
國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

使用粒子群最佳化於高優先權工作排程

Particle Swarm Optimization for High Priority Job

Scheduling

研 究 生：邱文宏

指導教授：孫春在 教授

中 華 民 國 九 十 六 年 六 月

使用粒子群最佳化於高優先權工作排程

Particle Swarm Optimization for High Priority Job

Scheduling

研 究 生：邱文宏 Student：Wen-Hung Chiu

指導教授：孫春在 Advisor：Chuen-Tsat Sun

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

http://dpeecs.nctu.edu.tw/professor/p4.html

使用粒子群最佳化於高優先權工作排程

Abstract in Chinese

研究生：邱文宏 指導教授：孫春在 博士

國 立 交 通 大 學 資 訊 學 院 資 訊 學 程 碩 士 班

摘 要

在半導體廠中為了確保能夠及時完成有高時間性的批貨，便導入

優先權的概念，以達成客戶的特殊需求，在最短的時間內讓產品上

市。雖然高優先權的工作同時也代表較高的利潤，但也同時為半導體

廠設備的生產量帶來不良的影響。在半導體廠中一般的做法是把設備

切換至待機模式，等待高優先權的批貨到達設備輸入端，以減少處理

高優先權批貨的延誤並確保批貨儘快完成處理。但是如此一來設備是

在妥善的狀態卻不能執行工作，設備的使用率便因此降低。半導體廠

設備多半非常昂貴，所以半導體設備的使用率一直都是半導體廠中重

要的課題。

為了提高半導體設備的使用率，我們提出一個適用於半導體設備

工作排程，易於實現，有效而且快速的粒子群最佳化演算法。實驗的

結果顯示這個修改過的方法確實有效率，運算快速而且容易實現。即

使在現階段此方法有條件限制，它的成效是比原本的粒子群最佳化應

用要來得高的，而且在小數量的工作排程上的確效果顯著。

關鍵字：工作排程、人工智能、粒子群最佳化

 - - i

Particle Swarm Optimization for High Priority Job

Scheduling

Student：Wen-Hung Chiu Advisor：Dr. Chuen-Tsat Sun

Degree Program of Computer Science

National Chiao Tung University

Abstract

High Priority Lot is a measure taken in Semiconductor Fabrication manufactory to

ensure on-time delivery of high time-sensitive lots to cope with device maker’s need

for prompt delivery of their high-tech products. Although High Priority Lot can bring

higher profit to the factory, it also has bad influence on equipment throughput. It is

common practice that the equipment is switch to idle mode and waits for the arrival of

High Priority Lot in order to guarantee minimum delay. However, this impacts the

utilization of the equipment, for the equipment is fully functional but doing nothing

while waiting for the High Priority Lot. Manufacturing equipment is extremely

expensive so that maximizing the utilization of the equipment has became an

important topic in semiconductor fabrication manufactory.

In order to improve equipment utilization, we propose a modified PSO application

that is easy to implement, effective and fast in scheduling jobs on semiconductor

 - - ii

equipment by redefining the search space. The results indicate that the method is

efficient, fast and easy to implement. The performance is better than the original PSO

application, especially for job scheduling with small job count, even though there are

limitations in current stage of the research.

Keywords: Job scheduling, Artificial Intelligence, Particle Swarm Optimization

 - - iii

誌 謝

Acknowledgement in Chinese

在美國工作六年，回到台灣後一直渴望能再回學校進修，再次踏入校

園，兩年的日子中，能夠選讀自己感興趣的課目與作研究，內心的感動無

法言喻。

首先誠摯的感謝指導教授 孫春在博士，老師的教導讓我得以進一步瞭

解人工智能的技術，不厭其煩的指點我研究的方向，使得此篇論文能夠順

利完成。同時也要感謝我的論文口試委員 張智星教授與 胡毓志教授，給

予許多寶貴的意見，讓此篇論文的內容更為精確嚴謹。

感謝朝淵學長不時的指出我研究中的缺失，也感謝碧如給了我很多有

用的意見，使得本論文的實驗能夠更完整。也感謝各位同學的幫忙順利修

完這兩年的課程，大家共同學習、討論、趕作業的情景都是我畢生難忘的

經驗。

由衷的感謝我的妻子淑玲在背後默默的支持我，沒有淑玲的體諒、包

容，相信我沒辦法安心的修課跟作研究。也感謝我的兩個兒子品富與品詮

為我忙碌的生活帶來歡樂與喜悅。

最後，感謝我摯愛的雙親 邱火淵及 邱戴彥芬對我的栽培與諄諄教誨。

 - - iv

Acknowledgement in Chinese

Contents
Abstract in Chinese ... i

Abstract .. ii

Acknowledgement in Chinese .. iv

Contents ..v

List of Figures .. vii

List of Tables... viii

Chapter 1 Introduction and Motivation ..1

1.1 Backgrounds..1

1.2 Motivations..3

1.3 Scheduling problems ...5

Chapter 2 Related Works ..8

2.1 Heuristic Algorithm...8

2.2 Genetic Algorithm ...9

2.3 Particle Swarm Optimization for Scheduling Problem...................10

2.4 Comparison between GA and PSO ...12

Chapter 3 One-Dimensional PSO and Experiments.................................14

3.1 Original PSO Approach...14

3.2 Proposed One-Dimensional PSO ..18

3.2.1 Finding all possible permutations ...19

3.2.2 Find the optimal permutation..21

3.2.3 Perform PSO operations ...21

3.3 Fitness function for High priority Lot Scheduling Problem22

3.4 Performance Evaluation ..24

Chapter 4 Results ..26

 - - v

4.1 Fitness Distributions..26

4.2 Search Result Distributions...29

4.3 Convergence Trend..31

4.4 Success Rate ..33

4.5 Computational Cost Evaluations...34

Chapter 5 Conclusions and Future Works ..38

References...41

Appendix A: Job Sets Used for Experiments ...44

Appendix B: 9 Jobs Search Results ..47

Appendix C: 8 Jobs Converge Trend Data ...49

Vita ..51

 - - vi

List of Figures

FIGURE 1-1 FACTORY OUTPUT IMPACT BY HIGH PRIORITY LOT....................2

FIGURE 1-2 INSERTING PRIORITY JOBS...4

FIGURE 1-3 SCHEDULES WITH HIGH PRIORITY LOT6

FIGURE 2-1 FLOW DIAGRAM OF GENETIC ALGORITHM..............................10

FIGURE 3-1 RESULTS OF DIFFERENT LOCATIONS...15

FIGURE 3-2 CALCULATION OF PARTICLE VECTORS......................................17

FIGURE 3-3 FLOW DIAGRAM OF PARTICLE SWARM OPTIMIZATION.............18

FIGURE 3-4 SEARCH SPACE OF ONE DIMENSION PSO................................22

FIGURE 4-1 TWO-DIMENSIONAL SEARCH SPACE EXAMPLE26

FIGURE 4-2 ONE-DIMENSIONAL SEARCH SPACE..27

FIGURE 4-3 ONE-DIMENSIONAL SEARCH SPACE WITH PRE-CALCULATED

PERMUTATIONS ..28

FIGURE 4-4 ONE-DIMENSIONAL SEARCH SPACE WITH RUNTIME-CALCULATED

PERMUTATIONS ..29

FIGURE 4-5 SEARCH RESULT DISTRIBUTIONS OF ORIGINAL PSO (9 JOBS) .30

FIGURE 4-6 FITNESS DISTRIBUTIONS OF ONE-DIMENSIONAL PSO (9 JOBS)

..31

FIGURE 4-7 CONVERGENCE TREND (8 JOBS) ...32

FIGURE 4-8 COMPARISON OF COMPUTATIONAL COST36

 - - vii

List of Tables

TABLE 2-1 COMPARISONS BETWEEN PSO AND GA12

TABLE 3-1 SAMPLE JOB RANKINGS (5 JOBS)..15

TABLE 3-2 SAMPLE PERMUTATIONS (4 JOBS)...21

TABLE 4-1 SUCCESS RATE..33

TABLE 4-2 COMPUTATIONAL COST FOR CALCULATING 5,100 ITERATIONS.35

TABLE 4-3 TIME COMPLEXITY OF EACH CALCULATION..............................37

 - - viii

Chapter 1 Introduction and Motivation

1.1 Backgrounds

As the competitions in high-tech products grow, it is important to bring the

products to the buyers in the shortest period of time. In order to cope with device

maker’s need for fast delivery, lot priority was introduced to semiconductor

fabrication manufactories [1][2][3].

High Priority Lot has been an important topic in semiconductor manufacturing

as these lots have higher priorities than other lots and will impact the performance of

individual semiconductor equipments and the whole semiconductor fabrication

manufactory. HPL (High Priority Lots) impacts equipments since the equipment

usually waits for the arrival of HPL. As a result, the performance of the whole

factory is degraded as shown in Figure 1-1 [1].

 - - 1

Factory Output Impact

86

88

90

92

94

96

98

100

102

1 2 3 4 5

Number of High Priority Lot

O
ut

pu
t%

Baseline Factory Output

Output with High Priority Lot

Figure 1-1 Factory output impact by High Priority Lot

Equipment task scheduling becomes an active research area in hope to improve

the performance of a semiconductor manufactory [1][4][5]. In this thesis, we will

discuss how to improve the performance of individual equipment and attempt to

help to relief the performance impact caused by inserting High Priority Lots.

 - - 2

1.2 Motivations

Taking the wet bench (chemical bath) equipment as an example, the equipment

is often composed of several processing modules, at least one Front Opening

Unified Pod (FOUP) input/output unit and an internal buffer for storing FOUPs to

be processed. The processing modules contain different types of chemical liquid

(pure or mixed) or de-ionized water. The wafers are usually taken out of the FOUP

and dipped in different chemicals and/or dried depending on selected recipes. The

wafers can stay in a bath, the containers that contain the chemical liquid, for

different length of time up to tens of minutes. In normal practice, the lots are

processed in a First-Come-First-Serve (FCFS) order since it is the simplest way to

implement a scheduler. High Priority Lots (HPL), on the other hand, has the highest

priority and usually causing the equipment to stop processing non-priority jobs.

When the equipment is expecting a HPL, it may be placed in idle mode for hours

and waits for the arrival of HPL. When the HPL arrives, the equipment will then

serve the HPL first before continuing to serve the non-priority lots, as shown in

Figure 1-2.

 - - 3

Figure 1-2 Inserting Priority Jobs

This is done to ensure that HPL will be processed as soon as it arrives at the

equipment, as it is the simplest way and with lowest cost for equipment

implementation. However the velocity of none-priority lots are affected [1]. There

are also other factors that contribute to the decrease of equipment throughput, such

as scheduled down/maintenance time, but are not discussed in this paper. The length

of idle time waiting for HPL will make the throughput of the equipment degrade

dramatically as the equipment is fully functional but cannot be used to process any

wafers while waiting.

In order to reduce the effect of throughput degradation, we can attempt to

process jobs while the equipment is waiting for the arrival of Supper Hot Lot. If we

 - - 4

can send HPL related information, such as estimated arrival time or latest finish time,

to the equipment through factory automation host using messages defined in SEMI

standards [6][7], then we may be able to have some non-priority jobs to be

processed before HPL arrives as long as it does not cause delays on the finish time

of HPL. This not only requires in depth knowledge of the manufacturing processes

but also an easy to implement and efficient scheduler with acceptable performance

for the respective equipments to achieve optimal utilization.

1.3 Scheduling problems

A scheduler decides the order of lots to be processed. Two different schedules

may result in different total process time. However, the fitness of a schedule not only

depends on the total process time but also needs to take the process end time of High

Priority Lots into consideration since we get penalties if the High Priority Lot does

not finish by the expected deadline, as shown in Figure 1-3.

 - - 5

Figure 1-3 Schedules with High Priority Lot

The top schedule has a longer total process time but the High Priority Lot (A) is

finished 23s after the process starts. In the other schedule, the High Priority Lot is

finished 30s after the process starts, which may be a problem if the deadline for

High Priority Lot is between 23s and 30s even though the schedule has a shorter

total process time.

As numbers of unprocessed job increases, it becomes more difficult for the

scheduler to find the optimal solution/permutation that has the shortest total process

time or best fitness since the possible permutations of the jobs increase exponentially,

 - - 6

which sometimes make doing an exhaustive search computationally impossible [8].

This is classified as a NP-Hard problem (Stephen A. Cook, 1971) [9].

There are different methodologies that can be applied to find solutions to a

scheduling problem. For example, Genetic Algorithm (GA), Swarm Intelligence (SI)

and even Knowledge based system methods. Most of these methods attempt to find

an “acceptable” solution instead of the optimal solution, as the search space is often

too large to be searched thoroughly. Most of the time, a budget (fixed period of time

or fixed number of iterations) is defined to be used before the calculation converges

and just settle for the best solution found in the process. In order to cope with the

need for a simple, fast and efficient scheduler for semiconductor equipment, we

introduce a modified Particle Swam Optimization method that is well suited for

small to mid size job number on semiconductor equipment. In Chapter 2, related

works on solving scheduling problems are introduced. Chapter 3 presents the

proposed method, a one-dimensional PSO search. The experiments are described in

Chapter 4 and the conclusions and future works in Chapter 5.

 - - 7

Chapter 2 Related Works

Scheduling is a complex problem that we encounter in semiconductor

fabrication factories everyday. Various methodologies are used in an attempt to look

for the optimal solution. Among these methods, Genetic Algorithm (GA) [10][11]

and Swarm Intelligence methods [12][13][14], each has its’ advantages and

disadvantages. We will introduce and discuss these methods in this chapter.

2.1 Heuristic Algorithm

Heuristic algorithm is a methodology that has been proven to find a near

optimum solution in a reasonable time. It searches down the path of a search tree

and determines the distance to the initial state during the progress and attempts to

estimate the distance between the goal and current state using the heuristic functions

in order to improve its searching efficiency. It is often used in semiconductor

manufactories for lot scheduling due to its efficiency in calculation [15]. Sometimes

simplified logical rules, that are designed closely related to the factory operation, are

used in order to reduce the complexity.

 - - 8

2.2 Genetic Algorithm

Genetic Algorithm was invented in 1970 based on the theory of evolutions and

genetics of life forms. Inheritance and crossover of parent solutions creates new

generations. Since the good genes survive and bad ones will be eliminated through

competition, the descendents usually produce better fitness. However, this method

tends to converge with local optimum. Mutation of the genes ensures diversity of

child generations. Thus we have a better chance in evolving to a better (if not the

best) solution. Typically a solution is presented as a bit array. Depends on the nature

of the problem a fitness function (sometimes called a cost function) is defined to

compare the solutions quantitatively [16]. In typical implementation of GA for

scheduling problem, we use a string consists of all job IDs to represent a solution.

The order of jobs in the string indicates the order in which the jobs will be

processed.

Initial population is generated randomly. Parents are selected and perform

crossover to generate the next generation. Mutations are conducted randomly to

diversify the new population. The process is shown in Figure 2-1.

 - - 9

Calculate fitness for each individul

Optimal Solution
has been found

Perform Selections
Select individuals with good fitness

YesNo

Output Iteration Count

Generate Initial Populations

Perform Mutation
Create New individuals

Perform Crossover
Create New individuals

Replace bad individuals

Figure 2-1 Flow Diagram of Genetic Algorithm

2.3 Particle Swarm Optimization for Scheduling Problem

Particle Swarm Optimization is one of Swarm Intelligence methods. It was

 - - 10

introduced by J. Kennedy and R. Eberhart in 1995 [17][18]. The methodology has

been proven to be successful in solving optimization problems on various

continuous functions [19]. The idea was inspired by observing the foraging of bird

flocks. The behavior of an individual in a swarm not only depends on its own

knowledge but also affected by the behavior or knowledge of other individuals in the

swarm. For example, when one individual in the swarm or herd finds food in its path,

the others will head toward that direction even if they don’t previously have the

knowledge of that location. Also, other entities in the swarm do not simply head for

the location that has food. It is common that they often veer off the path randomly

and find food elsewhere. This also ensures that other locations in the search space

are randomly searched.

When modeling such a swarm, particles are introduced to represent an

individual in the swarm. A random location is selected and assigned to each particle.

A fitness function is defined to evaluate the solutions represented by these locations.

Each particle has an initial speed in each dimension of the search space. The

particles then move in the space base on the memory of its own experience on

best-known location and the swarm’s best-known location.

 - - 11

Similar to mutation that is used in GA a random factor is introduced in deciding

the movement of a particle. It is important as it diversify the swarm. The fitness is

calculated for the new locations and then new vectors and directions are calculated

for each particle.

2.4 Comparison between GA and PSO

GA and PSO have very different features and behavior. Table 2-1 gives a list of

the differences between GA and PSO.

Table 2-1 Comparisons between PSO and GA

 PSO GA

Search Space Continuous Discrete

Survival All Particles Survives Fittest Population

Knowledge on past results pbest and gbest Parents

Searching Behavior Directional Omnidirectional

Diversity Random Coefficients Mutation

The two methodologies look fairly similar in some ways. They both preserve

 - - 12

the good results and have a way to diversify the population. PSO has a very obvious

direction in its searching process. It is moving toward the past locations with best

solutions. GA seems to be searching in all direction. It is mainly because the search

space is discrete and it is the nature of the methodology.

GA has a discrete search space that no close relationship associated between

different solutions. PSO implementation has a continuous search space and

neighboring permutations usually have similar fitness.

Another big difference is survival of entities in the population. Solutions in the

population with better fitness are selected to generate new generations while others

are retired from the population. Unlike GA, all particles in PSO will survive and live

until the end of the process.

 - - 13

Chapter 3 One-Dimensional PSO and

Experiments

In this chapter we will introduce the proposed method, a modified PSO

application. In order to evaluate the performance of the proposed method, we will

attempt to find the optimal solutions using the simulators with original PSO

application. We will discuss how different methodologies are implemented and how

experiments are done. The job sets used in the experiments are created randomly as

shown in Appendix A.

3.1 Original PSO Approach

In practical PSO implementation for scheduling problems, each job in the job

pool is represented as a dimension. A position of a particle consists of one parameter

(rank) for each dimension; here is an example in Table 3-1.

 - - 14

Table 3-1 Sample Job Rankings (5 Jobs)

Job ID A B C D E

Parameter Value 0.22 2.83 1.68 0.15 3.57

Job Order 2 4 3 1 5

Base on the ranks of the dimensions, an order is decided and the fitness can be

calculated. However, different locations in the search space may present the same

solution as shown in Figure 3-1.

Figure 3-1 Results of different locations

 - - 15

We use a string consists of all job ID to present a solution and each location in

the search space presents one solution. The order of jobs in the string indicates the

order in which the jobs will be processed. Initial positions for a fixed number of

particles are selected randomly and the fitness of these positions is calculated.

The vector of each dimension of a particle is then calculated with current

position , the best-known position in the swarm , best-known position of

particle , acceleration coefficients and , the inertia factor and random

numbers and using equation (1), and equation (2) calculates the

new position:

idV

idx gdp

idp 1c 2c w

1 2Rand Rand

(2)

(1))(())(() 2211

ididid

idgdidididid

Vxx

xpRandcxpRandcVwV

+=

−××+−××+×=

Figure 3-2 shows how the new vector is composed. This process is performed

for each dimension that define the position of a particle.

 - - 16

Figure 3-2 Calculation of particle vectors

In order to simplify the experiment and focus on the differences between the

original and the modified methods, we set to constant 1 for both methods and C1

and C2 are set to 2.05 as recommended by previous study [21].

w

The process is repeated until the criteria for termination is met. The flow

diagram is shown in Figure 3-3.

 - - 17

Initialize
Seed Particles

Calculate fitness and Update
pbest and gbest

Criteria for termination
is met

Calculate Particle velocity and
direction using PSO operations

Update Particle Locations

Yes

No

Output gbest

Figure 3-3 Flow Diagram of Particle Swarm Optimization

3.2 Proposed One-Dimensional PSO

In semiconductor fabrication manufactories, we usually do not assign a large

amount of jobs to an equipment at a time. In the case of wet-bench equipment, the

typical maximum jobs allowed ranges from 8 to 18 jobs depending on the size of the

buffer area. There are 10 buffer locations in the equipment that we are using as a

model for the experiment. In order to increase the equipment utilization, a fast and

 - - 18

reliable scheduler is needed to quickly find the best or optimal schedule. We propose

a modified Particle Swarm Optimization method to be used on the equipment in

order to find the best or acceptable schedule in a simple and less time consuming

(comparing with the original PSO method) fashion. The process for calculating the

next position for particles is similar to original PSO except that the search space is

converted from a N-dimensional space to a one-dimensional space.

3.2.1 Finding all possible permutations

Instead of using rankings for each job, we use an index to represent a

permutation. The permutations of all jobs are determined in advance and lined up to

form a one-dimensional space. The permutations can be pre-calculated or calculated

at runtime. It is designed so that the adjacent permutations have somewhat similar

fitness in order for the PSO search to be most effective.

Simply use a recursive function to generate all the permutations. Every

permutation is unique and only differs from the neighboring permutations on two

job positions as shown in Table 3-2. However, it becomes time consuming and

requires lots of space to store the permutations when the job count gets bigger.

Bellow is the pseudo code for generating the permutations:

 - - 19

GeneratePermutations()

{

 Initialize Job IDs;

 Compose the first permutation;

 reset used JobID count to 0;

 Call DoChild(Initial Job permutation, 0)

}

DoChild(JobStr, Used JobID Count)

{

 For each JobIDs that is unused

{

 If only one unused JobID left then

 Output the resulted permutation

 Else

 {

 Set next JobID in string as used

 Call DoChild(JobStr, used JobID count +1)

 If found the position of next unsed JobID then

 Swap next JobID with the used JobID

 }

}

}

 - - 20

Table 3-2 Sample Permutations (4 Jobs)

Index Permutation Index Permutation Index Permutation Index Permutation

1 ABCD 7 CABD 13 BCAD 19 DACB

2 ABDC 8 CADB 14 BCDA 20 DABC

3 ADBC 9 CDAB 15 BDCA 21 DBAC

4 ADCB 10 CDBA 16 BDAC 22 DBCA

5 ACDB 11 CBDA 17 BADC 23 DCBA

6 ACBD 12 CBAD 18 BACD 24 DCAB

3.2.2 Find the optimal permutation

In order to evaluate the performance and success rate of each method, we also

calculate the fitness for every single solutions/permutations using brute force

method. Similar to generating all possible permutations, this again can be very time

consuming when job count gets bigger and bigger. We will do up to 10 jobs in the

experiments.

3.2.3 Perform PSO operations

Once the permutations are created and lined up to form a line, we can deploy

PSO operations in the new search space. As shown in Figure 3-4, basically, we are

 - - 21

now searching in a one-dimensional space instead of the N-dimensional continuous

space in the original PSO method [12]. We search the space for optimal solution for

a fixed number of iterations and evaluate the performance of each method.

Figure 3-4 Search Space of One Dimension PSO

Based on previous study [21], the recommended particle size is 30 particles for

general purpose. We initialize 30 particles and calculate the vectors of the particles

with recommended factors.

3.3 Fitness function for High priority Lot Scheduling Problem

Fitness function is the major difference that distinguishes High Priority Lot

(HPL) scheduling from other scheduling problems. When HPL is involved, we not

 - - 22

only need to consider the total process time but also the finish time of HPL. Since

the fitness function varies depends on different preferences of the implementations,

we had designed a fitness function that combines total process time and delay time

of HPL. Because the delay of HPL will result in penalties, we multiply the HPL

delay time by 3, and use the sum of the weighted delay time and total process time

as new fitness, if HPL is overdue in a solution. This may not necessary reflect the

real life factory practice but gives a taste of how these factors are taken into

consideration and how they affect the resulted fitness.

The fitness function is described as follows: Each of the n jobs has m steps and.

The processing time of jth step of ith job is given as Pi,j. The completion time jth

step of job i is denoted as C(i,j). Assume all steps use different equipment resources

so that the equipment can simultaneously process m steps. The following equations

(1)(2) denotes the fitness function similar to [14]:

{ }
),(

)6()1,(),,1(max),(
)5()1,1(),1(
)4()1,1()1,(
)3(,)1,1(

,,2;,,2

,

,1

1,

11

mnCFitness
PkiCkiCkiC

PkiCkC
PiCiC

PC
mkni

ki

k

i

=

+−−=

+−−=

+−=
=

== KK

 - - 23

In order to take into account the effect of delay on HPL, the fitness function

needs to be further adjusted. Assuming the 3rd job is HPL and deadline is twice the

shortest completion time of the HPL and the penalty for delay is the length of the

delay times 5. The adjusted fitness function is denoted as follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧

×>×−×+

×<=
=

∑∑

∑

==

=
k

j
j

k

j
j

k

j
j

PmCifPmCmnC

PmCifmnC
Fitness

1
,3

1
,3

1
,3

2),3(,)2),3((5),(

2),3(,),(

3.4 Performance Evaluation

The performance and behavior of the proposed methodology is evaluated under

the following conditions:

 3~10 jobs are randomly generated.

 Each job has three steps with randomly generated processing time.

A test run consists of initiations of particles, 20 iterations of PSO operations

(particle movements). The test is repeated 10000 times and the following

characteristics are analyzed.

 - - 24

 Permutation Fitness Distribution

 Search Result Distributions

 Convergence Speed

 Success Rate

 Computational Cost

 - - 25

Chapter 4 Results

4.1 Fitness Distributions

When applied to batch processing scheduling, the original Particle Swarm

Optimization is searching in a N-dimensional space, where N is the number of jobs

to be scheduled. This creates a big search space and results in multiple particle

locations representing the same solution. As shown in Figure 4-1, is an example of a

two-dimensional search space [22].

Figure 4-1 Two-dimensional search space example

The proposed method searches in a one-dimensional search space as shown in

 - - 26

Figure 4-2. In this example, there are 5 jobs to be scheduled and assumes no High

Priority Lot. There are total of 120 different permutations.

5 Job Fitness Distributions without High Priority Lot

0

100

200

300

400

500

600

1 11 21 31 41 51 61 71 81 91 101 111

Permutation Index

F
it

ne
ss

 (
se

c)

Figure 4-2 One-dimensional search space

A one-dimensional search space has many advantages including a finite

discrete search space, unique permutation per location. For a particle in a

one-dimensional PSO search, it is likely to engage more local optimum than in the

original PSO. While local optima are also candidates of the global optimum, it

appears that one-dimensional PSO has a better chance of finding the global

 - - 27

optimum.

When High Priority Lot is introduced to the job set, the distributions of the

fitness becomes less smooth creating more hills as shown in Figure 4-3. This affects

the search spaces for both original PSO and the proposed method.

5 Job Fitness Distributions with High Priority Lot
(Pre-Calculated Permutations)

0

500

1000

1500

2000

2500

1 11 21 31 41 51 61 71 81 91 101 111

Permutation Index

F
it

ne
ss

 (
se

c)

Figure 4-3 One-dimensional search space with pre-calculated permutations

The permutations can also be created at runtime. However, the permutations

created by this approach, as shown in Figure 4-4, do not line up as well as the

permutations created using pre-calculated method so it appears to have created more

 - - 28

humps than the pre-calculated permutation set.

5 Job Fitness Distributions with High Priority Lot
(Permutation Calculated at Runtime)

0

500

1000

1500

2000

2500

1 11 21 31 41 51 61 71 81 91 101 111

Permutation Index

F
it

ne
ss

 (
se

c)

Figure 4-4 One-dimensional search space with runtime-calculated permutations

4.2 Search Result Distributions

Next we will analyze the distribution of the search results of the methods. The

data is collected using the job set of 9 jobs case after 255 repetitions (see Appendix

B for data set). The distributions of the search result will also show the differences

between the methods. As shown in Figure 4-5, the original PSO converges more

concentrated at 566 (over 200 hits).

 - - 29

Figure 4-5 Search Result distributions of Original PSO (9 Jobs)

One-dimensional PSO has a more scattered distribution and, in this particular

case, it is able to find the global optimum fitness (562) as shown in Figure 4-6. This

seems to imply that one-dimensional PSO searched a wider area in the search space

thus better chance of finding the global optimum.

 - - 30

Figure 4-6 Fitness distributions of One-Dimensional PSO (9 Jobs)

4.3 Convergence Trend

The convergence trend is difficult to evaluate as it highly depends on the initial

locations of the particles. There are also researches in this area [23]. In this thesis,

we collected data that use the job set of 8 jobs case. We handpicked data where all

three methods have similar fitness at initialization, as shown in Appendix C. An

example is shown in Figure 4-7. (One-dimensional PSO uses pre-calculated and

One-dimensional PSO II uses runtime-calculated permutation set.) We found that the

original PSO tend to converge faster than one-dimensional PSO and the two

 - - 31

one-dimensional PSO methods has similar converge characteristics.

Converge Trend

460

465

470

475

480

485

490

495

500

505

1 5 9 13 17 21 25 29 33 37 41 45 49

Repetition Index

B
es

t F
itn

es
s (

se
c)

One-Dimensional PSO

One-Dimensional PSO
II

Figure 4-7 Convergence Trend (8 Jobs)

However, slower convergence speed is not necessarily bad. In fact, this is

consistent with our earlier findings. The original PSO converges faster since there

are less local optimums in the moving path of a particle. The one-dimensional PSO

has a finite discrete search space without duplicated permutations so a particle

engages more local optimums as they move toward the target. That is why the

 - - 32

one-dimensional PSO appears to have a slower convergence speed.

4.4 Success Rate

Success rate is an important indication of the performance of a method. We ran

each method for 10,000 repetitions and calculate the success rate by dividing the

number of times global optimum found by the number of repetitions (10,000). The

results are shown in Table 4-1.

Table 4-1 Success Rate

Job Count
N-Dimensional

(Original)
1-Dimensional

(Pre-calculated)
1-Dimensional

(Runtime)

3 100% 100% 100%

4 99.6% 100% 100%

5 97.8% 99.4% 99.2%

6 93.0% 93.4% 99.0%

7 32.4% 29.7% 45.2%

8 5.2% 1.6% 2.8%

9 0.09% 0.16% 0.15%

10 0.26% 0.13% 0.29%

 - - 33

As the results show, the success rate start to fall when there are four jobs in the

job pool when using original N-dimensional PSO. One-dimensional PSO still have

99% success rate when there are 6 jobs. Also one-dimensional PSO has better

success rates in almost all cases tested. The interesting thing is that, at eight jobs,

N-dimensional PSO outperforms one-dimensional PSO. We believe that this is an

example the shows that location of global optimum does effect the success rate.

Original N-dimensional PSO will have advantage over one-dimensional PSO if the

global optimum is located near the center of the search space.

4.5 Computational Cost Evaluations

We also calculated the time spent for performing same amount of iterations

using different methodologies. Computational cost here is defined by the time

duration for calculating 5,100 iterations (255 repetitions) of each method on the

same computer, as shown in Table 4-2.

 - - 34

Table 4-2 Computational Cost for Calculating 5,100 Iterations

Job Count 3 4 5 6 7 8 9 10

1-D PSO (sec) 3.5 4.6 3.5 5.8 5.8 5.8 6.9 6.9

1-D PSO II (sec) 4.6 4.6 6.9 5.8 8.1 8.1 9.3 10.4

Original PSO (sec) 5.8 6.9 9.3 11.6 12.7 13.9 16.2 18.5

The differences may look insignificant when the job count is small. As the job

count increases to 10, the cost for original PSO is almost twice the cost of

one-dimensional PSO using runtime-calculated permutation and is over 2.5 times

the cost of one-dimensional PSO using pre-calculated permutation as shown in

Figure 4-8.

 - - 35

Time Duration for Calculating 5,100 Iterations

0

2

4

6

8

10

12

14

16

18

20

D
ur

at
io

n
(s

ec
)

One-Dimensional PSO One-Dimensional PSO II Original PSO

By analy

difficult to rea

The calculatio

Calculation an

1 2 3 4 5 6 7 83 4 5 6 7 8 9 10
Job Count

Figure 4-8 Comparison of Computational Cost

zing the time complexity of each operation during the process, it is not

lize why one-dimensional PSO will outperform N-dimensional PSO.

ns are separated into three phases: Generation of Permutation, Fitness

d Location Change for analysis as shown in Table 4-3.

- - 36

Table 4-3 Time Complexity of each Calculation

Calculations
N-Dimensional

(Original)
1-Dimensional

(Pre-Calculated)
1-Dimensional

(Runtime)

Permutation O (N log N) O (1) O (N)

Fitness O (N) O (N) O (N)

Location O (N) O (1) O (1)

The cost for fitness calculating depends on number of jobs in the job pool. It

makes no difference between different approaches.

For N-dimensional PSO, sorting algorithm is required to sort the job ranks in

order to generate a permutation. In this thesis, we select quick sort for sorting the

values and the time complexity of quick sort is O (N log N). One-dimensional PSO

does not require sorting. The time complexity is a constant if the permutation is

previously calculated and O (N) if calculated at runtime.

As for calculating new particle location, since the location of a particle is fixed

by N dimensions in original PSO application, the PSO particle movement operations

need to be performed N times while we only do it one time when one-dimensional

PSO is used.

 - - 37

Chapter 5 Conclusions and Future Works

The goal of this research is to find a methodology that is designed to fit the

need of a semiconductor equipment scheduler. As a result of the experiments, we

found that the proposed method has very good performance for scheduling job

numbers range between 3 and 10. It is capable of finding the global optimum

quickly and efficiently. It has a better success rate than the original PSO in tested

cases.

As the job count gets bigger, the method that uses pre-calculated permutations

starts to show its limitation. The resources required for storing the permutations

increase exponentially and may be impossible to store all possible permutations.

Using runtime-calculated permutations will help relief the problem with slightly

decreased performance.

There are lots of differences between one-dimensional PSO and the original

PSO in terms of the behavior and performance. Performance-wise, one-dimensional

PSO has advantage over original PSO as it uses only simple calculation to create the

permutation, while original PSO requires a sorting mechanism, which is

 - - 38

computationally expensive to sort the rankings of each job in order to create the

permutation. Furthermore, the time for calculating the schedule increases

dramatically as job count grows.

The behaviors of the methods are also very different. By looking at the

converging trend, it looks as if original PSO is converging quickly and much faster

than the method proposed. However, the true meaning is that, using proposed

method, we are able to search the search space more thoroughly as the search space

has been reduced to a finite discrete space without duplicated permutations. This

enables us to find more local optimums. In other words, it is more likely to find the

global optimum. Each method has its advantage and is up to the user to choose

between possibilities of finding global optimum or shorter converging time.

There are a few areas that we can further study. The method that we used to

generate permutations is not the only method. We believe that there are other

methods for creating the permutation set. We may be able to find a better function

for constructing a search space with smoother fitness distribution line and resulting

in better search results. We believe that optimizing the particle initializations and

changing number of iterations can also improve the success rate.

 - - 39

It is obvious that the one-dimensional PSO is suitable for combinatorial

problems. Since we have converted the search space to a one-dimensional search

space, we may be able to apply one-dimensional optimization methodologies to

solve the scheduling problem more efficiently. These are works that we believe to be

worth further exploration.

 - - 40

References

[1] Chad D. DeJong and Scott P. Wu, “Simulating the Transport and Scheduling of

Priority Lots in Semiconductor Factories”, Proceedings of the 34th Winter

Simulation Conference, Session: Semiconductor Manufacturing, pp. 1387-1391,

2002.

[2] Linda F. Atherton and Robert W. Atherton, Wafer Fabrication: Factory

Performance and Analysis, Kluwer Academic Publishers, 1995.

[3] Russ M. Dabbas and John W. Fowler, “A New Scheduling Approach Using

Combined Dispatching Criteria in Wafer Fabs”, IEEE Trans. On Semiconductor

Manufacturing, Vol.16, No.3, pp.501-510, August 2003.

[4] Mike Hillis and Jennifer Robinson, “Extremely Hot Lots: Super-Expediting in a

0.18 Micron Wafer Fab”, Proceedings of the MASM Conference, 2002.

[5] Asbjoern M. Bonvik, “Estimating the Lead Time Distribution of Priority Lots in

a Semiconductor Factory”, Operations Research Center Working Papers,

Massachusetts Institute of Technology, Operations Research Center, May 1994.

[6] SEMI E40-0304 Standard for Processing Management, Semiconductor

Equipment and Material International Equipment Automation Software

Standards, 2004.

[7] SEMI E94-0702 Provisional Specification for Control Job Management,

Semiconductor Equipment and Material International Equipment Automation

Software Standards, 2004.

[8] Krithi Ramaritham, John A. Stankovic, and Perng-Fei Shiah, “Efficient

Scheduling Algorithm for Real-Time Multiprocessor Systems”, IEEE Trans. On

Parallel and Distributed Systems, Vol.1, No.2, pp.184-194, April, 1990.

 - - 41

[9] Gorey, M.R. and Johnson, D.S., “Computers and Intractability-A Guide to

Theory of NP-Completeness”, Freeman and Company, 1979.

[10] Kyung-Mi Lee and Takeshi Yamakawa, “A Genetic Algorithm for General

Machine Scheduling Problems”, In Proceedings of the 2nd. International

Conference on Knowledge-Based Intelligent Electronic Systems, April 1998.

[11] Wu Ying and Li Bin, “Job-Shop Scheduling using Genetic Algorithm”, In

Proceedings of the 3rd International Conference on Signal Processing, Vol.2,

No.8, pp.1441-1444, October 1996.

[12] M. Fatih Tasgetiren, Mehmet Sevkli, Yun-Chia Liang and Gunes Gencyilmaz,

“Particle Swarm Optimization Algorithm for Permutation Flowshop Sequencing

Problem”, Lecture Notes in Computer Science, vol. 3172, Springer-Verlag, pp.

382-390, 2004.

[13] Lei Zhang, “Application of Particle Swarm Optimization on Batch Process

Scheduling”, In Proceedings of the 43rd annual ACM Southeast regional

conference, Vol.1, pp.155-156, 2005.

[14] Daniel Merkle and Martin Middendorf, “On Solving Permutation Scheduling

Problems with Ant Colony Optimization”, International Journal of Systems

Science, Vol. 36, Issue 5, pp. 255-266, April 2005.

[15] Chandrasekharan Rajendran and Hans Ziegler, “An Efficient Heuristic for

Scheduling in a Flowshop to Minimize Total Weighted Flowtime of jobs”,

European Journal of Operational Research, vol. 103, No. 1, pp. 129-138, 16

November 1997.

[16] Albert Y. Zomaya, Chris Ward, and Ben Macey, “Genetic Scheduling for

Parallel Processor Systems: Comparative Studies and Performance Issues”,

IEEE Trans. On Parallel and Distributed Systems, Vol.10, No.8, pp.795-812,

August 1999.

 - - 42

http://www.informaworld.com/smpp/title~content=t713697751~db=all
http://www.informaworld.com/smpp/title~content=t713697751~db=all

[17] James Kennedy and Russell C. Eberhart, “Particle Swarm Optimization”, In

Proceedings of IEEE International Conference on Neural Networks (ICNN’95),

Vol. IV, 1995, Piscataway, NJ., pp. 1942-1948, 1995.

[18] Russell C. Eberhart and James Kennedy, “A New Optimizer Using Particle

Swarm Theory”, In Proceedings of the 6th International Symposium On Micro

Machine and Human Science, October 1995.

[19] Maurice Clerc and James Kennedy, “The Particle Swarm – Explosion, Stability,

and Convergence in a Multidimensional Complex Space”, IEEE Transactions

on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73, February 2002.

[20] Russell C. Eberhart and Yuhui Shi, “Comparison between Genetic Algorithm

and Particle Swarm Optimization [A]”, Evolutionary Programming VII: In

Proceeding of the Seventh Annual Conf. on Evolutionary Programming[C].

Page 611-618, San Diego, CA, 1998.

[21] Anthony Carlisle, Gerry Dozier, “An Off-The-Shelf PSO”, Proceedings of the

Particle Swarm Optimization Workshop, Page 1-6, 2001.

[22] Y.M. Huang, “Particle Swarm Optimization”, http://www.easyLearn.org,

Department of Engineering Science, National Cheng Kung University, April

2007.

[23] Ioan Christian Trelea, “The particle swarm optimization algorithm:

Convergence Analysis and Parameter Selection”, Information Processing

Letters, Vol. 85, Issue. 6, pp. 317-325, Elsevier Science, March 2003.

 - - 43

http://www.easylearn.org/

Appendix A: Job Sets Used for Experiments

3 Jobs case:

Step Job
Number 1 2 3

1 11 99 67
2 11 11 79
3 30 38 30

4 Jobs case:

Step Job
Number 1 2 3

1 40 28 17
2 41 41 71
3 21 19 58
4 90 27 78

5 Jobs case:

Step Job
Number 1 2 3

1 91 63 63
2 56 69 91
3 54 91 43
4 51 46 36
5 6 25 97

6 Jobs case:

Step Job
Number 1 2 3

1 37 49 16
2 63 54 16
3 51 39 12
4 75 59 83
5 8 11 34
6 54 65 54

 - - 44

7 Jobs case:
Step Job

Number 1 2 3
1 20 68 46
2 70 92 53
3 40 46 49
4 10 59 18
5 44 28 87
6 67 26 10
7 78 30 24

8 Jobs case:

Step Job
Number 1 2 3

1 34 5 48
2 59 75 92
3 9 63 41
4 91 62 35
5 23 98 14
6 55 91 54
7 82 67 72
8 50 41 69

9 Jobs case:

Step Job
Number 1 2 3

1 40 90 74
2 71 3 43
3 98 80 69
4 28 36 43
5 64 35 11
6 43 95 54
7 22 38 40
8 15 52 96
9 65 44 69

 - - 45

10 Jobs case:
Step Job

Number 1 2 3
1 40 90 74
2 71 3 43
3 98 80 69
4 28 36 43
5 64 35 11
6 43 95 54
7 22 38 40
8 15 552 96
9 65 44 69
10 70 50 16

 - - 46

Appendix B: 9 Jobs Search Results

Fitness Fitness Fitness Fitness Fitness Run

No. 1D Org

Run

No. 1D Org

Run

No. 1D Org

Run

No. 1D Org

Run

No. 1D Org

1 566 571 52 580 564 103 566 566 154 566 566 205 594 566

2 566 566 53 566 566 104 572 566 155 566 566 206 572 566

3 566 565 54 572 566 105 566 565 156 578 566 207 566 566

4 591 566 55 582 566 106 566 566 157 566 564 208 566 566

5 566 566 56 564 564 107 566 566 158 566 566 209 566 566

6 566 566 57 570 566 108 566 564 159 583 566 210 566 566

7 566 566 58 572 564 109 565 566 160 568 565 211 562 564

8 575 566 59 566 566 110 575 566 161 566 566 212 566 566

9 566 566 60 571 566 111 566 566 162 566 566 213 566 566

10 589 566 61 577 566 112 582 566 163 575 566 214 589 566

11 579 566 62 566 575 113 566 564 164 566 566 215 566 566

12 579 566 63 566 569 114 566 566 165 582 566 216 566 566

13 582 566 64 566 566 115 566 566 166 566 594 217 572 566

14 581 566 65 566 566 116 566 566 167 588 566 218 566 566

15 578 566 66 583 564 117 571 566 168 566 566 219 572 566

16 569 566 67 589 566 118 575 566 169 571 566 220 566 566

17 566 566 68 566 566 119 566 566 170 572 566 221 566 566

18 588 566 69 566 566 120 566 566 171 572 566 222 566 566

19 566 565 70 571 566 121 572 564 172 584 566 223 566 566

20 576 566 71 566 566 122 562 566 173 566 566 224 564 566

21 589 566 72 582 566 123 589 566 174 566 566 225 566 566

22 566 566 73 580 566 124 566 566 175 578 566 226 571 565

23 571 566 74 566 566 125 566 566 176 579 566 227 566 566

24 576 566 75 566 566 126 572 566 177 571 566 228 567 564

25 575 566 76 566 566 127 572 566 178 566 566 229 567 566

26 566 566 77 597 566 128 566 566 179 566 566 230 566 566

27 566 566 78 566 566 129 573 566 180 566 566 231 567 566

28 568 566 79 580 566 130 566 566 181 566 566 232 573 566

29 566 566 80 566 578 131 566 606 182 564 566 233 566 566

30 582 566 81 581 565 132 566 566 183 566 566 234 582 566

 - - 47

Fitness Fitness Fitness Fitness Fitness Run

No. 1D Org

Run

No. 1D Org

Run

No. 1D Org

Run

No. 1D Org

Run

No. 1D Org

31 564 566 82 566 566 133 563 566 184 566 566 235 566 566

32 566 566 83 571 566 134 566 566 185 580 566 236 569 566

33 585 566 84 566 576 135 578 566 186 566 566 237 566 566

34 566 566 85 577 583 136 572 566 187 566 566 238 565 566

35 571 566 86 575 566 137 571 566 188 572 566 239 585 589

36 566 566 87 566 566 138 585 566 189 566 566 240 572 566

37 575 566 88 573 566 139 566 566 190 566 566 241 581 571

38 567 564 89 571 566 140 566 566 191 566 566 242 566 566

39 566 566 90 583 566 141 572 566 192 566 566 243 566 566

40 566 566 91 566 566 142 592 566 193 570 566 244 575 566

41 566 565 92 564 566 143 572 610 194 581 566 245 566 565

42 566 566 93 564 566 144 564 566 195 566 566 246 566 565

43 566 566 94 566 566 145 568 566 196 581 566 247 566 566

44 576 566 95 566 566 146 587 566 197 566 566 248 566 566

45 571 566 96 566 566 147 566 566 198 580 566 249 566 566

46 593 566 97 572 566 148 566 565 199 571 565 250 566 566

47 566 566 98 566 566 149 575 566 200 566 566 251 577 566

48 565 566 99 576 571 150 566 566 201 591 566 252 596 566

49 566 566 100 566 566 151 572 566 202 571 564 253 566 566

50 566 566 101 566 566 152 566 566 203 571 566 254 566 566

51 570 582 102 572 566 153 580 566 204 566 566 255 572 566

 - - 48

Appendix C: 8 Jobs Converge Trend Data

Run

No.

One-Dimensional

PSO

One-Dimensional

PSO II

N-Dimensional

PSO

1 501 499 491

2 495 491 480

3 495 486 475

4 486 484 475

5 486 484 475

6 486 475 475

7 486 475 475

8 475 475 475

9 475 475 475

10 475 475 475

11 475 475 475

12 475 475 475

13 475 475 475

14 475 475 475

15 475 475 475

16 475 475 475

17 475 475 475

18 475 475 475

19 475 475 475

20 475 475 475

21 475 475 475

22 475 475 475

23 475 475 475

24 475 475 475

25 475 475 475

26 475 475 475

27 475 475 475

28 475 475 475

29 475 475 475

30 475 475 475

31 475 475 475

32 475 475 475

 - - 49

Run

No.

One-Dimensional

PSO

One-Dimensional

PSO II

N-Dimensional

PSO

33 475 475 475

34 475 475 475

35 475 475 475

36 475 475 475

37 475 475 475

38 475 475 475

39 475 475 475

40 475 475 475

41 475 475 475

42 475 475 475

43 475 475 475

44 475 475 475

45 475 475 475

46 475 475 475

47 475 475 475

48 475 475 475

49 475 475 475

50 475 475 475

 - - 50

Vita

Education
2005-2007 M.S. in Computer Science

College of Computer Science,

National Chiao Tung University, Hsinchu, Taiwan

1995-1997 B.S. in Electrical Engineering

Department of Electrical and Engineering,

National Taiwan Institute of Technology, Taipei, Taiwan

Work Experiences
2003-Present Engineering Manager

Systematic Designs Int. (SDI)/Facet Technology, Hsinchu, Taiwan

1997-2003 CIM (Computer Integrated Manufacturing) Engineer

Systematic Designs Int. (SDI), Vancouver, WA, USA

1993-1994 Customer Support Engineer

Chien Kung Computer Co., Kaohsiung, Taiwan

 - - 51

	Abstract in Chinese
	Abstract
	Acknowledgement in Chinese
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction and Motivation
	1.1 Backgrounds
	1.2 Motivations
	1.3 Scheduling problems

	Chapter 2 Related Works
	2.1 Heuristic Algorithm
	2.2 Genetic Algorithm
	2.3 Particle Swarm Optimization for Scheduling Problem
	2.4 Comparison between GA and PSO

	Chapter 3 One-Dimensional PSO and Experiments
	3.1 Original PSO Approach
	3.2 Proposed One-Dimensional PSO
	3.2.1 Finding all possible permutations
	3.2.2 Find the optimal permutation
	3.2.3 Perform PSO operations

	3.3 Fitness function for High priority Lot Scheduling Proble
	3.4 Performance Evaluation

	Chapter 4 Results
	4.1 Fitness Distributions
	4.2 Search Result Distributions
	4.3 Convergence Trend
	4.4 Success Rate
	4.5 Computational Cost Evaluations

	Chapter 5 Conclusions and Future Works
	References
	Appendix A: Job Sets Used for Experiments
	Appendix B: 9 Jobs Search Results
	Appendix C: 8 Jobs Converge Trend Data
	Vita

