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多處理器網路的錯誤診斷問題 
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中文摘要 

 

在超大型平行計算的處理器(processor)網路中，通常會用一個圖

G=(V,E)來代表其內部的連結網路，其中處理器使用點(V)來表示，而處理

器之間的連接線則用邊(E)來表示之。因此討論一個圖 G 的特性，相當於討

論這個大型連結網路的特性。錯誤(fault)診斷能力(diagnosability)對網

路的容錯能力(fault-tolerant)與可靠度(reliability)是一項極為重要

的特性。因為網路架構中處理器或網路連線均有可能發生錯誤，所以很多

網路結構的錯誤診斷(fault diagnosis)性質均已被探討。 

關於多處理器系統的錯誤自我診斷問題，在文獻中已有幾個不同的模式

被提出。Preparata, Metze 與 Chien 三人最早提出一種構想及模式，現

在稱為 PMC-Model。在此模式下，兩個相連接的處理器可以互相偵測是否錯

誤。Maeng 與 Malek 在之後提出一種 comparison model 稱為 MM-model。他

們對錯誤診斷的基本構想是由一個處理器向相鄰的兩個處理器送出信號，

然後由回收的訊號，比較並判斷是否有錯誤。為了要收集到最多的資料以

供錯誤診斷，在 MM*-model 下,規定任一個處理器都對其所有相鄰的兩個處
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理器作偵測及比較。 

在本論文中，我們研究一種配對合成網路(matching composition 

network,MCN)的診斷能力，在 MM*-comparison model 下，配對合成網路的

診斷能力，與它的組成成分(Components)之間的診斷能力與連通度

(connectivity)有一定關係，我們研究其間的關係，可將文獻中有關各種

cube，如：hypercube，crossed cube，twisted cube 與 Mobius cube 等的

診斷能力研究結果有一個統一的解釋。另外，我們也探討了卡迪生乘積

(cartesian product)網路在 MM* model 下的的診斷能力，對 Mesh、Tori、

k-ary n-cubes 及 generalized hypercubes 等結構網路，也說明他們的診

斷能力。 

然而，對許多已知的網路結構來說，傳統的錯誤診斷能力經常受限於

最小的鄰接點數(minimum degree)，但對網路中任一個處理器而言，他所

有的鄰接處理器均是錯誤的機率不高。因此對 PMC-model 下的錯誤診斷，

我們介紹“強 t-可診斷系統(strongly t-diagnosable systems)＂及“條

件式診斷能力(conditional diagnosability)＂的觀念。並證明在假設“對

網路中任一個處理器，他所有的鄰接處理器不會全是錯誤＂的條件下，網

路的錯誤診斷能力將會大幅提升，如：超立方體結構網路(hypercube)的條

件式錯誤診斷能力在符合此條件下，上升為約傳統錯誤診斷能力的四倍。 
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Abstract

Interconnection networks have been an active research area for parallel and distributed

computer systems. We usually use a graph G = (V,E) to represent the topology of a

network, where vertices represent processors and edges represent links between processors.

There are a lot of interconnection network properties proposed in literature. The diag-

nosability has played an important role in the reliability of an interconnection network.

Since processors or links may fail sometimes, diagnosable properties are also concerned in

many studies on network topologies.

The classical problem of diagnosability is discussed widely and the diagnosability of

many well-known networks have been explored. In this thesis, we consider the diagnos-

abilities of two families of networks, one is called the Matching Composition Network

(MCN); two M-components (which will be defined subsequently) are connected by a per-

fect matching. The diagnosability of MCN under the comparison model is shown to be

one larger than that of the M-component, provided some connectivity constraints are

satisfied. Applying our result, the diagnosability of the Hypercube Qn, the Crossed cube

CQn, the Twisted cube TQn, and the Möbius cube MQn can all be proved to be n, for

n ≥ 4. In particular, we show that the diagnosability of the 4-dimensional Hypercube Q4

is 4 which is not previously known.

Another family is the product networks, constructed by applying cartesian product

operation on factor networks. It would be interesting to combine two known topologies

with established properties to obtain a new one that inherits properties from both. We

prove that the product network of G1 and G2 is (t1+t2)-diagnosable, where Gi is either ti-

diagnosable or ti-connected with regularity ti for i = 1, 2. Furthermore, we use different

combinations of ti-diagnosability and ti-connectivity to study the diagnosability of the

product networks. We show that the product network of G1, G2, . . . , and Gk is (t1 + t2 +

. . .+tk)-diagnosable, where each Gi is either ti-diagnosable or ti-connected with regularity

ti for 1 ≤ i ≤ k.

In this thesis, we introduce a new measure of conditional diagnosability by restricting

that any faulty set cannot contain all the neighbors of any vertex in the graph. Based on



this requirement, the conditional diagnosability of the n-dimensional Hypercube is shown

to be 4(n − 2) + 1, which is about four times as large as the classical diagnosability.

Besides, we propose some useful conditions for verifying if a system is t-diagnosable,

and introduce a new concept, called strongly t-diagnosable system, under PMC model.

Applying these concepts and conditions, we investigate some t-diagnosable networks which

are also strongly t-diagnosable.

Keywords: diagnosability, t-diagnosable, comparison model, MM* model, PMC model,

Matching Composition Network, product networks, strongly t-diagnosable, condi-

tional faulty-set, conditional diagnosability.
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Chapter 1

Introduction

With the rapid development of technology, the need for high-speed parallel processing

systems has been continuously increasing. The reliability of the processors in parallel

computing systems is therefore becoming an important issue. In order to maintain the

reliability of a system, whenever a processor (node or vertex) is found faulty it should

be replaced by a fault-free processor. The process of identifying all the faulty nodes is

called the diagnosis of the system. System-level diagnosis appears to be a alternative to

circuit-level testing in a complex multiprocessor system.

Somani [59] and T. Chen [7] had some surveys on the diagnosis problems and illus-

trated many related issues for multi-processor system. Three basic classes of problems

have been identified in system-level diagnosis: (1) the characterization problem, (2) the

diagnosability problem, and (3) the diagnosis problem. In this thesis, we focus on the

first two problems and have some results which will be presented in chapters 3, 4, and 5.

Many terms for system-level diagnosis have been defined and various models have been

proposed in literature [4, 31, 50, 55]. If all allowable fault sets can be diagnosed correctly

and completely based on a single syndrome (which will be defined in chapter 2), then

the diagnosis is referred to as one-step diagnosis or diagnosis without repairs. A system

is called sequentially t-diagnosable, if at least one faulty unit can be identified provided

the number of faulty nodes does not exceed t. A system is said to be t-diagnosable if, for

every syndrome, there is a unique set of faulty nodes that could produce the syndrome

as long as the number of faulty nodes does not exceed t. The maximum number of faulty

nodes that the system can guarantee to identify is called the diagnosability of the system.
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Another way of diagnosis is to allow a certain number of processors to be incorrectly

diagnosed. Friedman [30] introduced the notation of t/s-diagnosability. A system is

t/s-diagnosable if, given any syndrome, the faulty units can be isolated to within a set

of, at most, s units provided that the number of faulty units does not exceed t. Chwa

and Hakimi [8] characterized t/t-diagnosable systems, a special case of t/s-diagnosable

systems.

In this thesis, we consider the diagnosabilities of some multiprocessor networks under

PMC model [55] and under the comparison model [47, 48]. The diagnosability of some

well-known interconnection networks under the comparison model has been investigated.

For example, Wang [65, 66] showed that the diagnosability of an n-dimensional hypercube

Qn is n for n ≥ 5, and the diagnosability of an n-dimensional enhanced hypercube is n+1

for n ≥ 6. The diagnosability of an n-dimensional crossed cube is proved to be n, n ≥ 4,

in literature [6, 29]. Araki [64] proposed that the k-ary r-dimensional butterfly network

BF (k, r) is 2k-diagnosable for k ≥ 2 and r ≥ 5. The diagnosability of the Hypercubes, the

Crossed cubes, and the Möbius cubes under the PMC diagnostic model were also studied

in works [3, 6, 27, 28, 40]. Besides, G.Y. Chang et al. [6] studied the diagnosabilities of

regular networks, such as cube-connected cycles, tori, and star graphs.

In chapter 3, we study the diagnosability of a family of interconnection networks,

called the Matching Composition Networks (MCN), which can be recursively constructed.

MCN includes many well-known interconnection networks as special cases, such as the

Hypercube Qn, the Crossed cube CQn, the Twisted cube TQn, and the Möbius cube

MQn. Basically, MCN and these mentioned cubes are all constructed from two graphs

G1 and G2 with the same number of nodes, by adding a perfect matching between the

nodes of G1 and G2. We shall call these two graphs G1 and G2 as the M-components of

MCN.

One of our results under the comparison model is illustrated as follows. Suppose that

the number of nodes in each component is at least t+2, the order (which will be defined in

chapter 2) of each node in Gi is t, and the connectivity of Gi is also t, i = 1, 2. We prove

that the diagnosability of MCN constructed from G1 and G2 is t+1 under the comparison

model, for t ≥ 2, in chapter 3 and in literature [46]. In other words, the diagnosability of

MCN is increased by one as compared with those of the M-components. Using our result,

it is straightforward to see that the diagnosability of the Hypercube Qn, the Crossed cube

7



CQn, the Twisted cube TQn, and the Möbius cube MQn are n for n ≥ 4. Some of these

particular applications are previously known results [29, 66], using rather lengthy proofs.

Our approach unifies these special cases and our proof is much simpler. We would like

to point out that the diagnosability of the 4-dimensional Hypercube Q4 is 4, which is not

previously known [29, 66].

In chapter 4, we investigate the diagnosabilities of Cartesian Product Networks under

the comparison model. A product networks is obtained by applying the graph Cartesian

product operation on factor networks. It would be interesting to be able to combine two

known topologies with established properties to obtain a new one that inherits properties

from both. We use the Cartesian product as a tool to achieve this combining. The product

networks constitute an important classes for the interconnection networks. Motivated

by this observation, the diagnosability of the product networks under the comparison

diagnosis model is also studied in this thesis.

Though various properties of the product networks (e.g. connectivity, diameter, short-

est path routing, and embedding, etc.) have been investigated by many researchers

[15, 16, 24, 33, 34, 53, 54, 56, 71], we study a different topological property from the

previous works. The diagnosability of hypercubes and enhanced hypercubes were studied

in literature [40, 65, 66] and the diagnosability of crossed cubes was presented in literature

[29]. The diagnosability of the product networks under the PMC model was investigated

in work [2]. In this thesis and literature [10], we study the diagnosability of the product

network of G1 and G2, where Gi is ti-diagnosable or ti-connected for i = 1, 2. More-

over, we use different combinations of ti-diagnosability and ti-connectivity to study the

diagnosability of the product networks.

Under PMC model, the main studies are present as follows. Reviewing the previous

papers [3, 6, 11, 27, 28, 35, 40, 42, 57], the Hypercube Qn, the Crossed cube CQn, the

Möbius cube MQn, and the Twisted cube TQn are all n-connected and n-diagnosable.

In advance, we observe that they are almost (n + 1)-connected and (n + 1)-diagnosable

except the case that all the neighbors of some vertex are faulty simultaneously. There-

fore, in chapter 5 and literature [45], we introduce the concept of strongly t-diagnosable

system and, furthermore, propose some conditions to assure which networks are strongly

t-diagnosable.

8



For the classical diagnosability, only processors with direct connections are allowed to

test one another. For a system, if all the adjacent neighbors of a processor v are faulty

simultaneously, it is impossible to determine whether processor v is fault-free or faulty.

Hence, for most practical systems that are sparsely connected, only a small number of

faulty processors can be recognized with the classical diagnosability theory. So it is an

interesting problem to study how the diagnosability varies with some reasonable restric-

tions. Thulasiraman et al. [20] investigated the fault diagnosis with local constraints. In

chapter 5 and literature [45], we propose to study a certain conditional diagnosability and

show that the conditional diagnosability of the Hypercube, Qn, is 4(n − 2) + 1.

The diagnosis problem is to determine the working status of each individual processors

in a system which has been designed to have a certain level of diagnosability. A diagnosis

algorithm can be implemented in two basic ways: centralized algorithm and distributed

algorithm. Most of the diagnosis algorithms suggested in earlier works were centralized

[9, 18, 19, 32, 61, 63, 70], while testing and diagnosis were done simultaneously. Therefore,

a host processor is required in order to collect testing results and to diagnosis the system

according to the syndrome. Centralized diagnosis algorithm puts a heavy communication

load on the system. Moreover, the supervisory processor is a major performance and

reliability bottleneck. However, in either distributed systems or high-speed communica-

tion networks, there is no host and all processors run independently. For these reasons,

a distributed diagnosis approach in multi-processor systems is preferred rather than a

centralized one.

As against a central diagnosis algorithm, a distributed diagnosis algorithm is executed

on many or all the processors in the system simultaneously. In a distributed diagnosis

algorithm, each processor in the system determines the status of every other processor

based on the information it collects through distribution of test results information. Local

distributed diagnosis algorithms have been introduced for regular interconnected systems,

in which each processor of the system takes part in the diagnosis process, using only the

information that is available in its local domain. The problem of testing and diagnosis

with distributed algorithms has been investigated by many researchers [5, 38, 41, 60, 67].

Of course, it is still desirable that more works on diagnosis problem are done for practical

systems.
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1.1 Basic Terms and Notations

A multiprocessor system is modelled as an undirected graph G = (V,E) whose vertices

represent processors and edges represent communication links. Throughout this thesis,

we will focus on undirected graph without loops (simply abbreviated as graph).

The degree of vertex v in a graph G, written as dG(v) or deg(v), is the number of

edges incident to v. The maximum degree is denoted by △(G), the minimum degree is

δ(G), and G is regular if △(G) = δ(G). It is k-regular if the common degree is k. The

neighborhood of v, written NG(v) or N(v), is the set of vertices adjacent to v. A vertex

(node) cover of G is a subset χ ⊆ V such that every edge of E has at least one end vertex

in χ. A vertex cover with the minimum cardinality is called a minimum vertex cover. The

connectivity κ(G) of a graph G(V,E) is the minimum number of vertices whose removal

results in a disconnected or a trivial graph. A graph G is k-connected if its connectivity

is at least k.

The Hypercube structure [57] is a well-known and commercially available interconnec-

tion model for multiprocessor system. The fault-tolerant computing for the Hypercube

structure has been the interest of many researchers. A Hypercube of dimension n, denoted

by Qn, is an undirected graph consisting of 2n vertices and n2n−1 edges. The Hypercube

Q1 is a complete graph K2 with two vertices {0, 1}. For n ≥ 2, Qn is constructed from

two copies of Qn−1 by adding a perfect matching between them. Each vertex u of Qn

can be distinctly labelled by a binary n-bit string, un−1un−2 . . . u1u0. There is an edge

between two vertices if and only if their binary labels differ in exactly one bit position.

There are several variations of the Hypercube, for example; the Crossed cube [21], the

Twisted cube [37], and the Möbius cube [13]. For each of these cubes, an n-dimensional

cube can be constructed from two copies of (n − 1)-dimensional subcubes by adding a

perfect matching between the two subcubes. The main difference is that each of these

cubes has various perfect matching between its subcubes. An n-dimensional cube has (i)

2n vertices, (ii) connectivity n, and (iii) each vertex has the same degree n. We use cube

family to call all such cubes, which are constructed recursively by joining two subcubes

with a perfect matching.
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Chapter 2

Diagnosis Models

For the purpose of self-diagnosis of a given system, several different models have been

proposed in literature [47, 48, 55]. Preparata, Metze, and Chien [55] first introduced a

model, so called PMC-model, for system level diagnosis in multiprocessor systems. In this

model, it is assumed that a processor can test the faulty or fault-free status of another

processor. The comparison model, called MM model, proposed by Maeng and Malek

[47, 48], is considered to be another practical approach for fault diagnosis in multiprocessor

systems.

2.1 PMC model

A multiprocessor system is modelled as an undirected graph G = (V,E) whose vertices

represent processors and edges represent communication links. Adjacent processors are

capable of performing tests on each other. For adjacent vertices u, v ∈ V , the ordered

pair (u, v) represents the test performed by u on v. In this situation, u is called the tester

and v is called the tested vertex. The outcome of a test (u, v) is 1 (respectively 0) if u

evaluates v as faulty (respectively fault-free).

A test assignment for a system G = (V,E) is a collection of tests (u, v) for some

adjacent pairs of vertices. Throughout this thesis, it can be modelled as a directed graph

T = (V, L), where (u, v) ∈ L implies that u tests v in G. The collection of all test

results for a test assignment T is called a syndrome. Formally, a syndrome is a function

σ : L → {0, 1}.
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2.2 The Comparison Model

In this approach, the diagnosis is carried out by sending the same testing task to a pair

{u, v} of processors and comparing their responses. The comparison is performed by a

third processor w that has direct communication links to both processors u and v. The

third processor w is called a comparator of u and v.

If the comparator is fault-free, a disagreement between the two responses is an in-

dication of the existence of a faulty processor. To gain as much knowledge as possible

about the faulty status of the system, it was assumed that a comparison is performed by

each processor for each pair of distinct neighbors with which it can communicate directly.

This special case of MM-model is referred to as the MM*-model. Sengupta and Dahbura

[58] studied the MM-model and the MM*-model, gave a characterization of diagnosable

systems under the comparison approach, and proposed a polynomial time algorithm to

determine faulty processors under MM*-model. In this thesis, we study the diagnosabili-

ties of MCN (which will be defined subsequently) and Cartesian Product Networks under

MM*-model.

In the study of multiprocessor systems, the topology of networks is usually represented

by a graph G = (V,E), where each node v ∈ V represents a processor and each edge

(u, v) ∈ E represents a communication link. The diagnosis by comparison approach can

be modelled by a labelled multigraph, called comparison graph, T = (V, L), where V is the

set of all processors and L is the set of labelled edges. A labelled edge (u, v)w ∈ L, with

w being a label on the edge, connects u and v, which implies that processors u and v are

being compared by w. Under the MM-model, processor w is a comparator for processors

u and v only if (w, u) ∈ E and (w, v) ∈ E. The MM*-model is a special case of the MM

model, it is assumed that each processor w such that (w, u) ∈ E and (w, v) ∈ E is a

comparator for the pair of processors u and v. The comparison graph T = (V, L) of a

given system can be a multigraph, for the same pair of nodes may be compared by several

different comparators.

For (u, v)w ∈ L, the output of comparator w of u and v is denoted by r((u, v)w), a

disagreement of the outputs is denoted by the comparison results r((u, v)w) = 1, whereas

an agreement is denoted by r((u, v)w) = 0.
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Therefore, if the comparator w is fault-free and r((u, v)w) = 0, then u and v are both

fault-free. If r((u, v)w) = 1, then at least one of u, v, and w must be faulty. The set of all

comparison results of a multicomputer system that are analyzed together to determine

the faulty processors is called a syndrome of the system.

2.3 Common Terms and Notations

For a given syndrome σ, a subset of nodes F ⊆ V is said to be consistent with σ, if

syndrome σ can be produced from the situation that all nodes in F are faulty and all

nodes in V −F are fault-free. Because a faulty comparator (or tester) can lead to unreliable

result, a given set F of faulty nodes may produce different syndromes. Let σ(F ) represent

the set of all syndromes which could be produced if F is the set of faulty vertices.

The set of all faulty processors in the system is called a faulty-set. This can be any

subset of V . Two distinct sets F1, F2 ⊂ V are said to be indistinguishable if and only

if σ(F1)
⋂

σ(F2) 6= Ø; otherwise, F1, F2 are said to be distinguishable. Besides, we say

(F1, F2) is an indistinguishable-pair if σ(F1)
⋂

σ(F2) 6= Ø, else, (F1, F2) is a distinguishable-

pair. A system is said to be t-diagnosable if for every syndrome, there is a unique set of

faulty nodes that could produce the syndrome, provided the number of faulty nodes does

not exceed t.

Let G = (V,E). For a set S ⊂ V , the notation G−S represents the graph obtained by

removing the vertices in S from G and deleting those edges with at least one end vertex

in S simultaneously. If G−S is disconnected, then S is called a vertex cut or a separating

set.

Definition 1 [68] The components of a graph G are its maximal connected subgraphs. A

component is trivial if it has no edges; otherwise it is nontrivial.

Let G1, G2 be two subgraphs of G, if there are ambiguities, we shall write the vertex

set of G1 as VG1
or V (G1). The neighborhood set of the vertex set VG1

is defined as

N(VG1
) = {y ∈ V (G)| there exists a vertex x ∈ VG1

such that (x, y) ∈ E(G)} − VG1
.

The restricted neighborhood set of VG1
in G2 (VG2

) is defined as N(VG1
, G2) (N(VG1

, VG2
)

respectively) = {y ∈ V (G2)| there exists a vertex x ∈ VG1
such that (x, y) ∈ E(G)}−VG1

.
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We use |X| to denote the cardinality of set X. For v ∈ V , we use din(v) to denote the

number of edges directed toward v in G. The restricted degree of a vertex v in a subgraph

G1 is defined as degG1
(v) = |N({v}, G1)|.

2.4 Preliminaries for PMC model

For PMC model, some known results about the definition of t-diagnosable system and

related concepts are listed as follows. Some of these previous results are on directed graphs

and others are on undirected graphs.

Definition 2 [55] A system of n units is t-diagnosable if all faulty units can be identified

without replacement provided that the number of faults presented does not exceed t.

Let F1, F2 ⊂ V be two distinct sets and let the symmetric difference F1△F2 = (F1 −

F2)
⋃

(F2−F1). DahBura and Masson [14] proposed a polynomial time algorithm to check

whether a system is t-diagnosable.

Lemma 1 [14] A system G(V,E) is t-diagnosable under PMC model if and only if for

each pair F1, F2 ⊂ V with |F1|, |F2| ≤ t and F1 6= F2, there is at least one test from

V − (F1

⋃
F2) to F1△F2.

The following two results related to t-diagnosable systems are due to Hakimi et al.

[35], and Preparata et al. [55], respectively.

Lemma 2 [55] Let G(V,E) be the graph representation of a system G, with V represent-

ing the processors and E the interconnection among them. Let |V | = n. The following

two conditions are necessary for G to be t-diagnosable under PMC model:

(i) n ≥ 2t + 1, and

(ii) each processor is tested by at least t other processors.

Lemma 3 [35] The following two conditions are sufficient for a system G of n processors

to be t-diagnosable under PMC model:
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(i) n ≥ 2t + 1, and

(ii) κ(G) ≥ t.

For a directed graph G and vertex v ∈ V (G), let Γ(v) = {vi|(v, vi) ∈ E} and Γ(X) =⋃
v∈X Γ(v)−X, X ⊂ V . Hakimi and Amin presented a necessary and sufficient condition

for a system G to be t-diagnosable as follows:

Theorem 1 [35] Let G(V,E) be the directed graph of a system G with n units. Then G is

t-diagnosable under PMC model if and only if: (i) n ≥ 2t+1, (ii) din(v) ≥ t for all v ∈ V ,

and (iii) for each integer p with 0 ≤ p ≤ t − 1, and each X ⊂ V with |X| = n − 2t + p,

|Γ(X)| > p.

In this thesis, we propose some new viewpoints on diagnosis, and we will focus on

undirected graph (simply abbreviated as graph). Let G(V,E) be an undirected graph of

a system G. The following lemma follows directly from Lemma 1.

Lemma 4 For any two distinct sets F1, F2 ⊂ V , (F1, F2) is a distinguishable-pair under

PMC model if and only if ∃u ∈ X and ∃v ∈ F1△F2 such that (u, v) ∈ E (See Fig. 2.1).

F
1
 F
2
 F
1
 F
2


(i)
 (ii)

u
 u


v
 v


Figure 2.1: Illustration for a distinguishable pair (F1, F2).

It follows from Definition 2 that the following lemma holds.

Lemma 5 A system is t-diagnosable under PMC model if and only if for each distinct

pair of sets F1, F2 ⊂ V with |F1| ≤ t and |F2| ≤ t, F1 and F2 are distinguishable.

An equivalent way of stating the above lemma is the following:
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Lemma 6 A system is t-diagnosable under PMC model if and only if for each indistin-

guishable pair of sets F1, F2 ⊂ V , it implies that |F1| > t or |F2| > t.

By Lemma 2, a similar result for undirected graph is stated as follows.

Corollary 1 [55] Let G(V,E) be an undirected graph. The following two conditions are

necessary for G to be t-diagnosable under PMC model:

(i) n ≥ 2t + 1, and

(ii) δ(G) ≥ t.

For our discussion later, an alternative characterization of t-diagnosable system is

given.

Theorem 2 Let G(V,E) be the graph of a system G. Then G is t-diagnosable under

PMC model if and only if for each vertex set S ⊂ V with |S| = p, 0 ≤ p ≤ t − 1, every

component C of G − S satisfies |VC | ≥ 2(t − p) + 1.

Proof: To see that |VC | ≥ 2(t − p) + 1 is necessary, by contradiction. Then there exists

a set of vertex S ⊂ V with |S| = p, 0 ≤ p ≤ t− 1, such that one of the components G−S

has strictly less than 2(t−p)+1 vertices. Let C be such a component with |VC | ≤ 2(t−p).

We then arbitrarily partition VC into two disjoint subsets, VC = A1

⋃
A2 with |A1| ≤ t−p

and |A2| ≤ t − p. Let F1 = A1

⋃
S and F2 = A2

⋃
S. Then |F1| ≤ t and |F2| ≤ t. It is

clear that there is no edge between V − (F1

⋃
F2) and F1△F2. By Lemma 4, F1 and F2

are indistinguishable. This contradicts with the assumption that G is t-diagnosable.

To prove the sufficiency, suppose on the contrary that G is not t-diagnosable, i.e, there

exists an indistinguishable pair (F1, F2) with |Fi| ≤ t, i = i, 2. By Lemma 4, there is no

edge between V − (F1

⋃
F2) and F1△F2. Let S = F1

⋂
F2. Thus, in G − S, F1△F2 is

disconnected from other parts. We observe that |F1△F2| = 2(t − p), where |S| = p and

0 ≤ p ≤ t−1. Therefore, there is at least one component C of G−S with |VC | ≤ 2(t−p),

which is a contradiction. This completes the proof of the theorem. 2
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2.5 Preliminaries for the comparison model

Next, we discuss the diagnosability under the comparison model. Given a graph G, let

T be the comparison graph of G. For a node v ∈ V (G), we define Xv to be the set of

nodes {u | (v, u) ∈ E(G)}
⋃
{u | (v, u)w ∈ E(T ) for some w} and Yv to be the set of edges

{(u,w) | u,w ∈ Xv and (v, u)w ∈ E(T )}. In [58], the order graph of node v is defined as

G(v) = (Xv, Yv) and the order of the node v, denoted by orderG(v), is defined to be the

cardinality of a minimum vertex cover of G(v). Let U ⊂ V (G), we use Γ(G,U) to denote

the set {v | (u, v)w ∈ E(T ) and w, u ∈ U, v ∈ Ū}. We observe that Γ(G,U) = N(Ū , U) if

G[U ] is connected and |U | > 1. This observation can be extended to the following lemma.

Lemma 7 Let U be a subset of V (G) and G[Ui], 1 ≤ i ≤ k, be the connected components

of the subgraph G[U ] such that U =
k⋃

i=1

Ui. Then Γ(G,U) =
k⋃

i=1

{N(Ū , Ui) | |Ui| > 1}.

0


1
 2


3


4


5
 6


7


Figure 2.2: An example for Γ(G,U) of Q3.

In Fig. 2.2, taking Q3 as an example, we have Γ(G,U) ={4, 5, 6, 7}, where U ={0, 1, 2, 3}.

The next lemma follows directly from the definition of connectivity of G.

Lemma 8 [27] Let G be a connected graph and U be a subset of V (G). Then |N(Ū , U)| ≥

κ(G) if |Ū | ≥ κ(G), and N(Ū , U) = Ū if |Ū | < κ(G).

Five lemmas and theorems presented by Sengupta and Dahbura [58] must be applied

to characterize whether a system to be t-diagnosable. The results of these theorems are

as follows.
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First one is a necessary and sufficient condition for ensuring distinguishability.

Theorem 3 [58] For any S1,S2 where S1, S2 ⊂ V and S1 6= S2, (S1, S2) is a distinguish-

able pair under the comparison model if and only if at least one of the following conditions

is satisfied: (See Fig. 2.3)

(i) ∃i, k ∈ V − S1 − S2 and ∃j ∈ (S1 − S2)
⋃

(S2 − S1) such that (i, j)k ∈ C,

(ii) ∃i, j ∈ S1 − S2 and ∃k ∈ V − S1 − S2 such that (i, j)k ∈ C, or

(iii) ∃i, j ∈ S2 − S1 and ∃k ∈ V − S1 − S2 such that (i, j)k ∈ C.

V


(i)


S

2
S


1


(i)


(iii)
(ii)


Figure 2.3: Description of distinguishability.

Two necessary conditions for checking a system to be t-diagnosable are as follows.

Lemma 9 [58] If a system with N nodes is t-diagnosable, then N ≥ 2t + 1.

Lemma 10 [58] If, in a system, each node has order at least t, then for each S1, S2 ⊂ V

such that |S1

⋃
S2| ≤ t, (S1, S2) is a distinguishable pair.

Another necessary and sufficient condition for ensuring distinguishability is the fol-

lowing theorem.

Theorem 4 [58] A system is t-diagnosable under the comparison model if and only if

each node has order at least t and for each distinct pair of sets S1, S2 ⊂ V such that

|S1| = |S2| = t, at least one of the conditions of Theorem 3 is satisfied.
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The following theorem is a sufficient condition for verifying a system to be t-diagnosable.

Theorem 5 [58] A system G with N nodes is t-diagnosable under the comparison model

if

(1) N ≥ 2t + 1;

(2) orderG(v) ≥ t for every node v in G;

(3) |Γ(G,U)| > p for each U ⊂ V (G) such that |U | = N − 2t + p and 0 ≤ p ≤ t − 1.

According to the Theorems 3, 4, and 5, we observe that condition (3) of Theorem 5

restricts G satisfying the first condition of Theorem 3 and ignores conditions 2 and 3.

Hence, we present a hybrid theorem to test whether a system is t-diagnosable.

Theorem 6 A system G with N nodes is t-diagnosable under the comparison model if

(1) N ≥ 2t + 1;

(2) orderG(v) ≥ t for every node v in G;

(3) for any two distinct subsets S1, S2 ⊂ V (G) such that |S1| = |S2| = t

either (a) |Γ(G,U)| > p, where U = V (G) − (S1

⋃
S2), and |S1

⋂
S2| = p;

or (b) The pair (S1, S2) satisfies condition (ii) or (iii) of Theorem 3.

Proof: Conditions (1) and (2) are the same as conditions (1) and (2) of Theorem 5.

Consider condition (3.a). S1 and S2 are two distinct subsets of V (G) with |S1| = |S2| = t,

U = V (G) − (S1

⋃
S2), and |S1

⋂
S2| = p. Then 0 ≤ p ≤ t − 1 and |U | = N − 2t + p.

If |Γ(G,U)| > p, it implies that the pair (S1, S2) satisfies condition (i) of Theorem 3.

Combining conditions (3.a) and (3.b), by Theorems 3 and 4, this theorem follows. 2
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Chapter 3

Diagnosability of the Matching

Composition Networks

Now we define the Matching Composition Network (MCN) as follows. Let G1 and G2

be two graphs with the same number of nodes. Let M be an arbitrary perfect matching

between the nodes of G1 and G2; i.e., M is a set of edges connecting the nodes of G1

and G2 in a one to one fashion, the resulting composition graph is called a Matching

Composition Network (MCN). For convenience, G1 and G2 are called the M-components

of the MCN. Formally, we use the notation G1

⊕
M G2 to denote a MCN, which has node

set V (G1

⊕
M G2) = V (G1)

⋃
V (G2) and edge set E(G1

⊕
M G2) = E(G1) ∪ E(G2) ∪ M .

See Fig. 3.1.

3.1 Diagnosability of the Matching Composition Net-

works under PMC Model

Theorem 7 Let G1(V1, E1), G2(V2, E2) be two t-diagnosable systems with the same num-

ber of vertices, where t ≥ 1. Then MCN G = G1

⊕
M G2 is (t + 1)-diagnosable.

Proof: We shall use Theorem 2 to prove this theorem. Let G = G(V,E) = G1

⊕
M G2

and S ⊂ V with |S| = p, 0 ≤ p ≤ t. Let S1 = S
⋂

V1 and S2 = S
⋂

V2 with |S1| = p1 and

|S2| = p2. In the following proof, we consider two cases: (1) S1 = Ø or S2 = Ø, and (2)

S1 6= Ø and S2 6= Ø. We shall prove that: |VC | ≥ 2((t + 1) − p) + 1 for every component

C of G − S as 0 ≤ p ≤ t.
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Case 1: S1 = Ø or S2 = Ø.

Without loss of generality, assume S1 = Ø and S2 = S. We know that each vertex

of V2 has an adjacent neighbor in V1, so, G − S is connected. The only component C of

G−S is G−S itself. Hence, |VC | = |V −S| = |V1|+ |V2|−p. Gi is t-diagnosable, i = 1, 2,

by Lemma 2, |Vi| ≥ 2t + 1. So |VC | ≥ 2(2t + 1) − p ≥ 2((t + 1) − p) + 1 for t ≥ 1.

Case 2: S1 6= Ø and S2 6= Ø.

S1 6= Ø and S2 6= Ø, it implies 1 ≤ p1 ≤ t−1 and 1 ≤ p2 ≤ t−1. Let C1 be a component

of G1 − S1. G1 is t-diagnosable, by Theorem 2, |VC1
| ≥ 2(t − p1) + 1. We claim that

2(t−p1)+1 ≥ p2+1. Since p = p1+p2, 2(t−p1)+1 = 2(t−(p−p2))+1 = 2p2+2(t−p)+1.

Notice that p ≤ t. Hence, |VC1
| ≥ 2(t − p1) + 1 ≥ p2 + 1. That is, VC1

has at least one

adjacent neighbor v ∈ V2 and v /∈ S2. G2 is t-diagnosable, by Theorem 2, every component

of G2 − S2 has at least 2(t − p2) + 1 vertices. Let C2 be the component of G2 − S2 such

that v ∈ VC2
and let C be the component of G − S such that VC1

⋃
VC2

⊂ VC . Then

|VC | ≥ |VC1
|+ |VC2

| ≥ (2(t− p1) + 1) + (2(t− p2) + 1) = 2(2t− p + 1) ≥ 2((t + 1)− p) + 1

as t ≥ 1.

So every component of G − S has at least 2((t + 1) − p) + 1 vertices in this subcase.

Consequently, the lemma follows. 2

3.2 Diagnosability of the Matching Composition Net-

works under the Comparison Model

What we have in mind is the following: Let G1 and G2 be two t-connected networks with

the same number of nodes and orderGi
(v) ≥ t for every node v in Gi, where i = 1, 2,

and let M be an arbitrary perfect matching between the nodes of G1 and G2. Then the

degree of any node v in G(G1

⊕
M G2) as compared with that of node v in Gi, i = 1, 2, is

increased by one. We expect that the diagnosability of G(G1

⊕
M G2) is also increased to

t + 1. For example, the Hypercube Qn+1 is constructed from two copies of Qn by adding

a perfect matching between the two and the diagnosability is increased from n to n + 1

for n ≥ 5. Other examples such as the Twisted cube TQn+1, the Crossed cube CQn+1,

and the Möbius cube MQn+1 are all constructed recursively using the same method as
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above.
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Figure 3.1: An example of MCN G(G1

⊕
M G2).

Theorem 8 Let G1 and G2 be two networks with the same number of nodes, and t be a

positive integer. Suppose that orderGi
(v) ≥ t for every node v in Gi, where i = 1, 2. Then

orderG1

⊕
M

G2
(v) ≥ t + 1 for node v in G1

⊕
M G2.

Proof: See Fig. 3.1. Let v be a node of G = G1

⊕
M G2. Without loss of generality, we

assume that v ∈ V (G1), v′ ∈ V (G2), and (v, v′) ∈ M . Of course, node v′ is connected

to at least one other node v′′ in V (G2). Let G1(v) and G(v) be the order graph of v in

graph G1 and G, respectively. We observe that G1(v) is a proper subgraph of G, both

v′ and v′′ are in the latter, none of them in the former, and (v′, v′′) is an edge in G(v).

Therefore, every vertex cover of the order graph G(v) contains a vertex cover of the order

graph G1(v). Besides, any vertex cover of G(v) has to include at least one of v′ and v′′.

Thus, orderG1

⊕
M

G2
(v) ≥ orderGi

(v) + 1 for any node v in Gi, i = 1, 2. This completes

the proof. 2

We need the following lemma later in Theorem 9.

Lemma 11 Let G be a t-connected network, |V (G)| ≥ t + 2 and orderG(v) ≥ t for every

node v in G, where t ≥ 2. Suppose that U is a subset of nodes of V (G) with |Ū | ≤ t.

Then Γ(G,U) = Ū .
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Proof: By assumption |Ū | ≤ t and κ(G) ≥ t, we prove the lemma by two cases; the first

for |Ū | < κ(G) and the second for |Ū | = κ(G).

If |Ū | < κ(G), the induced graph G[U ] is connected. By Lemma 7, Γ(G,U) = N(Ū , U).

By Lemma 8, N(Ū , U) = Ū . This case holds.

Suppose that |Ū | = κ(G). We observe that, adding any node v of Ū to U , the induced

subgraph G[U
⋃
{v}] forms a connected graph. It implies that every node v of Ū is

adjacent to every connected components of G[U ]. We claim that the subgraph induced

by U contains a connected component A with cardinality at least two (See Fig. 3.2(a)).

Then, the connected component A is adjacent to all nodes in Ū and, so Γ(G,U) = Ū .

Now, we prove the claim. Suppose on the contrary that every connected component

of the subgraph induced by U is an isolated node. Let v be an arbitrary node in Ū , and

let G(v) = (Xv, Yv) be the order graph of v in G. Then Ū−{v} is a vertex cover of G(v),

because every connected component of G[U ] is an isolated node. Since |Ū | ≤ t, we have

|Ū−{v}| ≤ t − 1. Therefore, even if the induced graph G[Ū−{v}] is a complete graph

(See Fig. 3.2(b)), the cardinality of a minimum vertex cover of the order graph G(v) is at

most t − 1. However, this contradicts to the hypothesis of orderG(v) ≥ t for every node

v in G. So G[U ] has a connected component A with cardinality at least two. This proves

the claim, and the lemma follows. 2

(a)  
G


A


v


v'


v"


U


v


A

v"


v'


(b) 
v
 is connected to 
A


U


U
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Figure 3.2: An example of the Γ(G,U) when |U | = t .
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We are now ready to state and prove the following theorem about the diagnosability

of Matching Composition Network under the comparison model. As an illustration, the

conditions of the following theorem are applicable to some well-known interconnection

networks, such as Qn, CQn, TQn, and MQn for n = t ≥ 3.

Theorem 9 For t ≥ 2, let G1 and G2 be two graphs with the same number of nodes

N , where N ≥ t + 2. Suppose that orderGi
(v) ≥ t for every node v in Gi and the

connectivity κ(Gi) ≥ t, where i = 1, 2. Then MCN G1

⊕
M G2 is (t + 1)-diagnosable

under the comparison model.

Proof: Since |V (G1)| = |V (G2)| = N , 2N ≥ 2(t + 2) > 2(t + 1) + 1. By Theorem 8,

orderG1

⊕
M

G2
(v) ≥ t+1 for any node v in G1

⊕
M G2. It remains to prove that G1

⊕
M G2

satisfies condition 3 of Theorem 6.

Let F1 and F2 be two distinct subsets of V (G) with the same number t + 1 of nodes,

and let |F1

⋂
F2| = p, then 0 ≤ p ≤ t. In order to prove this theorem, we will prove

that F1 and F2 are distinguishable, i.e., this pair (F1, F2) satisfies either condition (3.a)

or (3.b) of Theorem 6.

Let G = G1

⊕
M G2 and U = V (G) − (F1

⋃
F2), then |U | = 2N − 2(t + 1) + p. Let

U = U1

⋃
U2 with Ui = U

⋂
V (Gi) and Ūi = V (Gi) − Ui, i = 1, 2. Without loss of

generality, we assume that |U1| ≥ |U2|. Let |Ū1| = n1, |Ū2| = n2, n1 + n2 = 2(t + 1) − p,

and n1 ≤ n2. Since 0 ≤ n1 ≤ 2(t+1)−p

2
, the maximum value of n1 is equal to t + 1 when

p = 0 and n2 = t + 1. According to different values of n1 and n2, we divide the proof into

two cases. The first case n2 ≤ t which implies n1 ≤ t. The second case n2 > t, and this

case is further divided into three subcases n1 < t, n1 = t, and n1 > t.

Case 1: n1 ≤ t and n2 ≤ t.

By Lemma 11, we have |Γ(G,U)| ≥ |Γ(G1, U1)|+ |Γ(G2, U2)| = |Ū1|+ |Ū2| = n1 +n2 =

2(t + 1) − p. We know that 0 < p ≤ t, |Γ(G,U)| ≥ 2(t + 1) − p > p, and condition (3.a)

of Theorem 6 is satisfied.

Case 2: n2 > t.
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We discuss the case according to the following three subcases, (2a) n1 < t, (2b) n1 = t,

and (2c) n1 > t.

Subcase 2a: n1 < t.

Since κ(G1) ≥ t and |Ū1| = n1 < t, G[U1] is connected. By Lemmas 7 and 8,

Γ(G1, U1) = N(Ū1, U1) = n1. There are n1 and n2 nodes in Ū1 and Ū2, respectively,

and n2 = 2t + 2 − p − n1 (See Fig. 3.3). If all the nodes in Ū1 are adjacent to some n1

nodes in Ū2, there are still at least n2 − n1 = 2t + 2 − p − 2n1 nodes in Ū2 such that

each of them is adjacent to some node in U1 under the matching M . So, |Γ(G,U)| ≥

|Γ(G1, U1)| + (n2 − n1) = n1 + (n2 − n1) = n2. Because n2 > t ≥ p, the proof of this

subcase is complete.

G

2


U

2


U

1


G

1


2
U
1
U


Figure 3.3: Illustration in Theorem 9 for an example of subcase 2a.

Subcase 2b: n1 = t.

We know that n1 +n2 = 2(t+1)− p, 0 ≤ p ≤ t, n2 > t, and n1 = t, the only two valid

values for n2 are t + 1 and t + 2. n2 = t + 1 implies p = 1, and n2 = t + 2 implies p = 0.

By Lemma 11, |Γ(G1, U1)| = |Ū1| = t ≥ 2 > p for p = 0 or 1. Then the subcase holds.

Subcase 2c: n1 > t.

Observing that 0 ≤ n1 ≤
2(t+1)−p

2
, where 0 ≤ p ≤ t and n2 ≥ n1 > t, so n1 = n2 = t+1.

It also implies p = 0. Here, we will prove that the subcase satisfies either condition (3a)

or condition (3b) of Theorem 6.
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First, if the subgraph induced by U contains a connected component A1 with cardi-

nality at least two (See Fig. 3.4), then it must be adjacent to some node in Ū . Thus, we

know that |Γ(G,U)| > 0 = p, and Condition (3.a) of Theorem 6 is satisfied.

Otherwise, every connected component of U contains a single node only. By Theorem

3, we know that F1 and F2 are distinguishable if there exists a path 〈u1 → u → u2〉 such

that u ∈ U , and u1, u2 ∈ F1 − F2 or u1, u2 ∈ F2 − F1. If p = 0, it implies F1

⋂
F2 = φ,

any node u in G[U ] with degree more than two must be connected to at least two nodes

in F1 or F2 (See Fig. 3.4). By Theorem 8, orderG1

⊕
M

G2
(v) ≥ t + 1 for every node v in

G1

⊕
M G2, therefore deg(v) ≥ t+1 for every node v in G1

⊕
M G2. Since t ≥ 2, condition

(3.b) of Theorem 6 is satisfied.

Hence, the subcase holds and the theorem follows. 2
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Figure 3.4: Illustration in Theorem 9 for an example of subcase 2c.

By Theorem 5 and Theorem 9, we have the following corollary.

Corollary 2 Let G1 and G2 be two graphs with the same number of nodes N . Suppose

that both G1 and G2 are t-diagnosable under the comparison model and have connectivity

κ(G1) = κ(G2) ≥ t, where t ≥ 2. Then MCN G1

⊕
M G2 is (t + 1)-diagnosable under the

comparison model.

In [66], D. Wang has proved that the diagnosability of hypercube-structured multipro-

cessor systems under the comparison model is n when n ≥ 5. However, the diagnosability
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of Q4 is not known to be 4. Using our Theorem 9, we can strengthen the result as follows.

Theorem 10 The Hypercube Qn is n-diagnosable for n ≥ 4.

Proof: We observe that Q3 is 3-connected, orderQ3
(v) = 3 for every node v in Q3, and

the number of nodes of Q3 is 8, 8 ≥ t + 2 = 5 for t = 3. It is well-known that Q4 can

be constructed from two copies of Q3 by adding a perfect matching between these two

copies. Therefore, by Theorem 9, Q4 is 4-diagnosable.

Then, the proof is by induction on n. We have shown that Q4 is 4-diagnosable. Assume

that it is true for n = m− 1. Considering n = m, Qm is obtained from two copies G1, G2

of Qm−1 by adding a perfect matching joining corresponding nodes in G1 and G2. It is

well-known that Qm−1 is (m − 1)-connected. By Corollary 2, Qm is m-diagnosable. This

completes the induction proof. 2

However, Q3 is not 3-diagnosable. In Fig. 3.5, there is a Q3, let S1 = { 0, 5, 7} and

S2 ={ 2, 5, 7 }. Then, by Theorem 3, S1 and S2 are not distinguishable as shown in Fig.

3.5.

(a) 
 Q
 
 (b)
  Q
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 6
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 2


S
1
 S
2


3 
 3 


Figure 3.5: An example of an indistinguishable pair for Q3.

As we observe that most of the related results on diagnosability of multiprocessors

systems [29, 66] are based on a sufficient theorem, namely Theorem 5. Not satisfying

this sufficient condition, such as in the case of Q4, does not necessarily imply that the

network is not 4-diagnosable. Therefore, we propose a hybrid condition, 3(a) and 3(b) of

Theorem 6, to check the diagnosability of multiprocessor systems under the comparison
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model. It is more powerful to use. Applying our Theorem 6 and Theorem 9, we show

that the diagnosability of Q4 is indeed 4.

It is known [11, 28, 42] that the Crossed cube CQn [21], the Twisted cube TQn [37],

and the Möbius cube MQn [13] are all n-connected. By Theorem 8, we can prove that

the order of each node in these two cubes is n. We observe that the two cubes are both

constructed recursively using a similar way satisfying the requirements of Theorem 9 and

Corollary 2. Therefore, we can prove that CQn, TQn and MQn are all n-diagnosable for

n ≥ 4. Then, we list the following three theorems.

Theorem 11 [29] The Crossed cube CQn is n-diagnosable for n ≥ 4.

Theorem 12 The Twisted cube TQn is n-diagnosable for n ≥ 4.

Theorem 13 The Möbius cube MQn is n-diagnosable for n ≥ 4.
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Chapter 4

Diagnosability of Cartesian Product

Networks

Many multiprocessor networks are constructed by the cartesian product, such as grids,

hypercubes, meshes, and tori. The product networks constitute very important classes

for the interconnection networks. The diagnosability of the product networks under the

PMC model was investigated in [2]. In this thesis, we study the diagnosability of the

product network of G1 and G2, where Gi is ti-diagnosable or ti-connected for i = 1, 2.

Furthermore, we use different combinations of ti-diagnosability and ti-connectivity to

study the diagnosability of the product networks. We show that the product network of

G1, G2, . . . , and Gk is (t1+t2+. . .+tk)-diagnosable, where each Gi is either ti-diagnosable

or ti-connected with regularity ti for 1 ≤ i ≤ k.

Definition 3 The Cartesian product G = G1 × G2 of two graphs G1 = (V1, E1) and

G2 = (V2, E2) is the graph G = (V,E), where the set of nodes V and the set of edges E

are given by:

(i) V = {〈x, y〉|x ∈ V1 and y ∈ V2}, and

(ii) for u = 〈xu, yu〉 and v = 〈xv, yv〉 in V , (u, v) ∈ E if and only if (xu, xv) ∈ E1 and

yu = yv, or (yu, yv) ∈ E2 and xu = xv.

Let y be a fixed node of G2. The subgraph Gy
1-component of G1 × G2 has node set

V y
1 = {(x, y)|x ∈ V1} and edge set Ey

1 = {(u, v)|u =< xu, y >, v =< xv, y >, (xu, xv) ∈

E1}. Similarly, let x be a fixed node of G1, the subgraph Gx
2-component of G1 × G2 has
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node set V x
2 = {(x, y)|y ∈ V2} and edge set Ex

2 = {(u, v)|u =< x, yu >, v =< x, yv >

, (yu, yv) ∈ E2}. It is clear that Gy
1-component (abbreviated as Gy

1) and Gx
2-component

(abbreviated as Gx
2) are isomorphic to G1 and G2, respectively. (as illustrated in Fig.

4.1). The following lemma lists a set of known results [15, 16, 24, 33, 71] related to the

topological properties of the Cartesian product of G1 × G2 of two graphs G1 and G2.

Lemma 12 Let u = 〈xu, yu〉 and v = 〈xv, yv〉 be two nodes in G1 × G2. The following

properties hold:

(1) G1 × G2 is isomorphic to G2 × G1,

(2) |G1 × G2| =|G1| · |G2|, where |G| is the number of nodes in G,

(3) degG1×G2
(u) = degG1

(xu) + degG2
(yu),

(4) distG1×G2
(u, v) = distG1

(xu, xv) + distG2
(yu, yv), where distG(u, v) is the distance

between u and v in G,

(5) D(G1 × G2) = D(G1) + D(G2), where D(G) is the diameter of G,

(6) κ(G1 × G2) ≥ κ(G1) + κ(G2), where κ(G) is the connectivity of G.

4.1 Diagnosability of Cartesian Product Networks Un-

der PMC Model

Araki and Shibata [2] proposed some results for the t-diagnosability and t/t-diagnosability

of cartesian product systems under PMC model, listed as follows.

Theorem 14 [2] Let G1 and G2 be digraphs of t1- and t2-diagnosable systems, respec-

tively. Then, the system G = G1 × G2 is (t1 + t2)-diagnosable.

Lemma 13 [2] Let G be a digraph of a t-diagnosable system. Then (G×K2) is a digraph

of a (t + 1)-diagnosable system.

Theorem 15 [2] Let G1 and G2 be digraphs of ti/ti-diagnosable system (i = 1, 2). If

δi ≥ ⌈ (ti+1)
2

⌉ for i = 1, 2, then, the system G = G1 × G2 is (t1 + t2)/(t1 + t2)-diagnosable.
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Figure 4.1: An example of product network G1 × G2.

Lemma 14 [2] Let G be a digraph of a t/t-diagnosable system such that δin(G) ≥ ⌈ t+1
2
⌉.

Then a system represented by (G × K2) is (t + 1)/(t + 1)-diagnosable.

Theorem 16 [2] Let G1 and G2 be digraphs of ti/ti-diagnosable system (i = 1, 2). If

δi ≥ ⌈ ti
2
⌉+1 and ti ≥ 2(i = 1, 2), then, the system G = G1×G2 is (t1+t2+2)/(t1+t2+2)-

diagnosable.

4.2 Diagnosability of Cartesian Product Networks Un-

der the Comparison Model

In this section, we distinguish the product networks into homogeneous product networks

and heterogeneous product networks. By a homogeneous product networks, we mean

every factor network of the product has the same properties of being t-diagnosable and

t-regular (or being t-connected and t-regular, respectively), while heterogeneous product
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in the sense that one of the factor networks is t-diagnosable and another is t-connected.

Before discussing homogeneous product networks and heterogeneous product networks, we

consider the problem that, whether a t-regular and t-connected interconnection network

is t-diagnosable.

4.2.1 Diagnosability of t-connected networks

This section considers the problem that, under suitable conditions, a t-regular and t-

connected interconnection network is also t-diagnosable. A t-regular and t-connected

interconnection network with at least 2t+3 nodes is first proven also to be t-diagnosable.

Moreover, the product network of G1 and G2 is shown to be (t1 + t2) diagnosable, where

Gi is ti connected with regularity ti for i = 1, 2.

Lemma 15 Let G be a t-regular and t-connected network with N ≥ 2t + 1 nodes and

t > 2. Then, each node v of G has order t.

Proof: Let v be a node of G and let G(v) be the order graph of v in G. Let χ(v) be a

node cover of G(v). Assume that node v has order k < t. Since G contains N ≥ 2t + 1

nodes and the order of v is k < t, there exists at least one node y ∈ V, y 6= v, y /∈ N(v)

and y /∈ χ(v). The distance between v and y is at least 2. Each edge of G(v) has at

least one endpoint in χ(v), so all paths from v to y in G must be from v via z, which

is a node in χ(v). Deleting all the nodes of χ(v) in G ensures that no path exists from

v to y. However, exactly k nodes are deleted, contradicting the assumption that G is a

t-connected network, so k ≥ t. N(v) is a node cover of G(v) so the node v must have

order k = t. 2

Given a t-diagnosable system, by Lemma 9 the number of nodes must exceed or

be equal to 2t + 1. However, a t-regular and t-connected network with N = 2t + 1

nodes is not necessarily t-diagnosable. The graph shown in Fig. 4.2 is 4-regular and 4-

connected network with N = 9 nodes, since any two arbitrarily distinct nodes in Fig.

4.2 are contained in two disjoint cycles. For example, two distinct nodes 4 and 5 are

present in cycles 〈4, 9, 8, 5〉 and 〈4, 1, 6, 5, 2, 7, 3〉. This graph can be easily seen to be

not 4-diagnosable, since {4, 5, 6, 7} and {6, 7, 8, 9} constitute an indistinguishable pair.

With regard to N = 2t + 2, the three dimensional crossed cube CQ3 and the three

dimensional hypercube Q3 are 3-regular, 3-connected networks and each node has order
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t = 3. However, [29, 40] demonstrated that CQ3 and Q3 are not 3-diagnosable under the

comparison diagnosis model. The t-regular and t-connected network G with N ≥ 2t + 3

nodes is thus considered in the following theorem.

S
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 3


4
 5
 6
 7
 8
 9


Figure 4.2: An example of 4-connected and 3-diagnosable system.

Theorem 17 Let G = (V,E) be a t-regular and t-connected network with N nodes and

t > 2. G is t-diagnosable if N ≥ 2t + 3.

Proof: Let S1 and S2 be two distinct subsets of V with |S1| = |S2| = t, |S1

⋂
S2| = p

and 0 ≤ p ≤ t− 1. By Theorem 4 and Lemma 15, G can be shown to be t-diagnosable by

showing that (S1, S2) is a distinguishable pair. Let V ′′ = S1

⋃
S2 and V ′ = V −V ′′. Then

|V ′′| = 2t − p > t. Notably, V ′ may not be connected. The case in which all connected

components of the subgraph induced by V ′ are isolative nodes, is considered first. For

0 ≤ p ≤ t − 1, the following cases are considered.

Case 1: 0 ≤ p ≤ t − 3.

Since 0 ≤ p ≤ t − 3 and G is a t-regular graph, each node of V ′ has at least two

neighbors in S1 − S2 or S2 − S1 for t > 2. Thus, either condition (2) or condition (3) in

Theorem 3 is satisfied.

Case 2: p = t − 2.
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In this case, |V ′′| = t + 2, N ≥ 2t + 3 and |V ′| = N − (t + 2) ≥ t + 1. Assume that the

pair S1, S2 are indistinguishable. Therefore, conditions (2) and (3) in Theorem 3 cannot

be satisfied, implying that each node of V ′ must be connected to t − 2 nodes in S1

⋂
S2,

one node in S1 − S2 and one node in S2 − S1. Therefore, at most t nodes in V ′ satisfy

this assumption, contradicting the condition |V ′| ≥ t + 1. Hence, either condition (2) or

condition (3) in Theorem 3 must be satisfied.

Case 3: p = t − 1.

|V ′′| = t + 1 and |V ′| = N − t − 1. The subgraph induced by V ′ consists of isolative

nodes and G is a t-regular graph, so (N − t − 1)t edges are adjacent to the nodes of V ′

and V ′′. However, G has exactly Nt
2

edges. For N ≥ 2t + 3, we have (N − t − 1)t > Nt
2

,

which is a contradiction, so p = t − 1 is impossible.

Now consider that the subgraph induced by V ′ contains a connected component R

with cardinality of at least 2. Let u ∈ R and v ∈ (S1 − S2)
⋃

(S2 − S1). G is t-connected,

so there exist t disjoint paths from u to v. However, at most p disjoint paths exist from u

to v via the nodes of S1

⋂
S2. Therefore, there exists at least one path from u to v such

that no node of the path belongs to S1

⋂
S2. Since u is a node in R, there exists another

node w adjacent to u. Hence, the condition (1) in Theorem 3 is satisfied, completing the

proof of the theorem. 2

Corollary 3 For t1, t2 > 2, let G1 and G2 be two t1-connected and t2-connected networks,

with regularity t1 and t2, respectively. Let G = (V,E) be the product network of G1 and

G2. Then, the product network G = G1×G2 is (t1 + t2)-diagnosable with regularity t1 + t2.

Proof: G1 is t1-regular and t1-connected, so at least t1+1 nodes exist in G1. Similarly, the

number of nodes in G2 is at least t2+1. Therefore, G contains at least (t1+1)(t2+1) nodes.

Moreover, by Lemma 12, the degree of every node in G is t1+t2 (regularity t1+t2). δ(G) is

used to denote the minimum degree of G. That,[39], κ(G) ≤ δ(G) is well known. However

, by Lemma 12, κ(G) ≥ κ(G1) + κ(G2) = t1 + t2. Since t1 + t2 ≤ κ(G) ≤ δ(G) = t1 + t2,

κ(G) = t1 + t2. Since (t1 + 1)(t2 + 1) > 2(t1 + t2) + 3 for t1, t2 > 2, Theorem 17 implies

that G is (t1 + t2)-diagnosable. Therefore, the corollary follows. 2

Corollary 4 Let G be a product network of G1, G2, . . . , and Gk. Each Gi is ti-regular,

ti-connected and ti > 2 for 1 ≤ i ≤ k where k > 2. Then, the product network G is
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(t1 + t2 + . . . + tk)-regular and (t1 + t2 + . . . + tk)-diagnosable.

Figure 4.3: An example of 2-connected and 4-diagnosable system.

Theorem 17 indicates that a t-connected network with N ≥ 2t + 3 nodes is also t-

diagnosable. However, a t-diagnosable network is not necessarily a t-connected network

(as depicted in Fig. 4.3). The example shown in Fig. 4.3 is 4-regular and 4-diagnosable,

but not 4-connected. The t diagnosability and t connectivity are not equivalent terms,

but these two concepts are closely related; Theorem 17 provides an example.

4.2.2 Diagnosability of homogeneous product networks

By Corollary 3, the homogeneous product network G1×G2 is (t1 + t2)-diagnosable, where

Gi is ti-connected and ti-regular, ti > 2, i = 1, 2. The homogeneous product network

G1 × G2 is also (t1 + t2)-diagnosable, where Gi is ti-diagnosable and ti-regular, ti > 2,

i = 1, 2. Several lemmas must be proven first.

Lemma 16 Let G = (V,E) be a t-regular network with N ≥ 2t + 1 nodes. Suppose each

node of G has order t, t > 2. If V ′ ⊂ V and |V − V ′| ≤ t, then Γ(G, V ′) = V − V ′.

Proof: Let v be an arbitrary node in V − V ′, and let G(v) be the order graph of v in G.

The following two cases are considered.

Case 1: |V − V ′| < t.

35



For |V − V ′| < t, the degree of each node is t, so each node in V ′ has at least one

neighbor in V ′. Therefore, no isolated node exists in V ′. Similarly, every node in V − V ′

has at least one neighbor in V ′. Hence, Γ(G, V ′) = V − V ′.

Case 1: |V − V ′| = t.

For |V −V ′| = t, each node in V −V ′ has at least one neighbor in V ′. N(v, V ′) is used

to denote the neighbor set of v in V ′. Assume that no node in N(v, V ′) is adjacent to any

other node in V ′. Then, every node in N(v, V ′) is adjacent only to V − V ′ (as shown in

Fig. 4.4). Thus, V − V ′ − {v} is a node cover of G(v), because every node in N(v, V ′) is

an isolated node in V ′. The cardinality of a minimum node cover of the order graph G(v)

can be easily determined to be at most t − 1. However, this contradicts the hypothesis

that each node has order t. Therefore, N(v, V ′) contains at least one neighbor u of v such

that the node u is adjacent to another node w in V ′. Hence, Γ(G, V ′) = V − V ′. 2

v
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V
- 
V'


N 
(
V'
, 
v
)


Figure 4.4: Illustration in Lemma 16 for an example of case 2.

Lemma 17 Let H be a t-regular network, t > 2, and let K2 be the complete network with

two nodes. Suppose that the order of each node in H is t. Then, each node of the product

network G = H × K2 has order t + 1.

Proof: Let G0 and G1 be two copies of H in G. M = (V,C) represents the comparison

scheme of G. Let v be a node of G and let G(v) be the order graph of v in G. Without

36



loss of generality, assume that v is a node in G0, and that u is a neighbor of v in G1.

There exists at least one node w in G1 such that (v, w)u ∈ C. Then, let G0(v) be the

order graph of v in G0. Since G0(v) is a proper subgraph of G(v), every node cover of

G(v) must contain a node cover of G0(v). However, (w, u) is an edge in G(v) rather than

in G0(v). Therefore, a node cover of G(v) must include at least either u or w. The order

of v in G therefore exceeds that of v in G0 by one. Thus, the lemma is proven. 2

Theorem 18 For t > 2, let H be a t-regular and t-diagnosable network with N nodes.

Then the product network G = H × K2 is (t + 1)-diagnosable.

Proof: Let G0 = (V 0, E0) and G1 = (V 1, E1) be two copies of H in G = (V,E). Let

S1 and S2 be two distinct subsets of V and let V ′′ = S1

⋃
S2 with |S1| = |S2| = t + 1,

|S1

⋂
S2| = p and 0 ≤ p ≤ t. Then, let V ′ = V − V ′′ with |V ′| = 2N − 2(t + 1) + p.

Since G has 2N nodes, 2N ≥ 2(2t + 1) > 2(t + 1) + 1. Lemma 17 implies that each node

of G has order t + 1. Hence, the theorem is proven if one of the conditions of Theorem

3 is satisfied. Now, let V 0′ = V ′
⋂

V 0 and V 1′ = V ′
⋂

V 1. G0 and G1 are isomorphic

to H, so without loss of generality, assume that |V 0′ | ≥ |V 1′ |. Let |V 0 − V 0′ | = k and

|V 1 − V 1′ | = 2(t + 1) − p − k. Since |V 0′ | ≥ |V 1′ |, k ≤ 2(t + 1) − p − k. Thus, the proof

is divided into the following cases.

Case 1: 2(t + 1) − p − k ≤ t and k ≤ t.

From Lemma 16, |Γ(G, V ′)| ≥ |Γ(G0, V 0′)| + |Γ(G1, V 1′)| = k + 2(t + 1) − p − k =

2(t + 1) − p. Since p ≤ t, |Γ(G, V ′)| ≥ 2(t + 1) − p > p. By Theorem 5, this case holds.

Subcase 2.1: 2(t + 1) − p − k > t and k < t.

From Lemma 16, |Γ(G0, V 0′)| = k. Since V 0−V 0′ contains k < t nodes so each node in

V 0′ has at least one neighbor in V 0′ . Therefore, no isolated node is present in V 0′ . Notably,

at least 2(t+1)−p−2k nodes in V 1−V 1′ are adjacent to some 2(t+1)−p−2k nodes in V 0′ .

Thus, |Γ(G, V ′)| ≥ |Γ(G0, V 0′)|+N(V 1−V 1′ , V 0′) ≥ k+2(t+1)−p−2k = 2(t+1)−p−k.

Since 2(t + 1) − p − k > t ≥ p, by Theorem 5, the case holds.

Subcase 2.2: 2(t + 1) − p − k > t and k = t.

Since 2(t + 1)− p− k > t and k = t,(t + 2)− p > t, implying p < 2. From Lemma 16,

|Γ(G, V ′)| ≥ |Γ(G0, V 0′)| = t > 2 > p. Then, the case follows.
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Subcase 2.3: 2(t + 1) − p − k > t and k > t.

Since 2(t + 1) − p − k > t and k > t, the number of nodes in V − V ′ is 2(t + 1),

indicating p = 0. Condition (1) in Theorem 3 is first supposed to be satisfied in G0.

Then, the subgraph induced by V 0′ includes at least one connected component R with a

cardinality of at least 2. Given |V 0 −V 0′ | = t+1, Theorem 5 implies |Γ(G0, V 0′)| ≥ t > 2

since G0 is t-diagnosable. Therefore, |Γ(G, V ′)| ≥ |Γ(G0, V 0′)| > 2 > p. This result

implies that condition (1) in Theorem 3 is also satisfied in G.

Next, consider that the condition (1) in Theorem 3 is violated in G0. Then, either

condition (2) or condition (3) in Theorem 3 is satisfied in G0. Since G0 is t-regular and

t > 2, one node v in V 0′ is adjacent to at least three nodes in V 0 − V 0′ . Now, let u,w

and x be three nodes in V 0 − V 0′ such that u,w ∈ S1 and x ∈ S2. Since u,w ∈ S1 − S2,

v ∈ V −S1−S2 and p = 0, condition (2) in Theorem 3 is also satisfied in G. The theorem

follows. 2

Let Gi be a ti-regular interconnection network i = 1, 2, and let G = G1 × G2 be the

product network of G1 and G2. Then, the order of each node v in G is estimated from

the following lemma.

Lemma 18 Let Gi = (Vi, Ei) be a ti-regular network with ti > 2. Suppose each node of

Gi has order at least ti, i = 1, 2. Then each node of the product network G = G1 × G2

has order t1 + t2.

Proof: Let v = 〈x, y〉 be an arbitrary node of G and let G(v) be the order graph of v

in G. According to the definition of product networks, is a node of V1 and is a node of

V2. Therefore, the order of x is at least t1 and the order of y is at least t2. Let G1(x)

be the order graph of x in G1 and let G2(y) be the order graph of y in G2. N(x) is a

node cover of G1(x) so the order of node x is exactly t1. Similarly, the order of node

y is t2. Let Gy
1(v) be the order graph of v in the subgraph Gy

1 of G and let Gx
2(v) be

the order graph of v in the subgraph Gx
2 of G. Since V y

1

⋂
V x

2 = v, Gy
1(v)

⋂
Gx

2(v) = Ø,

where V (Gy
1(v)) and V (Gx

2(v)) are the node sets of Gy
1(v) and Gx

2(v), respectively. Gy
1(v)

and Gx
2(v) are observed to be subgraphs of G(v). Thus, every node cover of G(v) must

contain a node cover of both Gy
1(v) and Gx

2(v). Since the subgraphs Gy
1 and Gx

2 of G

are isomorphic to G1 and G2, respectively, Gy
1(v) is isomorphic to G1(x) and Gx

2(v) is

isomorphic to G2(y). Therefore, the order of v in Gy
1(v) is t1 and the order of v in Gx

2(v)

38



is t2. Since V (Gy
1(v))

⋂
V (Gx

2(v)) = Ø, the order of v in G(v) is t1 + t2. Hence, the lemma

follows. 2

Corollary 3 was proven; it states that the product network G1 × G2 is (t1 + t2)-

diagnosable, in which Gi is ti connected for ti > 2, i = 1, 2. The previous section also

established that a ti-diagnosable network is not equivalent to a ti-connected network. The

following theorem states that the product network G1×G2 is (t1 + t2)-diagnosable, where

Gi is ti-diagnosable for ti > 2, i = 1, 2. We present Theorem 19 and omit the related

proof which are completely illustrated in [10].

Theorem 19 [10] For ti > 2, let Gi = (Vi, Ei) be a ti-diagnosable and ti-regular network

with Ni nodes, i = 1, 2. Let G = (V,E) be the product network of G1 and G2. Then the

product network G = G1 × G2 is (t1 + t2)-diagnosable under the comparison diagnosis

model with regularity t1 + t2.

Notice that in Theorem 19 the number of nodes Ni is larger than or equal to 2ti + 1

for ti-diagnosable, i = 1, 2. From Theorem 19 and by induction, the following corollary is

obtained.

Corollary 5 Let G be the product network of G1, G2, . . ., and Gk, where each Gi is ti-

diagnosable with regularity ti and ti > 2 for 1 ≤ i ≤ k. Then, the product network G is

(t1 + t2 + . . . + tk)-diagnosable with regularity (t1 + t2 + . . . + tk).

4.2.3 Diagnosability of heterogeneous product networks

This subsection considers different combinations of ti-diagnosability and ti-connectivity to

study the diagnosability of the product networks. The diagnosability of the heterogeneous

product network G of G1 and G2, is considered, in which G1 is t1-diagnosable and G2 is

t2-connected. Although the heterogeneous product network differs from the homogeneous

product network, a similar result is obtained as that obtained for the homogeneous product

network. Lemmas 15 and 17 immediately yield the following lemma.

Lemma 19 Let G1 be a t1-regular and t1-diagnosable network with t1 > 2 and let G2 be

a t2-regular and t2-connected network with N2 ≥ 2t2 + 1 nodes and t2 > 2. Then, each

node of the product network G = G1 × G2 has order t1 + t2.
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Section 4.2.1 presents some examples to show that a t-diagnosable network is not

equivalent to a t-connected network. Therefore, the following theorem is not implied by

Theorem 19 but it can be proven by a similar technique. Theorem 20 is proven in [10].

Theorem 20 [10] For t1, t2 > 2, let G1 = (V1, E1) be a t1-regular and t1-diagnosable

network with N1 nodes and let G2 = (V2, E2) be a t2-regular and t2-connected network

with N2 ≥ 2t2 + 1 nodes. Then the product network G = G1 × G2 is (t1 + t2)-diagnosable

under the comparison diagnosis model with regularity t1 + t2.

In the above theorem, the factor network G2 must have at least 2t2 + 1 nodes. There-

fore, by Corollary 5 and Theorem 20, the following corollary holds.

Corollary 6 Let G be the product network of G1, G2, . . ., and Gk. Suppose that G1 is

t1-regular and t1-connected with N1 ≥ 2t1 +1 nodes, and suppose that Gi is ti-regular and

ti-diagnosable, ti > 2 for 2 ≤ i ≤ k. Then, the product network G is (t1 + t2 + . . . + tk)-

diagnosable with regularity (t1 + t2 + . . . + tk).

However, Corollaries 4 and 5 yield the following corollary.

Corollary 7 Let G be the product network of G1, G2, . . . , and Gk. Suppose that Gi is

ti-regular and ti-connected, ti > 2 for 1 ≤ i ≤ m where m > 2, and suppose that Gj is

tj-regular and tj-diagnosable, tj > 2 for m + 1 ≤ j ≤ k. Then the product network G

is (t1 + t2 + . . . + tk)-diagnosable under the comparison diagnosis model with regularity

(t1 + t2 + . . . + tk).
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Chapter 5

Strongly t-diagnosable Systems

The Hypercube Qn, the Crossed cube CQn, the Möbius cube MQn, and the Twisted cube

TQn, are all known to be n-connected but not (n+1)-connected. For each of these cubes,

every vertex cut of size n has a particular structure as stated in the following lemma.

Lemma 20 Let n ≥ 2 and let XQn represent any n-dimensional cube which belongs to

the cube family. For each set of vertices S ⊂ V (XQn) with |S| = n, if XQn − S is

disconnected, there exists a vertex v ∈ V (XQn) such that N(v) = S.

Proof: We prove this lemma by induction on n. A 2-dimensional cube XQ2 is simply

a cycle of length four. Clearly, this lemma is true for XQ2. Assume it holds for some

n ≥ 2. We now show that it holds for n + 1.

Let (n+1)-dimensional cube XQn+1 be obtained from two n-dimensional cubes XQn,

denoted by XQL
n and XQR

n , by adding a perfect matching between them. Let S ⊂

V (XQn+1), |S| = n+1, and, SL = V (XQL
n)

⋂
S and SR = V (XQR

n )
⋂

S. In the remainder

of this proof, we show that XQn+1 satisfies one of the two conditions: (i) XQn+1 − S is

connected, or (ii) XQn+1 − S is disconnected and there is a vertex v ∈ V (XQn+1) such

that N(v) = S.

We study three cases: (1) |SL| ≤ n − 1 and |SR| ≤ n − 1, (2) either |SL| = n or

|SR| = n, and (3) either |SL| = n + 1 or |SR| = n + 1.

Case 1: |SL| ≤ n − 1 and |SR| ≤ n − 1.
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Since XQn is n-connected, both XQL
n − SL and XQR

n − SR are connected. For n ≥ 2,

we know that |V (XQL
n) − SL| ≥ 2n − (n − 1) > n − 1 ≥ |SR| and |V (XQR

n ) − SR| ≥

2n − (n − 1) > n − 1 ≥ |SL|. So, the subgraph XQL
n − SL is connected to the other

subgraph XQR
n − SR. Hence, XQn+1 − S is connected.

Case 2: either |SL| = n or |SR| = n.

Without loss of generality, suppose that |SL| = n and |SR| = 1. Suppose XQL
n − SL

is connected. Using a similar argument used in case (1), we can prove that XQn+1 −S is

connected. Otherwise, XQL
n − SL is disconnected. By induction hypothesis, there exists

a vertex v ∈ V (XQL
n) such that N({v}, XQL

n) = SL. Now, consider XQR
n and consider

the matching neighbor u of v in XQR
n . Note that XQR

n − SR is connected for n ≥ 2 and

every vertex in XQR
n has a matching neighbor in XQL

n . Thus, XQn+1 −S is connected if

SR 6= {u}. If SR = {u}, XQn+1 − S is disconnected, and S = N(v). This proves case 2.

Case 3: either |SL| = n + 1 or |SR| = n + 1.

Without loss of generality, suppose that |SL| = n + 1 and |SR| = 0. Since there is one

corresponding matched vertex for each vertex v ∈ V (XQL
n −SL) in V (XQR

n ), XQn+1 −S

is connected.

Consequently, this lemma holds. 2

Let F1 and F2 be two distinct sets of vertices of XQn with |Fi| ≤ n + 1, i = 1, 2 and

let S = F1

⋂
F2. Then |S| ≤ n. By the above lemma, either XQn − S is connected,

or, XQn − S is disconnected and there is a vertex v ∈ V (XQn) such that S = N(v). If

XQn − S is connected, the two sets V (XQn) − (F1

⋃
F2) and F1△F2 both belong to the

same component XQn − S. Thus, there exists one edge connecting V (XQn) − (F1

⋃
F2)

and F1△F2. By Lemma 4, F1 and F2 are distinguishable. Therefore, if F1 and F2 are

indistinguishable, |Fi| ≤ n+1, i = 1, 2, XQn−S is disconnected and there exists a vertex

v such that S = N(v). S = F1

⋂
F2, so N(v) ⊆ F1 and N(v) ⊆ F2. We then propose the

following concept.

Definition 4 A system G is strongly t-diagnosable if the following two conditions hold:
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(i) G is t-diagnosable, and

(ii) for any two distinct subsets F1, F2 ⊂ V (G) with |Fi| ≤ t + 1, i = 1, 2,

either (a) (F1, F2) is a distinguishable pair;

or (b) (F1, F2) is an indistinguishable pair and there exists a vertex v ∈ V such that

N(v) ⊆ F1 and N(v) ⊆ F2.

A (t + 1)-diagnosable system is “stronger” than a t-diagnosable system, and of course

it is strongly t-diagnosable according to the above definition. However, among all those

strongly t-diagnosable systems, we are interested in the one which is t-diagnosable but

not (t + 1)-diagnosable.

Following Lemma 3 and Definition 4, we propose a sufficient condition for verifying if

a system G is strongly t-diagnosable.

Proposition 1 A system G(V,E) with n vertices is strongly t-diagnosable if the following

three conditions hold:

(i) n ≥ 2(t + 1) + 1,

(ii) κ(G) ≥ t, and

(iii) for any vertex set S ⊂ V with |S| = t, if G−S is disconnected, there exists a vertex

v ∈ V such that N(v) ⊂ S.

Proof: With conditions (i) and (ii), by Lemma 3, G is t-diagnosable. Now, we want

to prove condition (ii) of Definition 4 holds. Let F1, F2 ⊂ V bet two distinct sets with

|Fi| ≤ t + 1, i = 1, 2 and S = F1

⋂
F2. Suppose that G − S is connected. Then there

exists one edge connecting V − (F1

⋃
F2) and F1△F2. By Lemma 4, F1 and F2 are

distinguishable. That is, condition (ii.a) of Definition 4 holds.

Otherwise, G − S is disconnected. By condition (ii), the connectivity of G is at least

t, and 0 ≤ |S| ≤ t, so |S| = t. Then by condition (iii), there exists one vertex v ∈ V such
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that N(v) ⊂ S. Therefore, N(v) ⊂ F1 and N(v) ⊂ F2. So condition (ii.b) of Definition 4

holds. This completes the proof of this proposition. 2

Next, we present a necessary and sufficient condition for a system G to be strongly

t-diagnosable.

Lemma 21 A system G(V,E) with |V | = n is strongly t-diagnosable if and only if the

following three conditions hold:

(i) n ≥ 2(t + 1) + 1,

(ii) δ(G) ≥ t, and

(iii) for any two distinct subsets F1, F2 ⊂ V (G) with |Fi| ≤ t + 1, i = 1, 2, the pair

(F1, F2) satisfy condition (ii.a) or (ii.b) of Definition 4.

Proof: We first prove the necessity. To prove condition (i), we show that the assumption

n ≤ 2(t + 1) leads to a contradiction. Assume n ≤ 2(t + 1). We can partition V into two

disjoint vertex sets V1 and V2, V1

⋂
V2 = ∅ and V = V1

⋃
V2, with |Vi| ≤ t + 1, i = 1, 2

. By Lemma 4, V1 and V2 are indistinguishable. Since G is strongly t-diagnosable, by

Definition 4, N(v) ⊂ V1 and N(v) ⊂ V2, for some vertex v ∈ V , contradicting with the

assumption V1

⋂
V2 = ∅.

To prove condition (ii), since G is strongly t-diagnosable, it is t-diagnosable by defini-

tion. Then by condition (ii) of Corollary 1, N(v) ≥ t for each vertex v ∈ V . So condition

(ii) is necessary. Condition (iii) of this lemma is the same as condition (ii) of Definition

4. This proves the necessity.

To prove the sufficiency of conditions (i), (ii) and (iii). We need only to show that G is

t-diagnosable. Suppose not, then there exists an indistinguishable pair of sets F1, F2 ⊂ V ,

F1 6= F2, and |Fi| ≤ t, i = 1, 2. By condition (ii.b) of Definition 4, there exists a vertex

v ∈ V such that N(v) ⊂ F1 and N(v) ⊂ F2. By condition (ii), |N(v)| ≥ t. However,

|F1| ≤ t and |F2| ≤ t. Hence, F1 = F2 = N(v). This contradicts with the fact that

F1 6= F2. The lemma follows. 2

We now give another necessary and sufficient condition for checking whether a system

is strongly t-diagnosable. The motivation of these conditions is as follows: Let G(V,E) be
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a strongly t-diagnosable system. Suppose that G is (t+1)-diagnosable. Then by Theorem

2, for every set S ⊂ V , 0 ≤ p ≤ t where |S| = p, each component C of G − S satisfies

|VC | ≥ 2((t + 1) − p) + 1. Otherwise, G is t-diagnosable but not (t + 1)-diagnosable.

Then there exists an indistinguishable pair (F1, F2), F1 6= F2, with |Fi| ≤ t + 1, i = 1, 2.

By condition (ii.b) of definition 4, there exists a vertex v ∈ V such that N(v) ⊂ F1 and

N(v) ⊂ F2, i = 1, 2. Note that δ(G) ≥ t, and therefore, |N(v)| ≥ t. It means that {v}

is a trivial component of G − (F1

⋂
F2). Setting S = F1

⋂
F2 and |S| = t, G − S has a

trivial component.

Theorem 21 A system G = (V,E) is strongly t-diagnosable if and only if for each vertex

set S ⊂ V with cardinality |S| = p, 0 ≤ p ≤ t, the following two conditions are satisfied.

(i) For 0 ≤ p ≤ t − 1, every component C of G − S satisfies |VC | ≥ 2((t + 1) − p) + 1;

and

(ii) for p = t, either (a) every component C of G − S satisfies |VC | ≥ 3; or else, (b)

G − S contains at least one trivial component. (Remark: 2((t + 1) − p) + 1 = 3 as

p = t.)

Proof: We use Theorem 2 to prove the sufficiency of conditions (i) and (ii). Let S be a

set of vertex with |S| = p, 0 ≤ p ≤ t − 1. By condition (i), every component C of G − S

satisfies |VC | ≥ 2((t + 1)− p) + 1 ≥ 2(t− p) + 1. Then by Theorem 2, G is t-diagnosable.

To show that G is strongly t-diagnosable, we need to prove that condition (ii) of Defini-

tion 4 holds. Suppose that conditions (i) and (ii.a) are both satisfied. Then by Theorem

2, G is (t + 1)-diagnosable. Now consider the case that G is not (t + 1)-diagnosable.

Let (F1, F2) be an indistinguishable pair, F1 6= F2, with |F1| ≤ t + 1 and |F2| ≤ t + 1.

We let S = F1

⋂
F2 and X = V − (F1

⋃
F2), then 0 ≤ p ≤ t, where |S| = p. Since

F1 and F2 are indistinguishable, by Lemma 4, there is no edge between X and F1△F2.

Therefore, in G − S, F1△F2 is disconnected from the other components. Observe that

|F1△F2| ≤ 2((t + 1) − p), by condition (i), p cannot be in the range from 0 to t − 1.

So p = t and |F1△F2| ≤ 2((t + 1) − p) = 2((t + 1) − t) = 2. Then, by condition (ii.b),

G−S must have a trivial component {v}. So N(v) ⊂ S. G is t-diagnosable, by condition

(ii) of Corollary 1, |N(v)| ≥ t. Hence, S = N(v). Since S = F1

⋂
F2, N(v) ⊂ F1 and

N(v) ⊂ F2. Therefore, G is strongly t-diagnosable.
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This proves the sufficiency. Next, we show the condition (i) and (ii) are also necessary.

To show condition (i), suppose on the contrary that there exists a set of vertices S ⊂ V

with |S| = p, 0 ≤ p ≤ t − 1, such that G − S has a component with strictly less than

2((t+1)− p)+ 1 vertices. Let C be such a component with |VC | ≤ 2((t+1)− p). We can

partition VC into two disjoint subsets A1 and A2, A1

⋃
A2 = VC and A1

⋂
A2 = ∅, with

|Ai| ≤ (t+ 1)− p, i = 1, 2. Let F1 = A1

⋃
S and F2 = A2

⋃
S. Then |Fi| ≤ t+ 1, i = 1, 2,

and F1 and F2 are indistinguishable by Lemma 4. Since G is strongly t-diagnosable, by

condition (ii.b) of Definition 4, there exists a vertex v such that N(v) ⊂ F1 and N(v) ⊂ F2.

G is t-diagnosable, by Corollary 1, each vertex of G has degree at least t. So |N(v)| ≥ t.

However, N(v) ⊂ F1

⋂
F2 = S and |S| = p ≤ t−1, this is a contradiction. Thus, condition

(i) is necessary.

Now, we prove that condition (ii) is necessary. Let S be a set of vertex with |S| = p and

p = t. Suppose that G is (t + 1)-diagnosable. By Theorem 2, for p = t, every component

C of G − S satisfies |VC | ≥ 2((t + 1) − t) + 1 = 3. That is, condition (ii.a) holds if G is

(t+1)-diagnosable. Otherwise, G is not (t+1)-diagnosable and there exists a component

C in G − S with strictly less than three vertices, |VC | ≤ 2. We have to show that there

is a trivial component in G − S. If |VC | = 1, we are done. Assume that |VC | = 2, say

VC = {v1, v2}. Let F1 = S
⋃
{v1} and F2 = S

⋃
{v2}. Then |F1| = t + 1, |F2| = t + 1,

and F1 and F2 are indistinguishable. Since G is strongly t-diagnosable, by condition (ii.b)

of Definition 4, there exists a vertex v such that N(v) ⊂ F1 and N(v) ⊂ F2. We have

S = F1

⋂
F2 and N(v) ⊂ S. Therefore, {v} is a trivial component in G − S, this proves

condition (ii.b).

Consequently, the theorem holds. 2

The above theorem again states that a strongly t-diagnosable system is almost (t+1)-

diagnosable, if it is not so. The only case that stops it from being (t + 1)-diagnosable

occurs in the following situation: all the neighboring vertices N(v) of some vertex v are

faulty simultaneously.
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5.1 Strongly t-diagnosable systems in the MCN net-

works

In previous studies, the diagnosability of many practical interconnection networks have

been explored. Actually, some of them are not only n-diagnosable but also strongly n-

diagnosable, for example, the Hypercube Qn, the Crossed cube CQn, the Möbius cube

MQn, and the Twisted cube TQn are so. In the following, we shall prove that all members

in the cube family are strongly n-diagnosable for n ≥ 4.

Under the comparison model [47, 48], it is proved that a MCN with two t-connected

and t-diagnosable M-components is (t + 1)-diagnosable in [46] and Chapter 3. In the

following theorem, we shall show that an MCN with two t-diagnosable M-components is

strongly (t + 1)-diagnosable under PMC model.

Theorem 22 Let G1(V1, E1), G2(V2, E2) be two t-diagnosable systems with the same

number of vertices, where t ≥ 2. Then MCN G = G1

⊕
M G2 is strongly (t + 1)-

diagnosable.

Proof: We use Theorem 21 to prove it. Let G = G(V,E) = G1

⊕
M G2 and S ⊂ V

with |S| = p, 0 ≤ p ≤ t + 1. Let S1 = S
⋂

V1, S2 = S
⋂

V2, |S1| = p1 and |S2| = p2. In

the following proof, we consider two cases: (1) S1 = Ø or S2 = Ø, and (2) S1 6= Ø and

S2 6= Ø. We shall prove that: (i) |VC | ≥ 2((t + 2) − p) + 1 for every component C of

G−S as 0 ≤ p ≤ t, and (ii) for p = t+ 1, either (a) every component C of G−S satisfies

|VC | ≥ 3; or else, (b) G − S contains at least one trivial component. Then by Theorem

21, G is strongly (t + 1)-diagnosable.

Case 1: S1 = Ø or S2 = Ø.

Without loss of generality, assume S1 = Ø and S2 = S. We know that each vertex

of V2 has an adjacent neighbor in V1, so, G − S is connected. The only component C of

G−S is G−S itself. Hence, |VC | = |V −S| = |V1|+ |V2|−p. Gi is t-diagnosable, i = 1, 2,

by Corollary 1, |Vi| ≥ 2t + 1. So |VC | ≥ 2(2t + 1)− p ≥ 2((t + 2)− p) + 1 for t ≥ 2. That

is, conditions (i) and (ii.a) of Theorem 21 are satisfied.

Case 2: S1 6= Ø and S2 6= Ø.
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S1 6= Ø and S2 6= Ø, it implies p1 ≥ 1 and p2 ≥ 1. Then, we divide the case into two

subcases: (2.a) both p1 ≤ t − 1 and p2 ≤ t − 1, and (2.b) either p1 = t or p2 = t. Note

that 0 ≤ p ≤ t + 1 and p = p1 + p2. For subcase (2.a), 1 ≤ p1 ≤ t− 1 and 1 ≤ p2 ≤ t− 1,

and for subcase (2.b), either p1 = t and p2 = 1, or, p2 = t and p1 = 1.

Subcase 2.a: 1 ≤ p1 ≤ t − 1 and 1 ≤ p2 ≤ t − 1.

Let C1 be a component of G1 − S1. G1 is t-diagnosable, by Theorem 2, |VC1
| ≥

2(t − p1) + 1. We claim that 2(t − p1) + 1 ≥ p2 + 1. Since p = p1 + p2, 2(t − p1) + 1 =

2(t−(p−p2))+1 = 2p2+2(t−p)+1. Suppose p ≤ t, |VC1
| ≥ 2p2+1. Otherwise, p = t+1.

Since p1 ≤ t−1, p2 ≥ 2 and 2p2+2(t−p)+1 ≥ p2+1. Hence, |VC1
| ≥ 2(t−p1)+1 ≥ p2+1.

That is, VC1
has at least one adjacent neighbor v ∈ V2 and v /∈ S2. G2 is t-diagnosable,

by Theorem 2, every component of G2 − S2 has at least 2(t − p2) + 1 vertices. Let C2

be the component of G2 − S2 such that v ∈ VC2
and let C be the component of G − S

such that VC1

⋃
VC2

⊂ VC . Then |VC | ≥ |VC1
|+ |VC2

| ≥ (2(t− p1) + 1) + (2(t− p2) + 1) =

2(2t − p + 1) ≥ 2((t + 2) − p) + 1 as t ≥ 2. So every component of G − S has at least

2((t+2)−p)+1 vertices in this subcase. It means that conditions (i) and (ii.a) of Theorem

21 are satisfied.

Subcase 2.b: either p1 = t and p2 = 1, or, p2 = t and p1 = 1.

Without loss of generality, assume p2 = t and p1 = 1. Since p = p1+p2 = t+1, we need

only to prove either condition (ii.a) or (ii.b) of Theorem 21 holds. Let C1 be a component

of G1 −S1. G1 is t-diagnosable, by Theorem 2, |VC1
| ≥ 2(t− p1) + 1 = 2(t− 1) + 1. Since

t ≥ 2, |VC1
| ≥ 2(t− 1) + 1 ≥ 3. So the component of G− S containing the vertex set VC1

has at least three vertices.

Let C2 be a component of G2−S2, N(VC2
, V2) ⊂ S2. If VC2

has some adjacent neighbor

v1 ∈ V1 and vertex v1 belongs to some component C1 of G1 − S1, then the component C

containing the two vertex sets VC1
and VC2

has at least four vertices. Thus, condition (ii.a)

of Theorem 21 holds. Otherwise, N(VC2
, V1) ⊂ S1. Since |S1| = p1 = 1, |N(VC2

, V1)| = 1.

That is, |VC2
| = 1 and N(VC2

) ⊂ S1

⋃
S2. Hence, C2 is a trivial component of G−S; and

therefore, condition (ii.b) of Theorem 21 holds.

Consequently, the theorem follows. 2
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For t = 1, the above result is not necessarily true, we give an example shown in Fig. 5.1.

Let G1 and G2 be two path graphs of length four with vertex sets {u1, u2, u3, u4, u5} and

{v1, v2, v3, v4, v5}, respectively. Let G be the Matching Composition Network constructed

by adding a perfect matching (the dash lines in Fig. 5.1.i) between G1 and G2. By

Lemma 3, both G1 and G2 are 1-diagnosable and G is 2-diagnosable. See Fig. 5.1.ii, let

F1 = {u1, u2, v2} and F2 = {v1, v2, u2}. By Lemma 4, F1 and F2 are indistinguishable but

there doesn’t exist any vertex v ∈ V (Gi), i = 1, 2, such that N(v) ⊂ F1 and N(v) ⊂ F2.

So G is not strongly 2-diagnosable.
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Figure 5.1: An example of non-strongly (t + 1)-diagnosable as t = 1.

Applying Theorem 22, all systems in the cube family are strongly (t + 1)-diagnosable

if their subcubes are t-diagnosable for t ≥ 2. The Hypercube Qn, the Crossed cube CQn,

the Twisted cube TQn, and the Möbius cube MQn are well-known members in the cube

family. For n = 2, these cubes are all isomorphic to the cycle of length four; they are 1-

diagnosable but not 2-diagnosable. For n = 3, these cubes are all 3-connected, by Lemma

3, they are 3-diagnosable. So we have the following corollary.

Corollary 8 The Hypercube Qn, the Crossed cube CQn, the Möbius cube MQn, and the

Twisted cube TQn are all strongly n-diagnosable for n ≥ 4.

We now give some examples which are not strongly t-diagnosable. Consider the 3-

dimensional Hypercube Q3, it is 3-diagnosable but not strongly 3-diagnosable due to the

fact that |V (Q3)| = 8 ≤ 2(t+1)+1 as t = 3, which contradicts the condition (i) of Lemma

49



21. Let Cn be a cycle of length n, n ≥ 7. By Lemma 3, Cn is 2-diagnosable, but it is not

strongly 2-diagnosable. Another nontrivial example is presented in Fig. 5.2. This graph

G is 3-regular, 2-connected, and by Theorem 2, it is 3-diagnosable. As shown in Fig. 5.2,

F1 = {1, 2, 5, 6} and F2 = {3, 4, 5, 6}. (F1, F2) is an indistinguishable pair, but there does

not exist any vertex v in V (G) such that N(v) ⊂ F1 and N(v) ⊂ F2. By Definition 4, the

graph is not strongly 3-diagnosable.
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Figure 5.2: An example of non-strongly 3-diagnosable system.
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Chapter 6

Conditional Diagnosability

Consider a system G with diagnosability t(G) = t; so G is t-diagnosable but not (t + 1)-

diagnosable. In previous research on diagnosability, the investigated networks are often

strongly t-diagnosable, for examples, members in the cube family are so. Given a system

G, suppose that it is strongly t-diagnosable but not (t+1)-diagnosable. As we mentioned

before, the only case that stops it from being (t + 1)-diagnosable is that there exists a

vertex v whose neighboring vertices are faulty simultaneously. We are, therefore, led to

the following question: How large the maximum value of t can be such that G remains

t-diagnosable under the condition that every faulty set F satisfies N(v) * F for each

vertex v ∈ V .

For classical measurement of diagnosability, it is usually assumed that processor fail-

ures are statically independent. It does not reflect the total number of processors in

the system and the probabilities of processor failures. In [51], Najjar and Gaudiot have

proposed fault resilience as the maximum number of failures that can be sustained while

the network remains connected with a reasonably high probability. For Hypercube, the

fault resilience is shown as 25% for the 4-dimensional cube Q4 and it increases to 33% for

the 10-dimensional cube Q10. More particularly, for the 10-dimensional cube Q10, 33%

processors can fail and the network still remains connected with a probability of 99%.

They also gave a conclusion that large-scale systems with a constant degree are more

susceptible to failures by disconnection than smaller networks. With the observation of

Lemma 4, a connected network gives higher probability to diagnosis faulty processors and

has better ability of distinguishing any two sets of processors.
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Motivated by the deficiency of the classical measurement of diagnosability and the

broadness of a system being strongly t-diagnosable, we introduce a measure of conditional

diagnosability by claiming the property that any faulty set cannot contain all neighbors of

any processor. We formally introduce some terms related to the conditional diagnosability.

A faulty set F ⊂ V is called a conditional faulty set if N(v) * F for any vertex v ∈ V .

A system G(V,E) is conditionally t-diagnosable if F1 and F2 are distinguishable, for each

pair of conditional faulty sets F1, F2 ⊂ V and F1 6= F2, with |F1| ≤ t and |F2| ≤ t. The

conditional diagnosability of a system G, written as tc(G), is defined to be the maximum

value of t such that G is conditionally t-diagnosable. It is clear that tc(G) ≥ t(G).

Lemma 22 Let G be a network system. Then tc(G) ≥ t(G).

Let F1, F2 ⊂ V and F1 6= F2. We say (F1, F2) is a distinguishable conditional-pair (an

indistinguishable conditional-pair respectively) if F1 and F2 are conditional faulty sets

and are distinguishable (indistinguishable respectively).

It follows from the definition that a strongly t-diagnosable system is clearly condi-

tionally (t + 1)-diagnosable. However, the conditional diagnosability of some strongly

t-diagnosable systems can be far greater than t + 1. This motivates us to study the

conditional diagnosability of the Hypercube.

Lemma 23 Let G be a strongly t-diagnosable system. Then G is conditionally (t + 1)-

diagnosable.

6.1 Conditional Diagnosability of Qn

Before discussing the conditional diagnosability, we have some observations as follows. Let

F1, F2 ⊂ V be an indistinguishable conditional-pair. Let X = V −(F1

⋃
F2). Then there is

no edge between X and F1△F2. So N(F1△F2, X) = ø and N(X,F1△F2) = ø. Let vertex

v ∈ F1 − F2 (or v ∈ F2 − F1). Then N(v) ⊂ (F1

⋃
F2). F1 is a conditional faulty set; so

N(v) * F1 and N(v)
⋂

(F2 −F1) 6= ø. Similarly, F2 is a conditional faulty set, N(v) * F2

and N(v)
⋂

(F1 −F2) 6= ø. So |N(v)
⋂

(F1 −F2)| ≥ 1 and |N(v)
⋂

(F2 −F1)| ≥ 1 for every

vertex v ∈ F1△F2. Now consider a vertex u ∈ X = V − (F1

⋃
F2). Since F1 and F2 are

indistinguishable conditional-pair, N(u)
⋂

(F1△F2) = ø, N(u) * F1 and N(u) * F2. So
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N(u) * (F1

⋃
F2). Therefore, every vertex u ∈ X has at least one neighbor in X(See Fig.

6.1). We state this fact in the following lemma.

F
1
 F
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X

u


v


Figure 6.1: Illustration for Lemma 24.

Lemma 24 Let G(V,E) be a system. Given an indistinguishable conditional-pair (F1, F2),

F1 6= F2, the following two conditions hold:

(i) |N(u)
⋂

(V − (F1

⋃
F2))| ≥ 1 for u ∈ (V − (F1

⋃
F2)), and

(ii) |N(v)
⋂

(F1 − F2)| ≥ 1 and |N(v)
⋂

(F2 − F1)| ≥ 1 for v ∈ F1△F2.

Let (F1, F2) be an indistinguishable conditional-pair, and let S = F1

⋂
F2. By the

above observations, every component of G−S is nontrivial. Moreover, for each component

C1 of G − S, if VC1

⋂
(F1△F2) = ø, degC1

(v) ≥ 1 for v ∈ VC1
; for each component C2

of G − S, if VC2

⋂
(F1△F2) 6= ø, degC2

(v) ≥ 2 for v ∈ VC2
. To find the conditional

diagnosability of the Hypercube Qn, we need to study the cardinality of the set S.

First, we give an example to show that the conditional diagnosability of the Hypercube

Qn is no greater than 4(n − 2) + 1. As shown in Fig. 6.2, we take a cycle of length four

in Qn, let {v1, v2, v3, v4} be the four consecutive vertices on this cycle and let F1 =

N({v1, v2, v3, v4})
⋃
{v1, v2} and F2 = N({v1, v2, v3, v4})

⋃
{v3, v4}. It is a simple matter

to check that (F1, F2) is an indistinguishable conditional-pair. Note that the Hypercube

Qn has no triangle and any two vertices have at most two common neighbors. As we can

see that, |F1−F2| = |F2−F1| = 2 and |F1

⋂
F2| = 4(n−2). Hence, Qn is not conditionally

(4(n − 2) + 2)-diagnosable and tc(Qn) ≤ 4(n − 2) + 1. Then, we shall show that Qn is in

fact conditionally t-diagnosable, where t = 4(n − 2) + 1.
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Figure 6.2: Illustration for an indistinguishable conditional-pair (F1, F2), where |F1| =
|F2| = 4(n − 2) + 2.

Lemma 25 tc(Qn) ≤ 4(n − 2) + 1 for n ≥ 3.

Let S be a set of vertices, S ⊂ V (Qn). Suppose that Qn − S is disconnected and C

is a component of Qn − S. We need some results on the cardinalities of S and VC under

some restricted conditions. The results are listed in Lemmas 26 and 27.

These two lemmas are both proved by dividing Qn into two Qn−1’s, denoted by QL
n−1

and QR
n−1. To simplify the explanation, we define some symbols as follows: VL = V (QL

n−1),

VR = V (QR
n−1), CL = QL

n−1

⋂
C, CR = QR

n−1

⋂
C, VCL

= V (CL), VCR
= V (CR), SL =

VL

⋂
S, and SR = VR

⋂
S.

The following result is also implicit in [43].

Lemma 26 Let Qn be the n-dimensional Hypercube, n ≥ 3, and let S be a set of vertices

S ⊂ V (Qn). Suppose that Qn−S is disconnected. Then the following two conditions hold:

(i) |S| ≥ n, and

(ii) if n ≤ |S| ≤ 2(n−1)−1, then Qn−S has exactly two components, one is trivial and

the other is nontrivial. The nontrivial component of Qn − S contains 2n − |S| − 1

vertices.

Proof: Since κ(Qn) = n [57], condition (i) hold. We need only to prove condition (ii)

is true. Because Qn−S is disconnected, there are at least two components in Qn−S. We
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consider three cases: (1) Qn −S contains at least two trivial components, (2) Qn −S has

at least two nontrivial components, (3) there are exactly one trivial component and one

nontrivial component in Qn − S. In cases (1) and (2), we shall prove that |S| ≥ 2(n− 1).

Then n ≤ |S| ≤ 2(n − 1) − 1, it implies Qn − S belongs to case (3).

Case 1: Qn − S contains at least two trivial components.

Let vi ∈ V , i = 1, 2, and {v1}, {v2} ⊂ V (Qn) be two trivial components of Qn − S.

It means that N(v1) ⊂ S and N(v2) ⊂ S. For Qn, it is not difficult to see that any

two vertices have at most two common neighbors. That is, |N(v1)
⋂

N(v2)| ≤ 2. Hence,

|S| ≥ |N(v1)
⋃

N(v2)| = |N(v1)| + |N(v2)| − |N(v1)
⋂

N(v2)| ≥ 2n − 2 = 2(n − 1).

Case 2: Qn − S has at least two nontrivial components.

We prove, by induction on n, that |S| ≥ 2(n − 1). For n = 3, suppose n ≤ |S| ≤

2(n− 1)− 1, it implies that |S| = 3. The connectivity of Q3 is 3. By Lemma 20 ,the only

vertex cut S with |S| = 3 in Q3 is S = N(v) for some vertex v ∈ V (Q3). It follows that

Q3 − S has exactly two components, one is trivial and the other is nontrivial. Therefore,

if Q3 − S has at least two nontrivial components, |S| ≥ 2(n − 1), where n = 3. Assume

the case holds for some n − 1, n − 1 ≥ 3. We now show that it holds for n.

Let C and C ′ be two nontrivial component of Qn − S. So |VC | ≥ 2. It is feasible to

divide Qn into the two disjoint Qn−1’s, denoted by QL
n−1 and QR

n−1, such that |VCL
| ≥ 1

and |VCR
| ≥ 1. There is another component C ′ of Qn − S, so at least one of the two

graphs QL
n−1 − SL and QR

n−1 − SR is disconnected.

Suppose that both QL
n−1−SL and QR

n−1−SR are disconnected. Since κ(Qn−1) = n−1,

|SL| ≥ n − 1 and |SR| ≥ n − 1. Then |S| = |SL| + |SR| ≥ 2(n − 1). Otherwise, one of the

two subgraphs QL
n−1−SL and QR

n−1−SR is connected. Without loss of generality, assume

that QL
n−1 − SL is connected and QR

n−1 − SR is disconnected. Then VL = VCL

⋃
SL and

the other nontrivial component C ′ of Qn −S is completely contained in QR
n−1 −SR. Since

VC′ is disconnected from VCL
, the corresponding matched vertices of VC′ in QL

n−1 are in

SL. That is, N(VC′ , QL
n−1) ⊆ SL. Hence, |SL| ≥ |VC′| ≥ 2.
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If |SR| ≥ 2(n − 2), then |S| = |SL| + |SR| ≥ 2 + 2(n − 2) = 2(n − 1). Otherwise,

n − 1 ≤ |SR| ≤ 2(n − 2) − 1, by induction hypothesis that QR − SR cannot have two

nontrivial components and by the result of case (1), QR−SR has exactly two components,

one is trivial and the other is nontrivial. We know that QR
n−1 − SR has CR and C ′ as

its components and C ′ is a nontrivial component. So CR must be a trivial component

of QR
n−1 − SR, and |VC′| = 2n−1 − |SR| − 1. Note that N(VC′ , QL

n−1) ⊆ SL. Then |S| =

|SL| + |SR| ≥ |VC′| + |SR| = 2n−1 − |SR| − 1 + |SR| = 2n−1 − 1 ≥ 2(n − 1) for n ≥ 4.

Consequently, condition (ii) is true and the lemma holds. 2

Suppose that Qn − S is disconnected, every component of Qn − S is nontrivial, and

there exists one component C of Qn − S such that degC(v) ≥ 2 for every vertex v in C.

In view of the example given in Fig. 6.1 and Lemma 24, we shall prove that either |S| is

sufficiently large or else |VC | is large as stated in the following lemma.

Lemma 27 Let Qn be the n-dimensional Hypercube and n ≥ 5, and let S be a vertex

set S ⊆ V (Qn). Suppose that Qn − S is disconnected and every component of Qn − S is

nontrivial, and suppose that there exists one component C of Qn−S such that degC(v) ≥ 2

for every vertex v in C. Then one of the following two conditions holds:

(i) |S| ≥ 4(n − 2), or

(ii) |VC | ≥ 4(n − 2) − 1.

Proof: Since degC(v) ≥ 2 for every vertex v in C, it is feasible to divide Qn

into two disjoint Qn−1’s, denoted by QL
n−1 and QR

n−1, such that V (QL
n−1

⋂
C) 6= ø and

V (QR
n−1

⋂
C) 6= ø. Let CL = QL

n−1

⋂
C and CR = QR

n−1

⋂
C. For each vertex x in CL

(y in CR, respectively), it has at most one neighbor in CR (CL, respectively). Hence,

degCL
(x) ≥ 1 and degCR

(y) ≥ 1 for x ∈ VCL
and y ∈ VCR

, respectively.

Qn−S is disconnected, there are at least two components in Qn−S. Let SL = VL

⋂
S

and SR = VR

⋂
S. Note that both QL

n−1 and QR
n−1 contain some nonempty part of

the component C. So at least one of the two subgraphs QL
n−1 − SL and QR

n−1 − SR is

disconnected. In the following proof, we investigate two cases: (1) one of QL
n−1 − SL and

QR
n−1 − SR is connected, (2) both QL

n−1 − SL and QR
n−1 − SR are disconnected.
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Case 1: One of QL
n−1 − SL and QR

n−1 − SR is connected, and the other is disconnected.

Without loss of generality, assume QL
n−1 − SL is connected and QR

n−1 − SR is discon-

nected. Let C ′ be another component of Qn − S other than C. Then VL = SL

⋃
VCL

and

the component C ′ of Qn−S is in QR
n−1−SR−VCR

. Since CR and C ′ are both nontrivial com-

ponent, by Lemma 26, |SR| ≥ 2(n−2). If |SL| ≥ 2(n−2), then |S| = |SL|+|SR| ≥ 4(n−2)

and condition (i) holds. Otherwise, |SL| ≤ 2(n − 2) − 1. Then |VCL
| = 2n−1 − |SL| ≥

2n−1 − 2(n − 2) + 1. That is, |VC | = |VCL
| + |VCR

| ≥ (2n−1 − 2(n − 2) + 1) + 2 =

2n−1 − 2(n − 2) + 3 ≥ 4(n − 2) − 1 for n ≥ 4 and condition (ii) holds.

Case 2: Both QL
n−1 − SL and QR

n−1 − SR are disconnected.

By Lemma 26, we consider the following three subcases: (2.a) |SL| ≥ 2(n − 2) and

|SR| ≥ 2(n − 2), (2.b) n − 1 ≤ |SL| ≤ 2(n − 2) − 1 and n − 1 ≤ |SR| ≤ 2(n − 2) − 1,

and (2.c) either |SL| ≥ 2(n − 2), n − 1 ≤ |SR| ≤ 2(n − 2) − 1; or, |SR| ≥ 2(n − 2),

n − 1 ≤ |SL| ≤ 2(n − 2) − 1.

Subcase 2.a: |SL| ≥ 2(n − 2) and |SR| ≥ 2(n − 2).

Since |SL| ≥ 2(n − 2) and |SR| ≥ 2(n − 2), |S| = |SL| + |SR| ≥ 4(n − 2). Hence,

condition (i) holds.

Subcase 2.b: n − 1 ≤ |SL| ≤ 2(n − 2) − 1 and n − 1 ≤ |SR| ≤ 2(n − 2) − 1.

In this subcase, |VCL
| = 2n−1 − |SL| − 1 and |VCR

| = 2n−1 − |SR| − 1. So |VC | =

|VCL
|+ |VCR

| = 2n−|S|−2. Suppose |S| ≥ 4(n−2). Then condition (i) holds. Otherwise,

|S| ≤ 4(n−2)−1. Then |VC | = 2n−|S|−2 ≥ 2n− (4(n−2)−1)−2 = 2n−4(n−2)−1 ≥

4(n − 2) − 1 for n ≥ 4. Hence, condition (ii) holds.

Subcase 2.c: Either |SL| ≥ 2(n − 2), n − 1 ≤ |SR| ≤ 2(n − 2) − 1; or, |SR| ≥ 2(n − 2),

n − 1 ≤ |SL| ≤ 2(n − 2) − 1.

Without loss of generality, assume that |SL| ≥ 2(n − 2), n − 1 ≤ |SR| ≤ 2(n − 2) − 1.

Then |VCR
| = 2n−1 − |SR| − 1 ≥ 2n−1 − 2(n − 2). Since degCL

(x) ≥ 1 for each vertex
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x ∈ VCL
, we have |VCL

| ≥ 2. Thus, |VC | = |VCL
| + |VCR

| ≥ 2 + (2n−1 − 2(n − 2)) =

2n−1 − 2(n − 2) + 2 ≥ 4(n − 2) − 1 for n ≥ 5.

This completes the proof of the Lemma. 2

We are now ready to show the conditional diagnosability of Qn is 4(n−2)+1 for n ≥ 5.

Let F1, F2 ⊂ V (Qn) be an indistinguishable conditional-pair, n ≥ 5. We shall show our

result by proving that either |F1| ≥ 4(n− 2) + 2 or |F2| ≥ 4(n− 2) + 2. Let S = F1

⋂
F2.

We consider two cases: (1) Qn − S is connected, and (2) Qn − S is disconnected.

Lemma 28 Let Qn be the n-dimensional Hypercube, n ≥ 5. Let F1, F2 ⊂ V (Qn), F1 6=

F2, be an indistinguishable conditional-pair and S = F1

⋂
F2. Then either |F1| ≥ 4(n −

2) + 2 or |F2| ≥ 4(n − 2) + 2.

Proof: Suppose that Qn − S is connected. Then F1△F2 = V (Qn − S) and V (Qn) =

F1

⋃
F2. Suppose on the contrary that |F1| ≤ 4(n− 2) + 1 and |F2| ≤ 4(n− 2) + 1. Then

2n = |F1| + |F2| − |F1

⋂
F2| ≤ (4(n − 2) + 1) + (4(n − 2) + 1) − 0 = 8(n − 2) + 2. This

contradicts the fact that 2n > 8(n − 2) + 2 for n ≥ 5. Hence, the result holds as Qn − S

is connected.

Now we consider the case that Qn − S is disconnected, by Lemma 24, Qn − S has

a component C with degC(v) ≥ 2 for every vertex v ∈ VC . By Lemma 27, we have

|S| ≥ 4(n − 2) or |VC | ≥ 4(n − 2) − 1.

Suppose |S| ≥ 4(n − 2). Since degC(v) ≥ 2 for every vertex v in C, and Qn does not

contain any cycle of length three, so |VC | ≥ 4. With the observation that VC ⊂ F1△F2,

we conclude that either (F1 − F2) ≥ ⌈ |VC |
2
⌉ ≥ 2 or (F2 − F1) ≥ ⌈ |VC |

2
⌉ ≥ 2. Therefore,

either |F1| = |S| + |F1 − F2| ≥ 4(n − 2) + 2 or |F2| = |S| + |F2 − F1| ≥ 4(n − 2) + 2.

Otherwise, |VC | ≥ 4(n − 2) − 1. Then either (F1 − F2) ≥ ⌈ |VC |
2
⌉ ≥ 2(n − 2) or

(F2 − F1) ≥ ⌈ |VC |
2
⌉ ≥ 2(n − 2). Because there are at least two nontrivial components in

Qn − S, by Lemma 26, |S| ≥ 2(n − 1). Hence, |F1| = |S| + |F1 − F2| ≥ 4(n − 2) + 2 or

|F2| = |S| + |F2 − F1| ≥ 4(n − 2) + 2.
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Therefore, for any indistinguishable conditional-pair F1, F2 ⊂ V (Qn), it implies that

|F1| ≥ 4(n − 2) + 2 or |F2| ≥ 4(n − 2) + 2. This proves the lemma. 2

By Lemma 25, tc(Qn) ≤ 4(n − 2) + 1, and by Lemmas 6 and 28, Qn is conditionally

(4(n − 2) + 1)-diagnosable for n ≥ 5. Hence, tc(Qn) = 4(n − 2) + 1 for n ≥ 5. For Q3

and Q4, we observe that Q3 is not conditionally 4-diagnosable and Q4 is not conditionally

8-diagnosable, as shown in Fig. 6.3.i and 6.3.ii. So tc(Q3) ≤ 3 and tc(Q4) ≤ 7. Hence,

the conditional diagnosabilities of Q3 and Q4 are both strictly less than 4(n − 2) + 1.

F
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 F
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 F
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(i)
 (ii)


Figure 6.3: Illustration for two indistinguishable conditional-pairs for Q3 and Q4.

Q3 is 3-diagnosable and it is not conditionally 4-diagnosable. It follows from Lemma

22 that tc(Q3) = 3. For Q4, we prove that tc(Q4) = 7 in the following Lemma.

Lemma 29 tc(Q4) = 7.

Proof: We already know tc(Q4) ≤ 7. Suppose on the contrary that Q4 is not conditionally

7-diagnosable. Let F1, F2 ⊂ V (Q4) be an indistinguishable conditional-pair with |Fi| ≤ 7,

i = 1, 2, and let S = F1

⋂
F2. It follows from Lemmas 24 and 26 that |S| ≥ 2(n − 1) = 6

for n = 4. Furthermore, |F1 − F2| ≥ 2 and |F2 − F1| ≥ 2. Then |F1| ≥ 8 and |F2| ≥ 8,

which is a contradiction. So tc(Q4) = 7. 2

Finally, the conditional diagnosability of Hypercube Qn is stated as follows:

Theorem 23 The conditional diagnosability of Qn is tc(Qn) = 4(n − 2) + 1 for n ≥ 5,

tc(Q3) = 3 and tc(Q4) = 7.
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Chapter 7

Conclusion, discussion, and future

work

In this thesis, we propose a sufficient theorem, Theorem 6, to verify the diagnosability

of multiprocessor systems under the comparison-based model. The conditions of this

theorem include all the cases of the original necessary and sufficient condition stated in

Theorem 3. Therefore, it is more suitable for verifying the diagnosability of a system.

Then we propose a family of interconnection networks which are recursively constructed,

called the Matching Composition Networks.

Each member G1

⊕
M G2 of this family are constructed from a pair G1 and G2 of lower

dimensional networks with the same number of nodes, joining by a perfect matching M

between the two. Applying Theorem 9 in this thesis, we show that the diagnosability of

G1

⊕
M G2 is one larger than those of the G1 and G2, provided some regular conditions,

as stated in Theorem 9, are satisfied. Many well-known interconnection networks, such as

the Hypercubes Qn, the Crossed cubes CQn, the Twisted cubes TQn, and the Möbious

cubes MQn, belong to our proposed family.

We note here that these special cases all satisfy the condition of Theorem 9 for n ≥ 4.

Thus, their diagnosabilities are n, for n ≥ 4. In particular, the diagnosability of the

4-dimensional Hypercube Q4 is 4. Also, the diagnosabilities of the Twisted cube TQn

and the Möbious cubes MQn are first time proposed to be n for n ≥ 4.

The diagnosability of the product networks under the comparison diagnosis model is
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also studied in thesis. We show that homogeneous product network G of G1 and G2 is

(t1 + t2)-diagnosable, in which Gi is either ti-diagnosable or ti-connected with regularity

ti for i = 1, 2. Furthermore, we use different combinations of ti-diagnosability and ti-

connectivity to study the diagnosability of the product networks under the comparison

diagnosis model. We prove that the heterogeneous product network G of G1 and G2

is (t1 + t2)-diagnosable, in which G1 is t1-diagnosable with regularity t1, and G2 is t2-

regular and t2-connected with 2t2 + 1 nodes. We also show that the product network G

is (t1 + t2 + . . . + tk)-diagnosable with at least two factor networks ti-connected, where

G is the product of G1, G2, . . . , and Gk, each with regularity ti, and each Gi is either

ti-diagnosable or ti-connected for 1 ≤ i ≤ k.

In classical measures of system-level diagnosability for multiprocessor systems, it has

generally been assumed that any subset of processors can potentially fail at the same

time. As a consequence, the diagnosability of a system is upper bounded by its minimum

degree. In probabilistic models of a multiprocessor system, processors fail independently

but with different probabilities. In other words, the probability that all faulty processors

are neighbors of one processor is very small.

In this thesis, we propose the concept of strongly t-diagnosable system and derive some

conditions for verifying whether a system is strongly t-diagnosable. To grant more accu-

rate measurement of diagnosability for large-scale processing system, we also introduce

the conditional diagnosability of a system under PMC model. We consider the measure by

restricting that for each processor v in the network, all the processors which are directly

connected to v do not fail at the same time. Moreover, we show that the conditional

diagnosability of Qn is 4(n − 2) + 1, which is about four times larger than the classical

diagnosability.

Some ongoing research on diagnosis problems are described as follows. We are inter-

ested in exploring more generalized measures for better reflecting fault patterns in a real

system than the existing ones. For example, how much more the diagnosability would

increase if more neighbors are claimed to be non-faulty for every vertex. In practice, to

design an efficient algorithm to identify the conditional faulty-set of a system would be

useful. Also, it would be interesting to study the conditional diagnosability of a system

under the comparison model.
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