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摘 要       

 
指令快取記憶體的電源管理，其只要的概論是將處於工作模式的快取列

的數量最小化。於是乎，在啟動的方案上，便是利用固定的目標位址使非

循序的快取列預先活躍化。在關閉的方案上，在某一快取列最後一次使用

並且將其內容物傳遞之後，此時便將此快取列關閉成昏睡模式。此概論的

目的便是將漏電所產生的能耗減少到最少。在開啟的階段，由於快取記憶

體的取代方案採用“關連性取代法”，如此導致會有好幾個的快取列同時活躍

化。在一段覺醒時間之後，除了會參考到的快取列，將其餘不會參考的快

取列切換成昏睡模式。這些額外增加的輔助硬體不只能提供下一個“基礎區

塊”的預測能力，並且當“錯誤的預測”發生後能導正程式的流程。在實驗的

結果顯示本論文建議的設計能減少的漏電能耗。當“覺醒潛在因素”是由一個

clock 的“覺醒時間”以及一個 clock1 本設計“電路延遲”。在一般的個例中，

執行時間會增加 10.898% 至 14.581% 已及減少 77.5% 知 82.4% 的漏電能

耗。 
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ABSTRACT 
Main concept of Power management of Instruction Cache - (Program Flow Sensitive 

Drowsy I-Cache (pfsDIC for brief)) is that minimize the numbers of active cache lines. So, on 

Turn-On scheme, utilize fixed Target address to preactivate the discontinuous Instruction 

Cache Line. On Turn-Off scheme, turn-off the cache lines after the last content of this cache 

line is transmitted. The purpose of such concept is to reduce maximum leakage energy. On 

Turn-On stage, there is several cache lines are activating due to low-way associated. After an 

amount of wakeup time, switch these awaken cache lines to “Drowsy mode” except to the 

referred cache line. The additional auxiliary hardware don’t only offer the predictive ability of 

next Basic Block, but also maintain the correct program flow when wrong prediction happens. 

The experiment results show the leakage reduction of proposed designs. When the wakeup 

latency is the sum of 1 clock of wakeup time and an extra 1 clock of circuit delay that caused 

by proposed design. In the average case, the Runtime increment is 10.898%~14.581% and the 

leakage reduction is 77.5% ~ 82.4% 
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Chapter 1 Introduction 

 

The necessary of Power management of Instruction Cache is based on the following 

arguments: 1. the energy consumption of leakage is more important factor with process 

shrinking day by day. 2. Instruction cache always sends a content of instruction cache lines 

for CPU execution. 3. Should all parts of instruction cache lines be active? 

Therefore, the thesis wants to implement an idea. The idea is that just only few numbers 

of cache lines are active and the other cache lines are drowsy by DVS (Dynamic Voltage 

Scaling) technique. And the number of active cache line is not more than number of “Way” 

that related to n-way associated replacement. 

After equipping a filed that using for record the instruction number of this executing 

Basic Block (between the target address recorded in this BTB entry and next Branch 

instruction) in program execution. The next Target address will be calculated after the next 

instruction address of Branch instruction is calculated. Therefore, transmit the predictive 

program flow to Instruction Cache in advance; there will be avoid most Runtime increment 

due to the wakeup time of recharge. 

Throughout this thesis, a classic MIPS five-stage pipeline is assumed. The five stages are 

Instruction fetch (IF) stage, Instruction decode/register fetch (ID) stage, Execution/effect 

address (EX) stage, Memory access (MEM) stage and Write-back (WB) stage respectively. 

The other assumption is the target address is confirmed on the “Instruction Decode” stage. 

 

1.1 Background 

1.1.1 DVS (Dynamic Voltage Scaling) 

 There often adopt multiple supply voltage (Dynamic Voltage Scaling) to reduce 

leakage power consumption. Reduce leakage energy using lower supply voltage, it 

provides 6x to 10x reduction over regular supply voltage. The method is often called 

“Drowsy mode”. If the cache line is at low leakage drowsy mode, its data is preserved 

but can not be accessed. Otherwise, the unchecked accesses to a drowsy line could 
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destroy its contents. The other thing, reactivate the cache lines need a small wakeup 

time. 

 Therefore, it is necessary to pre-activate what cache lines will be using in advance. 

It can avoid the penalty caused by waiting for wakeup time. 

In the following figure shows a cache line that supports a drowsy mode. In order to 

support the drowsy mode, each cache line circuit includes two more transistors than 

traditional memory circuit. The voltage controller switches the cache line voltage 

between active and drowsy supply voltage depending on the drowsy bit. The word-line 

gating circuit is used to prevent accesses of the drowsy memory cells in the cache line, 

since the supply voltage of the drowsy cache line is far lower than the pre-charged 

bit-line voltage and thus unchecked accesses to a drowsy line could destroy its contents. 

 

Figure 1.1 Logic diagram of Drowsy Cache-Line 

 

Relationship with this thesis: there will be a similar circuit with each Instruction 

Cache Lines in the design of this thesis. 

 

1.1.2 Characteristics of Program Execution 

Now, let us analyze the character of program execution. Program execution can be 

classified into 2 categories: 
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1. Sequential execution:  

This kind of execution occupies about 85-90% portion of program execution. 

2. Execution of taken branches: 

This kind of execution occupies about 10-15% portion of program execution. 

Taken branches can be further classified into 2 classes: 

(1) Fixed target branches (75-97 % by simulation in table1):  

Most taken branches are fixed target branches. Dynamic branch predictor like 

branch target buffer can handle fixed target branches with target expressed in 

immediate field of the instruction. 

(2) Changing target branches:  

It includes procedure return, some other special uses that load pc from a 

register other than link register (e.g., function table, switch conditional 

statement). Procedure return can be handled by return stack. 

Relationship with this thesis: there shows that “Fixed Target Branch” occupies high 

percentage of the discontinuous execution. For simplicity, the thesis just focuses on 

“Fixed Target Branches” first. 

 

1.1.3 Dynamic branch predictor and its operation 

Due to reduce leakage power consumption, it need to decide which lines will be 

accessed in the near future and these are kept in the pre-activated state, and the rest of the 

lines are put into the low power drowsy mode. If the program execution is sequential, it 

is easy to pre-activate the cache lines considering the wakeup time. But, about 15% of 

instructions in typical programs are Taken-Branch. In order to reduce the extra penalty 

caused by wakeup time, dynamic branch predictor is often adopted. 

Originally, dynamic branch predictor is used to help processor resolve the outcome 

of branch early, thus preventing control dependences from causing stalls [1]. The typical 

case of dynamic branch predictor is branch target buffer (BTB) [2]. Now, Branch target 
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buffer is used to offer predicting the path of the branch. 

Branch target buffer is a branch prediction cache and is designed to reduce branch 

penalty by predicting the path of the branch and storing information about the branch. 

The major information stored in each entry of branch target buffer consists of: 

1. Valid bit: to tell whether the entry is empty or not. 

2. Branch instruction address (branch tag): the current program counter (PC) is 

compared to branch instruction address field to determine if there is a “hit”. 

3. Branch target address: If there is a hit and the branch is predicted taken, the 

program counter is loaded with this value and instruction fetching continues 

from this point. 

4. Branch prediction bits (predictor): 2-bit prediction scheme is most commonly 

used [1]. 

 

For the classic MIPS five-stage pipeline, when the current program counter is sent 

to instruction memory to fetch the current instruction, this current program counter is 

also sent to branch target buffer to see if there is a “hit”. 

If there is a “miss”, that means there is no valid entry whose branch tag equals the 

program counter, the instruction fetcher in CPU will update the program counter to the 

next sequential PC by adding a word size to the PC. There are 2 scenarios under a 

“miss”: 

1. At the end of the ID stage for the branch instruction, it turns out that this is a 

not-taken branch : 

The branch processing unit in CPU will not enter a new entry into branch 

target buffer for this branch, while the instruction fetcher in CPU will keep 

fetching the subsequent instruction. 

The branch penalty in this case is 0 clock cycle. 

2. At the end of the ID stage for the branch instruction, it turns out that this is a 

taken branch : 

The branch processing unit in CPU will enter a new entry into branch 

target buffer for this branch, while the instruction fetcher in CPU will kill 

fetched instruction at IF pipe stage and start fetching the calculated branch 
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target address at the start of the next clock cycle.  

  The branch penalty in this case is 1 clock cycle. 

 

The detail of entering a new entry into branch target buffer is as follows: 

If the position of the new entry is occupied, some replacement algorithm (e.g., Least 

Recently Used or Random algorithm) is used to discard an existing entry to make room 

for this new one. 

In this new entry, valid bit field is set to 1, branch instruction address (branch tag) 

field is set to the branch instruction address (that is exactly the program counter 1 clock 

cycle ago), branch target address field is set to the value calculated at the end of ID stage, 

branch prediction bits field is set to the initialized value according to the adopted n-bit 

prediction scheme. 

If there is a “hit”, that means there is a valid entry whose branch tag equals the 

program counter. There are 4 scenarios under a “hit”: 

1. Branch prediction bits predicts this branch instruction is a taken branch, and at 

the end of ID stage for the branch instruction, it turns out to be a taken branch : 

At the end of the IF stage, branch target buffer will supply the branch 

target address to update the program counter. At the start of the next clock 

cycle, this corrected PC that is the branch target address is sent to instruction 

memory. At the end of the ID stage for the branch instruction, it turns out that 

the prediction 1 clock cycle ago is correct. The branch processing unit in CPU 

will update branch prediction bits in branch target buffer, while the instruction 

fetcher in CPU will keep fetching the subsequent instruction. 

The branch penalty in this case is reduced to 0 clock cycle. 

2. Branch prediction bits predicts this branch instruction is a taken branch, but at 

the end of ID stage for the branch instruction, it turns out to be a not-taken 

branch : 

At the end of the IF stage, branch target buffer will supply the branch 

target address to update the program counter. At the start of the next clock 

cycle, this corrected PC that is the branch target address is sent to instruction 

memory. At the end of the ID stage for the branch instruction, it turns out that 
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the prediction 1 clock cycle ago is incorrect. The branch processing unit in 

CPU will update branch prediction bits of the branch entry in branch target 

buffer, while the instruction fetcher in CPU will kill fetched instruction at IF 

pipe stage, and start fetching the fall-through address after the branch 

instruction at the start of the next clock cycle. 

The branch penalty in this case is 1 clock cycle. 

3. Branch prediction bits predicts this branch instruction is a not-taken branch, 

and at the end of ID stage for the branch instruction, it turns out to be a 

not-taken branch : 

At the end of the IF stage, branch target buffer will do nothing, the 

instruction fetcher in CPU will update the program counter to the next 

sequential PC by adding a word size to the PC. At the end of the ID stage for 

the branch instruction, it turns out that the prediction 1 clock cycle ago is 

correct. The branch processing unit in CPU will update branch prediction bits 

of the branch entry in branch target buffer, while the instruction fetcher in CPU 

will keep fetching the subsequent instruction. 

The branch penalty in this case is 0 clock cycle. 

4. Branch prediction bits predicts this branch instruction is a not-taken branch, 

and at the end of ID stage for the branch instruction, it turns out to be a taken 

branch : 

At the end of the IF stage, branch target buffer will do nothing, the 

instruction fetcher in CPU will update the program counter to the next 

sequential PC by adding a word size to the PC. At the end of the ID stage for 

the branch instruction, it turns out that the prediction 1 clock cycle ago is 

incorrect. The branch processing unit in CPU will update branch prediction 

bits of the branch entry in branch target buffer, while the instruction fetcher in 

CPU will kill fetched instruction at IF pipe stage and start fetching the 

calculated branch target address at the start of the next clock cycle. 

The branch penalty in this case is 1 clock cycle. 

 

Summary for the interrelationship among BTB, instruction memory and CPU: 

1. When an entry is found in branch target buffer and its prediction is taken, 

branch target buffer will update the program counter. 
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2. When there is no entry found in branch target buffer or an entry is found but its 

prediction is not-taken, the instruction fetcher in CPU will update the program 

counter to the next sequential PC by adding a word size to the PC. 

 

When a branch instruction is resolved at the end of ID stage, the branch processing 

unit in CPU will do the following things: updating branch target buffer (including 

entering a new entry or updating an existing entry) if necessary, flushing the instructions 

in the wrong path and updating the program counter when the current path is wrong. 

Relationship with this thesis: in this thesis, there will be adding an extra field, that is 

using to record the instruction numbers of Basic Block, each BTB entries. On the other 

thing, the instruction numbers of Basic Block recorded in the field that is corresponding 

to the “Dynamic Branch Predictor”.  

 

1.1.4 Basic Block 

 Basic Block is a straight-line code sequence with no branches in except to the entry 

and no branches out except at the exit. Therefore, Target1 is the entry of Basic Block, 

and Branch2 is the exit of Basic Block (Refer to Fig 1.2). For typical MIPS programs the 

average dynamic branch frequency is often between 15% and 25%, meaning that 

between four and seven sequential instructions execute between a pair of branch. 

 

Figure 1.2 Diagram of Basic Block 
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Relationship with this thesis: Because the design in this thesis wants to know the 

address pair is discontinuous in advance. And preactivate the discontinuous address an 

amount of wakeup time. So, the design in this thesis just use the character of Basic Block 

to predict next discontinuous address if somewhere record the instruction numbers of 

each Basic Block.  

 

1.1.5 Drowsy Caches: Simple Techniques for Reducing 

Leakage Power  

 There are two kinds of Turn-off policy: [4] 

1. Simple Turn-Off policy: 

 Operation: Periodically (e.g.: 4K cycles) place all cache lines into drowsy 

mode. 

 Possible to improve:  

(1) Some cache lines should not be turned off when period expires. 

(2) Too many Cache lines are active at same time. 

2 Non-access Turn-Off policy: 

 Operation: Only the cache lines that have not been accessed during a fixed 

time period (e.g.: 32K cycles) are placed into drowsy mode. 

 Possible improve:  

Some cache lines should be turning off early. 

 

 About Turn-on policy, both of above is turning on the cache line when accessed. 

Regardless of turn on policy or turn off policy, both of them operate cache line. 

Relationship of this thesis: Simple Turn-Off policy will be adopted for comparison 

with the design of this thesis. And Simple Turn-Off policy let this thesis decide that turn 

off the cache line after last using. 
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1.1.6 Sub-bank Predictive I-Cache [5] 

 The following describes Turn-on and Turn-off policy of Sub-Banked Instruction 

Cache, respectively: 

1. Turn-off policy: 

 Operation: Adopts a “Bank based strategy”, only one sub-bank is active at a 

time, while the rest of the sub-banks are in drowsy mode. 

2. Turn-on policy: 

 There are two kinds of approach: 

(1) Memory sub-bank prediction buffers: (Refer to Fig. 1.3) 

 Operation: Use a fully-associative buffer like BTB structure to 

pre-activate sub-bank. 

 Possible to improve: In particular, the CAM tag in the prediction buffers 

can consume significant amounts of dynamic power. 

(2)  Next sub-bank predictors in cache tags: 

 Operation: Extend cache tags to support next sub-bank prediction. 

 Possible to improve: Multiple next sub-bank addresses can not be kept 

when there are multiple transition addresses in a cache lines. 

Regardless of turn on policy or turn off policy, both of them operate bank (e.g.: 

4KB). 

 

Figure 1.3 Diagram of Sub-bank Prediction Buffer 

 

Relationship with this thesis: Because there are too many Instruction cache lines in 

a sub-bank, therefore, the design of this thesis hopes one cache line be the operating 
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element. And the design of this thesis still hopes to remain the predictive ability. 

 

1.2 Research Motivation 

“Dynamic Branch Predictor” offers the high accurate predictive direction of branch. And 

we know basic block is straight-line sequence with no branches in except to the entry and no 

branches out except at the exit. So, Target address / Fallthru address is the start of basic block, 

then next branch instruction in executing instruction is the end of basic block as Fig 1.4 

 
Figure 1.4 Diagram of Basic Block 

Assuming somewhere was storing the information of each basic block size. Adding an 

extra field to each BTB entry, the fields store the instruction numbers of the “Basic Block” 

after its Target / FallThrou address that corresponding to the prediction of  “Dynamic Branch 

Predictor”.  

If the field records the size of most Basic Block, we can achieve followings: 

1. Avoid to lookup BTB each clock [6]. 

2. Easy to generate next branch address in advance. 

 Ex: “Branch2 address” = “size of Basic Block” + “Target1 address / FallThrou1 

address”. (Refer to Fig 1.4) 

3. Gain the predictive target address of next branch instruction by lookup BTB in 

advance. 

 

Therefore, the predictive target address is generated before original several clocks. So, 

complete followings step by step (refer to Fig 1.5): 
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1. If Target2 address is calculated out on “EXE” stage of Branch1. 

2. Transmits the target address to I-Cache side before using in pipeline wakeup time. 

3. Equally, shift the other addresses of predictive sequential execution forward 

wakeup time. 

4. If complete all of above operation, then it can avoid the most wakeup latency. 

 
Figure 1.5 Diagram for describing lookup timing of this thesis. 

 

1.3 Research Objective 

Because the target address can be predicted before several clocks, then the design of this 

thesis hope to transmit the predictive instruction address to I-Cache an amount of wakeup 

time ahead of CPU use. 

Therefore, this thesis can achieve as followings: 

1. Turn-On: Minimize the Runtime increment due to wakeup latency. 

Scheme: Preactivates all predictive cache lines an amount of wakeup time ahead of 

use. 

2. Turn-OFF: Minimize the leakage of active cache lines. 

Scheme: Turn this cache line to “Drowsy” mode after the last content of this cache 

line is transmitted. 

Last content is represent that is last utilization of this cache line. 
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1.4 Organization of this Thesis 

The rest of this thesis is organized as follows. Chapter 2 explains the design detail of 

power management of instruction cache. Chapter 3 presents evaluation methodology, 

experiment results and discussion. Conclusion and future works are then provided in Chapter 

4. 
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Chapter 2 Design of Proposed Architecture 

 
The design of power management of instruction cache is discussed in this chapter. 

Section 2.1 introduces challenges. Section 2.2, Section 2.3 and Section 2.4 introduce the 

design of BTB side, Processor side and Instruction Cache side respectively.  

 

2.1 Challenges in Design 

The following three point need to implement step by step: 

1. Topic 1 (BTB side):  

How to use the recorded instruction number of executing Basic Block to predict the 

target address of next branch instruction? 

How to update “instruction numbers of Basic Block” when prediction of “Dynamic 

Branch Predictor” is changed? 

2. Topic 2: (Processor) 

A. Instruction Address: 

How to transmit the predictive target address on Instruction Address Bus an 

amount of wakeup time ahead of CPU use? 

B. Instruction Data: 

How to verify the correctness of content transmitted from I-Cache side? 

C. How to handle “Wrong Prediction”? 

3. Topic 3: (Cache) 

When to change the supply voltage of I-Cache line? 

The moment is between the two addresses which content place in different cache 

lines. 

 

2.2 Design of BTB Side 

The Goal for resolve topic1 of design challenge: 

1. Gather the “instruction numbers of each Basic Block” (“BBSize” for brief) 

corresponds to the prediction of “Dynamic Branch Predictor”. 
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2. Using “BBSize” to predict the target address of next (predicted) taken-branch 

instruction.  

 

So, there needs to increase some extra components and describes them briefly: 

1. Create one / two extra field to each BTB entry for record “BBSize” of each Basic 
Block. 

2. A counter to count the “instruction number of each Basic Block”. 

3. A mechanism for update and operation of BBSize. 

 

2.2.1 Extra component of BTB side 

Now, let’s describe the extra components: 

1. Adding one BBSize Field each entry of BTB: 

(1) Valid, Tag, Target and Predictor: same as originals of BTB. 

(2) BBSize:  

A. Record the numbers of instruction after target of this entry. 

B. One field for just prediction / two field for both decision (decide by 

simulation) need to record. 

 

Figure 2.1 Diagram for description of “BBSize” field each BTB entry 

 

Why does there create two fields each BTB entry? Because there maybe two 

conditional address after each Branch instruction. The two addresses are: 1.Target 

address when Branch-Taken. 2. FallThrou address when Branch Not-Taken. Therefore, 

the BBSize will be changing when the prediction of “Dynamic Branch Predictor” is 

changed and just one “BBSize ” field each BTB entry. The decision will be show you on 

later result of simulation. 
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2. Adding a BBCounter: Count the instruction passed after previous Branch 

instruction. And its operations are (1) INC when Branch instruction doesn’t 

meet. (2) CLR when Branch instruction meets. 

 

3. Adding a 2-depth BBFIFO. The FIFO has two level elements: (1) Top element 

records the information for update “BBSize” of top “BTBIndex” field point to. 

(2) Bottom element records the information for record BTB index and 

prediction of next Branch instruction. 

 

Figure 2.2 Diagram for description of 2-depth FIFO 

 

The field description of this FIFO: 

(1) BTBIndex: using for records the index of BTB entry.  

(2) Prediction: there are two condition: 

A. Before verification of prediction: Record the prediction of branch 

instruction. 

B. After verification of prediction: Indicate operation of BBCounter and 

BBSize update. (refer to fig 2.3) 

(A) When predictor is correct and BBSize isn’t NULL. Then the 

field sets “Freeze” that represents “BBCounter” doesn’t work, 

“BBSize” doesn’t need to update.  

(B) When predictor isn’t correct and it changes prediction. Or 

“BBSize” is NULL. Then the field sets “Update” that represents 
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“BBcounter” work, “BBSize” needs to update. 

 

Figure 2.3 Truth Table of “Prediction” field after verify 

 

2.2.2 Update & Use of “BBSize” 

Now, start to describe how to gather and record “BBSize” step by step: (refer to fig 

2.4) 

1. BBCounter set 0 after branch decoded. 

2. After making sure the program flow is Target1,  

    a) Update “Prediction1”. 

    b) Pop the BBFIFO 

    c) Clear the FIFO bottom. 

3. Update “BBSize1” by “BTBIndex1”, “Prediction1” and “BBcounter”. 

4. Goto 1. 
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Figure 2.4 Diagram for gathering “BBsize”. 

 

Now, start to describe how to use above components to gain the predictive Target 

address of next Branch instruction in execution.(refer to fig 2.5) 

1. After making sure the program flow is Target2,  

(1) Update “Prediction2”. 

(2) Pop the BBFIFO 

(3) Clear the FIFO bottom. 

2.   

(1) Calculation: 

A. BBSize isn’t NULL.  

-> Calculate the Branch2 address using adding Target1 address and 
BBsize1. 

B. BBSize is NULL 

-> Predict always sequential execution 
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(2) Lookup: 

A. Just one time to Branch2. 

B. Each instruction until Branch2.  

(3) Record the index of BTB entry that lookup out by Branch2 address. 

3. Goto 1. 

 

Figure 2.5 Diagram for using “BBsize”. 

 

2.2.3 Summary of BTB side 

In fact, there has a two kind of penalty when using Drowsy Instruction Cache. First, 

the performance loss is where needs some adding wakeup time to preactivate the drowsy 

line that will be using. Second, the energy overhead due to recharge for switch the 

instruction cache line from “Drowsy mode” to “Active Mode”.  

Therefore, the purpose of the design is transmit the instruction address to I-Cache 

an amount of wakeup time ahead of CPU use. It is impossible to transmit all of correct 
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instruction address. Because the sequential program execution is just only about 85%. So, 

there need to handle when branch-taken happens on the program flow. 

The solution of branch instruction handle is using BTB. But there need to generate 

the next predictive target address an amount of wakeup time ahead of use. Therefore, the 

design adds an extra field to each BTB entry. The field records the instruction numbers 

after its target. The purpose of the fields is that to calculate the next branch instruction 

address. Then using the result of previous calculation to lookup BTB and gain the next 

predictive target address ahead several clocks. How much the clocks are? The answer is 

relating to the instruction numbers that are after executing target.  

Using Figure 2.6 to explains, if Branch1 is decoded in “Instruction Decode” stage, 

and Traget1 is Branch1 consecutive execution. Assume the execution between Target1 

and Branch2 are sequential instructions. As previous description in chapter 1.1.4, basic 

Block is a straight-line code sequence with no branches in except to the entry and no 

branches out except at the exit. According the definition of Basic Block, it can say the 

executions between Target1 and Branch2 are in a same “Basic Block”. 

 

Figure 2.6 A piece of program execution 

 

So, if Target1 is fetch due to “Dynamic Branch predictor” and BTB, and 

somewhere has the instruction numbers (the size of Basic Block) after Target1. At this 



 20

moment, Branch2 address can easy be calculated by adding Target1 address and the 

instruction numbers. Target2 address is generated by using the result of calculation to 

lookup BTB. 

After Target1 was calculated by CPU, you things where increase an extra action of 

lookup BTB for Target2. In this way will increase one more time action of lookup BTB. 

The answer is NO; there decrease the times of lookup BTB. (use Figure 2.7 to explain) 

In original architecture, there need to lookup BTB each clock. In the thesis, there don’t 

lookup BTB from the next execution of Targe1 until meeting Branch2. Because of there 

have the information of instruction numbers after Target1. The information shows us 

how much sequential instruction after Target1. The action of lookup BTB can be omitted, 

because the execution is sequential instruction. The other thing, the design in this thesis 

just moves the action of lookup BTB in original architecture until after Target1 

instruction. 

 

Figure 2.7 Block diagram of original architecture 

 

The design in the thesis, there will predict the subsequent execution of Branch2 

always continuous in following several conditions (still using figure 2.7 to explain): 

1. Branch1 is not gathered into BTB. 
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2. There is no information of instruction numbers after Target1. 

3. Branch2 is not gathered into BTB. 

4. The “Dynamic Branch Predictor” of Branch2 predict Branch-Not-Taken”. 

 

2.3 Design of Processor 

Finish the description of predictive target address. The goal of design is: 

1. Transmits all predictive address an amount of wakeup time ahead of use.  

2. Verify the correctness of prediction wakeup time ago. 

3. Handle the “Wrong Prediction”. 

 

2.3.1 Extra component on processor 

Therefore, there creates extra FIFO on the CPU side and cache side, respectively. 

They are named as “Predictive Tracing Address FIFO” (PTA_FIFO for brief) and 

“Preactivating Cache-Line FIFO” (PCL_FIFO for brief). 
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Figure 2.8 Block diagram of CPU core side and I-Cache side 

 

Now, describes the operation of extra FIFO. First, the operation of Predictive 

Tracing Address FIFO: 1.Push the predictive PC to PTA_ FIFO bottom each clock. 2. 

Clear whole PTA_FIFO when Wrong Prediction. Then, describes the operation of 

Preactivating Cache-Line FIFO: 1.Push the address from “Instruction Address BUS” to 

PCL_FIFO bottom each clock. 2. Clear whole PCL_FIFO when Wrong Prediction. 

Actually, the depth of the two FIFO is designed as “wakeup time + 1”. On CPU 

side, The “Predictive Tracing Address FIFO” (PTA_FIFO) is using for verify the 

correctness of predictive address wakeup time ago. On the Cache side, the 

“Pre-activating Cache-Line FIFO” (PCL_FIFO) has two conditions to explain: 1. the top 

of PCL_FIFO is using for make sure that cache line of address referred is activated. 2. 

The bottom of PCL_FIFO is using for indicate the timing that switch the cache line to 

“Drowsy mode”. 

Summary of the two FIFO, the address on top of “PTA_FIFO (on CPU side)” is just 

the address of the content that transmitting from Cache-Line now. Therefore, compares 

the two address of top of “Predictive Tracing Address FIFO” (PTA_FIFO) and 
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calculated address on “ID” stage now. If the two addresses are not same, the “DIC reset” 

will be asserted. Because it represents the prediction wakeup time ago is wrong. 

 

2.3.2 Example for explain predictive instruction address 

Now, take some example to explain more clearly. First, show you the timing 

diagram of initialization. 

 
Figure 2.9 the diagram of Pipeline: there has 1 circuit delay, 2 wakeup time 

 

In fig 2.9, the left blocks are represents the address executes in instruction. The 

middles represent the pipeline stage. And the right blocks is represents the address in 

PCL_FIFO, left is the bottom of FIFO and right is top of FIFO.  

About S1, S2… and SX, the ‘S’ represent the sequential instruction. About W1 and 

W2, the ‘W’ represents wakeup time. Therefore, “W1” represents the cache line of the 

address referred is preactivated 1 cycle. About “C1”, it represents one cycle circuit delay. 

The circuit delay is the latency of extra mechanism in instruction cache side, and 

explains on next chapter in detail. 

Now, start to explain  

1. First cycle (first row) of fig 2.9. First, “S1” is transmitted from CPU side 
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through Instruction Address Bus to the bottom of “PCL_FIFO”. And the top of 

“PCL_FIFO” is NULL. Therefore, the pipeline is idol. 

2. Second cycle (second row) of fig 2.9. First, “S2” is transmitted from CPU side 

through Instruction Address Bus to the bottom of “PCL_FIFO”. So, “S1” pop 

one level to “W2”, it is say the Cache line that “S1” referred is preactivated 

one clock. And the top of “PCL_FIFO” is NULL. Therefore, the pipeline is 

idol. 

3. Similar as 2. 

4. Forth cycle (forth row) of fig 2.9. First, “S4” is transmitted from CPU side 

through Instruction Address Bus to the bottom of “PCL_FIFO”. At the 

moment, “S1” pop to the top of “PCL_FIFO”, it is say the Cache line that “S1” 

referred is preactivated 3 clocks and the Cache line is active. And the top of 

“PCL_FIFO” is not NULL. Therefore, the pipeline isn’t idol, the “S1” is 

fetched into “IF” stage. 

From this example, it let us know there will be three unit of latency when the timing 

of initialization. 

Continuously, introduce the timing of predictive target address. (Refer to the fig 

2.10) 

 
Figure 2.10 Timing diagram of predictive target:  

There has 1 circuit delay, 2 wakeup times 
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In fig 2.10, about B2, the ‘B’ represents the Branch instruction. About T2, the ‘T’ 

represents the Target instruction. 

Now, start to explain from forth cycle: 

1. Forth cycle (forth row) of fig 2.10. First, “B2” is transmitted from CPU side 

through Instruction Address Bus to the bottom of “PCL_FIFO”. And assume 

the top of “PCL_FIFO” doesn’t NULL. Therefore, the pipeline isn’t idol. 

2. Fifth cycle (Fifth row) of fig 2.10. Because “B2” meets, therefore, the next 

address is predicted as “T2” due to the prediction of “Dynamic Branch 

Predictor”. So, “T2” is transmitted from CPU side through Instruction Address 

Bus to the bottom of “PCL_FIFO”. So, “B2” pop one level to “W2”. And 

assume the top of “PCL_FIFO” doesn’t NULL. Therefore, the pipeline isn’t 

idol. 

3. Assume sixth cycle and seventh cycle don’t meet Branch instruction. 

Therefore, the “PCL_FIFO” is just pop one element each clock. 

4. Eighth cycle (eighth row) of fig 2.10. At the moment, “T2” pop to the top of 

“PCL_FIFO”, it is say the Cache line that “T2” referred is preactivated 3 

clocks and the Cache line is active. Therefore, the pipeline isn’t idol, the “T2” 

is fetched into “IF” stage. 

From this example, it let us know where will not be occurred any performance loss 

when the prediction of “Dynamic Branch Predictor” is correct. 

 

Continuously, introduce the timing of predictive target address. (Refer to the fig 

2.11) 
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Figure 2.11 Timing diagram of wrong prediction 

 

Now, start to explain from first cycle: 

1. First cycle (first row) of fig 2.11. Because “B1” meets, therefore, the next 

address is predicted as “S” due to the prediction of “Dynamic Branch 

Predictor”. So, “S” is transmitted from CPU side through Instruction Address 

Bus to the bottom of “PCL_FIFO”. And assume the top of “PCL_FIFO” 

doesn’t NULL. Therefore, the pipeline isn’t idol. 

2. Assume second cycle and third cycle don’t meet Branch instruction. Therefore, 

the “PCL_FIFO” is just pop one element each clock. 

3. Forth cycle (Forth row) of fig 2.11. At the moment, “S” pop to the top of 

“PCL_FIFO”, it is say the Cache line that “S” referred is preactivated 3 clocks 

and the Cache line is active. Therefore, the “S” is fetched into “IF” stage. After 

the calculation of “B1” on “ID” stage, the calculated address isn’t same as the 

address of “S”. Therefore, the status of “IF” stage will be refreshed. And this 

penalty is original architecture. On the other hand, the whole “PCL_FIFO” will 

be cleared when each “Wrong Prediction” occurs. 

4. 5th cycle (5th row) of fig 2.11. “T1” is transmitted from CPU side to I-Cache 

side through Instruction Address Bus. And “T1” is transmitted to the bottom of 

“PCL_FIFO” when I-Cache received the address form Instruction Address Bus. 



 27

And the top of “PCL_FIFO” is NULL. Therefore, the pipeline is idol. 

5. 6th and 7th cycle are similar. Assume there don’t meet Branch instruction., 

therefore, the “PCL_FIFO” is just pop one element each clock. And the top of 

“PCL_FIFO” is NULL. Therefore, the pipeline is idol. 

6. Eighth cycle (eighth row) of fig 2.11. At the moment, “T1” pop to the top of 

“PCL_FIFO”, it is say the Cache line that “T1” referred is preactivated 3 

clocks and the Cache line is active. Therefore, the pipeline isn’t idol, the “T1” 

is fetched into “IF” stage. 

From this example, it let us know where will be occurred performance loss when 

the prediction of “Dynamic Branch Predictor” is wrong. And there will be 1 penalty of 

“Wrong Prediction” and additional latency according to wakeup time and circuit delay. 

 

2.4 Design of Cache 

The goal of I-Cache side is that operates power management of I-Cache line. And there 

includes two status: 1.Turn-on (By PCL_FIFO bottom) status, when the first words of Cache 

Line meets, therefore, activate all cache line that address maybe refer to. 2. Turn-off (By 

PCL_FIFO top) status: (1) first content of this cache line, turn-off all Cache line except to 

address refer to.(2) Last content of this cache line, turn-off all Cache Line that address refer 

to. 

Another goal of I-Cache side is that transmits the content corresponding to the address 

transmitted from CPU side an amount of wakeup time ago. 
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Figure 2.12 Global View of Cache side 

 

2.4.1 Extra component (Preactivating Cache-Line FIFO) 

Preactivating Cache-Line FIFO:  

The numbers of PCL_FIFO is corresponding to “Wakeup time + 1”. Each element 

includes two fields: 

1. Address:  

Records the address from “Instruction Address Bus” and pop one element each 

clock 

2. 3 kind of stage in the field of “Word location”:  

‘0’: First word (Head) of Cache line 

‘1’: last word (Trail) of Cache line 

‘2’: mediums of Cache line 

 
Figure 2.12 Block diagram of “Preactivating Cache-Line FIFO”. 
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2.4.2 Extra component (Lines sensor) 

Lines sensor responds to compares the addresses of two most bottom elements. And 

there are two kinds of condition: (refer to fig 2.13) 

1. Equal: set their “Word location” is ‘2’ (medium). 

2. Not equal: set most bottom one is setting to “0” (Fist content of cache line), 

above one is setting to ‘1’. (Last content of cache line) 

 
Figure 2.13 Block diagram of “Line sensor” and “Preactivating Cache-Line FIFO”. 

 

2.4.3 Extra component (Lines sensor) 

There needs to create voltage switcher for switch the work voltage each Cache line. 

In Figure2.14, extra create a multiplexer for different operation and the multiplexer is 

controlled by the signal that named “Function Operation” (Fun_OP for brief) 
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Figure 2.14 Logic circuit diagram of “Cache-line”. 

 

Power Manager: using “Word Location” of element to operate the following two 

stages sequentially: (Refer to fig2.15) 

1. ON stage: get the bottom element of FIFO. 

When the field of “Word Location” is ‘0’ (Head, First content of cache line), 

turn-on all Cache line (Fun_OP1) that referred by “Address”.  

2. OFF stage: get the top element of FIFO. 

(1) When the field of “Word Location” is ‘0’ (Head, First content of cache line), 

turn-off all Cache line (Fun_OP0) except to address refer to. 

(2) When the field of “Word Location” is ‘1’ (Trail, Last content of cache line), 

turn-off all Cache Line (Fun_OP1) that address refer to. 

 

 
Figure 2.15 Truth table of “Function Operation” 

 

2.4.4 Extra component (Content Transmitter) 

Content Transmitter is using the data in Top of PCL_FIFO: 

1. When the “Word Location” is ‘0’ (Head, First content of cache line), transmits 

the hit content and record the hit way number to “Way #”. 

2. When the “Word Location” is ‘1’ or ‘2’ (Medium or Trail, Not first content of 
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cache line), merge “Way #” and index to transmit the referred content. 

 
Figure 2.16 Logic circuit of “Content Transmitter”, when transmitted first content of Line. 

 

2.4.5 Extra component (Stage Master) 

Stage Master has two jobs to work: 

1. Indicate other modules works or idol. 

2. Avoid any two modules use same resource. 

 

The fig2.17 describes two things: The one clock of circuit delay is using for assign 

the sub-module in different stage. There are three stages in one clock and there are three 

resources in I-Cache side. The three kinds of resources are “Word Location in FIFO”, 

“Address in FIFO” and “Way number” (Way # for brief). 
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Figure 2.17 Diagrams of Timing and Resource. 
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Chapter 3 Evaluation and Discussion 
 

Proposed designs in Chapter 2 are evaluated by trace-driven simulator. The benchmark 

suit is a subset of MiBench [7], which is a benchmark suite for embedded programs. The 

results are evaluated by two metrics: Runtime increment and Leakage energy reduction. 

 

3.1 Evaluation Methodology 
Since proposed designs in Chapter 2 are system-level innovation in computer 

architecture, behavioral simulation like trace-driven simulator can be a suitable approach to 

prove how many benefits such innovation gains compared with “Simple Turn-Off Cache” and 

“Sub-Banked Instruction Cache”. 

Proposed designs are evaluated by a trace-driven simulator. Since proposed designs in 

this thesis are based on classic MIPS five-stage pipeline, my simulator uses MIPS I 

instruction trace as key input. 

My trace-driven simulator accepts the following parameters as its input configuration: 

1. On BTB Side: 

(1) The two condition of BTB insertion:   

A. All Branch can insert the BTB 

B. Taken Branch only can insert the BTB. 

(2) The number of BBSize field each BTB entry: 

A. One BBSize field each BTB entry. 

B. Two BBSize field each BTB entry. 

2. On Cache Side: 

(1) The scheme of “Cache Replacement”: 

A. Direct mapping. 

B. 2o-Way associated. 
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C. 4-Way associated. 

(2) The scheme of “Cache Size”: 

A. 8KB 

B. 16KB 

C. 32 KB 

D. 64KB. 

E. 128 KB. 

(3) The scheme of “Words per Cache Line”: 

A. 4 Words per cache line. 

B. 8 Words per cache line. 

C. 16 Words per cache line. 

(4) The scheme of “Wakeup time” for the recharge of cache line: 

A. 2 wakeup latency for the proposed design: 1 wakeup time + 1 circuit delay. 

B. 3 wakeup latency for the proposed design:2 wakeup time + 1 circuit delay. 

C. 5 wakeup latency for the proposed design:4 wakeup time + 1 circuit delay. 

 

There are two statistics of experiment results : 

1. Runtime increment. 

2. Energy Requirement. 

 

3.2 Evaluation Metrics 
In this thesis, the following metrics are used to evaluate proposed designs of pfsDIC: 

 

1. Runtime Increment 

    The equation is  

Runtime increment = The Execution cycles of proposed design / The Execution cycles of 

Non-Drowsy mechanism 
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2. Energy Requirement 

    The equation is  
Energy consumption = energy consumption per clock * execution cycle. 

Energy consumption per clock = drowsy bits * C1 + active bits * C2 (C1:C2 = 0.16: 1) 

[4] 

 

3.3 Experimental Environment 
The experimental toolset MIPS SDE / MIPS FGT 5.02.02 [8] is used to generate MIPS I 

instruction trace for benchmark programs: 

1. Install MIPS SDE / MIPS FGT 5.02.02. 

2. Use command “sde-make SBD=GSIM1B” to build MIPS I code 

(benchmark_ram) of benchmark program for GNU simulator platform. 

3. Use command “sde-run --trace-insn=on --trace-file trace_filename 

benchmark_ram” to generate MIPS I instruction trace file. 

Since delay branch slot is always applied in GNU simulator platform, the generated trace 

file needs to be modified to remove delay branch slot for all branch and jump instructions. 

The modified trace file is then fed into trace simulator by specifying various parameters 

like BTB configuration. Figure 3.1 shows the flowchart of simulation. 
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Figure 3.1 Simulation flowchart 

 

3.4 Experimental Benchmark 
The benchmark programs selected are a subset of MiBench [8], which is a benchmark 

suite consisting of commercially representative embedded programs. MiBench consists of 6 

categories including Automotive and Industrial Control, Network, Security, Consumer 
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Devices, Office Automation, and Telecommunications. In each category, at least one 

benchmark is chosen as experimental benchmark. All chosen benchmarks are listed as below: 

1. In the category of Automotive and Industrial Control 

Basicmath: it performs simple mathematical calculations that often don’t have 

dedicated hardware support in embedded processors. 

Bitcount: it tests the bit manipulation abilities of a processor by counting the 

number of bits in an array of integers. 

2. In the category of Network 

Dijkstra: it constructs a large graph in an adjacency matrix representation and then 

calculates the shortest path between every pair of nodes using repeated applications 

of Dijkstra’s algorithm. 

3. In the category of Security 

Sha: it is the secure hash algorithm that produces a 160-bit message digest for a 

given input. It is often used in the secure exchange of cryptographic keys and for 

generating digital signatures. 

Rijndael encrypt/decrypt: Rijndael was selected as the National Institute of 

Standards and Technologies Advanced Encryption Standard (AES). It is a block 

cipher with the option of 128-, 192-, and 256-bit keys and blocks. 

4. In the category of Consumer Devices 

Jpeg encode/decode: JPEG is a standard, lossy compression image format. It is a 

representative algorithm for image compression and decompression and is 

commonly used to view images embedded in documents. 

Lame: it is a GPL'ed MP3 encoder that supports constant, average and variable 

bit-rate encoding. It uses small and large wave files for its data inputs. 

5. In the category of Office Automation 

Stringsearch: it searches for given words in phrases using a case insensitive 

comparison algorithm. 

6. In the category of Telecommunications 

FFT/IFFT: it performs a Fast Fourier Transform and its inverse transform on an 

array of data. Fourier transforms are used in digital signal processing to find the 
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frequencies contained in a given input signal. 

ADPCM encode/decode: Adaptive Differential Pulse Code Modulation (ADPCM) 

is a variation of the well-known standard Pulse Code Modulation (PCM). A 

common implementation takes 16-bit linear PCM samples and converts them to 

4-bit samples, yielding a compression rate of 4:1. 

CRC32: it performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC 

checks are often used to detect errors in data transmission. 

 

 

Table 3.1 shows the instruction counts, the percentage of Branch instruction and Maximum 
the BBSize. 

 

3.5 Experimental Results 

Table 3.2 shows simulation results. The abbreviations on table 3.2 are listed as below. 

There are 3 kinds of designs to evaluate and show their experiment results :  

1. The design of the thesis : with all kinds of configuration. 

2. Sub-Banked Design: With last four kinds of configuration. 

3. Simple Turn-Off Design: With last four kinds of configuration. 
 

There are 6 kinds of configuration that has mention previously:  
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1. The policy of BTB insertion. 

2. The numbers of BBSize field each BTB entry. 

3. Cache Size. 

4. Words per cache line. 

5. The scheme of Cache replacement. 

6. Wakeup latency. 
 

And the simulation bases on the basic configuration as followings. There changes one 

setting of configuration each evaluation. The experiment results show you in Table3.2, 

Table3.3, Table3.4 and Table3.5. 

Basic configuration shows as below: 

1. The scheme of BTB insertion: All branches. 

2. The number of BBSize field: one “BBSize” field each BTB entry.  

3. Cache Size: 32KB. 

4. Words per Line:16 Words per cache line. 

5. The scheme of Cache replacement: Direct mapping. 

6. Wakeup latency: 1 clock wakeup time + 1 clock circuit delay. 

 
Table 3.2 Simulation Results of pfsDIC (1) 
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Table 3.3 Simulation Results of pfsDIC (2) 

 

 
Table 3.4 Simulation Results of Sub-Banked 

 

 
Table 3.5 Simulation Results of Simple Turn-Off Cache 



 41

From Figure 3.2 to Figure 3.6 show “Runtime increment” from Table3.2, Table3.3, 

Table3.4 and Table3.5 for 6 different configurations respectively. 

The equation of “Runtime increment” is  

Runtime increment = The total execution cycles of proposed design / The total execution 

cycles of “always active I-cache” 
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Fig 3.2 Block Diagram of “Runtime increment” that affected by “BTB Insertion” and 

“BBSize Field”. 
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Fig 3.3 Block Diagram of “Runtime increment” that affected by “Cache Size”. 
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Fig 3.4 Block Diagram of “Runtime increment” that affected by “Words per Line”. 
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Fig 3.5 Block Diagram of “Runtime increment” that affected by “Cache replacement”. 
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Fig 3.6 Block Diagram of “Runtime increment” that affected by “Wakeup Latency”. 

 

From Figure 3.7 to Figure 3.11 show “Energy Requirement” for 6 different 

configurations respectively. 

The formula of “Energy Requirement” is  

Energy Requirement = energy consumption per clock * execution cycle. 
Energy consumption per clock = drowsy bits * C1 + active bits * C2 (C1:C2 = 0.16: 1) 

[4] 
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Fig 3.7 Block Diagram of “Leakage energy reduction” that affected by “BTB insertion” and 

“BBSize field”. 
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Fig 3.8 Block Diagram of “Leakage energy reduction” that affected by “Cache Size”  
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Fig 3.9 Block Diagram of “Leakage energy reduction” that affected by “Words per Line”  
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Fig 3.10 Block Diagram of “Leakage energy reduction” that affected by “Cache 

Replacement”  
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Fig 3.11 Block Diagram of “Leakage energy reduction” that affected by “Wakeup latency”  

 

3.6 Discussion 

3.6.1 Discussion with five evaluation metrics 

According to simulation, the selection of BTB side adopts “All Branch” and “one 

BBSize field per BTB entry”. There is difference between “All Branch” and 

“Taken-Branch only” that is 2 % on “Runtime increment” and 0.4% on “Energy 

Requirement”. But the difference of “BBSize Field” is smaller than the selection of “The 

policy of BTB insertion”. The difference between “one field per BTB entry” and “Two 

fields per BTB entry” that is just 0.2% on “Runtime increment” and 0.03% on “Energy 

Requirement”. 

 

The selection of cache side is not simple. These configurations affect the original 

total execution cycles. For example, there are two selections of Cache size, “Runtime 

increment” and “Energy Requirement”. Considering to “Runtime increment”, cache 
size↘ results “Runtime increment” ↘, so decision is 8K. Considering the “Energy 

Requirement”, the “Energy Requirement” is stable when cache size is over 32K, so 

decision is 32K. 
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About the selection of wakeup time, when the wakeup time is ↗ then both of 

“Runtime increment” and “Energy Requirement” are ↗. So the selection of “Wakeup 

latency” is as small as possible. 

 

3.6.2 Important Considerations and/or Further Improvements 

Consideration 1: Does the pfsDIC design apply to different processor? 

Response: NO. Just only the processor equips “BTB” and “Dynamic Branch Predictor”, 

the pfsDIC design just can apply to it. Because of the pfsDIC predict the next 

discontinuous address that must utilizes the “BTB” and “Dynamic Branch 

Predictor” with additional information of “BBSize”. 

 

Consideration 2: Can the pfsDIC design apply to if the accuracy of BTB is not high 

enough? 

Response: Maybe not. According to experiment results that shows the “Runtime 

Increment” is double of wrong prediction. And the “Runtime increment” is 

already too much now. 

 

Consideration 3: Does the pfsDIC design consider the additional energy consumption of 

whole system due to “Runtime Increment”? 

Response: NO. It will reinforce future.  

 

Consideration 4: Does the pfsDIC design consider the energy consumption of “Access” 

or “Preactivating” instruction cache line? 

Response: NO. It will reinforce future by front end of physic simulation. 

 

Consideration 5: What results the “accuracy loss” of predictive program flow? 

Response: lists as Table3.6. Table3.6 shows that “Changing target branch” is the most 

important affect. 
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Table 3.6 Simulation Results of root cause of wrong prediction 

 

Consideration 6: Does the “BBFIFO” need two element? 

Response: No, there just needs one element (refer to Fig3.12). There list two conditions 

as following: 

1. If the verification is correct, the top element of “BBFIFO” doesn’t need. 

So, there just needs one element for records the information of next 

predictive “Basic Block”. 

2.  If the verification is wrong, the bottom element of “BBFIFO” doesn’t 

need. There just need using the top element of “BBFIO” to update the 

correct “BBSize” according to the prediction of”Dynamic Branch 

Predictor”. 

According above two descriptions, let us to know where can improve the 

element numbers of “BBFIFO” to one element. 
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Fig 3.12 Diagram for using and update “BBsize”  

 

Consideration 7: Does the hit rate of I-Cache affect the design? 

Response: Yes. Because it affects the “Runtime” of “always active I-Cache”, therefore, it 

affect the factor of “Runtime increment” 

The equation of “Runtime increment” = The Execution cycles of proposed design / The 

Execution cycles of Non-Drowsy mechanism 

 

Consideration 8: Is the simulation of pfsDIC instruction-based / cycle-based? 

Response: Cycle-based. Because the experiment results the total “Runtime increment” 

and “Leakage energy consumption” of tracing file, it prove the same tracing 

file results different “Runtime” and “Leakage energy consumption” with 

different configuration.  

 

Consideration 9: How to work of pfsDIC with MMU? 

Response: The pfsDIC just use the “Line offset” field of physical address. The timing is 



 50

same with cache assess. The necessary bits are not related to the operation of 

MMU. Therefore, the pfsDIC can work with MMU. 

 

Consideration 10: Does there any approach to hide the “wakeup latency”? 

Response: “Circuit delay” can be considering, it can be hided into the period of “Cache 

line recharge”. It means that the extra component of I-Cache side, which 

responds to the preactivating operation, can work on PCL_FIFO. 

 

Consideration 11: Does the simulation has the ability of compiler-awaken? 

Response: NO, the simulation is just using the same tracing file to evaluate and generate 

the experiment results. There don’t configure the optimum utilization of 

resource dynamic. It can be proved by removing the “Branch Slot”, therefore, 

there is the delay penalty due to “Data Hazard”. 

 

 



 51

 

Chapter 4 Conclusion and Future work 
 

4.1 Conclusion 

The design offers most lines in “drowsy mode” with stable performance loss. In the 

worth case, 8K cache size and 4-way associated replacement, almost 2/3 lines are drowsy. On 

other condition, less than 4/128 of whole cache lines are drowsy. 

When wakeup time is 1clock, the performance overhead is 11.11%~12.27% (by 

simulation). And the energy reduction is 17.71%~20.28%. 

The evaluation is based on 0,070um process. Therefore, the process is shirking the factor 

of leakage will be more important. Then the leakage will be reduced more much future. 

 

4.2 Future work 

The future works shows as bellows: 

1. Recognize the execution in simple Loop. 

 If “Simple Loop” can recognized that can reduce the repeat recharge energy, 

when the execution in “simple loop”. 

 

2. The idea of “BBSize” also applied on “Return stack”. 

If BTB create one-bit field to indicate the return address that stored in “Return 

Stack”. So, the “return address” is similar with “Fixed target address”. Therefore, 

the “BBSize” still suits to “return address”. For reduce the “Runtime increment”. 

 

3. Simulate more accurate evaluation by Front-end physic simulator of IC-design. 

It is using for generating more accurate parameter of energy consumption. 

4. Evaluate the pfsDIC design consider the additional energy consumption of whole 

system due to “Runtime Increment” 
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5. Evaluate the pfsDIC design consider the energy consumption of “Access” or 

“Preactivating” instruction cache line. 

 

6. Further reinforcement: 

(1) Evaluate the energy of increased logics in the design of pfsDIC. 

Ex: PCL_FIFO, PTA_FIFO, voltage switch each cache line and etc…. 

(2) Evaluate the additional energy of system due to “Runtime increment” of 

pfsDIC. 

This is necessary to evaluate. Because the “Runtime increment” increases 

almost 12%, this additional runtime maybe cause more energy consumption by 

other module in system. 



 53

 

References 
 

[1] J. L. Hennessy and D. A. Patterson, “Computer Architecture - A Quantitative 

Approach”, 3rd ed. Morgan Kaufmann Publishers, 2003. 

[2] P. Petrov, A. Orailoglu, “Low-Power Instruction Bus Encoding for Embedded 

Processors,” in IEEE Transactions on VLSI (TVLSI), July, 2004.  

[3] C. H. Perleberg and A. J. Smith, “Branch target buffer design and optimization,” IEEE 

Transactions on Computers, 42(4), 1993. 

[4] K. Flautner, “Drowsy Cache: Simple Techniques for Reducing Leakage Power,” in 

Proc. The 29th International Symposium on Computer Architecture, 2002. 

[5] N. Kim, “Drowsy Instruction Cache: Leakage Power Reduction using Dynamic 

Voltage Scaling and Cache Sub-bank Prediction,” in Proc. The 35th Annual 

International Symposium on Computer Microarchitecture, 2002 

[6] Yau-Chong Hu and Chung-Ping Chung “Low Power Branch Target Buffer” Master’s 

Thesis, Department of  Computer Science and Information Engineering, Nation 

Chiao-Tung University, Taiwan, R.O.C, June 2003 

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,”MiBrench: A 

Free, Commerially Representative Embedded Benchmark Suite,” Proceedings of the 4 

International Workshop on Workload Characterization, 2001, pp.3-14. 

[8] MIPS Technologies, Inc., “MIPS SDE / MIPS FGT 5.02.02 Programmers’ Guide,” 

February 17, 2003.  

[9] http://quid.hpl.hp.com:9081/cacti/ 



 54

Vita 
 

Kuo-Wei Chou (周國維) 
 
A. Personal History 

Birth place:  Taipei City, Taiwan        Birth date:  May 3, 1975 
Residence:  Hsinchu or PanChiao City, Taiwan 
E-mail address:  nsr500@so-net.net.tw 

 
B.  Educational History 
    1.  PanChiao Senior High School, PanChiao, Taiwan, 1994 (板橋中學) 
    2.  Feng Chia University, Taichung, Taiwan  

Degree: Bachelor of Information Engineering and Computer Science, 2002     
(逢甲大學資訊工程系 91 級) 

3.  National Chiao Tung University, Hsinchu, Taiwan 
Degree: Degree Program of Electrical Engineering and Computer Science College of Computer Science in 

Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science, 

2007 (交通大學電資學院在職專班資訊學程碩士 2007) 

 
C.  Professional Positions 
    1.  Field Application Engineer, Engineer, Senior Engineer in Silicon Integrated Systems 

Corp. (矽統科技) from Sep 2002 to Jun 2007 
 
 
 
 


