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使用粒子群最佳化於高優先權工作排程 

 

Abstract in Chinese 

研究生：邱文宏                        指導教授：孫春在 博士 

 

國 立 交 通 大 學   資 訊 學 院   資 訊 學 程 碩 士 班 

摘 要       

 
在半導體廠中為了確保能夠及時完成有高時間性的批貨，便導入

優先權的概念，以達成客戶的特殊需求，在最短的時間內讓產品上

市。雖然高優先權的工作同時也代表較高的利潤，但也同時為半導體

廠設備的生產量帶來不良的影響。在半導體廠中一般的做法是把設備

切換至待機模式，等待高優先權的批貨到達設備輸入端，以減少處理

高優先權批貨的延誤並確保批貨儘快完成處理。但是如此一來設備是

在妥善的狀態卻不能執行工作，設備的使用率便因此降低。半導體廠

設備多半非常昂貴，所以半導體設備的使用率一直都是半導體廠中重

要的課題。 

為了提高半導體設備的使用率，我們提出一個適用於半導體設備

工作排程，易於實現，有效而且快速的粒子群最佳化演算法。實驗的

結果顯示這個修改過的方法確實有效率，運算快速而且容易實現。即

使在現階段此方法有條件限制，它的成效是比原本的粒子群最佳化應

用要來得高的，而且在小數量的工作排程上的確效果顯著。 

 

關鍵字：工作排程、人工智能、粒子群最佳化 
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Particle Swarm Optimization for High Priority Job 

Scheduling 

Student：Wen-Hung Chiu               Advisor：Dr. Chuen-Tsat Sun 
 

Degree Program of Computer Science 

National Chiao Tung University 

Abstract 
 

High Priority Lot is a measure taken in Semiconductor Fabrication manufactory to 

ensure on-time delivery of high time-sensitive lots to cope with device maker’s need 

for prompt delivery of their high-tech products. Although High Priority Lot can bring 

higher profit to the factory, it also has bad influence on equipment throughput. It is 

common practice that the equipment is switch to idle mode and waits for the arrival of 

High Priority Lot in order to guarantee minimum delay. However, this impacts the 

utilization of the equipment, for the equipment is fully functional but doing nothing 

while waiting for the High Priority Lot. Manufacturing equipment is extremely 

expensive so that maximizing the utilization of the equipment has became an 

important topic in semiconductor fabrication manufactory. 

 

In order to improve equipment utilization, we propose a modified PSO application 

that is easy to implement, effective and fast in scheduling jobs on semiconductor 
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equipment by redefining the search space. The results indicate that the method is 

efficient, fast and easy to implement. The performance is better than the original PSO 

application, especially for job scheduling with small job count, even though there are 

limitations in current stage of the research. 

 

Keywords: Job scheduling, Artificial Intelligence, Particle Swarm Optimization 
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Chapter 1 Introduction and Motivation 
 

1.1 Backgrounds 

As the competitions in high-tech products grow, it is important to bring the 

products to the buyers in the shortest period of time. In order to cope with device 

maker’s need for fast delivery, lot priority was introduced to semiconductor 

fabrication manufactories [1][2][3]. 

 

High Priority Lot has been an important topic in semiconductor manufacturing 

as these lots have higher priorities than other lots and will impact the performance of 

individual semiconductor equipments and the whole semiconductor fabrication 

manufactory. HPL (High Priority Lots) impacts equipments since the equipment 

usually waits for the arrival of HPL. As a result, the performance of the whole 

factory is degraded as shown in Figure 1-1 [1]. 
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Figure 1-1 Factory output impact by High Priority Lot 

 

Equipment task scheduling becomes an active research area in hope to improve 

the performance of a semiconductor manufactory [1][4][5]. In this thesis, we will 

discuss how to improve the performance of individual equipment and attempt to 

help to relief the performance impact caused by inserting High Priority Lots. 
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1.2 Motivations 

Taking the wet bench (chemical bath) equipment as an example, the equipment 

is often composed of several processing modules, at least one Front Opening 

Unified Pod (FOUP) input/output unit and an internal buffer for storing FOUPs to 

be processed. The processing modules contain different types of chemical liquid 

(pure or mixed) or de-ionized water. The wafers are usually taken out of the FOUP 

and dipped in different chemicals and/or dried depending on selected recipes. The 

wafers can stay in a bath, the containers that contain the chemical liquid, for 

different length of time up to tens of minutes. In normal practice, the lots are 

processed in a First-Come-First-Serve (FCFS) order since it is the simplest way to 

implement a scheduler. High Priority Lots (HPL), on the other hand, has the highest 

priority and usually causing the equipment to stop processing non-priority jobs. 

When the equipment is expecting a HPL, it may be placed in idle mode for hours 

and waits for the arrival of HPL. When the HPL arrives, the equipment will then 

serve the HPL first before continuing to serve the non-priority lots, as shown in 

Figure 1-2. 
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Figure 1-2 Inserting Priority Jobs 

 

This is done to ensure that HPL will be processed as soon as it arrives at the 

equipment, as it is the simplest way and with lowest cost for equipment 

implementation. However the velocity of none-priority lots are affected [1]. There 

are also other factors that contribute to the decrease of equipment throughput, such 

as scheduled down/maintenance time, but are not discussed in this paper. The length 

of idle time waiting for HPL will make the throughput of the equipment degrade 

dramatically as the equipment is fully functional but cannot be used to process any 

wafers while waiting. 

 

In order to reduce the effect of throughput degradation, we can attempt to 

process jobs while the equipment is waiting for the arrival of Supper Hot Lot. If we 
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can send HPL related information, such as estimated arrival time or latest finish time, 

to the equipment through factory automation host using messages defined in SEMI 

standards [6][7], then we may be able to have some non-priority jobs to be 

processed before HPL arrives as long as it does not cause delays on the finish time 

of HPL. This not only requires in depth knowledge of the manufacturing processes 

but also an easy to implement and efficient scheduler with acceptable performance 

for the respective equipments to achieve optimal utilization. 

 

1.3 Scheduling problems 

A scheduler decides the order of lots to be processed. Two different schedules 

may result in different total process time. However, the fitness of a schedule not only 

depends on the total process time but also needs to take the process end time of High 

Priority Lots into consideration since we get penalties if the High Priority Lot does 

not finish by the expected deadline, as shown in Figure 1-3. 
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Figure 1-3 Schedules with High Priority Lot 

 

The top schedule has a longer total process time but the High Priority Lot (A) is 

finished 23s after the process starts. In the other schedule, the High Priority Lot is 

finished 30s after the process starts, which may be a problem if the deadline for 

High Priority Lot is between 23s and 30s even though the schedule has a shorter 

total process time. 

 

As numbers of unprocessed job increases, it becomes more difficult for the 

scheduler to find the optimal solution/permutation that has the shortest total process 

time or best fitness since the possible permutations of the jobs increase exponentially, 
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which sometimes make doing an exhaustive search computationally impossible [8]. 

This is classified as a NP-Hard problem (Stephen A. Cook, 1971) [9]. 

 

There are different methodologies that can be applied to find solutions to a 

scheduling problem. For example, Genetic Algorithm (GA), Swarm Intelligence (SI) 

and even Knowledge based system methods. Most of these methods attempt to find 

an “acceptable” solution instead of the optimal solution, as the search space is often 

too large to be searched thoroughly. Most of the time, a budget (fixed period of time 

or fixed number of iterations) is defined to be used before the calculation converges 

and just settle for the best solution found in the process. In order to cope with the 

need for a simple, fast and efficient scheduler for semiconductor equipment, we 

introduce a modified Particle Swam Optimization method that is well suited for 

small to mid size job number on semiconductor equipment. In Chapter 2, related 

works on solving scheduling problems are introduced. Chapter 3 presents the 

proposed method, a one-dimensional PSO search. The experiments are described in 

Chapter 4 and the conclusions and future works in Chapter 5. 
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Chapter 2 Related Works 

 

Scheduling is a complex problem that we encounter in semiconductor 

fabrication factories everyday. Various methodologies are used in an attempt to look 

for the optimal solution. Among these methods, Genetic Algorithm (GA) [10][11] 

and Swarm Intelligence methods [12][13][14], each has its’ advantages and 

disadvantages. We will introduce and discuss these methods in this chapter. 

 

2.1 Heuristic Algorithm 

Heuristic algorithm is a methodology that has been proven to find a near 

optimum solution in a reasonable time. It searches down the path of a search tree 

and determines the distance to the initial state during the progress and attempts to 

estimate the distance between the goal and current state using the heuristic functions 

in order to improve its searching efficiency. It is often used in semiconductor 

manufactories for lot scheduling due to its efficiency in calculation [15]. Sometimes 

simplified logical rules, that are designed closely related to the factory operation, are 

used in order to reduce the complexity. 
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2.2 Genetic Algorithm 

Genetic Algorithm was invented in 1970 based on the theory of evolutions and 

genetics of life forms. Inheritance and crossover of parent solutions creates new 

generations. Since the good genes survive and bad ones will be eliminated through 

competition, the descendents usually produce better fitness. However, this method 

tends to converge with local optimum. Mutation of the genes ensures diversity of 

child generations. Thus we have a better chance in evolving to a better (if not the 

best) solution. Typically a solution is presented as a bit array. Depends on the nature 

of the problem a fitness function (sometimes called a cost function) is defined to 

compare the solutions quantitatively [16]. In typical implementation of GA for 

scheduling problem, we use a string consists of all job IDs to represent a solution. 

The order of jobs in the string indicates the order in which the jobs will be 

processed. 

 

Initial population is generated randomly. Parents are selected and perform 

crossover to generate the next generation. Mutations are conducted randomly to 

diversify the new population. The process is shown in Figure 2-1. 
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Figure 2-1 Flow Diagram of Genetic Algorithm 

 
 

2.3 Particle Swarm Optimization for Scheduling Problem 

Particle Swarm Optimization is one of Swarm Intelligence methods. It was 

 -  - 10



introduced by J. Kennedy and R. Eberhart in 1995 [17][18]. The methodology has 

been proven to be successful in solving optimization problems on various 

continuous functions [19]. The idea was inspired by observing the foraging of bird 

flocks. The behavior of an individual in a swarm not only depends on its own 

knowledge but also affected by the behavior or knowledge of other individuals in the 

swarm. For example, when one individual in the swarm or herd finds food in its path, 

the others will head toward that direction even if they don’t previously have the 

knowledge of that location. Also, other entities in the swarm do not simply head for 

the location that has food. It is common that they often veer off the path randomly 

and find food elsewhere. This also ensures that other locations in the search space 

are randomly searched. 

 

When modeling such a swarm, particles are introduced to represent an 

individual in the swarm. A random location is selected and assigned to each particle. 

A fitness function is defined to evaluate the solutions represented by these locations. 

Each particle has an initial speed in each dimension of the search space. The 

particles then move in the space base on the memory of its own experience on 

best-known location and the swarm’s best-known location. 
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Similar to mutation that is used in GA a random factor is introduced in deciding 

the movement of a particle. It is important as it diversify the swarm. The fitness is 

calculated for the new locations and then new vectors and directions are calculated 

for each particle. 

 

2.4 Comparison between GA and PSO 

GA and PSO have very different features and behavior. Table 2-1 gives a list of 

the differences between GA and PSO. 

 

Table 2-1 Comparisons between PSO and GA 

 

 PSO GA 

Search Space Continuous Discrete 

Survival All Particles Survives Fittest Population 

Knowledge on past results pbest and gbest Parents 

Searching Behavior Directional Omnidirectional 

Diversity Random Coefficients Mutation 

 

The two methodologies look fairly similar in some ways. They both preserve 
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the good results and have a way to diversify the population. PSO has a very obvious 

direction in its searching process. It is moving toward the past locations with best 

solutions. GA seems to be searching in all direction. It is mainly because the search 

space is discrete and it is the nature of the methodology. 

 

GA has a discrete search space that no close relationship associated between 

different solutions. PSO implementation has a continuous search space and 

neighboring permutations usually have similar fitness. 

 

Another big difference is survival of entities in the population. Solutions in the 

population with better fitness are selected to generate new generations while others 

are retired from the population. Unlike GA, all particles in PSO will survive and live 

until the end of the process. 
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Chapter 3 One-Dimensional PSO and 

Experiments 

 

In this chapter we will introduce the proposed method, a modified PSO 

application. In order to evaluate the performance of the proposed method, we will 

attempt to find the optimal solutions using the simulators with original PSO 

application. We will discuss how different methodologies are implemented and how 

experiments are done. The job sets used in the experiments are created randomly as 

shown in Appendix A. 

 

3.1 Original PSO Approach 

In practical PSO implementation for scheduling problems, each job in the job 

pool is represented as a dimension. A position of a particle consists of one parameter 

(rank) for each dimension; here is an example in Table 3-1. 
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Table 3-1 Sample Job Rankings (5 Jobs) 

 

Job ID A B C D E 

Parameter Value 0.22 2.83 1.68 0.15 3.57 

Job Order 2 4 3 1 5 

 

Base on the ranks of the dimensions, an order is decided and the fitness can be 

calculated. However, different locations in the search space may present the same 

solution as shown in Figure 3-1. 

 

Figure 3-1 Results of different locations 
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We use a string consists of all job ID to present a solution and each location in 

the search space presents one solution. The order of jobs in the string indicates the 

order in which the jobs will be processed. Initial positions for a fixed number of 

particles are selected randomly and the fitness of these positions is calculated. 

 

The vector  of each dimension of a particle is then calculated with current 

position , the best-known position in the swarm , best-known position of 

particle , acceleration coefficients and ,  the inertia factor and random 

numbers  and  using equation (1), and equation (2) calculates the 

new position: 

idV

idx gdp

idp 1c 2c w

1 2Rand Rand

 

(2)                                                                                                

(1)             )(())(() 2211

ididid

idgdidididid

Vxx

xpRandcxpRandcVwV

+=

−××+−××+×=

 

Figure 3-2 shows how the new vector is composed. This process is performed 

for each dimension that define the position of a particle. 
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Figure 3-2 Calculation of particle vectors 

 

In order to simplify the experiment and focus on the differences between the 

original and the modified methods, we set  to constant 1 for both methods and C1 

and C2 are set to 2.05 as recommended by previous study [21]. 

w

 

The process is repeated until the criteria for termination is met. The flow 

diagram is shown in Figure 3-3. 
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Figure 3-3 Flow Diagram of Particle Swarm Optimization 

 

3.2 Proposed One-Dimensional PSO 

In semiconductor fabrication manufactories, we usually do not assign a large 

amount of jobs to an equipment at a time. In the case of wet-bench equipment, the 

typical maximum jobs allowed ranges from 8 to 18 jobs depending on the size of the 

buffer area. There are 10 buffer locations in the equipment that we are using as a 

model for the experiment. In order to increase the equipment utilization, a fast and 
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reliable scheduler is needed to quickly find the best or optimal schedule. We propose 

a modified Particle Swarm Optimization method to be used on the equipment in 

order to find the best or acceptable schedule in a simple and less time consuming 

(comparing with the original PSO method) fashion. The process for calculating the 

next position for particles is similar to original PSO except that the search space is 

converted from a N-dimensional space to a one-dimensional space. 

 

3.2.1 Finding all possible permutations 

Instead of using rankings for each job, we use an index to represent a 

permutation. The permutations of all jobs are determined in advance and lined up to 

form a one-dimensional space. The permutations can be pre-calculated or calculated 

at runtime. It is designed so that the adjacent permutations have somewhat similar 

fitness in order for the PSO search to be most effective. 

 

Simply use a recursive function to generate all the permutations. Every 

permutation is unique and only differs from the neighboring permutations on two 

job positions as shown in Table 3-2. However, it becomes time consuming and 

requires lots of space to store the permutations when the job count gets bigger. 

Bellow is the pseudo code for generating the permutations: 
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GeneratePermutations() 

{ 

    Initialize Job IDs; 

    Compose the first permutation; 

 reset used JobID count to 0; 

    Call DoChild(Initial Job permutation, 0) 

} 

DoChild(JobStr, Used JobID Count) 

{ 

 For each JobIDs that is unused 

{ 

 If only one unused JobID left then 

   Output the resulted permutation 

  Else 

  { 

   Set next JobID in string as used 

   Call DoChild(JobStr, used JobID count +1) 

   If found the position of next unsed JobID then 

                Swap next JobID with the used JobID 

  } 

} 

} 
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Table 3-2 Sample Permutations (4 Jobs) 

 

Index Permutation Index Permutation Index Permutation Index Permutation

1 ABCD 7 CABD 13 BCAD 19 DACB 

2 ABDC 8 CADB 14 BCDA 20 DABC 

3 ADBC 9 CDAB 15 BDCA 21 DBAC 

4 ADCB 10 CDBA 16 BDAC 22 DBCA 

5 ACDB 11 CBDA 17 BADC 23 DCBA 

6 ACBD 12 CBAD 18 BACD 24 DCAB 

 

 

3.2.2 Find the optimal permutation 

In order to evaluate the performance and success rate of each method, we also 

calculate the fitness for every single solutions/permutations using brute force 

method. Similar to generating all possible permutations, this again can be very time 

consuming when job count gets bigger and bigger. We will do up to 10 jobs in the 

experiments. 

 

3.2.3 Perform PSO operations 

Once the permutations are created and lined up to form a line, we can deploy 

PSO operations in the new search space. As shown in Figure 3-4, basically, we are 
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now searching in a one-dimensional space instead of the N-dimensional continuous 

space in the original PSO method [12]. We search the space for optimal solution for 

a fixed number of iterations and evaluate the performance of each method. 

 

 
Figure 3-4 Search Space of One Dimension PSO 

 

Based on previous study [21], the recommended particle size is 30 particles for 

general purpose. We initialize 30 particles and calculate the vectors of the particles 

with recommended factors. 

 

3.3 Fitness function for High priority Lot Scheduling Problem  

Fitness function is the major difference that distinguishes High Priority Lot 

(HPL) scheduling from other scheduling problems. When HPL is involved, we not 
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only need to consider the total process time but also the finish time of HPL. Since 

the fitness function varies depends on different preferences of the implementations, 

we had designed a fitness function that combines total process time and delay time 

of HPL. Because the delay of HPL will result in penalties, we multiply the HPL 

delay time by 3, and use the sum of the weighted delay time and total process time 

as new fitness, if HPL is overdue in a solution. This may not necessary reflect the 

real life factory practice but gives a taste of how these factors are taken into 

consideration and how they affect the resulted fitness. 

 

The fitness function is described as follows: Each of the n jobs has m steps and. 

The processing time of jth step of ith job is given as Pi,j. The completion time jth 

step of job i is denoted as C(i,j). Assume all steps use different equipment resources 

so that the equipment can simultaneously process m steps. The following equations 

(1)(2) denotes the fitness function similar to [14]: 
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In order to take into account the effect of delay on HPL, the fitness function 

needs to be further adjusted. Assuming the 3rd job is HPL and deadline is twice the 

shortest completion time of the HPL and the penalty for delay is the length of the 

delay times 5. The adjusted fitness function is denoted as follows: 
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3.4 Performance Evaluation  

The performance and behavior of the proposed methodology is evaluated under 

the following conditions: 

 

z 3~10 jobs are randomly generated. 

z Each job has three steps with randomly generated processing time. 

 

A test run consists of initiations of particles, 20 iterations of PSO operations 

(particle movements). The test is repeated 10000 times and the following 

characteristics are analyzed. 
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z Permutation Fitness Distribution 

z Search Result Distributions 

z Convergence Speed 

z Success Rate 

z Computational Cost 
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Chapter 4 Results 

4.1 Fitness Distributions 

When applied to batch processing scheduling, the original Particle Swarm 

Optimization is searching in a N-dimensional space, where N is the number of jobs 

to be scheduled. This creates a big search space and results in multiple particle 

locations representing the same solution. As shown in Figure 4-1, is an example of a 

two-dimensional search space [22]. 

 

 
Figure 4-1 Two-dimensional search space example 

 

The proposed method searches in a one-dimensional search space as shown in 
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Figure 4-2. In this example, there are 5 jobs to be scheduled and assumes no High 

Priority Lot. There are total of 120 different permutations. 
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Figure 4-2 One-dimensional search space 

 

A one-dimensional search space has many advantages including a finite 

discrete search space, unique permutation per location. For a particle in a 

one-dimensional PSO search, it is likely to engage more local optimum than in the 

original PSO. While local optima are also candidates of the global optimum, it 

appears that one-dimensional PSO has a better chance of finding the global 
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optimum. 

 

When High Priority Lot is introduced to the job set, the distributions of the 

fitness becomes less smooth creating more hills as shown in Figure 4-3. This affects 

the search spaces for both original PSO and the proposed method. 
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Figure 4-3 One-dimensional search space with pre-calculated permutations 

 

The permutations can also be created at runtime. However, the permutations 

created by this approach, as shown in Figure 4-4, do not line up as well as the 

permutations created using pre-calculated method so it appears to have created more 
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humps than the pre-calculated permutation set. 

 

5 Job Fitness Distributions with High Priority Lot
(Permutation Calculated at Runtime)
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Figure 4-4 One-dimensional search space with runtime-calculated permutations 

 

4.2 Search Result Distributions 

Next we will analyze the distribution of the search results of the methods. The 

data is collected using the job set of 9 jobs case after 255 repetitions (see Appendix 

B for data set). The distributions of the search result will also show the differences 

between the methods. As shown in Figure 4-5, the original PSO converges more 

concentrated at 566 (over 200 hits). 
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Figure 4-5 Search Result distributions of Original PSO (9 Jobs) 

 

One-dimensional PSO has a more scattered distribution and, in this particular 

case, it is able to find the global optimum fitness (562) as shown in Figure 4-6. This 

seems to imply that one-dimensional PSO searched a wider area in the search space 

thus better chance of finding the global optimum. 
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Figure 4-6 Fitness distributions of One-Dimensional PSO (9 Jobs) 

 

4.3 Convergence Trend 

The convergence trend is difficult to evaluate as it highly depends on the initial 

locations of the particles. There are also researches in this area [23]. In this thesis, 

we collected data that use the job set of 8 jobs case. We handpicked data where all 

three methods have similar fitness at initialization, as shown in Appendix C. An 

example is shown in Figure 4-7. (One-dimensional PSO uses pre-calculated and 

One-dimensional PSO II uses runtime-calculated permutation set.) We found that the 

original PSO tend to converge faster than one-dimensional PSO and the two 
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one-dimensional PSO methods has similar converge characteristics. 
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Figure 4-7 Convergence Trend (8 Jobs) 

 

However, slower convergence speed is not necessarily bad. In fact, this is 

consistent with our earlier findings. The original PSO converges faster since there 

are less local optimums in the moving path of a particle. The one-dimensional PSO 

has a finite discrete search space without duplicated permutations so a particle 

engages more local optimums as they move toward the target. That is why the 
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one-dimensional PSO appears to have a slower convergence speed. 

 

4.4 Success Rate 

Success rate is an important indication of the performance of a method. We ran 

each method for 10,000 repetitions and calculate the success rate by dividing the 

number of times global optimum found by the number of repetitions (10,000). The 

results are shown in Table 4-1. 

 

Table 4-1 Success Rate 

Job Count 
N-Dimensional 

(Original) 
1-Dimensional 

(Pre-calculated) 
1-Dimensional 

(Runtime) 

3 100% 100% 100% 

4 99.6% 100% 100% 

5 97.8% 99.4% 99.2% 

6 93.0% 93.4% 99.0% 

7 32.4% 29.7% 45.2% 

8 5.2% 1.6% 2.8% 

9 0.09% 0.16% 0.15% 

10 0.26% 0.13% 0.29% 
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As the results show, the success rate start to fall when there are four jobs in the 

job pool when using original N-dimensional PSO. One-dimensional PSO still have 

99% success rate when there are 6 jobs. Also one-dimensional PSO has better 

success rates in almost all cases tested. The interesting thing is that, at eight jobs, 

N-dimensional PSO outperforms one-dimensional PSO. We believe that this is an 

example the shows that location of global optimum does effect the success rate. 

Original N-dimensional PSO will have advantage over one-dimensional PSO if the 

global optimum is located near the center of the search space. 

 

4.5 Computational Cost Evaluations 

We also calculated the time spent for performing same amount of iterations 

using different methodologies. Computational cost here is defined by the time 

duration for calculating 5,100 iterations (255 repetitions) of each method on the 

same computer, as shown in Table 4-2. 
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Table 4-2 Computational Cost for Calculating 5,100 Iterations 

Job Count 3 4 5 6 7 8 9 10 

1-D PSO (sec) 3.5 4.6 3.5 5.8 5.8 5.8 6.9 6.9 

1-D PSO II (sec) 4.6 4.6 6.9 5.8 8.1 8.1 9.3 10.4 

Original PSO (sec) 5.8 6.9 9.3 11.6 12.7 13.9 16.2 18.5 

 

The differences may look insignificant when the job count is small. As the job 

count increases to 10, the cost for original PSO is almost twice the cost of 

one-dimensional PSO using runtime-calculated permutation and is over 2.5 times 

the cost of one-dimensional PSO using pre-calculated permutation as shown in 

Figure 4-8. 
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Time Duration for Calculating 5,100 Iterations
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Figure 4-8 Comparison of Computational Cost 

zing the time complexity of each operation during the process, it is not 

lize why one-dimensional PSO will outperform N-dimensional PSO. 

ns are separated into three phases: Generation of Permutation, Fitness 

d Location Change for analysis as shown in Table 4-3. 
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Table 4-3 Time Complexity of each Calculation 

Calculations 
N-Dimensional 

(Original) 
1-Dimensional 

(Pre-Calculated) 
1-Dimensional 

(Runtime) 

Permutation O (N log N) O (1) O (N) 

Fitness O (N) O (N) O (N) 

Location O (N) O (1) O (1) 

 

The cost for fitness calculating depends on number of jobs in the job pool. It 

makes no difference between different approaches. 

 

For N-dimensional PSO, sorting algorithm is required to sort the job ranks in 

order to generate a permutation. In this thesis, we select quick sort for sorting the 

values and the time complexity of quick sort is O (N log N). One-dimensional PSO 

does not require sorting. The time complexity is a constant if the permutation is 

previously calculated and O (N) if calculated at runtime. 

 

As for calculating new particle location, since the location of a particle is fixed 

by N dimensions in original PSO application, the PSO particle movement operations 

need to be performed N times while we only do it one time when one-dimensional 

PSO is used. 
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Chapter 5 Conclusions and Future Works 

 

The goal of this research is to find a methodology that is designed to fit the 

need of a semiconductor equipment scheduler. As a result of the experiments, we 

found that the proposed method has very good performance for scheduling job 

numbers range between 3 and 10. It is capable of finding the global optimum 

quickly and efficiently. It has a better success rate than the original PSO in tested 

cases. 

 

As the job count gets bigger, the method that uses pre-calculated permutations 

starts to show its limitation. The resources required for storing the permutations 

increase exponentially and may be impossible to store all possible permutations. 

Using runtime-calculated permutations will help relief the problem with slightly 

decreased performance. 

 

There are lots of differences between one-dimensional PSO and the original 

PSO in terms of the behavior and performance. Performance-wise, one-dimensional 

PSO has advantage over original PSO as it uses only simple calculation to create the 

permutation, while original PSO requires a sorting mechanism, which is 
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computationally expensive to sort the rankings of each job in order to create the 

permutation. Furthermore, the time for calculating the schedule increases 

dramatically as job count grows. 

 

The behaviors of the methods are also very different. By looking at the 

converging trend, it looks as if original PSO is converging quickly and much faster 

than the method proposed. However, the true meaning is that, using proposed 

method, we are able to search the search space more thoroughly as the search space 

has been reduced to a finite discrete space without duplicated permutations. This 

enables us to find more local optimums. In other words, it is more likely to find the 

global optimum. Each method has its advantage and is up to the user to choose 

between possibilities of finding global optimum or shorter converging time. 

 

There are a few areas that we can further study. The method that we used to 

generate permutations is not the only method. We believe that there are other 

methods for creating the permutation set. We may be able to find a better function 

for constructing a search space with smoother fitness distribution line and resulting 

in better search results. We believe that optimizing the particle initializations and 

changing number of iterations can also improve the success rate. 
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It is obvious that the one-dimensional PSO is suitable for combinatorial 

problems. Since we have converted the search space to a one-dimensional search 

space, we may be able to apply one-dimensional optimization methodologies to 

solve the scheduling problem more efficiently. These are works that we believe to be 

worth further exploration. 
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Appendix A: Job Sets Used for Experiments 

3 Jobs case: 

Step Job 
Number 1 2 3 

1 11 99 67 
2 11 11 79 
3 30 38 30 

 
4 Jobs case: 

Step Job 
Number 1 2 3 

1 40 28 17 
2 41 41 71 
3 21 19 58 
4 90 27 78 

 
5 Jobs case: 

Step Job 
Number 1 2 3 

1 91 63 63 
2 56 69 91 
3 54 91 43 
4 51 46 36 
5 6 25 97 

 
6 Jobs case: 

Step Job 
Number 1 2 3 

1 37 49 16 
2 63 54 16 
3 51 39 12 
4 75 59 83 
5 8 11 34 
6 54 65 54 
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7 Jobs case: 
Step Job 

Number 1 2 3 
1 20 68 46 
2 70 92 53 
3 40 46 49 
4 10 59 18 
5 44 28 87 
6 67 26 10 
7 78 30 24 

 
8 Jobs case: 

Step Job 
Number 1 2 3 

1 34 5 48 
2 59 75 92 
3 9 63 41 
4 91 62 35 
5 23 98 14 
6 55 91 54 
7 82 67 72 
8 50 41 69 

 
9 Jobs case: 

Step Job 
Number 1 2 3 

1 40 90 74 
2 71 3 43 
3 98 80 69 
4 28 36 43 
5 64 35 11 
6 43 95 54 
7 22 38 40 
8 15 52 96 
9 65 44 69 
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10 Jobs case: 
Step Job 

Number 1 2 3 
1 40 90 74 
2 71 3 43 
3 98 80 69 
4 28 36 43 
5 64 35 11 
6 43 95 54 
7 22 38 40 
8 15 552 96 
9 65 44 69 
10 70 50 16 
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Appendix B: 9 Jobs Search Results 

 

Fitness Fitness Fitness Fitness Fitness Run 

No. 1D Org 

Run 

No. 1D Org

Run 

No. 1D Org

Run 

No. 1D Org 

Run 

No. 1D Org

1 566 571 52 580 564 103 566 566 154 566 566 205 594 566

2 566 566 53 566 566 104 572 566 155 566 566 206 572 566

3 566 565 54 572 566 105 566 565 156 578 566 207 566 566

4 591 566 55 582 566 106 566 566 157 566 564 208 566 566

5 566 566 56 564 564 107 566 566 158 566 566 209 566 566

6 566 566 57 570 566 108 566 564 159 583 566 210 566 566

7 566 566 58 572 564 109 565 566 160 568 565 211 562 564

8 575 566 59 566 566 110 575 566 161 566 566 212 566 566

9 566 566 60 571 566 111 566 566 162 566 566 213 566 566

10 589 566 61 577 566 112 582 566 163 575 566 214 589 566

11 579 566 62 566 575 113 566 564 164 566 566 215 566 566

12 579 566 63 566 569 114 566 566 165 582 566 216 566 566

13 582 566 64 566 566 115 566 566 166 566 594 217 572 566

14 581 566 65 566 566 116 566 566 167 588 566 218 566 566

15 578 566 66 583 564 117 571 566 168 566 566 219 572 566

16 569 566 67 589 566 118 575 566 169 571 566 220 566 566

17 566 566 68 566 566 119 566 566 170 572 566 221 566 566

18 588 566 69 566 566 120 566 566 171 572 566 222 566 566

19 566 565 70 571 566 121 572 564 172 584 566 223 566 566

20 576 566 71 566 566 122 562 566 173 566 566 224 564 566

21 589 566 72 582 566 123 589 566 174 566 566 225 566 566

22 566 566 73 580 566 124 566 566 175 578 566 226 571 565

23 571 566 74 566 566 125 566 566 176 579 566 227 566 566

24 576 566 75 566 566 126 572 566 177 571 566 228 567 564

25 575 566 76 566 566 127 572 566 178 566 566 229 567 566

26 566 566 77 597 566 128 566 566 179 566 566 230 566 566

27 566 566 78 566 566 129 573 566 180 566 566 231 567 566

28 568 566 79 580 566 130 566 566 181 566 566 232 573 566

29 566 566 80 566 578 131 566 606 182 564 566 233 566 566

30 582 566 81 581 565 132 566 566 183 566 566 234 582 566
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Fitness Fitness Fitness Fitness Fitness Run 

No. 1D Org 

Run 

No. 1D Org

Run 

No. 1D Org

Run 

No. 1D Org 

Run 

No. 1D Org

31 564 566 82 566 566 133 563 566 184 566 566 235 566 566

32 566 566 83 571 566 134 566 566 185 580 566 236 569 566

33 585 566 84 566 576 135 578 566 186 566 566 237 566 566

34 566 566 85 577 583 136 572 566 187 566 566 238 565 566

35 571 566 86 575 566 137 571 566 188 572 566 239 585 589

36 566 566 87 566 566 138 585 566 189 566 566 240 572 566

37 575 566 88 573 566 139 566 566 190 566 566 241 581 571

38 567 564 89 571 566 140 566 566 191 566 566 242 566 566

39 566 566 90 583 566 141 572 566 192 566 566 243 566 566

40 566 566 91 566 566 142 592 566 193 570 566 244 575 566

41 566 565 92 564 566 143 572 610 194 581 566 245 566 565

42 566 566 93 564 566 144 564 566 195 566 566 246 566 565

43 566 566 94 566 566 145 568 566 196 581 566 247 566 566

44 576 566 95 566 566 146 587 566 197 566 566 248 566 566

45 571 566 96 566 566 147 566 566 198 580 566 249 566 566

46 593 566 97 572 566 148 566 565 199 571 565 250 566 566

47 566 566 98 566 566 149 575 566 200 566 566 251 577 566

48 565 566 99 576 571 150 566 566 201 591 566 252 596 566

49 566 566 100 566 566 151 572 566 202 571 564 253 566 566

50 566 566 101 566 566 152 566 566 203 571 566 254 566 566

51 570 582 102 572 566 153 580 566 204 566 566 255 572 566
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Appendix C: 8 Jobs Converge Trend Data 

 

Run 

No. 

One-Dimensional 

PSO 

One-Dimensional 

PSO II 

N-Dimensional 

PSO 

1 501 499 491 

2 495 491 480 

3 495 486 475 

4 486 484 475 

5 486 484 475 

6 486 475 475 

7 486 475 475 

8 475 475 475 

9 475 475 475 

10 475 475 475 

11 475 475 475 

12 475 475 475 

13 475 475 475 

14 475 475 475 

15 475 475 475 

16 475 475 475 

17 475 475 475 

18 475 475 475 

19 475 475 475 

20 475 475 475 

21 475 475 475 

22 475 475 475 

23 475 475 475 

24 475 475 475 

25 475 475 475 

26 475 475 475 

27 475 475 475 

28 475 475 475 

29 475 475 475 

30 475 475 475 

31 475 475 475 

32 475 475 475 
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Run 

No. 

One-Dimensional 

PSO 

One-Dimensional 

PSO II 

N-Dimensional 

PSO 

33 475 475 475 

34 475 475 475 

35 475 475 475 

36 475 475 475 

37 475 475 475 

38 475 475 475 

39 475 475 475 

40 475 475 475 

41 475 475 475 

42 475 475 475 

43 475 475 475 

44 475 475 475 

45 475 475 475 

46 475 475 475 

47 475 475 475 

48 475 475 475 

49 475 475 475 

50 475 475 475 
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