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Abstract

Interconnection networks have been an active research area for parallel and distributed
computer systems. We usually use a graph G = (V, E) to represent the topology of a
network, where vertices represent processors and edges represent links between processors.
There are a lot of interconnection network properties proposed in literature. The diag-
nosability has played an important role in the reliability of an interconnection network.
Since processors or links may fail sometimes, diagnosable properties are also concerned in

many studies on network topologies.

The classical problem of diagnosability is discussed widely and the diagnosability of
many well-known networks have been explored. In this thesis, we consider the diagnos-
abilities of two families of networks, one is called the Matching Composition Network
(MCN); two M-components (which will be defined subsequently) are connected by a per-
fect matching. The diagnosability of MCN under the comparison model is shown to be
one larger than that of the M-compounent, provided some connectivity constraints are
satisfied. Applying our result, the diagnosability of.the Hypercube @,,, the Crossed cube
CQ,, the Twisted cube T'Q),,, and the,Mobius cube M), can all be proved to be n, for
n > 4. In particular, we show that the diagnosability of the 4-dimensional Hypercube Q4
is 4 which is not previously known.

Another family is the product networks, constructed by applying cartesian product
operation on factor networks. It would be interesting to combine two known topologies
with established properties to obtain a new one that inherits properties from both. We
prove that the product network of G; and Gy is (t; +1t3)-diagnosable, where G; is either ¢;-
diagnosable or t;-connected with regularity ¢; for ¢ = 1,2. Furthermore, we use different
combinations of t;-diagnosability and t¢;-connectivity to study the diagnosability of the
product networks. We show that the product network of Gy, Go, ..., and Gy is (t; +t2 +
...+tg)-diagnosable, where each G; is either ¢;-diagnosable or t;-connected with regularity
t; for 1 <i <k,

In this thesis, we introduce a new measure of conditional diagnosability by restricting

that any faulty set cannot contain all the neighbors of any vertex in the graph. Based on



this requirement, the conditional diagnosability of the n-dimensional Hypercube is shown
to be 4(n — 2) + 1, which is about four times as large as the classical diagnosability.
Besides, we propose some useful conditions for verifying if a system is t-diagnosable,
and introduce a new concept, called strongly t-diagnosable system, under PMC model.
Applying these concepts and conditions, we investigate some t-diagnosable networks which

are also strongly t-diagnosable.

Keywords: diagnosability, t-diagnosable, comparison model, MM* model, PMC model,
Matching Composition Network, product networks, strongly t-diagnosable, condi-
tional faulty-set, conditional diagnosability.
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Chapter 1

Introduction

With the rapid development of technology, the need for high-speed parallel processing
systems has been continuously increasing. The reliability of the processors in parallel
computing systems is therefore becoming an important issue. In order to maintain the
reliability of a system, whenever a processor (node or vertex) is found faulty it should
be replaced by a fault-free processor. The process of identifying all the faulty nodes is
called the diagnosis of the system. System-level ‘diagnosis appears to be a alternative to
circuit-level testing in a complex multiprocessor system.

Somani [59] and T. Chen [7] had some sturveys on the diagnosis problems and illus-
trated many related issues for multi-processor=system. Three basic classes of problems
have been identified in system-level diagnesis: (1) the characterization problem, (2) the
diagnosability problem, and (3) the diagnosis problem. In this thesis, we focus on the
first two problems and have some results which will be presented in chapters 3, 4, and 5.

Many terms for system-level diagnosis have been defined and various models have been
proposed in literature [4, 31, 50, 55]. If all allowable fault sets can be diagnosed correctly
and completely based on a single syndrome (which will be defined in chapter 2), then
the diagnosis is referred to as one-step diagnosis or diagnosis without repairs. A system
is called sequentially t-diagnosable, if at least one faulty unit can be identified provided
the number of faulty nodes does not exceed t. A system is said to be t-diagnosable if, for
every syndrome, there is a unique set of faulty nodes that could produce the syndrome
as long as the number of faulty nodes does not exceed t. The maximum number of faulty

nodes that the system can guarantee to identify is called the diagnosability of the system.



Another way of diagnosis is to allow a certain number of processors to be incorrectly
diagnosed. Friedman [30] introduced the notation of ¢/s-diagnosability. A system is
t/s-diagnosable if, given any syndrome, the faulty units can be isolated to within a set
of, at most, s units provided that the number of faulty units does not exceed t. Chwa
and Hakimi [8] characterized t/t-diagnosable systems, a special case of t/s-diagnosable

systems.

In this thesis, we consider the diagnosabilities of some multiprocessor networks under
PMC model [55] and under the comparison model [47, 48]. The diagnosability of some
well-known interconnection networks under the comparison model has been investigated.
For example, Wang [65, 66] showed that the diagnosability of an n-dimensional hypercube
@, is n for n > 5, and the diagnosability of an n-dimensional enhanced hypercube is n+1
for n > 6. The diagnosability of an n-dimensional crossed cube is proved to be n, n > 4,
in literature [6, 29]. Araki [64] proposed that the k-ary r-dimensional butterfly network
BF(k,r) is 2k-diagnosable for k > 2 and r > 5. The diagnosability of the Hypercubes, the
Crossed cubes, and the Mobius cubes under the PMC diagnostic model were also studied
in works [3, 6, 27, 28, 40]. Besides, G.Y. Chang et al. [6] studied the diagnosabilities of

regular networks, such as cube-connected.cyélesitori, and star graphs.

In chapter 3, we study the diagnosability6f ‘a family of interconnection networks,
called the Matching Composition Networks (MCN), which can be recursively constructed.
MCN includes many well-known interconnection networks as special cases, such as the
Hypercube @),,, the Crossed cube C'Q,;.the Twisted cube T'Q),,, and the Mobius cube
MQ@,,. Basically, MCN and these mentionied cubes are all constructed from two graphs
G; and G, with the same number of nodes, by adding a perfect matching between the
nodes of G; and G5. We shall call these two graphs GG, and Go as the M-components of
MCN.

One of our results under the comparison model is illustrated as follows. Suppose that
the number of nodes in each component is at least ¢+ 2, the order (which will be defined in
chapter 2) of each node in G is ¢, and the connectivity of G is also t, i = 1,2. We prove
that the diagnosability of MCN constructed from GGy and G is t+1 under the comparison
model, for ¢ > 2, in chapter 3 and in literature [46]. In other words, the diagnosability of
MCN is increased by one as compared with those of the M-components. Using our result,
it is straightforward to see that the diagnosability of the Hypercube @),,, the Crossed cube



CQ,, the Twisted cube T'Q),,, and the Mobius cube M(Q),, are n for n > 4. Some of these
particular applications are previously known results [29, 66], using rather lengthy proofs.
Our approach unifies these special cases and our proof is much simpler. We would like
to point out that the diagnosability of the 4-dimensional Hypercube ()4 is 4, which is not
previously known [29, 66].

In chapter 4, we investigate the diagnosabilities of Cartesian Product Networks under
the comparison model. A product networks is obtained by applying the graph Cartesian
product operation on factor networks. It would be interesting to be able to combine two
known topologies with established properties to obtain a new one that inherits properties
from both. We use the Cartesian product as a tool to achieve this combining. The product
networks constitute an important classes for the interconnection networks. Motivated
by this observation, the diagnosability of the product networks under the comparison
diagnosis model is also studied in this thesis.

Though various properties of the product networks (e.g. connectivity, diameter, short-
est path routing, and embedding, etc.) have been investigated by many researchers
[15, 16, 24, 33, 34, 53, 54, 56, 71], we_stidy a different topological property from the
previous works. The diagnosability ofshypereubessand enhanced hypercubes were studied
in literature [40, 65, 66] and the diagnosability of crossed.cubes was presented in literature
[29]. The diagnosability of the product networks under the PMC model was investigated
in work [2]. In this thesis and literature [10]ywesstudy the diagnosability of the product
network of GG; and G5, where G; is t;=diagnosable or t;-connected for ¢ = 1,2. More-
over, we use different combinations of t;-diagnosability and t;-connectivity to study the

diagnosability of the product networks.

Under PMC model, the main studies are present as follows. Reviewing the previous
papers [3, 6, 11, 27, 28, 35, 40, 42, 57|, the Hypercube @Q,,, the Crossed cube CQ,, the
Mobius cube M@, and the Twisted cube T'Q),, are all n-connected and n-diagnosable.
In advance, we observe that they are almost (n + 1)-connected and (n + 1)-diagnosable
except the case that all the neighbors of some vertex are faulty simultaneously. There-
fore, in chapter 5 and literature [45], we introduce the concept of strongly ¢-diagnosable
system and, furthermore, propose some conditions to assure which networks are strongly
t-diagnosable.



For the classical diagnosability, only processors with direct connections are allowed to
test one another. For a system, if all the adjacent neighbors of a processor v are faulty
simultaneously, it is impossible to determine whether processor v is fault-free or faulty.
Hence, for most practical systems that are sparsely connected, only a small number of
faulty processors can be recognized with the classical diagnosability theory. So it is an
interesting problem to study how the diagnosability varies with some reasonable restric-
tions. Thulasiraman et al. [20] investigated the fault diagnosis with local constraints. In
chapter 5 and literature [45], we propose to study a certain conditional diagnosability and
show that the conditional diagnosability of the Hypercube, @, is 4(n — 2) + 1.

The diagnosis problem is to determine the working status of each individual processors
in a system which has been designed to have a certain level of diagnosability. A diagnosis
algorithm can be implemented in two basic ways: centralized algorithm and distributed
algorithm. Most of the diagnosis algorithms suggested in earlier works were centralized
9, 18, 19, 32, 61, 63, 70], while testing and diagnosis were done simultaneously. Therefore,
a host processor is required in order to collect testing results and to diagnosis the system
according to the syndrome. Centralized diagnosis algorithm puts a heavy communication
load on the system. Moreover, the supervisorysprocessor is a major performance and
reliability bottleneck. However, in either distributed systems or high-speed communica-
tion networks, there is no host and-all processors run‘independently. For these reasons,
a distributed diagnosis approach in multi-processor systems is preferred rather than a

centralized one.

As against a central diagnosis algorithm, a‘distributed diagnosis algorithm is executed
on many or all the processors in the system simultaneously. In a distributed diagnosis
algorithm, each processor in the system determines the status of every other processor
based on the information it collects through distribution of test results information. Local
distributed diagnosis algorithms have been introduced for regular interconnected systems,
in which each processor of the system takes part in the diagnosis process, using only the
information that is available in its local domain. The problem of testing and diagnosis
with distributed algorithms has been investigated by many researchers [5, 38, 41, 60, 67].
Of course, it is still desirable that more works on diagnosis problem are done for practical

systems.



1.1 Basic Terms and Notations

A multiprocessor system is modelled as an undirected graph G = (V, E) whose vertices
represent processors and edges represent communication links. Throughout this thesis,

we will focus on undirected graph without loops (simply abbreviated as graph).

The degree of vertex v in a graph G, written as dg(v) or deg(v), is the number of
edges incident to v. The maximum degree is denoted by A(G), the minimum degree is
d(G), and G is regular if A(G) = §(G). It is k-regular if the common degree is k. The
neighborhood of v, written Ng(v) or N(v), is the set of vertices adjacent to v. A vertex
(node) cover of GG is a subset x C V such that every edge of E has at least one end vertex
in xy. A vertex cover with the minimum cardinality is called a minimum vertex cover. The
connectivity k(@) of a graph G(V, E) is the minimum number of vertices whose removal
results in a disconnected or a trivial graph. A graph G is k-connected if its connectivity
is at least k.

The Hypercube structure [57] is a well-known and commercially available interconnec-
tion model for multiprocessor system. <Fhe fault-tolerant computing for the Hypercube
structure has been the interest of many researchers.. A Hypercube of dimension n, denoted
by @Q,, is an undirected graph consisting of 2% vertices and n2"~! edges. The Hypercube
()1 is a complete graph K, with two vertices {0,1}." For n > 2, @, is constructed from
two copies of ),_1 by adding a perfect-matching between them. Each vertex u of @,
can be distinctly labelled by a binary“m=bit string; i, 1u,_o...ujug. There is an edge

between two vertices if and only if their binary labels differ in exactly one bit position.

There are several variations of the Hypercube, for example; the Crossed cube [21], the
Twisted cube [37], and the Mobius cube [13]. For each of these cubes, an n-dimensional
cube can be constructed from two copies of (n — 1)-dimensional subcubes by adding a
perfect matching between the two subcubes. The main difference is that each of these
cubes has various perfect matching between its subcubes. An n-dimensional cube has (i)
2" vertices, (ii) connectivity n, and (iii) each vertex has the same degree n. We use cube
family to call all such cubes, which are constructed recursively by joining two subcubes
with a perfect matching.

10



Chapter 2

Diagnosis Models

For the purpose of self-diagnosis of a given system, several different models have been
proposed in literature [47, 48, 55]. Preparata, Metze, and Chien [55] first introduced a
model, so called PMC-model, for system level diagnosis in multiprocessor systems. In this
model, it is assumed that a processor can test the faulty or fault-free status of another
processor. The comparison model, called MM model, proposed by Maeng and Malek
[47, 48], is considered to be another practical approach for fault diagnosis in multiprocessor

systems.

2.1 PMC model

A multiprocessor system is modelled as an undirected graph G' = (V, E') whose vertices
represent processors and edges represent communication links. Adjacent processors are
capable of performing tests on each other. For adjacent vertices u,v € V', the ordered
pair (u,v) represents the test performed by u on v. In this situation, u is called the tester
and v is called the tested vertex. The outcome of a test (u,v) is 1 (respectively 0) if u

evaluates v as faulty (respectively fault-free).

A test assignment for a system G = (V,E) is a collection of tests (u,v) for some
adjacent pairs of vertices. Throughout this thesis, it can be modelled as a directed graph
T = (V,L), where (u,v) € L implies that u tests v in G. The collection of all test
results for a test assignment T is called a syndrome. Formally, a syndrome is a function
o:L—{0,1}.

11



2.2 The Comparison Model

In this approach, the diagnosis is carried out by sending the same testing task to a pair
{u,v} of processors and comparing their responses. The comparison is performed by a
third processor w that has direct communication links to both processors u and v. The

third processor w is called a comparator of u and v.

If the comparator is fault-free, a disagreement between the two responses is an in-
dication of the existence of a faulty processor. To gain as much knowledge as possible
about the faulty status of the system, it was assumed that a comparison is performed by
each processor for each pair of distinct neighbors with which it can communicate directly.
This special case of MM-model is referred to as the MM*-model. Sengupta and Dahbura
[58] studied the MM-model and the MM*-model, gave a characterization of diagnosable
systems under the comparison approach, and proposed a polynomial time algorithm to
determine faulty processors under MM*-model. In this thesis, we study the diagnosabili-
ties of MC'N (which will be defined subsequently) and Cartesian Product Networks under
MM*-model.

In the study of multiprocessor systems, tlie topology:of networks is usually represented
by a graph G = (V, E), where each node v € V represents a processor and each edge
(u,v) € E represents a communication link.-The diagnesis by comparison approach can
be modelled by a labelled multigraplyy called comparison graph, T'= (V, L), where V is the
set of all processors and L is the set of labelled edges. A labelled edge (u,v), € L, with
w being a label on the edge, connects v and v, which implies that processors u and v are
being compared by w. Under the MM-model, processor w is a comparator for processors
w and v only if (w,u) € F and (w,v) € E. The MM*-model is a special case of the MM
model, it is assumed that each processor w such that (w,u) € E and (w,v) € E is a
comparator for the pair of processors u and v. The comparison graph 7" = (V, L) of a
given system can be a multigraph, for the same pair of nodes may be compared by several
different comparators.

For (u,v), € L, the output of comparator w of u and v is denoted by r((u,v),), a
disagreement of the outputs is denoted by the comparison results r((u, v),,) = 1, whereas

an agreement is denoted by r((u,v),) = 0.

12



Therefore, if the comparator w is fault-free and r((u,v),) = 0, then u and v are both
fault-free. If r((u,v),) = 1, then at least one of u, v, and w must be faulty. The set of all
comparison results of a multicomputer system that are analyzed together to determine
the faulty processors is called a syndrome of the system.

2.3 Common Terms and Notations

For a given syndrome o, a subset of nodes F' C V is said to be consistent with o, if
syndrome o can be produced from the situation that all nodes in F' are faulty and all
nodes in V —F are fault-free. Because a faulty comparator (or tester) can lead to unreliable
result, a given set F' of faulty nodes may produce different syndromes. Let o(F’) represent
the set of all syndromes which could be produced if F' is the set of faulty vertices.

The set of all faulty processors in the system is called a faulty-set. This can be any
subset of V. Two distinct sets Fi, F5 C V are said to be indistinguishable if and only
if o(F1)(o(Fz) # O; otherwise, Fy, Fy are said to be distinguishable. Besides, we say
(Fy, Fy) is an indistinguishable-pair if o(Fy) (Vo (Fs) # O, else, (F1, Fy) is a distinguishable-
pair. A system is said to be t-diagnosable if for.every .syndrome, there is a unique set of
faulty nodes that could produce thessyndrome, provided the number of faulty nodes does
not exceed t.

Let G = (V, E). For aset S C V, thenotation G—='S represents the graph obtained by
removing the vertices in S from GG and deleting those edges with at least one end vertex
in S simultaneously. If G — S is disconnected, then S is called a vertex cut or a separating

set.

Definition 1 [68] The components of a graph G are its mazimal connected subgraphs. A

component is trivial if it has no edges; otherwise it is nontrivial.

Let GG1, G5 be two subgraphs of G, if there are ambiguities, we shall write the vertex
set of G; as Vg, or V(G1). The neighborhood set of the vertex set Vi, is defined as
N(Vg,) = {y € V(G)| there exists a vertex x € Vg, such that (z,y) € E(G)} — Vg,.
The restricted neighborhood set of Vi, in Gy (Vi) is defined as N(Vg,, G2) (N(Ve,, Va,)
respectively) = {y € V(G3)| there exists a vertex x € Vg, such that (z,y) € E(G)} —Vg,.

13



We use | X| to denote the cardinality of set X. For v € V| we use d;,,(v) to denote the
number of edges directed toward v in G. The restricted degree of a vertex v in a subgraph
(1 is defined as degg, (v) = |[N({v}, G1)].

2.4 Preliminaries for PMC model

For PMC model, some known results about the definition of ¢-diagnosable system and
related concepts are listed as follows. Some of these previous results are on directed graphs

and others are on undirected graphs.

Definition 2 [55] A system of n units is t-diagnosable if all faulty units can be identified
without replacement provided that the number of faults presented does not exceed t.

Let Fy, F5, C V be two distinct sets and let the symmetric difference FiAF, = (F} —
Fy) J(F,— Fy). DahBura and Masson [14] proposed a polynomial time algorithm to check

whether a system is t-diagnosable.

Lemma 1 [1/] A system G(V, E) is t-diagnosable under PMC model if and only if for
each pair Fy, Fy C V with |Fi|,|Fsl <t and Fi{ #-Fs5, there is atl least one test from
vV — (F1 UFQ) to F1AF2.

The following two results related to f-diagnesable systems are due to Hakimi et al.

[35], and Preparata et al. [55], respectively.

Lemma 2 [55] Let G(V, E) be the graph representation of a system G, with V' represent-
ing the processors and E the interconnection among them. Let |V| = n. The following

two conditions are necessary for G to be t-diagnosable under PMC model:

(i) n>2t+1, and

(13) each processor is tested by at least t other processors.

Lemma 3 [35] The following two conditions are sufficient for a system G of n processors
to be t-diagnosable under PMC model:
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(i) n>2t+1, and

(i) #(G) > t.

For a directed graph G and vertex v € V(G), let I'(v) = {v|(v,v;) € E} and I'(X) =
Upex I'(v) = X, X C V. Hakimi and Amin presented a necessary and sufficient condition
for a system G to be t-diagnosable as follows:

Theorem 1 [35] Let G(V, E) be the directed graph of a system G with n units. Then G is
t-diagnosable under PMC model if and only if: (i) n > 2t+1, (i) dip(v) >t for allv € V,
and (iii) for each integer p with 0 < p <t —1, and each X C V with |X| =n — 2t + p,
ITX)| > p.

In this thesis, we propose some new viewpoints on diagnosis, and we will focus on
undirected graph (simply abbreviated as graph). Let G(V, E) be an undirected graph of
a system G. The following lemma follows directly from Lemma 1.

Lemma 4 For any two distinct sets Fi«Fy CV(F, Fy) is a distinguishable-pair under
PMC model if and only if Fu € X and Fv € iy, Such that (u,v) € E (See Fig. 2.1).

Figure 2.1: Tlustration for a distinguishable pair (F, F).

It follows from Definition 2 that the following lemma holds.

Lemma 5 A system is t-diagnosable under PMC model if and only if for each distinct
pair of sets Fy, Fy CV with |Fy| <t and |F5| <t, Fy and Fy are distinguishable.

An equivalent way of stating the above lemma is the following:
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Lemma 6 A system is t-diagnosable under PMC model if and only if for each indistin-
guishable pair of sets Fy, Fy C 'V, it implies that |Fy| >t or |F3| > t.

By Lemma 2, a similar result for undirected graph is stated as follows.

Corollary 1 [55] Let G(V, E) be an undirected graph. The following two conditions are
necessary for G to be t-diagnosable under PMC model:

(i) n>2t+1, and

(i) 8(G) > t.

For our discussion later, an alternative characterization of t-diagnosable system is

given.

Theorem 2 Let G(V, E) be the graph of a system G. Then G is t-diagnosable under
PMC model if and only if for each vertex set,S,C V with |S| =p, 0 < p <t—1, every
component C of G — S satisfies |Vo| >2(t — p) + 1.

Proof: To see that |Vi| > 2(t — p)+ 1'is necessary, by contradiction. Then there exists
a set of vertex S C V with |S| = p, O < pnL&—4d5such'that one of the components G — S
has strictly less than 2(¢ —p)+1 vertices:. Let C' be such a component with |V | < 2(t—p).
We then arbitrarily partition V¢ into two disjoint subsets, Vo = Ay | Ay with |4y <t—p
and |Ay] <t —p. Let F = A JS and Fy, = Ao|JS. Then |Fi| < tand |Fp| <t Itis
clear that there is no edge between V — (Fy | F») and FiAF,. By Lemma 4, F} and F,
are indistinguishable. This contradicts with the assumption that G is t-diagnosable.

To prove the sufficiency, suppose on the contrary that G is not t-diagnosable, i.e, there
exists an indistinguishable pair (Fy, Fy) with |F;| < ¢, 7 = i,2. By Lemma 4, there is no
edge between V — (Fy|J F») and F1AF,. Let S = Fi(Fy. Thus, in G — S, F1AF; is
disconnected from other parts. We observe that |FiAF,| = 2(t — p), where |S| = p and
0 < p <t—1. Therefore, there is at least one component C' of G — S with |V | < 2(t —p),
which is a contradiction. This completes the proof of the theorem. O
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2.5 Preliminaries for the comparison model

Next, we discuss the diagnosability under the comparison model. Given a graph G, let
T be the comparison graph of G. For a node v € V(G), we define X, to be the set of
nodes {u | (v,u) € E(G)} J{u | (v,u), € E(T) for some w} and Y, to be the set of edges
{(u,w) | u,w € X, and (v,u), € E(T)}. In [58], the order graph of node v is defined as
G(v) = (X,,Y,) and the order of the node v, denoted by orderg(v), is defined to be the
cardinality of a minimum vertex cover of G(v). Let U C V(G), we use I'(G,U) to denote
the set {v | (u,v), € E(T) and w,u € U,v € U}. We observe that I'(G,U) = N(U,U) if
G|U] is connected and |U| > 1. This observation can be extended to the following lemma.

Lemma 7 Let U be a subset of V(G) and G[U;], 1 <i < k, be the connected components

k k
of the subgraph G[U| such that U = UUZ" Then T'(G,U) = U{N((_], U;) | |Ui] > 1}.

i=1 =1

0 /o 3
7
6

1 2

Figure 2.2: An example for I'(G, U) of Qs.

In Fig. 2.2, taking @3 as an example, we have I'(G,U) ={4, 5,6, 7}, where U ={0, 1, 2, 3}.
The next lemma follows directly from the definition of connectivity of G.

Lemma 8 [27] Let G be a connected graph and U be a subset of V(G). Then |N(U,U)| >
k(G) if |U| > k(Q), and N(U,U) = U if U] < k(G).

Five lemmas and theorems presented by Sengupta and Dahbura [58] must be applied
to characterize whether a system to be t-diagnosable. The results of these theorems are
as follows.
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First one is a necessary and sufficient condition for ensuring distinguishability.

Theorem 3 [58] For any S1,S2 where Sy, So CV and Sy # Sa, (S1,S2) is a distinguish-
able pair under the comparison model if and only if at least one of the following conditions
is satisfied: (See Fig. 2.3)

(1) Ji,k € V=51 — Sy and 3j € (S1 — S2) J(S2 — S1) such that (i,j) € C,

(13) Ji,j € S; — Sy and Ik € V — S — Sy such that (i,7)x € C, or

(7i7) i, j € Sy — Sy and Ik € V — 51 — Sy such that (i,7), € C.

O/ o G oliii)
. .

Figure 2.3: Description of distinguishability.

Two necessary conditions for checking a system-to' be t-diagnosable are as follows.
Lemma 9 [58] If a system with N nodes is t-diagnosable, then N > 2t + 1.

Lemma 10 /58] If, in a system, each node has order at least t, then for each Sy, S, CV
such that |S1J S2| <'t, (S1,S2) is a distinguishable pair.

Another necessary and sufficient condition for ensuring distinguishability is the fol-
lowing theorem.

Theorem 4 [58] A system is t-diagnosable under the comparison model if and only if
each node has order at least t and for each distinct pair of sets Sy, Sy C V' such that
|S1| = |S2| = t, at least one of the conditions of Theorem 8 is satisfied.
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The following theorem is a sufficient condition for verifying a system to be ¢-diagnosable.

Theorem 5 [58] A system G with N nodes is t-diagnosable under the comparison model
if
(1) N>2t+1;
(2) orderg(v) >t for every node v in G;
(3) (G, U)| > p for each U C V(G) such that [U| =N —2t+p and 0 <p <t—1.
According to the Theorems 3, 4, and 5, we observe that condition (3) of Theorem 5

restricts G satisfying the first condition of Theorem 3 and ignores conditions 2 and 3.
Hence, we present a hybrid theorem to test whether a system is ¢t-diagnosable.

Theorem 6 A system G with N nodes is t-diagnosable under the comparison model if

(1) N>2t+1;
(2) orderg(v) >t for every node v.jin G;

(3) for any two distinct subsets Sy Sy € V(G) such that |S1| = |S2| =t
either (a) |T'(G,U)| > p, where U=V (G) —(S4J S2), and |S1[) S| = p;

or (b) The pair (S, S2) satisfies condition (ii) or (iii) of Theorem 3.

Proof: Conditions (1) and (2) are the same as conditions (1) and (2) of Theorem 5.
Consider condition (3.a). Sy and Sy are two distinct subsets of V/(G) with |S1] = |Sa| = ¢,
U=V(G) - (S1US2), and |S1(NS2] =p. Then 0 < p <t—1and Ul =N —2t+ p.
If |I'(G,U)| > p, it implies that the pair (S, Ss) satisfies condition (i) of Theorem 3.
Combining conditions (3.a) and (3.b), by Theorems 3 and 4, this theorem follows. O
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Chapter 3

Diagnosability of the Matching
Composition Networks

Now we define the Matching Composition Network (MCN) as follows. Let G; and Gy
be two graphs with the same number of nodes. Let M be an arbitrary perfect matching
between the nodes of G; and Gg; i.e., M is a set of edges connecting the nodes of G
and G5 in a one to one fashion, the resulfing ‘composition graph is called a Matching
Composition Network (MCN). For corvenience,.Gy and G, are called the M-components
of the MCN. Formally, we use the netation G5 €P ;G2 to denote a MCN, which has node
set V(G1 @, G2) = V(G1) UV (G4) and edge set E(G1€D,, G2) = E(G1) U E(G2) U M.
See Fig. 3.1.

3.1 Diagnosability of the Matching Composition Net-
works under PMC Model

Theorem 7 Let G1(V1, E1), Go(Va, E3) be two t-diagnosable systems with the same num-
ber of vertices, where t > 1. Then MCN G = G, @D, G2 is (t + 1)-diagnosable.

Proof: We shall use Theorem 2 to prove this theorem. Let G = G(V, E) = G, ,, G
and S C V with |S| =p, 0<p <t Let S; =S5MV; and Sy = S V2 with |S;| = p; and
|So| = pa. In the following proof, we consider two cases: (1) S; = @ or Sy = @, and (2)
S1 # O and Sy # . We shall prove that: |Vo| > 2((t+ 1) — p) + 1 for every component
CofG—Sas0<p<t.
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Case 1: S; =0 or S, = .

Without loss of generality, assume S; = @ and S; = S. We know that each vertex
of V5 has an adjacent neighbor in Vj, so, G — S is connected. The only component C' of
G —Sis G — S itself. Hence, |Vo| = |V =S| = |[Vi| + |Va| —p. G; is t-diagnosable, i = 1,2,
by Lemma 2, |V;| > 2t +1. So [Vo| >2(2t+1)—p>2((t+1)—p)+1fort > 1.

Case 2: 5] # 0 and S, # Q.

S1 # @Oand Sy # O, itimplies 1 < p; <t—1and 1 < py <t—1. Let C; be a component
of Gy — S1. G, is t-diagnosable, by Theorem 2, |Vi,| > 2(t — py) + 1. We claim that
2(t—=p1)+1 2> pa+1. Since p = p1+py, 2(t—p1)+1=2(t—(p—p2)) +1 = 2pa+2(t —p) +1.
Notice that p < ¢t. Hence, |V, | > 2(t —p1) + 1 > po + 1. That is, Vi, has at least one
adjacent neighbor v € V5 and v ¢ Sy. (G5 is t-diagnosable, by Theorem 2, every component
of Go — S5 has at least 2(t — py) + 1 vertices. Let Cy be the component of Gy — Sy such
that v € Vg, and let C' be the component of G — S such that Vg, Ve, € V. Then
Vel > Vel + Ve | > 2(t—p1) + 1)+ (2(t—po) +1) = 22t —p+1) > 2((t+1) — p) + 1
ast > 1.

So every component of G — S has at least 2((t +1) = p) + 1 vertices in this subcase.

Consequently, the lemma follows. O

3.2 Diagnosability of the Matching Composition Net-
works under the Comparison Model

What we have in mind is the following: Let G; and G5 be two t-connected networks with
the same number of nodes and orderg,(v) > t for every node v in G;, where i = 1,2,
and let M be an arbitrary perfect matching between the nodes of G; and G5. Then the
degree of any node v in G(G; @,; G2) as compared with that of node v in G;, i = 1,2, is
increased by one. We expect that the diagnosability of G(G1 @ ,,; G2) is also increased to
t + 1. For example, the Hypercube @)1 is constructed from two copies of ), by adding
a perfect matching between the two and the diagnosability is increased from n to n + 1
for n > 5. Other examples such as the Twisted cube T'Q),,+1, the Crossed cube C'Q,.1,
and the Mobius cube M@, 1 are all constructed recursively using the same method as
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above.

Figure 3.1: An example of MCN G(G1 D,,; G2).

Theorem 8 Let G and Gy be two networks with the same number of nodes, and t be a
positive integer. Suppose that orderg,(v) >t for every node v in G;, where i =1,2. Then
orderg, @,, c,(v) > t+1 for node v in Gy €P,, Gs-

Proof: See Fig. 3.1. Let v be a node'of G = G1@D,, G2. Without loss of generality, we
assume that v € V(Gy), v/ € V(G3)s and (v, v") € M.=Of course, node v’ is connected
to at least one other node v” in V(Gy). Liet G1(v) and G(v) be the order graph of v in
graph G; and G, respectively. We observe that G (v) is a proper subgraph of G, both
v" and v” are in the latter, none of them in the former, and (v',v"”) is an edge in G(v).
Therefore, every vertex cover of the order graph G(v) contains a vertex cover of the order
graph G1(v). Besides, any vertex cover of G(v) has to include at least one of v" and v”.
Thus, orderg, @,, a,(v) > orderg,(v) + 1 for any node v in Gj, i = 1,2. This completes
the proof. O

We need the following lemma later in Theorem 9.

Lemma 11 Let G be a t-connected network, |V (G)| >t +2 and orderg(v) >t for every
node v in G, where t > 2. Suppose that U is a subset of nodes of V(G) with |U| < t.

Then I'(G,U) =U.
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Proof: By assumption |U| <t and x(G) > t, we prove the lemma by two cases; the first
for |U| < k(@) and the second for |U| = x(G).

If |U| < k(G), the induced graph G[U] is connected. By Lemma 7, T'(G,U) = N(U, U).
By Lemma 8, N(U,U) = U. This case holds.

Suppose that |U| = x(G). We observe that, adding any node v of U to U, the induced
subgraph G[U |J{v}] forms a connected graph. It implies that every node v of U is
adjacent to every connected components of G[U]. We claim that the subgraph induced
by U contains a connected component A with cardinality at least two (See Fig. 3.2(a)).
Then, the connected component A is adjacent to all nodes in U and, so I'(G,U) = U.

Now, we prove the claim. Suppose on the contrary that every connected component
of the subgraph induced by U is an isolated node. Let v be an arbitrary node in U, and
let G(v) = (X,,Y,) be the order graph of v in G. Then U—{v} is a vertex cover of G(v),
because every connected component of G[U] is an isolated node. Since |U| < t, we have
|U—{v}| <t — 1. Therefore, even if the induced graph G[U—{v}] is a complete graph
(See Fig. 3.2(b)), the cardinality of a minimum vertex cover of the order graph G(v) is at
most ¢ — 1. However, this contradict§ to théthypothesis of orderg(v) > t for every node
v in G. So G[U] has a connected component A with cardinality at least two. This proves

the claim, and the lemma follows. O

(a) G (b) v is connected to A

Figure 3.2: An example of the I'(G,U) when |U| =t .
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We are now ready to state and prove the following theorem about the diagnosability
of Matching Composition Network under the comparison model. As an illustration, the
conditions of the following theorem are applicable to some well-known interconnection
networks, such as Q,,, CQ,, TQ,, and MQ,, forn=1t > 3.

Theorem 9 Fort > 2, let Gy and G5 be two graphs with the same number of nodes
N, where N > t + 2. Suppose that orderg,(v) > t for every node v in G; and the
connectivity k(G;) > t, where i = 1,2. Then MCN G1@,, G is (t + 1)-diagnosable

under the comparison model.

Proof: Since |V(Gy)| = |[V(G2)| = N, 2N > 2(t +2) > 2(t + 1) + 1. By Theorem 8,
ordera, @,, a,(v) > t+1 for any node v in G; @, G2. It remains to prove that G, @, G»

satisfies condition 3 of Theorem 6.

Let F} and F; be two distinct subsets of V(G) with the same number ¢ + 1 of nodes,
and let |Fy () F2| = p, then 0 < p < t. In order to prove this theorem, we will prove
that F; and F, are distinguishable, i.e., this pair (F}, F,) satisfies either condition (3.a)
or (3.b) of Theorem 6.

Let G = G1 @,, G2 and U = VH{G) — (£ U E,), then |U| = 2N —2(t 4+ 1) + p. Let
U = U JU, with U; = UNV(Gy) and ' Upr="V(G;) = U;, i = 1,2. Without loss of
generality, we assume that |Uy;| > |Usl Bet (U= ngyo|Us| = no, ng +ny = 2(t +1) — p,
and n; < ny. Since 0 < n; < w, the maximum value of ny is equal to ¢t + 1 when
p =0 and ny = t+ 1. According to different values of n; and ns, we divide the proof into
two cases. The first case ny <t which implies n; < t. The second case ny > t, and this

case is further divided into three subcases ny < t, ny =t, and ny > t.
Case 1: n; <tand ny <t.

By Lemma 11, we have [['(G, U)| > |T(Gy, Uy)| + |T(Ga, Us)| = |Us| + |Uz| = ny +ny =
2(t +1) — p. We know that 0 < p <t, |I'(G,U)| > 2(t + 1) —p > p, and condition (3.a)

of Theorem 6 is satisfied.

Case 2: ny > t.
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We discuss the case according to the following three subcases, (2a) ny < t, (2b) ny = t,
and (2¢) ny > t.

Subcase 2a: n; < t.

Since k(Gy) > t and |U;| = ny < t, G[U;] is connected. By Lemmas 7 and 8,
['(Gy,Uy) = N(Uy,Uy) = ny. There are n; and ny nodes in U; and Us, respectively,
and ny = 2t + 2 — p — ny (See Fig. 3.3). If all the nodes in U; are adjacent to some n,
nodes in U,, there are still at least ng —ny = 2t + 2 — p — 2ny nodes in U, such that
each of them is adjacent to some node in U; under the matching M. So, |I'(G,U)| >
IT(G1,Uq)] + (ng — n1) = nq + (ng — ny) = ny. Because ny > t > p, the proof of this

subcase is complete.

Figure 3.3: Illustration in Theerem 9 for an example of subcase 2a.

Subcase 2b: n; = t.

We know that ny +ne =2(t+1)—p, 0 < p <t, ny >t, and ny = ¢, the only two valid
values for ny are t + 1 and t + 2. ny =t + 1 implies p = 1, and ny = t + 2 implies p = 0.
By Lemma 11, [['(Gy,Uy)| = |Uy| =t > 2 > p for p =0 or 1. Then the subcase holds.

Subcase 2c: n; > t.
Observing that 0 < n; < %, where 0 < p <tandny >n; >t,son, =ny =t+1.
It also implies p = 0. Here, we will prove that the subcase satisfies either condition (3a)

or condition (3b) of Theorem 6.
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First, if the subgraph induced by U contains a connected component A; with cardi-
nality at least two (See Fig. 3.4), then it must be adjacent to some node in U. Thus, we
know that |I'(G,U)| > 0 = p, and Condition (3.a) of Theorem 6 is satisfied.

Otherwise, every connected component of U contains a single node only. By Theorem
3, we know that F; and F; are distinguishable if there exists a path (u; — u — wug) such
that u € U, and uy,us € Fy — Fy or uy,us € Fy — Fy. If p = 0, it implies F; [ F> = ¢,
any node u in G[U] with degree more than two must be connected to at least two nodes
in Fy or Fy (See Fig. 3.4). By Theorem 8, orderg, g,, ¢, (v) > t + 1 for every node v in
G1 @, G2, therefore deg(v) > t+1 for every node v in G1 @,, Go. Since t > 2, condition
(3.b) of Theorem 6 is satisfied.

Hence, the subcase holds and the theorem follows. O

|

Figure 3.4: Ilustration in Theorem 9 for an example of subcase 2c.

By Theorem 5 and Theorem 9, we have the following corollary.

Corollary 2 Let Gy and G5 be two graphs with the same number of nodes N. Suppose
that both G and G4 are t-diagnosable under the comparison model and have connectivity
k(G1) = k(G2) > t, wheret > 2. Then MCN G, @,, Gs is (t + 1)-diagnosable under the

comparison model.

In [66], D. Wang has proved that the diagnosability of hypercube-structured multipro-
cessor systems under the comparison model is n when n > 5. However, the diagnosability
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of (4 is not known to be 4. Using our Theorem 9, we can strengthen the result as follows.

Theorem 10 The Hypercube @), is n-diagnosable for n > 4.

Proof: We observe that () is 3-connected, orderg,(v) = 3 for every node v in @3, and
the number of nodes of QY3 is 8, 8 > t +2 = 5 for t = 3. It is well-known that ()4 can
be constructed from two copies of (3 by adding a perfect matching between these two
copies. Therefore, by Theorem 9, )4 is 4-diagnosable.

Then, the proof is by induction on n. We have shown that @4 is 4-diagnosable. Assume
that it is true for n = m — 1. Considering n = m, @),, is obtained from two copies G, G
of @,,—1 by adding a perfect matching joining corresponding nodes in G; and Gs. It is
well-known that @Q),,_1 is (m — 1)-connected. By Corollary 2, @,, is m-diagnosable. This

completes the induction proof. O

However, @3 is not 3-diagnosable. In Fig. 3.5, there is a @3, let S; = { 0,5,7} and
Sy ={ 2,5,7 }. Then, by Theorem 3, S; and, Sp, are not distinguishable as shown in Fig.
3.5.

(a) Q

Figure 3.5: An example of an indistinguishable pair for @)3.

As we observe that most of the related results on diagnosability of multiprocessors
systems [29, 66] are based on a sufficient theorem, namely Theorem 5. Not satisfying
this sufficient condition, such as in the case of ()4, does not necessarily imply that the
network is not 4-diagnosable. Therefore, we propose a hybrid condition, 3(a) and 3(b) of
Theorem 6, to check the diagnosability of multiprocessor systems under the comparison
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model. It is more powerful to use. Applying our Theorem 6 and Theorem 9, we show
that the diagnosability of )4 is indeed 4.

It is known [11, 28, 42] that the Crossed cube C'Q,, [21], the Twisted cube T'Q,, [37],
and the Mébius cube M@, [13] are all n-connected. By Theorem 8, we can prove that
the order of each node in these two cubes is n. We observe that the two cubes are both
constructed recursively using a similar way satisfying the requirements of Theorem 9 and
Corollary 2. Therefore, we can prove that CQ,,, T'Q, and M@, are all n-diagnosable for
n > 4. Then, we list the following three theorems.

Theorem 11 [29] The Crossed cube CQ,, is n-diagnosable for n > 4.

Theorem 12 The Twisted cube T'Q),, is n-diagnosable for n > 4.

Theorem 13 The Mobius cube M@, is n-diagnosable for n > 4.
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Chapter 4

Diagnosability of Cartesian Product
Networks

Many multiprocessor networks are constructed by the cartesian product, such as grids,
hypercubes, meshes, and tori. The product networks constitute very important classes
for the interconnection networks. The diagnosability of the product networks under the
PMC model was investigated in [2]. In.this/tliesis, we study the diagnosability of the
product network of Gy and G, whete G; is.t;=diagnosable or t;-connected for ¢ = 1,2.
Furthermore, we use different combinations-of #;-diagnosability and ¢;-connectivity to
study the diagnosability of the product networks. We show that the product network of
G1, Ga, ..., and Gy is (t; +ta+. . . +tg)-diagnesabley where each G; is either ¢;-diagnosable
or t;-connected with regularity t; for <4 < k.

Definition 3 The Cartesian product G = G X Gy of two graphs G1 = (Vi, Ey) and
Go = (Va, Ey) is the graph G = (V| E), where the set of nodes V' and the set of edges E

are given by:

(1) V={(x,y)|lxr € Vi and y € V2}, and
(1) for u = (xy,yu) and v = (T, yy) in V, (u,v) € E if and only if (x,,x,) € Ey and

Yu = Yo, OT (yuayv> S EQ and Loy = Ty-

Let y be a fixed node of G5. The subgraph GY-component of G; X G5 has node set
VY = {(z,y)|r € 1} and edge set Ef = {(u,v)|u =< x4,y >, v =< 2,y >, (X4, T,) €
E;}. Similarly, let = be a fixed node of Gy, the subgraph G3-component of G1 x G2 has
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node set V¥ = {(z,y)ly € Vo} and edge set E¥ = {(u,v)|lu =< x,y, >,v =< x,y, >
, (Yu, y») € E2}. Tt is clear that GY-component (abbreviated as GY) and G%-component
(abbreviated as %) are isomorphic to Gy and Gy, respectively. (as illustrated in Fig.
4.1). The following lemma lists a set of known results [15, 16, 24, 33, 71] related to the
topological properties of the Cartesian product of Gy x G5 of two graphs GG; and Gs.

Lemma 12 Let u = (z,,y,) and v = (x,,y,) be two nodes in G1 X Gy. The following
properties hold:

1) Gy x Gy is isomorphic to Gy x G,

(
(2) [Gh x Ga| —|G1| - [Gal, where |G is the number of nodes in G,
(3) dege,xa,(u) = dega, (zu) + dega, (Yu).,

(

4) distg,xa,(u,v) = distg, (vy, ) + dist,(Yu, yu), where distg(u,v) is the distance
between u and v in G,

(5) D(Gy x G2) = D(G1) + D(G2), where D(G) is the diameter of G,

(6) K(G1 x G2) > k(Gy) + Kk(G2), where k(G) is the.connectivity of G.

4.1 Diagnosability of Cartesian Product Networks Un-
der PMC Model

Araki and Shibata [2] proposed some results for the t-diagnosability and t/¢-diagnosability

of cartesian product systems under PMC model, listed as follows.

Theorem 14 [2] Let Gy and Gy be digraphs of t1- and ta-diagnosable systems, respec-
tively. Then, the system G = G1 X Gy is (t1 + to)-diagnosable.

Lemma 13 /2] Let G be a digraph of a t-diagnosable system. Then (G x Ks) is a digraph
of a (t + 1)-diagnosable system.

Theorem 15 [2] Let Gy and Gy be digraphs of t;/t;-diagnosable system (i = 1,2). If
6 > [%} for i =1,2, then, the system G = G1 x Gq is (t1 + t2)/(t1 + t2)-diagnosable.
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Figure 4.1: An example of product network G; x Gs.

Lemma 14 [2] Let G be a digraph-of a t/t-diagnosable system such that 6;,(G) > [51].
Then a system represented by (G xHKy) us (1)t + T)-diagnosable.

Theorem 16 [2] Let Gy and Gy be digraphs 'of't;/t;-diagnosable system (i = 1,2). If
6 > [4]+1 and t; > 2(i = 1,2), then, the system G = Gy X Gy is (t1+t2+2)/(t +t2+2)-

diagnosable.

4.2 Diagnosability of Cartesian Product Networks Un-
der the Comparison Model

In this section, we distinguish the product networks into homogeneous product networks
and heterogeneous product networks. By a homogeneous product networks, we mean
every factor network of the product has the same properties of being t-diagnosable and

t-regular (or being t-connected and t¢-regular, respectively), while heterogeneous product
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in the sense that one of the factor networks is t-diagnosable and another is t-connected.
Before discussing homogeneous product networks and heterogeneous product networks, we
consider the problem that, whether a t-regular and ¢-connected interconnection network
is t-diagnosable.

4.2.1 Diagnosability of t-connected networks

This section considers the problem that, under suitable conditions, a t-regular and t-
connected interconnection network is also t-diagnosable. A t-regular and t-connected
interconnection network with at least 2¢ + 3 nodes is first proven also to be t-diagnosable.
Moreover, the product network of G; and G5 is shown to be (t; + t2) diagnosable, where

G, is t; connected with regularity ¢; for i = 1, 2.

Lemma 15 Let G be a t-reqular and t-connected network with N > 2t + 1 nodes and
t > 2. Then, each node v of G has ordert.

Proof: Let v be a node of G and let G(v)sbe:the order graph of v in G. Let x(v) be a
node cover of G(v). Assume that nodé v has order k. < t. Since G contains N > 2t + 1
nodes and the order of v is k < t, there| exists at leastone node y € Vy # v,y ¢ N(v)
and y ¢ x(v). The distance between'w and y is at least 2. Each edge of G(v) has at
least one endpoint in y(v), so all pathsgfrem v to y in'G must be from v via z, which
is a node in y(v). Deleting all the nedes of x(v) G ensures that no path exists from
v to y. However, exactly k nodes are deleted; contradicting the assumption that G is a
t-connected network, so k > t. N(v) is a node cover of G(v) so the node v must have
order k = t. O

Given a t-diagnosable system, by Lemma 9 the number of nodes must exceed or
be equal to 2t + 1. However, a t-regular and t-connected network with N = 2t + 1
nodes is not necessarily t-diagnosable. The graph shown in Fig. 4.2 is 4-regular and 4-
connected network with N = 9 nodes, since any two arbitrarily distinct nodes in Fig.
4.2 are contained in two disjoint cycles. For example, two distinct nodes 4 and 5 are
present in cycles (4,9,8,5) and (4,1,6,5,2,7,3). This graph can be easily seen to be
not 4-diagnosable, since {4,5,6,7} and {6,7,8,9} constitute an indistinguishable pair.
With regard to N = 2t + 2, the three dimensional crossed cube C'(Q3 and the three

dimensional hypercube Q)3 are 3-regular, 3-connected networks and each node has order
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t = 3. However, [29, 40| demonstrated that CQ3 and Q)3 are not 3-diagnosable under the
comparison diagnosis model. The t-regular and t-connected network G with N > 2¢ + 3
nodes is thus considered in the following theorem.

1 2 3

Figure 4.2: An example of 4-connected and 3-diagnosable system.

Theorem 17 Let G = (V, E) be ai-reqular-and t-connected network with N nodes and
t > 2. G is t-diagnosable if N > 2t= 3.

Proof: Let S; and Sy be two distinet subsets of Viwith |S;| = [Sa] = ¢, [S1()S2] = p
and 0 < p <t—1. By Theorem 4 and Lemma 15, G can be shown to be t-diagnosable by
showing that (51, S2) is a distinguishable pair. Let V" = S, (JSs and V' =V — V", Then
|V"| = 2t — p > t. Notably, V' may not be connected. The case in which all connected
components of the subgraph induced by V' are isolative nodes, is considered first. For

0 <p<t—1, the following cases are considered.

Case 1: 0 <p<t-3.

Since 0 < p < t—3 and G is a t-regular graph, each node of V' has at least two
neighbors in Sy — Sy or Sy — S for ¢ > 2. Thus, either condition (2) or condition (3) in
Theorem 3 is satisfied.

Case 2: p=1t— 2.
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In this case, |V"| =t+2,N > 2t+3 and |V'| = N — (t+2) > t + 1. Assume that the
pair S, Sy are indistinguishable. Therefore, conditions (2) and (3) in Theorem 3 cannot
be satisfied, implying that each node of V/ must be connected to ¢ — 2 nodes in S (S,
one node in S; — S, and one node in Sy — S;. Therefore, at most ¢ nodes in V' satisfy
this assumption, contradicting the condition |V’| > t 4+ 1. Hence, either condition (2) or

condition (3) in Theorem 3 must be satisfied.

Case 3: p=1t—1.

V" =t+1and |V'| = N —t — 1. The subgraph induced by V' consists of isolative
nodes and G is a t-regular graph, so (N —t — 1)t edges are adjacent to the nodes of V'
and V”. However, G has exactly % edges. For N > 2t + 3, we have (N —t — 1)t > %,
which is a contradiction, so p =t — 1 is impossible.

Now consider that the subgraph induced by V' contains a connected component R
with cardinality of at least 2. Let u € R and v € (S7 — S2) [J(S2 — S1). G is t-connected,
so there exist ¢ disjoint paths from u to v. However, at most p disjoint paths exist from u
to v via the nodes of Sy []S2. Therefore, there exists at least one path from u to v such
that no node of the path belongs to Sy{7):S2. Since wris a node in R, there exists another
node w adjacent to u. Hence, the condition' (1)-in Theorem 3 is satisfied, completing the

proof of the theorem. O

Corollary 3 Forty,ty > 2, let Gy and Go*be two t1-eannected and to-connected networks,
with reqularity t, and ty, respectively. Let G==+(Vi'E) be the product network of Gy and
Go. Then, the product network G = Gy x Gy is (t1 +t2)-diagnosable with regularity t, +t.

Proof: G ist;-regular and ¢;-connected, so at least t;+1 nodes exist in GG;. Similarly, the
number of nodes in G is at least to+1. Therefore, G contains at least (¢;+1)(t2+1) nodes.
Moreover, by Lemma 12, the degree of every node in G is t; +t5 (regularity ¢, +t2). 6(G) is
used to denote the minimum degree of G. That,[39], k(G) < §(G) is well known. However
, by Lemma 12, k(G) > k(G1) + k(G2) = t1 + t2. Since t1 +t2 < k(G) < 4(G) = t; + 1o,
k(G) = t; + to. Since (t; + 1)(ta + 1) > 2(¢t; + to) + 3 for t1,ty > 2, Theorem 17 implies
that G is (t; + t2)-diagnosable. Therefore, the corollary follows. O

Corollary 4 Let G be a product network of G1,Gs, ..., and Gy. Fach G; is t;-reqular,
t;-connected and t; > 2 for 1 < i < k where k > 2. Then, the product network G is
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(t1 +ta+ ...+ tg)-regular and (t; + to + ... + tx)-diagnosable.

Figure 4.3: An example of 2-connected and 4-diagnosable system.

Theorem 17 indicates that a ¢-connected network with N > 2t 4+ 3 nodes is also ¢-
diagnosable. However, a t-diagnosable network is not necessarily a t-connected network
(as depicted in Fig. 4.3). The example shown in Fig. 4.3 is 4-regular and 4-diagnosable,
but not 4-connected. The t diagnosability and ¢ donnectivity are not equivalent terms,
but these two concepts are closely related; ‘Theorem 17 provides an example.

4.2.2 Diagnosability of homoegeneous product networks
By Corollary 3, the homogeneous product'network G, x G5 is (t1 +t2)-diagnosable, where
G, is t;-connected and t;-regular, t; > 2, ¢+ = 1,2. The homogeneous product network

G x Gy is also (t; + t9)-diagnosable, where G; is t;-diagnosable and t;-regular, t; > 2,
t = 1,2. Several lemmas must be proven first.

Lemma 16 Let G = (V, E) be a t-regular network with N > 2t + 1 nodes. Suppose each
node of G has ordert, t > 2. If V! CV and |V = V'| <t, then (G, V') =V = V".

Proof: Let v be an arbitrary node in V' — V’, and let G(v) be the order graph of v in G.
The following two cases are considered.

Case 1: |V - V'| < t.
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For |V — V'| < t, the degree of each node is t, so each node in V' has at least one
neighbor in V’. Therefore, no isolated node exists in V’. Similarly, every node in V' — V’
has at least one neighbor in V’. Hence, I'(G, V') =V — V.

Case 1: |V - V'| =t.

For |V —V'| =t, each node in V — V' has at least one neighbor in V’. N(v, V’) is used
to denote the neighbor set of v in V’. Assume that no node in N (v, V") is adjacent to any
other node in V’. Then, every node in N(v,V’) is adjacent only to V' — V' (as shown in
Fig. 4.4). Thus, V — V' — {v} is a node cover of G(v), because every node in N(v,V’) is
an isolated node in V’. The cardinality of a minimum node cover of the order graph G(v)
can be easily determined to be at most t — 1. However, this contradicts the hypothesis
that each node has order ¢. Therefore, N (v, V") contains at least one neighbor u of v such
that the node u is adjacent to another node w in V’. Hence, I'(G, V') =V — V" O

Figure 4.4: Ilustration in Lemma 16 for an example of case 2.

Lemma 17 Let H be a t-reqular network, t > 2, and let Ky be the complete network with
two nodes. Suppose that the order of each node in H ist. Then, each node of the product
network G = H x K5 has order t + 1.

Proof: Let G° and G! be two copies of H in G. M = (V,C') represents the comparison
scheme of G. Let v be a node of G and let G(v) be the order graph of v in G. Without
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loss of generality, assume that v is a node in G°, and that u is a neighbor of v in G*.
There exists at least one node w in G' such that (v,w), € C. Then, let G°(v) be the
order graph of v in G°. Since G°(v) is a proper subgraph of G(v), every node cover of
G'(v) must contain a node cover of GY(v). However, (w,u) is an edge in G(v) rather than
in G°(v). Therefore, a node cover of G(v) must include at least either u or w. The order

of v in G therefore exceeds that of v in G° by one. Thus, the lemma is proven. O

Theorem 18 Fort > 2, let H be a t-reqular and t-diagnosable network with N nodes.
Then the product network G = H x Ky is (t + 1)-diagnosable.

Proof: Let G° = (VO E°) and G* = (V!, E') be two copies of H in G = (V, E). Let
Sy and Sy be two distinct subsets of V' and let V” = Sy ]Sy with |S;| = |S:] =t + 1,
|S1S2] = pand 0 < p < t. Then, let V' =V — V" with |[V'| = 2N = 2(t + 1) + p.
Since G has 2N nodes, 2N > 2(2t+1) > 2(t+ 1) + 1. Lemma 17 implies that each node
of G has order t 4+ 1. Hence, the theorem is proven if one of the conditions of Theorem
3 is satisfied. Now, let V¥ = V'O V% and V¥ = V' V! G° and G are isomorphic
to H, so without loss of generality, assume that [V*| > |VY|. Let |V° — V¥| = k and
V1= VY =2(t+1)—p—k. Since |V | 2¥¥},k < 2(t +1) —p— k. Thus, the proof
is divided into the following cases.

Case 1: 2(t+1)—p—k <tand £t
From Lemma 16, [T'(G,V")| > |G VTG V) =k +2t+1) —p—k =
2(t 4+ 1) — p. Since p < t, |I'(G, V)| > 2(t+1)—p > p. By Theorem 5, this case holds.

Subcase 2.1: 2(t+1) —p—k >t and k <.

From Lemma 16, [T'(G°, V*)| = k. Since V°—V" contains k < ¢ nodes so each node in
VY has at least one neighbor in V?'. Therefore, no isolated node is present in V%", Notably,
at least 2(¢+1) —p—2k nodes in V!~V are adjacent to some 2(t+1)—p—2k nodes in V',
Thus, [T(G, V)| > TGO, V) +N(VI VY V) > k4 2(t+1)—p—2k = 2(t+1) —p—k.
Since 2(t +1) — p — k >t > p, by Theorem 5, the case holds.

Subcase 2.2: 2(t+1) —p—k >t and k =1.

Since 2(t+1) —p—k >t and k = t,(t +2) — p > ¢, implying p < 2. From Lemma 16,
IT(G, V)| > [T(G°, V") =t > 2 > p. Then, the case follows.
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Subcase 2.3: 2(t+ 1) —p—k >t and k > t.

Since 2(t + 1) —p — k > t and k > t, the number of nodes in V- — V' is 2(t + 1),
indicating p = 0. Condition (1) in Theorem 3 is first supposed to be satisfied in G°.
Then, the subgraph induced by V% includes at least one connected component R with a
cardinality of at least 2. Given [V — VY| =t 41, Theorem 5 implies [['(G°, V)| > ¢ > 2
since G° is t-diagnosable. Therefore, |I'(G, V') > [I'(G°,VY)| > 2 > p. This result
implies that condition (1) in Theorem 3 is also satisfied in G.

Next, consider that the condition (1) in Theorem 3 is violated in G°. Then, either
condition (2) or condition (3) in Theorem 3 is satisfied in G°. Since G° is t-regular and
t > 2, one node v in V" is adjacent to at least three nodes in V° — VY. Now, let u, w
and z be three nodes in V° — V% such that u,w € S7 and x € S,. Since u,w € S; — Sy,
v eV —5—55 and p =0, condition (2) in Theorem 3 is also satisfied in G. The theorem
follows. a

Let G; be a t;-regular interconnection network i = 1,2, and let G = G x G5 be the
product network of GG; and GG5. Then, the order of each node v in G is estimated from
the following lemma.

Lemma 18 Let G; = (V;, E;) be ait;-reqular network with t; > 2. Suppose each node of
G, has order at least t;, 1 = 1,2. Then each_node of the product network G = G x Go
has order t; + to.

Proof: Let v = (z,y) be an arbitrary node of G and let G(v) be the order graph of v
in GG. According to the definition of product networks, is a node of V; and is a node of
Vs. Therefore, the order of z is at least ¢; and the order of y is at least t5. Let G1(x)
be the order graph of z in G; and let G(y) be the order graph of y in Gy. N(z) is a
node cover of Gy(z) so the order of node x is exactly ¢;. Similarly, the order of node
y is to. Let GY(v) be the order graph of v in the subgraph GY of G and let G%(v) be
the order graph of v in the subgraph G% of G. Since VY V5" = v, GY(v) (N GE(v) = O,
where V(GY(v)) and V(G%(v)) are the node sets of GY(v) and G%(v), respectively. GY(v)
and G%(v) are observed to be subgraphs of G/(v). Thus, every node cover of G(v) must
contain a node cover of both GY(v) and G%(v). Since the subgraphs G7 and G% of G
are isomorphic to G; and Gs, respectively, GY(v) is isomorphic to G1(z) and G%(v) is
isomorphic to Ga(y). Therefore, the order of v in GY(v) is t; and the order of v in G%(v)
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is to. Since V(GY(v)) NV (G3(v)) = O, the order of v in G(v) is t; +t3. Hence, the lemma
follows. =

Corollary 3 was proven; it states that the product network G; x Gy is (t; + to)-
diagnosable, in which G; is t; connected for ¢; > 2, ¢ = 1,2. The previous section also
established that a t;-diagnosable network is not equivalent to a t;-connected network. The
following theorem states that the product network G; x Gs is (t; + t2)-diagnosable, where
G, is t;-diagnosable for ¢t; > 2, i = 1,2. We present Theorem 19 and omit the related
proof which are completely illustrated in [10].

Theorem 19 [10] Fort; > 2, let G; = (V;, E;) be a t;-diagnosable and t;-reqular network
with N; nodes, i = 1,2. Let G = (V, E) be the product network of Gy and Gy. Then the
product network G = Gy X Gy is (t; + ta)-diagnosable under the comparison diagnosis
model with reqularity t1 + to.

Notice that in Theorem 19 the number of nodes NN, is larger than or equal to 2¢; + 1
for t;-diagnosable, i = 1,2. From Theorem 19 and by induction, the following corollary is
obtained.

Corollary 5 Let G be the product=network of Gv,Gs, = ., and Gy, where each G; is t;-
diagnosable with regularity t; and ty> 2 for 1< i < k.= Then, the product network G 1is
(t1 4+ ta + ... + tx)-diagnosable with reqularity (tii+ ta+ . .. + t1).

4.2.3 Diagnosability of heterogeneous product networks

This subsection considers different combinations of ¢;-diagnosability and ¢;-connectivity to
study the diagnosability of the product networks. The diagnosability of the heterogeneous
product network G of G; and (s, is considered, in which G is t;-diagnosable and G5 is
to-connected. Although the heterogeneous product network differs from the homogeneous
product network, a similar result is obtained as that obtained for the homogeneous product

network. Lemmas 15 and 17 immediately yield the following lemma.

Lemma 19 Let G be a ti-reqular and ti-diagnosable network with t; > 2 and let G5 be
a ta-reqular and to-connected network with No > 2ty + 1 nodes and ty > 2. Then, each
node of the product network G = G1 X G has order t; + ts.
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Section 4.2.1 presents some examples to show that a t-diagnosable network is not
equivalent to a t-connected network. Therefore, the following theorem is not implied by
Theorem 19 but it can be proven by a similar technique. Theorem 20 is proven in [10].

Theorem 20 [10] For ty,ty > 2, let G; = (V4, Ey) be a ti-reqular and t;-diagnosable
network with Ny nodes and let Go = (Va, Es) be a to-reqular and ty-connected network
with Ny > 2ty + 1 nodes. Then the product network G = G1 x Gy is (t1 + to2)-diagnosable
under the comparison diagnosis model with reqularity t; + ts.

In the above theorem, the factor network GG must have at least 2¢t5 + 1 nodes. There-
fore, by Corollary 5 and Theorem 20, the following corollary holds.

Corollary 6 Let G be the product network of Gy,Ga, ..., and Gj. Suppose that G is
t1-reqular and ti-connected with Ny > 2t; + 1 nodes, and suppose that G; is t;-reqular and
t;-diagnosable, t; > 2 for 2 < i < k. Then, the product network G is (t; +ta+ ...+ t))-
diagnosable with reqularity (t1 +to + ... + tg).

However, Corollaries 4 and 5 yieldsthe following cerollary.

Corollary 7 Let G be the product-metwork of Gy, Gs, .. ., and Gi. Suppose that G; is
ti-reqular and t;-connected, t; > 2 for. 1 <armmwhere m > 2, and suppose that G; is
tj-reqular and t;-diagnosable, t; > 2 for.m + 1 <. §.< k. Then the product network G
is (t1 + ty + ... + tx)-diagnosable under the'eomparison diagnosis model with reqularity
(t1+ta+ ...+ 1tk).
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Chapter 5

Strongly t-diagnosable Systems

The Hypercube @Q,,, the Crossed cube C'Q),,, the Mobius cube M (@),,, and the Twisted cube
TQ,, are all known to be n-connected but not (n+ 1)-connected. For each of these cubes,

every vertex cut of size n has a particular structure as stated in the following lemma.

Lemma 20 Let n > 2 and let XQ, represent any n-dimensional cube which belongs to
the cube family. For each set of vertiees S C VAXQ,) with |S| = n, if XQ, — S is
disconnected, there exists a vertex v € V(X @) sueh that N(v) = S.

Proof: We prove this lemma by induction-on n. A 2-dimensional cube X @) is simply
a cycle of length four. Clearly, this-demma is-true for- X ()s. Assume it holds for some
n > 2. We now show that it holds for n'+1.

Let (n+ 1)-dimensional cube X @, 11 be obtained from two n-dimensional cubes X @,
denoted by XQL and XQZE, by adding a perfect matching between them. Let S C
V(XQni1), |S] = n+1,and, Sy = V(XQE)N S and Sk = V(XQF)N S. In the remainder
of this proof, we show that X @, satisfies one of the two conditions: (i) XQ,11 — S is
connected, or (i) X@Q,+1 — S is disconnected and there is a vertex v € V(X Q1) such
that N(v) = S.

We study three cases: (1) |S,| < n—1 and [Sg| < n — 1, (2) either |[S;| = n or
|Sr| = n, and (3) either |Sz| =n + 1 or |Sg| =n+ 1.

Case 1: |S.| <n—1and [Sg| <n-—1.
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Since X @, is n-connected, both XQE — S; and XQ® — Sp are connected. For n > 2,
we know that [V(XQL) — S| >2"—(n—1) >n—1> |Sg| and |V(XQE) — Sg| >
2" — (n—1) > n—1>|Sz]. So, the subgraph XQL — S} is connected to the other
subgraph XQF — Sp. Hence, XQ, .1 — S is connected.

Case 2: either |[Sp| =n or |Sg| = n.

Without loss of generality, suppose that |S;| = n and |Sg| = 1. Suppose XQL — S}
is connected. Using a similar argument used in case (1), we can prove that X @, — S is
connected. Otherwise, XQL — Sy is disconnected. By induction hypothesis, there exists
a vertex v € V(XQL) such that N({v}, XQL) = S. Now, consider XQZ and consider
the matching neighbor u of v in XQZ. Note that XQF — S is connected for n > 2 and
every vertex in X Q% has a matching neighbor in XQ~L. Thus, XQ,,+1 — S is connected if
Sg # {u}. If Sg ={u}, XQny1 — S is disconnected, and S = N(v). This proves case 2.

Case 3: cither |S;|=n+1or |[Sg|=n+1.

Without loss of generality, suppose that | S| =m+ 1 and |Sg| = 0. Since there is one
corresponding matched vertex for each vertex v € ¥ (XQ% — Sr) in V(XQF), XQni1— S

is connected.
Consequently, this lemma holds. O

Let Fy and F, be two distinct sets of vertices of X@Q,, with |F;| <n+1,i=1,2 and
let S = Fi()F:. Then |S| < n. By the above lemma, either X@Q, — S is connected,
or, XQ, — S is disconnected and there is a vertex v € V(X@,,) such that S = N(v). If
X@, — S is connected, the two sets V(XQ,) — (F1 | F») and Fy/AF; both belong to the
same component X @, — S. Thus, there exists one edge connecting V(X Q,) — (F1|J F2)
and F1AF;. By Lemma 4, I} and F, are distinguishable. Therefore, if F7 and F, are
indistinguishable, |F;| <n+1,i= 1,2, X@Q, — S is disconnected and there exists a vertex
v such that S = N(v). S = Fi [ Fy, so N(v) C F; and N(v) C F». We then propose the
following concept.

Definition 4 A system G is strongly t-diagnosable if the following two conditions hold:
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(i) G is t-diagnosable, and

(73) for any two distinct subsets Fy, F» C V(G) with |F;| <t+1,i=1,2,
either (a) (F1, Fy) is a distinguishable pair;
or (b) (F1, Fy) is an indistinguishable pair and there exists a vertex v € V' such that

N(v) C Fy and N(v) C Fs.

A (t+ 1)-diagnosable system is “stronger” than a t-diagnosable system, and of course
it is strongly ¢-diagnosable according to the above definition. However, among all those
strongly t-diagnosable systems, we are interested in the one which is ¢-diagnosable but
not (¢ + 1)-diagnosable.

Following Lemma 3 and Definition 4, we propose a sufficient condition for verifying if

a system G is strongly ¢-diagnosable.

Proposition 1 A system G(V, E) withn vertices.is strongly t-diagnosable if the following

three conditions hold:
(i) m>2(t+1)+1,

(77) kK(G) > t, and

(1i) for any vertex set S C V with |S| =t, if G—S is disconnected, there exists a vertex
v eV such that N(v) C S.

Proof: With conditions (i) and (ii), by Lemma 3, G is t-diagnosable. Now, we want
to prove condition (ii) of Definition 4 holds. Let Fj, F; C V bet two distinct sets with
|F;] <t+1,i=12and S = Fi[)F,. Suppose that G — S is connected. Then there
exists one edge connecting V — (Fy|J F») and F1AF,. By Lemma 4, F; and Fy are
distinguishable. That is, condition (ii.a) of Definition 4 holds.

Otherwise, G — S is disconnected. By condition (ii), the connectivity of G is at least
t,and 0 < |S| <t, so |S|=t. Then by condition (iii), there exists one vertex v € V' such
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that N(v) C S. Therefore, N(v) C F; and N(v) C F». So condition (ii.b) of Definition 4
holds. This completes the proof of this proposition. O

Next, we present a necessary and sufficient condition for a system G to be strongly

t-diagnosable.

Lemma 21 A system G(V, E) with |V| = n is strongly t-diagnosable if and only if the
following three conditions hold:

(i) n>2(t+1)+1,
(17) 6(G) > t, and

(¢47) for any two distinct subsets Fy, Fo C V(G) with |F;| < t+1, i = 1,2, the pair
(F1, Fy) satisfy condition (ii.a) or (ii.b) of Definition /.

Proof: We first prove the necessity. To prove condition (i), we show that the assumption
n < 2(t + 1) leads to a contradiction. Assume n < 2(¢+ 1). We can partition V' into two
disjoint vertex sets Vi and Vo, Vi Vo =0 and V = Vi Vs, with [V;| <t +1,i=1,2
. By Lemma 4, V; and V5 are indistinguishable.Since G is strongly t-diagnosable, by
Definition 4, N(v) C V; and N(v) @ Vo for some.vertex v € V', contradicting with the
assumption Vi [V, = 0.

To prove condition (ii), since G is strongly t-diagnosable, it is t-diagnosable by defini-
tion. Then by condition (ii) of Corollary:1;&N.(u) 3=t for each vertex v € V. So condition
(ii) is necessary. Condition (iii) of this lemma is the same as condition (ii) of Definition

4. This proves the necessity.

To prove the sufficiency of conditions (i), (ii) and (iii). We need only to show that G is
t-diagnosable. Suppose not, then there exists an indistinguishable pair of sets £, Fy, C V/,
Fy # F5, and |F;| <t,i = 1,2. By condition (ii.b) of Definition 4, there exists a vertex
v € V such that N(v) C Fy and N(v) C Fp. By condition (ii), |N(v)| > t. However,
|Fi| < t and |Fy| < t. Hence, F; = F; = N(v). This contradicts with the fact that
Fy # F5. The lemma follows. O

We now give another necessary and sufficient condition for checking whether a system
is strongly t-diagnosable. The motivation of these conditions is as follows: Let G(V, E) be
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a strongly ¢-diagnosable system. Suppose that G is (t+ 1)-diagnosable. Then by Theorem
2, for every set S C V, 0 < p <t where |S| = p, each component C' of G — S satisfies
Vol > 2((t + 1) — p) + 1. Otherwise, G is t-diagnosable but not (¢ + 1)-diagnosable.
Then there exists an indistinguishable pair (F, F»), Fy # Fy, with |F;| <t+1,i=1,2.
By condition (ii.b) of definition 4, there exists a vertex v € V' such that N(v) C F; and
N(v) C Fy, i = 1,2. Note that §(G) > ¢, and therefore, |[N(v)| > ¢. It means that {v}
is a trivial component of G — (Fy () F»). Setting S = Fy () F, and |S| = ¢, G — S has a

trivial component.

Theorem 21 A system G = (V, E) is strongly t-diagnosable if and only if for each vertex
set S C 'V with cardinality |S| = p, 0 < p < t, the following two conditions are satisfied.

(i) For 0 < p <t—1, every component C of G — S satisfies |[Vo| > 2((t + 1) —p) + 1;
and

(17) for p = t, either (a) every component C of G — S satisfies |Vo| > 3; or else, (b)
G — S contains at least one trivial component. (Remark: 2((t+1) —p)+1 =3 as
p=t.)

Proof: We use Theorem 2 to prove thelsufficiency of conditions (i) and (ii). Let S be a
set of vertex with |S| = p, 0 < p <# —"1. By e¢ondition (i), every component C of G — S
satisfies |[Vio| > 2((t +1) —p) + 1 > 2(t —p)+=Then'by Theorem 2, G is t-diagnosable.

To show that G is strongly ¢-diagnosablé; weneed to prove that condition (ii) of Defini-
tion 4 holds. Suppose that conditions (i) and (ii.a) are both satisfied. Then by Theorem
2, G is (t + 1)-diagnosable. Now consider the case that G is not (¢t + 1)-diagnosable.
Let (Fy, Fy) be an indistinguishable pair, Fy # Fy, with |Fi| < ¢t + 1 and |Fy| < ¢ + 1.
We let S = Fi(Fy and X =V — (Fi|JF), then 0 < p < t, where |S| = p. Since
F} and F; are indistinguishable, by Lemma 4, there is no edge between X and FiAFs.
Therefore, in G — S, F1AF; is disconnected from the other components. Observe that
|Fi1AF;| < 2((t+ 1) — p), by condition (i), p cannot be in the range from 0 to t — 1.
Sop=tand |FAF| <2((t+1)—p) =2((t+1) —t) = 2. Then, by condition (ii.b),
G — S must have a trivial component {v}. So N(v) C S. G is t-diagnosable, by condition
(ii) of Corollary 1, |N(v)| > t. Hence, S = N(v). Since S = F()Fy, N(v) C F, and
N(v) C F;. Therefore, G is strongly t-diagnosable.
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This proves the sufficiency. Next, we show the condition (i) and (ii) are also necessary.

To show condition (i), suppose on the contrary that there exists a set of vertices S C V
with |S| = p, 0 < p <t —1, such that G — S has a component with strictly less than
2((t+1) —p) + 1 vertices. Let C' be such a component with |Ve| < 2((t+1) —p). We can
partition Vi into two disjoint subsets A; and Ay, A;|J Ay = Vo and A; () Ay = 0, with
|A;| < (t+1)—p,i=1,2. Let F; = Ay US and F5 = Ay |JS. Then |F}| <t+1,i=1,2,
and F) and F; are indistinguishable by Lemma 4. Since G is strongly ¢-diagnosable, by
condition (ii.b) of Definition 4, there exists a vertex v such that N(v) C F; and N(v) C Fs.
G is t-diagnosable, by Corollary 1, each vertex of G has degree at least ¢t. So |N(v)| > t.
However, N(v) C Fy () F>» = S and |S| = p < t—1, this is a contradiction. Thus, condition

(i) is necessary.

Now, we prove that condition (ii) is necessary. Let S be a set of vertex with |\S| = p and
p =t. Suppose that G is (¢ + 1)-diagnosable. By Theorem 2, for p = ¢, every component
C of G — S satisfies |[V| > 2((t + 1) —t) + 1 = 3. That is, condition (ii.a) holds if G is
(t+ 1)-diagnosable. Otherwise, G is not (¢ + 1)-diagnosable and there exists a component
C in G — S with strictly less than three,vérticesidV-| < 2. We have to show that there
is a trivial component in G — S. If WVo| = dgpwerarerdone. Assume that |Vi| = 2, say
Vo = {v1,ve}. Let Fy = SU{v1} and Fy =8 J{ws}. Then |Fi| =t + 1, |Fy] =t + 1,
and F} and F; are indistinguishables Sinee G.is strongly t-diagnosable, by condition (ii.b)
of Definition 4, there exists a vertex v suchrthat-NV (v)- C F; and N(v) C F,. We have
S = F(Fy, and N(v) C S. Therefore, {v} is a trivial component in G — S, this proves

condition (ii.b).
Consequently, the theorem holds. O

The above theorem again states that a strongly ¢-diagnosable system is almost (¢4 1)-
diagnosable, if it is not so. The only case that stops it from being (¢ + 1)-diagnosable
occurs in the following situation: all the neighboring vertices N(v) of some vertex v are
faulty simultaneously.
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5.1 Strongly t-diagnosable systems in the M CN net-
works

In previous studies, the diagnosability of many practical interconnection networks have
been explored. Actually, some of them are not only n-diagnosable but also strongly n-
diagnosable, for example, the Hypercube @),,, the Crossed cube C'Q),,, the M&bius cube
MQ@,, and the Twisted cube T'Q),, are so. In the following, we shall prove that all members

in the cube family are strongly n-diagnosable for n > 4.

Under the comparison model [47, 48], it is proved that a MCN with two ¢-connected
and t-diagnosable M-components is (¢t 4+ 1)-diagnosable in [46] and Chapter 3. In the
following theorem, we shall show that an MCN with two ¢-diagnosable M-components is
strongly (¢ + 1)-diagnosable under PMC model.

Theorem 22 Let G1(Vy, E1), Go(Va, Ey) be two t-diagnosable systems with the same
number of vertices, where t > 2. Then MCN G = G,D,,; G2 is strongly (t + 1)-

diagnosable.

Proof: We use Theorem 21 to prove it.Let G = G(V,E) = G1P,;G2 and S C V
with [S] =p, 0 <p <t+1. Let St =S5\ Vi, 55 =5 V2, |51 = p1 and |Ss] = po. In
the following proof, we consider two cases: (1) Si. = Q-or Sy = O, and (2) S; # O and
Sy # . We shall prove that: (i) [Vi| =:2((#42) =p) + 1 for every component C' of
G—Sas0<p<t, and (ii) for p = t +1; either (a) every component C of G — S satisfies
|[Vo| > 3; or else, (b) G — S contains at least one trivial component. Then by Theorem
21, G is strongly (¢ + 1)-diagnosable.

Case 1: S; =0 or S, = 0.

Without loss of generality, assume S; = ) and S, = S. We know that each vertex
of V5 has an adjacent neighbor in V;, so, G — S is connected. The only component C' of
G —Sis G— S itself. Hence, |Vo| = |V =S| = |Vi|+|V2| —p. G is t-diagnosable, i = 1,2,
by Corollary 1, |Vi| > 2t +1. So |Vg| > 2(2t + 1) —p > 2((t +2) — p) + 1 for t > 2. That
is, conditions (i) and (ii.a) of Theorem 21 are satisfied.

Case 2: S; # 0 and Sy # O.
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S1 # O and Sy # O, it implies p; > 1 and p, > 1. Then, we divide the case into two
subcases: (2.a) both p; <t —1 and p; <t — 1, and (2.b) either p; =t or p, = t. Note
that 0 <p <t+1and p = p; + ps. For subcase (2.a), 1 <p; <t—1land1<py, <t—1,
and for subcase (2.b), either p; =t and p, = 1, or, pp =t and p; = 1.

Subcase 2.a: 1 <p; <t—1land1<p, <t—1.

Let C} be a component of G; — S;. G is t-diagnosable, by Theorem 2, |V, | >
2(t — p1) + 1. We claim that 2(t —p;) +1 > po+ 1. Since p =p1 +po, 2(t —p1) + 1 =
2(t—(p—p2))+1 =2ps+2(t—p)+1. Suppose p < t, |V, | > 2pa+1. Otherwise, p = t+1.
Since py < t—1, po > 2 and 2ps+2(t—p)+1 > po+1. Hence, [Ve, | > 2(t—p1)+1 > pa+1.
That is, Vg, has at least one adjacent neighbor v € V, and v ¢ S,. G is t-diagnosable,
by Theorem 2, every component of Gy — Sy has at least 2(t — py) + 1 vertices. Let Cs
be the component of G — S5 such that v € Vi, and let C' be the component of G — §
such that Ve, U Ve, C€ V. Then |Vo| > Vo | 4+ Vel = 28 —p1) + 1) + (2(t —pa2) + 1) =
22t —p+1) >2((t+2) —p)+ 1ast > 2. So every component of G — S has at least
2((t4+2) —p)+1 vertices in this subcase. It means that conditions (i) and (ii.a) of Theorem
21 are satisfied.

Subcase 2.b: either p; =t and py = 1,01, ps =4 and p; = 1.

Without loss of generality, assume p, = t'and p; =1: Since p = p;+py = t+1, we need
only to prove either condition (ii.a) or (it.h).of Theorem 21 holds. Let C; be a component
of Gy — S;. Gy is t-diagnosable, by Theorem 2, |V, | > 2(t —py) +1 = 2(t — 1) + 1. Since
t>2, |Vo,| >2(t—1)+1> 3. So the component of G — S containing the vertex set V¢,
has at least three vertices.

Let Cy be a component of G — Sy, N(Ve,, Vo) C Ss. If Vo, has some adjacent neighbor
vy € V] and vertex v; belongs to some component C'; of G; — S, then the component C'
containing the two vertex sets V¢, and V¢, has at least four vertices. Thus, condition (ii.a)
of Theorem 21 holds. Otherwise, N (V¢,, Vi) C Sy. Since |Si| =p1 = 1, [N(Ve,, Vi)| = 1.
That is, |Ve,| = 1 and N(V,) C S1JS2. Hence, Cy is a trivial component of G — S; and
therefore, condition (ii.b) of Theorem 21 holds.

Consequently, the theorem follows. O
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Fort = 1, the above result is not necessarily true, we give an example shown in Fig. 5.1.
Let G; and G2 be two path graphs of length four with vertex sets {uy, us, us, us, us} and
{v1,v9,v3,v4, V5 }, respectively. Let G be the Matching Composition Network constructed
by adding a perfect matching (the dash lines in Fig. 5.1.i) between G; and Gy. By
Lemma 3, both G; and G5 are 1-diagnosable and G is 2-diagnosable. See Fig. 5.1.ii, let
Fy = {uy,ug,vo} and Fy = {vy,v9,us}. By Lemma 4, F; and F, are indistinguishable but
there doesn’t exist any vertex v € V(G;), i = 1,2, such that N(v) C F} and N(v) C F.
So G is not strongly 2-diagnosable.

ul Vl
' v,
ul Vs
ul v,
U5 """"" V5

Gl GZ

Figure 5.1: An example of non-strengly (¢'+ L)-diagnosable as t = 1.

Applying Theorem 22, all systems‘in the cube family are strongly (¢ + 1)-diagnosable
if their subcubes are t-diagnosable for ¢t > 2. "The Hypercube @,,, the Crossed cube C'Q),,,
the Twisted cube T'Q),,, and the Mdobius cube M@, are well-known members in the cube
family. For n = 2, these cubes are all isomorphic to the cycle of length four; they are 1-
diagnosable but not 2-diagnosable. For n = 3, these cubes are all 3-connected, by Lemma
3, they are 3-diagnosable. So we have the following corollary.

Corollary 8 The Hypercube @, the Crossed cube CQ,, the Mobius cube MQ,, and the
Twisted cube T'Q),, are all strongly n-diagnosable for n > 4.

We now give some examples which are not strongly t-diagnosable. Consider the 3-
dimensional Hypercube @3, it is 3-diagnosable but not strongly 3-diagnosable due to the
fact that [V (Q3)| =8 <2(t+1)+1 as ¢t = 3, which contradicts the condition (i) of Lemma
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21. Let C), be a cycle of length n, n > 7. By Lemma 3, C), is 2-diagnosable, but it is not
strongly 2-diagnosable. Another nontrivial example is presented in Fig. 5.2. This graph
G is 3-regular, 2-connected, and by Theorem 2, it is 3-diagnosable. As shown in Fig. 5.2,
Fy ={1,2,5,6} and F;, = {3,4,5,6}. (F}, F») is an indistinguishable pair, but there does
not exist any vertex v in V(G) such that N(v) C F; and N(v) C F,. By Definition 4, the
graph is not strongly 3-diagnosable.

8 12 10

Figure 5.2: An example of hon=strengly 3-diagnosable system.
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Chapter 6

Conditional Diagnosability

Consider a system G with diagnosability ¢(G) = t¢; so G is t-diagnosable but not (¢ + 1)-
diagnosable. In previous research on diagnosability, the investigated networks are often
strongly t-diagnosable, for examples, members in the cube family are so. Given a system
GG, suppose that it is strongly ¢-diagnosable but not (¢4 1)-diagnosable. As we mentioned
before, the only case that stops it from being (¢ + 1)-diagnosable is that there exists a
vertex v whose neighboring vertices are faulty simultaneously. We are, therefore, led to
the following question: How large the maximum valué of ¢ can be such that G remains
t-diagnosable under the condition that 'every faulty set F' satisfies N(v) € F for each
vertex v € V.

For classical measurement of diagnosability, it-is‘usually assumed that processor fail-
ures are statically independent. It does not reflect the total number of processors in
the system and the probabilities of processor failures. In [51], Najjar and Gaudiot have
proposed fault resilience as the maximum number of failures that can be sustained while
the network remains connected with a reasonably high probability. For Hypercube, the
fault resilience is shown as 25% for the 4-dimensional cube Q4 and it increases to 33% for
the 10-dimensional cube (Q19. More particularly, for the 10-dimensional cube Q19, 33%
processors can fail and the network still remains connected with a probability of 99%.
They also gave a conclusion that large-scale systems with a constant degree are more
susceptible to failures by disconnection than smaller networks. With the observation of
Lemma 4, a connected network gives higher probability to diagnosis faulty processors and
has better ability of distinguishing any two sets of processors.
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Motivated by the deficiency of the classical measurement of diagnosability and the
broadness of a system being strongly t-diagnosable, we introduce a measure of conditional
diagnosability by claiming the property that any faulty set cannot contain all neighbors of
any processor. We formally introduce some terms related to the conditional diagnosability.
A faulty set F C V is called a conditional faulty set if N(v) € F for any vertex v € V.
A system G(V, E) is conditionally t-diagnosable if Fy and F; are distinguishable, for each
pair of conditional faulty sets Fy, Fy C V and F; # Fy, with |Fi| <t and |Fy| < t. The
conditional diagnosability of a system G, written as t.(G), is defined to be the maximum
value of ¢ such that G is conditionally ¢-diagnosable. It is clear that ¢.(G) > t(G).

Lemma 22 Let G be a network system. Then t.(G) > t(G).

Let Fy, F, CV and Fy # Fy. We say (F, Fy) is a distinguishable conditional-pair (an
indistinguishable conditional-pair respectively) if F} and F, are conditional faulty sets

and are distinguishable (indistinguishable respectively).

It follows from the definition that a strongly ¢-diagnosable system is clearly condi-
tionally (¢ + 1)-diagnosable. However;ithe conditional diagnosability of some strongly
t-diagnosable systems can be far greater than ¢ + 1.2 This motivates us to study the
conditional diagnosability of the Hypercube.

Lemma 23 Let G be a strongly t-diagnosable system: Then G is conditionally (t 4+ 1)-

diagnosable.

6.1 Conditional Diagnosability of @),

Before discussing the conditional diagnosability, we have some observations as follows. Let
Fy, F5, C V be an indistinguishable conditional-pair. Let X = V —(F; | F3). Then there is
no edge between X and F1AFy. So N(Fi1AF,, X) =0 and N(X, F1AF,) = ¢. Let vertex
veF —F (orve Fy— Fy). Then N(v) C (Fy|JFy). Fy is a conditional faulty set; so
N(v) € Fy and N(v) ((F> — F1) # ¢. Similarly, F5 is a conditional faulty set, N(v) € Fy
and N(v) (F1 — F») # 0. So |[N(v)((Fy — F3)| > 1 and |N(v) ((Fy — Fy)| > 1 for every
vertex v € F1AFy. Now consider a vertex u € X =V — (Fy | F»). Since Fy and Fy are
indistinguishable conditional-pair, N (u) ((F1AFy) = ¢, N(u) € F; and N(u) € Fy. So
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N(u) € (Fy U F»). Therefore, every vertex u € X has at least one neighbor in X (See Fig.
6.1). We state this fact in the following lemma.

°
IFl&J g
Ue—e

X

Figure 6.1: Ilustration for Lemma 24.

Lemma 24 Let G(V, E) be a system. Given an indistinguishable conditional-pair (Fy, F»),
Fy # F, the following two conditions hold:

(@) IN(w) WV = (FiUF2)| =1 forue (V — (FiUF3)), and
(i) IN(W) (V(Fs — B>)| > 1 and [N Fam )| 221 for v € FLAF,

Let (Fy, F,) be an indistinguishable conditional-pair, and let S = Fj () F>. By the
above observations, every component of (¢ = S.is-nentrivial. Moreover, for each component
Cyof G =S, if Vo, (FAAFE,) = ¢, dege, (v) > 1 for v € Vg,; for each component Cy
of G — S, if Vo, N(F1AFy) # o, dege,(v) =12 for v € Vg,. To find the conditional
diagnosability of the Hypercube @,,, we need to study the cardinality of the set S.

First, we give an example to show that the conditional diagnosability of the Hypercube
Q). is no greater than 4(n — 2) + 1. As shown in Fig. 6.2, we take a cycle of length four
in @Q,, let {v1,vy,v3,v4} be the four consecutive vertices on this cycle and let F} =
N({v1,va,v3,04}) U{v1,v2} and Fy = N({vq,v9,v3,v4}) (J{vs,v4}. Tt is a simple matter
to check that (Fy, F») is an indistinguishable conditional-pair. Note that the Hypercube
@, has no triangle and any two vertices have at most two common neighbors. As we can
see that, |F} — Fy| = |Fo— Fy| = 2 and |Fy [ F2| = 4(n—2). Hence, @, is not conditionally
(4(n — 2) + 2)-diagnosable and t.(Q,) < 4(n — 2) + 1. Then, we shall show that @, is in
fact conditionally ¢-diagnosable, where t = 4(n — 2) + 1.
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Figure 6.2: Illustration for an indistinguishable conditional-pair (Fy, F), where |Fy| =
|Fy] = 4(n —2) + 2.

Lemma 25 t.(Q,) <4(n—2)+1 forn > 3.

Let S be a set of vertices, S C V(Q,). Suppose that @, — S is disconnected and C'
is a component of ), —.S. We need some results on the cardinalities of S and V¢ under
some restricted conditions. The results are listed in Lemmas 26 and 27.

These two lemmas are both proved by dividing Qn+into two Q,_1’s, denoted by Q% _,
and QT ;. To simplify the explanation, we define some symbols as follows: V7, = V(Q%_,),
Ve = V(Qi,), CL = QF NC, Cr = Q5 yNC, Vey-= V(CL), Vo, = V(Cr), Sp =
Vi S, and Sp = V() S.

The following result is also implicit in [43].

Lemma 26 Let (), be the n-dimensional Hypercube, n > 3, and let S be a set of vertices
S C V(Q,). Suppose that Q, — S is disconnected. Then the following two conditions hold:

() [S| = n, and

(17) if n < |S| < 2(n—1)—1, then Q, — S has ezxactly two components, one is trivial and
the other is nontrivial. The nontrivial component of Q, — S contains 2" — |S| — 1

vertices.

Proof: Since k(Q,) = n [57], condition (i) hold. We need only to prove condition (ii)

is true. Because ), — S is disconnected, there are at least two components in Q),, —S. We
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consider three cases: (1) @, — S contains at least two trivial components, (2) @,, — S has
at least two nontrivial components, (3) there are exactly one trivial component and one
nontrivial component in @), —S. In cases (1) and (2), we shall prove that |S| > 2(n —1).
Then n < |S| < 2(n —1) — 1, it implies @,, — S belongs to case (3).

Case 1: (), — S contains at least two trivial components.

Let v; € V, i = 1,2, and {v;},{v2} C V(Q,) be two trivial components of @, — S.
It means that N(v;) C S and N(ve) C S. For Q,, it is not difficult to see that any

two vertices have at most two common neighbors. That is, |N(v1) [ N(ve)| < 2. Hence,

S| = [N (vi) UN(v2)| = [N(v)] + [N(v2)| = [N(vr) Y N(v2)| = 2n =2 =2(n - 1).
Case 2: (), — S has at least two nontrivial components.

We prove, by induction on n, that |S| > 2(n — 1). For n = 3, suppose n < |S] <
2(n—1) — 1, it implies that |S| = 3. The connectivity of Q3 is 3. By Lemma 20 ,the only
vertex cut S with |[S| = 3 in Q3 is S = N(v) for some vertex v € V(Q3). It follows that
@3 — S has exactly two components, one 1s trivial and the other is nontrivial. Therefore,
if Q3 — S has at least two nontrivialscomponents, |.S| > 2(n — 1), where n = 3. Assume
the case holds for some n — 1, n — ' >3. We now show:that it holds for n.

Let C' and C” be two nontrivial component of Q,; = S. So |Vo| > 2. It is feasible to
divide @,, into the two disjoint Q,,_1’s,"déneted by Q% _; and QF ,, such that |Vg, | > 1

and |Veo,| > 1. There is another component C” of @), — S, so at least one of the two
graphs QL | — S; and QF | — Sy is disconnected.

Suppose that both Q% | — Sy and Q® | — Sy are disconnected. Since x(Q,_1) =n—1,
|St| > n—1and |Sg| > n—1. Then |S| = |SL| + |Sk| > 2(n — 1). Otherwise, one of the
two subgraphs QL | — Sy and QF | — Sy is connected. Without loss of generality, assume
that QL | — S, is connected and QF | — Sg is disconnected. Then V; = V¢, |J Sz and
the other nontrivial component C’ of Q,, — S is completely contained in QF | — Sg. Since
Ve is disconnected from Vg, , the corresponding matched vertices of Vv in QL are in
Sr. That is, N(Ver, QL)) C Sp. Hence, |Sp| > |Ver| > 2.
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If |Sg| > 2(n — 2), then |S| = |SL| + |Sk| > 2+ 2(n — 2) = 2(n — 1). Otherwise,
n—1 < |Sg| < 2(n —2) — 1, by induction hypothesis that Qg — Sk cannot have two
nontrivial components and by the result of case (1), Qg — Sg has exactly two components,
one is trivial and the other is nontrivial. We know that Q,}f_l — Sk has Cr and C’ as
its components and C” is a nontrivial component. So Cr must be a trivial component

of QF | — Sp, and |Ver| = 2771 — | S| — 1. Note that N(Ver,QL ;) € Sg. Then |S| =

n

|SL| + |SR’ Z |VC/| + |SR| = 2n_1 - |SR| -1+ ’SR| = 2n_1 -1 2 2(7’& - 1) for n 2 4.
Consequently, condition (ii) is true and the lemma holds. O

Suppose that ), — S is disconnected, every component of ), — S is nontrivial, and
there exists one component C' of @, — S such that degc(v) > 2 for every vertex v in C.
In view of the example given in Fig. 6.1 and Lemma 24, we shall prove that either |S| is
sufficiently large or else |V | is large as stated in the following lemma.

Lemma 27 Let ), be the n-dimensional Hypercube and n > 5, and let S be a vertex
set S CV(Qn). Suppose that Q,, — S is disconnected and every component of Q, — S is
nontrivial, and suppose that there existsone component C' of Q,,—S such that degc(v) > 2
for every vertex v in C'. Then one of the following.two* conditions holds:

(7)) |S| = 4(n —2), or

(i) [Ve| > 4(n —2) — 1.

Proof: Since dege(v) > 2 for every vertex v in C, it is feasible to divide @,
into two disjoint @Q,_1’s, denoted by QX | and Q% |, such that V(QL (N C) # ¢ and

n—1
V(QE  NC) # 0. Let Cp = QL (NC and Cr = Q2 (N C. For each vertex x in C,
(y in Cg, respectively), it has at most one neighbor in Cr (Cp, respectively). Hence,

dege, (x) > 1 and degey, (y) > 1 for x € Vi, and y € Vi, respectively.

Q). — S is disconnected, there are at least two components in @), —S. Let S, =V, (S
and Sp = Vx[(\S. Note that both QL | and QF |, contain some nonempty part of
the component C. So at least one of the two subgraphs QX | — S; and QF | — Sy is
disconnected. In the following proof, we investigate two cases: (1) one of Q% | — Sy and
QR | — Sg is connected, (2) both QL | — S7 and QF | — Sy are disconnected.
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Case 1: One of QL | — S and QF | — Sg is connected, and the other is disconnected.

Without loss of generality, assume QL | — 57 is connected and QF | — Sg is discon-
nected. Let C" be another component of @, — S other than C. Then V;, = S, |J Ve, and
the component C’ of Q,—S isin QF | —Sp—Ve,.. Since Cr and C” are both nontrivial com-
ponent, by Lemma 26, |Sg| > 2(n—2). If |SL| > 2(n—2), then |S| = |SL|+|Sr| > 4(n—2)
and condition (i) holds. Otherwise, |Sr| < 2(n —2) — 1. Then |Vg, | = 27! — |SL| >
21— 2(n — 2) + 1. That is, |Vo| = [Ve,| + [Veul = (270 = 2(n —2) +1) + 2 =
201 —2(n —2)+3>4(n—2) —1 for n > 4 and condition (ii) holds.

Case 2: Both Q% | — S and QF | — Sg are disconnected.

By Lemma 26, we consider the following three subcases: (2.a) [S| > 2(n — 2) and
ISRl > 2(n—2), (2b)n—1<|S;] <2(n—2)—1landn—1<|Sg| <2(n—2)—
and (2.c) either |Sz| > 2(n —2), n — 1 < [Sg| < 2(n —2) — 1; or, |Sg| > 2(n — 2)
n—1<|5] <2(n-2)—1.

Subcase 2.a: |Sp| > 2(n — 2) and |Sg[i=>2(n — 2).

Since |Sp| > 2(n — 2) and |SgrE212(n — 2);°{S| =1SL| + |Skr| > 4(n — 2). Hence,
condition (i) holds.

Subcase 2.b: n —1 < [SL| <2(n—2)=Tandn—1<|Sg| <2(n—2)—1

In this subcase, |Vg,| = 2"' — |Sz| — 1 and [Vg,| = 27! — |Sg| — 1. So |V¢| =
Ve, |+ Vel = 2™ —|S| —2. Suppose |S| > 4(n—2). Then condition (i) holds. Otherwise,
5] < 4(n—2)—1. Then |Vo| = 2" —|S]—2> 2"~ (4(n—2)—1)—2=2"—4(n—2)—1 >

4(n —2) — 1 for n > 4. Hence, condition (ii) holds.

Subcase 2.c: Either |Sr| > 2(n —2),n —1 < |Sg| <2(n —2) —1; or, |Sg| > 2(n — 2),
n—1<|5] <2(n-2)—1.

Without loss of generality, assume that [Si| > 2(n —2),n —1 < [Sg| <2(n—2) — 1.
Then |Ve,| = 2" — [Sg| — 1 > 2"t — 2(n — 2). Since degc, () > 1 for each vertex
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x € Vg, we have |Vg,| > 2. Thus, |Vo| = Vo, | + [Ver| = 2+ (27 —2(n—2)) =
201 —2(n—2)+2>4(n—2)—1forn > 5.

This completes the proof of the Lemma. a

We are now ready to show the conditional diagnosability of @, is 4(n—2)+1 for n > 5.
Let Fy, Fy C V(Q,) be an indistinguishable conditional-pair, n > 5. We shall show our
result by proving that either |Fy| > 4(n —2) +2 or |Fy| > 4(n —2)+ 2. Let S = F\ [ Fb.
We consider two cases: (1) @, — S is connected, and (2) @, — S is disconnected.

Lemma 28 Let @), be the n-dimensional Hypercube, n > 5. Let Fy, F» C V(Q,), Fi #
Fy, be an indistinguishable conditional-pair and S = Fy (| Fy. Then either |Fy| > 4(n —
2)+2 or|Fy| >4(n—2)+2.

Proof: Suppose that @, — S is connected. Then Fi1AF, = V(Q, — 5) and V(Q,) =
Fy | Fs. Suppose on the contrary that |Fy| < 4(n—2)+1 and |Fy| < 4(n—2)+ 1. Then
2" = |Fi| 4+ B — [Fi (N Fo] < (A4(n—2)+1)+.(4(n—2)+1) — 0= 8(n — 2) + 2. This
contradicts the fact that 2" > 8(n — 2):#2 for n >5.. Hence, the result holds as @, — S

is connected.

Now we consider the case that @, —+.5.1s disconnected, by Lemma 24, (),, — S has
a component C' with degc(v) > 2 for.every vertex @ € V. By Lemma 27, we have
|S| > 4(n—2) or |[Ve| > 4(n—2) — 1.

Suppose |S| > 4(n — 2). Since degc(v) > 2 for every vertex v in C, and @,, does not
contain any cycle of length three, so |Vo| > 4. With the observation that Vo C FiAF,
we conclude that either (F} — Fy) > ("g—cw >2or (F, — F) > (@} > 2. Therefore,
either |F1| = |S|+ [F1 — Fo| > 4(n —2) + 2 or |Fy| = |S|+ |Fy — Fi| > 4(n —2) + 2.

Otherwise, [Vo| > 4(n —2) — 1. Then either (F, — %) > [X] > 2(n —2) or
(Fy — Fy) > [@} > 2(n — 2). Because there are at least two nontrivial components in
Qn — 5, by Lemma 26, |S| > 2(n — 1). Hence, |Fi| = |S|+ |F1 — F3| > 4(n—2)+2 or
|Fo| = S|+ |Fo — Fi| > 4(n—2) + 2.
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Therefore, for any indistinguishable conditional-pair Fy, F; C V(Q,), it implies that
|Fi| > 4(n—2)+2or |Fy| > 4(n —2) + 2. This proves the lemma. O

By Lemma 25, t.(Q,) < 4(n — 2) + 1, and by Lemmas 6 and 28, (),, is conditionally
(4(n — 2) 4 1)-diagnosable for n > 5. Hence, t.(Q,) = 4(n —2) + 1 for n > 5. For Qs
and @4, we observe that ()3 is not conditionally 4-diagnosable and ()4 is not conditionally
8-diagnosable, as shown in Fig. 6.3.1 and 6.3.ii. So t.(Q3) < 3 and t.(Q4) < 7. Hence,
the conditional diagnosabilities of @3 and Q)4 are both strictly less than 4(n — 2) + 1.

i
i

)

(1) (ii)

Figure 6.3: Hlustration for two indistihguishable conditional-pairs for ()3 and @Q),.

@3 is 3-diagnosable and it is not-conditionally:4-diagnosable. It follows from Lemma
22 that t.(Q3) = 3. For Q4, we prove that t.(Q4) =7 in-the following Lemma.

Lemma 29 t.(Q4) = 7.

Proof: We already know t.(Q4) < 7. Suppose on the contrary that @4 is not conditionally
7-diagnosable. Let Fy, F» C V(Q4) be an indistinguishable conditional-pair with |F;| < 7,
i=1,2, and let S = Fy () F,. It follows from Lemmas 24 and 26 that |[S| > 2(n—1) =6
for n = 4. Furthermore, |F} — F5| > 2 and |Fy, — Fy| > 2. Then |Fi| > 8 and |Fy| > 8,
which is a contradiction. So t.(Q4) = 7. O

Finally, the conditional diagnosability of Hypercube @), is stated as follows:

Theorem 23 The conditional diagnosability of Q,, is t.(Q,) = 4(n —2) + 1 for n > 5,
tc(Qg) =3 and tc(QZL) =7.
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Chapter 7

Conclusion, discussion, and future
work

In this thesis, we propose a sufficient theorem, Theorem 6, to verify the diagnosability
of multiprocessor systems under the comparison-based model. The conditions of this
theorem include all the cases of the original necessary and sufficient condition stated in
Theorem 3. Therefore, it is more suitable for verifying the diagnosability of a system.
Then we propose a family of interconnection.networks.which are recursively constructed,

called the Matching Composition Networks.

Each member G; @, G2 of this family areconstructed from a pair G; and G of lower
dimensional networks with the same number of nodes, joining by a perfect matching M
between the two. Applying Theorem 9 in this thesis, we show that the diagnosability of
G1 @,, G2 is one larger than those of the G; and G, provided some regular conditions,
as stated in Theorem 9, are satisfied. Many well-known interconnection networks, such as
the Hypercubes @,,, the Crossed cubes C'Q,,, the Twisted cubes T'Q),,, and the Md&bious
cubes M@, belong to our proposed family.

We note here that these special cases all satisfy the condition of Theorem 9 for n > 4.
Thus, their diagnosabilities are n, for n > 4. In particular, the diagnosability of the
4-dimensional Hypercube Q)4 is 4. Also, the diagnosabilities of the Twisted cube T'Q),
and the Mdobious cubes M@, are first time proposed to be n for n > 4.

The diagnosability of the product networks under the comparison diagnosis model is
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also studied in thesis. We show that homogeneous product network G of GGy and Gy is
(t1 4 t2)-diagnosable, in which G; is either ¢;-diagnosable or ¢;-connected with regularity
t; for i = 1,2. Furthermore, we use different combinations of ¢;-diagnosability and ;-
connectivity to study the diagnosability of the product networks under the comparison
diagnosis model. We prove that the heterogeneous product network G of G; and G,
is (t; + t9)-diagnosable, in which G is t;-diagnosable with regularity t;, and Gq is to-
regular and t;-connected with 2¢5 + 1 nodes. We also show that the product network G
is (t; + ta + ... + tg)-diagnosable with at least two factor networks t;-connected, where
G is the product of Gy, G, ..., and Gy, each with regularity ¢;, and each Gj is either
t;-diagnosable or t;-connected for 1 <1 < k.

In classical measures of system-level diagnosability for multiprocessor systems, it has
generally been assumed that any subset of processors can potentially fail at the same
time. As a consequence, the diagnosability of a system is upper bounded by its minimum
degree. In probabilistic models of a multiprocessor system, processors fail independently
but with different probabilities. In other words, the probability that all faulty processors
are neighbors of one processor is very small.

In this thesis, we propose the concept of strongly t-diagnosable system and derive some
conditions for verifying whether a system is strongly f-diagnosable. To grant more accu-
rate measurement of diagnosability:for large-scale processing system, we also introduce
the conditional diagnosability of a system underPMC model. We consider the measure by
restricting that for each processor v inthe network; all the processors which are directly
connected to v do not fail at the same time. "Moreover, we show that the conditional
diagnosability of @, is 4(n — 2) + 1, which is about four times larger than the classical
diagnosability.

Some ongoing research on diagnosis problems are described as follows. We are inter-
ested in exploring more generalized measures for better reflecting fault patterns in a real
system than the existing ones. For example, how much more the diagnosability would
increase if more neighbors are claimed to be non-faulty for every vertex. In practice, to
design an efficient algorithm to identify the conditional faulty-set of a system would be
useful. Also, it would be interesting to study the conditional diagnosability of a system
under the comparison model.
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