visual requirements
into XMl file that can be used to represent UML notation.

UML translating rules: define the translating mapping rules from script content into
UML notation. These rules ware discussed:-in section 3.1.2.

XMI Format: the XMI format is defined in the XMI 2.1 specification. There is existing
XMI model generated according. XMI schema production rules. The XMI model includes
XMI element, documentation, and extension.

XMI File: It is the target code of the translation system.

Customer
1 \

Visual Requirement XMI
Component System] 1 Determined a i XMI
. Authoring System > . I'ranslation > 7
Constructor Analyst Requirements| | File
(VRAS) - System
‘ UML
' 2 XMI
MRCs i | Translation
| Format
Manager : Rules

Figure 22 The proposed translation system model of this thesis

23

The following list the procedure of this translation model from requirements to UML

representation through XMl file.

Step 1:Use VRAS to construct requirement through MRCs selected and preview
prototyping system to make sure the correctness of requirements. System
Analyst use VRAS to capture customer’s requirement.

Step 2: When existing MRCs are not adequate to describe customer requirements,
MRCs Manager uses the Component Constructor to add new MRCs to
articulate multimedia visual requirements representation.

Step 3: Repeat 1-2 until determined requirements are produced.

Step 4: Developers use XMI translation system to generate XMl file to interchange
metadata with UML CASE tool.

Step 5:Developers use UML CASE tool to represent the UML and generate the

framework for specific programming language and documents.

3.4 Architecture Model

Figure 23 illustrates the:architecture Model to show the translation system and its
relationship with other systems. Fhere are three systems elaborated below:

VRAS: Visual requirement: authoring .'system can present multimedia visual
requirements to capture user requirement. It also can save those the multimedia visual
requirements as text-based script automatically.

Translation System: it can extract information from VRAS script and translate them
into UML/XMI metadata, and then save as XMl file format.

UML CASE TOOL: UML CASE TOOL interchange metadata with translation system
through XMI file and represent UML graphic notation.

24

Multimedia
Visual
Requirements
Representation

XMI
File

-

VRAS

Translation
System

UML CASE
TOOL

Script for
MVRR

Figure 23 The architecture model

25

UML
Diagram
Representation

Chapter 4

System Design and Implementation

This chapter discusses the system design and implementation of the proposed
translation system. In the system design part, we describe system architecture, system internal
structure, and the design concept of system. In the implementation part, we describe the
implement environment, cooperating tool, and user interfaces of the proposed translation
system.

4.1 System Architecture

The Model-View-Controller (MVC) design pattern [18] is a good system architecture
pattern to split an application into data (model) and user interface (view) concerns, so that the
change of the user interface in the future will not.affect data handling, and the data can be
reorganized without changing the user interface. We adopt the MVC design pattern to
construct the proposed translation system in order to decouple relationship between metadata

and user interface. Please see Figure 24,

Controller

XMl Tree
XMI File - @
- ® umliModel
=& =mivers|

® 21
class Actor =& zmins:xn
@ hitp:
{ + A xmins:ed
// CODE + A& Hminsitn
+ A& =mins:ur

} + & xmiid

Figure 24 The MVC architecture of translation system

26

4.2 System Structure

In section 3.2, we have shown the responsibilities of translation system. We will
design relative functional blocks to realize those responsibilities. Figure 25 illustrates
functionalities of these cooperated blocks in the system structure. The shadowed blocks are
functional block. The un-shadowed blocks are data stored in file or memory. These three
functional blocks cooperate to finish translating task from VRAS script representation to XMl

script representation.

Translation System

LU

lactorvy | Generator |

load build walk Create query save
/ N/ N/ N\
Script Parset UMIL/XMI XMI
File Tree Metadata File
% functional block data in memory or file

Figure 25 The structure of translation system

Script File: It is a script program representing multimedia visual requirements. VRAS
converts multimedia visual requirements into script file. It is also the input of Script Parser.
The content of script file describes not only actor static information but also dynamic
information including external interaction with user and internal interaction among MRCs.
Section 3.1.1 had given the script structure.

Script Parser: Use compiler technology (lexical scanner and parser) to build parser-
tree [8, 20-21]. This research work focus on the implementation of the VRAS script grammar.

Parser tree: It includes not only multimedia component properties but also interaction
with user or between components. Using compiler technology also let script more easy to

maintain and extend.

27

UML Factory: Travel parser tree nodes to extract information of UML elements
according to translation rules, and then create UML/XMI element metadata.

UML/XMI metadata: It represents the XMI metadata as well as UML.

XMI Generator: It converts UML/XMI elements metadata into XMl file according on
XMI document format.

XMI file: A document format follows the XMI format [6] defined in the XMI

specification.

4.3 System Conceptual model and Detail Design

The concept of system design is based on MVC architecture [18] and using several
design patterns to construct the whole system. The patterns that we used include factory
method pattern, composite pattern, bridge pattern and strategy pattern [11]. Figure 26
illustrates the system conceptual model. This conceptual model includes controller package,
model package, and view package. Wser requests te, process translating through user interface
(View). Controller accepts the ‘user’s-reguest and starts translating flow: parsing script,
walking parser tree, and building the model-elements. After model is built, the concrete view
queries the content of UML/XMI-metadata by itself.and represents the result to the user. Next,

we will introduce these three packages in.detail:

28

|
Controller
ZmiParser XmiTranslator
+Parsingi) +Translatel)
Zl User
<<derlves =
_____ | EmiFactory Fles and Bisan :
<acalz > generate
| B
—\l{ Model § Wiemw
¥miElement |- ____________: sacaliequen Lo ol i e e Xmiview
q *: +Imp
& Z‘X ¥miElementImp +Generate()
XmiFile XmiTree ¥miCodeGen
XmiModel XmiDiag XmiNode XmiLink
+iEenerater) +iEenerate() +iEEnerater)
A A))

<acrestesz>

<<créate>> <<créate>>

<<rrgates

Figure 26 Conceptualimodel of the proposed translation system

4.3.1 Controller package

This package includes three classes — XmiTranslator, XmiParser, and XmiFactory.

These classes will cooperate to build the UML/XMI metadata.

(1) XmiTranslator:

It is a coordinator. It coordinates with XmiParser and XmiFacory to build UML/XMI
model element (XmiModel, XmiDiag and so on). The figure 27 illustrates the UML model
creation flow. Creating empty UML model first, parsing script in the next, and then walking
parser tree immediately after parser tree was established. During walking parsing tree, one
creates relative diagrams or notations according to translating mapping rules. In order to
display the UML notations through UML CASE TOOL, one needs to rearrange the spatial

relation of notations within diagram. Finally, adding the profile element to generate UML

model.

29

Create empby model Parsing script L _________ =l [Bison/Flex]

o Add profile For model Rearrange location YWalking tree

Figure 27 UML model creation flow

(2) XmiParser

XmiParser class is in charge of the parsing job. It creates the parsing tree through
lexical scanner and Bison parser and then walks paring tree to build UML model. Figure 28
illustrates the process flow. Lexical scanner groups characters into tokens according to lex
regular expression. Bison parser gets tokens through lexical scanner and establishes parser
tree using yacc grammar rules. After parser.tree is established, XmiParser walks parser tree
nodes, and then generate XMI/UML diagram through XMIFactory according to translating

mapping rules.

Parsing tree

VRAS Script
e . story
[CcAST) MCAnim |
. i @ i
Begin px 0 (0
_ (o
Name = Actor000 |:> R |:> scene scene
NowValue = 0 i g L g
Key = 0 R e "/
o = D I
Position = 86 446 127 e e :
[| i I
o . Actor Actor : :
. ! scenario scenario
info info

UML Target diagrams e

event

event event

 Uml/Xminode (« " xmi (| atk e <:D
| Uml/Xmilink | —1 Factory Routines

Figure 28 The process of building VRAS parser tree and generate target UML diagrams

30

The major lexical specification program and yacc specification program are listed
below.

Lexical Scanner — This thesis adopt Flex lexical scanner to process token analyze [20].
Here is the lex regular expression used to analyze the token. The following is the partial

regular expression file including regular expressions and toke matching rules

/] regular expressions // toke matching rules

alpha [a-zA-Z,_] character: {char}

alphanum [a-zA-7,_0-9] string: {string}

char \'(("\n]\[ntbrf\n]\\O[0-7]{0,2})+\" | Indent: {alpha}{alphanum}*
string \"([N"\n]IN\["\n])*\" Integer: {unsignedint}
unsignedint [0-9]+

Grammar Parser — This thesis adopt Bison-parser to parse grammar [21]. Here is the

yacc grammar rule used to parsing script. The following is the partial grammar rules.

11 Cast_List: Cast_Block
12 | Cast_List Cast_Block

13 Cast_Block: LBRACK CAST RBRACK Cast_Type CAST_BEGIN
Expression_List CAST_END

14 Cast_Type: MCAnim

15 | MCText

16 | MCMovie
17 | MCSound
18 | MCGroup

(3) XmiFactory

XmiFactory class is in charge to produce UML notations. It provides several service
functions to create various UML notations. XmiParser builds the UML models through
XmiFactory class. We adopt factory method pattern [11] to design XmiFactory class. Creating
UML notations inside a class with a factory method is always more flexible than creating
notations directly.

31

4.3.2 Model package

Model package represents UML/XMI metadata. Here we adopt composite pattern [11]
and bridge pattern [11] to design model package. We use composite pattern to compose UML
notations into tree structure to represent part-whole hierarchies and use bridge pattern to
decouple an abstraction (metadata independent on display) from its implementation (metadata
dependent on display).

There is a root class named XmiElement in the model group. This class plays a role as
container to record its children elements and its attributes. All of UML notations (e.g. class,
state, lifeline and so on) would be created through XmiFactory class. During creation, these
notations are separated into several XMI elements in advance. Figure 29 illustrates an
example of UML class notation separated into three XMl elements. A class named Example
has one attribute and one operation. The name of attribute is “abc” and the name of operation
iIs “func”. Represent this class by using XMI need three elements totally. There are
“Example” element including isAbstract attribute (attribute value is false), “abc” element
including visibility (attribute value is_public) and.““func” element including visibility (attribute

value is public) three XMI elements.

Example eltf:ment : Example, attribute : isAbstract(false), attribute ...
e :> " element : abc, attribute : visibility(public), attribute ...
+func() i

-~ element : func, attribute : visibility(public), attribute ...

Figure 29 An example of UML class notation represented by three XMI elements

All of UML notations supported in this design/implantation would inherit from
XmiElement and be composed of several XMI elements. Figure 30 lists the hierarchy of
UML/XMI model element that supported in this research work. The first layer is root
(XmiElement). The second layer is abstract layer for model, diagram, node, and link. The third
layer is dependent on notations within diagram. Others are UML notations supported

currently.

32

‘ XmiDiag

‘ XmiModel

|xmi|:d| |xmi5d| |xmi5md| |xmi|:dNode| |xmi5dNode| XmismdNode XmismdLink
<‘ Xmilnteraction _‘ ¥miState ¥micCall ‘ XmiTrs
Xmilnstance 4 XmiLifeline

XmiOperand

| XmiCombinedFragment |

T

ZmiRegion |

XmiStateMachine

XmiPseudoState

XmiFinalState

Figure 30 The-hierarchy of UML/XMI model elements

4.3.3 View package

In the view package, the design concept is based on strategy pattern [11]. There are an
abstract view and three concrete views: XMI file view, XMI tree view, and Code Framework
view. None of concrete views would affect any model element. Each concrete view queries
data that it is interested from model elements and represents a specific form for user.

The following describes three forms supported in the research work.

(1) XmiFile

XMIFile class represents UML/XMI metadata by file format to interchange metadata
with UML CASE TOOL. Figure 31 illustrates the flow of XMI file representation. XMIFile
class query the UML/XMI metadata and saves as XMl file according to XMI format. Those
UML/XMI metadata were translated from VVRAS script by controller package. After XMl file
is saved, users can use UML CASE TOOL to load XMI file and represent UML diagrams.

33

XMIParser XmiFactory
VRAS [T I ImmTTTToToo !
. load [} Parsing 14 Walk ! i Translation UML/XMI
Script > r» ! ! !
. p o _Tree r__ Rules metadata
XmiFile

XMI ImTTTTmmmes

. _ saveas | | XMI i

Flle <« : 1

i Format !

UML display UML
Diagrams [« CASE TOOL

Figure 3L The XMlI file.representation flow

Figure 32 shows the partial XMLfile that is outputted by XMIFile class.

Line 1 shows the xml version‘and.the.encoding format, which are used in XMl file.

Line 2 shows the uml model information. The information include “xmi version”,
“xmi schema version”, and so on.

Lines 3-5 show the tagged value of project type is “UML2Project”.

Line 11 represents a class named “TCast” and its Universally Unique Identifier (UUID)
[6] - “c8966e02-a341-407f-99ff”.

Lines 15-21 represent a class named “TMCBtn”. This class includes “Play” operation
(line 17) and “iActor” attribute (line 19).

Line 20 represents the generalization relationship between “TMCBtn” class and
“TCast” class through the special UUID - “c8966e02-a341-407f-99ff”.

Line 24 is the end tag of “uml:model”.

34

1<?xml version="1.0" encoding="UTF-8"?>

2 <uml:Model smi:version="2.1" zmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmlns:ecore="ht
3 <elnnotations xmi:id="4662ceed-361b-436d-bflh" source="TaggedValues">

4 <details xmi:id="f846823a-£380-4c7f-03e7" key="ProjectType" value="UMLZProject"/>

5 </ehnnotations>

6 <eAnnotations xmi:id="lcBaldbf-edd4-43dd-a35%" source="Diagrams">

7

g

5 </eAnnotations>

10 .

11 <packagedElement xmi:type="uml:Clags" xmi:id="cB8%66e02-a341-407L-59ff" name="TCast">

12 e

13 </packagedElement:

14 ves

15 <packagedElement xmi:type="uml:Class" xmi:id="af60405f-1ab0-4848-%4ab" name="TMCBtn">

16 e

17 <ownedoperation xmi:id="69%4dcé50-elad-4145-ab859" name="Play" visibility="public" isAbst
18 e

19 <ownedAttribute xmi:id="56058407-d3ae-445e-3204" name="*iActor" visibility="protected"
20 <generzlization xmi:1d="d1461972-c8bB8-4e4f-abd5" general="c85%66e02-a341-407£-99£f"/>
21 </packagedElement:

22 e

23 s

24 </uml:Model>

Figure 32 The partial XMl file outputted by XMIFile class

(2) XmiTree

XMITree class representssUML/XMI metadata by tree structure. Figure 33 illustrates
an example of XMI tree that is generated.by. XMITree class. There are five types of node used
totally - X: XMI, R: Root, E: Element, A: Attribute name, V: attribute value. Each XMI node
includes its children nodes and attributes. The first node of tree is XMl file. The second node
is model (Root). In this example, the “uml:Model” is composed of five attributes and several

elements. Each attribute has its value (e.g. the value of "xmi:version" attribute is "2.1")

35

XMl Tree
=@ Bl
-8 umlbodel
& xminversion
® 21
& xminsxmi
W hitpedfschema.omo.orgfspeci=hIf21
+-& xmins:ecore
& xmins:trufun
& xminsuml
@ http e eclipse.argiuml2¢2.0.0/UKL
xmicid
name
eAnnotations
eAnnotations
packagelmport
packagedElement
packagedElement
packagedElemeant
packagedElement
packagedElemeant
packagedElement
packagedElement
packagedElement
packagedElement
packagedElement
packagedElement
packagedElement

+

¥
[I T Y - - Y - - R O - O - - - R - R - ==

Figure 33 An example of by XM tree representation

(3) XmiCodeGen

Figure 34 shows the relationship between UML model, XMI and code framework.
Most UML CASE TOOL can save UML model created by user as XMl file and reload XMl
file to represent UML model. Therefore, XMI can be considered as equivalent internal
structure of UML model. The code framework can be generated from UML model by UML
CASE Tool. The code framework also can be derived from XMI directly. XmiCodeGen class

is in charge of code framework generation from UML/XMI metadata.

36

UML Equivalent to XMI
Model)

v

Generate to Derived from

Code
Framework

\4

A

Figure 34 The relationship between UML model, XMI and code framework

The XmiCodeGen class queries the class information from UML/XMI metadata, and
then output code framework. Figure:35 illustrates.a flow of code framework representation.
The XmiParser class cooperates with XmiFactory.class to translate from VRAS script file into
UML/XMI metadata. After UML/XMI metadata are established, XmiCodeGen class queries
correlative information such as class andits operations from UML/XMI metadata, then load
predefined template files into internal.buffer,.and then inserts these information collected
previously into memory buffer. Finally, XmiCodeGen class saves the content of memory
buffer to generate project file, makefile, and code framework. Both of project file and
makefile are for BCB5 integrated development environment (IDE) only. The sample code
includes scenes and multimedia actors’ creation, scene branch control, and so on. Developer
can generate code framework through UML CASE tool and then reconstruct the target system

referring to these sample code rapidly.

37

XMIParser XmiFactory
VRAS [I =TT TTToTTo !
: load .| } Parsing 13 Walk ' | .|, Translation UML/XMI
Script < > i g I X
o + 1 Tree_ _: i Rules metadata
XmiCodeGen
I r=-======== 'i === =======" 1
[Code ! ' Collect

generate

N 1 ~ .
(Generate <+ Information
1

Project file
Makefile
C++ file

H file

load

Template files
for code gen.

BCBS5 IDE build Sample
/ Makefile UL Program

A\ 4

Figure 35 The sample cade representation flow

4.4 Related implementation issues

4.4.1 Development environment, cooperating tools, and limitation

We summarize the related implementation part of this research work in the following:

e This translation system is implemented by C++ language. We use BCB5 IDE [17] to
construct user interface.

e The script file used for the input of this translation system is VRAS script file
implemented by the Software Engineering Laboratory of NCTU [23]. The grammar
definition file and regular expression used in this thesis depended on this script.

e Use Flex as scanner generator [20] and use Bison (GUN parser generator) [21] to

establish abstract syntax tree.

38

e Due to the XMI extension elements associating display information for TruFun UML
CASE TOOL [16], the output XMI file of translation system might not be displayed
on other UML CASE TOOL.

e The code framework generation of translation system is C++ program language. The
project file and makefile are for BCB5 IDE only, and the code output path is fixed in
the “project file\output\code”

4.4.2 User Interface (Ul) introduction

This translation system has two major functions. One is generating XMl file; the other
Is generating code framework.

Figure 36 shows the user interface for XMl file generation.

l"ﬂ XMI Translatoxr E] @ El

Ml Generator l Code Generatnrl
XMI Content KMl Tree Operation
wnl: Mode 1 Al =
R ® ﬁ Comrment
xmiz:version =8 uml:Model
xmzlr-n;xmi + A xmizversion ® 11
: =4 "
hotp://schema.omy.org/spec/XMIAZ2.1 + & xm:ns.xml ® Rool
Hmlns:ecore £ xmins.ecore E EL
htrp://uww.eclipse.org/emt/ 2002/ Ecot - xningtrufun Sment
xmlns:trufun + & xminsuml A Artribute
hotp://oruf A wrnicid
xmlnsp"u:‘ni e i A name . value
: +
http:/fuvw.eclipse.orgf/ uml2/2.0.0/11 +- E eannotations
®rizic i
+- E eAnnotations
Zf8cOhtb-219c-45ce—83£5
A +- E packagelmpor
(2) rode 1 +- E packagedElement (1>
L +- E packagedElement @Q’
wrnizid +- E packagedElement
30debefo-503a-4119-9bth + E packagedElement Translate
source +- E packagedElement
(3) Taggedvalues + E packagedElement
= dEta}lS_d +- E packagedElement
Hmd i +- E packagedElement
ed4c4Slbd-cad4s-467a-bite
ey +- E packagedElement (=] (4)
ProjectType +- E packagedElement
ralue +- E packagedElement Save Content
UMLZProject +- E packagedElement
elnnotations +- E packagedElement
wralzid +- E packagedElement
6513d996-0767-4547-50eh w +- E packagedElament
£ > +- E packagedElement b
Debug Message
(6)_ - Exat

Figure 36 The Ul of XMI File generation

The labels on the figure are:
1). Translation button: it is used to start translating from VRAS script to XMl file.

2). XMI Tree window: it represents the XMI metadata by tree structure.
3). XMI Content window: it represents the XMI metadata by text.
4). Save Context button: it is used to save XMI content as file.

5). Exit button: it is used to exit program.

39

6). Debug window: it shows the log produced during translating.

Figure 37 shows the user interface for code generation.

.a XMI Translator

M| Generator Code Generator
Class List Dperation List Operation Preview
(1) TCast:: TCast (T3cene *owner, TForm *:
— | THCAnim ~TCast {
THCELn Play Owner = OwWner;
THCText idwner = iowner: (5)
TSclBtnHelp H
(2) TSclBtnVWF
TSc1TxtHe 1
TSelTxtSoftuareDem
TaclTxcVideoP layer
TSczZAnimBorder 53
TScZBrnBack G I (6)
TacZBrnLarge o < >
Class Preview
Header File Soruce File
(3) { Al ~
i1 11 OWner = OwWner; (4)
TCast (TScene *owner, TForm *iowner); i0wyner = iowner;
wirtual ~TCasti): H
wirtual woid Play(bool isSyne)
TCast::~TCast (]
protected: {
TScene *Owner; i
TForm *iQwner:;
wvold TCast::Play(bool is3vnc)
private: {
H
i
v v
< > < >
Debug Message
AL
Exit

Figure 37 The Ul of Sample code generation

The labels on the figure are:

1). Class list window: it lists all of classes in the XMI metadata.

2). Operation list window: it lists the operations of class selected in the class list
window.

3). Class Header preview window: it is used to preview the header content of class
selected in the class list window.

4). Class Source preview window: it is used to preview the source content of class
selected in the class list window.

5). Operation preview window: it is used to preview the content of operation selected
in the operation list window.

6). Generate button: it is used to generate sample code.

40

Chapter 5

Demonstration and Application Examples

In this chapter, we use an example to demonstrate how to translate from multimedia visual

requirement representation into UML representation and to show how to verify UML diagram

correctness by step.

5.1 Demonstrating procedure

Figure 38 illustrates the demonstrating procedures:

1.

VRAS tool [3, 15] authors multimedia visual requirements representation and
generates its corresponding script program. VRAS Tool to construct user
requirements using Multimedia Reused:Components (MRCs) [1]. VRAS Tool will
output a visual requirémentsiscripted. by EBook Project (EBP) file format and
several EBook Script (EBS) files format.

. Generate XMl file through XMi-translation:system based on the generated EBP and

EBS scripts. The translation-system will automatically translate from EBP and EBS
scripts into UML/XMI metadata and then output a XMl file.
Open TrunFun UML CASE tool [16] and then load the XMI file to represent UML

diagrams.

. Generate sample code through XMI to support reconstruction of the multimedia

visual requirement representation.
Verification is for represented UML diagram in the step 3. We generate source code
framework through UML CASE tool and then fill in related code for the interface

actions of the target.

41

Multimedia Visual
Requirement

Representation

Translation
System

Sample Code
Representation

Scripts for
MVRR

XMI File
Representation

Sample
Program

UML Diagram
Representation

Figure 38 The demonstrating procedure

5.2 Example - A video player Ul application system

5.2.1 Multimedia Visual requirements representation by VRAS tool

We use a video player Ul application system as example to describe the applicability.

At first, we construct the video player Ul application system. Appendix A describes the

details of how the video player Ul application construction through VRAS tool. Figure 39

shows the multimedia visual requirements representation for video player Ul application

system. There are two Uls (or scenes) in this system.

)

Ul-1: a text actor “Software Demo” appears in screen as title, a text actor “Video
%] putton.

Player” appears at the top of the € button and text actors “Help” locates at the bottom of the

JiL Forml

Ul-2: there are six text actors, nine button actors and one image actor totally. The text

actors are “Size”, “Volume”, “Play”, “Back”, and “Snapshot”; the button actors are [E], [1] [1],
< » @] szl 2 & and the image actor is

[1(ES|

Video Player

il
pm‘ Il]

[t
D Save
— OO0 = =) el
R Volume a napsho!
o < Play Snapshot
Figure 39 Ul-1 and,Ul-2 for video.player Ul application

Figure 40 shows the interactions-for video player Ul application. When application
starts, system automatically shows Ul-1 first. Click on the ™4 putton would jump to UI-2.

Click ™ button to play a video. The buttonstf] (1], and [t] are used to adjust the video
display size. The buttons € and ®are used to turn down/turn up volume. The @l hutton is
used to snapshoot a still image and to pause video playing. When click =) button, system

pop a save dialog to save the still image snapshot by @] putton. Click & button would go
back UI-1. Click “&] button would link to a web page.

43

Figure 40 Int__e;’%éc‘t_iQﬁ;ﬁf’,l\h{ﬁeﬁ-blayer Ul application
A,

eey

Figure 41 shows the parti'a_lij“spiilp"t- for by@tﬁ'n and its scenario. The left hand partial

script describes the properties of @‘b‘mtonﬁimcluéing its size, position, and so on. The right
hand partial script describes the scenario of ™ button. LMOUSECLICK is user event. This
event invokes the “GotoScene” action to jump from scene 1 to scene 2. The full scripts for

video player Ul application are shown in the Appendix B.

s

l_.!.. f Ei= %
Scene 1 Scene 2 M
A Visual Ul " I 5
Requ”'ements < Video Player j . - >
Representation B EERIE
o0 2] =
\i" 4__ < Volume Play Snapshot
o J
= Button description ®¢ Scenario description
' . ANCHOR Actor : N\
[CAST] MCBtn {
The Begin LMOUSECLICK:
i Name = Actor {
correspon(_jlng NowValue = 0 EBook.GotoScene("@Sc759");
VRAS partial Key = 0 }
scriot < Position = 198 252 127 LMOUSEDOUBLECLICK: {} >
P Size =70 70 RMOUSECLICK: {}
Visible = 1 RMOUSEDOUBLECLICK:{}
Speed = 10 DRAGDROP: {}
DragMode = 2 DRAGOVER: {}
PicFile = "@VP.GIF* MOUSEENTER: {}
NN I J

Figure 41 Partial scripts for video player button and its scenario

5.2.2 XMl translating operation for XM1 File generation

Figure 42 illustrates the translating procedure from VRAS script into XMI file. There
are four steps.

Step 1: Users press “Translate” button. The system pops “Select EBP file” dialog up.

Step 2: Users select a requirement project file (.EBP). The system starts translating
and then pops “Save XMl file” dialog up after finish translation.

Step 3: Users select a file to save the result. The system saves the translating result
into file and pops an information dialog.

Step 4: When users confirm with the information dialog, then the system shows the
result is as XMl tree and XMI content form.

45

1 XMI Tramiaror

304l Gieapretor | Cade Generstar |
3041 Comterd

HMI Tien

Openation
Comment
® 1
® ool
B Element
& Arreibure
® value

Step 1

=

|'Select EBP file

Fis

i Save XM file

Save in: I 19 result

~| & ® ek E-

I Story.ebp

pe: I ebp file [praject]

File name:

ItruUmI.tmx

Save

Save as lupe: I

1 Tramlalor

HMI Generetor | Cade Genoratar |
XM Contart
‘sl Model
i ivVersion
2.1
aamlnsami

amlnsiecore

sminmErutun

meep://uwv.eclipse, org/ emt/ 2002/ Ecol

Al = @om

& umd Moadil

& amivvirsion
& xminsomi
& sminzacone

htep://schema. oy, o/ spee/ 201/ .3

& W xming trulun

W wmingumd

Cancel

a

[Save XTI Zile ; Ishresultitruliml,tmx

heep://teutun w @ miid
wamdae s amd #-@ nome ® Value
heEp: /v, el ipee org/ uml2 /2 .0.0/00 -8 sAnnololions
wmd £ 4d # & pAnnotationg
n:svssnn-ns.—m:s..\mra 5 B packegeh
del = B packagedElemari
chnnotations # E packagedElemer w
et 4 & ¥ packagedElement
DBIe2Sel-cBnd-4aTa-9516 # & packagodElemon Translate
souree w B packagedElmant
Taggedvalues B packagedElsmant
"":;:f:! « B packogedElment
1a2bael0-77e7-4d25-E0be i & packagedShemen
ey « & packagodElemant =
Peolecc Type = B packagedElemant
walue « E packagedElemant Have Content
UML2PECiect s E packagedElement
einnotacions & & packagodElemen
wmiiid = B packagedElemant
Bé0tcoda-tdTa-4ct1-al 20 - #-® packagacElemant
) N—— 3] = B packogedElernent e
Debug Merrooe

example of the Ul video player application

46

Step 4

Figure 42 The translating procedure from VRAS script into XM for the application

5.2.3 UML representation through UML CASE Tool

Open “TruFun” UML case tool [16] and load XMI file which was saved in the
pervious step (discussed in section 5.2.2). Figure 43 shows the whole model including several
diagrams generated through CASE TOOL.

& Modeling - Story_StateDiagram - Eclipse SDE

File Edit Refactor ¥iew Navigate Search Project Modeling Eun Window Help
ii-He Q- (4 i@ (=R
e ® | E S (10 v
{2 Model Browser 53 = 0|9 *emo g *TScens_1_CD_Hisrarchy
Cew B | B E Y
=B model A~ State Machine
& Story_ClassDiagram -
£ Story_StaDingram Working State <
& TScene_i_CD_Hierarchy £
b :
ii TScene_l_SD_Interaci?on_ScleHelp it et
42 TScens_1_SD_Interaction_Sc1Bt¥P & —= ﬂ
& TScene_2_CD_Hierarchy
/ Prelud
% TScene_2_SD Interaction_Se2BmBack eyt fueude
75 TScene_2_SD_Interaction_Sc2BtnLarge
4 TScens_2_SD_Interaction_Sc2Btnbid 21 B VPGIF[click] / Goto
75 TScene_2_8D_Interaction_Sc2BnPlay v
T Nawigator 22 2 = <;=='=> V=0 SelBinBackGIF|click] / Goto
= 1= demo
5= model Tieene_2
= bak entry Prelude
WML bfun exit! Finale
=] trufon e
D project
] Propexties 53 Code Generator | Overview = & 0
. =i

Figure 43 Using TruFun UML CASE Tool to represent UML diagrams

All of the diagrams can be saved as image files through CASE TOOL. Figure 44 is
class diagram to illustrate scenes hierarchal structure within system. Figure 45 is state
machine diagram to illustrate scenes branch. Figure 46 and 49 are class diagrams to illustrate
casts hierarchal structure within scene. Figure 47, 48, 50 and 51 are sequence diagrams to

illustrate the interaction scenarios.

47

TFactory

TEcene

™
TScene 1 TScene 2

=Y =

Figure 44 Class Diagram for inheritance-hierarchy of scenes

According to user requirements, there are two Uls in this exampling system.
TFactory: Scene Factory. It creates these two'scenes.

TScene: Abstract class for all scenes:

TScene_1: Concrete for Scenel (Ul-1). Scene_1: An instance of TScene 1.
TScene_2: Concrete for Scene2 (Ul-2). Scene_2: An instance of TScene_2.

48

State Machine

Warking State

{ et

{ init
' Teene_l H

entow Prelnde
exit! Finale

!
W

mc] B PGIF[click] / Goto

scdBimBackGIF[click] / Goto

[Thcens_2]

entrw Prelnde
exit! Finale

Figure 45 Finite State Machine Diagram for scenes branch

Notations:

.: Pseudo State @ . Final-State O —Entry point @ : Exit point

Working State: It is a system state. System enters the entry point of working state
automatically after initialization and then transit into TScene_1 by itself. Whenever exit
event occurred, system would automatically enter exit point and then transit into Final
State. There are two internal state named TScene_1 and TScene_2

TScene_1: a state mapping to Ul-1 and including “prelude” entry action and “finale” exit
action.

TScene_2: a state mapping to UI-2 and including “prelude” entry action and “finale” exit
action.

When Sc1BtnVpGIF is clicked, System transits state from TScene_1 to TScene_2.

When Sc2BtnBackGIF is clicked, System transits state from TScene_2 to TScene_1.

49

TScene

TCast
TMCBt TMCText
TSelBm VP TSclBmHelp TSl TxtSoftwareDemo TSel TxtVideoPlayer TSl TxtHelp

Figure 46 Class Diagram for cast hierarchy within Scene 1

Based on the user requirements of the example system, there are three text actors
(Software Demo, Video Player andHelp) anditwo button actors (B¢ and %)) in the scene
1.

TScene: Abstract scene class. 1t contains all cast.

TCast: Abstract class for all cast.

TMCText: it is abstract text actor class.

TMCBtn: it is abstract button actor class.

TSclTexSoftwareDemo, TSclTextVidepPlaye, and TSclTextHelp are concrete of
TMCText.

TSc1BtnVp and TSc1BtnHelp are concrete of TMCBtn.

50

sd Interaction SclBwVP ./

Tzer JclBtnVE Joene 1
5 HookOniClick) 5
#

seq)
Gotodcens"Seene_2")

, L

Figure 47 Sequence Diagram for go to “Scene 2”

In the user requirements, user can press “video player” button to enter Ul-2.
1. User click the button cast named Sc1BtnVp to invoke scene branch.

2. SclBtnVp call GotoScene funétion with Scené. 2 parameter of Scene_1 to link Scene2

sd Interaction SclBwHelp

Tzer GclBtnHelp Gcene_1

i HookOnClick() i i
: » 4
' sedqh h

i Gl:ub:uT.TRI:r{"http:."."l 40.1 13.208.BB;‘pl&tehveh.’bhg.jw'?UI:;d}rmn'

i

Figure 48 Link a web page

In the user requirements, user can press “Help” icon to link to a web page.
1. User click the button cast named Sc1BtnHelp to link a web page.
2. SclBtnHelp call GotoURL function to link a web page.

51

=i = =)

;mmu.- [ettt | et | Pectimies ettt | Tt | ettt | _mm-:dv_..] | Tt] Tt | | [PectAmtirdes |

Figure 49 Class Diagram for cast hierarchy within Scene 2

Based on the user requirements of the exampling system, the text actors are “Size”,

“Volume”, “Play”, “Back”, and “Snapshot”; the button actors are i), [[, @ @,
ksee) < & and the image actor is

TScene: Abstract scene class. It contains all cast.
TCast: Abstract class for all cast

TMCText: abstract text actor class

TMCBtn: abstract button actor class

TMCAnNIm: abstract Animal actor class
TSc2AnimBorder is a concrete of TMCARim class.
All of text actors are inherited from TMCText class.

All of button actors are inheritéd from TMCBtn:class.

sd ude
Joene_:2 Applink
'
seqh]

LoadDIL("VideoDIL41","287","160") !

Figure 50 Sequence Diagram for the prelude scenario of Scene 2

System executes the prelude scenario of Scene 2.
1. Secne_2 calls the “LoadDIlI” function to load a specific DLL file named

“VideoDII.dII” to initial video player.

52

sd Interaction Sc?BwPlay

Uzer Sc2BtnlPlay AppLink
5 HookOnClick?) 5
s
sedq.t :

iLc.sdnu("meanu_lﬂlay.du","-ann","-an"} :

Figure 51 Sequence Diagram for play video scenario

In the user requirements, user can press “video player” button to play a video.

1. User clicks the Animal cast named'Sc2BtnPlay to invoke video playback.

2. Sc2BntPlay calls “LoadDI}” to loadaspecific DLL file named “VideoDIl_Play.dll”
to play video.

All of UML diagrams produced by UML CASE tool are shown in the APPENDIX C.

5.2.4 Sample code generation through translation system

Figure 52 illustrates the procedure of translation system to generate sample code
framework. There are two steps:

Step 1: Users click “CodeGenerator” Tab to switch Ul. The system collects all classes’
information automatically and then shows them on preview windows. Users also can select
other class to preview its code through class list window at this time.

Step 2: Users click “Generate” button. The system starts to generate code framework

and then pops “Information” dialog up to show users the stored code path in the file system.
The sample code is C++ for BCB5 environment. It includes scenes creation,

multimedia actors creation, scene branch control, and so on. In next section, we can refer to

these sample code to reconstruct the video player Ul application system rapidly.

53

%4 ZMI Translas-

Code Generator l

CEX

#Ml Generato

Class List

o tion Preview

TCast::TCast (T3cene *owner, TForm *:
THCAnim ~TCast i

THCELn Play COwner = owner;

THCText idyner = iowner;

TSclEtnHelp ¥

TScl1BenVP =

T3clTHtHelp

T3clTxrSoftwarelem

TSc1TxtVideoP layer Step 2
TEc2AnimBorder @
TScZBtnBack
TScZBtnLarge

Generate

<

<

|w

Class Preview

Header File Soruce File

{ ~ 1

public: B OWner = owner;
TCast (TScene *owner, TForm ¥iowner): i0wner = iowner:
virtual ~TCast(); ¥
wvirtual wvoid FPlay(bool is3ync):;

|>

TCast::~TCast ()
protected: {
TScens *Owner: i
TForm *iCwner:
void TCast::FPlav(bool is3vne)
private: {
=i
ix
A
< 2l =
Debug Message

=

[

r
Information

i] Grenerate sample code in DXL beb demo_ 1223 ‘outpuficode

Figure 52 Steps of the code generation of the exampling application system

5.2.5 Verification of UML diagram

Figure 53 recalls the proposed translating process. The UML diagrams are represented
in the section 5.2.3.

54

Multimedia Visual UML
Requirements Diagram
Representation Representation
" U T
VRAS UMIL. CASE
TOOL

Script for Translation XMI format
M.V.R.R |:> Tool ::>

Figure 53 The proposed translating process

In this section, we verify the correctness of these UML diagrams. Figure 54 illustrates
the verification flow.

Step 1: Use UML CASE tool to generate code framework from UML diagram.

Step 2: Fill in the related interface code referring to sample code (discussed in the
section 5.2.4)

Step 3: Use BCBS5 IDE te huild the'target system. The target system can represent the

multimedia visual requirements as same as' VARS tool

Multimedia UML
Visual Diagram
Requirements Representation
Representation
y
Target _ BCB5 Code _ UML CASE
System D IDE Framework |~ Tool
Related
Interface
Code

Figure 54 The verification flow for represented UML diagram

55

The following is the detail description of verification flow. At first, we use UML
CASE tool to generate the specific source code framework for the target system. Figure 55

show the steps of code generation through UML CASE tool.

& Modeling - TScene_1_CD_Hierarchy - Eclipse SDK

File Edit Refacpr Yiew MNevigae Seawh Project Modeling Ewn Hindow Help
il L S ol : X R Q[os v S |44 Modeling
s E% TScene 2 CD_Hiersrchy =5

& Model Browser 57 . Navigator = B[demo &% Story_ClassDiagram & _CD

Ciew Bep BB~

= Ex ot+ Model ~
£% Story_ClasDiagram

£ Story_StsteDiagrm ’ §
£% TScens__CD_Hievsrchy I
5% TScens_l_SD_Interaction_Sc1BE
+F TScens_1_SD_Interaction_Sc1BtnY
& Tscenz_2_CD_Hierarchy

7% TScene_2_SD_Interaction_ScZBnE. (3 TCast
7% TScene_2_SD_Interaction_Sc2Bnl - Attrib..,
%% TSoene_2_SD_Interaction_Sc2Bnh
7% Tdoens_2_$D_Tnteraction_Sc2BmP
7% Tdoens_2_SD'_Tnteraction_Sc2Bms
5% T¥eens_2_SD_Interaction_Sc2Bms
5% T¥eens_2_SD_Interaction_Sc2Bms B R
3% TStene_2_SD_Interaction_St2BnS . g g

T oo 2.8 Foocton o280 | O e | Step2: Click “generate” icon
7% TScene_2_SD_FPrelnde

#-E TCast

] TCast Code Generator £ vervizw | Trofun Console E [Trufun Comsole 5% =0
£ TFactory "
. %TMCAnim AiCr v[P5 B ® 7 | srare Generate Code... 2
rrxGenerating TScene ...
w2 TMCBw Context TCast “ind
: sisDe rkspace’ de o1\ srel TScene.

TMCBt
& E TMC Text ** 4| ||>>>Generating TScene ...

o O micTes Stepl: Click “Code generator” tab

3 TSc1BHelp
S gTSnleVP L:\MyThesisDemn' kant 20084 workspace' demoimodellsrcl TCast . h

>»»Generating TCast ...
-] Tel TaHel, -

& %TSE[T){ED;MEIEDEW o put your implementation here. D:\MyThesisDemo) kant 2008} worksy demotwodel sre\ Toast . o
-2 8ol Tri¥ideoPlayer ! »>rGenerating THCBtn ...

% TSe2AnimBorder D:\NyThesisDemed kant 20084 workspace' demo’model\src THCETR. b

wirtual void Finale() = 0{)
% T8c2BnBack I >»>Generating THCETn ...

- TS2BtLarge 3
w-H T3:2BtMid
& Tec2Btlay 3 A Miomiant .

put. your implementation here.

Figure 55 Steps for code generation through UML CASE tool

After code framework generated, we refer to sample code generated in the section
5.2.4 to fill in program code for scenes creation, the multimedia actor creation, and the related
interface actions of the target video player Ul application. Figure 56-59 give four examples.
Figure 56 shows the code filled in the “TFactory” class construction function to create two
scene instances (there are two scenes in the video player Ul application). Figure 57 shows the
code filled in the “TScene_1” class construction function to new actor instances within scene
1 (there three text actors and two button actors). Figure 58 shows the code filled in the
HookOnClick function of “TSc1BtnVVP” class to call “GotoScene” function with “Scene_2”
parameter (when “VP” button clicked, system switches to scene 2). Figure 59 shows the code
in the HookOnClick function of “TSc21BtnPlay” class to call its related DLL file named
“VideoDIl_Play.dll” to play a video (when “Play” button clicked, system plays a video).

56

B Trurtory.cpp EER B TScene_l.cpp ==
TFactony 208 | T5cere_1.cpp | T5<20rPly.cop | T5c1BmPcpo | TRactomepp TSomne_Lene | 15c2BPley.cpp | T5c1BuP.crp |
4 - #include "TSclBtnHelp.h"
#include "T8clTxtHelp.h"
TFactory *Factory;
Py Tscene_l::T8cena_1(){
fastcall TFactory::TFactory (TComponent® Owner) /7 TODO put your implementation here.
iBackgroud-»Picture->LoadFronFile ("D://MyThesisDeno/ /UL REQU
iBackgroud->Stretch = true;
back 1¢1) TCast* <
sack (senew Tscene_1()) B .. " " - SelB
scenes.:}'.:ah_backtsmow TScane_'.:IJJ.' casg f Zert (CastAry::value type ("SclBtnvE", (c=new < Etnv
- - 28 .ingert (CastAry::value_type ("SclTxtoftwareDemo”, o
Cagts.ingert (CastAry::value_type ("SclTxtVideoPlayer”, (c=new
ry .ingert (CastAry::value_type ("SclBtnHelp”, (c=new TEclBt
wvedd fasteall TFPactory::ButtonlClick (TObject *Sender) .insert (CastAry::value_type ("§clTxtHelp”, (c=new THcilx
[
TScene® sc = Scenes.at (0); y
‘_T"-‘”j‘-"""i 1 TScene 1::~TScene 1(){
. Wisible = false: - J/TONG it vony imnlementatinn heva. o
- " < 3
T} = i1 s
Figure 56 Fill into code in the TFactory class Figure 57 Fill into code in the scene 1 class
construction to new two scene instances. construction to new actor instances within scene 1
B TEIDWVE.cpp =] B TSe2BmPlay.cpp [(=13
Thactonpcpp | Thomnm_ 1 cpp | TockinPlagcpp 1518V con | TFaclmycup\ TScene Tepp T5c2BrPlay. DDD}TS:WBWF.EW}
A —— (PEcene *owner, T *Lowner) : THC = } A
peeLsLavE ?f”:’r',:“'f:;“’;w:‘;‘:‘r‘“w porm Tiewnerdiinestnle void _fastcall Tsc2Btnplay::HookonClick (T0bject *Sender)(
nClick = HeekOnClick: f/ TODO put your implementation here.
34 198; TPanel* 1iVPanel =-&wner->GetVPanel () ;
52; TMediaPlays
idth = 70 DLL_F¥jdeoDll videoFunc;
70 HINGFANCE hDLL = ::LeadLibrary("videsDll Play.dll");:
AnsiBtring fn = "D://MyThesisDems//UI REQUIREMENT AUTHOI -
LoadGifFirstFrameTobitmap (fn, iActor-»Picture->Ditmap): ;
! if(thoLL) |
TEELBLAVE: § ~TESLBERVE () { videoFunc = (DLL_FVideoDll) GetProcAddress(hDLL, "vidgo
if (vidsoFunc)
videoFunc (1VPanel, iPlayer, ioOwner, -800, -800)
1Free
/¢ ToDO put your implementation here.)
Owner-rGotoScens (“Scene 27})
- : v
¢ » 3 >
(E} Tasert 11 Insert
y 4 r
Figure 58 Fill into code in the HookOnClick() of - | - Figure 59 Fill into code in the HookOnClick() of
| : 3
H 113 ¢ 1] A - . H H
TSc1BtnVP class to invoke “Goto Scene 2” action. TSc2BtnPlay class to call its related DLL file.
1

After finish all lated code filled,‘ We use‘ BCBS to rebuild the video play Ul application
system. This video player Ul application ‘can represent the user visual requirements that are
same as constructed by VARS tool. Through verification flow, we can say the UML diagram
shown in the section 5.2.3 is correct. The XMI file generated by our translation system
represents these UML diagrams. Therefore, we can proof the translation from multimedia
visual requirements representation into UML diagram is also correct indirectly. Figure 60

show the result of reconstructed video player Ul application.

57

gt 08 8

58

Chapter 6

Conclusion and Future Work

In this chapter, we draw out the conclusion of this thesis study. The future work for
the translation system is also outlined.

6.1 Conclusion of this thesis study

In this research work, we design and implement a translation system that can be used
to translate from the VRAS script (represent multimedia visual requirements) into XMl file
(represent UML notations). Specifically, the XMI is used to bridge the gap between
multimedia visual requirements representation and UML representation. This XMI file
includes state machine diagram to illustrate scenes branch, class diagrams to illustrate class
hierarchical inheritance, and sequence diagrams. to illustrate external/internal interactive

behavior of target system. The benefits of the translation system include:

1). This translation system can be used astthe bridge to reduce the gap between analysis

phase and design phase. Eventually, it can improve software development process.

2). This translation system adopts XMI format as final output. XMI format is a standard
of metadata interchange among applications. Software developers can use UML
CASE TOOL to represent UML diagrams during system models construction phase.
Besides, through verification flow, we can say the represented UML diagram is

correct. Therefore, we can proof the translation from multimedia visual requirements

representation into UML diagram is also correct indirectly.

6.2 Future Work

The translation system translates the VRAS script (represented the multimedia visual

requirement) into XMl file which can be used to represent UML notations through UML

59

CASE TOOL. It can be used to reduce the gap between analysis and design. However, it can

be improved or enhanced futurity to generate more UML notations.

1).

2).

3).

The translation system outputs XMl file as target code. Currently, the content of XMl
file includes the state machine diagram, class diagrams for static view, and sequence
diagrams for dynamic view. However, there are more diagrams defined in the UML
specification. In the future, the system can be improved to generate more diagrams to

describe user target system.

The code framework generated from XMI in the translation system is for C++

language and BCB5 IDE only. It can be enhanced to support other program languages.

We find out the translating mapping rules from multimedia visual requirements
representation to UML representation according to the catalog of spatial (structure)
and temporal (behavior). Currently; the mapping rules are straight. In the future, the
rules maybe apply the concept of.design patterns to represent system design more
feasible.

In another aspect, the translation system translates the VRAS script into XMI to

represent UML diagram. It is a kind-of straight translation. From reserve engineering view,

the translation from UML diagram into multimedia visual representation is a quite

interesting research work in the future.

60

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

Reference

Deng-Jyi Chen, Wu-Chi Chen, Krishna M. Kavi, “Visual requirement representation”,
Journal of Systems and Software, V.61 n.2, p.129-143, March 2002

Deng-Jyi Chen, Ming-Jyh Tsai, Chung-Yuan Huang, *“Visual Based Software
Construction: Visual Requirement Authoring Tool and Visual Program Generator Visual
Based Software Construction: Visual Requirement Authoring Tool and Visual Program
Generator”, WSEAS Transaction on Systems, Issue 8, Volume 5, August, 2006, pp.1881-
1888. (IEE, EI)

Ming-Jyh Tsai, “Generating User Interface for Mobile Devices Using Visual- Based User
Interface Construction Methodology”, N.C.T.U. Taiwan, Dissertation, 2006

Jai-Chen Dai, “Visual-Based User Interface Generator”, N.C.T.U. Taiwan, Master Thesis,
2002

Unified Modeling Language: Infrastructure Version 2.1.1, formal/2007-02-04 and
Superstructure Version 2.1.1, formal/2007-02-03, Object Management Group

XML Metadata Interchange Specification, Version 2.0.1, formal/2005-05-06, Object
Management Group

lan Sommerville, Software Engineering, 7th-edition, Addison-Wesley, 2004

Charles N. Fischer and :Richard J. ‘LeBlanc; Jr., Crafting a Compiler with C,
Benjamin/Cummings, Baker & Taylor Books, 1991

Timothy J. Grose, Gary C. Doney, Stephen A. Brodsky, Mastering XMI: Java
programming with XMI, XML, and UML, New York, John Wiley & Sons, 2002.

[10] Alan Shalloway, James R. Trott, Design Patterns Explained A New Perspective on

Object-Oriented Design Second Edition, Addison Wesley, 2004

[11] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software, Addison Wesley, 1995

[12] Doug Rosenberg, Kendall Scott, Use Case Driven Object Modeling with UML : A

Practical Approach, Addison-Wesley, 1999

[13] Fowler/ 3, 4F & i [2F UML # 2% = £ 8 45 2 5735 3, A% 114K, 2005
[14] Stanly B. Lippman & Josee Lajoie/ ¥, & #/3%, C++ Primer 3rd edition ¥ = 4, ji*# !

5, 1999

[15] %25 B ™%, http://www.caidiy.com/caidefault.htm

[16] TRUFUN UML CASE TOOL, http://www:.trufun.net/

[17] C++ Builder, http://wwwz2.borland.com.tw/tw/nw000218.html
[18] MVC, http://zh.wikipedia.org/wiki/MVC

[19] XML, http://mww.w3.org/ XML/

[20] FLEX, http://www.gnu.org/software/flex/manual/

[21] BISON, http://www.gnu.org/software/bison/

61

[22] OMG, http::/www.omg.org/
[23] Software Engineering Laboratory of NCTU, http://cyber01.csie.nctu.edu.tw/

02

Appendix A
Video player Ul application construction through VRAS tool

A.1 User requirements description

The video player application includes two Uls (scenes).

Ul-1 is the software demo screen with two functional buttons - a “Video player”
button for linking with Ul-2 and a “Help” button linked to a web page.

Ul-2 is a video player entry screen that contains several video player functions. The
functions include returning to UI-1, adjusting image size, adjusting the volume, playing video,
snapshot a still image, and saving image. This screen shows the video display area and
buttons for binding to video player function components.

User can play a video by pushing, the play button; capture an image by pushing the
snapshot button; adjust image size'to large (640*480 pixels), medium (320*240), or small
(160*240); adjust volume or save an image. in the requirements, there are two design screens

(or scenes):

A.2 Scenes creation and actor layout

At first, launch VRAS tool and opening a new project and the choosing a background
screen. Please see Figure 61. The buttons from left to right at the bottom of the screen are:
® Save: for saving screen information to a file.
Interaction: for setting interaction attributes for scenes and actors.

Path: for setting moving paths for actors.

Button, text, video and image: for instantiating a new actors in the corresponding
types

Preview: for previewing activity scenarios for the target application software.

Back: for returning to the previous scene.

Add: for adding a new screen.

Next: for entering the function binding mode.

63

Visual Requirement Authoring Tool

Back

Save Interaction Path

Button Text Video Image: Preview
1
-

>

Next

Figure 61 Main Ul of VRAS tool

By

i _Home il

Start |

Click “image” button to open' “Import Plcture dialog. Add the beforehand image
actors into the gallery as shown i m Flgure 62

Import Pictore .. b_(|
From Disk]
= A
L ovectory: (TR - @ &3
4 3 ; N
Bean. gif Bear. qif B o i J
-y
Circle. gif Diigk. qif Ellipse.gif
b o, gif ? Faper. gif ? Play. gif ?
Hectangle.gif; Fihombws. qif ; S quare. gif ; j
File Mame : |
File Type ! [image fies(* bmp;*jog* prg*oifl v | Cancel)
A

Figure 62 Import Picture dialog

Table 3 lists the image that should be added into gallery for construction video player

Ul application.

64

Table 3 Image and its function

Image Function Image Function
Scene 1 background Video border
;- 24 Video Player icon [Play video
]
@ Help button la) Snapshot image
Scene 2 background | Save | Save image
& Back icon @ Image large size
>3 Turn up volume @ Image medium size)
4 Turn down volume @ Image small size

Through VRAS tool, add two scenes and add theirs text actors and button actors. The

result (scene 1 and scene 2) shows in the Figure 63.

L For SIS
& = [l
f /-
Video Player
' o
& . -) Save
— 00) B
= < Volume Play Snapshot
Help

Figure 63 Scene 1 and Scene 2 for video player Ul application

A.3 Interaction editing

After finish layout for the scene 1 and scene 2, a click on the “interaction” button
activates the interaction-setting mode for determining the actor’s dynamic behavior. Figure 64
illustrates the operation: clicking 4 in scene 1 establishes a link to the scene 2. After using
the mouse to focus on the € actor, drag the scene 2 screen to the container on the left hand
side in the screen. Now, the scene branch from scene 1 to scene 2 through ™ actor is
established. In the same method, we can establish branch from scene 2 to scene 1. After finish

the interaction editing, the branch among scenes are shown in the Figure 65.

65

Figure 64 Edit scene 1 and scene 2 relationships for video player Ul application

L, Farmi

£10®E

(=]

Help

\ 4

s Forml

A

e

Volume Play Snapshot

EIE X

I

1)
n|

Save

(50

Figure 65 Scene 1 and-Seene2 interaction relationships

A.4 Function binding

Click the Next and Binding buttons to enter the function binding system, select

VeoPlayer.dll file to binding function into the prelude scenario of scene 2. Other functions

binding operation are same above operation. Table 4 lists all of the actors and their binding

DLL files used in the video player Ul application.

Table 4 Actors and its binding DLL file list

Actors DLL file Functions
VideoDIl.dll Prelude of scene 2

P> VideoDIl_Play.dll Video Play

) VideoDIl_Shot.dll Snapshot

Lsave) VideoDIl_Save.dll Save image

N VideoDIll_Large.dll Image size (Large)

66

VideoDIl_Mid.dil Image size (Medium)

VideoDIl_Small.dll Image size (Small)
D VideoDIl_SndPlus.dll Turn up volume

4 VideoDIl_SndMinus.dll Turn down volume

Now, clicking on the video player button of scene 1 to branch to scene 2, and clicking
on play button brings up the image shown in Figure 66. The buttons L] and ({] are used
to adjust image size. The button is used to snapshoot a still image. The button IS
used to save still image. The image buttons < and ®are used to turn down/turn up volume.

Click button & will go back to scene 1. The button (2] s used to link to a web page.

T =1 | Lo E5

o [[

” | 0] —— e | m

i O O

2 >
- s sa — Save
s])] (=] O =) (=]
Iume Iume

Figure 66 Video player Ul application

07

Appendix B

VRAS scripts for video player Ul application system

EBP (eBook Project file):

"[Scenes]"
"00000001" = "@Sc000"
"00000002" = "@Sc759"

UI-1:
[SCENEINFO] MirrorLR =0
Title = "VidepPlayerSim" MirrorUD =0
BackgroundImage = "@Sc000.jpg" Transparent = 1
BackgroundMusic = "" End
PreludeEffect = 0
PlayMode = 2 [CAST] MCText
TextureImage = "" Begin
BackgroundColor = 0 Name = Actor000
NowValue =0
[END_SCENEINFO] Key=0
Position = 209 91 127
[CASTDEFINE] Size = 260 60
Visible = 1
[CAST] MCBtn DragMode = 2
Begin FontName = "Arial"
Name = Actor FontSize = 24
NowValue = 0 FontStyle=000 0 123 60 255 // Bold Italic
Key=0 Underline StrikeOut color(R, G, B)
Position = 198 252 127 LineCount = 1
Size =70 70 Lines =
Visible = 1 "Software Demo"
Speed = 10 ArtWordStyle = 8
DragMode =2 SegmentCount = 1

PicFile = "@VP.GIF"
FrameCount = 1
MouselnitldxBegin = 0
MouselnitldxEnd = 0
MouseDownldxBegin = 0
MouseDownlIdxEnd = 0
MouseOutldxBegin = 0
MouseOutldxEnd = 0
MouseOverldxBegin = 0
MouseOverldxEnd = 0
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0

Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0

End

[CAST] MCText
Begin
Name = Actor001
NowValue = 0
Key =0
Position = 185 203 127
Size = 200 60
Visible = 1
DragMode =2

68

FontName = "Arial"
FontSize = 12
FontStyle=10000 28 189 // Bold Italic
Underline StrikeOut color(R, G, B)
LineCount = 1
Lines =
"Video Player"
ArtWordStyle = 0
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
End

[CAST] MCBtn

Begin
Name = Actor002
NowValue =0
Key=0
Position = 548 352 127
Size =45 32
Visible = 1
Speed = 10
DragMode =2
PicFile = "@Help.GIF"
FrameCount = 2
MouselnitldxBegin = 0
MouselnitldxEnd = 0
MouseDownldxBegin = 1
MouseDownldxEnd = 1
MouseOutldxBegin = 0
MouseOutldxEnd = 0
MouseOverldxBegin = 1
MouseOverldxEnd = 1
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
MirrorLR =0
MirrorUD =0
Transparent = 1

End

[CAST] MCText

Begin
Name = Actor003
NowValue =0
Key=0
Position = 554 399 127
Size =3519
Visible = 1
DragMode =2

FontName = "Arial"
FontSize = 12
FontStyle=1 0002558 8 // Bold Italic
Underline StrikeOut color(R, G, B)
LineCount = 1
Lines =
"Help"
ArtWordStyle = 0
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
End

[END_CASTDEFINE]

[PRELUDE]
{

}
[END_PRELUDE]

[INTERACTIVE]

ANCHOR Actor :
{
LMOUSECLICK:
{

EBook.GotoScene("@Sc759");
}
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{ }
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{ }
MOUSELEAVE:{}
}
ANCHOR Actor002 :
{
LMOUSECLICK:
{
EBook.GotoURL("http://140.113.208.83/plate/we
b/blog.jsp?Ul=dyson");
}
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{ }
MOUSELEAVE:{}
}

69

[END_INTERACTIVE]
[FINALE]

{
}
[END_FINALE]
[SUCCESS]

{
}
[END_SUCCESS]

—

ERROR]

— —— —~—

END_ERROR]

—

HELP]

— —— —~—

END_HELP]

[RULE]
RULE 1:{}
RULE 2:{}
RULE 3:{}
RULE 4:{}
RULE 5:{}

[END_RULE]

—

PRELUDE_COM]

— —— —~—

END_PRELUDE_COM]
[INTERACTIVE_COM]
[END_INTERACTIVE_COM]
[FINALE_COM]

{
}
[SUCCESS_COM]
{
}
[END_SUCCESS_COM]

—

ERROR_COM]

—_—— ——

END_ERROR_COM]
HELP_COM]

—_— .

}
[END_HELP_COM]

[RULE_COM]
RULE 1:{}
RULE 2:{}
RULE 3:{}
RULE 4:{}
RULE 5:{}

[END_RULE_COM]

70

UI-2:

[SCENEINFO] Speed = 10
DragMode =2
Title = "VidepPlayerSim" PicFile = "@Large.GIF"
BackgroundImage = "@Sc759.jpg" FrameCount = 2
BackgroundMusic = " MouselnitldxBegin = 0
PreludeEffect = 0 MouselnitldxEnd = 0
PlayMode = 2 MouseDownldxBegin = 1
TextureImage = "" MouseDownlIdxEnd = 1
BackgroundColor = 0 MouseOutldxBegin = 0
MouseOutldxEnd = 0
[END_SCENEINFO] MouseOverldxBegin = 1
MouseOverldxEnd = 1
[CASTDEFINE] SegmentCount = 1
SegmentO=-1-1115""0
[CAST] MCBtn SegmentIndex = 0
Begin PlayWhenStart = 0
Name = Actor MirrorLR =0
NowValue =0 MirrorUD = 0
Key =0 Transparent = 1
Position = 18 378 127 End
Size =36 32
Visible = 1 [CAST] MCBtn
Speed = 10 Begin
DragMode =2 Name = Actor001
PicFile = "@Back.GIF" NowValue =0
FrameCount = 2 Key=0
MouselnitldxBegin = 0 Position = 548 152 127
MouselnitldxEnd = 0 Size =32 32
MouseDownldxBegin = 1 Visible = 1
MouseDownldxEnd = 1 Speed = 10
MouseOutldxBegin = 0 DragMode =2
MouseOutldxEnd = 0 PicFile = "@Mid.GIF"
MouseOverldxBegin = 1 FrameCount = 2
SegmentCount = 1 MouselnitldxBegin = 0
Segment0=-1-1115""0 MouselnitldxEnd = 0
SegmentIndex = 0 MouseDownldxBegin = 1
PlayWhenStart = 0 MouseDownlIdxEnd = 1
MirrorLR =0 MouseOutldxBegin = 0
MirrorUD =0 MouseOutldxEnd = 0
Transparent = 1 MouseOverldxBegin = 1
End MouseOverldxEnd = 1
SegmentCount = 1
[CAST] MCBtn Segment0=-1-1115""0
Begin SegmentIndex = 0
Name = Actor000 PlayWhenStart = 0
NowValue =0 MirrorLR =0
Key=0 MirrorUD =0
Position = 548 72 127 Transparent = 1
Size =32 32 End
Visible = 1

71

[CAST] MCBtn

Begin
Name = Actor002
NowValue =0
Key=0
Position = 548 222 127
Size =32 32
Visible = 1
Speed = 10
DragMode =2
PicFile = "@Small.GIF"
FrameCount = 2
MouselnitldxBegin = 0
MouselnitldxEnd = 0
MouseDownldxBegin = 1
MouseDownldxEnd = 1
MouseOutldxBegin = 0
MouseOutldxEnd = 0
MouseOverldxBegin = 1
MouseOverldxEnd = 1
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
MirrorLR =0
MirrorUD =0
Transparent = 1

End

[CAST] MCBtn

Begin
Name = Actor003
NowValue =0
Key=0
Position = 436 332 127
Size =36 24
Visible = 1
Speed = 10
DragMode =2
PicFile = " @ Shot.GIF"
FrameCount = 2
MouselnitldxBegin = 0
MouselnitldxEnd = 0
MouseDownldxBegin = 1
MouseDownldxEnd = 1
MouseOutldxBegin = 0
MouseOutldxEnd = 0
MouseOverldxBegin = 1
MouseOverldxEnd = 1
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0

PlayWhenStart = 0

MirrorLR =0

MirrorUD = 0

Transparent = 1
End

[CAST] MCBtn

Begin
Name = Actor004
NowValue =0
Key=0
Position = 282 329 127
Size = 30 28
Visible = 1
Speed = 10
DragMode =2
PicFile = "@Play.GIF"
FrameCount = 1
MouselnitldxBegin = 0
MouselnitldxEnd = 0
MouseDownldxBegin =0
MouseDownldxEnd = 0
MouseOutldxBegin = 0
MouseOutldxEnd = 0
MouseOverldxBegin = 0
MouseOverldxEnd = 0
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
MirrorLR =0
MirrorUD = 0
Transparent = 1

End

[CAST] MCText
Begin

Name = Actor006

NowValue = 0

Key=0

Position = 278 372 127

Size =40 19

Visible = 1

DragMode =2

FontName = "Arial"

FontSize = 14

FontStyle=10000 69 255 // Bold Italic
Underline StrikeOut color(R, G, B)
LineCount = 1

Lines =

"Play"
ArtWordStyle =0

SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0

End

[CAST] MCText
Begin
Name = Actor007
NowValue =0
Key=0
Position =414 371 127
Size =42 22
Visible = 1
DragMode =2
FontName = "Arial"
FontSize = 14
FontStyle=1 000 8 56 255 // Bold Italic
Underline StrikeOut color(R, G, B)
LineCount = 1
Lines =
"Snapshot"
ArtWordStyle = 0
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
End

[CAST] MCText
Begin
Name = Actor008
NowValue =0
Key=0
Position = 17 414 127
Size =37 18
Visible = 1
DragMode =2
FontName = "Arial"
FontSize = 12
FontStyle =11 00 239 138 255 // Bold Italic
Underline StrikeOut color(R, G, B)
LineCount = 1
Lines =
"Back"
ArtWordStyle = 0
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
End

[CAST] MCAnim

Begin
Name = Actor009
NowValue = 0
Key=0
Position = 66 22 127
Size = 440 278
Visible = 1
Speed = 10
DragMode =2
PicFile = "@Border.jpg"
FrameCount = 1
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
MirrorLR =0
MirrorUD = 0
Transparent = 0
TextStyle = (0,0) (0,0) " 000000011
TextCount =0
TextLines =""
PathFinalSize = -1 -1

End

[CAST] MCBtn

Begin
Name = Actor010
NowValue = 0
Key=0
Position = 99 326 127
Size =35 35
Visible = 1
Speed = 10
DragMode =2
PicFile = "@SndMinus.gif"
FrameCount = 2
MouselnitldxBegin = 0
MouselnitldxEnd = 0
MouseDownldxBegin = 1
MouseDownldxEnd = 1
MouseOutldxBegin = 0
MouseOutldxEnd = 0
MouseOverldxBegin = 1
MouseOverldxEnd = 1
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
MirrorLR =0
MirrorUD = 0
Transparent = 1

73

End

[CAST] MCBtn

Begin
Name = Actor011
NowValue =0
Key =0
Position = 143 327 127
Size =33 31
Visible = 1
Speed = 10
DragMode =2
PicFile = "@SndPlus.gif"
FrameCount = 2
MouselnitldxBegin = 0
MouselnitldxEnd = 0
MouseDownldxBegin = 1
MouseDownldxEnd = 1
MouseOutldxBegin = 0
MouseOutldxEnd = 0
MouseOverldxBegin = 1
MouseOverldxEnd = 1
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
MirrorLR =0
MirrorUD =0
Transparent = 1

End

[CAST] MCText
Begin
Name = Actor012
NowValue = 0
Key=0
Position = 100 369 127
Size =42 22
Visible = 1
DragMode =2
FontName = "Arial"
FontSize = 14
FontStyle=1 000048 247 // Bold Italic
Underline StrikeOut color(R, G, B)
LineCount = 1
Lines =
"Volume"
ArtWordStyle = 0
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart =0

End

[CAST] MCBtn

Begin
Name = Actor013
NowValue =0
Key =0
Position = 548 330 127
Size =42 24
Visible = 1
Speed = 10
DragMode =2
PicFile = "@Save.GIF"
FrameCount = 2
MouselnitldxBegin = 0
MouselnitldxEnd = 0
MouseDownldxBegin = 1
MouseDownldxEnd = 1
MouseOutldxBegin = 0
MouseOutldxEnd = 0
MouseOverldxBegin = 1
MouseOverldxEnd = 1
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
MirrorLR =0
MirrorUD = 0
Transparent = 1

End

[CAST] MCText
Begin
Name = Actor014
NowValue = 0
Key=0
Position = 548 290 127
Size =42 22
Visible = 1
DragMode =2
FontName = "Arial"
FontSize = 14
FontStyle=1 0000 44 247 // Bold Italic
Underline StrikeOut color(R, G, B)
LineCount = 1
Lines =
"Save"
ArtWordStyle =0
SegmentCount = 1
Segment0=-1-1115""0
SegmentIndex = 0
PlayWhenStart = 0
End

74

[END_CASTDEFINE]

[PRELUDE]
{
AppLink.LoadDII("VideoDILdIl", "287",
n 160”);
}
[END_PRELUDE]

[INTERACTIVE]

ANCHOR Actor :

{
LMOUSECLICK:

{

EBook.GotoScene("@Sc000");
!
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{ }
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{}
MOUSELEAVE:{}

}
ANCHOR Actor000 :

{
LMOUSECLICK:

{

AppLink.LoadDII("VideoDIl_Large.dll", "-
800”7 ||_800ll);

!
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{ }
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{}
MOUSELEAVE:{}

!

ANCHOR Actor001 :
{
LMOUSECLICK:
{

AppLink.LoadDII("VideoDIll_Mid.dll", "-800",
V|_800ll);
!
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{ }

DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{}
MOUSELEAVE:{}
}

ANCHOR Actor002 :
{
LMOUSECLICK:
{

AppLink.LoadDII("VideoDIl_Small.dll", "-
800”, ll_800||);
}
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{ }
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{}
MOUSELEAVE:{}
}

ANCHOR Actor003 :

{
LMOUSECLICK:

{

AppLink.LoadDII("VideoDIl_Shot.dll", "-800",
"-800");

}
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{}
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{ }
MOUSELEAVE:{}

}
ANCHOR Actor004 :

{
LMOUSECLICK:

{

AppLink.LoadDII("VideoDIl_Play.dll", "-800",
"-800");

}
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{}
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{ }
MOUSELEAVE:{}

}

75

ANCHOR Actor010 :

{
LMOUSECLICK:

{

AppLink.LoadDII("VideoDIl_SndMinus.dll", "-
800”7 ||_800ll);

!
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{}
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{}
MOUSELEAVE:{}

!

ANCHOR ActorO11 :
{
LMOUSECLICK:
{

AppLink.LoadDII("VideoDIl_SndPlus.dll", "-
800”’ ||_8OOII);
!
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{}
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{ }
MOUSELEAVE:{}
}

ANCHOR Actor013 :

{
LMOUSECLICK:

{

AppLink.LoadDII("VideoDIl_Save.dll", "-800",
"-800");

!
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{}
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{}
MOUSELEAVE:{}

}

—

END_INTERACTIVE]
FINALE]

—_— ——

(END_FINALE]
[SUCCESS]

{

}
[END_SUCCESS]
[ERROR]

{

}
[END_ERROR]
[HELP]

{

}
[END_HELP]

[RULE]
RULE 1:{
RULE 2:
RULE 3:
RULE 4:
RULE 5:
[END_RULE]

}
{}
{}
{}
{}

[PRELUDE_COM]

{

}

[END_PRELUDE_COM]
[INTERACTIVE_COM]
[END_INTERACTIVE_COM]

[FINALE_COM]

{

}

[END_FINALE_COM]

[SUCCESS_COM]

{

}

[END_SUCCESS_COM]

[ERROR_COM]

{

}

[END_ERROR_COM]

[HELP_COM]

{

}

[END_HELP_COM]

[RULE_COM]
RULE 1:{}
RULE 2:{}
RULE 3:{}
RULE 4:{}
RULE 5:{}

[END_RULE_COM]

76

Appendix C
UML Diagram Representation for Video player Ul

application system

State Machine
[Working State]
entry Prelude
TEcene exit! Finale
1
v\ $e1BimVPGIFclick] / Got
\ 2c2BmBackGIF|click] / Goto
T
exit! Finale
E=NN =y
Figure 67 Class diagram for story scenes hierarchy Figure 68 State diagram story scenes branch
Tocear | sd_Interaction_SclBwVP J
User SclBtnve Jcene_l
o FookOnClizk) u
,-"\-’" \-‘)..__\ . 'u
TMCEn | [TMCTent segh '
E 1 Gotodeene("Soene_2") N |
|T.v.|||hw] | TSl HaHeln | I P —— | Tel TerVidealayes | | Tel TetHelp] : :
Figure 69 Class diagram for actors hierarchy within Figure 70 Sequence diagram for “video play”
scene 1 scenario in the scene 1
sd Interaction SclBtnHelp J
TUzer SclBrnHelp Scene_1 E
=
i HookOnChck() - i ;
N [=
: A i _ _ _
[sea):] | | |
tolTRL("hittp:#/140.11 3208 63 /plateiwebiblog. 1511;UI$dysnn' "?’ : :
Figure 71 Sequence diagram for “help” scenario in

Figure 72 Class diagram for actors hierarchy within

the scene 1 scene 2
sd ude
SCEne 2 AppLink [sd Interaction_Sc2BwBack T
User ScZBtnBack Jcene_2

H ! HookOnClick() N
. - N .

seqh : ; i M
! LoadDIL{"VideoDILAI","267", "160" __'u =] N

Figure 73 Sequence diagram for “prelude” scenario
of scene 2

Figure 74 Sequence diagram for “back” scenario in

the scene 2

7T

sd_Interaction_ScZBtnPlay J sd_Interaction_Sc2BtnLarge]
T Sub-elements

TUser ScZEtnPlay Applink Tser ScZBrnlarge Applink
: HookOnClisk() L : : L
: Y "y : Y y
seq) H H seg)]

| ead DI Vs DL Play 1%, ™B00%, "800 |

I T

Figure 75 Sequence diagram for “play video” Figure 76 Sequence diagram for “image zoom in”

scenario in the scene 2 scenario in the scene 2
sd_Interaction_Sc2BtnMid | sd_Interaction_Sc2BtmSmall J
TUser Scz2BrmMid AppLink User 5cZBrndmall AppLink
. HookOuClickg) _’_u . HonkOniClisk(: T_J
|] i | i ;
zeq) H B seq h H

; Load DI VideoDL_Mid 41°,"-800","-800") ; ELDMDH("VdeoDH_Sma].l 41r,"-800","-800") ;

Figure 77 Sequence diagram for “image normal Figure 78 Sequence diagram for “image zoom out’

size” scenario in the scene 2 scenario in the scene 2
sd Interaction_ScZBtnSndPlus ./ 5d Interaction_Sc?BmSndMinus |
User Sc2BtnndPl Applink User ScZBtnSndli AppLink
HookOnClick() . HookOnClick() .
N [] : N []
: seq‘; ..‘ . SEl‘-I.;‘ .“
ﬁuadnu("v»jeunu_sﬂdmus.dn","—suu","—sgp")' Léadnu(weunu_smmmdu“,‘taua",”iuu]'
Figure 79 Sequence diagram for “sound:plus” Figure 80 Sequence diagram for “sound minus”
scenario in the scene 2 scenario in the scene 2

78

