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The ambiguity problem of the marching
cubes method can be solved by construct-
ing isosurfaces that are topologically con-
sistent with the trilinear interpolant. This
can be achieved by computing the saddle
values of the interpolant. In this note, we
analyze the trilinear interpolant and de-
rive an efficient method of computing the
saddle values.
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1 Introduction

The marching cubes method (Lorensen 1987) is
a popular technique for visualizing a set of volume
data. This method uses 15 base cases to construct
polygons for each cube to approximate the
isosurfaces F(x, y, z)"t for various values of t.
The advantages of the polygon-based approach
make it easy to adopt the technique on hardware
platforms and to execute it efficiently. Un-
fortunately, the method has an ambiguity prob-
lem that causes anomalies in the rendered
images (Durst 1988).
Several improved approaches have been proposed
(Montani et al. 1994; Nielson et al. 1991; Pasco
1988; Wilhelms and Gelder 1990). These methods
try to resolve ambiguous situations by preventing
possible ‘‘holes’’ in the isosurfaces. However, these
approaches could introduce the topological in-
consistency problem (Natarajan 1994), which
confuses our perception of the observed objects,
especially when supersampling the original data is
necessary.
In 1994, Natarajan developed a technique that
computes topologically consistent isosurfaces by
examining the saddle values of a trilinear interpo-
lant. This technique also improves the method
proposed by Pasco in 1988, which investigated
saddle values for the bilinear interpolant only.
In this note, we analyze the trilinear interpolant.
We show that the cost for computing the body
saddle value can be reduced.

2 An alternative method
for computing the saddle value

A more efficient method for computing saddle
values is obtained by factorization of the interpo-
lant. We now discuss the 2D case.
A 2D bilinear interpolant B(x, y) defined in a
square enclosed by four vertices p
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(Fig. 1) is

B(x, y)"axy#bx#cy#d, (1)
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. The bilinear interpo-

lant B(x, y) can be factorized into

B(x, y)"a(x#c/a) (y#b/a)#d!bc/a.
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Fig. 1a–c. P is the saddle point that must be inside the square.
The two asymptotes partition the square into four quadrants
that are ordered as shown in a. If a ·D'0, the hyperbola lies in
quadrants 1 and 3 (see b). Otherwise the hyperbola lies in
quadrants 2 and 4 (see c)

Whenever a threshold t is given, function B"t
can be written as

B!t"0"aAx#
c
aBAy#

b
aB!D, (2)

where D"t!d#bc/a.
Geometrically, Eq. 2 is a hyperbola centered at
point P"(!c/a, !b/a). P must lie in the square
enclosed by p
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proved by arguing that 04!c/a, !b/a41 as
follows. Note that !c/a"(v
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10are both positive or both negative in the ambigu-
ous situations, !c/a must be greater than 0
and less than 1. Similar discussions leads to
04!b/a41. Since P lies inside the square, the
pair of asymptotes of the hyperbola partition the
square into four quadrants as shown in Fig. 1a.
If a and D are both positive or both negative, then
the hyperbola lies in the first and third quadrants.
In this case, v

10
and v

01
are connected (Fig. 1b).

Similarly, if one of a and D is positive and the
other is negative, then the hyperbola lies in the
second and fourth quadrants. v

00
and v

11
are

connected (Fig. 1c). In fact, P and D are the face
saddle point and the face saddle value, respectively.
The same discussions can be extended to a trilinear
interpolant. A trilinear interpolant F interpo-
lating the values in a cube can be expressed as
follows:

F(x, y, z)"axyz#bxy#cyz#dxz

#ex#fy#gz#h, (3)

where coefficients a, b,2, h are computed dir-
ectly from v

000
, v

001
,2, v

111
(Lin and Ching 1996).

If we fix x and factorize F, then we have

F(x, y, z)"(ax#c)Ay#
dx#g
ax#c B

]Az#
bx#f
ax#cB#SA, (4)

where

SA"ex#h!(dx#g) (bx#f )/(ax#c). (5)

For a fixed value of x, Eq. 4 is a bilinear interpo-
lant as discussed in the 2D case. The saddle point
(x

s
, y

s
, z

s
) of this bilinear function can be repre-

sented parametrically as

SP"Ax,!
dx#g
ax#c

, !
bx#f
ax#cB , (6)

and the saddle value is SA.
If the x-coordinate of the body saddle point of F is
known, the body saddle value SA can be obtained
directly by evaluating Eq. 5. That is to say, the
simplest way to get the body saddle value is first
to compute

x
s
"

1
aA!c$S2

(af!bc) (cd!ag)
ae!bd B

and then substitute x
s
into Eq. 5.

3 Conclusions

The connectivity of the vertices of a 3D cube is
determined by six face saddle values and one body
saddle value.
Our analysis did not lead to a more efficient way
to compute the face saddle values. Two multipli-
cations and one addition operation are needed to
obtain a face saddle value. To compute the body
saddle value, Natarajan needs 26 multiplications,
18 additions, and 1 unit computation of square
root arithmetic operations. In total, there are 38
multiplications and 24 additions, plus 1 square
root arithmetic to determine the connectivity of
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vertices. Our analysis in this note could not elim-
inate the square root operation. However, we can
reduce the number of multiplications from 26 to
13, and the number of addition operations from
18 to 10. In total, 25 multiplications and 18 addi-
tions are required.
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