

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

從多媒體的視覺化需求描述轉譯為 UML 設計描述之

轉譯器設計及實作

The Design and Implementation of a Translator for Translating
Multimedia Visual Requirements Representation into UML

Representation

研 究 生：張正隆

指導教授：陳登吉 博士

中華民國 九十七 年 二 月

從多媒體的視覺化需求描述轉譯為 UML 設計描述之轉譯器

設計及實作

The Design and Implementation of a Translator for Translating
Multimedia Visual Requirements Representation into UML

Representation

研 究 生：張正隆 Student：Cheng-Lung Chang

指導教授：陳登吉 博士 Advisor：Deng-Jyi Chen

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

A Thesis
Submitted to College of Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master of Science

in
Computer Science

February 2008

Hsinchu, Taiwan, Republic of China

中華民國 九十七 年 二 月

 I

從多媒體的視覺化需求描述轉譯為 UML 設計描述之

轉譯器設計及實作

學生：張正隆 指導教授：陳登吉 博士

國 立 交 通 大 學 資 訊 學 院 資 訊 學 程 碩 士 班

摘 要

在軟體開發過程中，誘導及確認使用者需求是一重要的階段。許多研

究指出[1-3]，以視覺化的方式，不但可以即早獲得使用者的需求回饋以

及快速地確認使用者的需求；同時可避免因閱讀大量的文字需求描述而產

生的誤解。確定使用者需求後，緊接著進入分析、設計階段。目前以

UML[5]作為分析、設計的工具，已成為一種趨勢。然而，可能因不正確的

需求、或因知識領域的不同、或因開發者本身的經驗，而導致必須一再地

修正使用者案例圖(Use Case Diagram)，進而連帶影響整個軟體開發流

程。

有鑑於此，本論文引用多媒體視覺化需求描述建構系統[1]來即早搜

集、確定使用者需求。並著重於研究將多媒體的視覺化需求描述轉譯為

UML 設計描述之方法，以改善軟體開發流程。在此研究中細分幾個重要步

驟，如轉譯規則的建立，系統模型設計等，也將在此研究一一地加以闡

述。

為了驗證及展示此研究的可行性，我們實作一個轉譯器，將視覺化需

求描述轉譯為 UML 設計描述；並以 XML Metadata Interchange(XMI)格式

[6]來貯存，使之得以 UML CASE Tool 來呈現 UML Diagrams。此轉譯器亦

從 XMI 資料產生相關程式碼。使用 UML CASE Tool 產生程式碼框架後，可

參考相關程式碼來建構 target system。如此，進而可改善軟體開發流

程。

 II

The Design and Implementation of a Translator for Translating
Multimedia Visual Requirements Representation into UML

Representation

Student: Cheng-Lung Chang Advisor: Dr. Deng-Jyi Chen

Degree Program of Computer Science

National Chiao Tung University

Abstract
In the software system development, eliciting the requirements from user is an

important phase. It had been shown that using visual approach to represent user requirements

not only can receive user’s early feedback for obtaining user’s correct requirements, but also

can avoid reading large amount of text-based requirements that usually lead to misunderstand

on requirements between user and developer [1-2]. After requirement discovery phase,

software developers will start analyzing and designing the target software system. Using

Unified Modeling Language (UML) approach [5] to analyze and design the target system

become more and more popular. However, due to the incorrect user requirements, domain

knowledge issues, or limitation on software developer’s experience, Revision of requirement

become unavoidable. Eventually, the whole software development process will be affected.

In view of that, this thesis quotes the visual requirement authoring system (VRAS) [1]

to resolve above-mentioned issues such that we can collect and confirm user requirement as

early as possible. This thesis research focuses on the translation of multimedia visual

requirement representation into UML representation such that the software development

process can be improved. There are important issues (such as translating rules building and

proposed system model presenting) will be elaborated in this thesis.

To demonstrate the applicability of the proposed model, a translation system is

designed and implemented for translating multimedia visual requirements representation into

UML representation. The target code is saved as XML Metadata Interchange (XMI) format

[6], which can be used to represent UML notations by UML CASE Tool. Through this

translation system, we generate the UML design representation automatically. Developer can

use UML CASE tool to generate code framework to reconstruct the target system. Eventually,

we can improve software development process.

 III

誌 謝

本論文承蒙指導教授陳登吉老師的耐心指導與教誨下，得以順利完

成。特別是最後階段，陳老師更是不厭其煩地給予研究上正確的引導，在

此致上對老師無限的感謝。

另外也感謝同實驗室的承一同學，在研究過程中相互的鼓勵與協

助。

最後我要感謝的是我的家人(尤其是媽媽)及琦婷，感謝她們總是在背

後默默地支持我、鼓勵我。謝謝。

 IV

Contents

摘 要 ..I

ABSTRACT...II

誌 謝 ...III

CONTENTS... IV

LIST OF FIGURES ... VI

LIST OF TABLES ... VIII

CHAPTER 1 INTRODUCTION...1

1.1 Motivation.. 1

1.2 The goal of this thesis ... 2

1.3 Organization of this thesis.. 3

CHAPTER 2 RELATED WORK ...4

2.1 Unified Modeling Language (UML)... 4

2.2 Visual Requirement Authoring System (VRAS)... 6

2.3 XML Metadata Interchange (XMI)... 7

CHAPTER 3 SYSTEM ANALYSIS AND SYSTEM MODEL10

3.1 System Analysis .. 12
3.1.1 VRAS Script.. 12
3.1.2 Translating rules analysis ... 14
3.1.3 Translating rules examples... 16

3.2 Translation System Responsibilities ... 22

3.3 Proposed Translation System Model .. 23

3.4 Architecture Model ... 24

CHAPTER 4 SYSTEM DESIGN AND IMPLEMENTATION26

4.1 System Architecture.. 26

4.2 System Structure ... 27

 V

4.3 System Conceptual model and Detail Design .. 28
4.3.1 Controller package.. 29
4.3.2 Model package .. 32
4.3.3 View package .. 33

4.4 Related implementation issues .. 38
4.4.1 Development environment, cooperating tools, and limitation ... 38
4.4.2 User Interface (UI) introduction.. 39

CHAPTER 5 DEMONSTRATION AND APPLICATION EXAMPLES......................41

5.1 Demonstrating procedure ... 41

5.2 Example - A video player UI application system .. 42
5.2.1 Multimedia Visual requirements representation by VRAS tool .. 42
5.2.2 XMI translating operation for XMI File generation ... 45
5.2.3 UML representation through UML CASE Tool ... 47
5.2.4 Sample code generation through translation system... 53
5.2.5 Verification of UML diagram ... 54

CHAPTER 6 CONCLUSION AND FUTURE WORK ..59

6.1 Conclusion of this thesis study .. 59

6.2 Future Work... 59

REFERENCE ..61

APPENDIX A VIDEO PLAYER UI APPLICATION CONSTRUCTION THROUGH
VRAS TOOL ...63

A.1 User requirements description .. 63

A.2 Scenes creation and actor layout .. 63

A.3 Interaction editing .. 65

A.4 Function binding .. 66

APPENDIX B VRAS SCRIPTS FOR VIDEO PLAYER UI APPLICATION SYSTEM
..68

APPENDIX C UML DIAGRAM REPRESENTATION FOR VIDEO PLAYER UI
APPLICATION SYSTEM ..77

 VI

List of Figures

FIGURE 1 THE GENERAL SOFTWARE PROCESS USING UML NOTATIONS ... 1
FIGURE 2 THE GAP BETWEEN REQUIREMENT AND DESIGN REPRESENTATION... 2
FIGURE 3 RESEARCH WORK IN THIS THESIS ... 2
FIGURE 4 VISUAL REQUIREMENT AUTHORING SYSTEM [1] ... 7
FIGURE 5 XMI INTEGRATE THREE INDUSTRY STANDARDS ... 7
FIGURE 6 REDUCING COMMUNICATION COMPLEXITIES AMONG APPLICATIONS THROUGH XMI [9] ... 8
FIGURE 7 A TRANSLATING FLOW... 10
FIGURE 8 A DETAILED PROCESS OF THE PROPOSED TRANSLATION SYSTEM .. 11
FIGURE 9 COMPONENTS OF THE TRANSLATION PROCESS ... 12
FIGURE 10 THE STRUCTURE OF THE VRAS SCRIPT FILE.. 13
FIGURE 11 GENERAL CONNECTIVE RELATIONS AMONG SCENES [1] .. 13
FIGURE 12 VRAS STORY CLASSIFIED BY SPATIAL AND TEMPORAL.. 15
FIGURE 13 UML DIAGRAM CLASSIFIED BY STRUCTURE AND BEHAVIOR ... 15
FIGURE 14 AN EXAMPLE OF MAPPING FROM SCRIPT INTO STATE DIAGRAM OF UML 17
FIGURE 15 AN EXAMPLE OF MAPPING FROM ACTORS INTO CLASS DIAGRAM .. 18
FIGURE 16 AN EXAMPLE OF SEQUENCE REPRESENTATION MAPPING INTO SEQUENCE FRAGMENT OF

SEQUENCE DIAGRAM... 19
FIGURE 17 AN EXAMPLE OF PARALLEL REPRESENTATION MAPPING INTO PARALLEL FRAGMENT OF

SEQUENCE DIAGRAM... 19
FIGURE 18 AN EXAMPLE OF REPEAT REPRESENTATION MAPPING INTO LOOP FRAGMENT OF

SEQUENCE DIAGRAM... 20
FIGURE 19 AN EXAMPLE OF CONDITION REPRESENTATION MAPPING INTO ALTERNATIVE

COMBINATION FRAGMENT OF SEQUENCE DIAGRAM FOR “IF-ELSE＂... 21
FIGURE 20 AN EXAMPLE OF ALTERNATIVE REPRESENTATION MAPPING INTO ALTERNATIVE

COMBINATION FRAGMENT OF SEQUENCE DIAGRAM FOR “SWITCH - CASE＂.............................. 22
FIGURE 21 THE PROPOSED TRANSLATING FLOW .. 22
FIGURE 22 THE PROPOSED TRANSLATION SYSTEM MODEL OF THIS THESIS ... 23
FIGURE 23 THE ARCHITECTURE MODEL... 25
FIGURE 24 THE MVC ARCHITECTURE OF TRANSLATION SYSTEM ... 26
FIGURE 25 THE STRUCTURE OF TRANSLATION SYSTEM... 27
FIGURE 26 CONCEPTUAL MODEL OF THE PROPOSED TRANSLATION SYSTEM... 29
FIGURE 27 UML MODEL CREATION FLOW ... 30
FIGURE 28 THE PROCESS OF BUILDING VRAS PARSER TREE AND GENERATE TARGET UML

DIAGRAMS .. 30
FIGURE 29 AN EXAMPLE OF UML CLASS NOTATION REPRESENTED BY THREE XMI ELEMENTS 32
FIGURE 30 THE HIERARCHY OF UML/XMI MODEL ELEMENTS .. 33
FIGURE 31 THE XMI FILE REPRESENTATION FLOW... 34
FIGURE 32 THE PARTIAL XMI FILE OUTPUTTED BY XMIFILE CLASS... 35
FIGURE 33 AN EXAMPLE OF BY XMI TREE REPRESENTATION .. 36
FIGURE 34 THE RELATIONSHIP BETWEEN UML MODEL, XMI AND CODE FRAMEWORK 37
FIGURE 35 THE SAMPLE CODE REPRESENTATION FLOW... 38
FIGURE 36 THE UI OF XMI FILE GENERATION... 39
FIGURE 37 THE UI OF SAMPLE CODE GENERATION.. 40
FIGURE 38 THE DEMONSTRATING PROCEDURE... 42
FIGURE 39 UI-1 AND UI-2 FOR VIDEO PLAYER UI APPLICATION ... 43
FIGURE 40 INTERACTION FOR VIDEO PLAYER UI APPLICATION .. 44
FIGURE 41 PARTIAL SCRIPTS FOR VIDEO PLAYER BUTTON AND ITS SCENARIO....................................... 45
FIGURE 42 THE TRANSLATING PROCEDURE FROM VRAS SCRIPT INTO XMI FOR THE APPLICATION

EXAMPLE OF THE UI VIDEO PLAYER APPLICATION... 46
FIGURE 43 USING TRUFUN UML CASE TOOL TO REPRESENT UML DIAGRAMS .. 47

 VII

FIGURE 44 CLASS DIAGRAM FOR INHERITANCE-HIERARCHY OF SCENES... 48
FIGURE 45 FINITE STATE MACHINE DIAGRAM FOR SCENES BRANCH .. 49
FIGURE 46 CLASS DIAGRAM FOR CAST HIERARCHY WITHIN SCENE 1 ... 50
FIGURE 47 SEQUENCE DIAGRAM FOR GO TO “SCENE 2＂ .. 51
FIGURE 48 LINK A WEB PAGE .. 51
FIGURE 49 CLASS DIAGRAM FOR CAST HIERARCHY WITHIN SCENE 2 ... 52
FIGURE 50 SEQUENCE DIAGRAM FOR THE PRELUDE SCENARIO OF SCENE 2... 52
FIGURE 51 SEQUENCE DIAGRAM FOR PLAY VIDEO SCENARIO... 53
FIGURE 52 STEPS OF THE CODE GENERATION OF THE EXAMPLING APPLICATION SYSTEM 54
FIGURE 53 THE PROPOSED TRANSLATING PROCESS .. 55
FIGURE 54 THE VERIFICATION FLOW FOR REPRESENTED UML DIAGRAM.. 55
FIGURE 55 STEPS FOR CODE GENERATION THROUGH UML CASE TOOL.. 56
FIGURE 56 FILL INTO CODE IN THE TFACTORY CLASS CONSTRUCTION TO NEW TWO SCENE

INSTANCES.. 57
FIGURE 57 FILL INTO CODE IN THE SCENE 1 CLASS CONSTRUCTION TO NEW ACTOR INSTANCES

WITHIN SCENE 1 .. 57
FIGURE 58 FILL INTO CODE IN THE HOOKONCLICK() OF TSC1BTNVP CLASS TO INVOKE “GOTO

SCENE 2＂ ACTION.. 57
FIGURE 59 FILL INTO CODE IN THE HOOKONCLICK() OF TSC2BTNPLAY CLASS TO CALL ITS RELATED

DLL FILE. ... 57
FIGURE 60 THE RESULT OF RECONSTRUCTED VIDEO PLAYER UI APPLICATION 58
FIGURE 61 MAIN UI OF VRAS TOOL ... 64
FIGURE 62 IMPORT PICTURE DIALOG.. 64
FIGURE 63 SCENE 1 AND SCENE 2 FOR VIDEO PLAYER UI APPLICATION... 65
FIGURE 64 EDIT SCENE 1 AND SCENE 2 RELATIONSHIPS FOR VIDEO PLAYER UI APPLICATION 66
FIGURE 65 SCENE 1 AND SCENE 2 INTERACTION RELATIONSHIPS... 66
FIGURE 66 VIDEO PLAYER UI APPLICATION ... 67
FIGURE 67 CLASS DIAGRAM FOR STORY SCENES HIERARCHY... 77
FIGURE 68 STATE DIAGRAM STORY SCENES BRANCH... 77
FIGURE 69 CLASS DIAGRAM FOR ACTORS HIERARCHY WITHIN SCENE 1.. 77
FIGURE 70 SEQUENCE DIAGRAM FOR “VIDEO PLAY＂ SCENARIO IN THE SCENE 1 77
FIGURE 71 SEQUENCE DIAGRAM FOR “HELP＂ SCENARIO IN THE SCENE 1 ... 77
FIGURE 72 CLASS DIAGRAM FOR ACTORS HIERARCHY WITHIN SCENE 2.. 77
FIGURE 73 SEQUENCE DIAGRAM FOR “PRELUDE＂ SCENARIO OF SCENE 2 ... 77
FIGURE 74 SEQUENCE DIAGRAM FOR “BACK＂ SCENARIO IN THE SCENE 2... 77
FIGURE 75 SEQUENCE DIAGRAM FOR “PLAY VIDEO＂ SCENARIO IN THE SCENE 2............................. 78
FIGURE 76 SEQUENCE DIAGRAM FOR “IMAGE ZOOM IN＂ SCENARIO IN THE SCENE 2...................... 78
FIGURE 77 SEQUENCE DIAGRAM FOR “IMAGE NORMAL SIZE＂ SCENARIO IN THE SCENE 2............ 78
FIGURE 78 SEQUENCE DIAGRAM FOR “IMAGE ZOOM OUT＂ SCENARIO IN THE SCENE 2.................. 78
FIGURE 79 SEQUENCE DIAGRAM FOR “SOUND PLUS＂ SCENARIO IN THE SCENE 2 78
FIGURE 80 SEQUENCE DIAGRAM FOR “SOUND MINUS＂ SCENARIO IN THE SCENE 2 78

 VIII

List of Tables
TABLE 1 UML DIAGRAMS AND THEIR PURPOSES.. 5
TABLE 2 THE CORRESPONDING RELATIONSHIPS BETWEEN VRAS SCRIPT AND UML DIAGRAM 16
TABLE 3 IMAGE AND ITS FUNCTION.. 65
TABLE 4 ACTORS AND ITS BINDING DLL FILE LIST .. 66

 1

Chapter 1
Introduction

1.1 Motivation

Using Object Oriented concept to construct and develop software system has become

more and more popular. Consequently, the Unified Modeling Language (UML) [5] becomes

the de facto standard to represent object-oriented analysis and design. Figure 1 illustrates the

general process for the software system development by UML. In the Analysis phase,

developers use Use-Case Model to represent functional requirements. At the same time,

developers also build the Domain Model according to the domain knowledge and

requirements description. In the design phase, developers usually use Class Diagram to

represent the system static view and use Sequence Diagram to represent system dynamic view.

Figure 1 The general software process using UML notations

From above general software process, we find that user and system requirements are

depicted using natural language and then are mapped into UML representation eventually

generated the target codes using code generation tool. There is a big gap from requirements

analysis to code, and design is used to bridge the gap. User requirements always change. Once

requirement is changed, developer must re-analysis, re-design, and re-coding. All stages of

process must be repeated again. Figure 2 illustrates that there exists the big gap between user

requirements and UML design representation.

 2

Figure 2 The gap between requirement and design representation

The incomplete requirements, inaccurate requirements, the big gap between analysis

phase and design phase can spend developers a lot of design time. It has been shown that

multimedia visual requirements representation is better than traditional text-based

requirements representation [1]. The text-based requirements are easy to result ambiguity due

to the different domain knowledge between user and software developer. The multimedia

visual requirements can be viewed as an animation sequence instead of reading text based

user requirements. The multimedia visual requirements representation technique let users and

software developer communicate more easily and let software developer receive early

feedback of requirements from users. Section 2.2 gives more detailed information. However,

even if determined requirements gathered, software developers still have to spend a lot of time

to develop the software system under consideration.

1.2 The goal of this thesis

In order to reduce the gap between user functional requirements and UML design

representation, this thesis takes visual requirements authoring system (VRAS) [1] to get

multimedia visual requirements representation and research how to translate it into UML

representation. Figure 3 illustrates the research work in this thesis. We focus on the translation

from multimedia visual requirements representation into UML representation.

Figure 3 Research work in this thesis

Visual Requirement
Authoring System

User

Requirements

UML

Representation

Multimedia
Visual

Requirements
Representation

This thesis focus on this
research work

User
Requirements

UML
Representation

Big Gap

 3

1.3 Organization of this thesis

This thesis is organized as follows.

Chapter 1 introduces the research motivation, goal, and organization of this research

work.

Chapter 2 reviews some related work on co-design flow for the translation of

multimedia visual requirements representation into UML representation.

Chapter 3 gives the detailed feasibility study for translation, find out the

responsibilities of translating system, and present the proposal system model.

Chapter 4 designs the system architecture, defines the functional blocks of translating

system and details the system implementation.

Chapter 5 uses an example to demonstrate how to translate from multimedia visual

requirement representation into UML representation and verify correctness of translated target

code.

Chapter 6 presents the conclusion in the research and possible future research

directions.

 4

Chapter 2

Related Work

In this chapter, the related works on co-design flow for the translation from

multimedia visual requirement representation into UML representation are visited.

Specifically, Unified Modeling Language (UML), Visual Requirements Authoring System

(VRAS), and XML Metadata Interchange (XMI) are discussed.

2.1 Unified Modeling Language (UML)

The first version of UML [5] was created in November 1997 as standard language for

object oriented analysis and design by OMG [22]. The UML has become a de facto standard

for design model language. UML may be used to model structures and processes for many

domains but it is most often associated with object-oriented software modeling. System

analyst, software developers, project manager, customers, and vendors can communicate with

common modeling language through UML and simplify the development process. UML can

let user force on every aspect of system view and these resulting could evolve the system

development life cycle.

UML can describe a blueprint of real system that gives user and system designer a

conceptual view for the whole system. According to the definitions by OMG [22], it has

following characteristics:

1. The UML uses tools to elicit better requirements. Either incomplete or inaccurate

requirements are ubiquitous in the field of software development. It is composed of

visualized graphical notation in most part so let user capture the information of

system more easy.

2. The UML gives a way to determine whether it is the same as others' for

understanding of the system. Because systems are more complex and have more

different types of information that must be conveyed, it offers different diagrams

specializing in the different types of information.

 5

3. It can be used to support system analysis and design phase, concept phase, and

system implementation. Therefore, all project members, customers, and vendor can

use UML to communicate with each other.

4. It is completely language independent and maybe used to model applications

regardless of whether or not they are to be deployed in Java, C++, or any other

languages.

The UML defines several different diagrams some for analysis, others for design, and

still others for implementation or deployment. Table 1 illustrates that each diagram shows the

relations among the different sets of entities, depending on the purpose of the diagrams during

different phase. Here it is general catalog; actually, UML does not stipulate how to use those

diagrams. The content of Table is referred to [10].

Table 1 UML Diagrams and their purposes

Phase Use the UML Diagram

Analysis phase

Use Case diagrams, which involve entities interacting with the

system (say, users and other systems) and the function points

that what to implement.

Activity diagrams, which focus on workflow of the problem

domain (the actual space where people and other agents are

working, the subject area of the program) rather than the logic

flow of the program.

Design phase

Class diagrams represent the relationships between the classes.

State diagrams represent the different states an object may be

in as well as the transitions between these states.

Interaction diagrams show how specific objects interact with

each other. Because they deal with specific cases rather than

general situations, they prove helpful both when checking

requirements and when checking designs. The most popular

kind of Interaction diagram is the Sequence diagram.

Some basic modeling diagrams are recalled here: Class Diagram, Interaction Diagram,

and State Machine Diagram.

 Class Diagram: The most basic of UML diagrams is the Class diagram. It both

describes classes and shows the relationships among them. It is design

representation for static view.

 6

 Interaction Diagram: Class diagrams show static relationships between classes. In

other words, they do not show us any activities. The diagram that shows how the

object interacts with others is Interaction diagram. The most common type of

Interaction diagram is the Sequence diagram. Sequence diagrams focus on the

dynamic view and emphasize the timing of event occurred order.

 State Machine Diagram: State machine shows the state of system or an object

during its life cycle and the transition between states when external event occurred.

Other diagrams are referred to [10, 13].

2.2 Visual Requirement Authoring System (VRAS)

Visual requirement authoring system [1] is a visual requirement representation

technology. This system uses visual scenarios to depict requirements instead of reading

amount of text-based representation of the requirements. Through this system, customer and

system analyst can communicate not only in a more nature and in easy way, but also system

analyst can receive early feedback of requirements from customers. Figure 4 shows the visual

requirement authoring system.

System analyst use VRAS to create visual forms and select Multimedia Reusable

Components (MRCs) to construct customer requirements. When existing MRCs are not

adequate to describe customer requirements, MRCs Manager uses the Component

Constructor to add new MRCs to create new representation. System analyst also uses VRAS

to play back the prototyping system to customer and capture customer’s requirements.

Determined Requirements would be automatically converted into text script file including

static and dynamic information by VRAS. This scripting language is designed and

implemented by the Software Engineering Laboratory of NCTU [23].

 7

.

Figure 4 Visual Requirement authoring system [1]

2.3 XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) [6] is a set of standards published by the OMG [22]

in February 1999. It is used to interchange metadata among applications. XMI produces XML

schema for any meta-model that is compliant with the OMG’s Meta Object Facility (MOF)

and produces an XML document instantiating from the meta-model. The UML based

modeling tools can exchange their metadata using XMI standards. XMI integrates three key

industry standards: XML, UML, and OMF (See figure 5).

Figure 5 XMI integrate three industry standards

XML

Exchange

XMI

MOF

Manage

UML

Understand

 8

 XML – eXtensible Markup Language, a W3c standard.

 UML – Unified Modeling Language, an OMG modeling specification, with is now an

ISO/IEC standard (ISO/IEC 19501).

 MOF – Meta Object Facility (ISO/IEC 19502).

By using an industry standard for storing and sharing object programming information,

development team using tools from multiple vendors can collaborate on applications. The

XMI standard will allow developers to leverage the Web to exchange object-oriented data

among applications, and to create secure, distributed applications built in a team development

environment.

Using XMI also could reduce the relation complexity between communications with

applications [9]. Figure 6 illustrates the complexity reduced from nn −2 to n through XMI

format interchange. Originally, there are six applications (App1 to App6) and one needs to

implement thirty relations totally. Every application must know the format of other five

applications. Now, through XMI, every application just needs to face the only one format –

XMI.

Figure 6 Reducing communication complexities among applications through XMI [9]

XMI provides a basis for the development of XMI schema. It specifies the elements that

should be declared in an XMI schema such as XMI header, XMI content and so on. The

declarations are composed of XMI document structure. The following is the partial XMI

document.

 9

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" xmlns:trufun="http://trufun"
xmlns:uml="http://www.eclipse.org/uml2/2.0.0/UML" xmi:id="f18310ed-5599-4bbe-9c49"
name="model">
 <eAnnotations xmi:id="38f9346d-481c-4f22-84f7" source="TaggedValues">
 <details xmi:id="dd0f90e5-3476-4d1d-a39c" key="ProjectType" value="UML2Project"/>
 </eAnnotations>
 <eAnnotations xmi:id="e44e7723-1b99-47ce-850a" source="Diagrams">
…
……..
<packagedElement xmi:type="uml:Class" xmi:id="7678db6b-504d-4be3-b1f2"
name="TScene">
 <eAnnotations xmi:id="e1ca4225-ea4e-46db-9345" source="TaggedValues">
<ownedOperation xmi:id="5e3f988e-1612-4b00-a3b2" name="Display" visibility="public">
 <ownedParameter xmi:id="f4a677d4-555b-45a8-9e12" name="Parameter1"
type="49899437-f107-4687-8083" direction="return"/>
 </ownedOperation>
…
……..

 10

Chapter 3

System Analysis and System model

The goal of this research work focus on the translating of multimedia visual

requirement representation into UML representation. Figure 7 illustrates translation flow from

multimedia visual requirements representation to UML diagram representation.

Figure 7 A translating flow

In the translating flow, the input and output of translation tool are two chief

considerations. Figure 8 depicts a detailed translation process in this thesis study. For the

input of translation tool, Visual requirement authoring system (VRAS) produces multimedia

visual requirements representation. It is considered as a communication bridge with users.

VRAS can be used to create multimedia visual requirements. It helps system developer to

capture user requirements and save those multimedia visual requirements representation

(MVRR) as text-based script automatically. Translation tool uses this script as input. For the

output of translation tool, we adopt XML Metadata Interchange (XMI) as target code. XMI

can be used to represent UML notations by UML CASE Tool.

Translation

Tool

UML
Diagram

Representation

Multimedia
Visual

Requirements
Representation

 11

Figure 8 A detailed process of the proposed translation system

Figure 9 presents components in the translation process. These components will be

described in the following:

VRAS: Visual requirement authoring system is visual requirements representation

technology. It can represent user requirements by visual, provide an easy communication way

between users and system analyst, and help system analyst to capture user requirements.

MVRR: MVRR is the output of VRAS. It is multimedia visual representation.

Script for MVRR: The script file is also the output of VRAS. VRAS saves those

MVRR as text-based script language.

Translation tool: This tool is in charge of translating from VRAS script into XMI

format.

XMI: It is the output of translation system and used to represent UML notations by

UML CASE TOOL.

UML CASE TOOL: It is a computer aided software engineering tool for UML.

UML diagram representation: Represent UML diagram by UML through UML CASE

TOOL.

Specifically, we need to implement a tool that takes the script language generated by

VRAS and produces the XMI corresponding script language.

Multimedia
Visual

Requirements
Representation

Present

Script for
MVRR

Save as

UML
Diagram

Representation

UML
Notations

XMI format

Visual
Requirement

Authoring
System
(VRAS)

Translation
Tool

 12

Figure 9 Components of the translation process

3.1 System Analysis

3.1.1 VRAS Script

Visual requirement authoring system saves multimedia visual requirements

representation as text-based script file. Figure 10 illustrates the structure of the script file. In

the script file, requirements are described as “Story”. A story includes at least one scene, and

each scene may contain several actors and several scenarios. The actor is basic requirement

multimedia reusable component (MRC) to represent a requirement segment. It can be an

image, video, sound, or text. The scenario may represent the interaction among actors, the

prelude, and finale of one scene and branch among scenes. The detailed information is

referred to [1].

Translation
Tool

Multimedia
Visual

Requirements
Representation

VRAS

UML
Diagram

Representation

UML CASE
TOOL

Script for
MVRR

XMI format

Start

 13

Figure 10 The structure of the VRAS script file

Within multimedia visual requirements, there may have several scenes. Script file also

can represent the branch among scenes in the scenario. Figure 11 shows the three kinds of

general connective relations among scenes, which are required to be mapped into the UML

corresponding representations.

Figure 11 General connective relations among scenes [1]

Scene 1

Scene 3

Scene 4 Scene 5

Scene 2Scene 1

Scene 3Scene 2

Scene 1

(a) List

(b) Graph
(c) Tree

Scene 1 …

Story

Scene

ActorActorActor
(MRC)

ScenarioScenarioScenario

 14

3.1.2 Translating rules analysis

In general, the program language is composed of data declaration and control

statement. The data declaration defines data structure in the design phase. The data structure

is a kind of static view of the system. The control statement is program of the system. It is a

dynamic view of the system. The program is a serial of flow control to present the system

behavior. In section 3.1.1, we have introduced the VRAS script structure. The script structure

is composed of Scenes, MRCs, and interaction relationship among them (scenarios). Scenes

and MRCs present the structure view of the system, and scenarios present behavior view of

the system. Therefore, we can classify the content of VRAS script according to spatial and

temporal relationship. The same, we can classify UML diagram according to structure and

behavior. Through classification, we can find the mapping relationship easy between VRAS

script and UML diagram.

VRAS script can be classified according to spatial and temporal relationship. Figure

12 shows the catalog by tree structure. For spatial view, one story contains at least one scene.

Each scene may contain several actors and their relationship. Each actor has its properties and

operations. For temporal view, one story may have different scenario levels. For story (system)

level, there are scenarios to describe the translation among scenes. For scene level, each scene

has two special scenarios named prelude and finale. System invokes a prelude scenario before

enter one scene and execute a finale scenario before exit one scene. For scene internal level,

there are several actor scenarios. Actor scenario describes user events and interaction among

actors.

Story

Scene (container)

Multimedia Actor

Actor scenario

Spatial

Temporal

Scenario

Scene scenario (prelude/finale)

Story scenario (scenes branch)

 15

Figure 12 VRAS Story classified by spatial and temporal

The same as above, UML diagrams can be classified according to structure and

behavior [13]. Figure 13 shows the catalog by tree structure. The common structure diagram

defined in the UML is class diagram. Class diagram is composed of several classes and

relationships among classes. It is static view of system. For the dynamic view of system, there

are two common behavior diagrams defined in the UML. They are sequence diagram and

state machine diagram. Sequence diagram presents the interaction among objects of system.

State machine diagram emphasizes the state and state translation within object or system.

From the view for VRAS story and UML diagram classified, there exist some mapping rules.

When a scene is viewed as a container, it is mapped into class diagram. The actors within

scene are mapped into classes. Actor’s properties and operations are mapped into “attributes”

and “operations” of class. At the same time, abstracting for different actors is necessary. Actor

scenarios, prelude and finale scenarios are suitable to map into sequence diagram. Actor

within scenario is mapped into “object” notation of sequence diagram. The user event and

interaction among actors are mapped into “call” or “message” notation. For special interaction

representation, for example, parallel presentation, repeat presentation, and condition

presentation, we can use “combined fragment” notation to emphasis them. For story scenario,

we can use state diagram to represent branch among scenes. Here, a scene would be regard as

one state.

Figure 13 UML diagram classified by structure and behavior

Diagram

Structure

Class diagram

…

Behavior

State diagram

Sequence diagram

…

Class

 16

Table 2 summarizes the corresponding relationships between VRAS script and UML

diagram.

Table 2 The corresponding relationships between VRAS script and UML Diagram

VRAS Script UML Diagram
Scene as container UML Class Diagram

 Multimedia actor Class

 Actor’s event
 Actor’s operation

 Operation of class

 Actor’s properties Attributes of class

Actors scenario
Scenes scenario (prelude/finale)

UML Sequence Diagram

 Actor Object notation

 Interaction between
 actors

 Call or Message

 sequential presentation
 parallel presentation
 repeat presentation
 condition presentation

 combined fragment w/ different
 operator (seq, par, loop, alt)

Story scenario (scenes branch) State Diagram

 Scene State

 Scenes branch transition of state

 Prelude of scene Enter action of state

 Finale of scene Exit action of state

3.1.3 Translating rules examples

In the section, we use several examples to illustrate the translating rules. The first

example is for system scenario. The scene of story is viewed as a state of system. Now scene

is mapped into “state” notation and scene branch is mapped into “transition” notation. The

prelude of scene is mapped into “entry action” of state and the finale of scene is mapped into

“exit action”. The interaction within scene can be mapped into “do action” of state. Using

state diagram to represent scene branches of whole system is suitable. Figure 14 illustrates an

example of mapping from scripts to state diagram of UML. Form partial script; there are two

scenes named “Sc001” and “Sc002”. “GotoScene” keyword presents the scene branch when

LMOUSECLICK event trigged by user. Therefore, branches between “Sc001” and “Sc002”

will be translated into state transitions.

 17

Figure 14 An example of mapping from script into State Diagram of UML

 A scene also can be viewed as a container including many actors. Now scene is

mapped into “class diagram” and actors are mapped into “class”. The actor’s properties are

mapped into class attributes and events are mapped into class operations. Figure 15 illustrates

an example of mapping actors into class notation. In the partial script, there are two actors

named “MCAnim” and “MCText”. They are mapped into TMCAnin and TMCText classes. At

the same time, an abstract class named TCast is also presented. Both classes should inherit

from “TCast” class. Two actors’ properties are mapped into their attributes. The common

parts (events and properties) of two actors would be extracting to their abstract layer class

named TCast.

Sc001.ebs
…
LMOUSECLICK:
 {
 EBook.GotoScene("@Sc002");
 }

Sc002.ebs
…
 LMOUSECLICK:
 {
EBook.GotoScene("@Sc0001");
 }
…

State Diagram Partial script for translation between

scenes

 18

Figure 15 An example of mapping from actors into class diagram

Either prelude/finale scenario or interactive scenario with user is mapped into

interaction of “sequence diagram”. The actor in the scenario is mapped into “object” notation

of sequence diagram. The behavior between actors can be mapped into “call” or “message”

notation. Figure 16 to 20 present five general requirements representation cases.

Figure 16 illustrates an example of mapping rule from sequence representation in

VRAS script and the “sequence combined fragment” notation of sequence diagram in the

UML. In the VRAS partial script, it shows the sequence representation (Actor000.play and

EBook.GotoURL in order) after user click Actor001 through left button of mouse

(LMOUSECLICK). Therefore, there are four objects - User, TMCText (Actor001), TMMovie

(Actor000), and TScene (EBook) in the sequence diagram. The event invoked by user clicks

mouse is mapped into “LMouseClick” function-call notation. Two executed actions are also

mapped into function-calls notation. We use “sequence combination fragment” notation with

represented two executed actions within the same “interaction operand” notation to emphasize

two actions executed in order.

...
[CAST] MCAnim
Begin
 Name = Actor
 NowValue = 0
...
... ...
[CAST] MCText
Begin
 Name = Actor000
 Position = 0
.......

Class Diagram Partial script for Animate

and Text actors

 19

Figure 16 An example of sequence representation mapping into sequence fragment of

sequence diagram

Figure 17 illustrates an example of mapping rule from parallel representation in VRAS

script and the “parallel combined fragment” notation of sequence diagram in the UML. In the

VRAS partial script, it shows the parallel representation (Actor000.play and EBook.GotoURL

paralleled execution) after user click Actor001 through left button of mouse

(LMOUSECLICK). Therefore, there are four objects - User, TMText (Actor001), TMMovie

(Actor000) and TScene (EBook) in the sequence diagram. The event invoked by user clicks

mouse is mapped into “LMouseClick” function-call notation. Two executed actions are also

mapped into function-calls notation. We use “parallel combination fragment” notation with

represented two actions executed in the different “interaction operand” notation to emphasize

two actions executed at the same time.

Figure 17 An example of parallel representation mapping into parallel fragment of

sequence diagram

…
ANCHOR Actor001 :
{
LMOUSECLICK:
{
parallel(Actor000.play(),

EBook.GotoURL("labscript.exe");
}
..
…

Parallel fragment of Sequence diagram Partial script for parallel presentation

…
ANCHOR Actor001 :
{
 LMOUSECLICK:
 {
 Actor000.play();
 EBook..GotoURL("labscript.exe");

 }
…

Sequence fragment of Sequence Diagram Partial script for sequential presentation

 20

Figure 18 illustrates an example of mapping rule from repeat representation in VRAS

script and the “loop combined fragment” notation of sequence diagram in the UML. In the

VRAS partial script, it shows the repeat representation (Actor000.play and EBook.GotoURL

repeated 6 times) after user click Actor001 through left button of mouse (LMOUSECLICK).

Therefore, there are four objects - User, TMCText (Actor001), TMMovie (Actor000) and

TScene (EBook) in the sequence diagram. The Invoked event by user clicks mouse is mapped

into “LMouseClick” function-call notation. Two executed actions are also mapped into

function-calls notation. We use “loop combination fragment” notation with represented two

actions executed in the same interaction operand notation to emphasize two actions executed

in specific looping.

Figure 18 An example of repeat representation mapping into loop fragment of sequence

diagram

Figure 19 illustrates an example of mapping rule from condition representation in

VRAS script and the “alternative combined fragment” notation of sequence diagram in the

UML. In the VRAS partial script, it shows the condition representation (if - else condition)

after user click Actor001 through left button of mouse (LMOUSECLICK). Therefore, there are

four objects - User, TMCText (Actor001), TMMovie (Actor000), and TScene (EBook) in the

sequence diagram. The event invoked by user clicks mouse is mapped into “LMouseClick”

function-call notation. We use “alternative combination fragment” notation with represented

two actions executed in the different interaction operand notation. Regard condition as the

guard of the first interaction operand and add specific guard named ‘else’ to second

interaction operand to emphasize two actions executed under specific condition.

…
ANCHOR Actor001 :
{
..
 LMOUSECLICK:
 {
 repeat(6){
 Actor001.play();
EBook.GotoURL("labscript.exe") ;

 }

}

Partial script for repeat presentation Loop fragment of Sequence diagram

 21

Figure 19 An example of condition representation mapping into alternative combination

fragment of sequence diagram for “if-else”

Figure 20 illustrates an example of mapping rule from multiple cases representation in

VRAS script and the “alternative combined fragment” notation of sequence diagram in the

UML. In the VRAS partial script, it shows the multiple cases representation (switch - case)

after user click Actor001 through left button of mouse (LMOUSECLICK). Therefore, there are

four objects - User, TMCText (Actor001), TMMovie (Actor000), and TScene (EBook) in the

sequence diagram. The event invoked by user clicks mouse is mapped into “LMouseClick”

function-call notation. We use “alternative combination fragment” notation with represented

two executed actions in the different interaction operand notation under different case. Add

specific guard named “default” to first interaction operand and add guard for each case

interaction operand to emphasize different case has its specific composed actions.

Alternative fragment of Sequence

diagram (if - else)
Partial script for condition

presentation

…
ANCHOR Actor001 :
{
 LMOUSECLICK:
 {
if (i ==0) {
Actor000.play();
}
else {
 EBook.GotoURL("labscript.exe");
} ..
..
…

 22

Figure 20 An example of alternative representation mapping into alternative combination

fragment of sequence diagram for “switch - case＂

3.2 Translation System Responsibilities

After finish system analysis, we focus on the implementation of the translation system.

Figure 21 illustrates the proposed translating flow. The script that represents the multimedia

visual requirements generated by VRAS is the input of translation system. XMI

representation is the output instead of UML representation in order to interchange metadata

with other applications more easily in the future. The translation system will translate from

scripts for MVRR into XMI format.

Figure 21 The proposed translating flow

We summarize the responsibilities of translation system in the following:

1). Find out the properties and operations of multimedia reusable components

(MRCs), and internal scenarios among MRCs, and interaction scenarios with user

from script content.

Translation
System

Script for
MVRR

XMI
File

Alternative fragment of Sequence

diagram (switch - case)
Partial script for multiple

conditions presentation

…
ANCHOR Actor001 :
{
 LMOUSECLICK:
 {
switch(i){
default : {
Actor000.play();
EBook.GotoURL("labscript.exe");
}
case 1:{
Actor000.play();
}
case 2:{
EBook.GotoURL("labscript.exe") ;
}
}
…

 23

2). Follow the transiting mapping rules to translate static information and dynamic

information into UML/XMI metadata.

3). Follow the XMI format to save the UML/XMI metadata as XMI file.

3.3 Proposed Translation System Model

Figure 22 depicts the proposed translation system model. It is based on visual

requirement authoring system. We add four parts shown on the right-hand separated by dash-

line. These new added parts are used to translate VRAS script that represents the determined

requirements. Those un-shadowed diagrams in the Figure 22 had been described in [1]. The

following will describe the shadowed parts:

XMI Translation System: this system can be considered as a bridge between

multimedia visual requirements and UML representation. According to UML translating rules

and XMI format, it translates the VRAS script that represents multimedia visual requirements

into XMI file that can be used to represent UML notation.

UML translating rules: define the translating mapping rules from script content into

UML notation. These rules ware discussed in section 3.1.2.

XMI Format: the XMI format is defined in the XMI 2.1 specification. There is existing

XMI model generated according XMI schema production rules. The XMI model includes

XMI element, documentation, and extension.

XMI File: It is the target code of the translation system.

Figure 22 The proposed translation system model of this thesis

 24

The following list the procedure of this translation model from requirements to UML

representation through XMI file.

Step 1: Use VRAS to construct requirement through MRCs selected and preview

prototyping system to make sure the correctness of requirements. System

Analyst use VRAS to capture customer’s requirement.

Step 2: When existing MRCs are not adequate to describe customer requirements,

MRCs Manager uses the Component Constructor to add new MRCs to

articulate multimedia visual requirements representation.

Step 3: Repeat 1-2 until determined requirements are produced.

Step 4: Developers use XMI translation system to generate XMI file to interchange

metadata with UML CASE tool.

Step 5: Developers use UML CASE tool to represent the UML and generate the

framework for specific programming language and documents.

3.4 Architecture Model

Figure 23 illustrates the architecture Model to show the translation system and its

relationship with other systems. There are three systems elaborated below:

VRAS: Visual requirement authoring system can present multimedia visual

requirements to capture user requirement. It also can save those the multimedia visual

requirements as text-based script automatically.

Translation System: it can extract information from VRAS script and translate them

into UML/XMI metadata, and then save as XMI file format.

UML CASE TOOL: UML CASE TOOL interchange metadata with translation system

through XMI file and represent UML graphic notation.

 25

Figure 23 The architecture model

Script for
MVRR

Translation
System

Multimedia
Visual

Requirements
Representation

VRAS

UML
Diagram

Representation

UML CASE
TOOL

XMI

File

 26

Chapter 4

System Design and Implementation

This chapter discusses the system design and implementation of the proposed

translation system. In the system design part, we describe system architecture, system internal

structure, and the design concept of system. In the implementation part, we describe the

implement environment, cooperating tool, and user interfaces of the proposed translation

system.

4.1 System Architecture

The Model-View-Controller (MVC) design pattern [18] is a good system architecture

pattern to split an application into data (model) and user interface (view) concerns, so that the

change of the user interface in the future will not affect data handling, and the data can be

reorganized without changing the user interface. We adopt the MVC design pattern to

construct the proposed translation system in order to decouple relationship between metadata

and user interface. Please see Figure 24.

Figure 24 The MVC architecture of translation system

 27

4.2 System Structure

In section 3.2, we have shown the responsibilities of translation system. We will

design relative functional blocks to realize those responsibilities. Figure 25 illustrates

functionalities of these cooperated blocks in the system structure. The shadowed blocks are

functional block. The un-shadowed blocks are data stored in file or memory. These three

functional blocks cooperate to finish translating task from VRAS script representation to XMI

script representation.

Figure 25 The structure of translation system

Script File: It is a script program representing multimedia visual requirements. VRAS

converts multimedia visual requirements into script file. It is also the input of Script Parser.

The content of script file describes not only actor static information but also dynamic

information including external interaction with user and internal interaction among MRCs.

Section 3.1.1 had given the script structure.

Script Parser: Use compiler technology (lexical scanner and parser) to build parser-

tree [8, 20-21]. This research work focus on the implementation of the VRAS script grammar.

Parser tree: It includes not only multimedia component properties but also interaction

with user or between components. Using compiler technology also let script more easy to

maintain and extend.

 28

UML Factory: Travel parser tree nodes to extract information of UML elements

according to translation rules, and then create UML/XMI element metadata.

UML/XMI metadata: It represents the XMI metadata as well as UML.

XMI Generator: It converts UML/XMI elements metadata into XMI file according on

XMI document format.

 XMI file: A document format follows the XMI format [6] defined in the XMI

specification.

4.3 System Conceptual model and Detail Design

The concept of system design is based on MVC architecture [18] and using several

design patterns to construct the whole system. The patterns that we used include factory

method pattern, composite pattern, bridge pattern and strategy pattern [11]. Figure 26

illustrates the system conceptual model. This conceptual model includes controller package,

model package, and view package. User requests to process translating through user interface

(View). Controller accepts the user’s request and starts translating flow: parsing script,

walking parser tree, and building the model elements. After model is built, the concrete view

queries the content of UML/XMI metadata by itself and represents the result to the user. Next,

we will introduce these three packages in detail.

 29

Figure 26 Conceptual model of the proposed translation system

4.3.1 Controller package

This package includes three classes – XmiTranslator, XmiParser, and XmiFactory.

These classes will cooperate to build the UML/XMI metadata.

(1) XmiTranslator:

It is a coordinator. It coordinates with XmiParser and XmiFacory to build UML/XMI

model element (XmiModel, XmiDiag and so on). The figure 27 illustrates the UML model

creation flow. Creating empty UML model first, parsing script in the next, and then walking

parser tree immediately after parser tree was established. During walking parsing tree, one

creates relative diagrams or notations according to translating mapping rules. In order to

display the UML notations through UML CASE TOOL, one needs to rearrange the spatial

relation of notations within diagram. Finally, adding the profile element to generate UML

model.

 30

Figure 27 UML model creation flow

(2) XmiParser

XmiParser class is in charge of the parsing job. It creates the parsing tree through

lexical scanner and Bison parser and then walks paring tree to build UML model. Figure 28

illustrates the process flow. Lexical scanner groups characters into tokens according to lex

regular expression. Bison parser gets tokens through lexical scanner and establishes parser

tree using yacc grammar rules. After parser tree is established, XmiParser walks parser tree

nodes, and then generate XMI/UML diagram through XMIFactory according to translating

mapping rules.

Figure 28 The process of building VRAS parser tree and generate target UML diagrams

 31

The major lexical specification program and yacc specification program are listed

below.

Lexical Scanner – This thesis adopt Flex lexical scanner to process token analyze [20].

Here is the lex regular expression used to analyze the token. The following is the partial

regular expression file including regular expressions and toke matching rules

Grammar Parser – This thesis adopt Bison-parser to parse grammar [21]. Here is the

yacc grammar rule used to parsing script. The following is the partial grammar rules.

(3) XmiFactory

XmiFactory class is in charge to produce UML notations. It provides several service

functions to create various UML notations. XmiParser builds the UML models through

XmiFactory class. We adopt factory method pattern [11] to design XmiFactory class. Creating

UML notations inside a class with a factory method is always more flexible than creating

notations directly.

// regular expressions

alpha [a-zA-Z_]

alphanum [a-zA-Z_0-9]

char \'([^'\n]|\\[ntbrf'\n]|\\0[0-7]{0,2})+\'

string \"([^"\n]|\\["\n])*\"

unsignedint [0-9]+

…

// toke matching rules

character: {char}

string: {string}

Indent: {alpha}{alphanum}*

Integer: {unsignedint}

 …

 11 Cast_List: Cast_Block

 12 | Cast_List Cast_Block

 13 Cast_Block: LBRACK CAST RBRACK Cast_Type CAST_BEGIN

Expression_List CAST_END

 14 Cast_Type: MCAnim

 15 | MCText

 16 | MCMovie

 17 | MCSound

 18 | MCGroup

……

 32

4.3.2 Model package

Model package represents UML/XMI metadata. Here we adopt composite pattern [11]

and bridge pattern [11] to design model package. We use composite pattern to compose UML

notations into tree structure to represent part-whole hierarchies and use bridge pattern to

decouple an abstraction (metadata independent on display) from its implementation (metadata

dependent on display).

There is a root class named XmiElement in the model group. This class plays a role as

container to record its children elements and its attributes. All of UML notations (e.g. class,

state, lifeline and so on) would be created through XmiFactory class. During creation, these

notations are separated into several XMI elements in advance. Figure 29 illustrates an

example of UML class notation separated into three XMI elements. A class named Example

has one attribute and one operation. The name of attribute is “abc” and the name of operation

is “func”. Represent this class by using XMI need three elements totally. There are

“Example” element including isAbstract attribute (attribute value is false), “abc” element

including visibility (attribute value is public) and “func” element including visibility (attribute

value is public) three XMI elements.

Figure 29 An example of UML class notation represented by three XMI elements

All of UML notations supported in this design/implantation would inherit from

XmiElement and be composed of several XMI elements. Figure 30 lists the hierarchy of

UML/XMI model element that supported in this research work. The first layer is root

(XmiElement). The second layer is abstract layer for model, diagram, node, and link. The third

layer is dependent on notations within diagram. Others are UML notations supported

currently.

 33

Figure 30 The hierarchy of UML/XMI model elements

4.3.3 View package

In the view package, the design concept is based on strategy pattern [11]. There are an

abstract view and three concrete views: XMI file view, XMI tree view, and Code Framework

view. None of concrete views would affect any model element. Each concrete view queries

data that it is interested from model elements and represents a specific form for user.

The following describes three forms supported in the research work.

(1) XmiFile

XMIFile class represents UML/XMI metadata by file format to interchange metadata

with UML CASE TOOL. Figure 31 illustrates the flow of XMI file representation. XMIFile

class query the UML/XMI metadata and saves as XMI file according to XMI format. Those

UML/XMI metadata were translated from VRAS script by controller package. After XMI file

is saved, users can use UML CASE TOOL to load XMI file and represent UML diagrams.

 34

Figure 31 The XMI file representation flow

Figure 32 shows the partial XMI file that is outputted by XMIFile class.

Line 1 shows the xml version and the encoding format, which are used in XMI file.

Line 2 shows the uml model information. The information include “xmi version”,

“xmi schema version”, and so on.

Lines 3-5 show the tagged value of project type is “UML2Project”.

Line 11 represents a class named “TCast” and its Universally Unique Identifier (UUID)

[6] - “c8966e02-a341-407f-99ff”.

Lines 15-21 represent a class named “TMCBtn”. This class includes “Play” operation

(line 17) and “iActor” attribute (line 19).

Line 20 represents the generalization relationship between “TMCBtn” class and

“TCast” class through the special UUID - “c8966e02-a341-407f-99ff”.

Line 24 is the end tag of “uml:model”.

query

UML

CASE TOOL

UML

Diagrams

XMI

File

display

XMI

Format

XmiFile

load

save as

VRAS

Script
UML/XMI

metadata

build load Parsing Walk

Tree

XMIParser XmiFactory

Translation

Rules

 35

Figure 32 The partial XMI file outputted by XMIFile class

(2) XmiTree

XMITree class represents UML/XMI metadata by tree structure. Figure 33 illustrates

an example of XMI tree that is generated by XMITree class. There are five types of node used

totally - X: XMI, R: Root, E: Element, A: Attribute name, V: attribute value. Each XMI node

includes its children nodes and attributes. The first node of tree is XMI file. The second node

is model (Root). In this example, the “uml:Model” is composed of five attributes and several

elements. Each attribute has its value (e.g. the value of "xmi:version" attribute is "2.1")

 36

Figure 33 An example of by XMI tree representation

(3) XmiCodeGen

Figure 34 shows the relationship between UML model, XMI and code framework.

Most UML CASE TOOL can save UML model created by user as XMI file and reload XMI

file to represent UML model. Therefore, XMI can be considered as equivalent internal

structure of UML model. The code framework can be generated from UML model by UML

CASE Tool. The code framework also can be derived from XMI directly. XmiCodeGen class

is in charge of code framework generation from UML/XMI metadata.

 37

Figure 34 The relationship between UML model, XMI and code framework

The XmiCodeGen class queries the class information from UML/XMI metadata, and

then output code framework. Figure 35 illustrates a flow of code framework representation.

The XmiParser class cooperates with XmiFactory class to translate from VRAS script file into

UML/XMI metadata. After UML/XMI metadata are established, XmiCodeGen class queries

correlative information such as class and its operations from UML/XMI metadata, then load

predefined template files into internal buffer, and then inserts these information collected

previously into memory buffer. Finally, XmiCodeGen class saves the content of memory

buffer to generate project file, makefile, and code framework. Both of project file and

makefile are for BCB5 integrated development environment (IDE) only. The sample code

includes scenes and multimedia actors’ creation, scene branch control, and so on. Developer

can generate code framework through UML CASE tool and then reconstruct the target system

referring to these sample code rapidly.

UML
Model

XMI

Code
Framework

Derived from Generate to

Equivalent to

 38

Figure 35 The sample code representation flow

4.4 Related implementation issues

4.4.1 Development environment, cooperating tools, and limitation

We summarize the related implementation part of this research work in the following:

 This translation system is implemented by C++ language. We use BCB5 IDE [17] to

construct user interface.

 The script file used for the input of this translation system is VRAS script file

implemented by the Software Engineering Laboratory of NCTU [23]. The grammar

definition file and regular expression used in this thesis depended on this script.

 Use Flex as scanner generator [20] and use Bison (GUN parser generator) [21] to

establish abstract syntax tree.

BCB5 IDE

/ Makefile

Collect

Information

Template files

for code gen.

Project file

Makefile

C++ file

H file

Code

Generate

Sample

Program

query

load

generate

build

open

XmiCodeGen

VRAS

Script
UML/XMI

metadata

build load Parsing Walk

Tree

XMIParser XmiFactory

Translation

Rules

 39

 Due to the XMI extension elements associating display information for TruFun UML

CASE TOOL [16], the output XMI file of translation system might not be displayed

on other UML CASE TOOL.

 The code framework generation of translation system is C++ program language. The

project file and makefile are for BCB5 IDE only, and the code output path is fixed in

the “project file\output\code”

4.4.2 User Interface (UI) introduction

This translation system has two major functions. One is generating XMI file; the other

is generating code framework.

Figure 36 shows the user interface for XMI file generation.

Figure 36 The UI of XMI File generation

The labels on the figure are:
1). Translation button: it is used to start translating from VRAS script to XMI file.

2). XMI Tree window: it represents the XMI metadata by tree structure.

3). XMI Content window: it represents the XMI metadata by text.

4). Save Context button: it is used to save XMI content as file.

5). Exit button: it is used to exit program.

(1)

(4)

(5) (6)

(3)

(2)

 40

6). Debug window: it shows the log produced during translating.

Figure 37 shows the user interface for code generation.

Figure 37 The UI of Sample code generation

The labels on the figure are:

1). Class list window: it lists all of classes in the XMI metadata.

2). Operation list window: it lists the operations of class selected in the class list

window.

3). Class Header preview window: it is used to preview the header content of class

selected in the class list window.

4). Class Source preview window: it is used to preview the source content of class

selected in the class list window.

5). Operation preview window: it is used to preview the content of operation selected

in the operation list window.

6). Generate button: it is used to generate sample code.

(1)

(2)

(3)
(4)

(5)

(6)

 41

Chapter 5

Demonstration and Application Examples

In this chapter, we use an example to demonstrate how to translate from multimedia visual

requirement representation into UML representation and to show how to verify UML diagram

correctness by step.

5.1 Demonstrating procedure

Figure 38 illustrates the demonstrating procedures:

1. VRAS tool [3, 15] authors multimedia visual requirements representation and

generates its corresponding script program. VRAS Tool to construct user

requirements using Multimedia Reused Components (MRCs) [1]. VRAS Tool will

output a visual requirements scripted by EBook Project (EBP) file format and

several EBook Script (EBS) files format.

2. Generate XMI file through XMI translation system based on the generated EBP and

EBS scripts. The translation system will automatically translate from EBP and EBS

scripts into UML/XMI metadata and then output a XMI file.

3. Open TrunFun UML CASE tool [16] and then load the XMI file to represent UML

diagrams.

4. Generate sample code through XMI to support reconstruction of the multimedia

visual requirement representation.

5. Verification is for represented UML diagram in the step 3. We generate source code

framework through UML CASE tool and then fill in related code for the interface

actions of the target.

 42

Figure 38 The demonstrating procedure

5.2 Example - A video player UI application system

5.2.1 Multimedia Visual requirements representation by VRAS tool

We use a video player UI application system as example to describe the applicability.

At first, we construct the video player UI application system. Appendix A describes the

details of how the video player UI application construction through VRAS tool. Figure 39

shows the multimedia visual requirements representation for video player UI application

system. There are two UIs (or scenes) in this system.

start

Translation
System

Scripts for
MVRR

Multimedia Visual
Requirement

Representation

VRAS
Tool

UML Diagram
Representation

TruFun UML

CASE TOOL

XMI File
Representation

Sample Code
Representation

BCB5 IDE /

makefile

Sample
Program

 43

UI-1: a text actor “Software Demo” appears in screen as title, a text actor “Video

Player” appears at the top of the button and text actors “Help” locates at the bottom of the

 button.

UI-2: there are six text actors, nine button actors and one image actor totally. The text

actors are “Size”, “Volume”, “Play”, “Back”, and “Snapshot”; the button actors are , , ,

, , , , , ; and the image actor is .

Figure 39 UI-1 and UI-2 for video player UI application

 Figure 40 shows the interactions for video player UI application. When application

starts, system automatically shows UI-1 first. Click on the button would jump to UI-2.

Click button to play a video. The buttons , , and are used to adjust the video

display size. The buttons and are used to turn down/turn up volume. The button is

used to snapshoot a still image and to pause video playing. When click button, system

pop a save dialog to save the still image snapshot by button. Click button would go

back UI-1. Click button would link to a web page.

 44

Figure 40 Interaction for video player UI application

Figure 41 shows the partial script for button and its scenario. The left hand partial

script describes the properties of button including its size, position, and so on. The right

hand partial script describes the scenario of button. LMOUSECLICK is user event. This

event invokes the “GotoScene” action to jump from scene 1 to scene 2. The full scripts for

video player UI application are shown in the Appendix B.

 45

Figure 41 Partial scripts for video player button and its scenario

5.2.2 XMI translating operation for XMI File generation

Figure 42 illustrates the translating procedure from VRAS script into XMI file. There

are four steps.

Step 1: Users press “Translate” button. The system pops “Select EBP file” dialog up.

Step 2: Users select a requirement project file (.EBP). The system starts translating

and then pops “Save XMI file” dialog up after finish translation.

Step 3: Users select a file to save the result. The system saves the translating result

into file and pops an information dialog.

Step 4: When users confirm with the information dialog, then the system shows the

result is as XMI tree and XMI content form.

…
[CAST] MCBtn
Begin
 Name = Actor
 NowValue = 0
 Key = 0
 Position = 198 252 127
 Size = 70 70
 Visible = 1
 Speed = 10
 DragMode = 2
 PicFile = "@VP.GIF“
…

ANCHOR Actor :
{
LMOUSECLICK:
{
 EBook.GotoScene("@Sc759");
}
LMOUSEDOUBLECLICK: {}
RMOUSECLICK: {}
RMOUSEDOUBLECLICK:{}
DRAGDROP: {}
DRAGOVER: {}
MOUSEENTER:{}
…

 Button description Scenario description

A Visual UI
Requirements
Representation

The
corresponding
VRAS partial
script

Jump to

Scene 2 Scene 1

 46

Figure 42 The translating procedure from VRAS script into XMI for the application

example of the UI video player application

Step 1

Step 2

Step 3

Step 4

 47

5.2.3 UML representation through UML CASE Tool

Open “TruFun” UML case tool [16] and load XMI file which was saved in the

pervious step (discussed in section 5.2.2). Figure 43 shows the whole model including several

diagrams generated through CASE TOOL.

Figure 43 Using TruFun UML CASE Tool to represent UML diagrams

All of the diagrams can be saved as image files through CASE TOOL. Figure 44 is

class diagram to illustrate scenes hierarchal structure within system. Figure 45 is state

machine diagram to illustrate scenes branch. Figure 46 and 49 are class diagrams to illustrate

casts hierarchal structure within scene. Figure 47, 48, 50 and 51 are sequence diagrams to

illustrate the interaction scenarios.

 48

Figure 44 Class Diagram for inheritance-hierarchy of scenes

According to user requirements, there are two UIs in this exampling system.

TFactory: Scene Factory. It creates these two scenes.

TScene: Abstract class for all scenes.

TScene_1: Concrete for Scene1 (UI-1). Scene_1: An instance of TScene_1.

TScene_2: Concrete for Scene2 (UI-2). Scene_2: An instance of TScene_2.

 49

Figure 45 Finite State Machine Diagram for scenes branch

Notations:

: Pseudo State : Final State : Entry point : Exit point

Working State: It is a system state. System enters the entry point of working state

automatically after initialization and then transit into TScene_1 by itself. Whenever exit

event occurred, system would automatically enter exit point and then transit into Final

State. There are two internal state named TScene_1 and TScene_2

TScene_1: a state mapping to UI-1 and including “prelude” entry action and “finale” exit

action.

TScene_2: a state mapping to UI-2 and including “prelude” entry action and “finale” exit

action.

When Sc1BtnVpGIF is clicked, System transits state from TScene_1 to TScene_2.

When Sc2BtnBackGIF is clicked, System transits state from TScene_2 to TScene_1.

 50

Figure 46 Class Diagram for cast hierarchy within Scene 1

Based on the user requirements of the example system, there are three text actors

(Software Demo, Video Player and Help) and two button actors (and) in the scene

1.

TScene: Abstract scene class. It contains all cast.

TCast: Abstract class for all cast.

TMCText: it is abstract text actor class.

TMCBtn: it is abstract button actor class.

TSc1TexSoftwareDemo, TSc1TextVidepPlaye, and TSc1TextHelp are concrete of

TMCText.

TSc1BtnVp and TSc1BtnHelp are concrete of TMCBtn.

 51

Figure 47 Sequence Diagram for go to “Scene 2＂

In the user requirements, user can press “video player” button to enter UI-2.

1. User click the button cast named Sc1BtnVp to invoke scene branch.

2. Sc1BtnVp call GotoScene function with Scene_2 parameter of Scene_1 to link Scene2

Figure 48 Link a web page

In the user requirements, user can press “Help” icon to link to a web page.

1. User click the button cast named Sc1BtnHelp to link a web page.

2. Sc1BtnHelp call GotoURL function to link a web page.

 52

Figure 49 Class Diagram for cast hierarchy within Scene 2

Based on the user requirements of the exampling system, the text actors are “Size”,

“Volume”, “Play”, “Back”, and “Snapshot”; the button actors are , , , , , ,

, , ; and the image actor is .

TScene: Abstract scene class. It contains all cast.

TCast: Abstract class for all cast

TMCText: abstract text actor class

TMCBtn: abstract button actor class

TMCAnim: abstract Animal actor class

TSc2AnimBorder is a concrete of TMCAnim class.

All of text actors are inherited from TMCText class.

All of button actors are inherited from TMCBtn class.

Figure 50 Sequence Diagram for the prelude scenario of Scene 2

System executes the prelude scenario of Scene 2.

1. Secne_2 calls the “LoadDll” function to load a specific DLL file named

“VideoDll.dll” to initial video player.

 53

Figure 51 Sequence Diagram for play video scenario

In the user requirements, user can press “video player” button to play a video.

1. User clicks the Animal cast named Sc2BtnPlay to invoke video playback.

2. Sc2BntPlay calls “LoadDll” to load a specific DLL file named “VideoDll_Play.dll”

to play video.

All of UML diagrams produced by UML CASE tool are shown in the APPENDIX C.

5.2.4 Sample code generation through translation system

Figure 52 illustrates the procedure of translation system to generate sample code

framework. There are two steps:

Step 1: Users click “CodeGenerator” Tab to switch UI. The system collects all classes’

information automatically and then shows them on preview windows. Users also can select

other class to preview its code through class list window at this time.

Step 2: Users click “Generate” button. The system starts to generate code framework

and then pops “Information” dialog up to show users the stored code path in the file system.

The sample code is C++ for BCB5 environment. It includes scenes creation,

multimedia actors creation, scene branch control, and so on. In next section, we can refer to

these sample code to reconstruct the video player UI application system rapidly.

 54

Figure 52 Steps of the code generation of the exampling application system

5.2.5 Verification of UML diagram

Figure 53 recalls the proposed translating process. The UML diagrams are represented

in the section 5.2.3.

Step 2

Step 1

 55

Figure 53 The proposed translating process

In this section, we verify the correctness of these UML diagrams. Figure 54 illustrates

the verification flow.

Step 1: Use UML CASE tool to generate code framework from UML diagram.

Step 2: Fill in the related interface code referring to sample code (discussed in the

section 5.2.4)

Step 3: Use BCB5 IDE to build the target system. The target system can represent the

multimedia visual requirements as same as VARS tool.

Figure 54 The verification flow for represented UML diagram

Multimedia
Visual

Requirements
Representation

UML
Diagram

Representation

Code
Framework

Related
Interface

Code

Target
System

UML CASE

Tool

BCB5

IDE

 56

The following is the detail description of verification flow. At first, we use UML

CASE tool to generate the specific source code framework for the target system. Figure 55

show the steps of code generation through UML CASE tool.

Figure 55 Steps for code generation through UML CASE tool

After code framework generated, we refer to sample code generated in the section

5.2.4 to fill in program code for scenes creation, the multimedia actor creation, and the related

interface actions of the target video player UI application. Figure 56-59 give four examples.

Figure 56 shows the code filled in the “TFactory” class construction function to create two

scene instances (there are two scenes in the video player UI application). Figure 57 shows the

code filled in the “TScene_1” class construction function to new actor instances within scene

1 (there three text actors and two button actors). Figure 58 shows the code filled in the

HookOnClick function of “TSc1BtnVP” class to call “GotoScene” function with “Scene_2”

parameter (when “VP” button clicked, system switches to scene 2). Figure 59 shows the code

in the HookOnClick function of “TSc21BtnPlay” class to call its related DLL file named

“VideoDll_Play.dll” to play a video (when “Play” button clicked, system plays a video).

Step1: Click “Code generator＂ tab

Step2: Click “generate＂ icon

 57

Figure 56 Fill into code in the TFactory class

construction to new two scene instances.
Figure 57 Fill into code in the scene 1 class

construction to new actor instances within scene 1

Figure 58 Fill into code in the HookOnClick() of

TSc1BtnVP class to invoke “Goto Scene 2” action.

Figure 59 Fill into code in the HookOnClick() of

TSc2BtnPlay class to call its related DLL file.

After finish all lated code filled, we use BCB5 to rebuild the video play UI application

system. This video player UI application can represent the user visual requirements that are

same as constructed by VARS tool. Through verification flow, we can say the UML diagram

shown in the section 5.2.3 is correct. The XMI file generated by our translation system

represents these UML diagrams. Therefore, we can proof the translation from multimedia

visual requirements representation into UML diagram is also correct indirectly. Figure 60

show the result of reconstructed video player UI application.

 58

Figure 60 the result of reconstructed video player UI Application

 59

Chapter 6

Conclusion and Future Work

In this chapter, we draw out the conclusion of this thesis study. The future work for

the translation system is also outlined.

6.1 Conclusion of this thesis study

In this research work, we design and implement a translation system that can be used

to translate from the VRAS script (represent multimedia visual requirements) into XMI file

(represent UML notations). Specifically, the XMI is used to bridge the gap between

multimedia visual requirements representation and UML representation. This XMI file

includes state machine diagram to illustrate scenes branch, class diagrams to illustrate class

hierarchical inheritance, and sequence diagrams to illustrate external/internal interactive

behavior of target system. The benefits of the translation system include:

1). This translation system can be used as the bridge to reduce the gap between analysis

phase and design phase. Eventually, it can improve software development process.

2). This translation system adopts XMI format as final output. XMI format is a standard

of metadata interchange among applications. Software developers can use UML

CASE TOOL to represent UML diagrams during system models construction phase.

Besides, through verification flow, we can say the represented UML diagram is

correct. Therefore, we can proof the translation from multimedia visual requirements

representation into UML diagram is also correct indirectly.

6.2 Future Work

The translation system translates the VRAS script (represented the multimedia visual

requirement) into XMI file which can be used to represent UML notations through UML

 60

CASE TOOL. It can be used to reduce the gap between analysis and design. However, it can

be improved or enhanced futurity to generate more UML notations.

1). The translation system outputs XMI file as target code. Currently, the content of XMI

file includes the state machine diagram, class diagrams for static view, and sequence

diagrams for dynamic view. However, there are more diagrams defined in the UML

specification. In the future, the system can be improved to generate more diagrams to

describe user target system.

2). The code framework generated from XMI in the translation system is for C++

language and BCB5 IDE only. It can be enhanced to support other program languages.

3). We find out the translating mapping rules from multimedia visual requirements

representation to UML representation according to the catalog of spatial (structure)

and temporal (behavior). Currently, the mapping rules are straight. In the future, the

rules maybe apply the concept of design patterns to represent system design more

feasible.

In another aspect, the translation system translates the VRAS script into XMI to

represent UML diagram. It is a kind of straight translation. From reserve engineering view,

the translation from UML diagram into multimedia visual representation is a quite

interesting research work in the future.

 61

Reference

[1] Deng-Jyi Chen, Wu-Chi Chen, Krishna M. Kavi, “Visual requirement representation”,
Journal of Systems and Software, V.61 n.2, p.129-143, March 2002

[2] Deng-Jyi Chen, Ming-Jyh Tsai, Chung-Yuan Huang, “Visual Based Software
Construction: Visual Requirement Authoring Tool and Visual Program Generator Visual
Based Software Construction: Visual Requirement Authoring Tool and Visual Program
Generator”, WSEAS Transaction on Systems, Issue 8, Volume 5, August, 2006, pp.1881-
1888. (IEE, EI)

[3] Ming-Jyh Tsai, “Generating User Interface for Mobile Devices Using Visual- Based User
Interface Construction Methodology”, N.C.T.U. Taiwan, Dissertation, 2006

[4] Jai-Chen Dai, “Visual-Based User Interface Generator”, N.C.T.U. Taiwan, Master Thesis,
2002

[5] Unified Modeling Language: Infrastructure Version 2.1.1, formal/2007-02-04 and
Superstructure Version 2.1.1, formal/2007-02-03, Object Management Group

[6] XML Metadata Interchange Specification, Version 2.0.1, formal/2005-05-06, Object
Management Group

[7] Ian Sommerville, Software Engineering, 7th edition, Addison-Wesley, 2004
[8] Charles N. Fischer and Richard J. LeBlanc, Jr., Crafting a Compiler with C,

Benjamin/Cummings, Baker & Taylor Books, 1991
[9] Timothy J. Grose, Gary C. Doney, Stephen A. Brodsky, Mastering XMI: Java

programming with XMI, XML, and UML, New York, John Wiley & Sons, 2002.
[10] Alan Shalloway, James R. Trott, Design Patterns Explained A New Perspective on

Object-Oriented Design Second Edition, Addison Wesley, 2004
[11] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software, Addison Wesley, 1995
[12] Doug Rosenberg, Kendall Scott, Use Case Driven Object Modeling with UML : A

Practical Approach, Addison-Wesley, 1999
[13] Fowler/著, 趙光正/譯, UML 精華第三版--標準物件模型語言, 碁峰出版, 2005
[14] Stanly B. Lippman & Josee Lajoie/著,侯捷/譯, C++ Primer 3rd edition 中文版, 碁峰出

版, 1999
[15] 智勝國際, http://www.caidiy.com/caidefault.htm
[16] TRUFUN UML CASE TOOL, http://www.trufun.net/
[17] C++ Builder, http://www2.borland.com.tw/tw/nw000218.html
[18] MVC, http://zh.wikipedia.org/wiki/MVC
[19] XML, http://www.w3.org/XML/
[20] FLEX, http://www.gnu.org/software/flex/manual/
[21] BISON, http://www.gnu.org/software/bison/

 62

[22] OMG, http::/www.omg.org/
[23] Software Engineering Laboratory of NCTU, http://cyber01.csie.nctu.edu.tw/

 63

Appendix A
Video player UI application construction through VRAS tool

A.1 User requirements description

The video player application includes two UIs (scenes).

UI-1 is the software demo screen with two functional buttons - a “Video player”

button for linking with UI-2 and a “Help” button linked to a web page.

UI-2 is a video player entry screen that contains several video player functions. The

functions include returning to UI-1, adjusting image size, adjusting the volume, playing video,

snapshot a still image, and saving image. This screen shows the video display area and

buttons for binding to video player function components.

User can play a video by pushing the play button; capture an image by pushing the

snapshot button; adjust image size to large (640*480 pixels), medium (320*240), or small

(160*240); adjust volume or save an image. In the requirements, there are two design screens

(or scenes):

A.2 Scenes creation and actor layout

At first, launch VRAS tool and opening a new project and the choosing a background

screen. Please see Figure 61. The buttons from left to right at the bottom of the screen are:

 Save: for saving screen information to a file.

 Interaction: for setting interaction attributes for scenes and actors.

 Path: for setting moving paths for actors.

 Button, text, video and image: for instantiating a new actors in the corresponding

types

 Preview: for previewing activity scenarios for the target application software.

 Back: for returning to the previous scene.

 Add: for adding a new screen.

 Next: for entering the function binding mode.

 64

Figure 61 Main UI of VRAS tool

Click “image” button to open “Import Picture” dialog. Add the beforehand image

actors into the gallery as shown in Figure 62.

Figure 62 Import Picture dialog

Table 3 lists the image that should be added into gallery for construction video player

UI application.

 65

Table 3 Image and its function

Image Function Image Function

 Scene 1 background

Video border

Video Player icon

Play video

 Help button Snapshot image

 Scene 2 background

Save image

Back icon

Image large size

Turn up volume

Image medium size)

Turn down volume

Image small size

Through VRAS tool, add two scenes and add theirs text actors and button actors. The

result (scene 1 and scene 2) shows in the Figure 63.

Figure 63 Scene 1 and Scene 2 for video player UI application

A.3 Interaction editing

After finish layout for the scene 1 and scene 2, a click on the “interaction” button

activates the interaction-setting mode for determining the actor’s dynamic behavior. Figure 64

illustrates the operation: clicking in scene 1 establishes a link to the scene 2. After using

the mouse to focus on the actor, drag the scene 2 screen to the container on the left hand

side in the screen. Now, the scene branch from scene 1 to scene 2 through actor is

established. In the same method, we can establish branch from scene 2 to scene 1. After finish

the interaction editing, the branch among scenes are shown in the Figure 65.

 66

Figure 64 Edit scene 1 and scene 2 relationships for video player UI application

Figure 65 Scene 1 and Scene 2 interaction relationships

A.4 Function binding

Click the Next and Binding buttons to enter the function binding system, select

VeoPlayer.dll file to binding function into the prelude scenario of scene 2. Other functions

binding operation are same above operation. Table 4 lists all of the actors and their binding

DLL files used in the video player UI application.

Table 4 Actors and its binding DLL file list

Actors DLL file Functions

 VideoDll.dll Prelude of scene 2

 VideoDll_Play.dll Video Play

 VideoDll_Shot.dll Snapshot

 VideoDll_Save.dll Save image

 VideoDll_Large.dll Image size (Large)

 67

 VideoDll_Mid.dll Image size (Medium)

 VideoDll_Small.dll Image size (Small)

VideoDll_SndPlus.dll Turn up volume

VideoDll_SndMinus.dll Turn down volume

Now, clicking on the video player button of scene 1 to branch to scene 2, and clicking

on play button brings up the image shown in Figure 66. The buttons , and are used

to adjust image size. The button is used to snapshoot a still image. The button is

used to save still image. The image buttons and are used to turn down/turn up volume.

Click button will go back to scene 1. The button is used to link to a web page.

Figure 66 Video player UI application

 68

Appendix B
 VRAS scripts for video player UI application system

EBP (eBook Project file):

UI-1:

[SCENEINFO]

 Title = "VidepPlayerSim"

 BackgroundImage = "@Sc000.jpg"

 BackgroundMusic = ""

 PreludeEffect = 0

 PlayMode = 2

 TextureImage = ""

 BackgroundColor = 0

[END_SCENEINFO]

[CASTDEFINE]

[CAST] MCBtn

Begin

 Name = Actor

 NowValue = 0

 Key = 0

 Position = 198 252 127

 Size = 70 70

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@VP.GIF"

 FrameCount = 1

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 0

 MouseDownIdxEnd = 0

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 0

 MouseOverIdxEnd = 0

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCText

Begin

 Name = Actor000

 NowValue = 0

 Key = 0

 Position = 209 91 127

 Size = 260 60

 Visible = 1

 DragMode = 2

 FontName = "Arial"

 FontSize = 24

 FontStyle = 0 0 0 0 123 60 255 // Bold Italic

Underline StrikeOut color(R, G, B)

 LineCount = 1

 Lines =

 "Software Demo"

 ArtWordStyle = 8

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

End

[CAST] MCText

Begin

 Name = Actor001

 NowValue = 0

 Key = 0

Position = 185 203 127

 Size = 200 60

 Visible = 1

 DragMode = 2

"[Scenes]"

"00000001" = "@Sc000"

"00000002" = "@Sc759"

 69

 FontName = "Arial"

 FontSize = 12

 FontStyle = 1 0 0 0 0 28 189 // Bold Italic

Underline StrikeOut color(R, G, B)

 LineCount = 1

 Lines =

 "Video Player"

 ArtWordStyle = 0

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

End

[CAST] MCBtn

Begin

 Name = Actor002

 NowValue = 0

 Key = 0

 Position = 548 352 127

 Size = 45 32

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Help.GIF"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 1

 MouseOverIdxEnd = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCText

Begin

 Name = Actor003

 NowValue = 0

 Key = 0

 Position = 554 399 127

 Size = 35 19

 Visible = 1

 DragMode = 2

 FontName = "Arial"

 FontSize = 12

 FontStyle = 1 0 0 0 255 8 8 // Bold Italic

Underline StrikeOut color(R, G, B)

 LineCount = 1

 Lines =

 "Help"

 ArtWordStyle = 0

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

End

[END_CASTDEFINE]

[PRELUDE]

{

}

[END_PRELUDE]

[INTERACTIVE]

ANCHOR Actor :

{

LMOUSECLICK:

{

 EBook.GotoScene("@Sc759");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

ANCHOR Actor002 :

{

LMOUSECLICK:

{

EBook.GotoURL("http://140.113.208.83/plate/we

b/blog.jsp?UI=dyson");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

 70

[END_INTERACTIVE]

[FINALE]

{

}

[END_FINALE]

[SUCCESS]

{

}

[END_SUCCESS]

[ERROR]

{

}

[END_ERROR]

[HELP]

{

}

[END_HELP]

[RULE]

 RULE 1:{}

 RULE 2:{}

 RULE 3:{}

 RULE 4:{}

 RULE 5:{}

[END_RULE]

[PRELUDE_COM]

{

}

[END_PRELUDE_COM]

[INTERACTIVE_COM]

[END_INTERACTIVE_COM]

[FINALE_COM]

{

}

[SUCCESS_COM]

{

}

[END_SUCCESS_COM]

[ERROR_COM]

{

}

[END_ERROR_COM]

[HELP_COM]

{

}

 [END_HELP_COM]

[RULE_COM]

 RULE 1:{}

 RULE 2:{}

 RULE 3:{}

 RULE 4:{}

 RULE 5:{}

[END_RULE_COM]

 71

UI-2:

[SCENEINFO]

 Title = "VidepPlayerSim"

 BackgroundImage = "@Sc759.jpg"

 BackgroundMusic = ""

 PreludeEffect = 0

 PlayMode = 2

 TextureImage = ""

 BackgroundColor = 0

[END_SCENEINFO]

[CASTDEFINE]

[CAST] MCBtn

Begin

 Name = Actor

 NowValue = 0

 Key = 0

 Position = 18 378 127

 Size = 36 32

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Back.GIF"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCBtn

Begin

 Name = Actor000

 NowValue = 0

 Key = 0

 Position = 548 72 127

 Size = 32 32

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Large.GIF"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 1

 MouseOverIdxEnd = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCBtn

Begin

 Name = Actor001

 NowValue = 0

 Key = 0

 Position = 548 152 127

 Size = 32 32

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Mid.GIF"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

MouseOverIdxBegin = 1

 MouseOverIdxEnd = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

 72

[CAST] MCBtn

Begin

 Name = Actor002

 NowValue = 0

 Key = 0

 Position = 548 222 127

 Size = 32 32

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Small.GIF"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 1

 MouseOverIdxEnd = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCBtn

Begin

 Name = Actor003

 NowValue = 0

 Key = 0

 Position = 436 332 127

 Size = 36 24

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Shot.GIF"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 1

 MouseOverIdxEnd = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCBtn

Begin

 Name = Actor004

 NowValue = 0

 Key = 0

 Position = 282 329 127

 Size = 30 28

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Play.GIF"

 FrameCount = 1

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 0

 MouseDownIdxEnd = 0

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 0

 MouseOverIdxEnd = 0

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCText

Begin

 Name = Actor006

 NowValue = 0

 Key = 0

 Position = 278 372 127

 Size = 40 19

 Visible = 1

 DragMode = 2

 FontName = "Arial"

 FontSize = 14

 FontStyle = 1 0 0 0 0 69 255 // Bold Italic

Underline StrikeOut color(R, G, B)

LineCount = 1

 Lines =

 "Play"

 ArtWordStyle = 0

 73

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

End

[CAST] MCText

Begin

 Name = Actor007

 NowValue = 0

 Key = 0

 Position = 414 371 127

 Size = 42 22

 Visible = 1

 DragMode = 2

 FontName = "Arial"

 FontSize = 14

 FontStyle = 1 0 0 0 8 56 255 // Bold Italic

Underline StrikeOut color(R, G, B)

 LineCount = 1

 Lines =

 "Snapshot"

 ArtWordStyle = 0

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

End

[CAST] MCText

Begin

 Name = Actor008

 NowValue = 0

 Key = 0

 Position = 17 414 127

 Size = 37 18

 Visible = 1

 DragMode = 2

 FontName = "Arial"

 FontSize = 12

 FontStyle = 1 1 0 0 239 138 255 // Bold Italic

Underline StrikeOut color(R, G, B)

 LineCount = 1

 Lines =

 "Back"

 ArtWordStyle = 0

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

End

[CAST] MCAnim

Begin

 Name = Actor009

 NowValue = 0

 Key = 0

 Position = 66 22 127

 Size = 440 278

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Border.jpg"

 FrameCount = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 0

 TextStyle = (0,0) (0,0) "" 0 0 0 0 0 0 0 1 1

 TextCount = 0

 TextLines = ""

 PathFinalSize = -1 -1

End

[CAST] MCBtn

Begin

 Name = Actor010

 NowValue = 0

 Key = 0

 Position = 99 326 127

 Size = 35 35

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@SndMinus.gif"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 1

 MouseOverIdxEnd = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

 74

End

[CAST] MCBtn

Begin

 Name = Actor011

 NowValue = 0

 Key = 0

 Position = 143 327 127

 Size = 33 31

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@SndPlus.gif"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 1

 MouseOverIdxEnd = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCText

Begin

 Name = Actor012

 NowValue = 0

 Key = 0

 Position = 100 369 127

 Size = 42 22

 Visible = 1

 DragMode = 2

 FontName = "Arial"

 FontSize = 14

 FontStyle = 1 0 0 0 0 48 247 // Bold Italic

Underline StrikeOut color(R, G, B)

 LineCount = 1

 Lines =

 "Volume"

 ArtWordStyle = 0

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

End

[CAST] MCBtn

Begin

 Name = Actor013

 NowValue = 0

 Key = 0

 Position = 548 330 127

 Size = 42 24

 Visible = 1

 Speed = 10

 DragMode = 2

 PicFile = "@Save.GIF"

 FrameCount = 2

 MouseInitIdxBegin = 0

 MouseInitIdxEnd = 0

 MouseDownIdxBegin = 1

 MouseDownIdxEnd = 1

 MouseOutIdxBegin = 0

 MouseOutIdxEnd = 0

 MouseOverIdxBegin = 1

 MouseOverIdxEnd = 1

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

 MirrorLR = 0

 MirrorUD = 0

 Transparent = 1

End

[CAST] MCText

Begin

 Name = Actor014

 NowValue = 0

 Key = 0

 Position = 548 290 127

 Size = 42 22

 Visible = 1

 DragMode = 2

 FontName = "Arial"

 FontSize = 14

 FontStyle = 1 0 0 0 0 44 247 // Bold Italic

Underline StrikeOut color(R, G, B)

 LineCount = 1

 Lines =

 "Save"

 ArtWordStyle = 0

 SegmentCount = 1

 Segment0 = -1 -1 1 1 5 "" 0

 SegmentIndex = 0

 PlayWhenStart = 0

End

 75

[END_CASTDEFINE]

[PRELUDE]

{

 AppLink.LoadDll("VideoDll.dll", "287",

"160");

}

[END_PRELUDE]

[INTERACTIVE]

ANCHOR Actor :

{

LMOUSECLICK:

{

 EBook.GotoScene("@Sc000");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

ANCHOR Actor000 :

{

LMOUSECLICK:

{

 AppLink.LoadDll("VideoDll_Large.dll", "-

800", "-800");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

ANCHOR Actor001 :

{

LMOUSECLICK:

{

 AppLink.LoadDll("VideoDll_Mid.dll", "-800",

"-800");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

ANCHOR Actor002 :

{

LMOUSECLICK:

{

 AppLink.LoadDll("VideoDll_Small.dll", "-

800", "-800");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

ANCHOR Actor003 :

{

LMOUSECLICK:

{

 AppLink.LoadDll("VideoDll_Shot.dll", "-800",

"-800");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

ANCHOR Actor004 :

{

LMOUSECLICK:

{

 AppLink.LoadDll("VideoDll_Play.dll", "-800",

"-800");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

 76

ANCHOR Actor010 :

{

LMOUSECLICK:

{

 AppLink.LoadDll("VideoDll_SndMinus.dll", "-

800", "-800");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

ANCHOR Actor011 :

{

LMOUSECLICK:

{

 AppLink.LoadDll("VideoDll_SndPlus.dll", "-

800", "-800");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

ANCHOR Actor013 :

{

LMOUSECLICK:

{

 AppLink.LoadDll("VideoDll_Save.dll", "-800",

"-800");

}

LMOUSEDOUBLECLICK: {}

RMOUSECLICK: {}

RMOUSEDOUBLECLICK:{}

DRAGDROP: {}

DRAGOVER: {}

MOUSEENTER:{}

MOUSELEAVE:{}

}

[END_INTERACTIVE]

[FINALE]

{

}

 [END_FINALE]

[SUCCESS]

{

}

[END_SUCCESS]

[ERROR]

{

}

[END_ERROR]

[HELP]

{

}

[END_HELP]

[RULE]

 RULE 1:{}

 RULE 2:{}

 RULE 3:{}

 RULE 4:{}

 RULE 5:{}

[END_RULE]

[PRELUDE_COM]

{

}

[END_PRELUDE_COM]

[INTERACTIVE_COM]

[END_INTERACTIVE_COM]

[FINALE_COM]

{

}

[END_FINALE_COM]

[SUCCESS_COM]

{

}

[END_SUCCESS_COM]

 [ERROR_COM]

{

}

[END_ERROR_COM]

[HELP_COM]

{

}

[END_HELP_COM]

[RULE_COM]

 RULE 1:{}

 RULE 2:{}

 RULE 3:{}

 RULE 4:{}

 RULE 5:{}

[END_RULE_COM]

 77

Appendix C
UML Diagram Representation for Video player UI

application system

Figure 67 Class diagram for story scenes hierarchy Figure 68 State diagram story scenes branch

Figure 69 Class diagram for actors hierarchy within
scene 1

Figure 70 Sequence diagram for “video play”
scenario in the scene 1

Figure 71 Sequence diagram for “help” scenario in
the scene 1

Figure 72 Class diagram for actors hierarchy within
scene 2

Figure 73 Sequence diagram for “prelude” scenario
of scene 2

Figure 74 Sequence diagram for “back” scenario in
the scene 2

 78

Figure 75 Sequence diagram for “play video”
scenario in the scene 2

Figure 76 Sequence diagram for “image zoom in”
scenario in the scene 2

Figure 77 Sequence diagram for “image normal
size” scenario in the scene 2

Figure 78 Sequence diagram for “image zoom out”
scenario in the scene 2

Figure 79 Sequence diagram for “sound plus”
scenario in the scene 2

Figure 80 Sequence diagram for “sound minus”
scenario in the scene 2

