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具隱私性之資料擷取：忘卻式傳輸與播送 

 

學生：朱成康        指導教授：曾文貴 博士 

 

國立交通大學資訊工程學系 

 

摘要 

 

具隱私性之資料擷取一直是密碼學上一個重要的課題，它可以讓

使用者在取得資料的同時，也保有隱私性。在本論文裡面，我們對於

這個課題有兩個貢獻。首先，我們提出了一些有效率的忘卻式傳輸機

制。忘卻式傳輸包含了一個傳送者與一個接收者，傳送者有一些訊息

在手上，而接收者想取得其中的某幾個訊息。對此，安全性的要求在

於接收者只能取得他想要的那部分訊息，而且不能讓傳送者知道他的

選擇。忘卻式傳輸的發展分為一些類別，例如 2 選 1、n 選 1、n 選 k、

動態、條件忘卻式傳輸等等。本論文裡我們提出數個 n 選 k 及一個動

態忘卻式傳輸機制。 

接著，我們提出一個新的概念，稱為『條件忘卻式播送』。與忘

卻式傳輸不同，這種系統有三個參與者：一個傳送者及兩個接收者。

傳送者有一個訊息，而接收者擁有他們各自的秘密值。當接收者的兩
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個秘密值符合某個我們定義的條件，那麼兩個接收者即可從傳送者那

邊取得訊息。此概念安全性的要求在於，每位參與者都不能知道另外

兩位手中的秘密。同時，我們也提出一些條件忘卻式播送的變形。對

於這些概念及變形，我們提出了一些實際的機制，針對的是「相等」、

「不相等」、「大於」等基本的條件，有了這些基本的機制，便可延伸

設計出更複雜的密碼協定。 

關鍵字：忘卻式傳輸，動態忘卻式傳輸，忘卻式播送，條件忘卻式播

送 



Privacy-Preserving Data Retrieval:

Oblivious Transfer and Cast
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National Chiao Tung University

Abstract

Privacy-preserving data retrieval is an important cryptographic issue. It

allows users to privately obtain some data they need. In this thesis, we have

a two-fold contribution to privacy-preserving data retrieval. Firstly, we give

some efficient oblivious transfer (OT) constructions. OT involves two parties:

a sender S and a receiver R. The sender S has several messages of which

the receiver R wants to get some. The security requirement is that S wants

R to get the messages of his choices only, and R does not want S to know

what he chooses. OT was developed in several types, such as 1-out-of-2 OT,

1-out-of-n OT, k-out-of-n OT, adaptive OT, conditional OT. We propose

several efficient k-out-of-n OT schemes and an adaptive OT scheme.

Then, we introduce a new notion of conditional oblivious cast (COC),

which involves three parties: a sender S and two receivers A and B. Re-

ceivers A and B own secrets x and y, respectively, and the sender S holds

a message m. In a COC scheme for a predicate Q (Q-COC), A and B get

m from S if and only if Q(x, y) = 1. The security requirement is that each
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party does not leak his secret to the other two parties except the informa-

tion that can be inferred from the result. We also extend COC to different

settings: only one receiver gets the message or S sends two messages at a

time. We give definitions for COC and propose COC schemes for “equality”,

“inequality”, and “greater than” predicates. These are fundamental schemes

for constructing more complex secure multi-party protocols. Finally, we pro-

vide new constructions of three-party oblivious cast, which are more efficient

in communication complexity than previous schemes.

Keywords: oblivious transfer, adaptive oblivious transfer, oblivious cast,

conditional oblivious cast
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Chapter 1

Introduction

Electronic commerce (eCommerce) is a very popular and important service

on Internet nowadays. People can buy anything they need by just clicking

buttons at home. In most situations, users’ personal data (e.g. credit card

numbers) are well encrypted. However, there is no guarantee of users’ privacy.

Why should we tell these merchants which music we like or which book we

want to buy? Could we conceal our choices from the merchant?

Privacy-preserving data retrieval allows users privately obtaining some

data they need from a sender. In many applications, users’ privacy should be

well protected. For example, researchers should be able to query a database

without revealing which topics they are interested in, and bidders should be

able to bid for a secret without exposing their prices.

In fact, we can use a general secure multi-party computation protocol

to fulfill the above requirements. However, we are seeking for more efficient

solutions of some specific cases. In this thesis, we discuss privacy-preserving

data retrieval for two-party and three-party cases. We focus on oblivious
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transfer (OT) and conditional oblivious cast (COC) protocols for these two

cases, respectively. In this chapter, we first introduce the concepts of OT

and COC, and then state our results to the both notions.

1.1 Oblivious Transfer

Oblivious transfer (OT) is an important cryptographic protocol. It protects

users’ privacy from exposing their choices and preserves merchants’ security.

In other words, by invoking OT, a buyer only gets the paid goods, and a

merchant doesn’t know which ones are chosen. Moreover, OT is an important

building block of cryptographic protocols [GV87, Kil88, Yao86].

An oblivious transfer scheme involves two parties: a sender S and a re-

ceiver R. S has several messages and R wants to obtain some of them via

interaction with S. There are two security requirements for oblivious transfer:

(1) R obtains the chosen messages only; (2) S doesn’t know which messages

are chosen. The original OT was proposed by Rabin [Rab81]. Then it was

developed in the following main types:

• Rabin’s OT: S sends a message to R, and R gets the message with

probability 1/2. On the other hand, S doesn’t know whether R gets

the message or not.

• 1-out-of-2 OT (OT1
2): S has two messages m1 and m2, and allows R

to obtain exactly one of them. In addition, S remains oblivious to R’s

choice.
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• 1-out-of-n OT (OT1
n): An extension of OT1

2 for the case that S has n

messages.

• k-out-of-n OT (OTk
n): Similar to OT1

n except that R obtains k out of

n messages from S.

We are concerned about the most general case - OTk
n in this work. A

straightforward solution for OTk
n is to run OT1

n k times independently. How-

ever, this needs k times the cost of OT1
n. So we hope to develop a direct

construction for OTk
n. Security of OT is also an interesting issue. Since it is

impossible to provide unconditional security for both sender and receiver, we

consider the unconditional security for each party separately, and the security

of the other side is computational. Users can choose appropriate schemes in

various applications with different security settings.

Oblivious transfer with adaptive queries (Adpt-OT) allows R to query

messages one by one adaptively [NP99b, OK04]. For this setting, S first

commits messages to R in the commitment phase. Then in the transfer

phase, R makes queries of messages one by one. Adaptive OT is natural and

has many applications, such as oblivious search, oblivious database queries,

private information retrieval.

1.2 Conditional Oblivious Cast

Instead of depending on R’s choices solely, conditional oblivious transfer

(COT) [COR99, BK04] lets R get the message m under some condition.
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For example, in a Q-COT scheme, S and R have their own secrets x and y

respectively, and R gets m from S if and only if Q(x, y) = 1. Furthermore,

S can not get the result of the condition on x and y.

Three-party oblivious cast (OC) [Bla96, FGMO01] is a generalization of

OT to the three-party case: one sender S with a secret bit and two receivers

A and B. The bit is received by exactly one receiver, each with probability

1/2. We further generalize oblivious cast to conditional oblivious cast (COC),

where the receivers A and B have their own secrets and can get messages

from S if and only if some condition of their secrets holds. The main idea of

COC is to separate the role of the secret holder from the message holder S

in COT. A COC scheme that meets the requirements of our definitions can

be easily transferred to a COT scheme.

For some predicate Q, let the receivers A and B hold secrets x and y,

respectively. We discuss three types of COC:

• Q-COC-I: S has a message m. A and B get m if and only if Q(x, y) = 1;

• Q-COC-II: S has two messages m0 and m1. A and B get m1 if and

only if Q(x, y) = 1 and m0 if and only if Q(x, y) = 0;

• Q-COC-III: S has a message m. A gets m if and only if Q(x, y) = 1

and B gets m if and only if Q(x, y) = 0.

In all types of COC, the secret x (resp. y) can not be revealed to either the

receiver B (resp. A) or the sender S.

4



COC not only covers all functionalities of COT, but also broadens the

range of its applications. We provide three examples here:

• Three-party priced oblivious transfer: Aiello et al. [AIR01] introduced

the notion of “priced oblivious transfer”, which protects the privacy of

a customer’s purchase from a vendor. In their setting, the buyer needs

to deposit some amount of money in each vendor. This is not practical

if a buyer wants to purchase various goods from various vendors. By

our COC schemes, we have a generalized priced OT such that the buyer

can deposit the money in one bank only. When the buyer wants to buy

an item from a vendor, he sends the corresponding price and the bank

sends the buyer’s current balance in encrypted form to the vendor. The

vendor then sends the item so that the buyer can get it if the balance

is above the price.

• Oblivious two-bidder system: A party S has a secret for selling, and

A and B are two bidders. The winner can obtain the secret from S

directly. At the end, S has no idea who the winner is. This system can

be constructed from COC-III for the “greater than” predicate immedi-

ately.

• Oblivious authenticated information retrieval: A user can anonymously

get messages from a server if he passes the authentication procedure

provided by another party. For instance, consider a mobile download-

ing service which lets users download music, games, movies, etc. from

5



various merchants without revealing their identities. Assume that a mo-

bile phone has no extra memory to store the subscription information.

Users first apply the service to the mobile communication company,

and the company provides an encrypted subscription list of IMSIs (In-

ternational Mobile Subscriber Identity) to the content provider. When

a user wants to download a game, his mobile phone sends its encrypted

IMSI to the content provider. The content provider then sends the

game and the user can get it if the IMSI is in the subscription list.

In this case, the user’s identity (IMSI) is anonymous to the content

provider.

1.3 Our Results

In this thesis, we propose several efficient k-out-of-n OT and COC construc-

tions. For OTk
n, we provide solutions for three different classes: OT with

unconditional security of receiver (OTk
n-I), OT with unconditional security

of sender (OTk
n-II), and OT with adaptive queries (Adpt-OT).

• In the case of unconditional receiver’s security, we propose two schemes

Semi-OTk
n-I and Mal-OTk

n-I with two rounds only, in which R sends

O(k) messages to S, and S sends O(n) messages back to R. Semi-OTk
n-

I is secure against semi-honest receivers if the Decisional Diffie-Hellman

(DDH) problem holds. Mal-OTk
n-I can be proved secure against mali-

cious receivers under the Chosen-Target Computational Diffie-Hellman

6



Semi-OTk
n-I Mal-OTk

n-I [MZV02] [WZW03]

rounds 2 2 2 3
messages† (R → S) k k 2n k
messages† (S → R) 2n n + k 2n n + k

made to adaptiveness No Yes No Yes
security proof Yes Yes (RO) No No

† The number of group elements.

Table 1.1: Comparison between OTk
n schemes with unconditional receiver’s

security in communication cost.

problem in the random oracle model. When k = 1, the schemes are

as efficient as the OT1
n schemes in [Tze04]. The schemes also have

the nice property of universal parameters, that is, each pair of R and

S need not hold any secret before performing the protocol. The sys-

tem parameters can be used by all senders and receivers without any

trapdoor specification. Our OTk
n schemes in this class are the most

efficient ones in terms of the communication cost, either in rounds or

the number of messages. We summarize the comparison between ours

and other efficient works in this class in Table 1.1. Preliminary versions

of these results have been previously published [CT05, CT08].

• In the case of unconditional sender’s security, we first propose a generic

construction Gen-OTk
n-II where any multiplicatively homomorphic en-

cryption scheme whose plaintext space has a prime order can be ap-

plied. The query phase of the construction is still two-round. The

receiver’s security is based on the semantic security of the underlying

7



encryption scheme only. Then we provide a concrete construction Con-

OTk
n-II with only two rounds. The receiver’s security is based on the

DDH problem and can be proved in the standard model. For some

cases of k and n, our Con-OTk
n-II scheme is the most efficient scheme

in terms of the communication cost1. Preliminary versions of these

results have been previously published [CT08].

• For OT with adaptive queries, we extend our Mal-OTk
n-I scheme to an

adaptive OT scheme, named Adpt-OTk
n. In this scheme, S first sends

O(n) messages to R in one round in the commitment phase. For each

query of R, only O(1) messages are exchanged and O(1) operations

are performed. Our construction is as efficient as the work of Ogata

and Kurosawa [OK04], which is the most efficient adaptive OT scheme

up to now. Preliminary versions of these results have been previously

published [CT05, CT08].

For COC, we propose COC-I and COC-II schemes for “equality”, “in-

equality”, and “greater than” predicates. These are fundamental schemes for

constructing more complex secure interactive protocols. Then we also pro-

vide a general transformation from COC-II schemes to COC-III schemes. Our

schemes are efficiently constructed via homomorphic encryption schemes. We

first prove our schemes secure against semi-honest and non-collusive parties,

and then modify them to be secure against malicious parties. We also pro-

1For the scheme with unconditional sender’s security, one may perform the schemes of
Lipmaa [Lip05] k times independently to get better efficiency in some cases of k and n.

8



pose some OC schemes based on our COC-III scheme and homomorphic

cryptosystems. Our schemes are more efficient in communication complexity

than the previous one. Finally, we give some extensions of COC. Preliminary

versions of these results have been previously published [CT06].
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Chapter 2

Previous Works

In this chapter we provide a detailed survey of various OT and OC, respec-

tively.

2.1 Oblivious Transfer

In 1981, Rabin [Rab81] first introduced the notion of OT. Then, OT was

developed in several basic types:

• Rabin’s OT: S sends a message to R, and R gets the message with

probability 1/2. On the other hand, S does not know whether R gets

the message. Rabin [Rab81] presented an implementation to obliv-

iously transfer one-bit message, based on quadratic roots modulo a

composite. Even, Goldreich and Lempel [EGL82] provided another

implementation based on general public-key encryptions. Berger, Per-

alta and Tedrick [BPT84] also proposed a provably secure scheme.

Beaver [Bea92] provided another scheme by fixing Boer’s [Boe90] inse-

cure implementation. Fischer, Micali and Rackoff [FMR96] also fixed

10



Rabin’s implementation so that it can be proved secure assuming only

the factoring problem holds.

• 1-out-of-2 OT (OT1
2): S has two messages m1 and m2, and wishes R

to obtain exactly one of them. In addition, S remains oblivious to R’s

choice. The notion of OT1
2 originated with the work of Wiesner [Wie83],

which is also the beginning of quantum cryptography. Even, Goldre-

ich and Lempel [EGL85] proposed such extension of OT1
2, in which

R gets either message with probability 1/2. Brassard, Crépeau and

Robert [BCR86b] give us the new notion of OT1
2 such that R can get the

message at his choosing. Crépeau and Kilian [CK88] provided another

bit-OT1
2 (the messages are only one-bit) scheme from the weakened

security assumptions. Then many other OT1
2 schemes are continually

proposed [BM89, CS91, Boe90, SP90, SCP95, BC97, Cré97, Cac98,

CMO00, AIR01, Hai04, Kal05, WW06, CS06, Wul07].

• 1-out-of-n OT (OT1
n): OT1

n is an extension of OT1
2 for the case that

S has n messages. Brassard, Crépeau and Robert [BCR86a] first pro-

posed OT1
n in the name ”all-or-nothing disclosure of secrets” (ANDOS).

After that, OT1
n has become an important research topic in crypto-

graphic protocol design. Some OT1
n schemes are built by invoking ba-

sis OT1
2 several times [BCR86b, BCS96, NP99a], and the others are

constructed directly from basic cryptographic techniques [SS90, NR94,

Ste98, NP01, Tze04, Lip07, LL07]. Some OT1
n schemes derived from

11



computational private information retrieval (CPIR) have polylogarith-

mic communication cost [Cha04, Lip05].

• k-out-of-n OT (OTk
n): R obtains k out of n messages from S. Bellare

and Micali [BM89] first proposed an OTn−1
n scheme. Santis, Crescenzo,

and Persiano [SCP95] extended their OT1
2 scheme to an OTk

n scheme.

Ishai and Kushilevitz [IK97] also provided a bit-OTk
n scheme by invok-

ing OT1
2 several times. Naor and Pinkas [NP99a] proposed a non-trivial

OTk
n scheme. The scheme invokes a basis OT1

2 scheme O(wk log n)

times, where w > log δ/ log(k4/
√

n) and δ is the probability that

R can obtain more than k messages. It works only for k ≤ n1/4.

Mu, Zhang, and Varadharajan [MZV02] presented some efficient OTk
n

schemes. These schemes are designed from cryptographic functions di-

rectly. The most efficient one is a non-interactive one. To be compared

fairly, the setup phase of establishing shared key pairs of a public-key

cryptosystem should be included. Thus, the scheme is two-round and

R and S send each other O(n) messages. However, the choices of R

cannot be made adaptive since R’s choices are sent to S first and the

message commitments are dependent on the choices. Wu, Zhang, and

Wang [WZW03] also provided a three-round OTk
n based on the two-lock

cryptosystem. Recently, Green and Hohenberger [GH07] presented an

OTk
n and an adaptive OT schemes in the full-simulation model which

needs several additional rounds.
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Relations between basic types of OT Crépeau [Cré87] proved that

Rabin’s OT and OT1
2 are computationally equivalent. However, it needs to

reduce bit-OT1
2 to string-OT1

2 first, and then reduce string-OT1
2 to Rabin’s

OT. Kurosawa and Koshiba [KK07] provided a direct reduction of string-OT1
2

to Rabin’s OT. Certainly, OTk
n implies OT1

n and OT1
n implies OT1

2 by setting

k = 1 and n = 2, respectively. There are also some reductions from OT1
n to

OT1
2 [BCR86b, BCS96, NP99a]. Moreover, OTk

n can be easily constructed by

invoking OT1
n k times independently. Therefore, these four basic types of OT

are computationally equivalent. Other reductions between OTs are discussed

in [CK88, BC97, Cac98, DM99, DKS99, DS01, IKNP03, DFMS04, Nie07].

Besides, there are various types of OT developed in different models and

applications:

• Adaptive OT (Adpt-OT): The OT scheme allows R to query messages

one by one adaptively, i.e. the ith chosen message depends on the

previous i − 1 messages. The notion was first introduced by Naor

and Pinkas [NP99b]. In one of their schemes (the two-dimensional

one), each query needs invoke the basis OT1√
n

scheme twice, in which

each invocation of OT1√
n

needs O(
√

n) initialization work. In another

scheme, each adaptive query of messages need invoke the basis OT2
1

protocol log n times. Ogata and Kurosawa [OK04] proposed an efficient

adaptive OT scheme based on the RSA cryptosystem. Each S needs a

trapdoor (the RSA modulus) specific to him. The scheme is as efficient

13



as our Adpt-OTk
n scheme. But, if the adaptive OT scheme is converted

to a non-adaptive one, it needs 3 rounds (In the first round, S sends

the modulus N to R). There are some recent works [GH07, CNs07]

introducing adaptive OT in the full-simulation model. These schemes

achieve the stronger security requirement but loss a degree of efficiency.

• Conditional OT (COT): S holds a secret x and a message m, and R

holds a secret y such that R gets m from S if and only if Q(x, y) is

evaluated as true for some condition Q. COT was first proposed by

Crescenzo, Ostrovsky and Rajagopalan [COR99]. They focus on pro-

viding “all-or-nothing” transfer of the message from S to R by the con-

dition. Blake et al. [BK04] strengthened COT to strong COT (SCOT),

which provides ”1-out-of-2” message transfer from S to R by the con-

dition. Our notion of COC is to split the role of S who owns a message

and a secret into two roles of a message sender and a secret holder. The

main difference in design techniques is that, in COT, the secure compu-

tation is done by S with a masked input and a plain input, whereas the

secure computation in our COC schemes is done by S with two masked

inputs. A COC scheme that meets the requirements of our definitions

can be easily transferred to a COT or SCOT scheme.

• Verifiable OT (VOT): R can verify that the messages he gets from S are

indeed the messages S had committed. Crépeau [Cré89] first proposed

a basic bit-VOT1
2 scheme. Then the VOT1

n scheme can be immedi-
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ately obtained by the general transformation [BCR86b]. Crépeau, van

de Graaf, and Tapp [CvdGT95] provided a more efficient scheme in

the name “committed oblivious transfer” by using OT1
2 and BC (bit

commitment) as black boxes. Cramer and Damg̊ard [CD97] presented

another solution based on their zero-knowledge proof system. Cachin

and Camenisch [CC00] proposed a simple and efficient VOT1
2 based on

the DDH assumption. Ambainis, Jakobsson and Lipmaa [AJL04] pro-

vided a VOT1
n based on the OT1

n scheme proposed in [NP01]. There

are also other variants of OT with verifiable property [JS02, Lip03,

GMY04, KSV07].

• Distributed OT (DOT): S is divided between several servers, and R

must contact a threshold of these servers to perform the OT protocol.

Compared to the single-server based OT, DOT has the advantage of

better efficiency and security. Gertner and Malkin [GM97] first intro-

duced the notion of DOT and presented an implementation of DOT1
n.

Naor and Pinkas [NP00] provided a solution of DOT1
2 (it can also be ex-

tended to DOT1
n by their reduction [NP99a]). Blundo, D’Arco, Santis

and Stinson [BDSS02] also constructed some DOT1
n schemes. Nikov,

Nikova, Preneel and Vandewalle [NNPV02] further generalized the re-

sult of Blundo et. al. Tzeng [Tze04] proposed a DOT1
n scheme based

on his OT1
n scheme in the name ”threshold oblivious transfer”.

• Proxy OT (POT): In addition to S and R, a POT scheme involves a
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third party, the proxy, which serves as the receiver’s proxy for learning

the output. Naor, Pinkas, and Sumner [NPS99] first introduced this no-

tion and provided an implementation of POT1
2. Juels and Szydlo [JS02]

also proposed another verifiable POT scheme. These two POT schemes

are both used in the auction systems.

• OT in the bounded storage model: The bounded storage model, first

introduced by Maurer [Mau90], assumes that there is only a bound on

the adversary’s storage capacity, i.e. no limitation on the computa-

tional power of the adversary. In the bounded storage model, provably

everlasting security can be achieved efficiently without any complex-

ity assumption [CM97, AR99, ADR02, DR02, DM02, Lu02, Vad03].

The first OT1
2 scheme in this model was proposed by Cachin, Crépeau

and Marcil [CCM98]. They put the storage bound on R (the case

where the bound is placed on S is equivalent by the reversibility of

OT [CS91]). The storage requirement for the two parties is O(N2/3),

where N is the (very large) number of public random bits, and the

successful probability of dishonest R is at most O(N−1/3), which is not

small enough. Ding [Din01] provided a more efficient OT1
2 scheme with

O(
√

kN) storage requirement and 2−O(k) successful probability of dis-

honest R who stores O(N) bits, where k is a security parameter. Hong,

Chang and Ryu [HCR02] extended Ding’s work to get an OT1
n scheme

in the bounded storage model. However, all these schemes require a lot
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of interaction. Ding, Harnik, Rosen and Shaltiel [DHRS04] provided

a constant round OT1
2 scheme. The two parties in their work need

only exchange 5 messages. They also improved other parameters, such

as the number of bits transferred and the probability of immaturely

aborting the protocol due to the failure.

There are also some related works designed for particular considera-

tions [Bea95, Bea96, GM00, HKN+05, LL06]. For the relation between

OT and other cryptographic primitives, Kilian [Kil88] showed that OT is

complete in the sense that every secure multiparty computation can be

implemented using OT. Impagliazzo and Luby [IL89] proved that OT im-

plies the existence of one-way functions (OWF). Moreover, Impagliazzo and

Rudich [IR89] showed that OT is probably stronger than OWF, that is, the

construction of OT using OWF as a black box is as hard as separating P

from NP . Gertner, Kannan, Malkin, Reingold and Viswanathan [GKM+00]

studied the relationships among public-key encryption (PKE) and OT. They

showed that PKE and OT are incomparable under black-box reductions.

2.2 Oblivious Cast

Blaze [Bla96] introduced the notion of k-out-of-n OC, e.g. there are n re-

ceivers and k of them get the message from the sender. He provided a

concrete construction by using the blind signature scheme and anonymous

communication mechanism. Fitzi et al. [FGMO01] treated OC as a primitive
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for the secure multi-party computation. They proved that three-party OC is

complete when the corrupted parties is less than one half.
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Chapter 3

k-out-of-n Oblivious Transfer

We propose several OTk
n schemes in different security classes in this chapter.

3.1 Preliminaries

Involved parties. An OT scheme has two involved parties: a sender and a

receiver. Both are polynomial-time-bounded probabilistic Turing machines

(PPTM). A party is semi-honest (or passive, honest-but-curious) if it does

not deviate from the steps defined in the protocol, but tries to compute extra

information from received messages. A party is malicious (or active) if it can

deviate from the specified steps in any way in order to get extra information.

A malicious sender may cheat in order or content of his possessed mes-

sages. To prevent the cheat, we can require the sender to commit the mes-

sages first [CNs07, GH07]. But we don’t stress on this issue here because

we should handle it at the application level above the OT. Actually, most

merchants which play the roles of senders act honestly in order to keep their

reputation. Therefore, we consider the OT scheme with semi-honest senders
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and semi-honest/malicious receivers only.

Indistinguishability. Two distribution ensembles {Xn}n∈N and {Yn}n∈N

are computationally indistinguishable if for any PPTM D and any polynomial

p(n), there is n0 such that for every n ≥ n0

| Pr
x←Xn

[D(x) = 1]− Pr
x←Yn

[D(x) = 1]| ≤ 1/p(n).

Ideal Model. In the ideal model, the sender sends all messages and the

receiver sends all choices to a trusted third party (TTP). The TTP then sends

the chosen messages to the receiver. This is the securest way to implement

OT.

Security model. Assume that S holds n messages m1,m2, . . . , mn and R

has k choices σ1, σ2, . . . , σk. For OT with honest sender and honest receiver,

we have the following security requirements:

1. Receiver’s security - indistinguishability: for any two different sets of

choices C = {σ1, σ2, . . . , σk} and C ′ = {σ′1, σ′2, . . . , σ′k}, the transcripts,

corresponding to C and C ′, received by the sender are indistinguishable.

If the received messages of S for C and C ′ are identically distributed,

the choices of R are unconditionally secure.

2. Sender’s security - indistinguishability: for any set of choices C =

{σ1, σ2, . . . , σk}, the unchosen messages should be indistinguishable

from the random ones. If the ciphertexts of unchosen messages are

uniformly distributed for R, the security of S is unconditional.
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On the other hand, the OT with honest sender and malicious receiver

should meet the following security requirements:

1. Receiver’s security - indistinguishability: the same as the case of the

semi-honest receiver.

2. Sender’s security - compared with the ideal model: for any receiver R

in the real OT scheme, there is a simulator R′ in the ideal model such

that the outputs of R and R′ are indistinguishable.

Computational model. Let Gq be a subgroup of Z∗p with prime order q,

where p = 2q + 1 is also prime. Let g be a generator of Gq. We use gx to

denote the abbreviation of gx mod p, where x ∈ Zq. Let x ∈R X denote that

x is chosen uniformly and independently from the set X.

Computational assumptions. We assume that the hardness of the Deci-

sional Diffie-Hellman (DDH) problem and the Chosen-Target Computational

Diffie-Hellman (CT-CDH) problem.

Assumption 1 (Decisional Diffie-Hellman (DDH)) The following two

distribution ensembles are computationally indistinguishable:

• Y1 = {(g, ga, gb, gab)}Gq , where g is a generator of Gq, and a, b ∈R Zq.

• Y2 = {(g, ga, gb, gc)}Gq , where g is a generator of Gq, and a, b, c ∈R Zq.

The CT-CDH assumption, introduced by Boldyreva [Bol03], is analogous to

the chosen-target RSA inversion assumption defined by Bellare, et al. [BNPS01]
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S,R a sender and a receiver
Gq a cyclic group with prime order q
g, h generators of group Gq

mi’s sender’s messages
σi’s receiver’s choices

f1, f2 polynomials
ai’s coefficients of f1

bi’s coefficients of f2

H1, H2 hash functions
E an encryption scheme

G,E,D key generation, encryption and decryption functions
pk, sk a pair of public key and secret key
M message space of an encryption scheme
λ a security parameter

Table 3.1: Common notations for our OT constructions

Assumption 2 (Chosen-Target Computational Diffie-Hellman (CT-

CDH)) Let H1 : {0, 1}∗ → Gq be a cryptographic hash function. The adver-

sary A is given input (q, g, gx, H1) and two oracles: target oracle TG(·) that

returns a random element wi ∈ Gq at the ith query and helper oracle HG(·)

that returns (·)x. Let qT and qH be the number of queries A made to the

target oracle and helper oracle, respectively. The probability that A outputs

k pairs ((v1, j1), (v2, j2), . . . , (vk, jk)), where vi = (wji
)x for i ∈ {1, 2, . . . , k},

qH < k ≤ qT , is negligible.

Finally, we list some common notations used in this chapter in Table 3.1

for quick reference.
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• System parameters: (g, h,Gq);

• S has messages: m1,m2, . . . ,mn ∈ Gq;

• R’s choices: σ1, σ2, . . . , σk ∈ {1, 2, . . . , n};
1. R chooses two polynomials f1(x) = a0 + a1x + · · ·+ ak−1x

k−1 + xk and
f2(x) = b0 + b1x+ · · ·+ bk−1x

k−1 +xk where a0, a1, . . . , ak−1 ∈R Zq and
b0 + b1x + · · ·+ bk−1x

k−1 + xk ≡ (x− σ1)(x− σ2) · · · (x− σk) mod q.

2. R −→ S : A0 = ga0hb0 , A1 = ga1hb1 , . . . , Ak−1 = gak−1hbk−1 .

3. S computes ci = (gri ,miB
ri
i ) where ri ∈R Zq and Bi = gf1(i)hf2(i) =

A0A
i
1 · · ·Aik−1

k−1 (gh)ik

mod p, for i = 1, 2, . . . , n.

4. S −→ R: c1, c2, . . . , cn.

5. Let ci = (Ui, Vi). R computes mσi = Vσi/U
f1(σi)
σi mod p for each σi.

Figure 3.1: Semi-OTk
n-I: k-out-of-n OT against semi-honest receiver

3.2 OTk
n with Unconditional Security of Re-

ceiver

In this section we introduce OTk
n with unconditional receiver’s security. We

provide two schemes which are secure against semi-honest receiver in the

standard model and secure against malicious receiver in the random oracle

model respectively.

3.2.1 The Scheme for Semi-Honest Receiver

The sender S has n secret messages m1,m2, . . . , mn. Assume that the mes-

sage space is Gq. The receiver R wants to get mσ1 ,mσ2 , . . . , mσk
without

revealing any information about σ1, σ2, . . . , σk. The protocol Semi-OTk
n-I is

depicted in Figure 3.1.

For system parameters, let g, h be two generators of Gq where logg h is un-

known to all, and Gq be the group with some description. These parameters
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can be used repeatedly by all possible senders and receivers as long as the

value logg h is not revealed. Therefore, (g, h,Gq) are universal parameters.

The receiver R first constructs a k-degree polynomial f2(x) such that

f2(i) = 0 if and only if i ∈ {σ1, . . . , σk}. Then R chooses another random

k-degree polynomial f1(x) to mask the chosen polynomial f2(x). The masked

choices A0, A1, . . . , Ak−1 are sent to the sender S.

When S receives these queries, he first computes Bi = gf1(i)hf2(i) by

computing A0A
i
1 · · ·Aik−1

k−1 (gh)ik mod p. Because of the random polynomial

f1(x), S does not know which f2(i) is equal to zero, for i = 1, 2, . . . , n. Then

S treats Bi as the public key and encrypts each message mi by the ElGamal

cryptosystem. The encrypted messages c1, c2, . . . , cn are sent to R.

For each ci, i ∈ {σ1, σ2, . . . , σk}, since Bi = gf1(i)hf2(i) = gf1(i)h0 = gf2(i),

R can get these messages by the decryption of ElGamal cryptosystem with

secret key f1(i). If i /∈ {σ1, σ2, . . . , σk}, since R can not compute (gf1(i)hf2(i))ri

with the knowledge of gri , f1(i) and f2(i) only, the message mi is unknown

to R.

Correctness. Let ci = (Ui, Vi), we can check that the chosen messages

mσi
, i = 1, 2, . . . , k, are computed as

Vσi
/U f1(σi)

σi
= mσi

· (gf1(σi)hf2(σi))rσi /grσif1(σi)

= mσi
· (gf1(σi) · 1)rσi /grσif1(σi)

= mσi
.

Security analysis. We now prove the security of Semi-OTk
n-I.
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Theorem 1 For scheme Semi-OTk
n-I, R’s choices are unconditionally se-

cure.

Proof 1 For any tuple (A0, A1, . . . , Ak−1) sent by R, we have a pair of tu-

ples (a′0, a
′
1, . . . , a

′
k−1) and (b′0, b

′
1, . . . , b

′
k−1) to represent all possible choices

σ′1, σ
′
2, . . . , σ

′
k so that Ai = ga′ihb′i for i = 0, 1, . . . , k − 1. Thus, the receiver

R’s choices are unconditionally secure.

2

Theorem 2 Scheme Semi-OTk
n-I meets the sender’s security requirement.

If the DDH assumption holds and R is semi-honest, R gets no information

about messages mi for i /∈ {σ1, σ2, . . . , σk}.

Proof 2 We show that for all i /∈ {σ1, σ2, . . . , σk}, ci’s look random if the

DDH assumption holds. Let I = {1, 2, . . . , n}\{σ1, σ2, . . . , σk} be an ordered

set. Assume that there is a polynomial-time distinguisher D distinguishes the

following two distributions:

• C = (g, h, {(grij , (gf1(ij)hf2(ij))rij )}ij∈I,j=1,...,n−k),

where rij ∈R Zq, and f1 and f2 are chosen as in the protocol;

• X = (g, h, {(grij , Xj)}ij∈I,j=1,...,n−k),

where rij ∈R Zq and Xj ∈R Gq.

Then we can construct another PPTM D′, which takes D as a sub-routine,

to distinguish the following two distributions:
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• Ỹ1 = {(g, h, ga, ha)}Gq , where g, h are generators of Gq, and a ∈R Zq.

• Ỹ2 = {(g, h, ga, gb)}Gq , where g, h are generators of Gq, and a, b ∈R Zq.

The difference between (Ỹ1, Ỹ2) and (Y1, Y2) is that h can’t be 1 in Ỹ1 and Ỹ2.

Machine D′

Input: (g, h, v, w) (either from Ỹ1 or Ỹ2)

1. Randomly select σ1, . . . , σk ∈ {1, . . . , n}.

2. Choose polynomials f1 and f2 according to σi’s as in the protocol.

3. Randomly select l ∈ {1, 2, . . . , n− k}.

4. Output D((Ui1 , Vi1), (Ui2 , Vi2), . . . , (Uin−k
, Vin−k

)), where ij ∈ I,

(Uij , Vij) =





(grij , (gf1(ij)hf2(ij))rij ) if j ∈ {1, . . . , l − 1}
(v, vf1(ij)wf2(ij)) if j = l
(grij , Xj) if j ∈ {l + 1, . . . , n− k}

,

and rij ∈R Zq, Xj ∈R Gq.

Assume that D distinguishes C and X with non-negligible advantage ε.

Let α = (g, h, v, w) and ~Cl = (g, h, {(Uij , Vij)}ij∈I,j=1,...,n−k) where

(Uij , Vij) =

{
(grij , (gf1(ij)hf2(ij))rij ) if j ∈ {1, . . . , l}
(grij , Xj) if j ∈ {l + 1, . . . , n− k} ,

and rij ∈R Zq and Xj ∈R Gq. Note that ~Cn−k = C and ~C0 = X. If α is

chosen from Ỹ1, then

Pr
α∈Ỹ1

[D′(α) = 1] = Pr[D′(Ỹ1) = 1] =
1

n− k

n−k∑

l=1

Pr[D(~Cl) = 1].
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If α is chosen from Ỹ2, then

Pr
α∈Ỹ2

[D′(α) = 1] = Pr[D′(Ỹ2) = 1] =
1

n− k

n−k−1∑

l=0

Pr[D(~Cl) = 1].

Therefore, we have

Pr[D′(Ỹ1) = 1]− Pr[D′(Ỹ2) = 1]

= 1
n−k

(
∑n−k

l=1 Pr[D(~Cl) = 1]−∑n−k−1
l∗=0 Pr[D(~Cl) = 1])

= 1
n−k

(Pr[D(~Cn−k) = 1]− Pr[D(~C0) = 1])

= 1
n−k

(Pr[D(C) = 1]− Pr[D(X) = 1])

≥ ε
n−k

.

Moreover, since dist(Ỹ1, Y1) = 1/q and dist(Ỹ2, Y2) = 1/q, we can solve

the DDH problem with at least non-negligible advantage ε
n−k

− 2
q
, which is a

contradiction.

2

Complexity. The scheme uses two rounds (steps 2 and 4), the first round

sends k messages and the second round sends 2n messages. For computation,

R computes 3k and S computes (k + 3)n modular exponentiations.

3.2.2 The Scheme for Malicious Receiver

A malicious player may not follow the protocol dutifully. For example, a

malicious R might send arbitrary Ai’s in step 2. So we present the scheme

Mal-OTk
n-I which is provable secure against malicious receivers in the random

oracle model. The scheme is depicted in Figure 3.2.

The generator g and group Gq of system parameters are defined as that

in Semi-OTk
n-I. Let H1 : {0, 1}∗ → Gq, H2 : Gq → {0, 1}l be two collision-

27



• System parameters: (g,H1,H2,Gq);

• S hasmessages: m1,m2, . . . ,mn ∈ {0, 1}l;

• R’s choices: σ1, σ2, . . . , σk ∈ {1, 2, . . . , n};
1. R computes hσj = H1(σj) and Aj = h

rj
σj , where rj ∈R Z∗q and j =

1, 2, . . . , k.

2. R −→ S: A1, A2, . . . , Ak.

3. S chooses a random x ∈ Z∗q and computes Dj = Ax
j , hi = H1(i), and

ci = mi ⊕H2(hx
i ), where i = 1, 2, . . . , n and j = 1, 2, . . . , k.

4. S −→ R: D1, D2, . . . , Dk, c1, c2, . . . , cn

5. R computes Kj = D
r−1

j

j and gets mσj = cσj ⊕H2(Kj) for j = 1, 2, . . . , k.

Figure 3.2: Mal-OTk
n-I: k-out-of-n OT against malicious receiver

resistant hash functions. Let messages be of l-bit length. Assume that CT-

CDH is hard under Gq.

Correctness. We can check that the chosen messages mσj
, j = 1, 2, . . . , k,

are computed as

cσj
⊕H2(Kj) = mσj

⊕H2(h
x
σj

)⊕H2(h
x
σj

)

= mσj
.

Security analysis. We assume that the random oracle model in this secu-

rity analysis.

Theorem 3 In Mal-OTk
n-I, R’s choices are unconditionally secure.

Proof 3 Since Gq is the group of prime order q, all elements except 1 in Gq

are generators. Given a value A ∈ Gq, for any hi = H1(i), there is an ri

such that A = hri
i . That is, A can be a masked value of any index. Thus the

receiver’s choices are unconditionally secure.
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2

Theorem 4 Even if R is malicious, the scheme Mal-OTk
n-I meets the re-

quirement for the sender’s security in the random oracle model.

Proof 4 Since we treat H2 as a random oracle, the malicious R has to know

Ki = hx
i in order to query the hash oracle to get H2(h

x
i ). For each possible

malicious R, we construct a simulator R∗ in the ideal model such that the

outputs of R and R∗ are indistinguishable.

R∗ works as follows:

1. R∗ simulates R to obtain A∗
1, A

∗
2, . . . , A

∗
k. When R queries H1 on index

i, we return a random h∗i (consistent with the previous queries.)

2. R∗ simulates S (externally without knowing mi’s) on inputs A∗
1, A∗

2, . . . ,

A∗
k to obtain x∗, D∗

1, D
∗
2, . . . , D

∗
k.

3. R∗ randomly chooses c∗1, c
∗
2, . . . , c

∗
n.

4. R∗ simulates R on input (D∗
1, D

∗
2, . . . , D

∗
k, c

∗
1, c

∗
2, . . . , c

∗
n) and monitors

the queries closely. If R queries H2 on some vj = (h∗j)
x∗, R∗ sends

j to the TTP T to obtain mj and returns c∗j ⊕ mj as the hash value

H2((h
∗
j)

x∗), otherwise, returns a random value (consistent with previous

queries).

5. Output (A∗
1, A

∗
2, . . . , A

∗
k, D

∗
1, D

∗
2, . . . , D

∗
k, c

∗
1, c

∗
2 . . . , c∗n).
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If R obtains k + 1 decryption keys, R∗ does not know which k indices are

really chosen by R. The simulation would fail. Therefore we show that R

can obtain at most k decryption keys by assuming the hardness of chosen-

target CDH problem. In the above simulation, if R queries H1, we return

a random value output by the target oracle. When R∗ simulates S on input

A∗
1, A

∗
2, . . . , A

∗
k, we forward these queries to the helper oracle, and return the

corresponding outputs. Finally, if R queries H2 on legal vji
for all 1 ≤ i ≤

k + 1, we can output k + 1 pairs (vji
, ji), which contradicts to the CT-CDH

assumption. Thus, R obtains at most k decryption keys.

Let σ1, σ2, . . . , σk be the k choices of R. For the queried legal vσj
’s, cσj

is consistent with the returned hash values, for j = 1, 2, . . . , k. Since no

other (h∗l )
x∗, l 6= σ1, σ2, . . . , σk, can be queried to the H2 hash oracle, cl has

the right distribution (due to the random oracle model). Thus, the output

distribution is indistinguishable from that of R.

2

Complexity. Mal-OTk
n-I has two rounds. The first round sends k messages

and the second round sends n + k messages. For computation, R computes

2k, and S computes n + k modular exponentiations.

3.3 OTk
n with Unconditional Security of Sender

In this section we introduce OTk
n with unconditional sender’s security. We

first provide a generic construction so that we can apply some multiplica-
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tively homomorphic encryption schemes to it. Then we propose a concrete

scheme with more efficient round complexity. Both constructions are proved

secure in the standard model.

3.3.1 The Generic Construction

We propose a simple k-out-of-n oblivious transfer framework such that it

can be widely used in small-scale applications or cryptographic protocols.

Any multiplicatively homomorphic encryption scheme whose plaintext space

has a prime order can be applied to this framework. Therefore protocol

designers can choose the existing encryption scheme to implement OT in

their protocols.

Current OT solutions using additively homomorphic encryption [AIR01,

BGN05, LL07] have some security issues. The main problem is that most ad-

ditively homomorphic encryption schemes have a composite plaintext space

order. Thus the scheme needs either a trusted party to generate public/secret

keys or a zero-knowledge proof system to ensure that the public key is well

formed. Moreover, direct use of these homomorphic encryption schemes is

not secure [Cha04, LL07].

In addition to the generality, our scheme has the following properties.

• The query phase of our construction has only two rounds: the receiver

sends O(k) messages to the sender, and gets O(n) messages back. So

it is very efficient and practical to be used as a building block.
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• The construction doesn’t need any zero-knowledge proof system but

still remains secure against malicious receivers. This avoids additional

rounds or the use of random oracles in the security proofs.

• The receiver’s privacy is preserved if the underlying encryption scheme

is IND-CPA secure. No additional assumption is needed.

Multiplicatively Homomorphic Public Key Encryption. A public

key multiplicatively homomorphic encryption scheme E = (G,E,D) is de-

fined as follows. Let M be the plaintext space.

• Key generation: on input a security parameter λ, G(λ) outputs a pair

of public and secret keys (pk, sk).

• Encryption: on input a message m ∈M, Epk(m) outputs a ciphertext

C.

• Decryption: on input a ciphertext C, Dsk(C) outputs the message m.

• Multiplicative homomorphism: for ciphertexts C1 = Epk(m1), C2 =

Epk(m2) and C = Epk(m), we have

1. C1 · C2 = Epk(m1 ·m2);

2. Cr = Epk(m
r) where r is a known constant.

Note that if M has a prime order, there exists a generator generating all

group elements in M.
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IND-CPA Security. We define the security game for a public key encryp-

tion scheme E = (G,E,D) as follows.

Setup. The challenger computes (pk, sk) ← G(λ) and outputs the public

key pk.

Challenge. The adversary outputs two messages m0 and m1. The challenger

chooses a random b ∈ {0, 1} and returns Cb representing the encryption

of mb.

Guess. Finally, the adversary outputs its guess b′ and wins the game if

b = b′.

We define the advantage of an adversary A in attacking E as the function of

the security parameter λ: AdvE,A(λ) = |Pr[b = b′]− 1
2
|.

Definition 1 (IND-CPA Security) We say that a public key encryption

scheme is IND-CPA secure if no polynomially bounded adversary A has a

non-negligible advantage against the challenger in the above game.

Our construction Gen-OTk
n-II is depicted in Figure 3.3. Let E be a mul-

tiplicatively homomorphic encryption scheme and M be the corresponding

message space. Note that the order ofM needs to be prime. The sender S has

m1, . . . , mn ∈ M and the receiver R has choices σ1, . . . , σk ∈ {1, 2, . . . , n}.

The scheme is divided into two phases: Setup Phase and Query Phase.

In the setup phase, R computes his public/secret key pair, and sends

pk to S. Then S and R engage in a ‘proof of decryption ability’ protocol
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• Let E = (G,E, D) be a multiplicatively homomorphic encryption
scheme;

• S has messages: m1,m2, . . . ,mn ∈M;

• R’s choice: σ1, σ2 . . . σk ∈ {1, 2, . . . , n};
Setup Phase

1. R computes G(λ) to generate keys (pk, sk) and sends pk to S.

2. S chooses a random m ∈M, and sends Epk(m) to R.

3. R replies the decryption result m. S aborts if it is incorrect.

Query Phase

1. R computes f(x) = a0 + a1x + · · · + ak−1x
k−1 + xk = (x − σ1)(x −

σ2) · · · (x− σk) under the appropriate group.

2. R −→ S: (g, A0, A1, . . . , Ak−1), where Ai = Epk(gai) for all i =
0, 1, . . . , k − 1 and g is a generator of M.

3. S −→ R: C1, C2, . . . , Cn, where

Ci = Epk(mi) · (A0 ·Ai
1 · · ·Aik−1

k−1 · Epk(gik

))ri

and ri is randomly chosen.

4. R decrypts Cσi and gets mσi for all i = 1, 2, . . . , k.

Figure 3.3: Gen-OTk
n-II: Generic k-out-of-n OT

to prevent R from learning the encrypted messages that R cannot decrypt

himself. Note that the setup phase may not be necessary if the protocol that

takes this OT construction as a building block already has a key setup for

the receiver.

In the query phase, R first sets up a k-degree polynomial f such that

f(σi) = 0 for all 1 ≤ i ≤ k. In order to let S compute f , he puts the coeffi-

cients on the exponent of a generator g, and sends them to S in the encrypted

form. Then S computes the following equations for all i ∈ {1, 2, . . . , n} using
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the homomorphic property:

Ci = Epk(mi · (gf(i))ri),

where ri is randomly chosen. Note that S has to encrypt the k-th term of

gf(x) with coefficient 1 by himself. This is the technique of ensuring that

f(x) is a non-zero polynomial. Thus only k points makes f zero. R gets k

messages and n− k random values.

Theorem 5 For any malicious receiver, the scheme Gen-OTk
n-II has information-

theoretic sender’s security.

Proof 5 For each malicious receiver R∗, we construct a simulator SR∗ in the

ideal model such that the output distributions of R∗ and SR∗ are identical.

SR∗ works as follows.

1. Simulate R∗ to obtain (pk, g, A0, A1, . . . , Ak−1).

2. Repeatedly rewind R∗ to Step 2 of the setup phase and send Ai·Epk(hi), hi ∈R

M, as challenge ciphertexts to get gaihi back. Compute gai = gaihi/hi

for all i ∈ {0, 1, . . . , k − 1}.

3. For all i ∈ {1, 2, . . . , n}, compute gf(i) using the values gai’s and define

the set J = {j|gf(j) = 1}, |J | ≤ k.

4. Send all j ∈ J to the TTP and get mj’s back.

5. Send Ci to R∗ for all i ∈ {1, 2, . . . , n}:

Ci =

{
Epk(mi) if i ∈ J ;
Epk(r

∗
i ) otherwise, r∗i ∈R M.
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6. Output (pk,Epk(m),m, g, A0, A1, . . . , Ak−1, C1, C2, . . . , Cn)

In Step 2 of the simulation, we use the self reducibility properties of the

encryption scheme to map an encrypted message to an encryption of a ran-

dom message. Then the challenge ciphertext will be indeed the encryption

of a random message. After getting the returned answer, we can compute

the original message by canceling the random factor. Therefore we can get

all messages sent by R∗ and thus know R∗’s choices by checking whether

gf(i) = 1. Moreover, since the coefficient of xk in f(x) is 1, we can make

sure that f(x) will not be a zero polynomial. For a nonzero k-degree polyno-

mial, there are at most k indices such that f(i) = 0. So the number of R∗’s

choices is at most k, and thus we can send these indices to the TTP.

Let’s consider the output distribution of SR∗. First, (pk, g, A0, . . . , Ak−1)

are outputted by R∗. As stated above, the challenge chiphertext is the encryp-

tion of a random message, so the challenge and response are distributed as

in the real scheme. For all i /∈ J (i.e. f(i) 6= 0), the ciphertexts Ci’s would

be encryptions of random messages, which are identically distributed as Ci’s

in the real scheme. On the other hand, as long as i ∈ J , we can get the index

i and query the TTP to obtain mi. Therefore all Ci’s are distributed as them

in the real scheme. The scheme can be perfectly simulated and the sender’s

security is information-theoretic.

Theorem 6 For any malicious sender, the scheme Gen-OTk
n-II has receiver’s

security if the underlying encryption scheme E = (G,E, D) is IND-CPA se-
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cure.

Proof 6 Let S∗ be any possible malicious sender. We can see that the chal-

lenges of S∗ in the setup phase are independent of R’s choices in the query

phase. Moreover, S∗ cannot influence R’s choices before or after R sends

(g, A0, A1, . . . , Ak−1). So we can prove the receiver’s security by just consid-

ering the values (g, A0, A1, . . . , Ak−1).

Suppose a polynomial time adversary A breaks receiver’s security of Gen-

OTk
n-II with non-negligible advantage ε(λ). We can construct another poly-

nomial time adversary B breaking the IND-CPA security of E with advantage

ε(λ)/k. Given pk as input, algorithm B works as follows.

1. B gives algorithm A the public key pk and a generator g.

2. A outputs {σ0,1, . . . , σ0,k}, {σ1,1, . . . , σ1,k} ∈ {1, 2, . . . , n}k.

3. B computes the polynomials

• f0(x) = a0,0 + a0,1x + · · · + a0,k−1x
k−1 + xk = (x − σ0,1)(x −

σ0,2) · · · (x− σ0,k) and

• f1(x) = a1,0 + a1,1x + · · · + a1,k−1x
k−1 + xk = (x − σ1,1)(x −

σ1,2) · · · (x− σ1,k).

4. B randomly chooses a number l ∈ {1, 2, . . . , k} and sends (ga0,l , ga1,l) to

the challenger of E.

5. The challenger outputs a ciphertext C.
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6. B sends

~Cl = (Epk(g
a0,0), . . . , Epk(g

a0,l−1), C, Epk(g
a1,l+1), . . . , Epk(g

a1,k−1))

to A.

7. B outputs A’s guess b.

By the hybrid argument (similar to the proof of Theorem 2), we can see that

ADVB(λ) ≥ 1

k
ADVA(λ) =

ε(λ)

k

So B breaks E with non-negligible advantage ε(λ)/k, which is a contradiction.

Gen-OTk
n-II has receiver’s security.

3.3.2 Concrete Construction

Here we propose a concrete OTk
n construction with unconditional sender’s

security. The scheme is more efficient than the generic one. It is extended

from the 1-out-of-n OT under the same security condition provided by Naor

and Pinkas [NP01].

We present the scheme in Figure 3.4. The main idea of this scheme is

the same as Semi-OTk
n-I. R first chooses two polynomials f1(x), f2(x) and a

random value b where f2(x) represents the choices, and f1(x) and b are used

to mask f2(x). By the DDH assumption, Ci = gaibha′i can’t be distinguished

from the random value when given gai and gb, for i = 0, 1, . . . , k−1. Therefore

the choices of R are computationally secure.
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• System parameters: (g,Gq);

• S has messages: m1,m2, . . . ,mn ∈ Gq;

• R’s choices: σ1, σ2, . . . , σk ∈ {1, 2, . . . , n};
1. R chooses a generator h of Gq, a random b ∈ Zq, and two polyno-

mials f1(x) = a0 + a1x + · · · + ak−1x
k−1 + xk and f2(x) = a′0 +

a′1x + · · · + a′k−1x
k−1 + xk where a0, a1, . . . , ak−1 ∈R Zq and a′0 +

a′1x + · · · + a′k−1x
k−1 + xk ≡ (x − σ1)(x − σ2) · · · (x − σk) mod q. Let

(A0, A1, . . . , Ak−1) = (ga0 , ga1 , . . . , gak−1), B = gb, (C0, C1, . . . , Ck−1) =
(ga0bha′0 , ga1bha′1 , . . . , gak−1bha′k−1).

2. R −→ S : (h,A0, A1, . . . , Ak−1, B, C0, C1, . . . , Ck−1).

3. S chooses n random pairs (r1, s1), (r2, s2), · · · , (rn, sn) in Zq, and com-
putes ci = (gf1(i)rigsi , (gf1(i)bhf2(i))ri(gb)si ⊕ mi) = (Xri

i gsi , Zri
i Bsi ⊕

mi) for i = 1, 2, . . . , n, where Xi = A0A
i
1 · · ·Aik−1

k−1 gik

, Zi =
C0C

i
1 · · ·Cik−1

k−1 (gh)ik

.

4. S −→ R: c1, c2, . . . , cn.

5. Let ci = (Ui, Vi). R computes mσi = U b
σi
⊕ Vσi for each σi.

Figure 3.4: Con-OTk
n-II: concrete k-out-of-n OT with unconditional sender’s

security

Then S encrypts the messages by the similar technique of randomized

reduction of DDH from [NR97, Sta96]. The receiver R uses the value b to

decrypt the chosen messages, and gets no information about other messages.

Correctness. Let ci = (Ui, Vi), we can check that the chosen messages

mσi
, i = 1, 2, . . . , k, are computed as

U b
σi
⊕ Vσi

= (gf1(σi)rσi gsσi )b ⊕ (gf1(σi)bhf2(σi))rσi (gb)sσi ⊕mσi

= gf1(σi)brσi+bsσi ⊕ (gf1(σi)b · 1)rσi gbsσi ⊕mσi

= gf1(σi)brσi+bsσi ⊕ gf1(σi)brσi+bsσi ⊕mσi

= mσi
.

Security analysis. We now prove the security of Con-OTk
n-II.
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Theorem 7 For any malicious sender, the scheme Con-OTk
n-II has receiver’s

security if the DDH assumption holds.

Proof 7 Suppose a polynomial time adversary A breaks receiver’s security

of Con-OTk
n-II with non-negligible advantage ε. We can construct another

polynomial time adversary B solving the DDH problem with advantage ε/k.

Given a DDH tuple (g, u, v, w) as input, algorithm B works as follows.

1. B gives algorithm A the generator g.

2. A outputs {σ0,1, . . . , σ0,k}, {σ1,1, . . . , σ1,k} ∈ {1, 2, . . . , n}k.

3. B performs the following steps:

(a) randomly choose a number l ∈ {0, 1, . . . , k − 1} and h ∈ Gq;

(b) compute the polynomials

• f ′0(x) = a′0,0 + a′0,1x + · · · + a′0,k−1x
k−1 + xk = (x − σ0,1)(x −

σ0,2) · · · (x− σ0,k) and

• f ′1(x) = a′1,0 + a′1,1x + · · · + a′1,k−1x
k−1 + xk = (x − σ1,1)(x −

σ1,2) · · · (x− σ1,k);

(c) randomly choose b ∈ {0, 1};

(d) perform A(h,A0, A1, . . . , Ak−1, v, C0, C1, . . . , Ck−1) where

(Ai, Ci) =





(gai , vaiha′b,i) if i ∈ {0, . . . , l − 1}
(u,wha′b,l) if i = l

(gai , Rih
a′b,l+1) if i ∈ {l + 1, . . . , k − 1}

,

and ai ∈R Zq, Ri ∈R Gq.
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4. A outputs a guess b′. B outputs 1 if b′ = b and 0 otherwise.

Let α = (g, u, v, w). Define ~El = (g, A1, A2, . . . , Ak, g
b, C1, C2, . . . , Ck),

where

(Ai, Ci) =

{
(gai , gaibha′b,i) if i ∈ {0, . . . , l}
(gai , Rih

a′b,l+1) if i ∈ {l + 1, . . . , k − 1}
for some ai ∈ Zq and b ∈ Zq. If α is chosen from Y1, then

Pr
α∈Y1

[B(α) = 1] = Pr[B(Y1) = 1] =
1

k

k∑

l=1

Pr[A( ~El) = b].

If α is chosen from Y2, then

Pr
α∈Y2

[B(α) = 1] = Pr[B(Y2) = 1] =
1

k

k−1∑

l=0

Pr[A( ~El) = b].

Therefore, we have

Pr[B(Y1) = 1]− Pr[B(Y2) = b] =
1

k
(

k∑

l=1

Pr[A( ~El) = b]−
k−1∑

l=0

Pr[A( ~El) = 1])

=
1

k
(Pr[A( ~Ek) = b]− Pr[A( ~E0) = b])

≥ ε

k
.

So we can solve the DDH problem with at least non-negligible advantage ε
k
,

which is a contradiction. Con-OTk
n-II has receiver’s security.

2

Theorem 8 The sender’s security of Scheme Con-OTk
n-II is unconditionally-

secure. That is, any receiver R gets no information about messages mi,

i /∈ {σ1, σ2, . . . , σk}.
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Proof 8 Since Zi = C0C
i
1 · · ·C ik−1

k−1 (gh)ik = gf∗1 (i)b∗hf∗2 (i), the degree of f ∗2 (x)

is k. That is, there are at most k f ∗2 (i)’s equal to 0. Then for any other

f ∗2 (i) 6= 0, we prove that Zri
i Bsi is uniformly distributed in Gq.

Let I = {i ∈ {1, 2, . . . , n}|f ∗2 (i) 6= 0}. For any i ∈ I, we let ãi =

f ∗1 (i)ri + si, and ei = logg hf∗2 (i). Then

Zri
i Bsi = (gf∗1 (i)bhf∗2 (i))rigbsi

= g(f∗1 (i)ri+si)b(hf∗2 (i))ri

= gãib+eiri .

Therefore, Zri
i Bsi is uniformly distributed in Gq because ei 6= 0 and ri is

uniformly distributed in Zq.

2

Complexity. Con-OTk
n-II has two rounds. The first round sends 2k +

2 messages and the second round sends n messages. For computation, R

computes 4k + 1, and S computes (2k + 6)n modular exponentiations.

3.4 OT with Adaptive Queries

The queries of R in Mal-OTk
n-I can be adaptive. In Mal-OTk

n-I, computing

the commitments ci’s are independent of computing the keys Di’s. Therefore,

our scheme Mal-OTk
n-I is adaptive in nature and the number k of queries need

not be prefixed. Our Adpt-OTk
n scheme is depicted in Figure 3.5.

The protocol consists of two phases: the commitment phase and the

transfer phase. The sender S first commits the messages in the commitment
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• System parameters: (g,H1,H2,Gq);

• S has messages: m1,m2, . . . ,mn ∈ Gq;

• R’s choices: σ1, σ2, . . . , σk ∈ {1, 2, . . . , n};
Commitment Phase

1. S computes ci = mi ⊕H2(hx
i ) for i = 1, 2, . . . , n, where hi = H1(i), and

x ∈R Z∗q .

2. S −→ R : c1, c2, . . . , cn.

Transfer Phase
For each σj , j = 1, 2, . . . , k, R and S execute the following steps:

1. R chooses a random rj ∈ Z∗q and computes hσj = H1(σj), Aj = (hσj )
rj .

2. R −→ S : Aj .

3. S −→ R : Dj = (Aj)x.

4. R computes Kj = (Dj)r−1
j and gets mσj = cσj ⊕H2(Kj).

Figure 3.5: Adpt-OTk
n: Adaptive OTk

n

phase. In the transfer phase, R sends a query Aj to S at a time and obtains

the corresponding key to decrypt the commitment cj.

Correctness of the scheme follows that of Mal-OTk
n-I.

Security analysis. The security proofs are almost the same as those for

Mal-OTk
n-I.

Theorem 9 In Adpt-OTk
n, R’s choice are unconditionally secure.

Proof 9 Since Gq is the group of prime order q, all elements except 1 in

Gq are generators. For any Aj = h
rj

j and any hl, l 6= j, there is an rl that

satisfies Aj = hrl
l . That is, Aj can be a masked value of any index. The

receiver’s choices are unconditionally secure.

2

43



Theorem 10 In the Adpt-OTk
n, let m1,m2, . . . , mn be the messages commit-

ted in the commitment phase. For any receiver R, the number of messages

which R can get is less than or equal to the number of R’s queries in the

transfer phase in the random oracle model.

Proof 10 For any possible R, we construct a simulator R∗ in the ideal model

such that the outputs of R and R∗ are indistinguishable:

1. In the commitment phase, R∗ randomly chooses c∗1, c
∗
2, . . . , c

∗
n ∈ Gq and

x∗ ∈ Z∗q.

2. In the transfer phase, R∗ simulates R on input (c∗1, c
∗
2, . . . , c

∗
n), and gets

message queries. For each query Aj, R∗ returns (Aj)
x to R. If R

queries H1 on index i, R∗ returns a random h∗i ∈ Gq. If R queries H2

on some Ki where

• Ki = (h∗i )
x for some i, R∗ sends i to the TTP T to obtain mi and

returns c∗i ⊕mi.

• Ki 6= (h∗i )
x for all h∗i have been queried to H1, R∗ returns a random

value, and puts (Ki)
x−1

to the revocation list of H1.

Note that R∗ uses a table for maintaining consistency of queries for

each oracle. Moreover, R∗ will not choose the values in the revocation

list of H1 as the answer of H1 queries.

3. Output (c∗1, c
∗
2 . . . , c∗n, A∗

1, A
∗
2, . . . , A

∗
k, D

∗
1, D

∗
2, . . . , D

∗
k). (We assume that

R makes k queries in the transfer phase: A∗
1, A

∗
2, . . . , A

∗
k.)
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Since R makes k queries in the transfer phase, we show that R gets at

most k messages by showing that R obtains at most k decryption keys. In the

above simulation, if R queries H1, we return a random value output by the

target oracle. When R queries A∗
i ’s adaptively, we forward these queries to

the helper oracle, and return the corresponding outputs. Finally, if R queries

H2 on legal (h∗i )
x for all 1 ≤ i ≤ k + 1, we can output k + 1 pairs ((h∗i )

x, i),

which contradicts to the CT-CDH assumption. Thus, R obtains at most k

decryption keys.

Let σ1, σ2, . . . , σk be the k choices of R. For the legal query (h∗σj
)x, cσj

is

consistent with the returned hash values, for j = 1, 2, . . . , k. Since no other

(h∗l )
x∗, l 6= σ1, σ2, . . . , σk, can be queried to the H2 hash oracle, cl has the right

distribution (due to the random oracle model). Thus, the output distribution

is indistinguishable from R’s output.

2

Complexity. In the commitment phase, S needs n modular exponentia-

tions for computing the commitments ci’s. In the transfer phase, R needs 2

modular exponentiations for computing the query and the chosen message. S

needs one modular exponentiation for answering each R’s query. The com-

mitment phase is one-round and the transfer phase is two-round for each

adaptive query.
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Chapter 4

Conditional Oblivious Cast

In this chapter, we introduce the notion of COC and propose various condi-

tional oblivious cast schemes.

4.1 Preliminaries

In this section, we define the notion of COC and introduce some backgrounds.

4.1.1 Definitions

First, we give the formal definitions of COC-I and COC-II.

Conditional Oblivious Cast: Type I. Informally speaking, a COC-I

scheme for predicate Q (Q-COC-I) has the following three properties:

• Correctness: both of A and B get m from S if Q(x, y) = 1.

• Sender’s security: A and B cannot get any information about m if

Q(x, y) = 0.
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• Receiver’s security: B and S cannot get any information about x; A

and S cannot get any information about y;

The definition for Q-COC-I is as follows:

Definition 2 (Q-COC-I) Let k be the security parameter, and A,B and

S be all polynomial-time probabilistic Turing machines (PPTMs). Let T ←

〈A,B, S〉(µ) be the communication transcript among A, B and S with com-

mon input µ. We say that a three-party interactive system Π = (A,B, S) is

a secure Q-COC-I scheme if it satisfies the following requirements for some

constant c:

1. Correctness: For any x, y, m, µ ∈ {0, 1}kc
with Q(x, y) = 1,

Pr[A(x, µ, T ) = m ∧B(y, µ, T ) = m :

T ← 〈A(x), B(y), S(m)〉(µ)] = 1.

2. Sender’s security: For any PPTM A′, B′ and any x, y, m0,m1, µ ∈

{0, 1}kc
with Q(x, y) = 0, A′ and B′ together cannot distinguish the

following two distributions with non-negligible advantage:

• V Π,A′,B′
0 = (x, y, µ, T ← 〈A′(x), B′(y), S(m0)〉(µ));

• V Π,A′,B′
1 = (x, y, µ, T ← 〈A′(x), B′(y), S(m1)〉(µ)).

That is, A′ and B′ cannot distinguish their interaction with S(m0) from

the interaction with S(m1).
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3. Receiver’s security: For any PPTM A′, S ′ and any x, y0, y1,m, µ ∈

{0, 1}kc
with Q(x, y0) = Q(x, y1), A′ and S ′ together cannot distinguish

the following two distributions with non-negligible advantage:

• V Π,A′,S′
0 = (x,m, µ, T ← 〈A′(x), B(y0), S

′(m)〉(µ));

• V Π,A′,S′
1 = (x,m, µ, T ← 〈A′(x), B(y1), S

′(m)〉(µ)).

That is, no distinguisher D = (D1,D2) has non-negligible advantage so

that (y0, y1, st) ← D1(x, m, µ) and b ← D2(st, T ← 〈A′(x), B(yb), S
′(m)〉(µ)),

where b ∈R {0, 1} and st is the state information. The argument for

B′ and S ′ is similar to this argument.

Conditional Oblivious Cast: Type II. In COC-II, the message sender

S holds two messages m0 and m1. A Q-COC-II scheme needs to satisfy the

following three properties:

• Correctness: both of A and B get m1 from S if Q(x, y) = 1, and m0 if

Q(x, y) = 0.

• Sender’s security: A and B get exactly one message from S.

• Receiver’s security: B and S cannot get any information about x; A

and S cannot get any information about y;

The definition for Q-COC-II is as follows.

Definition 3 (Q-COC-II) Let k be the security parameter, and A,B and S

be all PPTMs. Let T ← 〈A,B, S〉(µ) be the communication transcript among
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A, B and S with common input µ. We say that a three-party interactive

system Π = (A,B, S) is a secure Q-COC-II scheme if it satisfies the following

requirements for some constant c:

1. Correctness:

(a) For any x, y, m0,m1, µ ∈ {0, 1}kc
with Q(x, y) = 0,

Pr[A(x, µ, T ) = m0 ∧B(y, µ, T ) = m0 :

T ← 〈A(x), B(y), S(m0,m1)〉(µ)] = 1.

(b) For any x, y, m0,m1, µ ∈ {0, 1}kc
with Q(x, y) = 1,

Pr[A(x, µ, T ) = m1 ∧B(y, µ, T ) = m1 :

T ← 〈A(x), B(y), S(m0,m1)〉(µ)] = 1.

2. Sender’s security: For any PPTM A′, B′ and any x, y, m0,m1,m
′
1, µ ∈

{0, 1}kc
with Q(x, y) = 0, A′ and B′ together cannot distinguish the

following two distributions with non-negligible advantage:

• V Π,A′,B′
0 = (x, y, µ, T ← 〈A′(x), B′(y), S(m0,m1)〉(µ)),

• V Π,A′,B′
1 = (x, y, µ, T ← 〈A′(x), B′(y), S(m0,m

′
1)〉(µ)).

The similar requirement is met for Q(x, y) = 1.

3. Receiver’s security: For any PPTM A′, S ′ and any x, y0, y1,m0,m1, µ ∈

{0, 1}kc
with Q(x, y0) = Q(x, y1), A′ and S ′ together cannot distinguish

the following two distributions with non-negligible advantage:
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• V Π,A′,S′
0 = (x,m0,m1, µ, T ← 〈A′(x), B(y0), S

′(m0,m1)〉(µ)),

• V Π,A′,S′
1 = (x,m0,m1, µ, T ← 〈A′(x), B(y1), S

′(m0,m1)〉(µ)).

The argument for B′ and S ′ is similar to this argument.

Adversary Models. We classify the adversarial parties according to their

intentions.

Semi-honest versus malicious. A party is semi-honest (or passive, honest-

but-curious) if it follows the scheme step by step, but tries to compute extra

information from received messages. A party is malicious (or active) if it can

deviate from the specified steps in any way in order to get extra information.

Collusive versus non-collusive. We say that any two parties (two receivers

or one sender and one receiver) are collusive if they use their mutual secrets to

compute extra information. On the other hand, the parties are non-collusive

if no two parties collude against the third one.

For clarity and simplicity, we first assume that all parties in our COC

schemes are semi-honest and non-collusive. Then, we provide some tech-

niques to transform the schemes to be secure against malicious and collusive

parties in Section 4.4.

Also, we list some common notations used in this chapter in Table 4.1 for

quick reference.
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S, A, B a sender and two receivers
E , E ′ two encryption schemes

(G,E,D) key generation, encryption and decryption functions of E
(G′, E ′, D′) key generation, encryption and decryption functions of E ′
(pkS, skS) a pair of sender’s public key and secret key
(pkR, skR) a pair of receivers’ common public key and secret key

M message space of an encryption scheme
m the sender’s message

m0,m1’s sender’s two messages (COC-II)
x, y the secret of A and B, respectively

x[i], y[i] the ith bit of x and y, respectively
n length of x and y

Table 4.1: Common notations for our COC constructions

4.1.2 Backgrounds

We introduce some useful tools in this subsection. Let x ∈R S mean that

x is chosen from S uniformly and independently. We use |x| to denote the

length (in bits) of x, and x[i] to denote the i-th bit of x.

Additively Homomorphic Encryption Schemes A public key encryp-

tion scheme (G,E,D) is additively homomorphic if there is an operation ¢

satisfying, for any m1 and m2,

DSK(EPK(m1) ¢ EPK(m2)) = DSK(EPK(m1 + m2)),

where (PK, SK) ← G(1k) is the public/secret key pair and k is the security

parameter. Note that if c is a known constant, we have the operation ¡ for

all additively homomorphic encryption schemes:

c ¡ EPK(m) = EPK(m) ¢ EPK(m) ¢ · · ·¢ EPK(m)︸ ︷︷ ︸
c times

= EPK(cm).
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We introduce two additively homomorphic encryption schemes.

The Paillier Encryption Scheme [Pai99]

• G(1k) = (p, q, N, α, g), where N = pq is a k-bit number, p and q are

two large primes, g is an integer of order αN mod N2 for some integer

α. Let PK = (g, N) and SK = λ(N) = lcm(p− 1, q − 1).

• EPK(m) = gmrN mod N2, where m ∈ ZN and r ∈R ZN .

• DSK(c) = L(cλ(N) mod N2,N)

L(gλ(N) mod N2,N)
mod N , where L(u,N) = u−1

N
.

For any m1,m2 ∈ ZN , let c1 = EPK(m1) = gm1rN
1 mod N2 and c2 =

EPK(m2) = gm2rN
2 mod N2. The operation c1 ¢ c2 = c1 · c2 mod N2 is

additively homomorphic because

DSK(c1 ¢ c2) = DSK((gm1rN
1 ) · (gm2rN

2 ) mod N2)
= DSK((gm1+m2(r1r2)

N) mod N2)
= DSK(EPK(m1 + m2)).

The BGN encryption scheme [BGN05]. We say that G is a bilinear

group of finite order if there exist a group G1 of the same order and a bilinear

map e : G×G→ G1 such that for any g, h ∈ G and a, b ∈ Z,

e(ga, hb) = e(g, h)ab.

Moreover, for any generator g of G, e(g, g) should be a generator of G1.

The BGN encryption scheme is as follows.

• G(1k): let N = pq, where |N | = k and p and q are two large primes.

Construct a bilinear group G of order N along with the group G1 and
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the bilinear map e. Let g, g′ be two randomly chosen generators of G,

and h = g′q, where is of order p. Output PK = (N,G,G1, e, g, h) and

SK = p.

• EPK(m): let the message space M = ZT , where T << q. Output

c = gmhr ∈ G, where m ∈M and r ∈R ZN .

• DSK(c): if c ∈ G, output m = logĝ cp where ĝ = gp. If c ∈ G1, output

m = logg̃ cp where g̃ = e(g, g)p.

Note that the decryption takes polynomial time in the size of the message

space M. The BGN scheme can only be used to encrypt short messages.

The BGN encryption scheme is not only additively homomorphic, but

also one-time multiplicatively homomorphic. For any m1,m2 ∈ M, let c1 =

EPK(m1) = gm1hr1 ∈ G and c2 = EPK(m2) = gm2hr2 ∈ G. The operation

c1 ¢ c2 = c1 · c2 under group G is additively homomorphic because

DSK(c1 ¢ c2) = DSK(gm1hr1 · gm2hr2)

= DSK(gm1+m2hr1+r2)

= DSK(EPK(m1 + m2)).

The additive homomorphism also holds for c1, c2 ∈ G1.

On the other hand, consider the ciphertexts c1, c2 ∈ G defined above.

Let g̃ = e(g, g) ∈ G1, h̃ = e(g, h) ∈ G1 and h = gα for some α ∈ ZN . The

operation c1 £ c2 = e(c1, c2) ∈ G1 is one-time multiplicatively homomorphic
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because

DSK(c1 £ c2) = DSK(e(gm1hr1 , gm2hr2))

= DSK(e(g, gm2hr2)m1+αr1)

= DSK(e(g, gm1m2hm2r1+m1r2+αr1r2))

= DSK(e(g, g)m1m2e(g, h)m2r1+m1r2+αr1r2)

= DSK(g̃m1m2h̃m2r1+m1r2+αr1r2)

= DSK(EPK(m1m2)).

An encryption scheme (G,E, D) is semantically secure against adver-

sary A = (A1,A2) if for any PK generated by G, the probability that

(m0, m1, st) ← A1(PK) and b ← A2(st, EPK(mb)), where b ∈R {0, 1} and

st is the state information, is negligible. The Paillier and BGN encryption

schemes are semantically secure if the Computational Composite Residuosity

and Subgroup Decision assumptions hold, respectively [BGN05, Pai99].

0-encoding and 1-encoding. 0-encoding and 1-encoding are two types of

encoding to reduce the secure two-party computation problem for “greater

than” predicate to the problem for “set intersection” predicate [LT05]. Let

s = s[n]s[n−1] . . . s[1] ∈ {0, 1}n be a binary string of length n. The 0-encoding

of s is

S0
s = {s[n]s[n−1] . . . s[i+1]1|s[i] = 0, 1 ≤ i ≤ n};

and 1-coding of s is

S1
s = {s[n]s[n−1] . . . s[i]|s[i] = 1, 1 ≤ i ≤ n}.
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For two binary strings x, y of the same length, we have that x > y if and

only if there is exact one common element in S1
x and S0

y .

4.2 Conditional Oblivious Cast: Type I

We provide COC-I schemes for three basic predicates: “equality”, “inequal-

ity”, and “greater than”. We assume that A,B and S are semi-honest and

non-collusive in this section. A and B privately agree on a public/secret key

pair (pkR, skR) of the homomorphic encryption scheme E = (G,E, D) with

message space M. S chooses his own key pair (pkS, skS) of another seman-

tically secure encryption scheme E ′ = (G′, E ′, D′) where the message space

of E ′ covers the ciphertext space of E . All parties exchange messages via a

public channel. The secrets x, y held by A and B are assumed n-bit long.

4.2.1 COC-I for “Equality” Predicate

To determine if x = y, we compute x − y via the homomorphic encryption

scheme. If x−y = 0, A and B get the message m; otherwise, they get nothing.

The scheme EQ-COC-I is described in Figure 4.1. A and B encrypt their

secrets by pkR and pkS, and send them to S. S computes m + r(x − y) in

the encrypted form for a randomly chosen r and sends it back to A and B.

Thus, A and B get m if and only if x = y.

Theorem 11 Assume that the involved parties are semi-honest and non-

collusive. The EQ-COC-I scheme is correct and secure if the underlying

encryption schemes are semantically secure.
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• Message sender S has a message m ∈ M and a key pair (pkS , skS) of
E ′ = (G′, E′, D′).

• Receivers A and B have a common key pair (pkR, skR) of E = (G,E, D).

• Receiver A has a secret x, and receiver B has a secret y, where x, y ∈
{0, 1}n.

1. A and B send E′
pkS

(EpkR
(x)) and E′

pkS
(EpkR

(y)) to S respectively.

2. S decrypts the received messages to get EpkR
(x) and EpkR

(y), and com-
putes

c = EpkR(m) ¢ (r ¡ (EpkR(x) ¢ (−1 ¡ EpkR(y))))

and sends it to A and B, where r ∈R M.

3. A and B compute m̂ = DskR
(c) and verify whether m̂ is valid.

Figure 4.1: COC-I scheme for “Equality” predicate: EQ-COC-I

Proof 11 The EQ-COC-I scheme meets the following requirements.

Correctness. If x = y, A and B can get m by computing

DskR
(c) = DskR

(EpkR
(m) ¢ (r ¡ (EpkR

(x) ¢ (−1 ¡ EpkR
(y))))

= DskR
(EpkR

(m) ¢ (r ¡ EpkR
(0)))

= DskR
(EpkR

(m))
= m.

Sender’s Security. We can see that

c = EpkR
(m) ¢ (r ¡ (EpkR

(x) ¢ (−1 ¡ EpkR
(y)))) = EpkR

(m + r(x− y)),

where r ∈R M. For any possible m′, there is another r′ ∈ M such that

c = EpkR
(m′ + r′(x− y)). As long as x 6= y, m is unconditionally secure for

both A and B.

Receiver’s Security. Since we assume that the parties are non-collusive in

this scheme, we discuss the receiver’s security against the other receiver and

the sender separately. Moreover, the positions of A and B are symmetric,

so we only prove the security of B (against A and S). For any semi-honest
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S ′, assume that there is a polynomial-time distinguisher D = (D1,D2) dis-

tinguishing the two distributions with non-negligible probability ε:

• V Π,S′
0 = (m, pkR, pkS, skS, E ′

pkS
(EpkR

(x)), E ′
pkS

(EpkR
(y0)));

• V Π,S′
1 = (m, pkR, pkS, skS, E ′

pkS
(EpkR

(x)), E ′
pkS

(EpkR
(y1))).

Then we can construct another PPTM A = (A1,A2), which takes (D1,D2)

as sub-routines, to break the semantic security of E with the same probability.

Let pk∗R be the challenge public key of E that A would like to attack.

Machine A1(pk
∗
R)

1. Randomly choose m ∈M and (pkS, skS) of E ′.

2. Perform (y0, y1, (m, pk∗R, pkS, skS)) ← D1(m, (pk∗R, pkS, skS)).

3. Let m∗
0 ← y0 and m∗

1 ← y1.

4. Output (m∗
0,m

∗
1, (y0, y1,m, pk∗R, pkS, skS)).

Machine A2((y0, y1,m, pk∗R, pkS, skS), Epk∗R(m∗
b))

1. Randomly choose x ∈M so that x 6= y0 and x 6= y1.

2. Perform b̂ ← D2((y0, y1,m, pk∗R, pkS, skS), E ′
pkS

(Epk∗R(x)), E ′
pkS

(Epk∗R(m∗
b))).

3. Output b̂.

Since m∗
0 = y0,m

∗
1 = y1, if D outputs a correct guess between the encryptions

of y0 and y1, A also outputs a correct guess between the encryptions of m∗
0

and m∗
1. Therefore A breaks the semantic security of E with probability ε.
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On the other hand, for any semi-honest A′, assume that there is a polynomial-

time distinguisher D′ = (D′
1,D′

2) distinguishing the following two distribu-

tions with non-negligible probability ε:

• V Π,A′
0 = (x, pkR, skR, pkS, E ′

pkS
(EpkR

(y0)), c);

• V Π,A′
1 = (x, pkR, skR, pkS, E ′

pkS
(EpkR

(y1)), c).

Then we can construct another PPTM A′ = (A′
1,A′

2), which takes (D′
1,D′

2)

as sub-routines, to break the semantic security of E ′ with the same probability.

Let pk∗S be the challenge public key of E ′ that A′ would like to attack.

Machine A′
1(pk

∗
S)

1. Randomly choose x ∈M and (pkR, skR) of E.

2. Perform (y0, y1, (x, pkR, skR, pk∗S)) ← D′
1(x, (pkR, skR, pk∗S)).

3. Compute m∗
0 ← EpkR

(y0); m
∗
1 ← EpkR

(y1).

4. Output (m∗
0,m

∗
1, (y0, y1, x, pkR, skR, pk∗S)).

Machine A′
2((y0, y1, x, pkR, skR, pk∗S), E ′

pk∗S
(m∗

b))

1. Compute c ← EpkR
(m̃) for some m̃ ∈R M.

2. Perform b̂ ← D′
2((y0, y1, x, pkR, skR, pk∗S), E ′

pk∗S
(m∗

b), c).

3. Output b̂.

Since x 6= y0 and x 6= y1, c can be treated as the encryption of the value

m + r(x − y), where r ∈R M. Therefore c is identically distributed as the
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• Message sender S has a message m ∈ M and a key pair (pkS , skS) of
E ′ = (G′, E′, D′).

• Receivers A and B have a common key pair (pkR, skR) of E = (G,E, D).

• Receiver A has a secret x, and receiver B has a secret y, where x, y ∈
{0, 1}n.

1. A and B send E′
pkS

(EpkR
(x[i])) and E′

pkS
(EpkR

(y[i])) to S respectively,
1 ≤ i ≤ n.

2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get
EpkR(x[i]) and EpkR(y[i]), and computes the following values via ho-
momorphic encryption:

(a) di = x[i] − y[i], d′i = x[i] + y[i] − 1.

(b) ei = 2ei+1 + di, where en+1 = 0.

(c) vi = m + ri(ei − di + d′i), where ri ∈R M
3. S sends EpkR

(v) in a random order to A and B, where v =
〈v1, v2, . . . , vn〉.

4. A and B decrypt the received messages and identify the correct message
if existent.

Figure 4.2: COC-I scheme for “Inequality” predicate: INE-COC-I

real one. Finally, D′ outputs a correct guess with non-negligible probability

ε, A′ breaks the semantic security of E ′ with probability ε, too.

4.2.2 COC-I for “Inequality” Predicate

COC-I for the “inequality” predicate is more complicated than that for the

“equality” predicate. A and B need to bit-wisely encrypt their secrets, and

send them to S. The scheme is depicted in Figure 4.2. Without loss of gener-

ality, we assume that |x| = |y| for the two secrets x and y. To encrypt a vector

v = 〈v1, v2, . . . , vn〉, we write EpkR
(v) = 〈EpkR

(v1), EpkR
(v2), . . . , EpkR

(vn)〉.

In the scheme, di = x[i] − y[i] and d′i = x[i] − ȳ[i] are 0, 1, or -1. If

x[i] = y[i], di = 0; otherwise, d′i = 0. Let l be the leftmost different bit
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between x and y, i.e. the largest i such that di 6= 0. We have ei = 0 if i > l,

ei 6= 0 if i < l, and ei = di if i = l.

If x 6= y, the message m is embedded into the index i at which x[i] and y[i]

are distinct. However, in order to avoid leaking information of the number of

distinct bits, S masks m with random values on all indices except the index

l. It leaves only one copy of m in vi’s:

• For i = l, since el = dl and d′l = x[l] − ȳ[l] = 0, (el − dl + d′l) = 0.

Therefore, vl = m.

• For 1 ≤ i < l, vi would be a random value because ei − di + d′i =

2ei+1 + d′i 6= 0 and ri ∈R M.

• For l < i ≤ n, vi is also a random value because ei = di = 0, d′i 6= 0

and ri ∈R M.

Theorem 12 Assume that the involved parties are semi-honest and non-

collusive. The INE-COC-I scheme is correct and secure if the underlying

encryption schemes are semantically secure.

Proof 12 The INE-COC-I scheme meets the following requirements.

Correctness. Let l be the index of the first different bit of x and y (from

the most significant bit). We see that dl = el = x[l] − y[l] = 1 or −1, and

d′l = x[l] − ȳ[l] = 0. Therefore, vl = m + rl(el − dl + d′l) = m + rl · 0 = m.

Thus, A and B get m from the permutation of the encryptions.
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Sender’s Security. We see that if x = y, all di’s and ei’s are 0, and

all d′i’s are not 0 (in fact, +1 or −1). Thus, for each index i, we have

vi = m + ri(0 ± 1) = m ± ri. Since for any possible m′, there exists an r′i

such that vi = m′ + r′i, m is unconditionally secure to A and B.

Receiver’s Security. We prove the security of B against A and S, re-

spectively. For any semi-honest S ′, assume that there is a polynomial-time

distinguisher D = (D1,D2). Without loss of generality (by the hybrid argu-

ment), let D1 outputs only one y and D2 distinguishes the interaction with

B(y) and the interaction with B(y′), where y′ differs from y in one chosen

bit only. That is, D distinguishes the two distributions with non-negligible

probability ε:

• V Π,S′
0 = (m, pkR, pkS, skS, X, Y0);

• V Π,S′
1 = (m, pkR, pkS, skS, X, Y1),

where

X = (E ′
pkS

(EpkR
(x[1])), . . . , E

′
pkS

(EpkR
(x[n])))

Y0 = (E ′
pkS

(EpkR
(y[1])), . . . , E

′
pkS

(EpkR
(y[n])))

Y1 = (E ′
pkS

(EpkR
(y[1])), . . . , E

′
pkS

(EpkR
(y[j−1])), E

′
pkS

(EpkR
(ȳ[j])),

E ′
pkS

(EpkR
(y[j+1])), . . . , E

′
pkS

(EpkR
(y[n])))

for some chosen j. We can construct another PPTM A = (A1,A2), which

takes (D1,D2) as sub-routines, to break the semantic security of E with the

same probability. Let pk∗R be the challenge public key of E that A would like

to attack.

Machine A1(pk
∗
R)
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1. Randomly choose m ∈M and (pkS, skS) of E ′.

2. Perform (y, j, (m, pk∗R, pkS, skS)) ← D1(m, (pk∗R, pkS, skS)).

3. Let m∗
0 ← y[j] and m∗

1 ← ȳ[j].

4. Output (m∗
0,m

∗
1, (y, j,m, pk∗R, pkS, skS)).

Machine A2((y, j, m, pk∗R, pkS, skS), Epk∗R(m∗
b))

1. Randomly choose x ∈M so that x[i] 6= y[i] for some i 6= j.

2. Compute X = (E ′
pkS

(Epk∗R(x[1])), . . . , E
′
pkS

(Epk∗R(x[n]))) and

Y = (E ′
pkS

(Epk∗R(y[1])), . . . , E
′
pkS

(Epk∗R(y[j−1]), Epk∗R(m∗
b),

E ′
pkS

(Epk∗R(y[j+1])), . . . , E
′
pkS

(Epk∗R(y[n]))).

3. Perform b̂ ← D2((y, j,m, pk∗R, pkS, skS), X, Y ).

4. Output b̂.

Since m∗
0 = y[j], m

∗
1 = ȳ[j], if D outputs a correct guess between the encryp-

tions of y[j] and ȳ[j], A also outputs a correct guess between the encryptions

of m∗
0 and m∗

1. Therefore A breaks the semantic security of E with probability

ε.

On the other hand, for any semi-honest A′, assume that there is a polynomial-

time distinguisher D′ = (D′
1,D′

2) distinguishing the two distributions with

non-negligible probability ε:

• V Π,A′
0 = (x, pkR, skR, pkS, Y0, EpkR

(v));

62



• V Π,A′
1 = (x, pkR, skR, pkS, Y1, EpkR

(v)),

where Y0 and Y1 are defined as above. Then we can construct another PPTM

A′ = (A′
1,A′

2), which takes (D′
1,D′

2) as sub-routines, to break the semantic

security of E ′ with the same probability. Let pk∗S be the challenge public key

of E ′ that A′ would like to attack.

Machine A′
1(pk

∗
S)

1. Randomly choose x ∈M and (pkR, skR) of E.

2. Perform (y, j, (x, pkR, skR, pk∗S)) ← D′
1(x, (pkR, skR, pk∗S)).

3. Compute m∗
0 ← EpkR

(y[j]); m
∗
1 ← EpkR

(ȳ[j]).

4. Output (m∗
0,m

∗
1, (y, j, x, pkR, skR, pk∗S)).

Machine A′
2((y, j, x, pkR, skR, pk∗S), E ′

pk∗S
(m∗

b))

1. Compute EpkR
(v) where v = (v1, v2, . . . , vn) ∈R Mn.

2. Compute Y = (E ′
pk∗S

(EpkR
(y[1])), . . . , E

′
pk∗S

(EpkR
(y[j−1])), E

′
pk∗S

(m∗
b),

E ′
pk∗S

(EpkR
(y[j+1])), . . . , E

′
pk∗S

(EpkR
(y[n]))).

3. Perform b̂ ← D′
2((y, j, x, pkR, skR, pk∗S), Y, EpkR

(v)).

4. Output b̂.

Since D outputs a correct guess with non-negligible probability ε, A also breaks

the semantic security of E with ε.
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• Message sender S has a message m ∈ M and a key pair (pkS , skS) of
E ′ = (G′, E′, D′).

• Receivers A and B have a common key pair (pkR, skR) of E = (G,E, D).

• Receiver A has a secret x, and receiver B has a secret y, where x, y ∈
{0, 1}n.

1. A encodes x as S1
x, and sends E′

pkS
(EpkR

(S1
x[i])) to S, 1 ≤ i ≤ n.

2. B encodes y as S0
y , and sends E′

pkS
(EpkR

(S0
y [i])) to S, 1 ≤ i ≤ n.

3. S decrypts the received messages and computes

ei = EpkR
(m) ¢ (ri ¡ (EpkR

(S1
x[i]) ¢ (−1 ¡ EpkR

(S0
y [i])))),

where ri ∈R M, 1 ≤ i ≤ n. S sends ei’s to A and B in a random order.

4. A and B search m̂i = DskR
(ei), 1 ≤ i ≤ n, to identify the correct m if

existent.

Figure 4.3: COC-I scheme for “Greater Than” predicate: GT-COC-I

4.2.3 COC-I for “Greater Than” Predicate

For the “greater than” predicate, we use the encoding methods mentioned in

Section 4.1.2. Receiver A encodes x via 1-encoding and receiver B encodes

y via 0-encoding. The problem is then reduced to the “equality” problem

immediately. When S receives encrypted S1
x and S0

y , he checks equality for

corresponding strings. Note that without loss of generality, we assume that

S1
x and S0

y are ordered sets of n elements. If there is no element of a certain

length in the sets, we fill it with a random element. The scheme is presented

in Figure 4.3. The security argument is the same as that of the EQ-COC-I

scheme. This method is more efficient than the GT-COC-II scheme (in the

next section, by setting m0 as a random number). We use S[i] to denote the

i-th element of the ordered set S here.
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4.3 Conditional Oblivious Cast: Type II

In this section, we present COC-II schemes for the “equality” (“inequality”)

and the “greater than” predicates. We assume that A,B and S are semi-

honest and non-collusive. A and B privately agree on a public/secret key

pair (pkR, skR) of the homomorphic encryption scheme E = (G,E, D) with

message space M. S chooses his own key pair (pkS, skS) of another seman-

tically secure encryption scheme E ′ = (G′, E ′, D′) where the message space

of E ′ covers the ciphertext space of E . All parties exchange messages via a

public channel.

4.3.1 COC-II for “Equality” Predicate

Our COC-II scheme for the equality predicate is naturally extended from the

EQ-COC-I and INE-COC-I schemes. Intuitively, if x = y, A and B get m1

by the EQ-COC-I scheme and, otherwise, they get m0 by the INE-COC-I

scheme. The scheme is shown in Figure 4.4. It is almost the same as the

INE-COC-I scheme except that S sends an extra ciphertext veq to A and B.

Theorem 13 Assume that the involved parties are semi-honest and non-

collusive. The EQ-COC-II scheme is correct and secure if the underlying

encryption schemes are semantically secure.

Proof 13 We see that if x = y, all di’s are equal to 0, and veq is equal to m1.

The opposite case holds by the same argument in the proof of Theorem 12.

This ensures the correctness property.
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• Message sender S has two messages m0, m1 ∈ M and a key pair
(pkS , skS) of E ′ = (G′, E′, D′).

• Receivers A and B have a common key pair (pkR, skR) of E = (G,E, D).

• Receiver A has a secret x, and receiver B has a secret y, where x, y ∈
{0, 1}n.

1. A and B send E′
pkS

(EpkR
(x[i])) and E′

pkS
(EpkR

(y[i])) to S respectively,
1 ≤ i ≤ n.

2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get
EpkR

(x[i]) and EpkR
(y[i]), and computes the following values via ho-

momorphic encryption:

(a) di = x[i] − y[i], d
′
i = x[i] + y[i] − 1.

(b) ei = 2ei+1 + di, where en+1 = 0.

(c) veq = m1+
∑n

i=1 ridi, v′i = m0+r′i(ei−di +d′i), where ri, r
′
i ∈R M

3. S sends EpkR(veq), EpkR(v′) to A and B in a random order, where v′ =
〈v′1, v′2, . . . , v′n〉.

4. A and B decrypt the received messages and identify the correct message.

Figure 4.4: COC-II scheme for “Equality” predicate: EQ-COC-II

For sender’s security, let r =
∑n

i=1 ridi. Since ri ∈R M, if x 6= y, there

is a di 6= 0 such that r is uniformly distributed, and thus m1 is uncondi-

tionally secure to A and B. If x = y, by the proof of Theorem 12, m0 is

unconditionally secure to A and B.

For receiver’s security, S gets no information about x and y by the se-

mantic security of E. For each of A and B, the secret is guaranteed by the

semantic security of E ′. The proof can be found in the proof of Theorem 12.

The receiver’s security holds.

4.3.2 COC-II for “Greater Than” Predicate

We can apply the GT-COC-I scheme twice to achieve a GT-COC-II scheme.

One invocation is for testing x > y and the other one is for testing x ≤ y. But,
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• Message sender S has two messages m0, m1 ∈ M and a key pair
(pkS , skS) of E ′ = (G′, E′, D′).

• Receivers A and B have a common key pair (pkR, skR) of E = (G,E, D).

• Receiver A has a secret x, and receiver B has a secret y, where x, y ∈
{0, 1}n.

1. A and B send E′
pkS

(EpkR
(x[i])) and E′

pkS
(EpkR

(y[i])) to S respectively,
1 ≤ i ≤ n.

2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get
EpkR

(x[i]) and EpkR
(y[i]), and computes the following values via ho-

momorphic encryption:

(a) di = x[i] − y[i], d
′
i = x[i] + y[i] − 1.

(b) ei = riei+1 + di, e′i = r′id
′
i, where en+1 = 0, ri, r

′
i ∈R M

(c) fi = ei + e′i
(d) vi = m1−m0

2 fi + m1+m0
2 , veq = m0 +

∑n
i=1 r′′i di, where r′′i ∈R M.

3. S sends EpkR
(v), EpkR

(veq) in a random order to A and B, where v =
〈v1, v2, . . . , vn〉.

4. A and B decrypt the received messages and identify the correct message.

Figure 4.5: COC-II scheme for “Greater Than” predicate: GT-COC-II

this approach costs twice as much as the GT-COC-I scheme. Our scheme for

GT-COC-II in Figure 4.5 is more efficient. It uses an extra ciphertext (for

the case x = y) from S to A and B only.

Let l be the leftmost different bit between x and y. For i < l and i > l,

ei and e′i would be random values in M, respectively. When i = l, we have

ei = di and e′i = 0. Therefore, fi is a random value when i 6= l and fl = dl. If

x > y, fl = 1 and thus cl = m1; if x < y, fl = −1 and thus vl = m0. For the

case x = y, we use an extra value veq to embed m0 like scheme EQ-COC-II.

Theorem 14 Assume that the involved parties are semi-honest and non-

collusive. The GT-COC-II scheme is correct and secure if the underlying
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homomorphic encryption schemes are semantically secure.

Proof 14 The GT-COC-II scheme meets the following requirements.

Correctness. Consider the following three cases:

• x > y: let l be the index of the first different bit of x and y (from

the most significant bit), we have el = dl = 1, e′l = d′l = 0, and thus

fl = el + e′l = 1. Therefore vl = m1−m0

2
· 1 + m1+m0

2
= m1.

• x < y: similarly, since fl = el = dl = −1 in this case, we have

vl = m1−m0

2
· (−1) + m1+m0

2
= m0.

• x = y: by the same argument in the proof of Theorem 13, A and B get

m0 from veq.

Sender’s Security. We see that if x 6= y, then for all i 6= l, fi is uniformly

distributed in M. That is, all vi’s except vl are uniformly distributed in M.

For index l, according to the above argument, vl = m0 if x < y and vl = m1

if x > y. Moreover, by the proof of Theorem 13, veq = m0 if x = y, and veq

is uniformly distributed if x 6= y. Therefore, m0 is unconditionally secure to

A and B if x > y, and m1 is unconditionally secure to A and B if x ≤ y.

Receiver’s Security. Since the receivers encrypt their secrets in the same

way as in the previous schemes, the proof is also the same as the proof of

Theorem 12.
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4.3.3 A General Transformation from COC-II to COC-
III

Based on the COC-II schemes, we can construct COC-III schemes for the

corresponding predicates. Assume that we have a COC-II scheme for some

predicate Q. Then we can construct the Q-COC-III by the following steps:

1. A and B choose their own public/secret key pairs, namely, (pkA, skA)

and (pkB, skB).

2. S lets m1 = EpkA
(m) and m0 = EpkB

(m).

3. All parties perform Q-COC-II as usual.

4. A and B then decrypt the received message by their own secret keys.

We see that if Q holds, both A and B get m1 = EpkA
(m). But, only A can

decrypt it to get the message m. Similarly, if Q does not hold, only B gets

the message.

4.4 COC Against Malicious Parties and Col-

lusion

In this section we show how to modify our COC schemes against malicious

parties and their collusion. Since all parties should be able to check whether

the computations are performed correctly, we assume that the existence of a

bulletin board such that all parties can post the encryptions of their secrets

onto the board, and publicly perform their computations. Furthermore, all
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parties should perform the decryption jointly such that no collusive parties

can get the secret information of the other party. We first introduce some

building blocks. Then we integrate these building blocks for a secure INE-

COC-I scheme against malicious parties. Here we take the Paillier encryption

scheme as the example to describe these sub-functions. For other encryption

schemes, there exist similar constructions.

The Distributed Cryptosystem. Because all parties post the encryp-

tions of their secrets on the bulletin board, we need a distributed version of

the cryptosystem so that no (collusive) parties can decrypt messages without

the agreement of all parties. Assume that each party gets a key share in the

setup phase (from a dealer or a distributed key generation protocol). To

decrypt a ciphertext, all parties output their partial decryptions. They can

get the message from the combination of these partial decryptions. Fouque

et al. [FPS00] provided a threshold Paillier encryption scheme. We have the

following lemma from their work.

Lemma 1 Under the decisional composite residuosity assumption and the

random oracle model, there is a threshold Paillier cryptosystem which is se-

mantically secure against active non-adaptive adversaries.

Knowledge Proof Systems. We need some knowledge proof systems to

verify the correctness of parties’ computations. There exist some interac-

tive proof systems for the Paillier encryption scheme. We can make them
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non-interactive by using the Fiat-Shamir heuristic [FS86]. We provide the

following sub-functions (assuming pk is the common public key):

• NI-PPK(Epk(m)) (Non-Interactive Proof of Plaintext Knowledge):

First of all, all parties should commit their secrets. They post the

encryptions of their secrets along with non-interactive proofs of knowl-

edge of their secrets. The prover proves that he knows the plaintext m

for the encryption Epk(m). Cramer et al. [CDN01] provided such an

interactive proof system.

• NI-PEB(EPK(b)) (Non-Interactive Proof of Encryption of a Bit):

In some schemes, A and B commit their “bitwise” secrets rather than

the whole secrets. So all parties should be able to check that a cipher-

text Epk(b) is indeed the encryption of a bit. Baudron [BS01] et al.

introduced such an interactive proof system.

• NI-PCM(Epk(r), Epk(m), Epk(rm)) (Non-Interactive Proof of Correct

Multiplication):

In our schemes, all parties need to do multiplication on a known con-

stant and a ciphertext. However, the random constant could not be

known by others. So each party posts the encryption of the constant

Epk(r) and the result of multiplication Epk(rm). All parties can check

that Epk(rm) is indeed the encryption of rm. Cramer et al. [CDN01]

provided this interactive proof system.
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By the respective works, we have the following lemma.

Lemma 2 In the random oracle model, there exist NI-PPK, NI-PEK, and

NI-PCM zero-knowledge proof systems.

The Mix-Net System. Mix-net is a cryptographic system providing anony-

mous and unlinkable communication. It consists of a set of servers that shuffle

a list of ciphertexts so that ciphertexts in the output list cannot be linked to

those in the input list. To ensure correct shuffling, the output list should be

verified that it is indeed a permutation of the input list. We use Mix-Net(·)

to denote the mix-net sub-protocol which outputs the list of shuffled input

ciphertexts. We can find such a mix-net system for the Paillier encryption

scheme in the work of Nguyen et al. [NSNK04]. Also, we have the following

lemma from their work.

Lemma 3 There is a Mix-Net sub-protocol which provides indistinguishabil-

ity under chosen permutation attack if the decisional composite residuosity

assumption holds.

Putting Things Together. Now we take the INE-COC-I scheme as an

example to show how to build a scheme secure against malicious parties by

the above tools. In the initial stage, A,B and S get their shares of the secret

key corresponding to pk. We present the new protocol in Figure 4.6.

At the beginning of the protocol, all parties post the encryption of their

secrets on the bulletin board with the corresponding NI-PPK proofs. In
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addition, A and B provide the NI-PEB proofs to convince others of their

bitwise secrets. Also, S posts the encryptions of constants 0 and 1 for the

later computation and provides the random factors used in the encryption

such that all parties can check the correctness. Then all parties perform the

computation as S performs in the INE-COC-I scheme. Since the random

ri’s cannot be known by any party (we need to consider the collusion of

the sender and a receiver), all parties need to generate these ri’s jointly.

For each 1 ≤ i ≤ n, they first generate their own random values rAi, rBi

and rSi respectively, and perform the multiplication by themselves. The

corresponding NI-PCM proofs are also posted for verification. Then they

sum up their computation results, and the new random value is implicitly

defined as rAi+rBi+rSi. After that, all parties execute the Mix-Net system to

get the shuffled ciphertexts. Finally, S sends the partial decryptions of these

ciphertexts to A and B, and A and B also exchange their partial decryptions.

With these partial decryptions, A and B can decrypt the ciphertexts.

Theorem 15 The MAL-INE-COC-I scheme is correct and secure if the de-

cisional composite residuosity assumption holds.

Proof 15 Based on security assumption of the Paillier encryption scheme,

the MAL-INE-COC-I scheme meets the following requirements.

Correctness. By the NI-PEB proofs, we know that Ex[i]
’s and Ey[i]

’s are

fair encryptions of bits. Let l be the index of the first different bit of x and y

(from the most significant bit). We see that Dsk(Edl
) = Dsk(Eel

) = x[l]−y[l] =
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1 or −1, and Dsk(Ed′l) = x[l] − ȳ[l] = 0. Therefore, we have Dsk(Ef ′l ) = 0

and Dsk(Evl
) = m + (rAl + rBl + rSl) · 0 = m. Moreover, each Ev′i is just the

permutation and reencryption of some Evj
. A and B can get m from these

encryptions.

Sender’s Security. For any malicious A′ and B′, we construct a simulator

SIM1 to simulate the view of the adversary ADV1 who controls A′ and

B′. Let pk∗ be the challenge public key that ADV1 would like to attack.

The simulator SIM1 randomly chooses the secret key shares for A′ and

B′, named skA and skB, respectively. On input (pk∗, skA, skB), ADV1 first

outputs two messages m∗
0 and m∗

1. We show that if ADV1 distinguishes

between the interaction with S(m∗
0) and the interaction with S(m∗

1) with non-

negligible probability, then we can break Lemma 1, the semantic security of

the threshold Paillier encryption scheme.

Given the challenge ciphertext Epk∗(m
∗
b) for some b ∈ {0, 1}, SIM1 has

to output its guess. It first posts Em = Epk∗(m
∗
b) on the board, and sim-

ulates the NI-PPK proof in the random oracle model. SIM1 and ADV1

then perform the subsequent steps as the real scheme until step 4(d). In

step 4(d), SIM1 first randomly chooses m̃1, m̃2, . . . , m̃n ∈ ZN . After ADV1

posts EfAi
’s and EfBi

’s, SIM1 computes and posts

EfSi
= Eṽi

¢ (−1 ¡ Em) ¢ (−1 ¡ EfAi
) ¢ (−1 ¡ EfBi

),

where Eṽi
= EPK(m̃i), 1 ≤ i ≤ n. SIM1 also posts random ciphertexts

ErSi
’s and simulates the NI-PCM proof in the random oracle model. Then
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they continue running the scheme until step 6. In step 6, SIM1 chooses a

random permutation π, and outputs the partial decryptions such that ADV1

decrypts (Ev′1 , Ev′2 , . . . , Ev′n) to (m̃π(1), m̃π(2), . . . , m̃π(n)).

We show that all data simulated by SIM1 cannot be distinguished from

the real ones by ADV1. First, since the key shares of the Paillier encryp-

tion scheme are uniformly distributed, the two shares given by SIM1 are

indistinguishable from the real ones. By Lemma 2, SIM1 can simulate the

NI-PPK and NI-PCM proofs in the random oracle model. The encryptions

EfSi
’s are distributed as the real ones because SIM1 computes them from

the final results. Furthermore, by the proof of Theorem 12, if x = y, Efi
’s

must be uniformly distributed. So the encryptions vi’s are distributed as the

real ones. Finally, by Lemma 3, ADV1 cannot distinguish the permutation

π from the real one. SIM1 successfully simulates the scheme. After that,

ADV1 outputs the guess b̂, and SIM1 also outputs b̂ directly. If b̂ = b with

non-negligible probability, SIM1 breaks Lemma 1.

Receiver’s Security. We also construct a simulator SIM2 to simulate the

view of the adversary ADV2 who controls A′ and S ′. Let pk∗ be the challenge

public key that ADV2 would like to attack. The simulator SIM2 randomly

chooses the secret key shares for A′ and S ′, named skA and skS, respectively.

On input (pk∗, skA, skS), ADV2 outputs a secret y and an index j. We show

that if ADV2 distinguishes between the interaction with B(y[1]y[2] . . . y[n]) and

the interaction with B(y[1] . . . y[j−1]ȳ[j]y[j+1] . . . y[n]) with non-negligible prob-
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ability, then we can break Lemma 1, the semantic security of the threshold

Paillier encryption scheme.

Let y∗0 = y[1]y[2] . . . y[n] and y∗1 = y[1] . . . y[j−1]ȳ[j]y[j+1] . . . y[n]. Given the

challenge ciphertext Epk∗(y
∗
b ) for some b ∈ {0, 1}, SIM2 has to output its

guess. It first posts Ey∗
b[i]

= Epk∗(y
∗
b[i]) for all 1 ≤ i ≤ n on the board, and

simulates the corresponding NI-PPK and NI-PEB proof in the random oracle

model. After ADV2 posts Em and Ex[i]
for all i, SIM2 extracts m and y

in the corresponding proofs. Then SIM2 and ADV2 perform the subsequent

steps as the real scheme until step 4(d). In step 4(d), if x = y (Q(x, y) = 0),

SIM2 randomly chooses m̃1, m̃2, . . . , m̃n ∈ ZN ; otherwise (Q(x, y) = 1),

SIM2 sets m̃1 = m and randomly chooses m̃2, . . . , m̃n ∈ ZN . After ADV2

posts EfSi
’s and EfAi

’s, SIM2 computes and posts

EfBi
= Eṽi

¢ (−1 ¡ Em) ¢ (−1 ¡ EfSi
) ¢ (−1 ¡ EfAi

),

where Eṽi
= EPK(m̃i), 1 ≤ i ≤ n. SIM2 also posts random ciphertexts

ErBi
’s and simulates the NI-PCM proof in the random oracle model. Then

they continue running the scheme until step 6. In step 6, SIM2 chooses a

random permutation π, and outputs the partial decryptions such that ADV2

decrypts (Ev′1 , Ev′2 , . . . , Ev′n) to (m̃π(1), m̃π(2), . . . , m̃π(n)).

As the argument of sender’s security, all data simulated by SIM2 cannot

be distinguished from the real ones by ADV2. So SIM2 successfully simu-

lates the scheme. Finally, ADV2 outputs the guess b̂, and SIM2 also outputs

b̂ directly. If b̂ = b with non-negligible probability, SIM2 breaks Lemma 1.
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The security argument of A against the adversary who controls B and S is

similar.

4.5 Extensions

We discuss some extensions of our COC schemes in this section. We pro-

vide some new solutions for three-party oblivious cast and consider COC

constructions for other predicates.

4.5.1 Constructions of Oblivious Cast

As mentioned in Section 1, Blaze [Bla96] first introduces the notion of OC,

and presents a k-out-of-n OC scheme based on blind signatures. Their OC

scheme assumes an anonymous communication mechanism for hiding the

identity of the sender. It needs four rounds to complete the protocol. Here

we provide other solutions based on COC-III or homomorphic encryption

schemes. We rephrase the three-party OC scheme as follows.

Definition 4 An oblivious cast scheme consists of three parties: a sender S

who sends a message m and two receivers A and B, such that the following

conditions are satisfied:

1. The message m is received by exactly one of A and B, each with prob-

ability 1
2
.

2. The sender S cannot learn who got m.

3. The receiver who did not get m learns no information about m.

77



First, we show how to construct OC by a COC-III scheme. We take the

EQ-COC-III scheme as the example, where S owns a message m:

1. A and B randomly choose x, y ∈ {0, 1} as their secrets, respectively.

2. All parties perform the EQ-COC-III scheme.

3. A will get m if x = y, or B will get m otherwise.

Since the probability that the two bits are equal is one half, each of A and B

gets m with probability 1
2
. Furthermore, the sender S cannot learn who got

m because S cannot learn the condition in the EQ-COC-III scheme. Also,

because of the security of EQ-COC-III, the party who did not get m learns

nothing about m.

Then we provide another simplified solution based on the homomorphic

encryption scheme directly. The scheme is described in Figure 4.7. Assume

that A,B and S are semi-honest and non-collusive parties, and A,B have

their own key pairs (pkA, skA), (pkB, skB), respectively. The main idea is like

the solution shown above. A and B choose random bits x and y, respectively,

and send their encrypted random bits to S. After receiving the encrypted

bits, S computes v = m + r(x− y) and v′ = m + r′(x− ȳ) in the encrypted

form, and privately sends them to A and B, respectively, where r and r′ are

randomly chosen from the message space. Finally, A gets m if x = y and B

gets m otherwise.
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We can see that the probability that the two bits are equal is one half.

So each of A and B gets m with probability 1
2
. The sender S cannot learn

who got m because of the semantic security of E . If d or d′ is not equal to 0,

m will be masked by the randomly chosen value r or r′. Each receiver either

gets m or learns nothing about m. The three conditions defined above are

satisfied.

Since our constructions need only two rounds, they are more efficient

in communication complexity than Blaze’s scheme. Moreover, our schemes

don’t need any additional assumption on the communication channel.

4.5.2 Other Predicates

In addition to the basic predicates, we can design COC schemes for many

other interesting predicates. For these predicates, the sender may need to

perform multiplication on two messages encrypted by an additively homo-

morphic encryption scheme. However, there is no known encryption scheme

with both additive and multiplicative homomorphism properties. So we use

the BGN encryption scheme which can perform multiplication on two cipher-

texts “one-time”. In the setting of using threshold cryptosystems, the sender

can even perform multiplication on two ciphertexts arbitrary times via some

interactions [CDN01].

In fact, COC can be designed for a predicate of evaluating a bivariate

polynomial f(x, y). For example, to compute a public polynomial f(x, y) =

a2x
2y2 + a1x

2y + a0y, the receivers send the encryptions of x, x2, y and y2
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to the sender respectively. The sender then computes the polynomial by the

following steps.

1. Perform the one-time multiplication on the encrypted messages such

that z2 = x2y2 and z1 = x2y.

2. Perform the constant multiplication: a2z2, a1z1 and a0y.

3. Compute f(x, y) = a2z2 + a1z1 + a0y.

After computing f(x, y), the sender can embed messages by the result.

Alternatively, we can let one receiver hold the polynomial f and the other

one hold the secret x. The sender sends messages by the result of f(x). For

example, for the “membership” predicate, one receiver encodes his set of

secrets as a k-degree polynomial such that f(x) = 0 if and only if x belongs

to the set, and the other receiver computes x, x2, . . . , xk for his secret x. The

sender then sends the message to the receivers such that they get it if and

only if f(x) = 0. This “membership” predicate can be used in our oblivious

authenticated information retrieval application described in Section 1.
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• Message sender S has a message m ∈ M and receivers A and B have
their secrets x and y, respectively, where x, y ∈ {0, 1}n.

• Each of A,B and S has a secret key share corresponding to the public
key pk.

• All parties should verify received proofs and encryptions of constants.
Once a verification fails, the party terminates the protocol.

1. S posts Em = Epk(m) and the corresponding NI-PPK proof.

2. A and B post Ex[i] = Epk(x[i]), Ey[i] = Epk(y[i]) and the corresponding
NI-PPK and NI-PEB proofs, for 1 ≤ i ≤ n.

3. S computes E0 = Epk(0), E1 = Epk(1) and posts (E0, γ0), (E1, γ1),
where γ0, γ1 are the random factors used in E0, E1, respectively.

4. For each i ∈ {1, 2, . . . , n}, all parties perform the following steps on the
board:

(a) Compute Edi = Ex[i] ¢(−1¡Ey[i]), Ed′i = Ex[i] ¢Ey[i] ¢(−1¡E1).

(b) Compute Eei = Eei+1 ¢ Eei+1 ¢ Edi , where Een+1 = E0.

(c) Compute Ef ′i = Eei ¢ (−1 ¡ Edi) ¢ Ed′i .

(d) Each party privately computes and posts EfAi = rAi¡Ef ′i , EfBi =
rBi ¡ Ef ′i and EfSi = rSi ¡ Ef ′i , where rAi, rBi, rSi ∈ ZN are ran-
domly chosen, respectively. Also, they post ErAi

, ErBi
, ErSi

, the
encryption of rAi, rBi, rSi, and the corresponding NI-PCM proofs,
respectively.

(e) Compute Efi
= EfAi

¢ EfBi
¢ EfSi

.

(f) All parties compute Evi
= Em ¢ Efi

.

5. All parties perform (Ev′1 , Ev′2 , . . . , Ev′n) = Mix-Net(Ev1 , Ev2 , . . . , Evn
).

6. S sends the partial decryptions of (Ev′1 , Ev′2 , . . . , Ev′n) to A and B.

7. A and B jointly decrypt the ciphertexts with S’s partial decryptions and
identify the correct message if existent.

Figure 4.6: MAL-INE-COC-I scheme against malicious parties
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• Message sender S has a secret message m ∈M.

• Receivers A and B have their own key pairs (pkA, skA), (pkB , skB) of
E ′ = (G′, E′, D′) respectively, and a common key pair (pkR, skR) of
E = (G,E,D).

1. A and B send EpkR
(x), EpkR

(y) to S, respectively, where x, y ∈R {0, 1}.
2. S computes the following values via the homomorphic encryption

scheme:

(a) d = x− y, d′ = x + y − 1.

(b) v = m + rd, v′ = m + r′d′, where r, r′ ∈R M.

3. S sends E′
pkA

(EpkR
(v)) and E′

pkB
(EpkR

(v′)) to A and B, respectively.

4. A and B decrypt the received messages and get the message m or a
random value.

Figure 4.7: The Oblivious Cast Scheme
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Chapter 5

Conclusion

In this thesis we discussed privacy-preserving data retrieval via introducing

k-out-of-n oblivious transfer and conditional oblivious cast. We presented

four very efficient OTk
n schemes with unconditional security of either receiver

or sender. The first two OTk
n schemes with unconditional receiver’s security

are secure against semi-honest receivers in the standard model and malicious

receivers in the random oracle model, respectively. The other two schemes

with unconditional sender’s security can be either generically constructed or

efficiently performed. We also proposed an efficient Adpt-OTk
n for adaptive

queries. The essential technique is to reverse the order of key commitment

and message commitment. In most previous schemes (including Semi-OTk
n-I),

the message commitments are dependent on the key commitments. Never-

theless, in our scheme Mal-OTk
n-I, the message commitments are independent

of the key commitments. Thus, the message commitments can be sent to R

first.

Then we introduce a new notion of conditional oblivious cast, which ex-
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tends conditional oblivious transfer to the three-party case. The definitions

of this notion are given. We also provide COC implementations for some

fundamental predicates, such as “equality”, “inequality”, and “greater than”

predicates. By our schemes, we construct a new oblivious cast scheme with-

out any additional assumption. We believe that COC is a fundamental prim-

itive for secure multi-party computation.
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