
國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

以 CMMI 為基礎的多媒體學習內容

開發流程品質管制方法

A CMMI-Based Quality Control Method

for Multimedia Learning Contents Developing Process

研 究 生：連瑞斌

指導教授：陳登吉 教授

中 華 民 國 九 十 六 年 七 月

以 CMMI 為基礎的多媒體學習內容

開發流程品質管制方法

A CMM-Based Quality Control Method

for Multimedia Learning Contents Developing Process

研 究 生：連瑞斌 Student：Rui-Bin Lien

指導教授：陳登吉 Advisor：Deng-Jyi Chen

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

July 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

 i

以 CMMI 為基礎的多媒體學習內容

開發流程品質管制方法

學生：連瑞斌 指導教授：陳登吉 博士

國立交通大學資訊學院 資訊學程碩士班

Abstract (Chinese)
摘 要

由於網際網路以及通訊技術的成熟，使得多媒體內容可在一般的電腦自由流

通及呈現，同時使得多媒體教材市場的需求量大為增加。如何運用低成本及高效

率的方式來設計出高品質的多媒體教材，是當前學界及業界所需面對的重要議

題。為了提昇多媒體教材的品質水準，首先必須了解造成品質問題的相關因素，

並針對該因素建立一套有效的品質管制機制。在本研究中發現，造成品質問題的

原因有二：(1)來自於多媒體教材本身內容腳本設計是否達到學習者的學習標的

以及內容呈現效果的吸引性；(2)來自於多媒體教材開發過程當中，往往會因為

內部或外部顧客的要求，而不斷的變更原始設計所造成的。其中在教材開發過程

中由於缺少有效的控管措施而造成的品質不良。

由於目前多媒體教材設計皆遵循國際性通用標準如SCORM規範來開發，並

無法保證可製作出高品質的多媒體教材。因此本研究以卡內基美隆大學的軟體工

程研究所提出，在國際上具有學界及業界公信力的軟體品質標準能力成熟度整合

模式CMMI為基礎，針對多媒體教材開發流程，提出“多媒體教材品質管制方

法＂。此品質管制方法可提供多媒體教材開發過程“不一致性偵測＂機制，以協

助多媒體教材在協同設計環境下，避免因為變更設計而產生不一致性的品質問

題。最後藉由Client-Server架構，設計一個多媒體教材品質管制系統，來顯示本

研究所提出的概念具有可行性及適用性。

關鍵字：能力成熟度整合模式、軟體工程、品質管制、數位學習

 ii

A CMMI-Based Quality Control Method

for Multimedia Learning Contents Developing Process

Student：Rui-Bin Lien Advisor：Dr. Deng-Jyi Chen

Degree Program of College of Computer Science
National Chiao Tung University

Abstract (English)

Abstract

The third industrial revolution in the twenty-first-century, led by the internet and
information telecommunication technology, has made the multimedia learning
contents (MLCs) creators and learners using multimedia for presentation in a major
trend in education and for both the academic community and industrial sectors,
researchers are seeking for better methodologies to design high-quality MLCs. To
improve the quality level of MLCs, we need to understand the related factors and then
design an efficient quality control mechanism. This thesis study addresses two quality
issues: (1) whether the script design of the MLCs fulfills the learning objective, and
whether it is attractive enough; (2) in the MLCs developing process, various changes
of original requirements or designs may be continuously requested from either inner
or exterior customers; if there is a lack of effective control and management
mechanisms, there may be causing quality problems.

Currently, although the design of MLCs follows international standards such as

the SCORM, but this still does not guarantee the high-quality of MLCs. Therefore,
this research employs the CMMI developed by the software engineering institute (SEI)
of Carnegie Mellon University, to develop a quality control method for MLCs
creators. This MLCs quality control (MQC) method includes an inconsistent detection
mechanism in the MLCs developing process, so as to avoid quality problems due to
continuous changes in design under a collaboration environment. The feasibility and
compatibility of the proposed methodology will be demonstrated through a
client-server system implementation that integrated into MQC system.

Keywords: Capability Maturity Model Integrated (CMMI), Software Engineering,

Quality Control, e-Learning.

 iii

誌 謝

在交通大學兩年的研究所求學生涯中，承蒙恩師陳登吉教授於悉心指導及與

諄諄教誨，使本論文研究得以順利完成。陳教授是一位認真負責的傑出教授，在

學術上的專業涵養及平日的待人處事都讓學生獲益良多，在平日繁忙的時間裡，

陳教授不辭辛勞的在研究方法與作學問的態度給予指導，在生活應對與待人處世

的態度上亦諄諄教誨，在此獻上最誠摯的感謝。

此外感謝本論文的口試委員游寶達教授、洪茂盛教授、孔崇旭教授在論文審

查期間，對本論文所提出的寶貴建議及修正意見，使整體論文更加充實，在此亦

表達最誠摯的感謝。在求學的這段期間，特別感謝的蔡明志學長所給予的建議與

協助，也恭喜學長獲得博士學位。此外感謝鍾貴榮學長、同窗林賢忠、學弟翁浚

恩、謝佳成以及實驗室學弟妹們，無論在生活上以及課業上所提供的許多寶貴意

見，讓我能順利完成學業。

最後特別感謝我的父母與親愛的家人，因為有你們在背後的支持、栽培與鼓

勵，使我得以專心在研究的路上繼續鑽研。在此謹以此篇論文獻給所有關心我的

長官、老師、家人以及所有曾經幫助我的人，願與他們一同分享這份喜悅與榮耀。

 iv

Contents
ABSTRACT (CHINESE) i

ABSTRACT ii

ACKNOWLEGEMENT (CHINESE) iii

CONTENTS iv

LIST OF FIGURES v

LIST OF TABLES vii

CHAPTER 1 INTRODUCTION 1

1.1 GENERAL REVIEW 1

1.2 BACKGROUND 2

1.3 PROPOSED APPROACH 4

1.4 MOTIVATION 6

1.5 OBJECTIVE 6

1.6 THESIS ORGANIZATION 7

CHAPTER 2 RELATED WORK 7

2.1 SHARABLE CONTENT OBJECT REFERENCE MODEL 8

2.2 MULTIMEDIA LEARNING OBJECT 13

2.3 CAPABILITY MATURITY MODEL INTEGRATION 15

2.4 CAUSES OF INCONSISTENCIES 21

2.5 DETECTING AND IDENTIFYING INCONSISTENCIES 23

2.6 HANDLING INCONSISTENCIES 24

CHAPTER 3 DESIGN METHODOLOGY 25

3.1 MLCs PROCESS LIFE CYCLE 25

3.2 MLCs BIDIRECTIONAL TRACEABILITY MATRIX 27

3.3 MLCs DIRECTED ACYCLIC GRAPH 32

3.4 INCONSISTENCY DETECTION CAPABILITY DESIGN 34

CHAPTER 4 SYSTEM IMPLEMENTATION 37

4.1 SYSTEM DEVELOPMENT TOOLS 37

4.2 SOFTWARE ARCHITECTURE 38

4.3 MLCs DEPENDENCY EDITOR 40

4.4 MLCs CHANGE DETECTOR 41

4.5 MLCs INCONSISTENT DETECTOR 42

CHAPTER 5 AN USAGE EXAMPLE FOR MQC SYSTEM 46

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 59

6.1 CONCLUSIONS 59

6.2 FUTURE WORK 60

REFERENCE 61

 v

List of Figures

Figure 1.1 Activities by percentage of total development staff effort. 4

Figure 1.2 Requirements management (REQM) context diagram 5

Figure 2.1 File types of Assets 10

Figure 2.2 Example of Content Aggregation (CA) 11

Figure 2.3 Content Package (CP) conceptual diagram 12

Figure 2.5 The frameworks quagmire 15

Figure 2.6 CMMI History 16

Figure 2.7 CMMI derivation 17

Figure 2.8 CMMI maturity framework 18

Figure 2.9 CMMI stage representation 20

Figure 3.1 MLCs process flow chart 26

Figure 3.2 MLCs directed acyclic graphic (MDAG) 32

Figure 4.1 System architecture 38

Figure 4.2 Functional model of the MQC system 39

Figure 4.3 The screen shot of MLCs dependency editor (MDE) 41

Figure 4.4 The state diagram of MLCs change detector (MCD) 42

Figure 4.5 A MDAG of MLCs inconsistency detector (MID) 44

Figure 4.6 The change impact patterns of MID 44

Figure 4.7 The screen shot of MLCs inconsistency detector (MID) 45

Figure 5.1 Example of original MLCs material 47

Figure 5.2 Selecting a section of original teaching material 47

Figure 5.3 Analyzing a section of original teaching material 48

Figure 5.4 Example of the storyboard in primary draft design phase. (Part 1) 49

Figure 5.5 Example of the storyboard in primary draft design phase. (Part 2) 49

Figure 5.6 Example of the storyboard in primary draft design phase. (Part 3) 50

Figure 5.7 Example of the storyboard in primary draft design phase. (Part 4) 50

Figure 5.8 Example of the storyboard in secondly detail design phase. (Part 1) 51

Figure 5.9 Example of the storyboard in secondly detail design phase. (Part 2) 51

Figure 5.10 Example of the storyboard in secondly detail design phase. (Part 3) 52

Figure 5.11 Example of the UI layout in secondly detail design phase. (Part 1) 52

Figure 5.12: Example of the multimedia actor list in secondly detail design phase 53

Figure 5.13 The screen shot of a multimedia learning object “What is on the mat?” 53

Figure 5.14 The screen shot of MQC system “Login” module 54

Figure 5.15 The screen shot of MQC system “Create” module 54

 vi

Figure 5.16 The screen shot of MQC system “Edit” module 56

Figure 5.17 The screen shot of MQC system “Modify” module 57

Figure 5.18 The MLCs directed acyclic graph (MDAG) of a multimedia learning object
“What is on the mat?”

57

Figure 5.19 The screen shot of multimedia actors 58

Figure 5.20 The screen shot of a multimedia authoring tool 58

Figure 5.21 The screen shot of multimedia actor list report 59

Figure 5.22 The screen shot of inconsistency report 59

 vii

List of Tables

Table 1.1 The cost of correcting software errors 3

Table 3.1 Phases and activities in MLCs development process 27

Table 3.2 An example of storyboard 30

Table 3.3 MLCs forward dependency matrix (MFDM) 31

Table 3.4 MLCs backward dependency matrix (MBDM) 32

 1

Chapter 1
Introduction

1.1 General Review

The third industrial revolution in the twenty-first-century, led by the internet and

information telecommunication technology, has made the multimedia learning contents

(MLCs) creators and learners using multimedia for presentation in a major trend in

education and for both the academic community and industrial sectors, researchers are

seeking for better methodologies to design high-quality MLCs. To improve the quality

level of MLCs, we need to understand the related factors and then design an efficient

quality control mechanism. This thesis study addresses two quality issues: 1) whether the

script design of the MLCs fulfills the learning objective, and whether it is attractive

enough; 2) in the MLCs developing process, various changes of original requirements or

designs may be continuously requested from either inner or exterior customers; if there is

a lack of effective control and management mechanisms, there may be causing quality

problems. [24]

Currently, although the design of MLCs follows international standards such as the

SCORM, but this still does not guarantee the high-quality of MLCs.[20][21][22][23] To

develop high quality multimedia learning contents, two quality issues are considered

1. The quality of the learning contents itself: The quality of the domain knowledge of

learning contents itself relies mainly upon the creativity of content creators, such as

interesting materials (attractive stories and scripts) and vivid presentation (art and

music design). This aspect depends on the subjective judgments from readers to

readers, instead of technological developments.

 2

2. The quality in the learning contents developing process: This relies upon proper

quality control mechanisms. This issue can therefore be evaluated using some

objective metrics, and it is the main issue in this research.

In order to interact with users and integrate learning contents and multimedia

elements (text, pictures, animations, videos, and music), a digital software format is most

fitting for the container of modern multimedia learning contents. This has the multiple

advantages of interactivity, exchangeability, portable ability and reusability, but also

retains the traditional weaknesses of software design. The digital software format requires

one or many digital editing software tools during the developing process, so traditional

quality problems exist. These quality problems are the main object of "system

engineering" [16].

Multimedia learning contents have the characteristics of dual professional realms:

"education" and "software." As already mentioned, the SCORM standard does not

guarantee a high quality product. The reason is that the SCORM is purely a multimedia

learning contents aggregation design standard, lacking the developing process and quality

requirements of developing digital learning contents. Therefore, to develop high quality

multimedia learning contents, international digital learning contents standards such as the

SCORM are not sufficient. The theoretical basis and process standards of "system

engineering" also need to be fulfilled.

1.2 Background

At present, in the software engineering field, the CMMI developed by the Software

Engineering Institute (SEI) of Carnegie-Mellon University is widely adopted. According

to the CMMI, it is known that under a collaboration process of software development,

lack of a stable developing process and good developing standards will cause a problem

 3

in the final integration phase of the developing process, when different software modules

designed by different team members are found to be in conflict. This will result in delay

of the due date, rise of developing costs, complaints of customer, and low morale of the

developing team [7][8].These problems in traditional software developing processes are

also prone to occur in the developing process of multimedia learning contents.

Table11.1: The cost of correcting software errors

(Source: Hughes department of defense software error history)

According to a research based on 13,000 IT case studies in 2003, 15% are found to

be complete failures, 51% face serious challenges, and only 34% projects are successful

[4].This explains why multimedia learning contents developed according to a software

format face so many complaints from customers relating to quality problems. As the

research of R.C. Lee and W.M. Tepfenhart shows (Table 1.1) [4], 55% of mistakes come

from the requirement analysis phase in the developing process. Therefore, if mistakes can

be avoided in this phase, then the lowest cost for revision is only 20% of the design phase,

or 1% of the maintenance phase. Hence, it is established that using proper software

engineering technologies during the requirements analysis phase can efficiently decrease

mistakes in the multimedia learning contents and lower developing costs.

Furthermore, a software developing methodology that is developed by the Software

Engineering Laboratory (SEL) of National Aeronautics and Space Administration

(NASA) argues that the requirements analysis phase exists in any phase of the software

 4

developing life cycle in a gradually decreasing state [6], as Figure 1.1 shows. This is

different from traditional software developing models, such as the Water-fall model [14].

This explains why, in the multimedia learning contents developing process, changes

made to meet the needs of inner or exterior customers will result in inconsistency quality

problem of multimedia learning contents.

Figure11.1: Activities by percentage of total development staff effort
(Source: NASA, recommended approach to software development)

1.3 Proposed Approach

To resolve quality problems due to dynamic changes in requirements during the

developing process, this research uses the Process Area (PA) of Requirement

Management (REQM) related practices in the CMMI, as follows [7]:

SG 1 Manage Requirements

SP 1.1 Obtain an Understanding of Requirements

SP 1.2 Obtain Commitment to Requirements

SP 1.3 Manage Requirements Changes

 5

SP 1.4 Maintain Bidirectional Traceability of Requirements

SP 1.5 Identify Inconsistencies between Project Work and Requirements

The SEI of Carnegie Mellon University also offers a context diagram for

Requirement Management (REQM), as Figure 1.2 shows [8], and presents the relations

among various standards. This research takes these five practices and the context diagram

as foundation, in order to develop a multimedia learning contents (MLCs) developing

process called the MLCs Quality Control (MQC) model. This MQC model provides an

inconsistent detection mechanism for the developing process of MLCs under a

collaboration environment, to avoid quality problems due to inconsistency.

Figure21.2: Requirements Management (REQM) context diagram

(Source: Introduction to CMMI V 1.1 by Carnegie Mellon University)

 6

1.4 Motivation

At any phases in the multimedia learning contents (MLCs) developing process,

whether in the modification of the original designs or multimedia objects, the

inconsistency phenomenon can easily happen and cause many latent unstable factors in

the multimedia final products. This kind of quality problem may influence the end user of

the MLCs, including the satisfaction and desire to use the product of the teacher or

student. That also results in the embarrassing situation for the design staff of endless

required debugs, causes the delay of due-date, and increases development costs and the

loss of market competitiveness for the company.

Because of the need of preventing protecting inconsistency phenomenon occurs on

MLCs elements at any phases of developing process life cycle and the lack of entire

solution for MLCs quality control (MQC) model, it is an urgent demand of providing an

integrated MQC solution for MLCs developing process in this digital world.

1.5 Objective

This thesis will focus on developing a CMMI-based, integrated and server-client

system for multimedia learning contents (MLCs) designers to reveal inconsistency

phenomenon on MLCs elements at any phases of developing process life cycle. This tool

includes extra reports which are relative to MLCs information such as inconsistency

components and MLCs components process status, and then may be used to assist the

matching requirements of CMMI relative practices. A tool helping MLCs designers or

MLCs quality review stakeholder easily execute collaboration operations on web-based

software environment.

 7

1.6 Thesis Organization

The remains of this thesis are structured as follows: the background and relative

literatures about this research is described in Chapter 2. Then, Chapter 3 discusses the

details of MLCs quality control (MQC) mechanism and inconsistent detection capability

we proposed. Chapter 4 introduces the architectural definition of a MQC system with

client-server structure. Chapter 5 presents an example to explain the appliance of this

MQC model to demonstrate the feasibility and the applicability of this system. Finally,

we summarize the contribution and conclusion of this research and present

recommendations for further research in Chapter 6.

 8

Chapter 2
Related Work

In this chapter, we will review learning object and the foundation of Sharable

Content Object Reference Model (SCORM), Multimedia Learning Objects, Capability

Maturity Model Integration (CMMI), causes of inconsistencies, detecting and identifying

inconsistencies of software for handling inconsistencies.

2.1 Sharable Content Object Reference Model

Since 1997, Advanced Distributed Learning (ADL) made efforts on Sharable

Content Object Reference Model (SCORM) as the standard specification for the LMS

and sharable content, it declared to save learner time in terms of output performance

because it not only made learner browses course content more easily on the web, but also

gave a more high interoperable learning content. In the long term, verifying content

quality and taking an accounting management for content’s reusing and sharing can be

assigned to an independent third party or an institute of official government.

The SCORM aims to coordinate emerging-technologies and commercial and/or

public implementations, including the Meta-data Dictionary from IEEE Learning

Technology Standards Committee (LTSC), Content Packaging from the IMS Global

Learning Consortium, Inc., and Data Model and Communication from the Aviation

Industry CBT (Computer-Based Training) Committee (AICC). The SCORM makes

course content sharable by way of two steps. Firstly, standardizing courseware content as

package with structured metadata file must be made if content is developed. Secondly, a

content package can be delivered in SCORM-compliant learning management system.

 9

SCORM consists of two parts. One is the Content Aggregation Model (CAM), which is

used to define course components and then to pack them with organization, manifest and

java script files together. The output of this packing format makes exchanging course

content possible. The other one is the Run-Time Environment, which defines a common

way to start course content, and to communicate with a learning management system

during its execution. The definition for the four areas of SCORM follows

[20][21][22][23]:

 Reusable: Content is independent of learning context. It can be used in

numerous training situations or for many different learners with any number of

development tools or delivery platforms.

 Accessible: Content can be identified and located when it is needed and as it is

needed to meet training and education requirements. As the definition, the goal

of SCORM is to create flexible learning materials by ensuring content that is

reusable, interoperable, durable, and accessible, regardless of the content

delivery and management system.

 Durable: Content does not require modification to operate as software systems

and platforms are changed or upgraded.

 Interoperable: Content will function in multiple applications, environments,

and hardware and software configurations regardless of the tools used to create

it and the platforms on which it is delivered.

SCORM achieves its goal with the use of Sharable Content Object (SCOs), which

are composed of assets. In order to identify SCOs, assets, or any other types of learning

materials, ADL proposed “metadata”, which means “data about data”, to identify and

locate learning materials by managers, learners, designers, programmers and others who

are interested in education. Units in SCORM are introduced from the lowest level (asset)

 10

to the highest level (course) in the following sections.

2.1.1 Assets
Assets are the smallest physical units in SCORM. They are electronic

representations of media, such as texts, audios, web pages, assessment objects, and other

pieces of data, that can be delivered to a Web client (Figure 2-1)[20]. In order to be

reused, assets must be described with metadata. Assets may be reusable in many contexts

and applications by searching in online instructional repositories.

Figure 2.1: File types of Assets

2.1.2 Sharable Content Object
A Sharable content object (SCO) is a collection of assets that becomes an

independent, defined piece of learning material. SCOs are the smallest logical unit of

instruction you can deliver and track via a learning management system [20]. It is

important that SCOs cannot directly access other SCOs. In addition, each SCO should be

able to stand alone. A SCO could be a learning object, segment, lesson, module, chapter,

or unit. Instructors can design the “role”, what a SCO play in their own way. The term of

 11

SCO may have different meaning for different users. For an instructor, SCO means

instructional content. For a programmer, SCO is a pointer in the source code when they

create manifest or content package. With the usage of metadata described for SCO,

authors can search, discover, reuse, and aggregate SCO within content repositories.

2.1.3 Content Aggregation
A Content Aggregation (CA) is defined as a parent and its children in a tree

structures. They are used to group related content so that it can be delivered to the learner

in the manner the designer describes [21]. CA is the process of aggregating resources into

a defined structure to build a particular learning experience (Figure 2-2). In other words,

it is composed of one or many SCOs or another aggregation. It is also a course material

structure without sequencing rule in teacher or student’s views. In Figure 2-2, there are

two types of resources—SCOs and Assets. Resources are integrated into the hierarchical

content structure.

Figure 2.2: Example of Content Aggregation (CA)

 12

2.1.4 Content Package
Content Package (CP) is based on IMS Content Packaging Specification which

describes data structures used to provide interoperability of Internet-based content with

authoring tools, learning management systems, and run-time environments. The purpose

of content packaging is to provide a standardized way to exchange digital learning

resources between different systems or tools [21]. A content package contains two

components: manifest and physical file. Manifest will be introduced in the next section.

(Figure 2.3) The physical files may be local files that are actually contained within the

content package or be external files that are referenced by a Universal Resource Locator

(URL). A content package may be part of a course, a unit of learning object, or an entire

course. It should be able to stand alone. When the content package arrive its destination,

it allows itself to be disaggregated or aggregated.

Figure 2.3: Content Package (CP) conceptual diagram

 13

2.1.5 Manifest
A manifest is a document that contains a structured inventory of the content of a

package (Figure 2.3) [20]. A manifest describes how the content is organized. In addition,

a manifest translates source code from content structure to Web files by transfer content

structure and behavior, and the list of the references to the source in the package.

2.1.6 Content Structure
Content structure is a basic tool to define the course structure by courseware

designers. Content structure defines a mechanism that can be used to aggregate learning

resources into a cohesive unit of instruction (e.g., course, chapter, module, etc.),

application structure and associate taxonomies [21].

2.2 Multimedia Learning Object

Educational content can be of any size and format and sometimes in mixed formats.

Moreover, educational content can be presented as text, graphics, animated graphics,

audio, video, logic, or a combination of any type of multimedia. The associated metadata

represents a standardized set of rules and methods that allow collecting and processing

this content in many perspectives such as learners, content providers. Therefore, a

learning object can be defined as a structured electronic resource that encapsulates its

metadata based on SCORM specifications that consists of learning object description,

keyword, ownership, and so on. For school teachers, one obstacle to the spread of online

course is the mismatch between what they really need–customized courses that are

tailored to the course object and its unique schooling culture, and what they can afford.

Creating even one e-learning course from scratch can take several months and involve

 14

many domain experts. Thus, most school teachers are stuck with classroom teaching. To

resolve this status, we must define “Learning object” and its metadata (Learning Object

Metadata). The associated metadata represents a standardized set of rules and methods

that allow collecting and processing this content [18].

As stated in the specification of IEEE’s Learning Objects Metadata (LOM) [18], “a

learning object is defined as any entity, digital or non-digital, which can be used, re-used

or referenced during technology-supported learning”. Examples of Learning Objects

include multimedia content, instructional content, instructional software and software

tools, referenced during technology supported learning. In a wider sense, learning objects

could even include learning objectives, persons, organizations, or events. A learning

object is not necessarily a digital object; however, the remainder of this paper will focus

on learning objects that are stored in a digital format. The learning object (LO) model is

characterized by the belief that independent chunks of educational content can be created

that provide an educational experience for some pedagogical purpose. With regard to

object-oriented programming (OOP), this approach asserts that these chunks are

self-contained, though they may contain references to other objects, and they may be

combined or sequenced to form longer (larger, complex, other) educational units. These

chunks of educational content may be of any type, interactive (e.g. simulation) or passive

(e.g. simple animation), and they may be of any format or media type. Another

requirement for learning objects is related to tagging and metadata. To be able to use such

objects in an intelligent fashion, they must be labeled as to what they contain, what they

communicate, and what requirements with regard to their use exist. A reliable and valid

scheme for tagging learning objects is hence necessary.

The LO model provides a framework for the exchange of learning objects between

systems. If LOs are represented in an independent way, conforming instructional systems

 15

can deliver and manage them. The learning object initiatives, such as IEEE’s LOM or

Educom’s IMS are a subset of efforts to creating learning technology standards for such

interoperable instructional systems.

2.3 Capability Maturity Model Integration

Capability Maturity Model Integration (CMMI) is the new de-facto standard process

improvement model for determining the organizational maturity in product or software

development (Figure 2.5). Since many organizations would like to focus their

improvement efforts across the disciplines within their organizations. In October of 1997,

U.S. Department of Defense requested SEI to include the development of a common

framework for supporting the future integration of other discipline-specific CMMI

models (Figure 2.6). CMMI is an important model for product development industry.

Many procurers require a specific level of maturity from their suppliers. Also many

companies set internal process improvement objectives driven by the maturity levels of

CMMI.

Figure32.5: The frameworks quagmire

(Source: Sarah A. Sheard, Software Productivity Consortium 1997)

 16

Figure42.6: CMMI History
(Source: Interpreting the CMMI: A Process Improvement Approach, April 2003)

A model is a simplified representation of the world. Capability Maturity Models

(CMMs) contain the essential elements of effective processes for one or more bodies of

knowledge. These elements are based on the concepts developed by Crosby, Deming,

Juran, and Humphrey [8]. CMMI is an integrated model of many CMMs intended to

achieve process improvement (Figure 2.7). CMM is a model that contains the essential

elements of effective processes for one or more disciplines and describes an evolutionary

improvement path from ad hoc, immature processes to disciplined, mature processes with

improved quality and effectiveness [4]. CMMI models are not processes or process

descriptions. The actual processes used in an organization depend on many factors,

including application domain(s) and organization structure and size. In particular, the

process areas of a CMMI model typically do not map one to one with the processes used

in organization.

 17

Figure52.7: CMMI derivation

(Source: Interpreting the CMMI: A Process Improvement Approach, April 2003)

CMMI defines five levels of organizational maturity in product development

(Figure 2.8). Level 1 (initial) represents the lowest, and the level 5 (optimizing) the

highest maturity. CMMI defines the maturity levels through process areas. By default,

every organization is at maturity level 1. To reach level 2, an organization should satisfy

the goals of seven process areas – such as Requirements Management and Project

Planning. To achieve the level 3, an organization should perform all the process areas of

the level 2 plus the process areas defined for the level 3 – such as Requirements

Development and Technical Solution. Analogically, maturity levels 4 and 5 require the

implementation of new process areas as well as those of the lower level process areas.

We describe as follows:

 18

Figure62.8: CMMI maturity framework

(Source: Interpreting the CMMI: A Process Improvement Approach, April 2003)

 Maturity 1: Initial

At maturity level 1, processes are usually ad hoc and chaotic. The organization

usually does not provide a stable environment. Success in these organizations

depends on the competence and heroics of the people in the organization and

not on the use of proven processes. In spite of this ad hoc, chaotic environment,

maturity level 1 organizations often produce products and services that work;

however, they frequently exceed the budget and schedule of their projects.

 Maturity 2: Managed

At maturity level 2, an organization has achieved all the specific and generic

goals of the maturity level 2 process areas. In other words, the projects of the

organization have ensured that requirements are managed and that processes

are planned, performed, measured, and controlled.

 Maturity 3: Defined

At maturity level 3, an organization has achieved all the specific and generic

goals of the process areas assigned to maturity levels 2 and 3. At maturity level

 19

3, processes are well characterized and understood, and are described in

standards, procedures, tools, and methods.

 Maturity 4: Quantitatively Managed

At maturity level 4, an organization has achieved all the specific goals of the

process areas assigned to maturity levels 2, 3, and 4 and the generic goals

assigned to maturity levels 2 and 3. Sub-processes are selected that

significantly contribute to overall process performance. These selected

sub-processes are controlled using statistical and other quantitative techniques.

 Maturity 5: Optimizing

At maturity level 5, an organization has achieved all the specific goals of the

process areas assigned to maturity levels 2, 3, 4, and 5 and the generic goals

assigned to maturity levels 2 and 3. Processes are continually improved based

on a quantitative understanding of the common causes of variation inherent in

processes [3].

CMMI has two representations. One is the staged representation. The other is the

continuous representation. In the staged representation, maturity level of an organization

ranges from level 1 to 5. In the continuous representation each process capability level

ranges from 0 to 5. The staged representation is most suitable for an organization that

does not know which processes need to be improved first because the staged

representation offers process areas applicable to each maturity level (Figure 2.9). The

continuous representation provides flexibility for selecting processes fit for achieving

business goal of the organization [5]. CMMI provides 25 process areas (Process area

means a cluster of related practices in an area that, when implemented collectively,

satisfies a set of goals considered important for making significant improvement in that

area [4]. Goals are classified as generic goals and specific goals. A generic goal describes

 20

the characteristics that must be present to institutionalize the processes that implement a

process area. A specific goal describes the unique characteristics that must be present to

satisfy the process area [4].

Practices are expected components for satisfying goals. Practices are classified as

generic practices and specific practices. A generic practice is the description of an

activity that is considered important in achieving the associated generic goal. A specific

practice is the description of an activity that is considered important in achieving the

associated specific goal [4].

Figure72.9.: CMMI stage representation

(Source: Interpreting the CMMI: A Process Improvement Approach, April 2003)

 21

2.4 Causes of Inconsistencies

Inconsistency is an inevitable part of a complex, incremental software development

process. Even in an idealized process, system requirements are often uncertain or

contradictory, alternative design solutions exist, and errors in implementation arise.

The requirements engineering stage of development is particularly illustrative of

such inconsistencies. During requirements acquisition, customer requirements are often

sketchy and uncertain. For large projects in particular, a number of “client authorities”

may exist who have conflicting, even contradictory requirements. In many instances

customers may not even be certain of their own needs, and a requirements engineer’s job

is partly to elicit and clarify these needs. The requirements specification produced as a

result of such a specification and analysis process however is not static: it continues to

evolve as new requirements are added and conflicts identified are resolved. In fact, even

with strict project management practices in place, requirements specifications - and

subsequent design specifications - continue to evolve.

Thus, there is a wide range of possible causes of inconsistencies and conflicts in

software development. Many of these are due to the heterogeneity of the products being

developed (e.g., systems deploying different technologies) and the multiplicity of

stakeholders and/or development participants involved in the development process.

Inconsistencies arise between multiple development participants because of [3]:

 the different views they hold,

 the different languages they speak,

 the different development strategies (methods) they deploy,

 the different stages of development they address,

 the partially, totally or non-overlapping areas of concern they have, and

 22

 the different technical, economic and/or political objectives they want to

achieve.

While inconsistencies can occur in software development processes and products

for a variety of reasons, we adopt a simple definition of what actually constitutes an

inconsistency [3]:

An inconsistency occurs if and only if a (consistency) rule has been broken.

Such a rule explicitly describes some form of relationship or fact that is required to

hold. In previous work, we have examined three uses of such consistency rules. They

may describe syntactic relationships between development artifacts prescribed by a

development method, which is also a way of describing semantic relationships between

artifacts produced by that method [2]. They may also be used to prescribe relationships

between the sub processes in an overall development process, which is also a way of

coordinating the activities of developers deploying different development strategies.

Finally, consistency rules can be used to describe user-defined relationships that emerge

as development of a software specification proceeds. This is useful for capturing

ontological relationships between the products of a development process (for example,

two developers specifying a library system may use the term “user” and “borrower” to

refer to the same person).

Reducing an inconsistency to the breaking of a rule facilitates the identification of

inconsistencies in specifications, and is a useful tool for managing other “problems” that

arise during software development. For example, if we treat conflict as the interference of

the goals of one party caused by the actions of another party, then we can use

inconsistency as a tool for detecting many conflicts. Similarly, if we define a mistake as

an action that would be acknowledged as an error by its perpetrator (e.g., a typo), then we

can detect mistakes that manifest themselves as inconsistencies.

 23

2.5 Detecting and Identifying Inconsistencies

Detecting an inconsistency that breaks an explicit rule is relatively straight forward.

For example, a type checker can check whether or not an instance or variable conforms to

its type definition. Similarly, a parser can check whether or not a sentence conforms to

the syntactic rules specified by its grammar. Simple inferences in classical logic can also

be used to detect logical inconsistencies resulting from too much or too little information.

For example, � a contradiction (where a rule of the form X ¬X has been broken) may be

detected in this way.

Other kinds of inconsistency are more difficult to detect. A conflict between two

development participants may not manifest itself as an inconsistency until further

development has taken place (making the original source of the inconsistency difficult to

identify). Furthermore, what actually constitutes an inconsistency from one participant’s

perspective may not be the case from another perspective. An example of this is an

“inconsistency” in a person’s tax return. Such an inconsistency may actually be a

“desirable” piece of information from a tax inspector’s point of view!

One of the difficulties in handling inconsistencies effectively, even after they have

been successfully detected, is that the kind of inconsistency detected also has to be

identified. The CONMAN project for example, attempts to classify consistency in

programs into one of several kinds in order to facilitate inconsistency handling later on:

 Full consistency - where a system satisfies the rules that a programming

language specifies for legal programs (insofar as they can be checked prior to

execution).

 Type consistency - where a system satisfies the static type checking rules of

the programming language.

 24

 Link consistency - where each compilation unit is free of static type errors, and

each symbolic reference between compilation units is type safe according to

the rules of the programming language.

 Reachable consistency - where all code and data that could be accessed or

executed by invoking the system through one of its entry points are safe.

The CONMAN system checks for all kinds of consistency automatically, and then

reacts differently depending on the kind of inconsistency detected. It does however

appear appropriate for configuration management applications only, and it is therefore

desirable to identify a more general set of inconsistencies that arise during software

development in-the-large system.

2.6 Handling Inconsistencies

Many approaches to handling inconsistency attempt to maintain and enforce

consistency, usually by adopting simple procedures for inconsistent detection followed

by immediate resolution. We now examine alternative approaches to inconsistency

handling that “tolerate inconsistency” [2] in a variety of ways. We believe that these

approaches represent more realistic attempts at supporting multimedia learning objects

development, and we therefore discuss some discuss some general techniques for acting

and reasoning in the presence of inconsistency.

 25

Chapter 3
Design MLCs Quality Control Methodology

Whatever the cause or kind of inconsistency that exists in a multimedia learning

contents (MLCs) developing process, there is a demand for semi-automated mechanism

that detect, identify, record and handle such inconsistencies in this setting. In this chapter,

we will briefly explain on the design methodology of proposed of MLCs quality control

(MQC) method including MLCs bidirectional traceability matrix, MLCs directed acyclic

graph (MDAG), and the inconsistent detection capability method that supports such

MLCs inconsistent detection mechanism and used in the remainder of the paper.

3.1 MLCs Process Life Cycle

The Process Life Cycle (PLC) model is the foundation of a multimedia learning

contents (MLCs) development process. This model is a directed acyclic graphical

representation of the various activities that comprise the MLCs development process. Its

purpose is to show explicitly what is to be done and in what sequence. Although general

MLCs process life cycle model was decided to follow a variation of the waterfall life

cycle model (Figure 2.4) because of its emphasis on planning, a variation of a spiral

model [16] was finally adopted. The main reason was that the MLCs developing process

is highly iterative process which can be well illustrated by a spiral model while the

waterfall model follows a sequential developing approach.

 26

Figure 3.1: MLCs process flow chart

The development methods describe how the various phases which comprise the

MLCs developing process are implemented. Each phase contains a number of activities

shown in Table 3.1. As illustrated in Table 3.1, the MLCs developing process was

divided into five phases [24].

Table23.1: Phases and activities in MLCs developing process

Phases Activities
Courseware Initialization (RD)

− definition of target audience
− definition of aims and objectives
− definition of subject matter
− specification of pedagogical methods
− specification of assessment methods

Courseware Planning
Unit Scripts Design (DM)

− allocation of the content to courseware parts
− allocation of learning activities to courseware parts
− for each courseware component design of: structure,

access, layout, navigation, etc.
− storyboarding

 27

Courseware Planning
Scenario UI Design (UI)

− UI and background designing

Courseware Development
Multimedia Material Design
(MM)

− design of text
− design of graphics
− design of sound
− design of animation
− design of video

Courseware Development
Courseware Integration (CM)

− integration of the various elements into a whole

The division of the courseware development process into 5 phases: Courseware

Initialization , Courseware Planning- Unit Scripts Design, Courseware Planning-

Scenario UI Design, Courseware Development- Multimedia Material Design,

Courseware Development-Courseware Integration and their division into activities was

done based on the methodology of the BESTWISE international company method [24].

The reason is that this method from the previous gene rations by focusing on the

activities of each phase offering flexibility and employment of instructional principles

and theory.

3.2 MLCs Bidirectional Traceability Matrix

For resolving multimedia learning contents of the collaboration environment of

develop process, due to change the script or multimedia material of the originality design

specification will cause the quality problem of the inconsistency. Have to aim at

according to the specific practice (SP) concerning the manage requirements in the CMMI

develop any stage of the process life cycle (PLC) the variations need (the Requirements

Changes) in the multimedia teaching material cause of Inconsistency quality problem,

create a set of valid mechanism of Quality Control. First in regard to the developing life

cycle of the multimedia learning contents, its basic step is as follow:

 28

 The teaching material design of the multimedia learning contents

 The contents design storyboard of the basic teaching plan

 Design the field of the multimedia learning contents view and User Interface

depend on the Storyboard plot demanded

 According to the field of the Storyboard plot, multimedia learning contents

view with make the User Interface of need, the multimedia material actor

needed by the design learning contents as (text, picture, animation, video,

music)

 The multimedia of the usage adequacy edits tool, according to the storyboard

plot contents, the field of the multimedia learning contents view and the User

Interface and material, constitute one multimedia learning contents of the

integrity

Since the requirements change will takes place at any stage of the multimedia

learning contents developing life cycle, in order not to the creation of the Inconsistency

quality problem, have to have the observation in the learning contents the developing the

process, because of modifying the view or multimedia material of plot, field for end the

capability of the range dimension of influence that finished product cause. First want to

understand at what the Storyboard contents describes is each plot, to the field that should

use the view or multimedia material is why. Can create the dependency matrix here,

recording it each other of dependency relationship. For example, a script's contents that

suppose the multimedia learning contents designed is shown as Table 3.2, from here the

script contents can knows to have a scene all together with three natural language script,

each a plot use a different multimedia actors, but use the same user interface design.

 29

Table33.2: An example of storyboard

According to Table 3.2 of the scope script contents, can know the contents that is

the modification plot NLS1, may influence the design of a view UI1 and multimedia

material actor AR1, modify the contents of the plot NLS2, may influence the design of

a view UI1 and multimedia material actor ATR2, modify the contents of the plot NLS3,

may influence the design of a view UI1 and multimedia material actor ATR1, ATR2,

modify the design of a view UI1, may influence the design of multimedia material actor

ATR1, ATR2, ATR3, ATR4 and the end multimedia learning contents finished product

CM1;When modify the design of the multimedia material actor ATR1, ATR2, ATR3,

ATR4, may influence the design of the end multimedia learning contents finished

product CM1. We canned know what of the plot, field view or multimedia material actor

exists by the above analysis mutually according to the dimension of the dependency

 30

relationship and the modification influence caused in design range, here can define a

forward direction mutually according to the Forward Dependency Matrix, such as Table

3.3 to recording mutually according to the relationship. When each work stage exists

mutually according to the relationship, then in forward direction mutually according to

matrix to should have the related field setting value is 1, if the nonentity then sets to 0

according to relationship mutually. The so-called forward direction is mutually its main

meaning is according to the matrix can by Table 3.3 medium Dependency-Out-Degrees

(DOD).The DOD value means all the representatives are the multimedia learning content

process life cycle of when the need design of the any Phase change, influence the design

of the first order segment work of range dimension.

Table43.3: MLCs forward dependency matrix (MFDM)

We can makes to transpose according to the Forward Dependency Matrix mutually

the forward direction in addition, can get another reverse direction mutually according to

the Backward Dependency Matrix, such as Table3.4 shows. So-called reverse direction

mutually according to matrix its main meaning can by Table 5 medium of the meaning of

the Dependency-In-Degree (DID) to explain its characteristic, the DID value all the

representatives are the design need of any phase of the multimedia learning contents

developing life cycle, being subjected to an arrival from last the design work of the first

order segment influence of range dimension.

 31

Table53.4: Multimedia backward dependency matrix (MBDM)

Synthesize forward direction mutually according to the Forward Dependency

Matrix and the reverse direction mutually according to the Backward Dependency

Matrix inside recording mutually according to the record of the dependency relationship,

can know that the requirements change occurrence develops any stage of the Process

Life Cycle in the multimedia learning contents, the related information of the range

dimension of influence caused, and use this design as the foundation of CMMI to design

Bidirectional Traceability capability.

 32

3.3 MLCs Directed Acyclic Graph

In previous chapter, we defined forward direction mutually according to the

Forward Dependency Matrix and the reverse direction mutually according to the

Backward Dependency Matrix, can according to Table 2 and Table 3 of example, create

according to the dependency relationship mutually the multimedia learning contents a

new mutually according to model, be called a multimedia to lead to accord to

mutually not circularly the MLCs Directed Acyclic Graph (MDAG) G=(V, E)as Figure

3.2 show. In each node s ε V in the MDAG, representative multimedia learning

contents the finished work needed exists mutually according to the dependency

relationship in each first order phase developing life cycle. In each edge in the MDAG (u,

v) εE u→v, of the work existence that represents each first order segment of the

multimedia learning contents developing life cycle mutually according to the dependency

relationship with complete order of sequence.

Figure83.2: MLCs directed acyclic graphic (MDAG)

 33

In the MDAG graphics inside the type of the nodal point used is as follow:

 The Scene nodes: This nodal point representative is in the storyboard, the

independence scope menu homework unit in the multimedia learning contents.

Have to complete a relation of recording the related plot, multimedia

material and the usage field view in this nodal point

 The Natural Language Script nodes: This nodal point representative is in the

storyboard, in the independence scope in the multimedia learning contents,

multimedia material plot that needs to be performed. Have to explain the

multimedia material is according to the time of the plot and the relation of the

space carries on performing behavior by natural language in this nodal point.

The attribute of the plot nodal point can be divided into: The opening scenario,

the interactive scenario and the finale scenario.

 The User Interface nodes: This nodal point representative is in the storyboard,

in the independence scope in the multimedia learning contents, multimedia

material for performing a related plot, have to use of the stage and the back

ground. Have to complete the design work of a view and the user interface in

this nodal point

 The Actor nodes: This nodal point representative is in the storyboard, in the

independence scope in the multimedia learning contents, according to the

details demand of the plot, the multimedia material actor used. Have to

complete the design work of the multimedia material in this nodal point

 The Code module nodes: This nodal point representative is in the storyboard,

in the independence scope in the multimedia learning contents, multimedia

material according to this the related plot of the scope, Be in the particular

field the view carries on performing of present a result. In all aspects this

 34

nodal point has to edit the software tool by multimedia learning contents,

completing contents of course to carry.

We canned know the explanation Table by MDAG the nodes and edges 2 and Table the

Dependency Relationship record recording by 3 se two matrixes, and can know the need design

that is any stage of the multimedia learning contents developing life cycle a change, influence the

design of the first order segment work of range dimension, and the design need of any stage, be

subjected to up the first order segment of the design work influence of range dimension. In

addition the Directed Acyclic Graphs have directive and will not forming cycle of characteristic,

can explain multimedia learning contents in the process of developing life cycle, need the

characteristic that designs and develops order of sequence according to each workflow phase,

meanwhile again can express each time a work stage of the Dependency Relationship. So the

MDAG is fit is the foundation model that the design has multimedia learning contents of the

Bidirectional Traceability and the mechanism of Inconsistent detection.

3.4 Inconsistent detection Capability Design

There are three broad areas of inconsistent detection that benefit from

computer-based automated mechanism support, and what follows identifies their scope.

 Detecting Inconsistency

This includes a wide range of tools that check consistency rules, such as type

checkers and parsers. Detecting inconsistency can be automated if the

appropriate consistency rules can be defined precisely. Conflicts or mistakes

that do not manifest themselves as inconsistencies (because no pre-defined

rule was prescribed), cannot be detected automatically and normally require

human involvement.

 Identifying Inconsistency

 35

Once an inconsistency has been detected, the next step is to identify the kind

of inconsistency it is (perhaps by comparing it against some pre-defined

classification of inconsistencies). Identifying inconsistency automatically can

be difficult, particularly if there are multiple sources/causes of the

inconsistency. However, once an inconsistency is identified, then removing it

is often also simplified. Tools that detect inconsistency usually also attempt to

identify or suggest its possible cause.

 Handling Inconsistency

Reacting to inconsistencies in a system is a particularly challenging area for

the provision of tool support. Many tools allow the inconsistency to be ignored

or require actions to resolve it. Some of the tools described in section 4.1 also

allow controlled development to continue in the presence of inconsistency.

More tools are needed however for tracking inconsistencies in software

systems, as well as tools that use this monitoring information to remove

inconsistencies, or to ameliorate inconsistent information.

For providing the inconsistent detection mechanism in the multimedia learning

contents developing life cycle, have to define Consistency condition first. Have to design

while taking the multimedia learning contents developing process in the collaboration

environment with teamwork, each segment been responsible by different member if

having already modified an original need and designing a detect a mechanism to judge

these needs and design of whether variations act against Consistency cognition condition

or not. In the control policy of this standard consistency as follow:

 There are some work Si without reviewed, have to the ex- first order segment

Si-1 the design work of the dependency relationship has already completed to

 36

examine, just canning carry on work also can allow.

 The idea of modification originality design, but can't carry on the first order

segment Si+1 of design work

 Already the review work Si can't modify the originality design, but can carry

on the first order segment Si+1 design work of Dependency Relationship

 If there some already review the design work Si, are requested to modify again

the originality design, then need the execution Inconsistent detection, and

pause a next stage Si+1 design work of Dependency Relationship, until the

completion Review

 When we carry on the mechanism of iionsistent detection, have to check

multi-media teaching material in the condition of the consistency in the

process life cycle process as follows:

 Complete design time consistency: The design completion time that has the

last rank design work Si of the Dependency Relationship has to be small in

descend the design of the rank design work Si completion time

The T(Ci) T(Ci+1) for i 1, T(Ci) 0≦ ≧ ≧

T(Ci): Timestamp of MLCs component node i was finished design

 Complete review time consistency: Last rank design the work Si that has the

Dependency Relationship's examining time has to be small in descend the rank

design work Si+1 of examine the completion time

The T(Ri) T(Ri+1) for i 1, the T(Ri) 0 ≦ ≧ ≧

T(Ri): Timestamp of MLCs component node i was confirmed

 37

Chapter 4
System Implementation

In this chapter, we use the MLCs Quality Control (MQC) model discussed in

Chapter 3 as the basis to implement the prototype of MQC System and design MLCs

inconsistent detection mechanism. For standardization of multimedia learning objects we

adopt the SCORM standard. Then, the final multimedia work products of MOQ system

will follow the SCORM standard. There are two major purposes of quality control

mechanism in this chapter. Fist is to detect the changes of the multimedia learning

object’s original requirements or design requested by MLCs designers or customers in

any phases of MLCs developing process life cycle. Then the next design consideration is

that MQC system can detect the inconsistency situation cause by changing the MLCs

original requirements or design.

4.1 System Development Tools

During system development, this study uses Web-based application technology and

Client-Server architecture to implement inconsistent detection mechanism in the MLCs

Quality Control (MQC) System. The research applies PHP and Java program technology

to compose MQC system and use ODBC technology as the basic of database connection

and translation. In database, this research adopts MySQL Server to design database as the

Back-end platform of the system. Figure 4.1 shows the system architecture physical view

of MQC system.

 38

Figure94.1: System Architecture

4.2 Software Architecture

In this section, we will discuss how to integrate the dependency requirements

specifications to an automated inconsistent detection mechanism called MLCs Quality

Control (MQC) System. The MQC system functional model architecture is described in

Figure 4.2 below. It depicts the relationship between a MQC server and its client

applications. Applications interact with the MQC server through the application interface

to store and retrieve objects or perform MLCs developing operations. The MQC system

requests from applications to multimedia objects and MLCs structure management

subsystems which, in turn, interact with the physical files/documents management

module to perform the desired operations.

 39

Figure104.2: Functional model of the MQC system

The MQC system software architecture can be viewed as consisting of three major

components:

 A MLCs dependency editor (MDE) for natural language scripts (NLS), scenarios

(SNE) and multimedia actors (ATR) specifications respectively. (Note that this

formal representation is likely to be an abstraction of the original specification).

 A MLCS change detector (MCD) for inspecting the currently operative NLS, the

SNE, the currently applicable set of ATR (including text, image, audio and

video-specific ATR), the user interfaces (UI), and the dependency relationship

specification. The dependency relationship specification is represented both in the

original notation it was written in NLS and in a formal representation that is obtained

via multimedia directed acyclic graph (MDAG) markup and translation

 A MLCs inconsistency detector (MID) that serves to both detect and resolve

inconsistencies in a dependency relationship specification.

Two alternative configurations of the system architecture exist: (1) each quality

review stakeholder incorporates a role of the MQC system (2) only the dependency

 40

relationship requirements repository incorporates the machinery of the MQC system.

4.3 MLCs Dependency Editor

In most multimedia dependency editor (MDE), it is possible to construct links

between specific regions within nodes. Two levels of specification are required to

completely identify the endpoints of this type of link − the inter-scene level and the

intra-scene level. The inter-scene level resolves a link endpoint to the node level of

granularity. At the intra-scene level, a location or region within the target node is

designated as the precise endpoint for the link. Together these two levels completely

define the link endpoint.

Dependency relationship specification complicates link specification in multimedia

learning objects (MLO) by introducing complexities at both the inter-node and

intra-scene levels of specification. In a MLO developing environment, inter-scene

specification consists of identifying a particular object in the MLO that contains the

target of a link. Since this involves MLO-level operations, this issue should be addressed

at the MLO level. Intra-scene references specify locations or regions within MLO objects

that serve as link endpoints. This level of specification requires application-specific

knowledge (such as the format in which data objects are stored). The issues associated

with intra-scene referencing are more appropriately addressed at the MLO level.

Inter-scene references must identify a specific object in a MLO as the target of a link. In a

MLO with dependency relationship specify facilities, several dependency relationship of

an MLO might exist. The MLO identification process must be augmented to include the

specification of dependency relationship specify information in order to uniquely identify

each object. In our prototype implementation, we use multimedia dependency editor

(MDE) as the multimedia learning objects (MLO) dependency relationship specification

 41

editor (Figure 4.3).

Figure114.3: The screen shot of MLCs dependency editor (MDE)

As discussed in chapter 3, such a MLCs dependency editor (MDE) can operate as

module to MQC System). The MDE would load the relevant elements (including natural

language scripts, scenarios, user interfaces, actors and code modules) and display

dependency relationships and properties on a screen. The annotator would interact with

the users to prompt for links to appropriate concepts and properties every time a new

element of the MLO is introduced in the editor. When the user finishes editing the

specification, the annotator would generate MLCs dependency directed acyclic graphic

(MDAG) automatically.

4.4 MLCs Change Detector

MLCs change detector (MCD) defines the set of activities that need to be

performed when there are some new requirements or changes to existing requirements or

original design (we will call both of these as changes in the requirements or original

 42

design). Requirement changes can occur at any phases of the MLCs development process.

The basic goal of MCD module is to detect requirement changes and minimize the impact

of changes on the multimedia project. This involves understanding the full impact of a

requirement change request, as well as the cumulative impact of changes, on the project.

It also requires making the customer fully aware of the impact of the changes on the

multimedia project so that changes in the negotiated terms can be done amicably. The

MCD module, in a sense, tries to ensure that a multimedia project succeeds despite

requirement changes (Figure 4.4).

Figure124.4: The state diagram of MLCs change detector (MCD)

4.5 MLCs Inconsistency Detector

The key functions of the MLCs Inconsistency Detector (MID) consist of managing:

(1) data contained in multimedia learning object (MLO) nodes and (2) inconsistent

detection for the structural connections among MLO nodes. Fundamental to these

functions is some form of machinery that is able to determine whether a given

specification violates a given set of consistency rules. This process directly involves basic

MLO nodes and operations. (Figures 4.5) In a multimedia developing environment, MID

services are provided at the consistency level. Aspects of the inconsistent detection

 43

process that involves basic MLO should also be implemented at specific level. These

basic inconsistent detection services may also be used by multimedia developers to

provide inconsistent detection in changing original requirements or design of the MLO. A

desirable and important characteristic for MLO-level inconsistent detection is that it

should not reflect content aggregation (CA) level inconsistent detection policies.

Figure134.5: A MDAG of MLCs inconsistency detector (MID)

The broad definition of inconsistency as the breaking of a consistency rule means

that there is an equally broad range of tools that support inconsistent detection.

Process-centered environments on the other hand, check not only the artifacts of

development, but also the process by which these artifacts are developed. In general

however, most of these tools have limited inconsistency handling capabilities,

concentrating instead on inconsistent detection and identification, and leaving

inconsistency handling to be performed by the user of these tools. We have further

developed the MLCs inconsistency detector (MID) to support the MQC system, and have

used it as a vehicle for demonstrating the feasibility of our methodology (Figures 4.6). In

the inconsistency detecting area, The MID provides a range of complementary

mechanism.

 44

Figure144.6: The change impact patterns of MID

From a MLCs designer or quality reviewer’s point of view, The MDID facilitates

the expression of inconsistency rules. In Figure 4.6 describes a sample multimedia

inconsistency detector (MDID) in the multimedia development environment. This tool

can be used to check inconsistency of partial specifications for internally (inter-scenes)

and against other (intra-scenes). The particular rules that the developer wishes to check

may be selected, and executed by clicking on the “Apply Inconsistency Checks” button.

If one or more inconsistencies are detected, then clicking on the “Consistency Check”

button invokes the appropriate inconsistent detection system (Figures 4.7).

 45

Figure154.7: The screen shot of MLCs inconsistency detector (MID)

 46

Chapter 5
An Usage Example for MQC System

We have gone through our methodology with an example in this chapter. In order

to verify our methodology further, we apply the MLCs Quality Control (MQC) system to

a multimedia learning contents (MLCs) case study “What is on the mat?” First of all,

we will describe the requirements specifications dependency relationship from different

stakeholders (designer, reviewer and supervisor). Then we will list all inconsistencies of

these requirements specifications that were detected by MQC system based on the

pre-defined rules. These inconsistencies exist between each two stakeholders and they

exist in each stakeholder itself as well. These inconsistencies also occur among different

types of requirements specifications (natural language scripts, scenarios, user interfaces,

actors and code modules).

 47

Step 1. Prepare the MLCs material

Designer can upload one's own MLCs material in web directly and store it in the

database, if there is content of teaching material needs to be altered and which can

be taken out and written again from the data base (Figure 5.1, Figure 5.2).

Figure165.1: Example of original MLCs material

Figure175.2: Selecting a section of original teaching material

 48

Step 2. Analyze the MLCs story

Designer can select a story of MLCs material and analyze the structure of it by

using SCORM standard (Figure 5.3).

Figure185.3: Analyzing a section of original teaching material

Step 3. Prepare the storyboard of MLCs story

Designer can edit storyboard of MLCs story by using general word editors, and

store it in the web system database if there is content of storyboard needs to be

altered and which can be taken out and written again from the data base (Figure

5.4, Figure 5.5, Figure 5.6, Figure 5.7).

 49

 Figure195.4: Example of the storyboard in primary draft design phase. (Part 1)

Figure205.5: Example of the storyboard in primary draft design phase. (Part 2)

 50

Figure215.6: Example of the storyboard in primary draft design phase. (Part 3)

Figure225.7: Example of the storyboard in primary draft design phase. (Part 4)

 51

Step 4. Prepare the detail design of MLCs storyboard

Designer can edit detail storyboard of MLCs story by using general word editors,

and store it in the web system database if there is detail content of storyboard

needs to be altered and which can be taken out and written again from the data

base (Figure 5.8, Figure 5.9, Figure 5.10).

Figure235.8: Example of the storyboard in secondly detail design phase. (Part 1)

 Figure245.9: Example of the storyboard in secondly detail design phase. (Part 2)

 52

Figure25 5.10: Example of the storyboard in secondly detail design phase. (Part 3)

Step 5. Prepare the UI design of MLCs

Designer can design UI of MLCs story by using general word and graphic editors,

and store it in the web system database if there is content of UI design needs to be

altered and which can be taken out and written again from the data base (Figure

5.8, Figure 5.9, Figure 5.10).

Figure265.11: Example of the UI layout in secondly detail design phase. (Part 1)

Step 5. Prepare the multimedia actors list of MLCs

Designer can edit multimedia actors list of MLCs storyboard by using general

 53

word editors, and store it in the web system database if there is content of

multimedia actors list needs to be altered and which can be taken out and written

again from the data base (Figure 5.12).

Figure275.12: Example of the multimedia actor list in secondly detail design phase

Step 6. Prepare the detail UI design of MLCs

Designer can edit detail UI design of MLCs story by using general word and

graphic editors, and store it in the web system database if there is content of UI

detail design needs to be altered and which can be taken out and written again

from the data base (Figure 5.13).

Figure285.13: The screen shot of a multimedia learning object “What is on the mat?”

 54

Step 7. Login Web-based MQC system

Designer can input user account and password to login MQC system, and edit

documents and multimedia actors stored in the web system database (Figure 5.14).

Figure295.14: The screen shot of MQC system “Login” module

 Step 8. Create multimedia components of MLCs

Designer can create multimedia component of MLCs by using MQC “Create”

module, and store it in the web system database if there is content of multimedia

actors list needs to be altered and which can be taken out and written again from

the data base (Figure 5.15).

Figure305.15: The screen shot of MQC system “Create” module

 55

 Step 9. Edit multimedia components of MLCs

Designer can edit multimedia component of MLCs by using MQC “Edit” module,

and store it in the web system database if there is content of multimedia actors list

needs to be altered and which can be taken out and written again from the data

base (Figure 5.16).

Figure315.16: The screen shot of MQC system “Edit” module

Step 10. Modify multimedia components of MLCs

Designer can edit multimedia component of MLCs by using MQC “Modify”

module, and store it in the web system database if there is content of multimedia

actors list needs to be altered and which can be taken out and written again from

the data base (Figure 5.17).

 56

Figure325.17: The screen shot of MQC system “Modify” module

Step 11. MQC system generate MDAG of MLCs

MQC system can generate a MDAG data structure of MLCs in web system

database (Figure 5.18).

Figure335.18: The MLCs directed acyclic graph (MDAG) of a multimedia learning

object “What is on the mat?”

Step 12. Create the multimedia actors of MLCs

Designer can edit detail multimedia actors of MLCs by using general sound,

 57

music, video, text and graphic editors, and store it in the web system database if

there is content of multimedia actors needs to be altered and which can be taken

out and written again from the data base (Figure 5.19).

Figure345.19: The screen shot of multimedia actors

Step 13. Create the SCO files of MLCs

Designer can edit SCO files of MLCs by using multimedia authoring tools (Flash,

PowerPoint, Authorware, Virtual Basic, Director, 編輯手…), and store it in the

web system database if there is content of multimedia actors needs to be altered

and which can be taken out and written again from the data base (Figure 5.20).

Figure355.20: The screen shot of a multimedia authoring tool

 58

Step 14. Create the multimedia actors list report of MLCs

Designer can create detail multimedia actors list report of MLCs by using MQC

module (Figure 5.21).

Figure365.21: The screen shot of multimedia actor list report

Step 14. Create the inconsistency report of MLCs

Designer can create inconsistency report of MLCs by using MQC module

(Figure 5.21).

Figure375.22: The screen shot of inconsistency report

 59

Chapter 6
Conclusions and Future Work

6.1 Conclusions

In this thesis, a MQC system which consists the file management of multimedia

learning contents (MLCs) actors and the inconsistent detection mechanism of MLCs

components are proposed and a server-client system is also provided for helping other

system designers to extend their MQC functionalities. Our main contribution of this

thesis is to construct a MLCs quality control mechanism on inconsistent detection for

MLCs components and satisfy the CMMI-compliant specific practices on MLCs

developing process as well as an Web-based platform for MLCs designers and quality

review stakeholder with the MLCs work in process documents and media file. Without

the proposed system, MLCs components are easily causing inconsistency problems. That

results in the embarrassing situation for the design staff of endless required debugs,

causes the delay of due-date, and increases development costs and the loss of market

competitiveness for the company. The MQC system can keep this vicious tendency in

prevent.

6.2 Future Work

There are some future works about quality controlling facilities of this MQC system

listed and discussed as follows:

1. Adopt more CMMI practices relative to the MQC mechanism

New technology will bring the new interaction on the MLCs creators and learners

 60

in the future. It may be a whole new multimedia learning object, or a new

e-learning user interface with the appearance of new technological innovation.

MLCs designer and quality review stakeholders will need more

CMMI-compliant practices relative to the quality control mechanism in the

MLCs developing process.

2. The enhance version control mechanism for managing components of MLCs in

MQC process.

The version control mechanism is a hot issue in the software engineering

research fields. People still need a good solution for managing the different

versions of MLCs components in MQC process. The enhanced version control

mechanism on MLCs components will pay attention to the companies of

e-learning contents provider.

3. Support large amount nodes of the MDAG

In order to actualize the management of the curriculum-level MLCs, the

inconsistency information used in large amount nodes of the MDAG should be

precisely recorded. Unfortunately, the extant recording methods cannot guarantee

the integrity of the using MLCs inconsistency information. Therefore, a more

comprehensive and powerful method is needed to insure the MQC system in the

curriculum-level MLCs developing process.

 61

Reference
[1] NASA SEL, Recommended Approach to Software Development: Revision 3, 1992.

[2] Finkelstein et al., “Inconsistency handling in multi-perspective specifications.” IEEE

Trans. on Software Engineering, 20:569–578, 1994.

[3] S. Easterbrook and B. Nuseibeh, “Using viewpoints for inconsistency management.”

Software Engineering Journal, 11:31–43, 1996.

[4] R.C. Lee and W.M. Tepfenhart, UML and C++: A Practical Guide to

Object-Oriented Development, 1st Edition, Prentice Hall.

[5] Sarah A. Sheard, “Software Productivity Consortium”, 1997.

[6] Cormen, Thomas H. Leiserson, Charles Eric. Rivest, Ronald L., Introduction to

algorithms, Cambridge, Mass.: MIT Press, 2001.

[7] Pankaj J., CMM in Practice: Processes for Executing Software Projects at Infosys,

Addison-Wesley, Inc., June 2001.

[8] CMMI Product Team, Introduction to CMMI-Continuous V 1.1, SEI, Carnegie

Mellon University, August 2002.

[9] CMMI Product Team, CMMI for Software Engineering (CMMI-SW, V1.1) Staged

Representation, CMU/SEI-2002-TR-029, SEI, Carnegie Mellon University, August

2002.

[10] Bohner, S.A., Gracanin, D., “Software impact analysis in a virtual environment”,

Software Engineering Workshop, 2003. Proceedings. 28th Annual NASA Goddard,

pp. 143- 151, 2003.

[11] Margaret Kulpa, Kent A. Johnson, Interpreting the CMMI: A Process Improvement

Approach, April 2003.

[12] The Standish Group International Inc., “CHAOS Chronicles v3.0. West Yarmouth”,

USA, 2003.

 62

[13] Mary Beth Chrissis, Mike Konrad, Sandy Shrum, CMMI: Guidelines for Process

Integration and Product Improvement, Addison-Wesley, Inc., Feb 2003.

[14] Dennis M. Ahern, Aaron Clouse, Richard Turner, CMMI Distilled: A Practical

Introduction to Integrated Process Improvement, 2nd ed, Addison-Wesley, Inc., Sep

2003.

[15] Goldenson, D.R., Gibson, D.L., “Demonstrating the Impact and Benefits of CMMI:

An Update and Preliminary Results”; CMU/SEI-2003-SR-009; 2003.

[16] Ian Sommerville, Software Engineering, 7th ed, Addison-Wesley, 2004.

[17] Geoff Draper, Rickhefner Ph.D., “Applying CMMI Generic Practices with Good

Judgment”, SEPG Conference Tutorial, March 2004.

[18] IEEE Learning Technology Standards Committee (LTSC) IEEE P1484.12 Learning

Objects Metadata Working Group, [On-line]. Available: http://ltsc.ieee.org/wg12/

[19] CMMI Mappings and Comparisons, [On-line].

Available:http://www.sei.cmu.edu/cmmi/adoption/comparisons.html, 2006.

[20] Advanced Distributed Learning Department of Defense (DoD), [On-line]. Available:

http://www.adlnet.org

[21] Sharable Content Object Reference Model: The SCORM Book 1: The SCORM

Overview, [On-line]. Available: http://www.adlnet.org

[22] Sharable Content Object Reference Model: The SCORM Book 2: The SCORM

Content Aggregation Model, [On-line]. Available: http://www.adlnet.org

[23] Sharable Content Object Reference Model: The SCORM Book 3: The SCORM

Run-Time Environment, [On-line]. Available: http://www.adlnet.org

[24] Kuei-Jung Chung, “The Design and Implementation of a Content Quality Control

Process and Management System for SCORM-based Multimedia Curriculum”

Master Thesis of N.C.T.U. Taiwan, 2006.

	CMMI論文-封面- 070625.pdf
	CMMI論文-目錄-070725.pdf
	CMMI論文-本文-070725.pdf

