$y £ pBeelp AT R

(AR R R i 4 g pi £ 2o R Al)

Power Management for Instruction Cache

-(Program Flow Sensitive Drowsy I-Cache)

= R
EL

dp £ BB R DT R

Power Management for Instruction Cache

oo iR RAa Student : Kuo-Wei Chou
hERR I HIR Advisor : Chung-Ping Chung

Fagn Fage

I

A Thesis
Submitted to College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in
Computer Science
August 2007

Hsinchu, Taiwan, Republic of China

£

g B (b o N E T s Akl e R b i £ Bl p Eirh @t
RSB o AP K 0 k- BBAEE - i
T2 RN F P BR 18 I R P B PR o g RS o

AR TTAL P45 D T E S o AR EIFE 0 d B
REaB 2 R “RAB PR E T et R E G Y BB e RS
fvoo - MR {8 “,f Tog R R eBes] > H AT ¢ 2 ik
P o G PERCG o ipL R A AT TR ET - BUAAE
BUSRERI 4 0 XD g Ui R A S0 R AR AR o AR R
BERTAGYERPAIA R ABERT LR IR ATIE Y - B
clock en"“ff pEpF 712 2 — i clockl A& 3“7 B &7 o & - e i@ o
HFPER 54 10.898% I 14.581% = 2 5 77.5% v 82.4% hif R i
3= o

Power Management for Instruction Cache

student : Kuo-Wei Chou Advisors : Dr. Chung-Ping Chung

Degree Program of Computer Science

National Chiao Tung University

ABSTRACT

Main concept of Power management of Instruction Cache - (Program Flow Sensitive
Drowsy I-Cache (pfsDIC for brief)) is that minimize the numbers of active cache lines. So, on
Turn-On scheme, utilize fixed Target address to preactivate the discontinuous Instruction
Cache Line. On Turn-Off scheme, turn-off the cache lines after the last content of this cache
line is transmitted. The purpose of such concept is to reduce maximum leakage energy. On
Turn-On stage, there is several cache lines are activating due to low-way associated. After an
amount of wakeup time, switch these awaken cache lines to “Drowsy mode” except to the
referred cache line. The additional auxiliary hardware don’t only offer the predictive ability of
next Basic Block, but also maintain the correct program flow when wrong prediction happens.
The experiment results show the leakage reduction of proposed designs. When the wakeup
latency is the sum of 1 clock of wakeup time and an extra 1 clock of circuit delay that caused
by proposed design. In the average case, the Runtime increment is 10.898%~14.581% and the
leakage reduction is 77.5% ~ 82.4%

ﬂikﬁ%%ﬁ$-_ﬁ@jﬁ“§*f§ﬂﬁ¢”§4ﬁ~“%%*ﬁﬂxw
R od ol o L FRHTFEAl AR 22> KPEMAL KIRFLEEZR
iﬁfﬁiﬁ’i“ -é%mﬁ¢§4ﬂP”P?/ﬁa AFFLL ot @
[PRSSUN ;“@?*;_I'I‘J‘z% ;o—} oxf P2tk R aHE 1 frmfg‘u, g‘f@;fré ?&‘?\537\ &_/ng"i@ﬁ;r_
voAT IS el Bh 2 R ES o

ek B4 AEHF AL T g

o TBE.‘*XﬁN*“vﬁkf# RREE
" @%#%%#%Hm%m’é@§4@u%

N
ey

av«

2
i

E\\I’

N iﬁ”£¥—ﬁﬁ“§9ﬁ<’%@%%&ﬂ>ﬁw?£ﬁ”£i§
W T :.’ér_ W& Y EFIpE R FE#E)%‘*’T),é’ifiﬂ’ﬁﬂé_%k%ﬂéif“jﬂ—:kﬁ"
i

7=
pr-3e GRS
T

il d

B F R YR v E AL IR RO R P R APER S AR R
BrRL R L3 o

¥ W 2007.8.30

Table of Contents

IMASEEE OF SCIBNCE ...ttt bbbttt I
1% PSSRSO i
ABSTRACT et bbbttt ettt nb et bbb iv
Pt 2 AT v
Table OF CONLENES ... bbb Vi
LIS OF FIQUIS....eeeiiee ettt ne e reeaenreenneenee e viii
LSE OF TADIES ...ttt b ettt X
Chapter 1 INTrOQUCTION......c..eiieiieer et e e e e e enee e 1
I = - Tod (o (011 oo USSR 1
1.1.1 DVS (Dynamic Voltage SCaling)cccccveveriieirereiieieeeseeseerie e 1

1.1.2 Characteristics of Program EXeCULIONcccvevvvvieeveeieseenie e 2

1.1.3 Dynamic branch predictor and its operation..........cccccvvveveiieerveriesnnenn, 3

1.1.4 BaSiC BIOCK ..o 7

1.1.5 Drowsy Caches: Simple Techniques for Reducing Leakage Power 8

1.1.6 Sub-bank Predictive 1-Cache [5]ccooeiiiiiiiiee e 9

1.2 ReSearch MOtIVAtION.........cccoviiriiiii et 10

1.3 ReSearch ODJECHIVEciiiiic e 11

1.4 Organization of this TNESIS........cccceiiiiiiiiiie e 12
Chapter 2 Design of Proposed ArChiteCIUIe..........ccevverieiiiere e 13
2.1 Challenges iN DESIGNciveiieeiiese e se et ra et e e ns 13

2.2 DeSigN Of BTB SIde......cccciiieiiiieieeie e 13
2.2.1 Extracomponent of BTB SIdecccccueiviiieiiieiiee e 14

2.2.2 Update & Use Of “BBSIZE”cccccveveiieiree e 16

2.2.3 Summary Of BTB SIO€ccvciieiierieie e 18

2.3 DESIgN OF PrOCESSONcivieiieiecieeiie et ettt sre e aeanaenres 21
2.3.1 EXtra COMPONENT ON PrOCESSON ..c.vvveerireeeiiieeesireeesireessireessineessseeesieeesnes 21

2.3.2 Example for explain predictive instruction addressccccceevvrueenee. 23

2.4 DeSIgN OF CACNEoeiieiece ettt enes 27
2.4.1 Extra component (Preactivating Cache-Line FIFO)...........cccccevvvrnnnee. 28

2.4.2 Extra component (LiNES SENSON)cccuviverreeriesiesieeeeseesieesieseesreeneeans 29

2.4.3 Extra component (LiNES SENSON)cccuviverreerieiiesieeieseesieesieseesseeneeanes 29

2.4.4 Extra component (Content TranSmMItter)..........ccoovvveresiesieeresieseenne 30

2.4.5 Extra component (Stage MaSLer)ccccvvieeieeresiieseese e 31

Chapter 3 Evaluation and DiSCUSSION...........c.ciueiieiieiieseeie e esie e e ne e e 33

Vi

3.1 Evaluation Methodologycccoeieriiiiiiiiieieeee s 33

3.2 EVAIUALION MEITICS. . .cuviuiieiieieisieee et 34

3.3 Experimental ENVIFONMENT...........cooiiiiiiiiieieiesesee e 35

3.4 Experimental BenChmarkccoooiiiiiice e 36

3.5 Experimental RESUITS..........cuiiiiiiii s 38

3.6 DISCUSSION.....eiivieiienieeiiesiee e ieeste et seeste et e teebe st e sneenteeneesteeteeneesreeneeeneennes 46
3.6.1 Discussion with five evaluation Metrics..........c.ccoovvvvririeneiencnesenns 46

3.6.2 Important Considerations and/or Further Improvements 47

Chapter 4 Conclusion and FULUIE WOTK.............ccoiiiiiiiiiiie s 51
Ot R ©0 o] 131 [] o USRS 51

4.2 FULUIE WOTK ..ttt sttt et e st e e nnaeteenee e 51

R (=] 157 00 SRS 53
[V Lt OSSPSR 54

vii

List of Figures

FIGURE 1.1 LOGIC DIAGRAM OF DROWSY CACHE-LINEoiiiiiiitie it eitie st sieeesiee s sneesiee s aeesinessineennne e 2
FIGURE 1.2 DIAGRAM OF BASIC BLOCK ...ciiuviiiiiiiiieiiiiesitee s es st tesstee s taeabae st aesbee s baaabae s taeasnaesstnaennene e 7
FIGURE 1.3 DIAGRAM OF SUB-BANK PREDICTION BUFFER......ccciuiiiiiiiitiesiiisasiiessineestee s siasssieessnessseessineessene e 9
FIGURE 1.4 DIAGRAM OF BASIC BLOCK ...ciiutiiiiiiiiieiiee st siee st stee st teessba s taassba e taa e et e snbeeateesnnee s 10
FIGURE 1.5 DIAGRAM FOR DESCRIBING LOOKUP TIMING OF THIS THESIS....cciivvtiiiieiiiiesiieeeieessieessseessieesnnnes 11
FIGURE 2.1 DIAGRAM FOR DESCRIPTION OF “BBSIZE” FIELD EACH BTB ENTRY ..cccvviiiiiiii e 14
FIGURE 2.2 DIAGRAM FOR DESCRIPTION OF 2-DEPTH FIFO.....cccviiiiiiii e 15
FIGURE 2.3 TRUTH TABLE OF “PREDICTION” FIELD AFTER VERIFY ..eiiitiiiiiieiiieiiteesiesssiessnesssiesssessnsesssees 16
FIGURE 2.4 DIAGRAM FOR GATHERING “BBSIZE”. ...ttt 17
FIGURE 2.5 DIAGRAM FOR USING “BBSIZE”ciiiiiiiiiiiitit et sniee st siee st stea b s stas e steesbes s nteeannee s 18
FIGURE 2.6 A PIECE OF PROGRAM EXECUTION....cciuuttittestteiteessteesteesssessssessssesssssssssessssessssesssssssssessnsessnsens 19
FIGURE 2.7 BLOCK DIAGRAM OF ORIGINAL ARCHITECTURE ...eiivtviiiieiiiieiieesssessiesssessssessssessssesssessnsessnsens 20
FIGURE 2.8 BLOCK DIAGRAM OF CPU CORE SIDE AND |-CACHE SIDEccceviuieiiiiesiiiessieessiesssieessseesssnesnsnes 22
FIGURE 2.9 THE DIAGRAM OF PIPELINE: THERE HAS 1 CIRCUIT DELAY, 2 WAKEUP TIME.........cccvvnveirienniunens 23
FIGURE 2.10 TIMING DIAGRAM OF PREDICTIVE TARGET: 1.utiitieittiiiieiitesitessssessssessssssssesssessssessssessnsessssens 24
THERE HAS 1 CIRCUIT DELAY, 2 WAKEUP TIME ... uitiiitteiieeiiisaiessitiesteesivaesssessssessssessssesssssssssessssnsssssesssnaes 24
FIGURE 2.11 TIMING DIAGRAM OF WRONG PREDICTIONeiuviiiireaieeiieesiessssesssiesssesssessssessssessssessnsessnsens 26
FIGURE 2.12 GLOBAL VIEW OF CACHE SIDEviiiiiiiiiieiiteiitie st ettt teassba s taassaasstaasnbassteesnbasataesnseen 28
FIGURE 2.12 BLOCK DIAGRAM OF “PREACTIVATING CACHE-LINE FIFO”.....c.coiiiiiiiiiie e 28
FIGURE 2.13 BLOCK DIAGRAM OF “LINE SENSOR” AND “PREACTIVATING CACHE-LINE FIFO”. 29
FIGURE 2.14 LOGIC CIRCUIT DIAGRAM OF “CACHE-LINE”......ciiitiiiiiieiitieiiieesiesssiesssiesssieessessssessnsessssessnsees 30
FIGURE 2.15 TRUTH TABLE OF “FUNCTION OPERATION”ttiiitieiiiesiesiieesiessiessnessstasssessstessnessnsessnnens 30

... 41
FiG 3.3 BLOCK DIAGRAM OF “RUNTIME INCREMENT” THAT AFFECTED BY “CACHE SIZE”......cccccoviviveinnnnn 41
FI1G 3.4 BLOCK DIAGRAM OF “RUNTIME INCREMENT” THAT AFFECTED BY “WORDS PER LINE”.c...... 42
Fi1G 3.5 BLOCK DIAGRAM OF “RUNTIME INCREMENT” THAT AFFECTED BY “CACHE REPLACEMENT”.......... 42
Fi1G 3.6 BLOCK DIAGRAM OF “RUNTIME INCREMENT” THAT AFFECTED BY “WAKEUP LATENCY”. 43

FIG 3.7 BLOCK DIAGRAM OF “LEAKAGE ENERGY REDUCTION” THAT AFFECTED BY “BTB INSERTION” AND
B =TS] 4 = = T =T o SRR 44

FIG 3.8 BLOCK DIAGRAM OF “LEAKAGE ENERGY REDUCTION” THAT AFFECTED BY “CACHE SIZE”............ 44

viii

FIG 3.9 BLOCK DIAGRAM OF “LEAKAGE ENERGY REDUCTION” THAT AFFECTED BY “WORDS PER LINE” ...45
FIG 3.10 BLOCK DIAGRAM OF “LEAKAGE ENERGY REDUCTION” THAT AFFECTED BY “CACHE REPLACEMENT” 45
FIG 3.11 BLOCK DIAGRAM OF “LLEAKAGE ENERGY REDUCTION” THAT AFFECTED BY “WAKEUP LATENCY”’46

FIG 3.12 DIAGRAM FOR USING AND UPDATE “BBSIZE”cii ittt ettt s s sabbanne e 49

List of Tables

TABLE 3.1 SHOWS THE INSTRUCTION COUNTS, THE PERCENTAGE OF BRANCH INSTRUCTION AND MAXIMUM THE

BB SIZE . .. 38
TABLE 3.2 SIMULATION RESULTS OF PFSDIC (1) ...ttt 39
TABLE 3.3 SIMULATION RESULTS OF PFSDIC (2) ...ttt 40
TABLE 3.4 SIMULATION RESULTS OF SUB-BANKEDocctiiiiiiiieieiic s 40
TABLE 3.5 SIMULATION RESULTS OF SIMPLE TURN-OFF CACHEcouiiviriiirinieiiieiseee e 40
TABLE 3.6 SIMULATION RESULTS OF ROOT CAUSE OF WRONG PREDICTIONceviiviiiiinreniisriniesresieeeene s 48

Chapter 1 Introduction

The necessary of Power management of Instruction Cache is based on the following
arguments: 1. the energy consumption of leakage is more important factor with process
shrinking day by day. 2. Instruction cache always sends a content of instruction cache lines

for CPU execution. 3. Should all parts of instruction cache lines be active?

Therefore, the thesis wants to implement an idea. The idea is that just only few numbers
of cache lines are active and the other cache lines are drowsy by DVS (Dynamic Voltage
Scaling) technique. And the number of active cache line is not more than number of “Way”

that related to n-way associated replacement.

After equipping a filed that using for record the instruction number of this executing
Basic Block (between the target address recorded in this BTB entry and next Branch
instruction) in program execution. The next Target address will be calculated after the next
instruction address of Branch instruction is calculated. Therefore, transmit the predictive
program flow to Instruction Cache in advance; there will be avoid most Runtime increment

due to the wakeup time of recharge.

Throughout this thesis, a classic MIPS five-stage pipeline is assumed. The five stages are
Instruction fetch (IF) stage, Instruction decode/register fetch (ID) stage, Execution/effect
address (EX) stage, Memory access (MEM) stage and Write-back (WB) stage respectively.
The other assumption is the target address is confirmed on the “Instruction Decode” stage.

1.1 Background

1.1.1 DVS (Dynamic Voltage Scaling)

There often adopt multiple supply voltage (Dynamic Voltage Scaling) to reduce
leakage power consumption. Reduce leakage energy using lower supply voltage, it
provides 6x to 10x reduction over regular supply voltage. The method is often called
“Drowsy mode”. If the cache line is at low leakage drowsy mode, its data is preserved

but can not be accessed. Otherwise, the unchecked accesses to a drowsy line could

| R

hep

EBA LI

destroy its contents. The other thing, reactivate the cache lines need a small wakeup

time.

Therefore, it is necessary to pre-activate what cache lines will be using in advance.

It can avoid the penalty caused by waiting for wakeup time.

In the following figure shows a cache line that supports a drowsy mode. In order to
support the drowsy mode, each cache line circuit includes two more transistors than
traditional memory circuit. The voltage controller switches the cache line voltage
between active and drowsy supply voltage depending on the drowsy bit. The word-line
gating circuit is used to prevent accesses of the drowsy memory cells in the cache line,
since the supply voltage of the drowsy cache line is far lower than the pre-charged
bit-line voltage and thus unchecked accesses to a drowsy line could destroy its contents.

sctive| drowsy | poser ine 2y
T o T 11

o 1 0se (0
o o hold ¢
1 1 ¥ 'l 2 l
I
11 51
2 W
ZE
o 4 .
o Doy Hr' de I_.:r Fower ling
Cache memory
Active Wode =S=
1
—l_‘|_ wiord line gate

| —

Figure 1.1 Logic diagram of Drowsy Cache-Line

Relationship with this thesis: there will be a similar circuit with each Instruction

Cache Lines in the design of this thesis.

1.1.2 Characteristics of Program Execution

Now, let us analyze the character of program execution. Program execution can be

classified into 2 categories:

1. Sequential execution:
This kind of execution occupies about 85-90% portion of program execution.
2. Execution of taken branches:

This kind of execution occupies about 10-15% portion of program execution.
Taken branches can be further classified into 2 classes:

(1) Fixed target branches (75-97 % by simulation in tablel):

Most taken branches are fixed target branches. Dynamic branch predictor like
branch target buffer can handle fixed target branches with target expressed in

immediate field of the instruction.
(2) Changing target branches:

It includes procedure return, some other special uses that load pc from a
register other than link register (e.g., function table, switch conditional

statement). Procedure return can be handled by return stack.

Relationship with this thesis: there shows that “Fixed Target Branch” occupies high
percentage of the discontinuous execution. For simplicity, the thesis just focuses on

“Fixed Target Branches” first.

1.1.3 Dynamic branch predictor and its operation

Due to reduce leakage power consumption, it need to decide which lines will be
accessed in the near future and these are kept in the pre-activated state, and the rest of the
lines are put into the low power drowsy mode. If the program execution is sequential, it
IS easy to pre-activate the cache lines considering the wakeup time. But, about 15% of
instructions in typical programs are Taken-Branch. In order to reduce the extra penalty

caused by wakeup time, dynamic branch predictor is often adopted.

Originally, dynamic branch predictor is used to help processor resolve the outcome
of branch early, thus preventing control dependences from causing stalls [1]. The typical
case of dynamic branch predictor is branch target buffer (BTB) [2]. Now, Branch target

3

buffer is used to offer predicting the path of the branch.

Branch target buffer is a branch prediction cache and is designed to reduce branch
penalty by predicting the path of the branch and storing information about the branch.
The major information stored in each entry of branch target buffer consists of:

1. Valid bit: to tell whether the entry is empty or not.

2. Branch instruction address (branch tag): the current program counter (PC) is
compared to branch instruction address field to determine if there is a “hit”.

3. Branch target address: If there is a hit and the branch is predicted taken, the
program counter is loaded with this value and instruction fetching continues
from this point.

4. Branch prediction bits (predictor): 2-bit prediction scheme is most commonly
used [1].

For the classic MIPS five-stage pipeline, when the current program counter is sent
to instruction memory to fetch the current instruction, this current program counter is

also sent to branch target buffer to see if there is a “hit”.

If there is a “miss”, that means there is no valid entry whose branch tag equals the
program counter, the instruction fetcher in CPU will update the program counter to the
next sequential PC by adding a word size to the PC. There are 2 scenarios under a

“miss”:

1. At the end of the ID stage for the branch instruction, it turns out that this is a
not-taken branch :

The branch processing unit in CPU will not enter a new entry into branch
target buffer for this branch, while the instruction fetcher in CPU will keep
fetching the subsequent instruction.

The branch penalty in this case is 0 clock cycle.

2. At the end of the ID stage for the branch instruction, it turns out that this is a
taken branch :

The branch processing unit in CPU will enter a new entry into branch
target buffer for this branch, while the instruction fetcher in CPU will Kkill

fetched instruction at IF pipe stage and start fetching the calculated branch

target address at the start of the next clock cycle.

The branch penalty in this case is 1 clock cycle.

The detail of entering a new entry into branch target buffer is as follows:

If the position of the new entry is occupied, some replacement algorithm (e.g., Least
Recently Used or Random algorithm) is used to discard an existing entry to make room

for this new one.

In this new entry, valid bit field is set to 1, branch instruction address (branch tag)
field is set to the branch instruction address (that is exactly the program counter 1 clock
cycle ago), branch target address field is set to the value calculated at the end of ID stage,
branch prediction bits field is set to the initialized value according to the adopted n-bit
prediction scheme.

If there is a “hit”, that means there is a valid entry whose branch tag equals the

program counter. There are 4 scenarios under a “hit”:

1. Branch prediction bits predicts this branch instruction is a taken branch, and at

the end of ID stage for the branch instruction, it turns out to be a taken branch :

At the end of the IF stage, branch target buffer will supply the branch
target address to update the program counter. At the start of the next clock
cycle, this corrected PC that is the branch target address is sent to instruction
memory. At the end of the ID stage for the branch instruction, it turns out that
the prediction 1 clock cycle ago is correct. The branch processing unit in CPU
will update branch prediction bits in branch target buffer, while the instruction
fetcher in CPU will keep fetching the subsequent instruction.

The branch penalty in this case is reduced to 0 clock cycle.

2. Branch prediction bits predicts this branch instruction is a taken branch, but at
the end of ID stage for the branch instruction, it turns out to be a not-taken
branch :

At the end of the IF stage, branch target buffer will supply the branch
target address to update the program counter. At the start of the next clock
cycle, this corrected PC that is the branch target address is sent to instruction

memory. At the end of the ID stage for the branch instruction, it turns out that

5

the prediction 1 clock cycle ago is incorrect. The branch processing unit in
CPU will update branch prediction bits of the branch entry in branch target
buffer, while the instruction fetcher in CPU will kill fetched instruction at IF
pipe stage, and start fetching the fall-through address after the branch
instruction at the start of the next clock cycle.

The branch penalty in this case is 1 clock cycle.

Branch prediction bits predicts this branch instruction is a not-taken branch,
and at the end of ID stage for the branch instruction, it turns out to be a
not-taken branch :

At the end of the IF stage, branch target buffer will do nothing, the
instruction fetcher in CPU will update the program counter to the next
sequential PC by adding a word size to the PC. At the end of the ID stage for
the branch instruction, it turns out that the prediction 1 clock cycle ago is
correct. The branch processing unit in CPU will update branch prediction bits
of the branch entry in branch target buffer, while the instruction fetcher in CPU
will keep fetching the subsequent instruction.

The branch penalty in this case is O clock cycle.

Branch prediction bits predicts this branch instruction is a not-taken branch,
and at the end of ID stage for the branch instruction, it turns out to be a taken
branch :

At the end of the IF stage, branch target buffer will do nothing, the
instruction fetcher in CPU will update the program counter to the next
sequential PC by adding a word size to the PC. At the end of the ID stage for
the branch instruction, it turns out that the prediction 1 clock cycle ago is
incorrect. The branch processing unit in CPU will update branch prediction
bits of the branch entry in branch target buffer, while the instruction fetcher in
CPU will kill fetched instruction at IF pipe stage and start fetching the
calculated branch target address at the start of the next clock cycle.

The branch penalty in this case is 1 clock cycle.

Summary for the interrelationship among BTB, instruction memory and CPU:

1.

When an entry is found in branch target buffer and its prediction is taken,

branch target buffer will update the program counter.

2. When there is no entry found in branch target buffer or an entry is found but its
prediction is not-taken, the instruction fetcher in CPU will update the program

counter to the next sequential PC by adding a word size to the PC.

When a branch instruction is resolved at the end of ID stage, the branch processing
unit in CPU will do the following things: updating branch target buffer (including
entering a new entry or updating an existing entry) if necessary, flushing the instructions

in the wrong path and updating the program counter when the current path is wrong.

Relationship with this thesis: in this thesis, there will be adding an extra field, that is
using to record the instruction numbers of Basic Block, each BTB entries. On the other
thing, the instruction numbers of Basic Block recorded in the field that is corresponding

to the “Dynamic Branch Predictor”.

1.1.4 Basic Block

Basic Block is a straight-line code sequence with no branches in except to the entry
and no branches out except at the exit. Therefore, Targetl is the entry of Basic Block,
and Branchz2 is the exit of Basic Block (Refer to Fig 1.2). For typical MIPS programs the
average dynamic branch frequency is often between 15% and 25%, meaning that

between four and seven sequential instructions execute between a pair of branch.

Branch1
Targetl
m
ﬁ g Basic
2 Q Block
=
°3
Branch2
l Target2

Figure 1.2 Diagram of Basic Block

Relationship with this thesis: Because the design in this thesis wants to know the
address pair is discontinuous in advance. And preactivate the discontinuous address an
amount of wakeup time. So, the design in this thesis just use the character of Basic Block
to predict next discontinuous address if somewhere record the instruction numbers of

each Basic Block.

1.1.5 Drowsy Caches: Simple Techniques for Reducing

Leakage Power
There are two kinds of Turn-off policy: [4]

1. Simple Turn-Off policy:
Operation: Periodically (e.g.: 4K cycles) place all cache lines into drowsy
mode.
Possible to improve:
(1) Some cache lines should not be turned off when period expires.
(2) Too many Cache lines are active at same time.
2 Non-access Turn-Off policy:
Operation: Only the cache lines that have not been accessed during a fixed
time period (e.g.: 32K cycles) are placed into drowsy mode.
Possible improve:

Some cache lines should be turning off early.

About Turn-on policy, both of above is turning on the cache line when accessed.

Regardless of turn on policy or turn off policy, both of them operate cache line.

Relationship of this thesis: Simple Turn-Off policy will be adopted for comparison
with the design of this thesis. And Simple Turn-Off policy let this thesis decide that turn
off the cache line after last using.

1.1.6 Sub-bank Predictive I-Cache [5]

The following describes Turn-on and Turn-off policy of Sub-Banked Instruction
Cache, respectively:
1. Turn-off policy:
Operation: Adopts a “Bank based strategy”, only one sub-bank is active at a
time, while the rest of the sub-banks are in drowsy mode.
2. Turn-on policy:
There are two kinds of approach:
(1) Memory sub-bank prediction buffers: (Refer to Fig. 1.3)
Operation: Use a fully-associative buffer like BTB structure to
pre-activate sub-bank.
Possible to improve: In particular, the CAM tag in the prediction buffers
can consume significant amounts of dynamic power.
(2) Next sub-bank predictors in cache tags:
Operation: Extend cache tags to support next sub-bank prediction.
Possible to improve: Multiple next sub-bank addresses can not be kept
when there are multiple transition addresses in a cache lines.
Regardless of turn on policy or turn off policy, both of them operate bank (e.g.:
4KB).
tag array sbankpredictor array

— e —

lag bof | V| nextsbank#

0
]
|}
]
Ox0ooh [
Ox000bL | Oxi8| 1 dx2

/1

byte offset valid nextbank
Figure 1.3 Diagram of Sub-bank Prediction Buffer

Relationship with this thesis: Because there are too many Instruction cache lines in

a sub-bank, therefore, the design of this thesis hopes one cache line be the operating

9

element. And the design of this thesis still hopes to remain the predictive ability.

1.2 Research Motivation

“Dynamic Branch Predictor” offers the high accurate predictive direction of branch. And
we know basic block is straight-line sequence with no branches in except to the entry and no
branches out except at the exit. So, Target address / Fallthru address is the start of basic block,

then next branch instruction in executing instruction is the end of basic block as Fig 1.4

Branchl
Targetl / 1
FallThroul
m
o
5 =) Basic
2 Qa Block
=
)
S
Branch2
v
1 Target2

Figure 1.4 Diagram of Basic Block

Assuming somewhere was storing the information of each basic block size. Adding an
extra field to each BTB entry, the fields store the instruction numbers of the “Basic Block”
after its Target / FallThrou address that corresponding to the prediction of “Dynamic Branch
Predictor”.

If the field records the size of most Basic Block, we can achieve followings:

1. Avoid to lookup BTB each clock [6].

2. Easy to generate next branch address in advance.

Ex: “Branch2 address” = “size of Basic Block” + “Targetl address / FallThroul
address”. (Refer to Fig 1.4)
3. Gain the predictive target address of next branch instruction by lookup BTB in

advance.

Therefore, the predictive target address is generated before original several clocks. So,
complete followings step by step (refer to Fig 1.5):

10

If Target2 address is calculated out on “EXE” stage of Branchl.

Transmits the target address to I-Cache side before using in pipeline wakeup time.
Equally, shift the other addresses of predictive sequential execution forward
wakeup time.

If complete all of above operation, then it can avoid the most wakeup latency.

Branchl

Targetl 1t-.

Branch2 | Time

Target2

Figure 1.5 Diagram for describing lookup timing of this thesis.

1.3 Research Objective

Because the target address can be predicted before several clocks, then the design of this

thesis hope to transmit the predictive instruction address to 1-Cache an amount of wakeup

time ahead of CPU use.

Therefore, this thesis can achieve as followings:

1.

Turn-On: Minimize the Runtime increment due to wakeup latency.

Scheme: Preactivates all predictive cache lines an amount of wakeup time ahead of
use.

Turn-OFF: Minimize the leakage of active cache lines.

Scheme: Turn this cache line to “Drowsy” mode after the last content of this cache
line is transmitted.

Last content is represent that is last utilization of this cache line.

11

1.4 Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 explains the design detail of
power management of instruction cache. Chapter 3 presents evaluation methodology,
experiment results and discussion. Conclusion and future works are then provided in Chapter

4.

12

Chapter 2 Design of Proposed Architecture

The design of power management of instruction cache is discussed in this chapter.
Section 2.1 introduces challenges. Section 2.2, Section 2.3 and Section 2.4 introduce the
design of BTB side, Processor side and Instruction Cache side respectively.

2.1 Challenges in Design

The following three point need to implement step by step:
1. Topic 1l (BTB side):
How to use the recorded instruction number of executing Basic Block to predict the
target address of next branch instruction?
How to update “instruction numbers of Basic Block” when prediction of “Dynamic
Branch Predictor” is changed?
2. Topic 2: (Processor)
A. Instruction Address:
How to transmit the predictive target address on Instruction Address Bus an
amount of wakeup time ahead of CPU use?
B. Instruction Data:
How to verify the correctness of content transmitted from I-Cache side?
C. How to handle “Wrong Prediction”?
3. Topic 3: (Cache)
When to change the supply voltage of I-Cache line?
The moment is between the two addresses which content place in different cache

lines.

2.2 Design of BTB Side

The Goal for resolve topicl of design challenge:
1. Gather the “instruction numbers of each Basic Block” (“BBSize” for brief)

corresponds to the prediction of “Dynamic Branch Predictor”.

13

2. Using “BBSize” to predict the target address of next (predicted) taken-branch

instruction.

So, there needs to increase some extra components and describes them briefly:

1. Create one / two extra field to each BTB entry for record “BBSize” of each Basic
Block.

2. A counter to count the “instruction number of each Basic Block”.

3. A mechanism for update and operation of BBSize.

2.2.1 Extra component of BTB side

Now, let’s describe the extra components:
1. Adding one BBSize Field each entry of BTB:
(1) Valid, Tag, Target and Predictor: same as originals of BTB.
(2) BBSize:
A.Record the numbers of instruction after target of this entry.

B.One field for just prediction / two field for both decision (decide by

simulation) need to record.

Predictor BESize

Figure 2.1 Diagram for description of “BBSize” field each BTB entry

Why does there create two fields each BTB entry? Because there maybe two
conditional address after each Branch instruction. The two addresses are: 1.Target
address when Branch-Taken. 2. FallThrou address when Branch Not-Taken. Therefore,
the BBSize will be changing when the prediction of “Dynamic Branch Predictor” is
changed and just one “BBSize ” field each BTB entry. The decision will be show you on

later result of simulation.

14

Adding a BBCounter: Count the instruction passed after previous Branch
instruction. And its operations are (1) INC when Branch instruction doesn’t

meet. (2) CLR when Branch instruction meets.

Adding a 2-depth BBFIFO. The FIFO has two level elements: (1) Top element
records the information for update “BBSize” of top “BTBIndex” field point to.

(2) Bottom element records the information for record BTB index and

prediction of next Branch instruction.

BTBIndex E Prediction

Figure 2.2 Diagram for description of 2-depth FIFO

The field description of this FIFO:
(1) BTBIndex: using for records the index of BTB entry.
(2) Prediction: there are two condition:

A. Before verification of prediction: Record the prediction of branch

instruction.

B. After verification of prediction: Indicate operation of BBCounter and
BBSize update. (refer to fig 2.3)

(A) When predictor is correct and BBSize isn’t NULL. Then the
field sets “Freeze” that represents “BBCounter” doesn’t work,

“BBSize” doesn’t need to update.

(B) When predictor isn’t correct and it changes prediction. Or
“BBSize” is NULL. Then the field sets “Update” that represents

15

“BBcounter” work, “BBSize” needs to update.

Predictor Changed Mot-
y Changed
BESize
il update |update
Mot update |[Freeze
Ml

Figure 2.3 Truth Table of “Prediction” field after verify

2.2.2 Update & Use of “BBSize”

Now, start to describe how to gather and record “BBSize” step by step: (refer to fig
2.4)

1. BBCounter set 0 after branch decoded.
2. After making sure the program flow is Targetl,
a) Update “Predictionl”.
b) Pop the BBFIFO
c) Clear the FIFO bottom.
3. Update “BBSizel” by “BTBIndex1”, “Prediction1” and “BBcounter”.

4, Goto 1.

16

Branch1l
| Decoded Smpdata BBCounter
Targetl

'-.-'eriF';.-'_
Za 2

ZRE= Predictionl

BETBIndexz & Predictionrz

Branch2 -
Ldentify & pdat= 46 3

Target2

Werify

[Qeccsccsceig| pfesscscceslo)

Branch3
Target3

Figure 2.4 Diagram for gathering “BBsize”.

Now, start to describe how to use above components to gain the predictive Target

address of next Branch instruction in execution.(refer to fig 2.5)

1. After making sure the program flow is Target2,
(1) Update “Prediction2”.
(2) Pop the BBFIFO
(3) Clear the FIFO bottom.

(1) Calculation:
A. BBSize isn’t NULL.

-> Calculate the Branch2 address using adding Targetl address and
BBsizel.

B. BBSize is NULL

-> Predict always sequential execution

17

(2) Lookup:
A. Just one time to Branch2.
B. Each instruction until Branch2.
(3) Record the index of BTB entry that lookup out by Branch2 address.
3. Goto 1.

Branchl

Idenkify &
Targetl

— BTBIndexz & Predictionz

Branch2

Idenkify &

Target2

Werify

Branch3
Target3

Figure 2.5 Diagram for using “BBsize”.

2.2.3 Summary of BTB side

In fact, there has a two kind of penalty when using Drowsy Instruction Cache. First,
the performance loss is where needs some adding wakeup time to preactivate the drowsy
line that will be using. Second, the energy overhead due to recharge for switch the
instruction cache line from “Drowsy mode” to “Active Mode”.

Therefore, the purpose of the design is transmit the instruction address to I-Cache

an amount of wakeup time ahead of CPU use. It is impossible to transmit all of correct

18

instruction address. Because the sequential program execution is just only about 85%. So,

there need to handle when branch-taken happens on the program flow.

The solution of branch instruction handle is using BTB. But there need to generate
the next predictive target address an amount of wakeup time ahead of use. Therefore, the
design adds an extra field to each BTB entry. The field records the instruction numbers
after its target. The purpose of the fields is that to calculate the next branch instruction
address. Then using the result of previous calculation to lookup BTB and gain the next
predictive target address ahead several clocks. How much the clocks are? The answer is

relating to the instruction numbers that are after executing target.

Using Figure 2.6 to explains, if Branchl is decoded in “Instruction Decode” stage,
and Tragetl is Branchl consecutive execution. Assume the execution between Targetl
and Branch2 are sequential instructions. As previous description in chapter 1.1.4, basic
Block is a straight-line code sequence with no branches in except to the entry and no
branches out except at the exit. According the definition of Basic Block, it can say the

executions between Targetl and Branch2 are in a same “Basic Block”.

Branch1l
Targetl
Basic
Block
Branch2
Target2

Figure 2.6 A piece of program execution

So, if Targetl is fetch due to “Dynamic Branch predictor” and BTB, and
somewhere has the instruction numbers (the size of Basic Block) after Targetl. At this

19

moment, Branch2 address can easy be calculated by adding Targetl address and the
instruction numbers. Target2 address is generated by using the result of calculation to
lookup BTB.

After Targetl was calculated by CPU, you things where increase an extra action of
lookup BTB for Target2. In this way will increase one more time action of lookup BTB.
The answer is NO; there decrease the times of lookup BTB. (use Figure 2.7 to explain)
In original architecture, there need to lookup BTB each clock. In the thesis, there don’t
lookup BTB from the next execution of Targel until meeting Branch2. Because of there
have the information of instruction numbers after Targetl. The information shows us
how much sequential instruction after Targetl. The action of lookup BTB can be omitted,
because the execution is sequential instruction. The other thing, the design in this thesis
just moves the action of lookup BTB in original architecture until after Targetl

instruction.

Original: DIC:

Branchl Branchl

Targetl Taﬂgﬁtl

Werify Calculate
Move . .:
Forward looku p

Branch2 == Branch?2 e
lopkup et

Target2 - Target2 ==

Figure 2.7 Block diagram of original architecture

The design in the thesis, there will predict the subsequent execution of Branch2

always continuous in following several conditions (still using figure 2.7 to explain):

1. Branchl is not gathered into BTB.

20

2. There is no information of instruction numbers after Target1.
3. Branch2 is not gathered into BTB.

4. The “Dynamic Branch Predictor” of Branch2 predict Branch-Not-Taken”.

2.3 Design of Processor
Finish the description of predictive target address. The goal of design is:
1. Transmits all predictive address an amount of wakeup time ahead of use.
2. Verify the correctness of prediction wakeup time ago.

3. Handle the “Wrong Prediction”.

2.3.1 Extra component on processor

Therefore, there creates extra FIFO on the CPU side and cache side, respectively.
They are named as “Predictive Tracing Address FIFO” (PTA_FIFO for brief) and
“Preactivating Cache-Line FIFO” (PCL_FIFO for brief).

21

CPU Cache-Line
Side Side
<=Data-Busm——

Emc Reset—
Predictive: —
oz
. i‘ﬁ?ﬁgﬁ FIFO
¥ 4
clock —
| PC
Add-Bus—r
e

L clock —
Figure 2.8 Block diagram of CPU core side and I-Cache side

Now, describes the operation of extra FIFO. First, the operation of Predictive
Tracing Address FIFO: 1.Push the predictive PC to PTA_ FIFO bottom each clock. 2.
Clear whole PTA_FIFO when Wrong Prediction. Then, describes the operation of
Preactivating Cache-Line FIFO: 1.Push the address from “Instruction Address BUS” to
PCL_FIFO bottom each clock. 2. Clear whole PCL_FIFO when Wrong Prediction.

Actually, the depth of the two FIFO is designed as “wakeup time + 1”. On CPU
side, The “Predictive Tracing Address FIFO” (PTA_FIFO) is using for verify the
correctness of predictive address wakeup time ago. On the Cache side, the
“Pre-activating Cache-Line FIFO” (PCL_FIFO) has two conditions to explain: 1. the top
of PCL_FIFO is using for make sure that cache line of address referred is activated. 2.
The bottom of PCL_FIFO is using for indicate the timing that switch the cache line to

“Drowsy mode”.

Summary of the two FIFO, the address on top of “PTA_FIFO (on CPU side)” is just
the address of the content that transmitting from Cache-Line now. Therefore, compares
the two address of top of “Predictive Tracing Address FIFO” (PTA_FIFO) and

22

uoIonnsul ug

calculated address on “ID” stage now. If the two addresses are not same, the “DIC reset”

will be asserted. Because it represents the prediction wakeup time ago is wrong.

2.3.2 Example for explain predictive instruction address

Now, take some example to explain more clearly. First, show you the timing

diagram of initialization.

In clock cycle * —PCL_FIFO—
51 idol Sl
idol 22 181
idol 52 181
s1 sl 52 181
S2 82 Sz
S3
W'l W2 C1

Figure 2.9 the diagram of Pipeline: there has 1 circuit delay, 2 wakeup time

In fig 2.9, the left blocks are represents the address executes in instruction. The
middles represent the pipeline stage. And the right blocks is represents the address in
PCL_FIFO, left is the bottom of FIFO and right is top of FIFO.

About S1, S2... and SX, the ‘S’ represent the sequential instruction. About W1 and
W2, the “W’ represents wakeup time. Therefore, “W1” represents the cache line of the
address referred is preactivated 1 cycle. About “C1”, it represents one cycle circuit delay.
The circuit delay is the latency of extra mechanism in instruction cache side, and

explains on next chapter in detail.
Now, start to explain

1. First cycle (first row) of fig 2.9. First, “S1” is transmitted from CPU side

23

— UOI}ONOSUI UT

through Instruction Address Bus to the bottom of “PCL_FIFO”. And the top of
“PCL_FIFO” is NULL. Therefore, the pipeline is idol.

Second cycle (second row) of fig 2.9. First, “S2” is transmitted from CPU side
through Instruction Address Bus to the bottom of “PCL_FIFO”. So, “S1” pop
one level to “W2”, it is say the Cache line that “S1” referred is preactivated
one clock. And the top of “PCL_FIFO” is NULL. Therefore, the pipeline is
idol.

Similar as 2.

Forth cycle (forth row) of fig 2.9. First, “S4” is transmitted from CPU side
through Instruction Address Bus to the bottom of “PCL_FIFO”. At the
moment, “S1” pop to the top of “PCL_FIFO”, it is say the Cache line that “S1”
referred is preactivated 3 clocks and the Cache line is active. And the top of
“PCL_FIFO” is not NULL. Therefore, the pipeline isn’t idol, the “S1” is
fetched into “IF” stage.

From this example, it let us know there will be three unit of latency when the timing

of initialization.

Continuously, introduce the timing of predictive target address. (Refer to the fig

2.10)
In clock cycle > —PCL_FIFO—
T1 || ™
B2 found,
T2 is next
address.
B2
. = T T2
Gain the Wakeup
T2 =5 . T2
time
address. &
B2 T2
T2 T2 T2
SX

Figure 2.10 Timing diagram of predictive target:

There has 1 circuit delay, 2 wakeup times

24

In fig 2.10, about B2, the ‘B’ represents the Branch instruction. About T2, the ‘T’

represents the Target instruction.
Now, start to explain from forth cycle:

1. Forth cycle (forth row) of fig 2.10. First, “B2” is transmitted from CPU side
through Instruction Address Bus to the bottom of “PCL_FIFO”. And assume
the top of “PCL_FIFO” doesn’t NULL. Therefore, the pipeline isn’t idol.

2. Fifth cycle (Fifth row) of fig 2.10. Because “B2” meets, therefore, the next
address is predicted as “T2” due to the prediction of “Dynamic Branch
Predictor”. So, “T2” is transmitted from CPU side through Instruction Address
Bus to the bottom of “PCL_FIFO”. So, “B2” pop one level to “W2”. And
assume the top of “PCL_FIFO” doesn’t NULL. Therefore, the pipeline isn’t
idol.

3. Assume sixth cycle and seventh cycle don’t meet Branch instruction.

Therefore, the “PCL_FIFO” is just pop one element each clock.

4. Eighth cycle (eighth row) of fig 2.10. At the moment, “T2” pop to the top of
“PCL_FIFO”, it is say the Cache line that “T2” referred is preactivated 3
clocks and the Cache line is active. Therefore, the pipeline isn’t idol, the “T2”

is fetched into “IF” stage.

From this example, it let us know where will not be occurred any performance loss

when the prediction of “Dynamic Branch Predictor” is correct.

Continuously, introduce the timing of predictive target address. (Refer to the fig
2.11)

25

— UOIIONOSUI UT

In clock cycle > —PCL_FIFO—*

U | Predict S o
s2 52 wrong g s2
address
B1 Bl/ L2 of B1 S| ®
idal T1
I
Penalty of \ T
wrong icol T1
prediction.
Tl Ti T1
Latency of
DIC

Figure 2.11 Timing diagram of wrong prediction

Now, start to explain from first cycle:

First cycle (first row) of fig 2.11. Because “B1” meets, therefore, the next
address is predicted as “S” due to the prediction of “Dynamic Branch
Predictor”. So, “S” is transmitted from CPU side through Instruction Address
Bus to the bottom of “PCL_FIFO”. And assume the top of “PCL_FIFO”
doesn’t NULL. Therefore, the pipeline isn’t idol.

Assume second cycle and third cycle don’t meet Branch instruction. Therefore,
the “PCL_FIFQO” is just pop one element each clock.

Forth cycle (Forth row) of fig 2.11. At the moment, “S” pop to the top of
“PCL_FIFO”, it is say the Cache line that “S” referred is preactivated 3 clocks
and the Cache line is active. Therefore, the “S” is fetched into “IF” stage. After
the calculation of “B1” on “ID” stage, the calculated address isn’t same as the
address of “S”. Therefore, the status of “IF” stage will be refreshed. And this
penalty is original architecture. On the other hand, the whole “PCL_FIFO” will

be cleared when each “Wrong Prediction” occurs.

5™ cycle (5 row) of fig 2.11. “T1” is transmitted from CPU side to I-Cache
side through Instruction Address Bus. And “T1” is transmitted to the bottom of
“PCL_FIFO” when I-Cache received the address form Instruction Address Bus.

26

And the top of “PCL_FIFO” is NULL. Therefore, the pipeline is idol.

5. 6™ and 7" cycle are similar. Assume there don’t meet Branch instruction.,
therefore, the “PCL_FIFO” is just pop one element each clock. And the top of
“PCL_FIFO” is NULL. Therefore, the pipeline is idol.

6. Eighth cycle (eighth row) of fig 2.11. At the moment, “T1” pop to the top of
“PCL_FIFO”, it is say the Cache line that “T1” referred is preactivated 3
clocks and the Cache line is active. Therefore, the pipeline isn’t idol, the “T1”

is fetched into “IF” stage.

From this example, it let us know where will be occurred performance loss when
the prediction of “Dynamic Branch Predictor” is wrong. And there will be 1 penalty of
“Wrong Prediction” and additional latency according to wakeup time and circuit delay.

2.4 Design of Cache

The goal of I-Cache side is that operates power management of I-Cache line. And there
includes two status: 1.Turn-on (By PCL_FIFO bottom) status, when the first words of Cache
Line meets, therefore, activate all cache line that address maybe refer to. 2. Turn-off (By
PCL_FIFO top) status: (1) first content of this cache line, turn-off all Cache line except to
address refer to.(2) Last content of this cache line, turn-off all Cache Line that address refer

to.

Another goal of I-Cache side is that transmits the content corresponding to the address

transmitted from CPU side an amount of wakeup time ago.

27

I-Cache
Side I-$
D-Bus
. | Content [+
Stage T [Transmitter|y,.
Master Y t
I Whigy #
¥ LA i t
Lines Hreactivating S |
SENSar Cachie-Line "“‘a”?ger
FIFO Of Lirne
’. o
clock Memory

Figure 2.12 Global View of Cache side

2.4.1 Extra component (Preactivating Cache-Line FIFO)

Preactivating Cache-Line FIFO:
The numbers of PCL_FIFO is corresponding to “Wakeup time + 1”. Each element
includes two fields:
1. Address:
Records the address from “Instruction Address Bus” and pop one element each
clock
2. 3 kind of stage in the field of “Word location”:
‘0’: First word (Head) of Cache line
‘1’: last word (Trail) of Cache line
‘2’ mediums of Cache line

Address Waord Locationl
Addess0 Waord_LocationD

Figure 2.12 Block diagram of “Preactivating Cache-Line FIFO”.

28

2.4.2 Extra component (Lines sensor)

Lines sensor responds to compares the addresses of two most bottom elements. And
there are two kinds of condition: (refer to fig 2.13)

1. Equal: set their “Word location” is ‘2’ (medium).

2. Not equal: set most bottom one is setting to “0” (Fist content of cache line),

above one is setting to “1’. (Last content of cache line)

Addessl Word_Location 1
Addess0 Waord_Locationid

word | Line Sensor |
offset

Sddmess Bus

Figure 2.13 Block diagram of “Line sensor” and “Preactivating Cache-Line FIFO”.

2.4.3 Extra component (Lines sensor)

There needs to create voltage switcher for switch the work voltage each Cache line.
In Figure2.14, extra create a multiplexer for different operation and the multiplexer is

controlled by the signal that named “Function Operation” (Fun_OP for brief)

29

.-"'-f] T -
jp&lei}{ — T
Way # — >C M “.—H Line0
/ Index :I;_m :
Ve

Y
|Irlr \'")
— .

llﬁ_ Zem Powear mode _,.|- []

'\\ FuUrction Operaticn 41‘ S
e G voit. 4 | jne X
L Artive Vol Wire
— B

Figure 2.14 Logic circuit diagram of “Cache-line”.

Power Manager: using “Word Location” of element to operate the following two
stages sequentially: (Refer to fig2.15)

1. ON stage: get the bottom element of FIFO.
When the field of “Word Location” is ‘0’ (Head, First content of cache line),
turn-on all Cache line (Fun_OP1) that referred by “Address”.

2. OFF stage: get the top element of FIFO.
(1) When the field of “Word Location” is ‘0" (Head, First content of cache line),
turn-off all Cache line (Fun_OPO) except to address refer to.
(2) When the field of “Word Location” is ‘1’ (Trail, Last content of cache line),
turn-off all Cache Line (Fun_OP1) that address refer to.

0 (Head) | 1(Trail

0 (CFF) Off other | OfF all
Lines Lines

1 (0N o all
Lines

Figure 2.15 Truth table of “Function Operation”

2.4.4 Extra component (Content Transmitter)

Content Transmitter is using the data in Top of PCL_FIFO:

1. When the “Word Location” is ‘0’ (Head, First content of cache line), transmits
the hit content and record the hit way number to “Way #”.

2. When the “Word Location” is ‘1’ or ‘2’ (Medium or Trail, Not first content of

30

cache line), merge “Way #” and index to transmit the referred content.

Tag Index | Word

Cffzet
-+
4+— T Cankant
IU o123
_ %
—
r WIL_TOR H) ' tilord_Location)
I 1 Sddmessl Word_Locationl
I - i Addrs=ll Word_Locationd
Valid | wa s |

—_— e — —

Figure 2.16 Logic circuit of “Content Transmitter”, when transmitted first content of Line.

2.4.5 Extra component (Stage Master)

Stage Master has two jobs to work:
1. Indicate other modules works or idol.

2. Avoid any two modules use same resource.

The fig2.17 describes two things: The one clock of circuit delay is using for assign
the sub-module in different stage. There are three stages in one clock and there are three
resources in I-Cache side. The three kinds of resources are “Word Location in FIFO”,
“Address in FIFO” and “Way number” (Way # for brief).

31

The Clock of “Circuit delay”

4l B
- Ll

«— Stage 1 »« Stage 2 -« Stage 3 —

resource
. FIFO Puwer
Manager
Word Of Line
Location Line (ON)
............. B o
FIFO Manager
Of Line
Address
EEEEEEEEE R EEEEEEEEEEEEEEEEEEREEE CﬂntEHt EEREER {DFF} EEnEN
Trans mitter
Way #

Figure 2.17 Diagrams of Timing and Resource.

32

Chapter 3 Evaluation and Discussion

Proposed designs in Chapter 2 are evaluated by trace-driven simulator. The benchmark
suit is a subset of MiBench [7], which is a benchmark suite for embedded programs. The

results are evaluated by two metrics: Runtime increment and Leakage energy reduction.

3.1 Evaluation Methodology

Since proposed designs in Chapter 2 are system-level innovation in computer
architecture, behavioral simulation like trace-driven simulator can be a suitable approach to
prove how many benefits such innovation gains compared with “Simple Turn-Off Cache” and

“Sub-Banked Instruction Cache”.

Proposed designs are evaluated by a trace-driven simulator. Since proposed designs in
this thesis are based on classic MIPS five-stage pipeline, my simulator uses MIPS I

instruction trace as key input.
My trace-driven simulator accepts the following parameters as its input configuration:

1. On BTB Side:
(1) The two condition of BTB insertion:
A. All Branch can insert the BTB
B. Taken Branch only can insert the BTB.
(2) The number of BBSize field each BTB entry:
A. One BBSize field each BTB entry.
B. Two BBSize field each BTB entry.
2. On Cache Side:
(1) The scheme of “Cache Replacement”:
A.Direct mapping.

B.20-Way associated.

33

C.4-Way associated.
(2) The scheme of “Cache Size”:
A.8KB
B.16KB
C.32 KB
D.64KB.
E. 128 KB.
(3) The scheme of “Words per Cache Line”:
A.4 Words per cache line.
B.8 Words per cache line.
C. 16 Words per cache line.
(4) The scheme of “Wakeup time” for the recharge of cache line:
A.2 wakeup latency for the proposed design: 1 wakeup time + 1 circuit delay.
B.3 wakeup latency for the proposed design:2 wakeup time + 1 circuit delay.

C.5 wakeup latency for the proposed design:4 wakeup time + 1 circuit delay.

There are two statistics of experiment results :
1. Runtime increment.

2. Energy Requirement.

3.2 Evaluation Metrics

In this thesis, the following metrics are used to evaluate proposed designs of pfsDIC:

1. Runtime Increment

The equation is

Runtime increment = The Execution cycles of proposed design / The Execution cycles of
Non-Drowsy mechanism

34

2. Energy Requirement

The equation is

Energy consumption = energy consumption per clock * execution cycle.

Energy consumption per clock = drowsy bits * C1 + active bits * C2 (C1:C2 = 0.16: 1)

[4]

3.3 Experimental Environment

The experimental toolset MIPS SDE / MIPS FGT 5.02.02 [8] is used to generate MIPS |

instruction trace for benchmark programs:

1.

2.

Install MIPS SDE / MIPS FGT 5.02.02.

Use command “sde-make SBD=GSIM1B” to build MIPS | code

(benchmark_ram) of benchmark program for GNU simulator platform.

Use command “sde-run --trace-insn=on --trace-file trace filename

benchmark_ram” to generate MIPS | instruction trace file.

Since delay branch slot is always applied in GNU simulator platform, the generated trace

file needs to be modified to remove delay branch slot for all branch and jump instructions.

The modified trace file is then fed into trace simulator by specifying various parameters

like BTB configuration. Figure 3.1 shows the flowchart of simulation.

35

Benchmark Program

Use MIPS SDE / MIPS
FGT 5.02.02 to build
MIPS I code for GNU

simulator platform

Use GNU simulator ef
MIPS SDE / MIPS FGT
5.02.02 to produce

instruction trace file

Remove delay branch slot in

instruction trace file

e

Trace stmulator

Result

Figure 3.1 Simulation flowchart

3.4 Experimental Benchmark

The benchmark programs selected are a subset of MiBench [8], which is a benchmark
suite consisting of commercially representative embedded programs. MiBench consists of 6

categories including Automotive and Industrial Control, Network, Security, Consumer

36

Devices, Office Automation, and Telecommunications. In each category, at least one

benchmark is chosen as experimental benchmark. All chosen benchmarks are listed as below:

1.

In the category of Automotive and Industrial Control

Basicmath: it performs simple mathematical calculations that often don’t have

dedicated hardware support in embedded processors.

Bitcount: it tests the bit manipulation abilities of a processor by counting the

number of bits in an array of integers.
In the category of Network

Dijkstra: it constructs a large graph in an adjacency matrix representation and then
calculates the shortest path between every pair of nodes using repeated applications

of Dijkstra’s algorithm.
In the category of Security

Sha: it is the secure hash algorithm that produces a 160-bit message digest for a
given input. It is often used in the secure exchange of cryptographic keys and for

generating digital signatures.

Rijndael encrypt/decrypt: Rijndael was selected as the National Institute of
Standards and Technologies Advanced Encryption Standard (AES). It is a block
cipher with the option of 128-, 192-, and 256-bit keys and blocks.

In the category of Consumer Devices

Jpeg encode/decode: JPEG is a standard, lossy compression image format. It is a
representative algorithm for image compression and decompression and is

commonly used to view images embedded in documents.

Lame: it is a GPL'ed MP3 encoder that supports constant, average and variable

bit-rate encoding. It uses small and large wave files for its data inputs.
In the category of Office Automation

Stringsearch: it searches for given words in phrases using a case insensitive

comparison algorithm.
In the category of Telecommunications

FFT/IFFT: it performs a Fast Fourier Transform and its inverse transform on an

array of data. Fourier transforms are used in digital signal processing to find the

37

frequencies contained in a given input signal.

ADPCM encode/decode: Adaptive Differential Pulse Code Modulation (ADPCM)
is a variation of the well-known standard Pulse Code Modulation (PCM). A
common implementation takes 16-bit linear PCM samples and converts them to

4-bit samples, yielding a compression rate of 4:1.

CRC32: it performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC

checks are often used to detect errors in data transmission.

Benchhdarlk MNumber of total | MMaximum Value MNumber of Fized branch MNumber of Changing The percentage of

instruction of BB size instructions Eranch Fixzed Branch in
Total Branch
basicmath 59,681,183 68 8,022,682 (12.4426%) 1,265,186 (2. 1199%) 86.3780794%
bitcount 46 804 277 27 4 861,087 (10.28598%) 1,575,997 (3.3672%) 75.5169111%
qgsort 12,526 20 2,123 (16.9487%) 322 (2.5707%) B6.8302658%
tiff2bw 35,323 21 5,879 (16.6435%) 1,369 (3.8757%) 81.11203058%
dijkestra 28,637 20 4,799 (16.7580%) 361 (1.2606%) 93.003876%
stringzearch 211,681 26 35,075 (16.5657%) 3,236 (1.5287%) 91.5533398%
blowfish 216,761 352 5,081 (2.3440%) 1,066 (0.4918%) B2.6582073%
rijndasldecrypt 20,133 21 3409 (16.9323%) 582 (2.8908%) B5.4171887%
riyndaelencrypt 20,130 21 3,409 (16.9349%) 583 (2.8962%) B5.3957516%
sha 16,056 21 2,721 (16 9469%) 517 (3.22%) 84 0333539%
CRC32 18,373 21 3,096 (15.9810%) 562 (3.0588%) B4.6364133%
FFT 18,571,659 85 1,115,564 (11.9238 %) 316,086 (1.702%) T7.921559%
FFTinvsese 16,056,034 85 1,912,372 (11.9168 %) 288,647 (1.7977%) B6.8917117%
cipeg 42,653 43 6,816 (15.9801%) 1,308 (3.0666%) 83.8995569%
dipeg 38,132 43 6,313 (16.5555%) 1,252 (3.3882%) 83.011176%%
lame3.70 245,547 66 41.006 (16.6726%) 1.192 (4.8465%) 97.1752216%
rawcaudio 13,951 21 2,366 (16.9593%) 330 (2.3654%) 87375964 39%

Table 3.1 shows the instruction counts, the percentage of Branch instruction and Maximum
the BBSize.

3.5 Experimental Results

Table 3.2 shows simulation results. The abbreviations on table 3.2 are listed as below.
There are 3 kinds of designs to evaluate and show their experiment results :

1. The design of the thesis : with all kinds of configuration.

2. Sub-Banked Design: With last four kinds of configuration.

3. Simple Turn-Off Design: With last four kinds of configuration.

There are 6 kinds of configuration that has mention previously:

38

The policy of BTB insertion.

The numbers of BBSize field each BTB entry.
Cache Size.

Words per cache line.

The scheme of Cache replacement.

Wakeup latency.

And the simulation bases on the basic configuration as followings. There changes one

setting of configuration each evaluation. The experiment results show you in Table3.2,
Table3.3, Table3.4 and Table3.5.

Basic configuration shows as below:

1. The scheme of BTB insertion: All branches.
2. The number of BBSize field: one “BBSize” field each BTB entry.
3. Cache Size: 32KB.
4. Words per Line:16 Words per cache line.
5. The scheme of Cache replacement: Direct mapping.
6. Wakeup latency: 1 clock wakeup time + 1 clock circuit delay.
f/ariableo Designe Tracing+ Non-DICH pfsDIC+ | Preactivatingd Actives @ Runtime Preactivate+ Active lined
Lines+s Execution Execution Line+< Line+ Increases %o+ Line+ Per clocks
Crycless Cyeless Per clocke
ETR+ Haon-DIC . 142,035,456+ 146,419 524 £ £ + 4 4 4
Insertion+ | Taken Branch only.. | < 1467083004 1621004214 3287442374 1520798504 4 14581300804 2240801764 1036613744
2 &1 Branch - a 1467083094 1646700924 323027022« 150936407 === 12243104084 2201831814 1028819754
BERESizes | 1BBES . + 1467083094 1646700924 3230270224 150936407+ A 12243104084 2201851814 1 028819754
Fielde 2BES. & 1467083004 1644002064 3225022124 1505404454 H 12065367754 2 198565044 1028227004
Cache+ EKB. a 1677438294 1860261804 428845758+ 235399055+ 4 1089897083 2556551624 1403324674
Sizes 16KB . £ 1558480694 1738107644 36E7IT7A46+ 18T40655 0+ A 11525773324 2 3594 208 1203071424
32KB. a 1467083004 1646700924 3230270224 1509364074 4 12243104084 2201831814 1 028819754
G4KB . a 1463828854 16434466584 3213099034 1496347 11+ 12270411944 2195611204 1022214524
128KB., + 14638238 14 16453446284 3213007024 1409634551+ A 12 2TOTFLLT 2195617304 1 022216954
Words+ 4 Word.. & 1470481734 1647800304 3235764704 1513756274 4 12058536084 2200479364 1.029428814
each+ & Word - a 1467453014 1647070844 3232119824 15108437 54 12240107784 2202537184 1029568744
Lines 16 Word - @ 1467083094 1646700924 3230270234 150936407 A 12243194084 2201831814 1028819754
Caches Direct. £ 1467083094 1646700924 3230270224 150936407 H 12243104084 2201831814 1028819754
Replacemen | 2 Way. 4 1463868104 1643405064 6428400844 170205526+ 4 12270768114 4301441304 1. 163325614
1 4 Way.. £ 1463828774 1673446604 1285500448, 20440875 6+ H 14 319852644 & TE2444104 1 597012824
Waleup+ | 2 clock wakeup., | ¢ 1467083004 1646700924 3230270224 1509364074 4 12243104084 2201831814 1 028819754
Latency< | 3 clock wakeup., | 1467083094 1743577844 5013269174 1515028024 18846563764 3417167854 1032681064
5 clock wakeup. | ¢ 1467083094 1959937264 886085119« 15199587 0+ H 33593473564 6. 039795054 1036041314

Table 3.2 Simulation Results of pfsDIC (1)

39

Variahlee Designe X Preactivate X Drowsy Taz HNon-DIC
Runtitme Active lines | Cache | Drowsy Content pfsDIC
Increases %o+ Line/ / Clocks Ling #- | Line # Energy b #2 Bit # Energy . Energye
Clocke Factore Consumptione
BTE+ Taken Branchonly. | 1458130084 2.24080176+ 1.036613784 5124 508.7225844 0.158805704 144 5124 771685705344 0185820304
Insertions | &L Branch. 12.2431940+ 220183181+ 1.02831975+ 5124 5087693484 0158895704 144 5124 771685705344 0181950724
BESizes | IBB3. 12.2431040+ 2201831814 1.023310754 5124 5087693454 0155395704 144 5124 TTLAE5T05344 0151950724
Fielde 2BRS. 1206536774 219586304« 1.02522700+ 5124 508.7720054 0.158895704 144 5124 771685705344 018165594+
Caches | 8KB. 10.8980708+ 2556551624 1.40332467+ 1284 1240401234 0.158895704 164 5124 885887417124 0.20280053+
Bizes LEKB.. 1152577324 2365042084 1.203071424 2564 2524300854 0158305704 154 5124 821319323634 018796455
32KB. 12.2431040+ 2201831814 1.023310754 5124 5087693454 0155395704 144 5124 TTLAE5T05344 0151950724
64K, 1227041194 2195611204 1.02221452¢ 10244 1020782174 0158895704 134 5124 768510146254 017899625+
128KB.. 1227077114 2195617394 1.022216054 20434 2044782164 0158895704 124 5124 767043676444 0177509454
Wordse | 4Word. 12.05553604 2200479364 1.020428314 20434 2044770094 0158895704 144 1284 20880340586+ 0177179454
eache 3 Word . 12.24010774 2202537184 1.029568424 10244 1020.767894 0.158895704 144 2564 396212312704 0178961194
Lines 16 Word . 1224319404 2201831514 1.028819754 5124 508.7693454 0.158805704 144 5124 771685705344 0181950724
Caches | Direct. 12.24310404 220183181+ 1.023310754 5124 5087693454 0158395704 144 5124 7TLEE5T705344 01851950724
replacement| 2 Way . 1227076814 4.301441304 1163532561+ 5124 506.4452334 015889570+ 144 5124 769004620604 0 186292794
4 Way., 1431983264 8782444194 139701282 5124 501.8205434 0.158895704 144 5124 769973933024 0198399524
Wakeup+ | 2 clock walteup. | 12.24319404 2.201831814 1.028819754 5124 508.7693454 0.158805704 144 5124 771685705344 0181950724
Latency+ | 3 clock wakeup. | 158465637+ 341716785 103265106+ 5124 507.5501514 0158395704 144 5124 7TLEE5T705344 0195041474
5 clock wakeup. | 33.59347354 6.039795054 1.036041314 5124 5049241634 015889570+ 144 5124 771685705344 0225020424
Table 3.3 Simulation Results of pfsDIC (2)
Wariahles Designe original Sub-Bank Rurtime + Bank #(4KB}+) . Line Energy Sub-Banlk
Execution Ezecution Increases %o a Tag bit Content Bit Factore Energy+
Mutbere Mummbere
Cyclese Cycles +
Cache+ 2KB., 1677438294 1686893864 0.563691079 2 164 5124 0.1843837144 0.5955299504
Sizee 16KEB., 1558480694 1571684304 0.847210369 4 154 5124 0.1828360554 0.3904068224
32KB. 1467083094 1481201234 0962327226 g 144 5124 0.1812825124 0.2863515714
64KB.. 1463828854 1477959034 0.965280077 16 134 5124 0.179723054 0.2332200844
128KE . 1463823814 1477958654 0.965610745 32 124 5124 0.1781576364 0.2058085134
Words+ 4 Word., 1470481734 1485406054 1014927265 5 144 1284 0.2413214814 0.340009975
eache 2 Word . 1467453014 1481571324 0.962096224 [144 256+ 0.2025085214 0.30510236324
Line+ 16 Ward., 1467083094 1481101434 0.955524612 g 144 5124 0.1812825124 0.2863322784
Cache+ Ditect.. 14670830094 1481101434 0.955524612 5 144 5124 0.1812825124 0.2563322784
Eeplacement+ | 2 Way ., 1463865104 1477996604 0965148431 [144 5124 0.1812825124 0.2563595734
4 Way . 1463828774 1477947244 0.964480173 [144 5124 0.1812825124 0.2863577034
Walzeup+ 1 Clock. | 1467083094 1481101434 0.955524612 g 144 5124 0.1812825124 0.2563322784
Latency+ | 2 Clock. | 1467083094 1495325234 1.9250538844 4 &4 144 5124 0.1812825124 0.2590820784
4 Clock. | 1467083094 1524556454 39175158984 o 54 144 5124 0.1812825124 0.2947331714
Table 3.4 Simulation Results of Sub-Banked
Warighles Design+s original Simple-Off Runtime + Bank # Tag it | Content Line Energy Active Line / Simple-Off
Execution Execution Increases %+ (4KB - — Factore Clocks Energye
Cyclese Cryeles <
Caches KB 1677438204 1698760174 12716342614 4 24 164 5124 0.1843837144 18231583844 0.3043773734
Sized 16KB.. 1558480684 1583186584 1.5852548044 4 44 154 5124 0.1828360554 25424550664 0.26881783334
32KB. 1467083094 1499205674 2. 195688862 4 34 144 5124 0.1812825124 28206555914 0.231357 1614
64KE . 1463828854 1493361304 20174858564 164 134 5124 01797230354 20.705606514 0.207624759+
128KB. 1463823814 1493361394 20173371064 < 324 124 5124 01781576564 20.707763954 01939145509+
Words« 4 Werd 1470481734 1565123164 6.436033364 34 144 1284 02415214514 59.766226614 0.280935064
eache! 2 Word, 1467455014 1520361434 3.605459234 < 84 144 2564 02025085214 41.74141224 0.2434901774
Lites 16 Ward., 1467083094 1499205674 2. 1956888624 < 84 144 5124 0.1812825124 28.206555914 02313571614
Caches Direct. 1467083004 1400205674 2. 1956858624 4 84| 144 5124 0.15812825124 28.206555914 02313571614
Feplacemente | 2 Way. 1463868104 1493424304 2.0190541784 4 24 144 5124 0.1812825124 28258053034 0.2310427614
4 Way. 1463828774 1493370504 2.0181137724 4 34 144 5124 0.1812825124 28272296284 0.23106239094
Wakeup+ | 1 Clock. | 1467083094 149920567 1. 1956888624 4 34| 144 5124 01812825124 28.206555914 02313571614
Latencye | 2 Clock. | 1467083084 1527790714 4.137981033¢ 4 34 144 5124 01812825124 29.080527 164 0.237209606+
4 Clock. | 1467083004 1597143014 88655455774 84| 144 5124 01812825124 31.16475074 0.2516065034

Table 3.5 Simulation Results of Simple Turn-Off Cache

40

From Figure 3.2 to Figure 3.6 show “Runtime increment” from Table3.2, Table3.3,
Table3.4 and Table3.5 for 6 different configurations respectively.

The equation of “Runtime increment” is

Runtime increment = The total execution cycles of proposed design / The total execution
cycles of “always active I-cache”

16
14
12

10

Runtime Increases %

Taken Branch Only All Branch (1BBS) All Branch (2BBS)

BTB Insertion & BBSize field

Fig 3.2 Block Diagram of “Runtime increment” that affected by “BTB Insertion” and
“BBSize Field”.

N
0
A
S
5 -¢ DIC
S —8 - Sup-Bank
)
S —k— Simple Off
S
S
NS

SKB 16KB 32KB 64KB 128KB

Cache Size

Fig 3.3 Block Diagram of “Runtime increment” that affected by “Cache Size”.

41

——DIC

Bank

= - Simpl/
e Off

Runtime Increases %

4 Words 8 Words 16 Words

Words per Line

Fig 3.4 Block Diagram of “Runtime increment” that affected by “Words per Line”.

N

)

R

S

‘C‘) ——DIC

;S = B Sub-Bank
UE) —A - Simple Off
E

e

Direct 2-Way 4-Way

Cache Replacement

Fig 3.5 Block Diagram of “Runtime increment” that affected by “Cache replacement”.

42

——DIC
- B Sub-Bank
=A - Simple Off

Runtime Increases %

1 clock wakeup 2 clock Wakeup 4 clock Wakeup

Wakeup Latency

Fig 3.6 Block Diagram of “Runtime increment” that affected by “Wakeup Latency”.

From Figure 3.7 to Figure 3.11 show “Energy Requirement” for 6 different
configurations respectively.

The formula of “Energy Requirement” is

Energy Requirement = energy consumption per clock * execution cycle.
Energy consumption per clock = drowsy bits * C1 + active bits * C2 (C1:C2 = 0.16: 1)

[4]

43

0.189

0.188

0.187

0.186

0.185

0.184

Energy Requirement

0.183

0.182

0.181
Taken Branch Only All Branch (1BBS) All Branch (2BBS)

BTB Insertion & BBSize Field

Fig 3.7 Block Diagram of “Leakage energy reduction” that affected by “BTB insertion” and
“BBSize field”.

IS

Q

5

N

§ -& DIC

Q —— Sup-Bank
N = - Simple Off
N

0

QO

S

8y

8KB 16KB 32KB 64KB 128KB
Cache Size

Fig 3.8 Block Diagram of “Leakage energy reduction” that affected by “Cache Size”

44

04

0.15

0.35
] 03
qé)
8 0
%‘ -¢ DIC
o 02 = Sup-Bank
N =A - Simple Off
N
20
S
)y

0.1

0.05

4 Words 8 Words 16 Words

Words per Line

Fig 3.9 Block Diagram of “Leakage energy reduction” that affected by “Words per Line”

0.35
0.3
IS
QW 025
5
N
S 02 -& DIC
% —— Sub-Bank
i 0.15 =—A - Simple Of
S
N 0.1
)y

0.05

Direct 2-Way 4-Way

Cache Replacement

Fig 3.10 Block Diagram of “Leakage energy reduction” that affected by “Cache
Replacement”

45

0.35

0.3 —
- i

~
8 025 x——— —A
% e —— .-
§ 02 o-----"""" L S - DIC
Q —— Sub-Bank
N 0.15 = " Simple Off
N
0
L ol
< R
S

0.05

0
1 clock wakeup 2 clock Wakeup 4 clock Wakeup
Wakeup Latency

Fig 3.11 Block Diagram of “Leakage energy reduction” that affected by “Wakeup latency”

3.6 Discussion

3.6.1 Discussion with five evaluation metrics

According to simulation, the selection of BTB side adopts “All Branch” and “one
BBSize field per BTB entry”. There is difference between “All Branch” and
“Taken-Branch only” that is 2 % on “Runtime increment” and 0.4% on “Energy
Requirement”. But the difference of “BBSize Field” is smaller than the selection of “The
policy of BTB insertion”. The difference between “one field per BTB entry” and “Two
fields per BTB entry” that is just 0.2% on “Runtime increment” and 0.03% on “Energy
Requirement”.

The selection of cache side is not simple. These configurations affect the original
total execution cycles. For example, there are two selections of Cache size, “Runtime
increment” and “Energy Requirement”. Considering to “Runtime increment”, cache
size™ results “Runtime increment” ~, so decision is 8K. Considering the “Energy
Requirement”, the “Energy Requirement” is stable when cache size is over 32K, so
decision is 32K.

46

About the selection of wakeup time, when the wakeup time is then both of
“Runtime increment” and “Energy Requirement” are . So the selection of “Wakeup

latency” is as small as possible.

3.6.2 Important Considerations and/or Further Improvements

Consideration 1: Does the pfsDIC design apply to different processor?

Response: NO. Just only the processor equips “BTB” and “Dynamic Branch Predictor”,
the pfsDIC design just can apply to it. Because of the pfsDIC predict the next
discontinuous address that must utilizes the “BTB” and “Dynamic Branch
Predictor” with additional information of “BBSize”.

Consideration 2: Can the pfsDIC design apply to if the accuracy of BTB is not high
enough?

Response: Maybe not. According to experiment results that shows the “Runtime
Increment” is double of wrong prediction. And the “Runtime increment” is

already too much now.

Consideration 3: Does the pfsDIC design consider the additional energy consumption of
whole system due to “Runtime Increment”?

Response: NO. It will reinforce future.

Consideration 4: Does the pfsDIC design consider the energy consumption of “Access”
or “Preactivating” instruction cache line?

Response: NO. It will reinforce future by front end of physic simulation.

Consideration 5: What results the “accuracy loss” of predictive program flow?

Response: lists as Table3.6. Table3.6 shows that “Changing target branch” is the most

important affect.

47

Benchlvlark Hurmber of Wrong Wrong Ho Ho |NoBTE |MoBTBE predictor predictor | Changing [Change | Cache Cache
Total Prediction | Predicti | BB3ize [BBSize % | Times Yo wrong [wrong Y. Branch [Bramch | replace replac
instraction tiraes on e tirae ¥ 8%

basicmath | 59,681,183 3231227 54141 14635 0453 | 629599 | 19435 | 1343500 | 41.581 | 1243403 35481 | 39976 1.2372
bitcount 46,204,277 2459164 52541 527 0021 | 356691 | 14505 | 525056 | 21388 | 1575990 64086 424 0.0172
gsort 12,526 266 69136 251 2898 124 14319 160 | 19515 32 37.182 186 21.475)
tiffhwr 35,323 2853 80769 394 1381 423 | 14826 667 | 23379 1369 47985 321 11.251
dijkstra 28,437 963 33628 285 206 141 | 14642 176 | 18276 361 37487 17 22.534)

stringsearch 211,681 10266 48498 465 4.53 1730 | 16.352 4835 | 47097 3236 | 31.522 316 | 30781
blowfish 216,761 2553 1.1778 440 17.59 00| 73339 838 | 32814 1066 41755 361 14.14
rijndaeld ecrypt 20,133 1597 79323 289 18.1 202 | 12649 324 | 20288 582 36.443 372 23.294
rjndaelencrypt 20,130 1601 79533 200 18.11 203 12.68 335 203 583 36.415 i 23.235
sha 16,056 1378 8.5825 415 3012 193 | 14006 253 18.36 517 37518 338 24.52§)
CRC32 18,373 1528 33166 470 30.76 211 13209 286 | 18717 562 36.78 382 25
FFT 18,571,659 894674 48174 16564 1.851 | 182457 | 20394 | 287759 | 32164 | 307894 34.414 i<l 0.0738)
FFTimvsese | 16,056,034 203644 5.0052 166355 2072 159754 | 19379 | 346730 | 43151 | 280455 34898 623 0.0775
cipeg 42653 3045 7.139 512 16.81 441 | 14423 124 2504 1302 42956 557 18.292
djpeg 38,132 2862 7.5212 490 17.4 431 | 15028 646 | 22524 1202 45049 615 21 444
lame3.70 245,947 2611 10616 458 17.58 399 15282 561 21486 1192 45653 364 13.941
raweandio 13,951 297 6.4296 266 2045 130 14493 171 19064 330 36.789 04 22742

Table 3.6 Simulation Results of root cause of wrong prediction

Consideration 6: Does the “BBFIFO” need two element?

Response: No, there just needs one element (refer to Fig3.12). There list two conditions

as following:

1. If the verification is correct, the top element of “BBFIFO” doesn’t need.
So, there just needs one element for records the information of next

predictive “Basic Block”.

2. If the verification is wrong, the bottom element of “BBFIFO” doesn’t
need. There just need using the top element of “BBFIO” to update the
correct “BBSize” according to the prediction of’Dynamic Branch
Predictor”.

According above two descriptions, let us to know where can improve the
element numbers of “BBFIFO” to one element.

48

Branchl

Idenkify &
Targetl

— BTBIndexz & Predictionz

Branch2

Idenkify &

Target2

Werify

Branch3
Target3

Fig 3.12 Diagram for using and update “BBsize”

Consideration 7: Does the hit rate of I-Cache affect the design?

Response: Yes. Because it affects the “Runtime” of “always active I-Cache”, therefore, it
affect the factor of “Runtime increment”

The equation of “Runtime increment” = The Execution cycles of proposed design / The

Execution cycles of Non-Drowsy mechanism

Consideration 8: Is the simulation of pfsDIC instruction-based / cycle-based?

Response: Cycle-based. Because the experiment results the total “Runtime increment”
and “Leakage energy consumption” of tracing file, it prove the same tracing
file results different “Runtime” and “Leakage energy consumption” with

different configuration.

Consideration 9: How to work of pfsDIC with MMU?

Response: The pfsDIC just use the “Line offset” field of physical address. The timing is

49

same with cache assess. The necessary bits are not related to the operation of
MMU. Therefore, the pfsDIC can work with MMU.

Consideration 10: Does there any approach to hide the “wakeup latency”?

Response: “Circuit delay” can be considering, it can be hided into the period of “Cache
line recharge”. It means that the extra component of I-Cache side, which
responds to the preactivating operation, can work on PCL_FIFO.

Consideration 11: Does the simulation has the ability of compiler-awaken?

Response: NO, the simulation is just using the same tracing file to evaluate and generate
the experiment results. There don’t configure the optimum utilization of
resource dynamic. It can be proved by removing the “Branch Slot”, therefore,
there is the delay penalty due to “Data Hazard”.

50

Chapter 4 Conclusion and Future work

4.1 Conclusion

The design offers most lines in “drowsy mode” with stable performance loss. In the
worth case, 8K cache size and 4-way associated replacement, almost 2/3 lines are drowsy. On
other condition, less than 4/128 of whole cache lines are drowsy.

When wakeup time is 1clock, the performance overhead is 11.11%~12.27% (by
simulation). And the energy reduction is 17.71%~20.28%.

The evaluation is based on 0,070um process. Therefore, the process is shirking the factor
of leakage will be more important. Then the leakage will be reduced more much future.

4.2 Future work

The future works shows as bellows:

1. Recognize the execution in simple Loop.
If “Simple Loop” can recognized that can reduce the repeat recharge energy,

when the execution in “simple loop”.

2. The idea of “BBSize” also applied on “Return stack”.
If BTB create one-bit field to indicate the return address that stored in “Return
Stack”. So, the “return address” is similar with “Fixed target address”. Therefore,

the “BBSize” still suits to “return address”. For reduce the “Runtime increment”.

3. Simulate more accurate evaluation by Front-end physic simulator of 1C-design.
It is using for generating more accurate parameter of energy consumption.
4. Evaluate the pfsDIC design consider the additional energy consumption of whole

system due to “Runtime Increment”

51

Evaluate the pfsDIC design consider the energy consumption of “Access” or

“Preactivating” instruction cache line.

Further reinforcement:

(1) Evaluate the energy of increased logics in the design of pfsDIC.
Ex: PCL_FIFO, PTA_FIFO, voltage switch each cache line and etc....

(2) Evaluate the additional energy of system due to “Runtime increment” of
pfsDIC.
This is necessary to evaluate. Because the “Runtime increment” increases
almost 12%, this additional runtime maybe cause more energy consumption by

other module in system.

52

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

J. L. Hennessy and D. A. Patterson, “Computer Architecture - A Quantitative
Approach”, 3rd ed. Morgan Kaufmann Publishers, 2003.

P. Petrov, A. Orailoglu, “Low-Power Instruction Bus Encoding for Embedded
Processors,” in IEEE Transactions on VLSI (TVLSI), July, 2004.

C. H. Perleberg and A. J. Smith, “Branch target buffer design and optimization,” IEEE
Transactions on Computers, 42(4), 1993.

K. Flautner, “Drowsy Cache: Simple Techniques for Reducing Leakage Power,” in
Proc. The 29th International Symposium on Computer Architecture, 2002.

N. Kim, “Drowsy Instruction Cache: Leakage Power Reduction using Dynamic
Voltage Scaling and Cache Sub-bank Prediction,” in Proc. The 35th Annual
International Symposium on Computer Microarchitecture, 2002

Yau-Chong Hu and Chung-Ping Chung “Low Power Branch Target Buffer” Master’s
Thesis, Department of Computer Science and Information Engineering, Nation
Chiao-Tung University, Taiwan, R.O.C, June 2003

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,”MiBrench: A
Free, Commerially Representative Embedded Benchmark Suite,” Proceedings of the 4
International Workshop on Workload Characterization, 2001, pp.3-14.

MIPS Technologies, Inc., “MIPS SDE / MIPS FGT 5.02.02 Programmers’ Guide,”
February 17, 2003.

http://quid.hpl.hp.com:9081/cacti/

53

Vita

Kuo-Wei Chou (}ﬁj[ﬁﬁi'ﬁié)

Personal History

Birth place: Taipei City, Taiwan Birth date: May 3, 1975
Residence: Hsinchu or PanChiao City, Taiwan

E-mail address: nsr500@so-net.net.tw

Educational History

1. PanChiao Senior High School, PanChiao, Taiwan, 1994 (ﬁjﬁﬂ 125)

2. Feng Chia University, Taichung, Taiwan
Degree: Bachelor of Information Engineering and Computer Science, 2002
(EFIAFF A 9179)

3. National Chiao Tung University, Hsinchu, Taiwan
Degree: Degree Program of Electrical Engineering and Computer Science College of Computer Science in

Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science,
2007 (4 3E SRV BRI FAL 2007)

Professional Positions

1. Field Application Engineer, Engineer, Senior Engineer in Silicon Integrated Systems
Corp. (fi/A%%[4%) from Sep 2002 to Jun 2007

54

