Chapter 1

Introduction

In this chapter, motivation for the dissertation is first introduced in Section 1.1. A brief review of the related researches is presented in Section 1.2. Section 1.3 gives an overview of the dissertation. Finally, the organization of the dissertation is stated in Section 1.4.

1.1 Motivation

Polynomial-style sharing (PSS) [1] and visual cryptography (VC) [2] are two
well-known sharing approaches to secure an image file for storage and transmission.
In general, the two approaches share a secret or important image among several extremely noise-like images called shadows (or shares). Combing these shadows can reconstruct the secret or important image later. Several extended researches of [1] and
[2] about image sharing have been reported. Examples include, but not limit to, Wang
and Su's reduction of memory cost for shadows [3]; Lin and Tsai's extension of
binary VC to grayscale images [4]; Lin and Lin's two-in-one sharing method VCPSS
[5] that combined visual cryptography (VC) and polynomial-style sharing (PSS).
Polynomial-style sharing using polynomials $[1,3,6-9]$ is one of the popular secret sharing approaches to protect secret images. This kind of approach can restore the secret images without any loss, and the size of each shadow image can even be several times smaller than that of the given secret image [3, 6]. Therefore, space-wasting is seldom a problem for sharing using polynomials. However, the retrieval speed is very slow because of the evaluation of polynomials.

On the contrary, a fast approach called visual cryptography (VC) [2, 4, 10-12], which shares a secret image using several "size-enlarged" transparencies, is often utilized to deal with images whose brightness are only of a few levels (for example, black-and-white, 3-levels, or 4-levels). In the recovery phase of VC, a "size-enlarged" version of the secret image can be visually decoded instantly by human eyes after "physically stacking" the transparencies; therefore, there is no need to use a computer. However, as the images' gray levels increase from 2 or 4 levels to 256 levels, human eyes can no longer be utilized in decoding by generating transparencies, unless the 256-level image is first pre-quantized to, saying, a 2-level image by approximation techniques such as halftone. Therefore, the decoding is not error-free, and it is just an approximation. Nevertheless, if we use a computer to replace the roles of human eyes as the decoder for VC , then there is no need to use the error-introduced 256 -to-2
pre-quantization, for the computer can handle each bit-plane individually.
Unfortunately, even though the concept of using physical transparencies can be
transformed to the concept of using digital files in a computer or network, each digital file is several times larger than the secret image file itself [13-15], for each transparency in VC is already several times larger than the secret image.

Although people can use the digitalized version of an elegant method proposed in [16] that has no size expansion because of using probabilistic skill; the recovered secret image is not lossless. In general, size expansion problem is a disadvantage for VC-based fast approaches: to store digital shadow images in the computer often requires large storage space.

From the analysis in above two paragraphs, we can see that these two kinds of sharing approaches are quite different, and each has its own speed-vs.-space advantage and disadvantage. A question arises naturally: "can a sharing system have both advantages in speed and space?" In other words, can people have some
economical-size shadows which can reconstruct the given secret image in a loss-free manner after only using a few operations to decode each pixel? The answer is positive. Wang et al. [17-18] had gracefully provided their answer, to certain level, in their second scheme [18] which is an (n, n) scheme.

In Chapter 2, we will improve Wang et al.'s (n, n) scheme in order to have the "missing-allowable" (k, n)-threshold ability, i.e. in the reconstruction of the secret, any k out of the n shadows will work. The proposed scheme generates the n desired shadows for a given color (grayscale/binary) image A, so that each shadow's size is less than two times the size of A. Furthermore, the lossless decoding process only uses quite a few exclusive-OR (XOR) operations. Hence there is no complex computation.

In above two well-known sharing approaches, i.e. PSS [1] and VC [2], there are
some other extensions which are "applications-oriented", such as (1) user-friendly
shadows $[7,19]$ for easier management of shadows, and (2) progressive decoding [9,
19-22] of an image which is moderately sensitive but still need to be processed every
day. For example, among the PSS approaches [7, 9, 20], Thien and Lin [7] firstly introduced the idea of using "user-friendly" (i.e. visually-recognizable) shadows; Chen and Lin [9] designed a sharing method for progressive transmission of images; Hung et al. [20] also proposed a progressive sharing method according to three pre-specified thresholds. In VC approaches [19, 21-22], Jin et al. [21] developed a progressive VC technique for grayscale/color images with three types of decryptions to enable the recovery in varying qualities; Fang reported in [19] a progressive viewing method which extended Fang and Lin's work [22] to utilize user-friendly shadows and progressive decoding simultaneously.

From the viewpoint of shadows' management, to classify or locate a shadow, attaching a name-tag to each shadow in advance is needed if each shadow looks like random-noise (most reported methods [9, 20-22] have this kinds of shadows). Another
way is to use visually-identifiable shadows. They are also called as user-friendly shadows (first mentioned in Ref. [7], then in Ref. [19]), for their visually-identifiable feature (each shadow looks like a visual-quality-reduced version of a given image) makes the managing job of shadows become easier for database manager. For example, if there are 100 important images and each creates 2 to 17 shadows of its own. Then it is easy to visually recognize that a stored shadow is from, saying, House image, rather than from other 99 images.

Both [7] and [19] can be used in a system consisting of distributed storage branches, and each branch stores one of the shadow images. When a branch needs the original image, all other branches can transmit its own shadow to the receiver, and all other branches may transmit simultaneously in parallel. From the viewpoint of a local
manager (the manager of a branch), noise-like shadow images are difficult to identify
and manage, i.e. they are not user-friendly. Therefore, it is more convenient for a local manager to manage shadow images that look like visual-quality-reduced versions of the original images. Hence, user-friendly shadows such as those produced by [7] and [19] are welcome in distributed storage system. On the other hand, to avoid unfaithful local manager from selling the shadow stored in his branch, it is suggested that the image quality of each shadow cannot be too good.

Although Thien and Lin [7] firstly introduced the idea of using "user-friendly" (visually-recognizable) shadows, their method is not progressive, and the reconstruction by all shadows is not lossless. These two weaknesses will be avoided by our method proposed in Chapter 3. So far, only Fang's method [19] (which is lossless when all shadows are collected) simultaneously owns the following two application-convenient features: 1) user-friendly shadows and 2) progressive decoding. Unfortunately, its shadows are four times larger than the input image; and thus not economical in memory space if implemented on computers. To improve it, we
propose in Chapter 3 a novel progressive and user-friendly approach based on modulus operations. Better than Fang's method [19], our method possesses extra advantages: 3) non-expansion in size of shadows; 4) controllable quality of shadow images. Meanwhile, like Fang's method, our method has lossless recovery when all n shadows are used, and the decoding complexity is $O(k)$ for the reconstruction using k shadows $(k \leq n)$.

In the above, if a secret image is to be protected by some participants in a team, then each participant can hold some of the generated shadows after sharing the secret image. Later in a meeting, when the number of collected shadows from participants reaches a specified threshold value, then the shared secret image is reconstructed. However, in real life, a project team often process more than one secret image simultaneously. Therefore, some researches [23-29] shared multiple images in one encoding process. For example, the elegant PSS scheme [23] presented by Feng et al. used Lagrange interpolation to deal with multi-secret images. Their method is an economical method, for it has a very low O / I size ratio between 1 and 2, i.e. total input images' size is at least 50% of the total output shadows' size, and 100% is possible. But the computational complexity $O\left(\log ^{2} k\right)$ would be needed to reconstruct each secret pixel by using Lagrange interpolation from k required shadows. To the contrary, to save computational operations in the retrieval of secret images, Visual Cryptography (VC) schemes can be used. For example, Shyu et al. used two circular shadows to design a VC scheme [24] which can share more than two secret images. Feng et al. also presented a multi-secret VC scheme [25], and their shadows are in rectangular shape. By stacking the shadows (know as transparencies in VC field), these VC schemes are very fast in revealing all secret images. The disadvantage of using VC methods is their high O / I size ratio due to the high pixel-expansion-rate (per $\geqq 2$) in generating shadows. (As for the disadvantage of the low-contrast of the
images recovered by stacking transparencies; it can be avoided if VC methods are implemented on computer.) When VC methods are implemented on computer to reconstruct n original secret images error-freely, the complexity to decode a pixel of a secret image would be $O(n)$ due to the high per. Besides PSS and VC schemes, Alvarez et al. also developed a multi-secrets sharing scheme [26] for color images with different sizes based on modulus operations. Albeit their O / I size ratio is a very good value $(n+1) / n$ after sharing n secret images by $n+1$ shadows; their reconstruction in each secret pixel needs one modulus operation and many mathematical operations (addition or subtraction) whose computational complexity is $O(n)$.

Among the multi-secrets schemes [23-26], no one can simultaneously own the
two advantages: (1) O/I size ratio is 1 , and (2) only constant number of operations is needed to reconstruct each secret pixel. To achieve these two advantages
simultaneously, we propose in Chapter 4 a novel sharing scheme for multiple images,
by using modulus (MOD) and exclusive-OR (XOR) operations. The proposed method generates n extremely noise-like shadows for n given binary/grayscale/color secret images (notably, the n given images all have the same size), and each shadow's size is identical to each given image. When the n shadows replace the n original secret images in image database; since our O / I size ratio is always 1 , we will not need extra storage space. Furthermore, after gathering all n shadows, our lossless decoding process only uses one XOR, one MOD, one addition (ADD) and one subtraction (SUB) operations (symbolized as " \oplus ", "Mod", "+" and " - ") to reconstruct each pixel's 8 -bits value of each secret image. This holds for all values of n. Hence, no matter how many secret images are shared, the CPU time in decoding each secret image will not increase. In summary, the proposed method is not only economical in storage space of shadows but also fast in decoding.

1.2 Related Studies

1.2.1 Image Sharing Schemes with Small Shadows or Fast Decoding

Shamir's polynomial secret sharing [1] is a popular technology to protect secret images. This technology uses polynomials to divide the secret image into several shadows, which have the same size as the secret image for perfect security. After an advanced method proposed by Thien and Lin [6] to improve [1], the size of each shadow image can even be k times smaller than that of the given secret image by letting k coefficients in the $k-1$ degree polynomial be the gray values of k pixels. Then, Wang and Su proposed a better method in [3] to encode the difference image from the secret image using Huffman coding scheme and evaluate the arithmetic calculations of the sharing functions in a power-of-two Galois Field GF $\left(2^{t}\right)$. Their experiment results show that each generated shadow image in their proposed method is about 40% smaller than that of the method in [6]. Obviously, secret image sharing approaches using polynomials can save much space in storage of shadows, and they only need less time in transmission of shadows for recovery later. Besides the above two methods [3, 6], Chang et al. also had a polynomial secret image sharing scheme [31] in color images using small shadow images.

On the other hand, a faster approach bases on visual cryptography is to use the digitalized versions of $[2,4,10-12,32-36]$ to share a digital image among several "size-enlarged" digital images also called shadows. Recently, to improve the efficiency and speed in sharing digital color images, Lukac and Plataniotis smartly proposed some implemented-easily methods [13-15, 30] whose decoding use "OR-like" operations or look up basis matrices. (The rule of OR-like operation is that: "the reconstructed pixel is black iff at least one of the corresponding sharing pixels is black; hence, the reconstructed pixel is white iff all corresponding sharing pixels are
white.") Their new methods can recover the original image error-freely in a very fast speed by looking up basis matrices; although in [13-15] quite often the shadow images generated in their (k, n)-schemes are still several times larger than the secret image. (Notably, (k, n)-schemes means that in the reconstruction of the secret, any k out of the n shadows can get the secret; while less than k shadows cannot.) As for [30], the size of each shadow images is the same as the secret image size, but [30] is for $k=n=2$ only.

Besides "OR-like" operations in VC, Wang et al. also proposed some fast schemes with the intention of small pixel expansion rate (per) in [17-18] by using

Boolean operations. Their (k, n) scheme in [17] and their first scheme (a $(2, n)$ scheme) in [18] are both probabilistic (and hence might be lossy in image retrieval). Their
second scheme in [18] is a deterministic (n, n) scheme for grayscale images
(extension to color images is also possible); and hence causes lossless retrieval.
Notably, in their (n, n) scheme [18], it splits a secret image A among n shadows C_{1}, C_{2}, \ldots, C_{n}, whose pixel expansion rate is one. After receiving all n shadows, it uses only n-1 XOR operations to reconstruct a pixel of A. Therefore, their scheme [18] owns acceptable size in shadows and fast decoding simultaneously.

1.2.2 Image Sharing Schemes with User-friendly Shadows or Progressive Decoding

User-friendly shadows and progressive decoding are two special extensions in image sharing. There are only few studies for the two different application purposes in PSS and VC, for example, user-friendly shadows in [7, 19] are for easier management of shadows and progressive decoding in [5, 9, 19-22] are for some important images which are moderately sensitive but still need to be processed every day.

In the aspect of user-friendly shadows, Thien and Lin [7] utilize their fundamental
work [6] to present the first user-friendly image-sharing method. In the first method, every pixels-block is classified as smooth or coarse one. If this block is smooth, the differences of pixel values in this block will be shared by using their fundamental polynomial sharing approach [6] and then hide these sharing results in the last pixel value of previous block. If this block is coarse, the quantized results of pixel values in this block will be shared and then hide these sharing results in the maximum pixel value of this block. Because all sharing values are hidden into some pixel values in input image, every shadow will reveal a visual-quality-reduced version of original image. Thien and Lin call these images with visual-quality-reduced version of input image as "user-friendly" shadows due to the easy management. Besides using polynomial sharing, Fang reported in [19] a new sharing method which extended

Fang and Lin's work [22] to have user-friendly shadows and progressive yiewing
simultaneously. In this new sharing method, an input image first is expanded into four
times in size by using $(2,2)$ threshold scheme of VC. And then the expanded version
is shared into several shadows by his proposed mapping table. Because the mapping table is designed based on the relation between pixel values in expanded version and a stego image, the shadows will reveal the visual-quality-reduced version of the stego image. In addition, this new sharing method also owns the progressive decoding effect due to that it is an extension of the VC progressive scheme [22].

In the aspect of progressive decoding, there are more reported researches than in user-friendly shadows. For example in VC approaches, except that Fang and Lin use random distribution of black pixels in $(2,2)$ threshold VC scheme to propose the above progressive viewing scheme [22], Jin et al. [21] also developed a progressive VC technique for grayscale/color images with three types of decryptions to enable the recovery in varying qualities. In [21], the physical transparency stacking type of decryption enables the recovery of the traditional VC quality image; an enhanced
stacking technique enables the decryption into a halftone quality image; finally, a computation-based decryption scheme makes the perfect recovery of the original image possible. Among the polynomial-sharing approaches, Chen and Lin [9] designed a sharing method for progressive transmission of images by bit plane scanning method to rearrange the gray value data of original image and different thresholds to share these rearranged data. Hung et al. [20] also proposed a progressive sharing method by using three pre-specified thresholds to share the DCT values in low, middle and high bands of input image. In addition, Lin and Lin's two-in-one sharing method VCPSS [5] has two different qualities in recovered images by combine VC and PSS both approaches. Besides the above two special extensions, many image sharing schemes [37-43] had been reported for other kinds of applications, such as digital image indexing [37], copyright protection [38], authentication [39, 42], etc.

1.2.3 Secret Sharing Schemes for Multiple Images

In order to process more than one secret image in a project for most meetings,
some related researches reported based on the above two well-known approaches (PSS and VC) are to share multi-secret images in one encoding process. For example in PSS approach, a polynomial secret sharing scheme [23] presented by Feng et al. by using Largrange's interpolation is for processing multi-secret images in generalized access structures [44]. Their generated shared data for each qualified set is $1 /(k-1)$ smaller than the original secret image if the corresponding qualified set has k participants. Therefore, their method has a maximal O / I size ratio as 2 when every qualified subgroup separates to each other in the worst case (which needs maximal additional qualified subgroups inserted to form the minimal sharing circle), and a minimal O / I size ratio as 1 when no any additional qualified subgroup is needed for the minimal sharing circle in the best situation. However, a higher computational
complexity $O\left(\log ^{2} k\right)$ will be needed to reconstruct each secret pixel due to Largrange's interpolation used in k required shadows. In another aspect, to avoid large number of computer's operations in retrieval of secret images, some VC schemes [24-25, 27, 45] are reported for this fast-decoding purpose. For example, Wu and Chang used two circle shadows to share two secret images in their VC scheme [27]. Then Shyu et al. also used two circle shares to design a VC scheme [24] which can share more than two secret images. To make the two shadows are in rectangular form rather than circle ones, Feng et al. also presented a multi-secret images VC scheme [25]. Although the above three VC schemes don't need any computation to reveal all
secret images by stacking their transparencies (shadows), each revealed image is very low in contrast, such as $1 / 4$ times lower contrast in [27], $1 / 2 n$ times lower contrast in
[24] and $1 / 3 n$ times lower contrast in [25] as n secret images are shared. If their
methods are implemented in computers to reconstruct original n secret image files
error-freely, their O / I size ratios will be very high (O/I size ratios are 4, 4, 6 in [27],
[24] and [25] respectively) due to high pixel-expansion-rate (per $=4$ [27], $2 n$ [24], $3 n$
[25]) in their shadows. Moreover, their decoding computational complexity would be $O(n)$, because $2 n$ or $3 n$ OR-like operations are needs to reconstruct each secret pixel in [24,27] or [25]. Besides PSS and VC schemes, Alvarez et al. also developed a multi-secrets sharing scheme [26] for color images with different size based on the use of bi-dimensional reversible cellular automata [46-47]. After using one modulus and about $9 n$ addition operations to create each sharing pixel, there are $n+1$ generated shadow images to replace input n secret images. One of these generated shadows is public. So that the O/I size ratio in [26] is a very low value $(n+1) / n$. Nevertheless, their reconstruction in each secret pixel needs one modulus operation and many mathematical operations (addition or subtraction) whose computational complexity is $O(n)$. Albeit Tsai et al. proposed a multiple secrets sharing scheme [28] for digital
images to own simultaneously low O / I size ratio $(n+1) / n$ and constant computational complexity (one XOR operation) in decoding each secret pixel, their method can not share one secret image to more than two participants. Besides the above efficiency-oriented purpose, some secret sharing schemes in multiple images had been reported for some special application purposes, such as verification [48], authentication and cross-recovery [49]

1.3 Overview of the Dissertation

In the dissertation, three methods to improve image sharing are proposed for better efficiency or different kinds of applications. For single secret (important) image, the first proposed method gets small shadows and fast decoding by using Boolean operations, and the second method has both user-friendly shadows and progressive decoding by using modulus operations. For multi-secret images, the third proposed method uses both Boolean and Modulus operations to achieve a better efficiency for lower computational complexity in decoding, together with more economical storage space of shadow images. The framework of the dissertation is depicted in Fig. 1.1, and a brief overview of three proposed methods is given in the following subsections.

proposed to be fast in decoding and with a reasonable pixel expansion rate (per) in
shadows. The scheme generates n extremely noise-like shadow images for the given
secret color image A, and any k out of these n shadows can recover A loss-freely. The
method shares every pixel of secret image based on exclusive-OR operations, hence it
has yery fast speed in encoding and decoding phrases. In average, to decode a color
(binary/grayscale) pixel of A, the retrieval uses only 3 exclusion-OR operations among 24-bit (1-bit/8-bit) numbers. In order to have a reasonable per, it's encoding uses two other new tools: the (k, n, m) shadows-assignment matrix, and the $\left\{B_{1}, B_{2}\right\}$ partition-and-recombination process. Therefore, each final shadow will be at most two times larger than the secret image A, and its pixel expansion rate is always acceptable (0<per<2).

1.3.2 Single Image Sharing with User-friendly Shadows and Progressive

Decoding

In Chapter 3, we propose a novel user-friendly progressive sharing method based on modulus operations. The method generates n user-friendly shadows whose image quality (such as PSNR) is lower than the input image's quality; and later, the input image can be reconstructed with progressively-improved image quality after gathering $k(2 \leq k \leq n)$ shadows. The description of the method is divided into three subsections. First, a fundamental (n, n) sharing version based on modulus operations is introduced in Sec. 3.2.1. This simple version is neither user-friendly, nor progressive. Then, the fundamental version is extended in Sec. 3.2.2 to an intermediate version with user-friendly shadows, although the intermediate version is still non-progressive.

Finally, Sec. 3.2.3 presents the final version by extending the intermediate
(user-friendly) version further to the one with both progressive decoding and user-friendly features. A comparison between our progressive and user-friendly method (Sec. 3.2.3) and Fang's method [19] is in Sec. 3.2.4.1, while a stego version of our method is in Sec 3.2.4.2. According to the experimental results and comparisons in Sec. 3.3, besides being 1) user-friendly ; 2) progressive; 3) each pixel is reconstructed by k shadows quickly with about k operations; 4) the recovery is lossless after collecting all n shadows; the proposed method also owns following features: 5) the non-stego shadows' image quality can be controlled; 6) each shadow is not expanded in non-stego yersion (Sec. 3.2.3), and is only at most 1.6 times larger than original secret image in the stego version (Sec. 3.2.4.2); 7) the stego shadows have quality much better than Fang's shadows.

1.3.3 Multi-Images Sharing with Economical Shadows and Fast Decoding

In Chapter 4, we propose a novel secret sharing scheme for multiple images
based on modulus and Boolean operations. The proposed method generates n extremely noise-like shadows for n given color (binary/grayscale) secret images. To achieve two advantages mentioned in motivation: (1) lower O/I size ratio and (2) fewer decoding operations, two basic tools will be used in the proposed method. First tool is "MOD-based $(2,2)$ secret sharing tool" in Sec. 4.1.1, which can make our total size in generated shadows is identical to that in given secret images (our O / I size ratio is 1). Therefore, our proposed method will not need extra space in images-database to store the generated shadows instead of original secret images. Another tool is "XOR-based (n, n) shadows combination tool" in Sec. 4.1.2, which can make our (n, n)-threshold scheme only need constant operations to decode each pixel in each secret image whatever the n is. Hence, no matter how many secret images are used in our proposed method, the lossless decoding process only uses one XOR, one MOD, one

ADD and one SUB operations to reconstruct each pixel's 8 -bits value of given secret
images after gathering all n shadows.

1.4 Dissertation Organization

\square ?

In the rest of this dissertation, the proposed missing-allowable (k, n) secret image sharing method based on Boolean operations to combining benefits of polynomial-based and fast approaches is introduced in Chapter 2. Next, the proposed sharing method with all friendly shadows and progressive decoding based on modulus operations is described in Chapter 3. Then, the proposed multiple secret images sharing method based on modulus and Boolean operations to have lower O / I size ratio and fast decoding is presented in Chapter 4. Finally, the conclusions and future works are in Chapter 5.

Chapter 2

Single Image Sharing with Small Shadows and Fast

Decoding

М1/月11

In this chapter, we propose a missing-allowable (k, n) method which is fast and with a reasonable pixel expansion rate (per). The method uses exclusive-OR (XOR) operations (symbolized as " \oplus " in the dissertation) in encoding and decoding phases, hence it is fast. In order to have a reasonable per, it's encoding uses two other new
tools: the (k, n, m) shadows-assignment matrix, and the $\left\{B_{1}, B_{2}\right\}$ partition-and-recombination process.

The rest of this chapter is organized as follows. Section 2.1 briefly reviews some polynomial-style and fast schemes for image sharing. The details of the proposed
method are described in Section 2.2. Experimental results are shown in Section 2.3.
The discussions are in Section 2.4, and the summary is in Section 2.5.

2.1 Related Works

This section first review two kinds of well-known techniques for sharing secret images: polynomial-style approaches [3, 6-9] are described in Sec. 2.1.1, and VC-like approaches [13-15, 30] are in Sec. 2.1.2. In addition, Sec. 2.1.3 briefly describes Wang et al.'s second scheme in [18] based on Boolean operations.

2.1.1 Polynomial-style Schemes

All schemes in [1, 3, 6-9] apply the polynomial interpolation to divide a secret
data A into n distinct data sets $D_{1}, D_{2}, \ldots, D_{n}$ called shares or shadows; and the secret data A cannot be revealed until k of the n shadows become available. To share an image, the data A becomes the values of pixels. To split A into n shadows, people can pick a prime number p and a polynomial

$$
q(x)=\left(a_{0}+a_{1} x+\ldots+a_{k-1} x^{k-1}\right) \bmod p
$$

of degree k - 1 in which a_{0} is the data A, and all other coefficients $a_{1}, a_{2}, \ldots, a_{k-1}$ are randomly chosen from integer in 0 to ($p-1$). Then evaluate

$$
D_{1}=q(1), \cdots, D_{i}=q(i), \cdots, D_{n}=q(n) .
$$

Using any k pairs of the n produced pairs $\left\{\left(i, D_{i}\right)\right\}_{i=1}^{n}$, people can get all coefficients $a_{1}, a_{2}, \ldots, a_{k-1}$ in $q(x)$ by the Largrange's interpolation, and hence the secret data
$A=a_{0}$ is also revealed. To reveal the secret data A, the computation complexity is
$O\left(k \log ^{2} k\right)$ for Largrange's polynomial interpolation.

2.1.2 Lukac and Plataniotis's VC-like Schemes

For fast decoding, digitalized versions based on [2, 4, 10-12] can be used. However, to share digital color images more effectively, Lukac and Plataniotis restructure the original digital color image files using an "OR-like" function or looking up basis matrices in their sharing methods [13-15, 30]. (The rule of the OR-like operation is that: "the reconstructed pixel is black iff at least one of the corresponding sharing pixels is black; hence, the reconstructed pixel is white iff all corresponding sharing pixels are white.')

Their new schemes to share and recover digital images are easy to implement, and the retrieval speeds are very fast. But in [13-15] the shadow images generated in their (k, n)-schemes are still several times larger than the secret image. The problem might get worse as the values of k and n become very large. (As for [30], as stated earlier,
the size of each shadow images is the same as the secret image size, but [30] is for $k=n=2$ only.) As a result, to store the created digital shadows often need larger storage space in computer.

2.1.3 Wang et al.'s Fast (n, n) Scheme

Wang et al. also proposed in [17-18] some fast schemes with the intention of small pixel expansion rate (per). Their (k, n) scheme in [17] and their first scheme (a $(2, n)$ scheme) in [18] are both probabilistic (and hence might be lossy in image retrieval). Their second scheme in [18] is a deterministic (n, n) scheme for grayscale images (extension to color images is also possible); and hence causes lossless retrieval. Notably, in their (n, n) scheme [18], it splits a secret image A among n shadows $C_{1}, C_{2}, \ldots, C_{n}$, whose pixel expansion rate is one. After receiving all n
shadows, it uses only $n-1$ XOR operations to reconstruct a pixel of A. Their (n,

Coding:
Step 1. Input a secret image A.
Step 2. Generate n-1 random images $B_{1}, B_{2}, \ldots, B_{n-1}$, each has size of A.
Step 3. Compute the shadows as follows:

$$
\begin{aligned}
& C_{1}=B_{1}, \\
& C_{2}=B_{1} \oplus B_{2}, \\
& \ldots \ldots \\
& C_{n-1}=B_{n-2} \oplus B_{n-1}, \\
& C_{n}=B_{n-1} \oplus A .
\end{aligned}
$$

$$
\begin{aligned}
& C_{2}=B_{1} \oplus B_{2}, \square \square \\
& \ldots \ldots
\end{aligned}
$$

Step 4. Output the n shadows $C_{1}, C_{2}, \ldots, C_{n}$.
Decoding:

Reveal A using the formula $A=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{n}$.

In this chapter, in order to extend Wang et al.'s (n, n) no-threshold scheme to (k, n) threshold scheme; we introduce a (k, n, m) shadows-assignment matrix H, and a $\left\{B_{1}\right.$, $\left.B_{2}\right\}$ partition-and-recombination process. The scheme still holds the two advantages of [18]: fast decoding speed and small pixel expansion rate. In fact, we only need three XOR operations in average to reconstruct a pixel; and the ratio of each shadow's size over the secret image's size is between 0 and 2, i.e. $0<$ per <2 (and per $=2 / n$ in the $k=n$ case). The statement is true in all (k, n) cases.

2.2 The Proposed Method

To generate the desired shadows, the two new techniques described in Sec. 2.2.1 and 2.2.2 will be needed in the encoding algorithm of Sec. 2.2.3. To help readers understand the encoding, a numerical example is also given in Sec. 2.2.4.

Then, Sec. 2.2.5 introduces the decoding algorithm that retrieves the secret. For easier understanding of the decoding algorithm; a numerical example for decoding is also given in Sec. 2.2.6.

2.2.1 The $(k, n, m$) Shadows-assignment Matrix H (which has n rows and m

 columns)To design a threshold (k, n) scheme, we may first directly utilize Wang et al.'s non-threshold (m, m) scheme for some carefully chosen parameter

$$
m=C_{k-1}^{n} .
$$

(The reason why m is chosen as $m=C_{k-1}^{n}$ will be explained later.) Notably, Wang et
al.'s (m, m) method gives us $m=C_{k-1}^{n}$ shadows (these are not our final shadows; just consider them as our temporary shadows). Then, we duplicate each temporary shadow several times. Then, for the n people participating the sharing game, let each person get one or no copy from each of the m temporary shadows. Each person can have copies from more than one temporary shadow. However, no person can get copies from all m shadows; otherwise, that person alone can unveil the secret.

After this distribution assignment of the copies of the m produced temporary shadows, we wish that when any k or more people gather together in an image-recovery meeting, the chairman of the meeting can collect all m temporary shadows from the attendants of this meeting; and hence, can restore the secret image according to Wang et al.'s (m, m) image-recovery scheme. We also require that a
meeting of less than k people together is insufficient to collect all m temporary shadows; and hence, cannot reveal the secret image. We will call the two requirements stated above in this paragraph as the " (k, n, m) shadows-assignment requirements".

From the idea above, we may create a matrix H of n rows and m columns. Its n rows represent the n persons; and its m columns represent the m (distinct) temporaryshadows produced by Wang et al.'s deterministic (m, m) scheme. The element of H is either 0 or 1 . The i th person (row) has a copy of the j th shadow image (column) if and only if $H_{i j}=1$. In order to make the matrix meet the expected (k, n, m) shadows-assignment requirements described above, we let each column of H have exactly $k-1$ zeros and $n-k+1$ ones. More specifically, let H have $m=C_{k-1}^{n}$ columns, and each column of H be a permutation of the n-dimensional basic column vector ($000 \ldots 0011111 \ldots 111$) which has $k-1$ leading zeros followed by $n-k+1$ ones.

This obviously guarantees that: i) each temporary shadow C_{j} will appear at least once when k out of the n persons attend the image-recovery meeting; ii) at least one
temporary shadow C_{j} will disappear when $k-1$ or fewer persons attend the recovery meeting. The proof is as follows:

Proof: Consider the equation

$$
\left[\begin{array}{c}
P_{1} \tag{2.1}\\
P_{2} \\
\vdots \\
P_{n}
\end{array}\right]^{T} \times\left[\begin{array}{cccc}
H_{11} & H_{12} & \cdots & H_{1 m} \\
H_{21} & H_{22} & \cdots & H_{2 m} \\
\vdots & \vdots & \vdots & \vdots \\
H_{n 1} & H_{n 2} & \cdots & H_{n m}
\end{array}\right]=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{m}
\end{array}\right]^{T}
$$

where P_{i} and $H_{i j} \in\{0,1\}\left(i=1,2, \ldots, n ; j=1,2, \ldots, m\right.$.). In this equation, P_{i}
represents the attendance status of i th person (0 is absence and 1 is attendance);
and H is the created (k, n, m) shadows-assignment matrix. Therefore,

counts the number of times (copies) that the temporary shadow C_{j} appear in the image-recovery meeting. Two observations are:
i) When k persons attend the recovery meeting, then k of the n elements in $\left(P_{1}, \ldots, P_{n}\right)$ are one, and the remaining $n-k$ elements are zero. Therefore, each X_{j} must be at least one, for there is exactly $k-1$ zeros in every column j of H. This implies that each temporary shadow C_{j} will appear at least once in the recovery meeting.
ii) When only k - 1 or fewer persons attend the recovery meeting, then at most $k-1$ of the n elements in $\left(P_{1}, \ldots, P_{n}\right)$ are one; or equivalently, at least $n-k+1$ of the n elements in $\left(P_{1}, \ldots, P_{n}\right)$ are zero. Let $\operatorname{Col}_{j}=\left(H_{1 j}, H_{2 j}, \ldots, H_{n j}\right)$ be a column of H whose $n-k+1$ ones happen to appear at the positions where the vector $\left(P_{1}, \ldots\right.$, P_{n}) got these (at least) $n-k+1$ zeros. (If $\left(P_{1}, \ldots, P_{n}\right)$ has more than $n-k+1$ zeros, then just randomly choose $n-k+1$ positions from the zero entries of $\left(P_{1}, \ldots, P_{n}\right)$.) The inner product of the vector $\left(P_{1}, \ldots, P_{n}\right)$ and this special Col_{j} will be zero. In other words, $X_{j}=0$. Hence the temporary shadow C_{j} disappears in the
recovery meeting.

In the above construction of the matrix H, recall that we let all $m=C_{k-1}^{n}$ permutations of the n-dim vector ($000 \ldots 001111 \ldots 11$), which has exactly k - 1 leading $z e r o s$ and $n-k+1$ ones, be used as the m columns; and thus obtain the expected n-by- m matrix H. Hereinafter, the matrix H will be called the " (k, n, m) shadows-assignment matrix"

Below is an example showing the (k, n, m) shadows-assignment matrix H. Assume $(k, n)=(3,4)$, hence $m=6=C_{3-1}^{4}$. Note that each column is just a permutation of the first column, and the first column is an $n=4$ dimensional vector which has exactly $k-1=3-1=2$ zeros.

2.2.2 Partition-and-recombination Process of $\left\{\boldsymbol{B}_{1}, \boldsymbol{B}_{2}\right\}$

In Sec. 2.2.1, after assigning the m temporary shadows to n people according to the matrix H, each person gets some temporary shadows. Each person i can combine the temporary shadows that he holds into a single shadow D_{i} specially designed for him. Then these n final shadows $D_{1}, D_{2}, \ldots, D_{n}$ owned respectively by these n persons are the final output of a very simple (k, n)-threshold scheme.

This simplest design is easy (it only needs the idea of using the H mentioned in Sec. 2.2.1 above, and matrix H itself is easy to construct). However, according to Wang et al.'s deterministic (m, m) scheme, all m temporary shadows have the same size as that of secret image A. This often causes space-and-speed inefficiency problem.

More specifically, as $m=C_{k-1}^{n}$ becomes larger, this very simple (k, n)-threshold scheme will have two drawbacks: (1) big-size problem for each D_{i} of the final shadows $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$; and (2) many XOR operations in decoding. In order to avoid these two drawbacks, we do not use Wang et al.'s output as the m temporary shadows. Instead, we create our own m temporary shadows. This can be done by the two-shadows partition-and-recombination preprocess proposed below.

First, create a random image B_{1} whose size is identical to that of the secret image A. Then, generate another same-size image $B_{2}=B_{1} \oplus A$ using XOR in a bit-by-bit manner. Notably, according to the inverse property of XOR operation, secret image A can be recovered by the equation $A=B_{1} \oplus B_{2}$. Then, create m temporary shadows C_{1}, C_{2}, \ldots, C_{m} by partitioning and recombining B_{1} and B_{2}, as follows (see Fig. 2.1 for an example using $(k=3, n=4)$):

Step 1. Randomly generate an image B_{1} whose size is identical to A 's. Then partition B_{1} into $m=C_{k-1}^{n}$ non-overlapping blocks $C_{11}, C_{21}, \ldots, C_{m 1}$. The upper half of each temporary shadow $C_{i}(1 \leqq i \leqq m)$ is the block $C_{i 1}$ contained in B_{1}.

Step 2. Create the security mask C^{*}, which is also a block, by the XOR equation

$$
C^{*}=C_{11} \oplus C_{21} \oplus \ldots \oplus C_{m 1} .
$$

Step 3. Create an image $B_{2}=B_{1} \oplus A$ using XOR in a bit-by-bit manner. $\left(A, B_{1}\right.$ and B_{2} have the same size.) Then partition B_{2} into m non-overlapping blocks C_{12}, $C_{22}, \ldots, C_{m 2}$.

Step 4. For security reason, shift each $C_{i 2}$ to $C_{i 3}$ by the formula $C_{i 3}=C_{i 2} \oplus C^{*}$.
Step 5 . After physically attaching each $C_{i 3}$ to $C_{i 1}$, we obtain the m temporary shadows
$C_{1}, C_{2}, \ldots, C_{m}$. (Notably, the upper half of each C_{i} is $C_{i 1}$, and the lower half of each C_{i} is $C_{i 3}$.)

As a remark, if B_{1} and B_{2} cannot be divided equally into m blocks of the same size,
some redundant pixels can be filled in B_{1} and B_{2}. In the $(k, n)=(3,4)$ example, if the
size of A is 512×512, then B_{1} and B_{2} need two redundant pixels respectively, because
512×512 is not a full multiple of $m=C_{k-1}^{n}=6$.

${ }_{\text {C }}^{1}$	${ }_{\\|}{ }_{\\|}$	${ }_{11}$	C_{4}	$\begin{aligned} & C_{5} \\ & \hline \end{aligned}$	${ }_{\text {C }}^{6}$
C_{11}	C_{21}	C_{31}	C_{41}	C_{51}	C_{61}
C_{13}	C_{23}	C_{33}	C_{43}	C_{53}	C_{63}

In this example, $(k, n)=(3,4)$; and $m=C_{k-1}^{n}=6$ accordingly.

In the inverse process to obtain B_{1} and B_{2} from $C_{1}, C_{2}, \ldots, C_{m}$, the algorithm is as follows (see Fig. 2.2 where we still use ($k=3, n=4$) as an example):
Step 1. Extract m non-overlapping blocks $C_{11}, C_{21}, \ldots, C_{m 1}$ which are the upper half of $C_{1}, C_{2}, \ldots, C_{m}$, respectively.

Step 2. Recover the security mask C^{*} by the equation $C^{*}=C_{11} \oplus C_{21} \oplus \ldots \oplus C_{m 1}$.
Step 3. Recover the random image B_{1} by physically attach $C_{11}, C_{21}, \ldots, C_{m 1}$ to each other.

Step 4. Extract the m non-overlapping blocks $C_{13}, C_{23}, \ldots, C_{m 3}$ which are the lower half of $C_{1}, C_{2}, \ldots, C_{m}$, respectively.

Step 5. Recover the m blocks $C_{12}, C_{22}, \ldots, C_{m 2}$ using the shift-back equation $C_{i 2}=C_{i 3}$ $\oplus C^{*}($ where $1 \leqq i \leqq m)$.

Step 6. Recover the image B_{2} by physically attaching $C_{12}, C_{22}, \ldots, C_{m 2}$ to each other.
Step 7. Recover the secret image A by the equation $A=B_{1} \oplus B_{2}$.

$$
1896
$$

Fig. 2.2. A flowchart of the inverse process to recover B_{1} and B_{2} from $C_{1}, C_{2}, \ldots, C_{m}$.
In this example, $(k, n)=(3,4)$; and $m=C_{k-1}^{n}=6$ accordingly.
2.2.3 The Encoding Algorithm

First, we illustrate here our encoding algorithm which creates n final shadows that
meet the (k, n) threshold requirement. This encoding algorithm will use two other new tools: the (k, n, m) shadows-assignment matrix in Sec. 2.2.1, and the $\left\{B_{1}, B_{2}\right\}$ partition-and-recombination process in Sec. 2.2.2.

The encoding algorithm:

Step 1. Input a color (binary/grayscale) secret image A.
Step 2. Generate a random image B_{1} so that B_{1} and A have the same size.
Step 3. Generate another image B_{2} using $B_{2}=B_{1} \oplus A$, where \oplus denotes bit-by-bit XOR.

Step 4. Let $m=C_{k-1}^{n}$. Generate the (k, n, m) shadows-assignment matrix H described in Sec. 2.2.1. Notably, the matrix H is public.

Step 5 . Use the two images B_{1} and B_{2} to generate m temporary shadows $C_{1}, C_{2}, \ldots, C_{m}$ by using the $\left\{B_{1}, B_{2}\right\}$ partition-and-recombination process (see Sec. 2.2.2 and Fig. 2.1).

Step 6. Assign the duplicated copies of the m temporary shadows $C_{1}, C_{2}, \ldots, C_{m}$ to the n persons according to the shadows-assignment matrix H mentioned in Step 4 (see Sec. 2.2.1 for detail of the assignment). For each person i, the final shadow D_{i} that he has is exactly the union of those copies assigned to him.

To understand the above encoding algorithm, see the example in Sec. 2.2.4.

Remark: Each participant gets several temporary shadows which are all random
matrixes. Thus, it is better to have a discussion about how to distinguish the
temporary shadows so that the related temporary shadows inside each final shadow
can be distinguished easily later to recover the image.
Option 1. Assume that, according to the shadows-assignment matrix H, there is a person who owns three temporary shadows $\left\{C_{2}, C_{3}, C_{6}\right\}$. Let us use this person as an
example. If the size of each temporary shadow is $w \times h$, then, before inserting the
separator, the size of this person's final shadow was $3 w \times h$. (The first w rows were C_{2},
next w rows were C_{3}, final w rows were C_{6}.) Hence the number of rows of the final shadow was three times larger than that of each temporary shadow, but the columns (h) were the same. Now, after the first w rows, since we already finish C_{2}, and C_{3} is to be attached behind C_{2}, we insert a separator-row of $(h / 2)+(h / 2)=h$ elements, i.e. 22222222222222222222333333333333333333333 , so that people can understand C_{2}
is above this separator-row and C_{3} is below this separator-row. Then we store the C_{3} using next w rows. Then, insert another separator-row of $h / 2+h / 2=h$ elements, i.e.

3333333333333333333336666666666666666666666 , before attaching C_{6}. In
summary, if separators are used, the final-shadow has ($3 w+2$) rows rather than $3 w$ rows, and the $(3 w+2)$ rows owned by this $\left\{C_{2}, C_{3}, C_{6}\right\}$ person will be

Notably, in Step 4 of the encoding algorithm, we already stated that the shadows-assignment matrix H is public, so the decoder can always read from H to know the number of temporary shadows owned by each participant. For example, in the H in Eq. (2.3), each participant gets $1+1+1=3$ temporary shadows. Then, in Option
, the decoder can know that the number of rows in this final shadow is $3 w+(3-1)=$
$(3 w+2)$. Therefore, the decoder can always figure out how many rows are in the final Shadow, and hence, know how many pixels are in each row.

Option 2 (an option using the convention of ascending-order indices.) In fact, from the viewpoint stated in the final paragraph of Option 1 above, the separator rows can also be omitted, as explained below. Assume each participant owns certain shadows. Let the shadow indices be all arranged in the ascending order. For example, if the matrix H is as shown in Eq. (2.3), then the person P_{1} owns (copies of the) temporary shadows C_{4}, C_{5}, C_{6}, the person P_{2} owns temporary shadows C_{2}, C_{3}, C_{6}, the person P_{3} owns C_{1}, C_{3}, C_{5}, and the person P_{4} owns C_{1}, C_{2}, C_{4}. Notice the indices are all in ascending order (namely $4<5<6 ; 2<3<6 ; 1<3<5 ; 1<2<4$). Therefore, even if we do not use separators, the decoder can still read the "public" matrix H to know that
each participant own 3 temporary shadows; and hence, divide each person's final shadow into 3 parts of equal size; and then use matrix H to identify easily which temporary shadow is the first one-third of that person's final shadow, which temporary shadow is the middle one-third, and which temporary shadow is the final one-third.

2.2.4 Numerical Example of Encoding

In the following encoding example, we do it step by step. Without the loss of generality, assume $(k=3, n=4)$, so $m=C_{k-1}^{n}=6$. Also, for easier description, we just use gray-values rather than color-values in the example.
Step 1. Assume the given secret image is a 2×3 image $A=\left[\begin{array}{ccc}55 & 76 & 186 \\ 67 & 133 & 202\end{array}\right]$, which has six grayscale pixel values.

Step 2. Randomly generate an image B_{1} whose size is identical to A 's. For example,

$$
\text { randomly let } B_{1}=\left[\begin{array}{ccc}
149 & 225 & 41 \\
93 & 210 & 32
\end{array}\right] \text {. }
$$

Step 3. Generate another image B_{2} by applying bit-by-bit XOR to B_{1} and A, i.e.

$$
B_{2}=B_{1} \oplus A=\left[\begin{array}{ccc}
162 & 173 & 147 \\
30 & 87 & 234
\end{array}\right] \text { where } 162=55 \oplus 149,173=76 \oplus 225 \text {, etc. }
$$

Step 4. According to the skill in Sec. 2.2.1, generate a $(k=3, n=4)$ threshold

Note that each column is a permutation of the first column vector 0011.
Step 5. Firstly, use bit-by-bit XOR on the elements of B_{1} to obtain the security block $C *=[242]$ by the formula $[149] \oplus[225] \oplus[41] \oplus[93] \oplus[210] \oplus[32]=[242]$.

Then, according to Sec. 2.2.2, generate 6 temporary shadows
$C_{1}=\left[\begin{array}{c}149 \\ 80\end{array}\right], \quad C_{2}=\left[\begin{array}{c}225 \\ 95\end{array}\right], \quad C_{3}=\left[\begin{array}{l}41 \\ 97\end{array}\right]$,
$C_{4}=\left[\begin{array}{c}93 \\ 236\end{array}\right], \quad C_{5}=\left[\begin{array}{l}210 \\ 165\end{array}\right], \quad C_{6}=\left[\begin{array}{l}32 \\ 24\end{array}\right]$ where the six lower halves are the result of transforming the six lower halves of B_{2}, by doing bit-by-bit XOR with $C *=[242]$. For example, $80=162 \oplus 242$, and $95=173 \oplus 242$.

Step 6 . According to the assignment matrix H, assign the copies of the $m=6$ temporary shadows $\left\{C_{1}, C_{2}, \ldots, C_{6}\right\}$ to the $n=4$ persons. Hence, our $n=4$ final shadows, hold by the $n=4$ persons respectively, are
$D_{1}=\left[\begin{array}{ccc}93 & 210 & 32 \\ 236 & 165 & 24\end{array}\right], \quad D_{2}=\left[\begin{array}{ccc}225 & 41 & 32 \\ 95 & 97 & 24\end{array}\right]$,
$D_{3}=\left[\begin{array}{rrr}149 & 41 & 210 \\ 80 & 97 & 165\end{array}\right], D_{4}=\left[\begin{array}{ccc}149 & 225 & 93 \\ 80 & 95 & 236\end{array}\right]$
where D_{1} and D_{2} both have a copy of the temporary shadow $C_{6}=\left[\begin{array}{l}32 \\ 24\end{array}\right]$.

2.2.5 The Decoding Algorithm

Given any k final shadows, for example the $\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}$, out of the n final
shadows produced in Step 6 of Sec.2.2.3, the secret image A can be restored as

The decoding algorithm:

Step 1. After referring to the (k, n) shadows-assignment matrix H generated in Step 4 of the encoding algorithm, we can know which temporary shadows in $\left\{C_{1}\right.$, $\left.C_{2}, \ldots, C_{m}\right\}$ are included in each final shadow D_{i}. Therefore, all m temporary shadows $C_{1}, C_{2}, \ldots, C_{m}$ can be extracted from these k final shadows. (For the reason, reader can see the (k, n, m) shadows-assignment requirements in Sec. 2.2.1, and the proof near Eq. (2.2).

Step 2. Use all m temporary shadows $C_{1}, C_{2}, \ldots, C_{m}$ to generate B_{1} and B_{2} by
implementing the inverse process of the $\left\{B_{1}, B_{2}\right\}$-partition-and-recombination process (see Sec. 2.2.2 and Fig. 2.2).

Step 3. Reveal the secret image A using $A=B_{1} \oplus B_{2}$.

Remark: Step 1 above stated that we can know which temporary shadows in $\left\{C_{1}\right.$, $\left.C_{2}, \ldots, C_{m}\right\}$ are included in each final shadow D_{i}. As for how to distinguish the temporary shadows in each final shadow D_{i} (so that the related temporary shadows inside each final shadow D_{i} can be distinguished easily to recover the image), see the Remark at the end of Sec. 2.2.3
2.2.6 Numerical Example for Decoding

In the following decoding example, still assume $(k=3, n=4)$. As a result, decoding
needs any 3 of the 4 final shadows. Without the loss of generality, assume D_{1}, D_{2}, D_{3} are the three available shadows.

Step 1. With the help of the matrix H in Step 4 of encoding process, we extract all $m=C_{k-1}^{n}=6$ temporary shadows $C_{1}, C_{2}, \ldots, C_{6}$, which are the same as those created in Step 5 of encoding process of Sec. 2.2.4.

Step 2. Recover B_{1} and B_{2}, which are the same as those in Steps 2 and 3 of the encoding process, by implementing the inverse process of the $\left\{B_{1}, B_{2}\right\}$ partition-and-recombination process to all six temporary shadows C_{1}, C_{2}, \ldots, C_{6} (see Fig. 2.2).

Step 3. Reveal the secret image A by

$$
A=B_{1} \oplus B_{2}=\left[\begin{array}{ccc}
55 & 76 & 186 \\
67 & 133 & 202
\end{array}\right] .
$$

2.3 Experimental Results

In our experiment, the input color image A is the popular test-image shown in Fig. 2.3(a). For $(k, n)=(2,4)$ case, the $n=4$ final shadows $D_{1}, D_{2}, D_{3}, D_{4}$ generated in Sec. 2.2.3 are shown in Fig. 2.3(b-e), and each has size $2 \times(n-k+1) / n=2 \times(4-2+1) / 4=3 / 2$ times larger than size of A. Fig. 2.3(f) shows the error-freely recovered A using any $k=2$ of the four final shadows.

Other experiments dealing with $(k, n)=(3,4)$ and $(k, n)=(4,4)$ cases are shown in Fig. 2.4 and 2.5 respectively. And their pixel expansion rates are $2 \times(n-k+1) / n=2 \times$ $(4-3+1) / 4=1$ and $2 \times(n-k+1) / n=2 \times(4-4+1) / 4=1 / 2$, respectively.

To show our constant decoding-time property, we also record in Figures 2.6 and
2.7 the actual CPU time taken in decoding. The computer used is an IBM laptop with an Intel Pentium 1.70 GHz CPU, and the operating system is Microsoft Window XP

SP2. From Fig. 2.6, which deals with (n, n) system, it can be seen that our decoding
time really does not vary as the value of n varies, but this is not the case for Wang et al's scheme [18]. Notably, for all (k, n) systems, our decoding time still remain constant as n increases its value. An example showing this is given in Fig. 2.7 in
which $k=n / 2$. Note that Wang et al's [18] does not have (k, n) systems unless k is n or
2.

(a)

Fig. 2.3. An example of $(k=2, n=4)$. Here, (a) is the given 24-bit-per-pixel color image A; (b-e) are our final shadows $D_{1}, D_{2}, D_{3}, D_{4}$; (f) is the recovered error-free A using any two of the four final shadows.

Fig. 2.4. An example of $(k=3, n=4)$. Here, (a-d) are our final shadows $D_{1}, D_{2}, D_{3}, D_{4}$;
(e) is the recovered error-free A using any three of the four final shadows.

(c)

(d)

Fig. 2.5. An example of $(k=4, n=4)$. Here, (a-d) are our final shadows $D_{1}, D_{2}, D_{3}, D_{4}$;

Fig. 2.6. The CPU time (milliseconds) for decoding (n, n) systems.

Fig. 2.7. The CPU time (milliseconds) for decoding each ($n / 2, n$) systems by our scheme. There is no curve for Wang et al's scheme [18], for their scheme has no ($n / 2$,
$n)$ system or other (k, n) systems when $2 \leqq k<n$.

2.4 Discussions

2.4.1 Recoverability and Security

In general, each (k, n) threshold secret sharing scheme must satisfy both requirements: the recoverability (any k or more shadows can reveal all information of A) and the security (any $k-1$ or fewer shadows cannot reveal the secret image A).

In our scheme, when any k out of the n final shadows are gathered (for example, $D_{1}, D_{2}, \ldots, D_{k}$), the secret image A is revealed by Steps 1-3 of the decoding algorithm. These steps also explain why our scheme satisfies the recoverability requirement. Firstly, if k or more final shadows are gathered, then we can extract all m temporary shadows $C_{1}, C_{2}, \ldots, C_{m}$ from the k available final shadows according to the (k, n, m) shadows-assignment requirements of the matrix H. Secondly, after physically dividing each C_{i} into upper half $C_{i 1}$ and lower half $C_{i 3}$, we can get C^{*} which is defined by
$C^{*}=C_{11} \oplus C_{21} \oplus \ldots \oplus C_{m 1}$. Then, we can restore $C_{12}, C_{22}, \ldots, C_{m 2}$ using $C_{i 2}=C_{i 3} \oplus C^{*}$ for each $i=1, \ldots, m$. Then recover $B_{1}=\left\{C_{11}, C_{21}, \ldots, C_{m 1}\right\}$ and $B_{2}=\left\{C_{12}, C_{22}, \ldots, C_{m 2}\right\}$. Therefore, the secret image A can be revealed using $A=B_{1} \oplus B_{2}$.

Our scheme also satisfies the security requirement. Assume that only $k-1$ or fewer final shadows are available. Then, according to the (k, n, m) shadows-assignment requirements of the matrix H, people cannot obtain all m temporary shadows C_{1}, C_{2}, \ldots, C_{m} from these final shadows (see the proof (ii) below Equation (2,2) of Sec. 2.2.1). Assume C_{q} is missing. As a result, people cannot obtain C^{*} defined by $C^{*}=C_{11}$ $\oplus C_{21} \oplus \ldots \oplus C_{m 1}$, due to the lack of the $C_{q 1}$ which is the upper half of C_{q}. Then, without C^{*}, people cannot restore $C_{12}, C_{22}, \ldots, C_{m 2}$ defined by $C_{i 2}=C_{i 3} \oplus C^{*}(1 \leqq i \leqq$ $m)$. Therefore, people cannot generate B_{2}. As a result, the secret image $A=B_{1} \oplus B_{2}$ cannot be revealed due to absence of B_{2}.

Below we discuss the probability of obtaining the right secret image A through
guessing. Without the loss of generality, assume that a betrayal party of $k-1$ persons
already gathers m-1 temporary shadows $C_{1}, C_{2}, \ldots, C_{m-1}$ without C_{m}. Notably, $A=\left\{A_{i}\right\}$
$1 \leqq i \leqq m\}$, i.e. image A can be divided to m blocks, and the recovery of A can be done block by block; in other words, since $A=B_{1} \oplus B_{2}$, we have

$$
A_{i}=C_{i 1} \oplus C_{i 2}=C_{i 1} \oplus\left(C_{i 3} \oplus C^{*}\right)=C_{i 1} \oplus C_{i 3} \oplus\left(C_{11} \oplus C_{21} \oplus \ldots \oplus C_{m 1}\right), \quad 1 \leqq i \leqq m
$$

Because of the lack of $C_{m}=\left[C_{m 1} \mid C_{m 3}\right]^{\mathrm{T}}$, the betrayal party will have to guess a value for a pixel in $C_{m 1}$, then they use this guessing value to get a set of $m-1$ pixels' values (one value per block in $A_{1}, A_{2}, \ldots, A_{m-1}$). Then they need to guess the value of a pixel at the corresponding position of $C_{m 3}\left(\right.$ or $\left.A_{m}\right)$ so that the pixel value at that position of A_{m} can also be shown. The above is just to recover a pixel (for example, the top-leftmost pixel) of each block $A_{i}, 1 \leqq i \leqq m$. This value-guessing of two pixels will repeat bksize times. Here, bksize is the size of each block $A_{i}(1 \leqq i \leqq m)$; hence bksize is m times smaller than image size of A.

From the description above, we can evaluate the probability of obtaining the right color image A with size $w \times h$ as follows. (For illustration, still assume $(k, n)=(3,4)$;
hence $m=C_{k-1}^{n}=6$ accordingly.)
Probability $=s^{b k s i z e l} \times s^{b \text { bsize }}=\left(\frac{1}{\text { pixelscale }}\right)^{\frac{w \times h}{m}} \times\left(\frac{1}{\text { pixelscale }}\right)^{\frac{w \times h}{m}}=\left(\frac{1}{2^{24}}\right)^{\frac{w \times h}{m} \times 2}$ which is $\left(\frac{1}{2^{24}}\right)^{512 \times 512 / 3}=\left(\frac{1}{2^{24}}\right)^{87381}=10^{-631304}$ if the image size is $w \times h=512 \times 512$. Here, $s=1 / 2^{24}$ is the probability to guess successfully a pixel's value; bksizel is the number of pixels in $C_{m 1}$, and bksize3 is the number of pixels in $C_{m 3}$. To improve the security further, people can use a prime number as a key (a seed) of a random number
generator to rearrange the pixel positions in the secret image A (as Thien and Lin did
in [6]) before encoding.

2.4.2 Time Complexity and Storage Space Needed

In terms of computation complexity, Thien and Lin's polynomial sharing scheme
[6] needs $O\left(\log ^{2} k\right)$ mathematical operations to reveal a pixel. Although Wang and Su
[3] reduced 40% in size of Thien and Lin's shadow images, their scheme still need $O\left(\log ^{2} k\right)$ mathematical operations to reveal a pixel. As for the digitalized versions derived from [4, 10-12], they need $O(k \times p e r)$ OR operations to reveal a pixel. Here, the value k means the secret-recovery requires k gathered shadows, and the value per represents pixel expansion rate (per $\geqq 2$ in [4, 10-12]). Lukac and Plataniotis's methods [13-15] also need $O(k \times p e r)$ "OR-like" operations to restore an original input pixel in (k, n)-threshold schemes. Lukac and Plataniotis's special method [30] needs only 1 B-bit "OR-like" operation to restore a pixel of B-bit color secret image, but [30] only deals with the $k=2=n$ scheme. Fang and Lin [50] proposed two other SS (sharing schemes), i.e. an (n, n) XOR-SS and a (k, n) OR-SS, to reduce the size of shadows in Lukac and Plataniotis's [15]. But the (k, n) OR-SS scheme in [50] still needs many

OR operations in decoding, and the complexity is similar to that of Wang et al.'s (k, n) colored probabilistic scheme [17]. In Wang et al.'s (n, n) scheme [18], it only needs $n-1$ XOR operations to reconstruct each pixel, which is the same as Fang and Lin's (n, n) XOR-SS scheme [50]. Obviously, the decoding time of most inventions above increases as the value of k or n increases.

For this concern, our new scheme tries to make the speed of Wang et al.'s [18] more stable for any n. In any (k, n) threshold cases, no matter how large the value of n is, we only needs at most three bit-by-bit XOR operations to restore a pixel. Notably, each XOR is between a pair of 24 -bit values if the image is color.

To see this, assume that the size of secret image A is $w \times h$, then the number of XOR operations needed to evaluate $C^{*}=C_{11} \oplus C_{21} \oplus \ldots \oplus C_{m 1}$ is $(m-1) \times[(w \times h) / m]<w$ $\times h$ because each $C_{i 1}$ has size $[(w \times h) / m]$. Then, to get $C_{12}, C_{22}, \ldots, C_{m 2}$, it needs $m \times[(w$ $\times h) / m]=w \times h$ XOR operations to evaluate $C_{i 2}=C_{i 3} \oplus C^{*}$, here $1 \leqq i \leqq m$. Finally, to reveal A, it needs $w \times h$ XOR operations to evaluate $A=B_{1} \oplus B_{2}$. Together, it needs [$3 \times$ $m-1) / m] \times(w \times h)<3 \times(w \times h)$ XOR operations to reveal A from any k final shadows. In average, since image A has $w \times h$ pixels, it needs at most three XOR operations to restore each pixel. Table 2.1 below shows a comparison with reported schemes. Obviously, the proposed scheme has the smallest decryption load in average. Notably, the proposed scheme also needs at most three XOR operations in encoding process to share each pixel of secret image into the n final shadows $D_{1}, D_{2}, \ldots, D_{n}$, because the decoding process is exactly an inversion of encoding one. Besides Table 2.1, the readers can also read Figures 2.6 and 2.7 to see that our decoding time does not increase as n increases its value. Since, besides our method, Wang's [18] is one of the fastest schemes in Table 2.1, we only compare our CPU time with [18] in Fig. 2.6. As for Fig. 2.7, because [18] has no (k, n) design if $2<k<n$, no curve for [18] is drawn there. (We only use this figure to show that our CPU time is really a constant.)

Table 2.1. Time complexity for decoding. (The time to reconstruct a pixel of image
A.)

Schemes	(k, n) threshold	(n, n) threshold
Thien and Lin's	$O\left(\log ^{2} \bar{k}\right)\left(\right.$ Math operations $\left.{ }^{(1)}\right)$	$O\left(\log ^{2} n\right)$ (Math operations)

[6]

Our scheme $\quad \underline{3}$ (XOR operations) $\underline{3}$ (XOR operations)
${ }^{(1)}$ Math operations: $+,-, x, \div$
${ }^{(2)}$ Note that per means "Pixel expansion rate". Usually, per is a positive integer at least two in [4, 10-15, 17, 50].
${ }^{(3)}$ When $k=2$, the $(2, n)$ scheme in [18] is a very fast one, for only one XOR operation is needed. But their decoding is not lossless.

As for the space complexity, Thien and Lin's scheme [6] has a pixel expansion rate $\operatorname{per}=1 / k$ for the (k, n) threshold cases. Wang and Su proposed the scheme [3] to reduce 40% of Thien and Lin's shadow images size. On the other hand, as the yalue of
n increases, the per is very large for digital versions of schemes [4, 10-12]. Although the probabilistic scheme [16] has per=1, the reconstructed secret image is not error-free. The per in Lukac and Plataniotis's schemes [13-15] are at least two. Lukac and Plataniotis's special method [30] has no pixel expansion problem (per=1), but it is only for $(2,2)$ scheme. Although Fang and Lin's (n, n) and (k, n) schemes [50] have shadows of size smaller than Lukac and Plataniotis's [15], their (k, n) scheme still has a per larger than one. The per in Wang et al.'s colored probabilistic (k, n) scheme [17] is still not less than one (per $\geqq 1$). As for Wang et al.'s deterministic (n, n) scheme [18], the per is one; but [18] does not have (k, n) schemes unless $k=2$.

In the proposed scheme, our per is between 0 and 2 ; moreover, close to 0 is possible. To see this, let the size of secret image A is $w \times h$. Since the size of every temporary shadow $C_{i}(1 \leqq i \leqq m)$ is $2 \times(w \times h) / m$, the size of every final shadow $D_{i}(1 \leqq i$ $\leqq n)$ is

$$
\begin{aligned}
{[2 \times(w \times h) / m] \times C_{k-1}^{n-1} } & =\left[2 \times(w \times h) / C_{k-1}^{n}\right] \times C_{k-1}^{n-1} \\
& =2(w \times h)(n-k+1) / n
\end{aligned}
$$

Here, we have used the fact that each final shadow D_{i} contains C_{k-1}^{n-1} temporary shadows. Now, after dividing the above by the size of A, we get our pixel expansion rate, i.e.

$$
\begin{equation*}
\text { per }=2 \times(n-k+1) / n<2, \quad \text { true for any }(k, n) \tag{2.4}
\end{equation*}
$$

Therefore, each final shadow will be at most two times larger than the secret image A. When n is very large and k is two, the rate converges to its upper bound 2. On the other hand,

In the special case when $k=n$, our per is $2 / n$, and hence,
per $=2 / n \rightarrow 0$
Therefore, each shadow will be very small when $k=n$. (See Fig. 2.5 for example in
which per $=2 / n=2 / 4=0.5$ because n was only 4 . If we had used a very large n, then the
per would have been much smaller.)
In summary, the proposed scheme does not have a serious pixel expansion problem or huge storage-space demanding for shadows (see Table 2.2).

Table 2.2. Comparison of the pixel expansion rate (per) when shadows are created.

Schemes	(k, n) threshold	(n, n) threshold
Thien and Lin's	$1 / k$	$1 / n$
polynomial scheme		

Wang and Sue's
$(1 / k) \times 60 \%$
($1 / n) \times 60 \%$
polynomial scheme
([3])

Digital versions of [4, per is at least 2.
per is at least 2
10-12]
Lukac and Plataniotis's per is at least 2. per is at least 2.
schemes [13-15, 30] (per $=1$ in [30], but [30] is $\quad($ per $=1$ in [30], but [30] is

Fang \& Lin's scheme $m \times n /(n+1) \quad n /(n+1)$
[50]
for some integer $m \geqq 2$.
Wang et al.'s scheme per $\geqq 1$ in Ref. [17].
[17-18]
2.4.3 Lossless Reconstruction and Core Works in Implementation

Table 2.3 provides the information about lossless reconstruction. Most of
schemes mentioned here are lossless in recovery, including our scheme. Exceptions
are the digitalized versions of $[4,12,17]$, and the $(2, n)$ scheme of $[18]$ when $2<n$.

Table 2.3. Comparison of the perfect reconstruction ability.

Schemes	(k, n) and (n, n)
Thien and Lin's	Lossless recovery

Wang and Sue's
Lossless recovery
polynomial scheme ([3])
Digitalized versions of $\quad[10,11]$ are lossless, but $[4,12]$ are lossy.

[4, 10-12]

Lukac and Plataniotis's
 Lossless recovery

schemes [13-15, 30]
Fang \& Lin's [50] Lossless recovery
Wang et al.'s scheme Recovery might be lossy in [17] if per is close to 1.
The $(2, n)$ scheme of [18] is lossy. ([18] gives no (k, n)
scheme unless $k=2$.) The (n, n) scheme of [18] is
lossless.
Our scheme
Lossless recovery

Finally, Table 2.4 gives the information about the kinds of work to implement each scheme. In summary, $[3,6-9]$ evaluated polynomials and the remaining schemes
used OR-like operations, or XOR operations, or Look-Up-Tables.

([6])
Wang and Sue's polynomial scheme ([3])

Digitalized versions of
[4, 10-12]

Either look up the basis matrices or use OR operations.

Either look up the basis matrices or use OR operations.

Lukac and
Plataniotis's schemes
[13-15, 30]
Fang \& Lin's scheme

Either look up the basis matrices or use OR-like operations.

Either look up the basis

Either look up the basis matrices or use OR-like
operations.
Use XOR operations. operations.
[17] either looks up the
[17] either looks up the basis
basis matrices or uses OR
operations.
 matrices or uses OR operations. [18] uses XOR operations in both first and second scheme; uses XOR operations in the second scheme.

Use XOR operations.

2.5 Summary

In polynomial-based sharing approach, the shadow size is never a problem, but the decoding speed is very slow due to the polynomial-interpolation evaluation. To the contrary, storage space for shadows is large for almost all fast methods (the pixel expansion rate per is usually at least 2 for (k, n)-threshold schemes, and per $=1$ is limited to lossy schemes or some (n, n) non-threshold schemes.) In this chapter, we have designed successfully a scheme so that: 1) the generated shadows are with reasonable size. The per is between 0 and 2 ; and close to 0 when k is large and close to n [see Eq. (2.4-2.6)] (our per $=2 / n$ in all (n, n) schemes); 2) the scheme only needs
three 24-bit XOR operations per pixel to get a recovery of the given color image; and 3) unlike some probabilistic approaches, our recovered images are lossless; 4) our scheme is missing-allowable because it is a (k, n)-threshold scheme which requires only k out of the n shadows appear in the recovery meeting.

We have implemented the cases with (k, n) being, respectively, $(2,2),(2,3),(3,3)$, $(2,4),(3,4),(4,4)$, etc. The results are satisfactory in terms of the above advantages. Notably, the method also works for binary or grayscale image because the method is based on bit-by-bit operation. In fact, the given secret image A can be B-bit per pixel for any positive integer B (for example, use $B=1$ for binary image, $B=7$ or 8 for grayscale image, $\mathrm{B}=15$ for $5-5-5$ pseudo-color image, $\mathrm{B}=24$ for $8-8-8$ color image).

Chapter 3

Single Image Sharing with User-friendly Shadows

and Progressive Decoding 111%

In this chapter, we propose a novel sharing method with n user-friendly shadows and progressive decoding based on modulus operations. First, a fundamental (n, n) sharing version based on modulus operations is introduced. This simple version is neither user-friendly, nor progressive. Then, the fundamental version is extended to an intermediate version with user-friendly shadows by using a smaller value m in the modulus operations, although the intermediate version is still non-progressive. Finally,
the final version is proposed by extending the intermediate (user-friendly) version
further to the one with both progressive decoding and user-friendly features.
The remaining portion of this chapter is organized as follows. Section 3.1 briefly
describes Fang's user-friendly progressive sharing method [19]. Section 3.2 presents
the proposed method. Experimental results and some comparisons are shown in
Section 3.3. Finally, the summary is in Section 3.4.

3.1 A Simple Review of Fang's Method [19]

This section reviews roughly Fang's progressive and user-friendly method [19]. His method is for binary (black or white) images; therefore, bit-plane by bit-plane processing is required when input image is grayscale or color. His sharing and recovering algorithms are as follows:

Sharing phase: (see Fig. 3.1 for the sharing phase of Fang's method [19]):
Step 1. According to the two leftmost columns of Table 3.1, expand every pixel of the black-or-white input image O to a 2×2 block in the corresponding position of the expanded image O^{\prime}. Notably, if the input pixel is black, then all pixels of the corresponding 2×2 block are black. Conversely, if the input pixel is white, then the corresponding 2×2 block contains two white and two black pixels (in this case, the corresponding 2×2 block is randomly selected from the six possibilities listed in lower part of column O^{\prime} in Table 3.1).

Step 2. For each 2×2 block of the expanded image O^{\prime}, by checking the pixel value at the corresponding position of a given stego-image T, Fang randomly picked up one of the corresponding patterns listed in the rightmost column of Table 3.1
to create the 2×2 sharing block at the corresponding position of first shadow S_{1}.
Similar argument created each of the remaining $n-1$ shadows.

Stego-
image T

Expanded
image ${ }^{\prime}$

1
1
1
1
1
1

Share $_{n}$

Fig. 3.1. The sharing phase of Fang's method [19].

Table 3.1 Fang's selection of sharing patterns in [19]. (See Fig. 3.1 to understand O, O^{\prime} and T)

Recovering phase: (see Fig. 3.2 for Fang's experimental result)
Assume that k shadows are collected. Then, each pixel j of the black-or-white image is reconstructed using the k sharing pixels at the same position j of the k shadows. The reconstruction rule is an OR-like operation: "the reconstructed pixel is black iff at least one of the k sharing pixels is black." (Hence, the reconstructed pixel is white iff all k sharing pixels are white.)

Fig. 3.2. Experimental result of the recovering phase in Fang's method: (a) one of the six $(n=6)$ user-friendly shadows; (b-f) the reconstructed results using 2-6 shadows, respectively.

11

Fang's method has two disadvantages: i) The size of each shadow S_{i} is four times larger than the input image O because the sharing patterns in Step 2 of sharing phase are 2×2 blocks (see the fourth column of Table 3.1); ii) The image quality (such as PSNR) of shadows is not easy to control. We will improve them in this chapter.

3.2 The Proposed Method

This section presents our user-friendly progressive sharing method based on modulus operations. The method generates n user-friendly shadows whose image quality (such as PSNR) is lower than the input image's quality; and later, the input image can be reconstructed with progressively-improved image quality after gathering $k(2 \leq k \leq n)$ shadows. The description of the method is divided into three subsections. First, a fundamental (n, n) sharing version based on modulus operations is introduced in Sec. 3.2.1. This simple version is neither user-friendly, nor progressive. Then, the fundamental version is extended in Sec. 3.2.2 to an intermediate version with user-friendly shadows, although the intermediate version is still non-progressive. Finally, Sec. 3.2.3 presents the final version by extending the intermediate (user-friendly) version further to the one with both progressive decoding and user-friendly features. A comparison between our progressive and user-friendly method (Sec. 3.2.3) and Fang's (Sec. 3.1) is in Sec. 3.2.4. A stego version of our method is in Sec 3.2.5.
3.2.1 An (n, n) Fundamental Sharing Version Based on Modulus Operations

This sub-section illustrates a fundamental (n, n) sharing version for grayscale images based on modulus operations. This version splits a grayseale image A among n extremely noise-like shadows $B_{1}, B_{2}, \ldots, B_{n}$ whose sizes are all the same as A. The n noise-like shadows together can reconstruct each pixel of A by using one modulus operation and $n-1$ addition. (In this dissertation, " + " and "Mod" denote addition and modulus operations, respectively.) The sharing and recovering phases of the fundamental version are listed below.

Sharing phase:

Step 1. Input a grayscale secret image A.
Step 2. Generate n-1 random images $B_{1}, B_{2}, \ldots, B_{n-1}$ as shadows. Each is as large as
A.

Step 3. Create the $n^{\text {th }}$ shadow B_{n} by

$$
\begin{equation*}
B_{n}=\left\{A+\left(256-\left[\left(B_{1}+B_{2}+\cdots+B_{n-1}\right) \operatorname{Mod} 256\right]\right)\right\}_{\operatorname{Mod} 256} \tag{3.1}
\end{equation*}
$$

Step 4. Output the n noise-like (non-friendly) shadows $B_{1}, B_{2}, \ldots, B_{n}$.

Recovering phase:

Retrieve A using the formula

(3.2)

also can work for binary or color images by using $2\left(=2^{1}\right)$ and $16777216\left(=2^{24}\right)$, respectively, to replace the constant 256 in the two formulas above. An experimental result using the grayscale image Lena as image A is shown in Fig. 3.3, with $(n, n)=(4$,

1896

Here, $(n, n)=(4,4)$; (a) is the given grayscale image Lena A; (b-e) are the four
generated "non-friendly" shadows $B_{1}, B_{2}, B_{3}, B_{4}$; (f) is the recovered error-free Lena using formula $A=\left(B_{1}+B_{2}+B_{3}+B_{4}\right)_{\text {Mod } 256}$.

3.2.2 A User-friendly but Non-progressive (n, n) Version

This sub-section describes how to extend the (n, n) fundamental version in Sec.
3.2.1 to an intermediate version whose n shadows are all user-friendly, i.e. look like visual-quality-reduced versions of the natural image, so that the management of the n shadows is easier. What we do is to use a smaller value m to replace the value 256 in the modulus operations in Sec. 3.2.1. Notably, the version in Sec 3.2.2 here is still
non-progressive.

Sharing phase:

Step 1. Input an integer parameter $m(2 \leq m \leq 256)$ and an 8-bit grayscale image A.

whose size is identical to A, but with pixel value less than m (rather than 256).
Step 2. Generate $n-1$ "random" images $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{n-1}^{\prime}$ whose sizes are all as large as A; but each pixel is a random value chosen from $\{0,1,2, \ldots,(m-1)\}$. Then create

which implies that $\left(B_{1}^{\prime}+B_{2}^{\prime}+\cdots+B_{n}^{\prime}\right)_{\text {Mod } m}=A^{\prime}$.
Step 3 . Output the n user-friendly shadows $\left\{B_{1}, \ldots, B_{n}\right\}$ defined by

Recovering phase:

Retrieve A by

$$
\begin{equation*}
A=\left[B_{i}-\left(B_{i}\right)_{\operatorname{Mod} m}\right]+\left[\left(B_{1}+B_{2}+\ldots+B_{n}\right)_{\operatorname{Mod} m}\right] . \tag{3.6}
\end{equation*}
$$

In Eq. (3.6), it does not matter which one of $B_{1}, B_{2}, \ldots, B_{n}$ is used as B_{i}; the result is the same. Also, if $m=256$ is used in Eq. (3.3)-(3.6), then this intermediate version is identical to the (n, n) sharing one in Sec. 3.2.1.

3.2.3 The User-friendly and Progressive Version

The intermediate version (Sec. 3.2.2) is still non-progressive, although
user-friendly. Sec. 3.2.3 extends the intermediate version so that progressiveness is also equipped with. The algorithm is presented here step by step. Because the version is an extension of Sec. 3.2.2, the modulus-base notation $m(2 \leq m \leq 256)$ is still used here in Sec. 3.2.3. The new version can generate n friendly shadows and reconstruct the input image in a progressive manner, i.e. the reconstructed quality improves as the number of gathered shadows increases.

Sharing phase:

Step 1. Input an integer parameter $m(2 \leq m \leq 256)$ and an 8 -bit grayscale secret image A (A can also be one of the three 8 -bit color-components of a 24 -bit color image).

Step 2. By a pixel-by-pixel manner, generate a smaller-range image
whose size is identical to A, but pixel value is at most $m-1$, rather than 255 .
Step 3. Generate $n-1$ random images $R_{1}, R_{2}, \ldots, R_{n-1}$. (Each image R_{i} is as large as A, and each pixel of R_{i} is 8 -bit.)

Step 4. Create n images $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{n}^{\prime}$ in a pixel-by-pixel manner:
If $A^{\prime}=0$ then $B_{1}^{\prime}=0$; else $B_{1}^{\prime}=\left(R_{1}\right)_{\operatorname{Mod}\left(A^{\prime}+1\right)}$. Anyway, define $A_{1}^{\prime}=A^{\prime}-B_{1}^{\prime}$. If $A_{1}^{\prime}=0$ then $B_{2}^{\prime}=0$; else $B_{2}^{\prime}=\left(R_{2}\right)_{\operatorname{Mod}\left(A_{1}^{\prime}+1\right)}$. Anyway, define $A_{2}^{\prime}=A_{1}^{\prime}-B_{2}^{\prime}$. If $A_{n-2}^{\prime}=0$ then $B_{n-1}^{\prime}=0$; else $B_{n-1}^{\prime}=\left(R_{n-1}\right)_{\operatorname{Mod}\left(A_{n-2}^{\prime}+1\right)}$. Anyway, define

$$
A_{n-1}^{\prime}=A_{n-2}^{\prime}-B_{n-1}^{\prime} . \text { Finally, let } B_{n}^{\prime}=A_{n-1}^{\prime} .
$$

Step 5 . Output n final shadows $B_{1}, B_{2}, \ldots, B_{n}$ defined by

$$
\begin{equation*}
B_{i}=\left(A-A^{\prime}\right)+B_{i}^{\prime} \quad \text { for } i=1, \ldots, n . \tag{3.8}
\end{equation*}
$$

(In Step 4 of the sharing phase above, " $B_{1}^{\prime}=\left(R_{1}\right)_{\operatorname{Mod}\left(A^{\prime}+1\right)}$ " means that
" $B_{1}^{\prime}(t)=\left(R_{1}(t)\right)_{\operatorname{Mod}\left(A^{\prime}(t)+1\right)}$ " at pixel t. Then, after creating $B_{1}^{\prime}(t)$, we create $A_{1}^{\prime}(t)$ by the formula $A_{1}^{\prime}(t)=A^{\prime}(t)-B_{1}^{\prime}(t)$. The explanation for the remaining operations in Step 4 is likewise.) Notably, as t changes, for random effect, we randomly switch the order of assigning these computed values to $\left\{B_{1}^{\prime}(t), B_{2}^{\prime}(t), \ldots, B_{n}^{\prime}(t)\right\}$. For example, when $t=0$, assign the computed values to $B_{1}^{\prime}(t), B_{2}^{\prime}(t), \ldots, B_{n}^{\prime}(t)$ as above, respectively; then, when $t=1$, assign the computed values to $B_{n}^{\prime}(t), B_{n-1}^{\prime}(t), \ldots, B_{1}^{\prime}(t)$, respectively; then, when $t=2, \ldots$ Here, we may use a random number generator to create the permutation order for this.

Recovering phase:

which are subset of the n shadows $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$, retrieve A using the formula

$$
\tilde{A}=\left[B_{i(j)}-\left(B_{i(j)}\right) \operatorname{Mod} m\right]+\left[\left(B_{i(1)}+B_{i(2)}+\ldots+B_{i(k)}\right)_{\operatorname{Mod} m}\right] .
$$

Here, $B_{i(j)}$ can be any one of $B_{i(1)}, B_{i(2)}, \ldots, B_{i(k)}$.

Lemma 1. In Eq. (3.9), anyône in $B_{i(1)}, B_{i(2)}, \ldots, B_{i(k)}$ can be used as $B_{i(j)}$.
Proof. Eq. (3.8) implies

$$
\begin{equation*}
B_{i}-B_{i}^{\prime}=A-A^{\prime} \text { for all } i=1, \ldots, n, \tag{3.10}
\end{equation*}
$$

hence we have $\left(B_{i(j)}-B_{i(j)}^{\prime}\right)_{\text {Mod } m}=\left(A-A^{\prime}\right)_{\text {Mod } m}$ for all $1 \leq i(j) \leq n$ for $1 \leq j \leq k$. However,
$\left(A-A^{\prime}\right)_{\operatorname{Mod} m}=0$ because $A^{\prime}=(A)_{\operatorname{Mod} m}$ by Eq. (3.7). Therefore, $\left(B_{i(j)}-B_{i(j)}^{\prime}\right)_{\operatorname{Mod} m}=0$. So

$$
\begin{equation*}
\left(B_{i(j)}\right)_{\operatorname{Mod} m}=\left(B_{i(j)}^{\prime}\right)_{\operatorname{Mod} m}=B_{i(j)}^{\prime} \tag{3.11}
\end{equation*}
$$

where the last identity is due to the fact that $B_{i(j)}^{\prime}<\left(A^{\prime}+1\right)$ by Step 4 above, and the range of A^{\prime} is $\{0, \ldots, m-1\}$ by Eq. (3.7). We may thus say that

$$
\begin{equation*}
B_{i(j)}-\left(B_{i(j)}\right)_{\operatorname{Mod} m}=B_{i(j)}-B_{i(j)}^{\prime}=A-A^{\prime} \quad(\text { Here, } 1 \leq i(j) \leq n \text { for } 1 \leq j \leq k) . \tag{3.12}
\end{equation*}
$$

Lemma 2. In Step 4 of the sharing phase above,

$$
\begin{equation*}
A^{\prime}=B_{1}^{\prime}+B_{2}^{\prime}+\ldots+B_{n-1}^{\prime}+B_{n}^{\prime} \tag{3.13}
\end{equation*}
$$

Proof. Because $A_{1}^{\prime}=A^{\prime}-B_{1}^{\prime}$, we have $A^{\prime}=B_{1}^{\prime}+A_{1}^{\prime}$.
Because $A_{2}^{\prime}=A_{1}^{\prime}-B_{2}^{\prime}$, we have $A^{\prime}=B_{1}^{\prime}+A_{1}^{\prime}=B_{1}^{\prime}+B_{2}^{\prime}+A_{2}^{\prime}$
Because $A_{3}^{\prime}=A_{2}^{\prime}-B_{3}^{\prime}$, we have $A^{\prime}=B_{1}^{\prime}+B_{2}^{\prime}+B_{3}^{\prime}+A_{3}^{\prime}$.

Because $A_{n-1}^{\prime}=A_{n-2}^{\prime}-B_{n-1}^{\prime}$, we have $A^{\prime}=B_{1}^{\prime}+B_{2}^{\prime}+\ldots+B_{n-1}^{\prime}+A_{n-1}^{\prime}$.
Finally, because $B_{n}^{\prime}=A_{n-1}^{\prime}$, we have $A^{\prime}=B_{1}^{\prime}+B_{2}^{\prime}+\ldots+B_{n-1}^{\prime}+B_{n}^{\prime}$.
-END of Proof-

Lemma 3. When all n shadows are received, i.e. when $k=n$, then A can be recovered
losslessly by Eq. (3.9). In other words,

$$
A=\left[B_{i}-\left(B_{i}\right)_{\operatorname{Mod} m}\right]+\left[\left(B_{1}+B_{2}+\cdots+B_{n}\right) \operatorname{Mod} m\right] .
$$

(3.14)
(Again, it does not matter which one of $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ is used as the $B_{i \cdot}$.)
Proof. Below we show why the recovery image \tilde{A} becomes the original image A
when $k=n$. Since $k=n$, Equations (3.9), (3.12), and (3.13) imply

$$
\begin{aligned}
& \tilde{A}=\left[B_{i(j)}-\left(B_{i(j)}\right) \operatorname{Mod} m\right]+\left[\left(B_{i(1)}+B_{i(2)}+\ldots+B_{i(n)}\right) \operatorname{Mod} m\right] \\
&= {\left[B_{i}-\left(B_{i}\right)_{\operatorname{Mod} m}\right]+\left[\left(B_{1}+B_{2}+\ldots+B_{n}\right)_{\operatorname{Mod} m}\right] } \\
&=\left[A-A^{\prime}\right]+\left[\left(B_{1}\right)_{\operatorname{Mod} m}+\left(B_{2}\right)_{\operatorname{Mod} m}+\ldots+\left(B_{n}\right)_{\operatorname{Mod} m}\right]_{\operatorname{Mod} m} \\
&=\left[A-A^{\prime}\right]+\left[B_{1}^{\prime}+B_{2}^{\prime}+\ldots+B_{n}^{\prime}\right]_{\operatorname{Mod} m} \\
&=\left[A-A^{\prime}\right]+\left[A^{\prime}\right] \\
&=A \quad \text {-END of Proof- }
\end{aligned}
$$

Step 4 above implies each pixel of $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{n}^{\prime}$ is non-negative because each pixel is created by a modulus function. Moreover, in Step 4 above, the pixel values of A^{\prime} is distributed randomly among $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{n}^{\prime}$; and Eq. (3.13) reads

$$
B_{1}^{\prime}+B_{2}^{\prime}+\ldots+B_{n-1}^{\prime}+B_{n}^{\prime}=A^{\prime}
$$

in which all pixel values are non-negative; hence, to estimate the image quality (PSNR) of shadows $B_{1}, B_{2}, \ldots, B_{n}$, we may start from the rough estimation

constant due to the known value of n, the above rough estimation of $\operatorname{RMSE}\left(B_{i}\right)$ can be re-written as $\sqrt{\frac{\sum_{\text {alt } t}^{\operatorname{Count}(t)} A^{\prime}(t)^{2}}{n}} \times \frac{(n-1)}{n}$. Although the actual value of $\sqrt{\frac{\sum_{\text {allt }} A^{\prime}(t)^{2}}{\operatorname{Count}(t)}}$ depends on the histogram of the image A^{\prime}, we may roughly estimate $\sqrt{\frac{\sum_{\text {allt }}^{\operatorname{Count}(t)} A^{\prime}(t)^{2}}{}}$ as

$$
\begin{equation*}
\sqrt{\left(\int_{0}^{m-1} t^{2} d t\right) /(m-1)}=(m-1) / 1.73 \tag{3.17}
\end{equation*}
$$

which is the probabilistic average value considering the fact that $A^{\prime}(t) \in\{0,1, \ldots,(m-1)\}$. Therefore, we have

$$
\begin{equation*}
\operatorname{RMSE}\left(B_{i}\right) \approx \frac{(m-1) \times(n-1)}{1.73 \times n} . \tag{3.18}
\end{equation*}
$$

Then, we can get the rough estimation

$$
\begin{align*}
& \text { n, we can get the rough estımation } \tag{3.19}\\
& \operatorname{PSNR}\left(B_{i}\right)=10 \times \log _{10} \frac{255^{2}}{\left(\operatorname{RMSE}\left(B_{i}\right)\right)^{2}} \approx 10 \times \log _{10} \frac{255^{2}}{\left(\frac{(m-1) \times(n-1)}{1.73 \times n}\right)^{2}}
\end{align*}
$$

Some experimental results of $\operatorname{PSNR}\left(B_{i}\right)$ are shown in Table 3.2, which uses five nature images in Fig. 3.3(a) and Fig. 3.4. From this table, we can see that the experimental value of PSNR is close to the estimation given by Eq. (3.19).

In our experiments, for the same value k, all reconstructed images have similar PSNR values. For example, in each of the three experimental results of Fig. 3.5, 3.6
and 3.7, the four images respectively reconstructed by shadows $\left\{B_{1}, B_{2}, B_{3}\right\}$ (or by
$\left\{B_{1}, B_{2}, B_{4}\right\}$, or by $\left\{B_{1}, B_{3}, B_{4}\right\}$, or by $\left.\left\{B_{2}, B_{3}, B_{4}\right\}\right)$ all have very similar PSNR
values. Likewise, the six images reconstructed by any two shadows of $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$
also have similar PSNR values. In recovering phase, when more shadows are gathered (k becomes larger), then the reconstructed image has higher image quality.

In particular, when all n shadows are gathered, then $k=n$, and the reconstructed image
A is error-free due to Lemma 3.3. In summary, the proposed version has progressive decoding feature; and it only uses one Subtraction, two Modulus operations and k

Additions to reconstruct a gray value from pixels of k available shadows.
The "+","-" and "Mod" in this subsection are all byte-by-byte operations
among gray values. Hence, if input image is color (24-bit per pixel), then A must be first decomposed into 3 components (A^{R}, A^{G} and A^{B}) of 8 -bit each. Then the sharing process above is implemented for each component to generate n shadows.

Then, for each index $i=1, \ldots, n$, combining the three corresponding shadows B_{i}^{R}, B_{i}^{G} and B_{i}^{B} to get final shadow B_{i}.

Fig. 3.4. Other four images \{Jet, Baboon, Pepper, Boat \} used in Table 3.2.

Table 3.2. The PSNR of shadows when $n=4$ shadows were generated for each image

| m 's | $P S N R\left(B_{i}\right)$
 in Eq.
 value
 (3.19) | PSNR in
 Lena's
 shadows | PSNR in
 Jhadows | PSNR in
 Baboon's
 shadows | PSNR in
 Pepper's
 shadows | PSNR in
 Boat's
 shadows |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m=256$ | 7.26 | 7.37 | 7.40 | 7.16 | 7.45 | 7.34 |
| $m=128$ | 13.31 | 13.41 | 13.74 | 13.12 | 13.09 | 13.50 |
| $m=64$ | 19.40 | 19.02 | 20.09 | 18.46 | 18.75 | 19.89 |
| $m=32$ | 25.56 | 25.45 | 25.13 | 25.36 | 25.46 | 25.85 |
| $m=16$ | 31.87 | 31.21 | 31.21 | 31.15 | 31.11 | 31.97 |

Comparing to Fang's method [19] reviewed in Sec. 3.1, which is also user-friendly and progressive, our method in Sec. 3.2.3 has two more advantages:
(i) The size of our each shadow in $B_{1}, B_{2}, \ldots, B_{n}$ is the same as A (not expanded).
(ii) Our shadows' image quality $\operatorname{PSNR}\left(B_{i}\right)$ can be roughly controlled by the base
parameter m of modulus operations ($2 \leq m \leq 256$ is an integer). Just estimate m by

$$
\begin{equation*}
m \approx \frac{441 \times n}{\sqrt{10^{\frac{P S N R\left(B_{i}\right)}{10}}} \times(n-1)}+1 \tag{3.20}
\end{equation*}
$$

Eq. (3.20) is derived from Eq. (3.19), an estimation tool whose validity is checked in
Table 3.2.

3.2.5. The Stego Version of Our Method

In Fang's method [19], each shadow is hidden using a cover image T (also known as host image) so that all shadows (called as stego-shadows) look like T. Our method in Sec. 3.2.3 can also be modified to have a stego version by using stego-shadows smaller in size than Fang's. Our stego version is as follows:

Sharing phase:

Step 1. Input an integer parameter m ($2 \leq m \leq 64$ in stego version; but $16 \leq m \leq 64$ is suggested to avoid large per); input an 8-bit grayscale cover-image T whose size $(w \times h)$ is also the size of the 8 -bit grayscale secret image A.

Step 2. Let $s z=8 /\left\lceil\log _{2} m\right\rceil$. Use pixels-duplication to expand T to a larger image T^{\prime} whose size is

$$
\begin{equation*}
(\sqrt{s z} \times w) \times(\sqrt{s z} \times h) . \tag{3.21}
\end{equation*}
$$

Step 3. Generate $n-1$ random images $R_{1}, R_{2}, \ldots, R_{n-1}$. (Each image R_{i} is as large as A, and each pixel of R_{i} is 8 -bit.)

Step 4. Create n images $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{n}^{\prime}$ according to Step 4 of sharing phase of Sec. 3.2.3, except that here we use A to replace the role of A^{\prime} in all formulas there.

Step 5. Use a random key r to create an order to permute all pixels in B_{1}^{\prime}. Each of the remaining $n-1$ images $B_{2}^{\prime}, \ldots, B_{n}^{\prime}$ is also permuted using the random key r.

Then use Shamir's (2, n)-threshold sharing method [1] to share the key r among n created numbers $r_{1}, r_{2}, \ldots, r_{n}$. Then, store r_{i} in B_{i}^{\prime} for each $i=1, \ldots, n$.

Step 6. Treat each grayscale image $B_{i}^{\prime}(1 \leq i \leq n)$ as a bit stream (i.e. a very big binary integer), then partition each B_{i}^{\prime} to $(\sqrt{s z} \times w) \times(\sqrt{s z} \times h)$ smaller-range numbers $B_{i}^{\prime}(t)$ (here, $0 \leq B_{i}^{\prime}(t)<m$ and $0 \leq t<(s z \times w \times h)$).

Step 7. Then hide each number $B_{i}^{\prime}(t)$ in $T^{\prime}(t)$ to get a pixel value $B_{i}(t)$ by the formula

$$
\begin{equation*}
B_{i}(t)=\operatorname{round}\left(\frac{T^{\prime}(t)-B_{i}^{\prime}(t)}{m}\right) \times m+B_{i}^{\prime}(t) \tag{3.22}
\end{equation*}
$$

where the round operator rounds its argument to the nearest integer. Add (Subtract) m to (from) the result of Eq. (3.22) if $B_{i}(\mathrm{t})<0$ or >255.

Recovering phase:

Step 1. After gathering any $k(2 \leq k \leq n)$ shadows $\left\{B_{i(1)}, B_{i(2)}, \ldots, B_{i(k)}\right\} \subset\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ where $1 \leq i(j) \leq n$ for each $j=1, \ldots, k$, retrieve all $(s z \times w \times h)$ smaller-range numbers $B_{i(j)}^{\prime}(t)$ in each stego image $B_{i(j)}$ by the de-hiding formula

$$
\begin{equation*}
B_{i(j)}^{\prime}(t)=\left[B_{i(j)}(t)\right]_{\operatorname{Mod} m} \quad \text { for } t=0, \ldots,(s z \times w \times h)-1 . \tag{3.23}
\end{equation*}
$$

Step 2. Combine the $(s z \times w \times h)$ smaller-range numbers $B_{i(j)}^{\prime}(t)$ to retrieve each $B_{i(j)}^{\prime}$ as an 8-bits grayscale image of $w \times h$ pixels.

Step 3. Recover the random key r by inverse sharing. Then use the key r to restore original pixels' order in image $B_{i(1)}^{\prime}, B_{i(2)}^{\prime}, \ldots, B_{i(k)}^{\prime}$.

Step 4. Finally, retrieve A in pixel-by-pixel manner by the formula

$$
\begin{equation*}
\tilde{A}=B_{i(1)}^{\prime}+B_{i(2)}^{\prime}+\ldots+B_{i(k)}^{\prime} . \tag{3.24}
\end{equation*}
$$

In our stego version above, the final stego shadows $B_{1}, B_{2}, \ldots, B_{n}$ are $s z=8 /\left\lceil\log _{2} m\right\rceil$ times larger than the input secret image A. Hence, the pixel expansion rate is per $=8 /\left\lceil\log _{2} m\right\rceil \leq 8 / 4=2$ if we set the parameter $m \geq 16$. An example using $m=32$ is shown in Fig. 3.8 where Jets are stego-shadows utilized to cover (and progressively recover) the important image Lena. In this ($m=32$) example, our stego-version's pixel expansion rate is per $=8 / 5=1.6$, better than Fang's per $=4$ (shown in Fig. 3.9(c)). Moreover, our shadows image quality is also better than Fang's. For example, as shown in Fig. 3.8(a-d) or Fig. 3.9(a), our Jet-shadows have image quality of PSNR $=26.66 \mathrm{db}$ (PSNR would be 31.26 db , as shown in Fig. 3.9(b), if we used $m=16$ to get the shadows whose size are all 2 times larger than original Jet image.) To the contrary, after implementing Fang's method in each bit-plane of the same grayscale important image A (Lena) and same cover image T (Jet), each of Fang's $n=4$ quadruple-size stego-shadows has PSNR $=10.02 \mathrm{db}$ only (see Fig. 3.9(c)). Our stego version is still progressive in decoding; lossless when all n shadows are collected; and have small decoding complexity $O(k)$ when k of the n shadows are used in decoding.

3.3 Experimental Results and Some Comparisons

3.3.1 Experimental Results

In the proposed method in Sec. 3.2.3, the input image A is the grayscale image Lena in Fig. 3.3(a). Fig. 3.5 shows the experimental result for ($n=4$) case when $m=256$. The image A can be roughly seen in any of the four generated user-friendly shadows shown in Fig. 3.5(a-d). In Fig. 3.5(e-g), when more shadows are available in retrieval, the recovered image has better quality.

Other experiments using $m=64$ and $m=16$ for $(n=4)$ case are shown in Fig. 3.6 and 3.7 respectively. The shadows in Fig. 3.7 have higher PSNR than those in Fig. 3.5 and
3.6 due to the use of a smaller m value. (This is according to Eq. (3.19), where we have $\operatorname{PSNR}\left(B_{i}\right) \approx 10 \times \log _{10} \frac{(441 \times n)^{2}}{[(m-1) \times(n-1)]^{2}}=10 \times \log _{10} \frac{(441 \times 4)^{2}}{[(m-1) \times 3]^{2}}$ because $n=4$).

Notably, when $m=256,64$, and 16 , respectively, the $\operatorname{PSNR}\left(B_{i}\right)$ values estimated by Eq. (3.19) are $7.26 \mathrm{db}, 19.40 \mathrm{db}$, and 31.87 db . They are all very close to the actual PSNR values of the shadows ($7.37 \mathrm{db}, 19.02 \mathrm{db}$, and 31.21 db ; respectively) shown in

Fig. 3.5. An example of $(n=4)$ case using $m=256$ in non-stego version (Sec. 3.2.3). Here, (a-d) are the final shadows $B_{1}, B_{2}, B_{3}, B_{4}(\mathrm{RMSE}=109.13$ and $\mathrm{PSNR}=7.37$ for (a-d)); (e-g) are the recovered Lena images (RMSE $=80.22$ and $\mathrm{PSNR}=10.04$ for (e); RMSE=49.75 and PSNR=14.20 for (f); Lossless for (g)) using (respectively) any two, any three, and all four final shadows.

Fig. 3.6. An example of $(n=4)$ case using $m=64$ in non-stego version (Sec. 3.2.3). Here, (a-d) are the final shadows $B_{1}, B_{2}, B_{3}, B_{4}(\mathrm{RMSE}=28.54$ and $\mathrm{PSNR}=19.02$ for $(\mathrm{a}-\mathrm{d}))$;
(e-g) are the recovered Lena images (RMSE=21.07 and PSNR=21.66 for (e);
RMSE $=13.10$ and $\operatorname{PSNR}=25.79$ for (f); Lossless for (g)) using (respectively) any two, any three, and all four final shadows.
(e)
(f)
(g)

Fig. 3.7. An example of ($n=4$) case using $m=16$ in non-stego version (Sec. 3.2.3). Here, (a-d) are the final shadows $B_{1}, B_{2}, B_{3}, B_{4}(\mathrm{RMSE}=7.01$ and $\mathrm{PSNR}=31.21$ for $(\mathrm{a}-\mathrm{d})$); (e-g) are the recovered Lena images (RMSE=5.21 and PSNR=33.79 for (e); RMSE=3.28 and PSNR=37.81 for (f); Lossless for (g)) using (respectively) any two,

Fig. 3.8. An example of ($n=4$) case using $m=32$ in stego version (Sec. 3.2.5). Here, (a-d) are the final stego-shadows B_{1}, B_{2}, B_{3}, and $B_{4} ;(\mathrm{e}-\mathrm{g})$ are the progressively recovered Lena images using, respectively, "any" two, "any" three, and all four final
shadows. $\operatorname{PSNR}=26.66$ for $(\mathrm{a}-\mathrm{d}) ; \operatorname{PSNR}=10.04$ for $(\mathrm{e}) ; \operatorname{PSNR}=14.21$ for $(\mathrm{f}) ;$ and (g) is lossless.

Fig. 3.9. Comparing the stego-shadows in two stego methods for $(n=4)$ case. The hidden image is Lena (Fig. 3.3(a)) and host image is Jet (Fig. 3.4(a)). Here, (a) is one of the four stego-shadows with PSNR=26.66 db in our stego version (when $m=32$); (b) is one of the four stego-shadows with $\operatorname{PSNR}=31.26 \mathrm{db}$ in our stego version (when $m=16$); (c) is one of the four stego-shadow with PSNR=10.02 in Fang's method (Sec. 3.1). Note that our stego size is only 1.6 times (in (a)) or 2 times (in (b)) larger than original Jet image's size, whereas Fang's stego size is 4 times larger than original Jet.

3.3.2 Comparisons

This sub-section gives a comparison with related researches of other people [3-7, 9, 18-22, 51]. From Table 3.3, we can see that the proposed method owns all these four advantages: user-friendly, progressive, economical-size, and lossless reconstruction (when all n shadows are available).

Table 3.3 Comparisons with reported image sharing methods [3-7, 9, 18-22, 51].

Proposed method	yes (controllable quality)	yes	yes	yes

${ }^{(1)}$ The ability to get lossless recovery after gathering all n shadows.
${ }^{(2)}$ The symbol ' x ' means that the mentioned method doesn't have this advantage.
${ }^{(3)}$ The symbol 'yes' means that the mentioned method has this advantage.

There is an important display from the above Table 3.3, our method owns at least two convenient features: user-friendly and progressive. Besides showing the item comparisons in Table 3.3, we may compare ours with other image-sharing researches $[3,4,7,18,19,21]$ in Table 3.4 to show quantity comparisons in three aspects: 1) computational complexity to reconstruct a pixel; 2) memory space of a shadow
(represented by pixel expansion rate [per], as compared to the size of input image); and 3) image quality of the image recovered by all n shadows. Table 3.4 shows that in our method: 1) each pixel can be reconstructed by k shadows using about k operations;
2) the size of each shadow is not expanded (per=1) for non-stego version, and ; 3) the recovery by all n shadows is lossless. Although our per or computational complexity is in the middle rank rather than the best; note that in Table 3.4, only Ref. [7, 19] and ours are user-friendly (provide visually-recognizable shadows). In these three user-friendly approaches, Ref. [19] is 4 times expanded in shadow size, whereas Ref.
[7] is neither progressive nor lossless in recovery. As for Ref. [3, 4, 18, 21], they are neither progressive nor user-friendly.

To compare with Fang's [19] further, we provide our stego-version in Sec 3.2.5, in which the pixel expansion rate (per) is $1.33 \leq$ per $=8 /\left\lceil\left[\log _{2} m\right] \leq 2\right.$ when $64 \geq m \geq 16$. For example, per $=1.6$ when $m=32$. These per values are still better than Fang's per=4.
(Hence, no matter it is stego version or not, our per is better than Fang's.) Moreover, our stego shadow's image quality is also better than Fang's (see Fig. 3.9, our Jet-stego-shadows are with $\mathrm{PSNR}=26.66 \mathrm{db}$ for $m=32$ and 31.26 db for $m=16$, both are better than Fang's 10.02 db).

Table 3.4. Quantity comparisons with reported image sharing methods $[3,4,7,18,19$, 21].

${ }^{(1)}$ Operations needed to recover one secret pixel by k shadows in (k, n) system.
${ }^{(2)}$ The pixel expansion rate (per) of each shadow, as compared to the input secret
image.

${ }^{(3)}$ The secret image recovered by all shadows.
${ }^{(4)}$ Math operations: $+,-, x, \div$.

3.4 Summary

Many researches in image sharing had been reported, usually traditional approaches: polynomial sharing or visual cryptography. In this chapter, based on modulus operations, we successfully designed a novel image sharing method with user-friendly shadows and progressive decoding. According to the experimental
results and comparisons in Sec. 3.3, besides being 1) user-friendly ; 2) progressive; 3) each pixel is reconstructed by k shadows quickly with about k operations; 4) the recovery is lossless after collecting all n shadows; the proposed method also owns following features: 5) the non-stego shadows' image quality can be controlled by the parameter value m using Eq. (3.20); 6) each shadow is not expanded in non-stego version (Sec. 3.2.3), and is only $1.33 \leq$ per $=8 /\left\lceil\log _{2} m\right\rceil \leq 1.6$ times larger than original secret image if we restrict $64 \geq m \geq 32$ in the stego version (Sec. 3.2.5); 7) the stego shadows have quality much better than Fang's shadows (Fig. 3.9).

Chapter 4

Multi-Images Sharing with Economical Shadows

and Fast Decoding

In this chapter, we proposed a novel secret sharing scheme for multiple images based on modulus (MOD) and exclusive-OR (XOR) operations to simultaneously achieve these two advantages: (1) O / I size ratio is very close to 1 , and (2) only constant computational operations are needed to reconstruct each secret pixel. Notably, when multiple input images are shared by a scheme, the "O/I size ratio" in this dissertation denotes the ratio of total size of output shadows divided by total size of input images. The proposed method generates n extremely noise-like shadows for n given grayscale (binary/color) secret images (notably, all n given images have the same size), so that each shadow's size is identical to the given images'. In other words, our O / I size ratio is 1 ; therefore, our method will not need extra space in images-database, when we use the generated shadows to replace original secret images. Furthermore, after gathering all n shadows, the lossless decoding process only uses one XOR, one MOD, one addition (ADD) and one subtraction (SUB) operations (symbolized as " \oplus ", "Mod", "+" and "-" in this dissertation) to reconstruct each pixel's 8 -bits value of given secret images, whatever the value of n is. Therefore, no matter how many secret images are used in our method, the CPU time in decoding each secret image will not increase as the number of secret images increase. Hence, the proposed method is not only economical in storage space of shadows but also fast in decoding of secret images.

The remaining portion of the chapter is organized as follows. Section 4.1 describes two basic tools based on MOD and XOR operations respectively; and these tools will be used in the proposed method. Section 4.2 presents the proposed method. Section 4.3 gives security analysis. Experimental result and comparisons are in Section 4.4. Finally, the summary is in Section 4.5 .

4.1 Two Basic Tools Used in the Proposed Scheme

To achieve the two advantages (lower O / I size ratio and fewer decoding operations) mentioned in Sec. 1.1, two basic tools will be used in the proposed method. The first is the "MOD-based $(2,2)$ secret sharing tool" in Sec. 4.1.1, which can make our O/I size ratio be 1 . The other is the "XOR-based (n, n) shadows combination tool" in Sec. 4.1.2, which can make our (n, n) scheme only need constant operations to decode each secret pixel, no matter how large the value of n is.

4.1.1 MOD-based $(2,2)$ secret sharing tool

Thien and Lin proposed a modified version [6] of Shamir's (k, n)-threshold PSS approach [1] to reduce the size of shadows. They use polynomials to share a secret image A among n shadows $B_{1}, B_{2}, \ldots, B_{n}$; and each of them is k times smaller than A in size. A cannot be revealed unless k of the n shadows are gathered. In their encoding, to transform a sector $\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}$ formed of k secret pixel values of A into n shadow pixel values $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ (where each $b_{i} \in B_{i}$), they use a prime number $p=251$ to create a polynomial

$$
\begin{equation*}
q(x)=\left(a_{0}+a_{1} x+\ldots+a_{k-1} x^{k-1}\right)_{\operatorname{Mod} p} \tag{4.1}
\end{equation*}
$$

of degree $k-1$. Then evaluate $b_{1}=q(1), b_{2}=q(2), \cdots, b_{n}=q(n)$. Later, using any k of
the n produced pairs $\left\{\left(i, b_{i}\right)\right\}_{i=1}^{n}$, people can recover all k coefficients $a_{0}, a_{1}, \ldots, a_{k-1}$ in $q(x)$ by constructing the interpolation polynomial.

To let our method have shadows with small size, we apply [6]. More specifically, apply [6] in a special manner $(k=2, n=2)$. We call this $(2,2)$ scheme as "MOD-based $(2,2)$ secret sharing tool". The tool is described as follows:

Sharing Phase: (see "(2, 2)-MOD-SS" in left-top part of Fig. 4.1)
Step 1. Use a prime number key to generate a permutation sequence to permute all pixels' positions of the given grayscale image A. Then attach the key in the permuted image \tilde{A}.

Step 2. Sequentially read in gray values $\left\{p_{i}\right\}$ of \tilde{A} and then store in array E according to the rules:

Step 2.1. If $p_{i}<250$, then store p_{i} in E.
Step 2.2. If $p_{i} \geqq 250$, then split p_{i} into two values 250 and ($p_{i}-250$). Store these two values in E (first 250 , then $p_{i}-250$).

Step 3. Sequentially grab two not-shared-yet elements a_{0} and a_{1} of E. Use the grabbed $\left(a_{0}, a_{1}\right)$ to evaluate

$$
\begin{align*}
& b_{1}=q(1) \tag{4.2}\\
&=\left(a_{0}+a_{1}\right)_{\text {Mod 251 }}, \tag{4.3}\\
& b_{2}=q(2)=\left(a_{0}+a_{1} \times 2\right)_{\text {Mod 251 }} .
\end{align*}
$$

Then attach b_{1} to shadow B_{1}, and attach b_{2} to shadow B_{2}.
Step 4. Repeat Step 3 until all elements of the array E are processed.

Notably, Step 2.2 is to handle the gray values larger than 250 (see [6]), which seldom happens for most natural images. Therefore, the size of E, which equals to the total size of B_{1} and B_{2}, is very close to size of A. In other words, each of the created B_{1}
and B_{2} is about two times smaller than A in size.

Reveal Phase: (see "Reveal of (2, 2)-MOD-SS" in bottom part of Fig. 4.2)
Step 1. Take the first non-used pixel from each of the two shadows B_{1} and B_{2}. Call the two values as $\left(b_{1}, b_{2}\right)$.
Step 2. Use these two values $\left(b_{1}, b_{2}\right)$ to recover the two coefficients $\left(a_{0}, a_{1}\right)$ in Eq. (4.2-4.3) by

$$
\begin{align*}
& a_{1}=\left(b_{2}-b_{1}+251\right)_{\operatorname{Mod} 251}, \tag{4.4}\\
& a_{0}=\left(b_{1}-a_{1}+251\right)_{\operatorname{Mod} 251 .} . \tag{4.5}
\end{align*}
$$

The recovered $\left(a_{0}, a_{1}\right)$ are the two corresponding values in E.

Step 3. Repeat Steps 1-2 until all values of the two shadows B_{1} and B_{2} are processed.
Step 4. Sequentially grab an element p_{i} of E, then do:
Sub-step 4.1. If $p_{i}<250$, then store p_{i} in \tilde{A}. Now, delete p_{i} from E because the information contained in p_{i} has been used.

Sub-step 4.2. If $p_{i}=250$, then read in p_{i+1} immediately. Then store the single value $\left(250+p_{i+1}\right)$ in \tilde{A}. Now, delete both p_{i} and p_{i+1} from E because the information in p_{i} and p_{i+1} have both been used.

Step 5. Extract the prime number key from \tilde{A} and apply the inverse-permutation operation to the permuted image \tilde{A} to get back to the secret image A.

In the reveal algorithm above, only three operations (one SUB , one ADD and one MOD) are needed in Eq. (4.4) or Eq. (4.5) to reconstruct each secret pixel of \tilde{A}. Because usually there are only a few pixels in A (and hence, in \tilde{A}) whose gray values are above 250 , the ADD operation in Sub-step 4.2 seldom occurs. Also, for each pixel, Step 5 uses one mapping operation (indexing) rather than computational operation.

4.1.2 XOR-based (n, n) shadows combination tool

Once all given n secret images $A_{1}, A_{2}, \ldots, A_{n}$ are processed by MOD-based $(2,2)$ secret sharing tool described in Sec. 4.1.1, each secret image $A_{i}(1 \leq i \leq n)$ generates two half-size temporary shadows $\boldsymbol{B}_{\boldsymbol{i}, 1}$ and $\boldsymbol{B}_{i, 2}$. To avoid any secret leaking when collecting less than n final shadows, we use the following steps of Combination Phase to form the final shadow C_{i}.

Combination Phase: (see right-top and bottom parts of Fig. 4.1)
Step 1. (Size-synchronization.) If some shadows $B_{i, j}(1 \leq i \leq n$ and $1 \leq j \leq 2)$ have distinct size due to the existence of pixels whose gray values are in 251-255 in some images A_{i}, then add suitable number of dummy pixels in all shadows to make all shadows $B_{i, j}$ have the same size as the one with the largest size.

Step 2. (Stacking.) Take the first not-yet-processed pixel $b_{i, 1}$ from each shadow
$(1 \leq i \leq n)$. Then evaluate the corresponding pixel b^{*} for a new image B^{*} by

$$
\begin{equation*}
b^{*}=b_{1,1} \oplus b_{2,1} \oplus \cdots \oplus b_{n, 1} . \tag{4.6}
\end{equation*}
$$

After all pixels of all $B_{i, 1}$ are processed, the generation of image B^{*} is done,
and its size is the same as

$$
B_{i, 1}\left(\text { and } B_{i, 2}, \text { too }\right)
$$

Step 3. (Shifting $B_{i, 2}$ to $B_{i, 3}$) Take next not-yet-processed pixel $b_{i, 2}$ from each shadow $B_{i, 2} \quad(1 \leq i \leq n)$, and, at the same pixel position, take the corresponding pixel $b^{*} \in B^{*}$. Then create the corresponding pixel value $b_{i, 3}$
of a new image $B_{i, 3}$ by

$$
\begin{equation*}
b_{i, 3}=b_{i, 2} \oplus b^{*} \quad(1 \leq i \leq n) . \tag{4.7}
\end{equation*}
$$

After all pixels in all $B_{i, 2}$ are processed, all n images $B_{i, 3}$ are generated. Notably, each $B_{i, 3}$ is as large as each $B_{i, 2}$
Step 4. (Physically gluing.) For $1 \leq i \leq n$, physically combine each pair of $B_{i, 1}$ and $B_{i, 3}$ to generate their final shadow $C_{i}=\left(B_{i, 1} ; B_{i, 3}\right)$. Because $B_{i, 1}$ and $B_{i, 3}$ are both about two times smaller than A_{i}, each C_{i} is about as large as A_{i}.

Decomposition Phase: (see top part of Fig. 4.2)
Step 1. For $1 \leq i \leq n$, physically separate each $C_{i}=\left(B_{i, 1} ; B_{i, 3}\right)$ into two halves to get $\boldsymbol{B}_{i, 1}$ (front half) and $\boldsymbol{B}_{i, 3}$ (rear half).

Step 2. Take next not-yet-processed pixel $b_{i, 1}$ from each $B_{i, 1}(1 \leq i \leq n)$. Then evaluate the corresponding pixel b^{*} in the image B^{*} by Eq. (4.6). After all pixels of all $B_{i, 1}$ are processed, the image B^{*} is generated.

Step 3. Take next not-yet-processed pixel $b_{i, 3}$ from each $B_{i, 3}(1 \leq i \leq n)$, and, at the same pixel position, take the corresponding pixel b^{*} from B^{*}. Then evaluate the corresponding pixel $b_{i, 2}$ for each image $B_{i, 2}$ by

$$
\begin{equation*}
b_{i, 2}=b_{i, 3} \oplus b^{*} \quad(1 \leq i \leq n) . \tag{4.8}
\end{equation*}
$$

After all pixels of all $B_{i, 3}$ are processed, all $B_{i, 2}$ are recovered.

In average, only one XOR operation is needed to recover a pixel of a secret image; and this statement is true for each secret image $A_{i}(1 \leq i \leq n)$. The analysis is as follows. Assume size of each A_{i} is $w \times h$, then each $B_{i, 1}$ in Step 2 uses averagely $[(n-1) / n] \times[(w \times h) / 2]$ XOR operations in Eq. (4.6) to create the B^{*}. And each $B_{i, 3}$ in Step 3 uses averagely $(w \times h) / 2$ XOR operations in Eq. (4.8) to recover $B_{i, 2}$. Therefore, for each secret image A_{i}, the total number of XOR operations needed in the Decomposition Phase is $\{[(n-1) / n]+1\} \times[(w \times h) / 2]$, which will be smaller than 1 after dividing by A_{i} 's size $w \times h$. In other words, less than one XOR operation is needed in the Decomposition Phase to recover a pixel of a secret image A_{i}.

4.2 The Proposed Method

4.2.1 Encoding

The encoding uses the Sharing Phase of MOD-based $(2,2)$ secret sharing tool in Sec. 4.1.1, followed by the Combination Phase of XOR-based (n, n) shadows combination tool in Sec. 4.1.2. The encoding creates n shadows $C_{1}, C_{2}, \ldots, C_{n}$ to replace the n given secret images $A_{1}, A_{2}, \ldots, A_{n}$. Main steps are as follows:

Encoding algorithm: (see its diagram in Fig. 4.1)
Input: n input binary/grayscale/color secret images $A_{1}, A_{2}, \ldots, A_{n}$ of the same size.
Step 1. No matter the image is binary or gray or color, just treat each $A_{i}(1 \leq i \leq n)$ as a long byte-stream (hence each element has 8 -bits, and can be considered as
a gray-value pixel).
Step 2. Then, for each stream $A_{i}(1 \leq i \leq n)$, use the Sharing Phase of MOD-based $(2,2)$ secret sharing tool in Sec. 4.1.1 to create its half-size shadows

$$
\left\{B_{i, 1}, B_{i, 2}\right\} .
$$

Step 3. Use all $\left\{B_{i, 1}, B_{i, 2}\right\}_{1 \leq i \leq n}$ in the Combination Phase of XOR-based (n, n) shadows combination tool in Sec. 4.1.2 to generate n final shadows $C_{1}, C_{2}, \ldots, C_{n}$.

Notably, each final shadow C_{i} is (nearly) as large as A_{i}. As a result, even from multi-secrets' view, the O/I size ratio is also 1 , because total secrets' size $\left|\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right|$ is identical to total shadows'size $\left|\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}\right|$.

$B_{1,1}$	$B_{n, 1}$	$\xrightarrow{\text { Combination }}$	Final Shadow	Final Shadow
$B_{1,3}$	$B_{n, 3}$		C_{1}	C_{n}

Fig. 4.1. A diagram of the proposed encoding algorithm.

4.2.2 Decoding

To recover the n secret images $A_{1}, A_{2}, \ldots, A_{n}$ from the n final shadows $C_{1}, C_{2}, \ldots, C_{n}$, the decoding uses the Decomposition Phase of the XOR-based (n, n) shadows combination tool in Sec. 4.1.2, followed by the Reveal Phase of the MOD-based $(2,2)$ secret sharing tool in Sec. 4.1.1. Main steps are as follows:

Decoding algorithm: (see its diagram in Fig. 4.2)
Step 1. Use the Decomposition Phase of the XOR-based (n, n) shadows combination tool in Sec. 4.1.2 to reconstruct the half-size images $\left\{B_{i, 1} ; B_{i, 2}\right\}_{1 \leq i \leq n}$ from the n final shadows $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$.

Step 2. For each pair $\left\{B_{i, 1} ; B_{i, 2}\right\}$, where $1 \leq i \leq n$, use the Reveal Phase of MOD-based $(2,2)$ secret sharing tool in Sec. 4.1.1 to recover the secret image A_{i} from $\left\{B_{i, 1} ; B_{i, 2}\right\}$.

Step 3. If the original secret images are not gray-valued, then transform all $n 8$-bits images $A_{1}, A_{2}, \ldots, A_{n}$ to their binary/color equivalent.

In average, the decoding only needs one XOR, one MOD, one ADD and one SUB operations (all are between bytes) to reconstruct each 1-byte (8-bits) pixel value of a secret image. More specifically, in Step 1 of decoding, one XOR operation is needed to recover a 1-byte pixel value of $B_{i, 2}$ for the Decomposition Phase of the XOR-based (n, n) shadows combination tool. In Step 2, one MOD, one ADD and one SUB operations are needed to recover a 1-byte pixel value of A_{i} in the Reveal Phase of the MOD-based $(2,2)$ secret sharing tool.

Fig. 4.2. A diagram of the proposed decoding algorithm.
4.3 Security Analysis

Assume that only $n-1$ final shadows are available, and a shadow C_{j} is missing.

Then, people cannot obtain B^{*} created by $b^{*}=b_{1,1} \oplus b_{2,1} \oplus \cdots \oplus b_{n, 1}$ in Eq. (4.6),
due to the lack of the $b_{j, 1}$ which is in the front half of C_{j}. Without B^{*}, people
cannot reconstruct $B_{1,2}, B_{2,2}, \ldots, B_{n, 2}$ defined by $b_{i, 2}=b_{i, 3} \oplus b^{*}(1 \leq i \leq n)$ in Eq.
(4.8). As a result, no secret image A_{i} can be recovered (see the Reveal Phase of MOD-based $(2,2)$ secret sharing tool in Sec. 4.1.1) due to absence of all $B_{i, 2}$ ($1 \leq i \leq n$).

Below we discuss the probability of obtaining some right secret images A_{i} through guessing. Without the loss of generality, assume that a betrayal party of $n-1$ participants gathers their n-1 final shadows $C_{1}, C_{2}, \ldots, C_{n-1}$, and try to recover some of the n secret images, without the cooperation of the missing shadow C_{n}. From Eq. (4.6)
and (4.8) , we have

$$
\begin{equation*}
b_{i, 2}=b_{i, 3} \oplus b^{*}=b_{i, 3} \oplus b_{1,1} \oplus b_{2,1} \oplus \cdots \oplus b_{n, 1} \quad(1 \leq i \leq n) . \tag{4.9}
\end{equation*}
$$

Because of the lack of $C_{n}=\left[B_{n, 1} ; B_{n, 3}\right]$, for each pixel $b_{n, 1}$ in $B_{n, 1}$, the betrayal party will have to guess a value, and then they use this guessing value to get a set of $n-1$ pixels' values $b_{1,2}, b_{2,2}, \ldots, b_{n-1,2}$ in $B_{1,2}, B_{2,2}, \ldots, B_{n-1,2}$ respectively at the same pixel position (there is no $b_{n, 2}$ value in $B_{n, 2}$ due to the lack of $b_{n, 3}$). Then the $2 \times(n-1)$ secret pixels in $A_{1}, A_{2}, \ldots, A_{n-1}$ can be reconstructed by using $b_{i, 1}$ and $b_{i, 2}$ $(1 \leq i \leq n-1)$ in the Reveal Phase of MOD-based (2, 2) secret sharing tool in Sec. 4.1.1. The above is just to reconstruct two pixels in each $A_{i}(1 \leq i \leq n-1)$. This value-guessing of one pixel, like $b_{n, 1}$, will repeat $(w \times h) / 2$ times if the size of each is $w \times h$ (then, size of $B_{n, 1}$ is $0.5 \times w \times h$).

From the description above, we can evaluate the probability of obtaining some right grayscale images A_{i} of size $w \times h$ as follows:

$$
\text { Probability }=\left(\frac{1}{\text { values range }}\right)^{\frac{w \times h}{2}}=\left(\frac{1}{251}\right)^{\frac{w \times h}{2}}
$$

which is $\left(\frac{1}{251}\right)^{512 \times 512 / 2}=\left(\frac{1}{251}\right)^{131072}=10^{-314530}$ if each image size is 512×512. Here, $\frac{1}{\text { values range }}=\frac{1}{251}$ is the probability to guess successfully a pixel's value whose range is from 0 to $250 ; \frac{w \times h}{2}$ is the number of pixels in $B_{n, 1}$. In fact, for each secret image $A_{i}(1 \leq i \leq n)$ in the encoding process (as we did in Step 1 of the Sharing Phase of MOD-based (2, 2) secret sharing tool in Sec. 4.1.1), we already use a prime number as a key (a seed) of a random number generator to rearrange all pixels' positions of A_{i}. Even if many pixels' values in $B_{n, 1}$ are guessed successfully,
in Step 4 of Reveal Phase of MOD-based (2, 2) secret sharing tool in Sec. 4.1.1, the recovered images $\tilde{A}_{i}(1 \leq i \leq n-1)$ are still extremely noise-like. Therefore, the security guardian is of double levels.

4.4 Experimental Result and Comparisons

4.4.1 Experimental Result

In the experiment here, $n=5$ and the n input images $\left\{A_{1}, A_{2}, \ldots, A_{5}\right\}$ are the 512×512 grayscale images \{Jet, Lena, Pepper, Scene and Baboon\} shown in Fig. 4.3(a-e). The $n=5$ final shadows $\left\{C_{1}, C_{2}, \ldots, C_{5}\right\}$ generated in Sec. 4.2.1 are shown in Fig. 4.4(a-e), and each shadow is as large as each input image. Fig. 4.5(a-e) shows five error-free recovered images $A_{1}, A_{2}, \ldots, A_{5}$ (Jet, Lena, Pepper, Scene and Baboon) in Sec. 4.2.2 using all $n=5$ final shadows $C_{1}, C_{2}, \ldots, C_{5}$. If we only get four shadows, saying, the $C_{1}, C_{2}, \ldots, C_{4}$ in Fig. 4.4(a-d); and then guess the pixel values of images and $B_{5,2}$; then the five recovered images of $A_{1}, A_{2}, \ldots, A_{5}$ are the extremely
noise-like images shown in Fig. 4.6. In addition, to show our constant decoding-time property in the retrieval, we also record in Fig. 4.7 the actual CPU time taken in decoding. The computer used is an IBM laptop with an Intel Pentium 1.70 GHz CPU.

From Fig. 4.7, which deals with n images for $2 \leq n \leq 10$, it can be seen that our decoding time for each one of the n secret image really does not vary as the value of n varies.
MTITII

Fig. 4.4. The five generated noise-like shadows $\left\{C_{1}, C_{2}, \ldots, C_{5}\right\}$ in the $n=5$ case.

Fig. 4.5. The five error-free images recovered by using all five shadows (Fig. 4.4) in the $n=5$ case.

Fig. 4.6. The $n=5$ images $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ recovered by using only four shadows
$C_{1}, C_{2}, C_{3}, C_{4}$ (Fig. $4.4(\mathrm{a}-\mathrm{d})$) and two guessed images $B_{5,1}$ and $B_{5,2}$ in the $n=5$

n	2	3	4	5	6	7	8	9	10
millisecond	15 ms								

Fig. 4.7. The CPU time (milliseconds) for decoding 512×512 pixels of one image in our (n, n) systems. (So the CPU time for decoding 512×512 pixels of all n images are $15 n$ milliseconds.)

4.4.2 Comparisons

Table 4.1 compares between our method and other multi-secrets schemes [23-26] in terms of two quantifiable measures: 1) O / I size ratio and 2) decoding computational complexity. For comparison, the same conditions hold for each scheme; they are: (1) there are n secret images; (2) every recovered image must be lossless; (3) The computer versions of VC schemes $[24,25]$ are implemented using OR-like operation to simulate the stacking action of transparencies. From Table 4.1, we can see that our method not only keeps O / I size ratio as small as 1 , but also needs only constant decoding operations to reconstruct a secret pixel. Other schemes either have O/I size ratio larger than 1 , or need non-constant decoding complexity to reconstruct a secret pixel.

1896

Table 4.1. O/I size ratio and decoding complexity.

Schemes	O/I size ratio ${ }^{(1)}$	Decoding complexity ${ }^{(2)}$ (smaller is better)
Feng et al. [23]	$1 \sim 2$	$O\left(\log ^{2} k\right)$ (Math operations) ${ }^{(3)}$
Shyu et al. [24]	4	$2 \times n($ OR-like operations)
Feng et al. [25]	6	$3 \times n($ OR-like operations)
Alvarez et al. $[26]$	$(n+1) / n$	$1($ MOD operation) and
		$O(n)\left(\right.$ Math operations $\left.{ }^{(4)}\right)$

${ }^{(1)}$ Total size of shadows divided by total size of input images.
${ }^{(2)}$ Complexity to decode a pixel of a secret image.
${ }^{(3)} k$ is a user-specified threshold value, it can depend on n or not; e.g. $k=0.5 n$ or $k=3$.
${ }^{(4)}$ Math operations:,,$+- \times, \div$

4.5 Summary

In this chapter, a novel lossless sharing scheme for multiple secret images is designed using MOD and XOR operations. Our advantages are: i) the total size of the n given secret images are the same as the total size of the n final shadows (hence our O / I size ratio is 1); ii) we only needs one XOR, one MOD, one ADD and one SUB (all are byte-to-byte) operations to get a lossless recovery of each secret pixel's 8 -bits value for the given binary/grayscale/color images (hence our decoding computational complexity for each pixel is a constant and independent of n).

$$
1896
$$

Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this dissertation, we have proposed three methods to improve and extend image sharing techniques. The first is a Boolean-based missing-allowable (k, n) scheme which is fast and with reasonable size of shadows. The second is a modulus-operations-based sharing scheme equipped with user-friendly shadows and
progressive decoding simultaneously. The last is a scheme that shares multiple images
by using both Boolean and modulus operations; it is with economical shadow size and
low decoding computational load.
In order to improve secret sharing for single image in storage space and computational complexity, we have designed successfully an economical and fast scheme based on Boolean (XOR) operations in Chapter 2. In that method, the pixel expansion rate (per) of the generated shadows is between 0 and 2, hence the storage space of shadows is reasonable. Moreover, it is close to 0 when the value if k is large and close to the value of n in a (k, n) scheme, e.g. per $=2 / n$ in all (n, n) schemes. In computational complexity, the scheme only uses three 1 -bit/8-bit/24-bit XOR operations per secret pixel to recover the given binary/grayscale/color image. Besides, unlike some probabilistic approaches, our recovered image is lossless. Our scheme is missing-allowable because it is a (k, n)-threshold scheme, which requires only k out of the n shadows appear in the recovery meeting.

In Chapter 3, besides being with user-friendly shadows and progressive decoding, our method also owns other advantages: (1) the non-stego shadows' image quality can
be controlled by a parameter value; (2) each shadow is not expanded in the non-stego version (Sec. 3.2.3), and it is at most only 1.6 times larger than original secret image in the stego version (Sec. 3.2.5); (3) each pixel can be reconstructed by k shadows quickly with linear computational complexity $O(k)$; and (4) the recovery is lossless after collecting all n shadows

In order to deal with multiple images, based on Boolean (XOR) and modulus operations, we have designed successfully a multi-images scheme in Chapter 4 that saves storage space of shadows and reduces decoding computational complexity. In the proposed method, the total size of the generated shadows is identical to that of the given secret images. Therefore, our method will not need extra space in images-database to store the generated shadows that replaces the original secret images. Furthermore, after gathering all n shadows, the lossless decoding process only uses constant operations to reconstruct each pixel of each given secret image, whatever the n is. Hence no matter how many secret images are used in our method, the CPU time in decoding each secret image will not increase as the number of secret images increases.

1896

5.2 Future Works

In Chapters 2 and 3, the two proposed methods only work for single image: they can not deal with two or more images simultaneously in one sharing process. However, simultaneous dealing with multiple images is very common in today's business. Several studies in sharing of multiple images had been reported [23-29]. Unfortunately, these reported methods either have big-size shadow images [24-25, 27] or huge stego images [23,29]) or need an extra shadow image called public shadow [26]. Moreover, for decoding, the amount of operations linearly increases as the
number of secret images [26] or gathered shadows [23] increases. In Chapter 4, we had successfully designed an improved multiple-images method, emphasizing the reduction of both storage space and computational complexity. Our multi-images scheme can share n given secret images and generate n non-expanded shadow images. This novel scheme only needs a few computational operations in the recovery of each secret pixel; whatever the value of n is.

Although our method is better than other multi-images schemes in O/L size ratio and decoding time; the multi-images schemes [23-26] have advantages of their own: 1) Feng et al.'s [23] uses generalized access structures to achieve higher flexibility; 2) if the shadows are printed in transparencies, then the VC schemes [24-25] can also reveal images by doing physical stacking of transparencies (although true-color images will be very hard for VC to retrieve error-freely by stacking transparencies); 3)

Alvarez et al.'s method [26] can process n given secret images of non-equal sizes.
To improve our multi-images sharing scheme in the future, the above three advantages of [23-26] will be the main guideline of ours. Also, besides the space and time efficiency that we already achieved herein; in the future, we hope to add to our multi-images scheme some other features, such as the missing-allowable property, user-friendly shadows, and progressive decoding.

References

[1] A. Shamir, "How to share a secret," Communications of the ACM, Vol. 22, No. 11, pp. 612-613, 1979.
[2] M. Naor and A. Shamir, "Visual cryptography," Advances in Cryptography EUROCRYPT'94; Lecture Notes in Computer Science, Vol. 950, pp. 1-12, 1995.
[3] R. Z. Wang and C. H. Su, "Secret image sharing with smaller shadow images," Pattern Recognition Letters, Vol. 27, pp. 551-555, 2006.
[4] C. C. Lin and W. H. Tsai, "Visual cryptography for gray-level images by dithering techniques," Pattern Recognition Letters, Vol. 24, pp. 349-358, 2003.
[5] S. J. Lin and J. C. Lin, "VCPSS: A two-in-one two-decoding-options image sharing method combining visual cryptography (VC) and polynomial-style sharing (PSS) approaches," Pattern Recognition, Vol. 40, pp. 3652-3666, 2007.
[6] C. C. Thien and J. C. Lin, "Secret image sharing," Computers and Graphics, Vol. 26, No. 5, pp. 765-770, 2002.
[7] C. C. Thien and J. C. Lin, "An image-sharing method with user-friendly shadow images," IEEE Trans. Circuits \& Systems for Video Technol., Vol. 13, No. 12, pp. 1161-1169, 2003.
[8] Y. S. Wu, C. C. Thien and J. C. Lin, "Sharing and hiding secret images with size constraint," Pattern Recognition, Vol. 37, pp. 1377-1385, 2004.
[9] S. K. Chen and J. C. Lin, "Fault-tolerant and progressive transmission of images," Pattern Recognition, Vol. 38, pp. 2466-2471, 2005.
[10] C. N. Yang and T. S. Chen, "Aspect ratio invariant visual secret sharing schemes with minimum pixel expansion," Pattern Recognition Letters, Vol. 26, pp. 193-206, 2005.
[11] C. N. Yang and T. S. Chen, "Extended visual secret sharing schemes: improving
the shadow image quality," International Journal of Pattern Recognition and Artificial Intelligence, Vol. 21, pp. 879-898, 2007.
[12] Y. C. Hou, "Visual cryptography for color images," Pattern Recognition, Vol. 36, pp. 1619-1629, 2003.
[13] R. Lukac and K. N. Plataniotis, "A color image secret sharing scheme satisfying the perfect reconstruction property," IEEE $6^{\text {th }}$ Workshop on Multimedia signal Processing, Siena, Italy, September 29-October 1, 2004 (pp. 351-354).
[14] R. Lukac and K. N. Plataniotis, "Color image secret sharing," IEE Electronics Letters, Vol. 40, pp. 529-531, 2004.
[15] R. Lukac and K. N. Plataniotis, "Bit-level based secret sharing for image encryption," Pattern Recognition, Vol. 38, pp.767-772, 2005.
[16] C. N. Yang, "New visual secret sharing schemes using probabilistic method," Pattern Recognition Letters, Vol. 25, pp. 481-494, 2004.
[17] F. Yi, D. Wang, X. Li and Y. Dai, "Colored probabilistic visual cryptography scheme with reversing," Security and Management, pp. 138-141, 2007.
D. Wang, L. Zhang, N. Ma and X. Li, "Two secret sharing schemes based on Boolean operations," Pattern Recognition, Vol. 40, pp. 2776-2785, 2007.
[19] W. P. Fang, "Friendly progressive visual secret sharing," Pattern Recognition, Vol. 41, pp. 1410-1414, 2008.
[20] K. H. Hung, Y. J. Chang, and J. C. Lin, "Progressive sharing of an image," Optical Engineering, Vol. 47, No. 4, pp. 047006-1-047006-14, 2008.
[21] D. Jin, W. Q. Yan, and M. S. Kankanhalli, "Progressive color visual cryptography," Journal of Electronic Imaging, Vol. 14, No. 3, pp. 033019-1-033019-13, 2005.
[22] W. P. Fang and J. C. Lin, "Progressive viewing and sharing of sensitive images," Pattern Recognition and Image Analysis, Vol. 16, No. 4, pp. 632-636, 2006.
[23] J. B. Feng, H. C. Wu, C. S. Tsai and Y. P. Chu, "A new multi-secret images sharing scheme using Largrange's interpolation," The Journal of Systems and Software, Vol. 76, pp. 327-339, 2005.
[24] S. J. Shyu, S. Y. Huang, Y. K. Lee, R. Z. Wang and K. Chen, "Sharing multiple secrets in visual cryptography," Pattern Recognition, Vol. 40, pp. 3633-3651, 2007.
[25] J. B. Feng, H. C. Wu, C. S. Tsai, Y. F. Chang and Y. P. Chu, "Visual secret sharing for multiple secrets," Pattern Recognition, Vol. 41, pp. 3572-3581, 2008.
[26] G. Alvarez, L. H. Encinas and A. M. del Rey, "A multisecret sharing scheme for color images based on cellular automata,"Information Sciences, Vol. 178, pp. 4382-4395, 2008.

[27] H. C. Wu and C. C. Chang, "Sharing visual multi-secrets using circle shares," Computer Standards \& Interfaces, Vol. 28, pp. 123-135, 2005.
[28] C. S. Tsai, C. C. Chang and T. S. Chen, "Sharing multiple secrets in digital images," The Journal of Systems and Software, Vol. 64, pp. 163-170, 2002.
[29] W. P. Fang and J. C. Lin, "Universal share for the sharing of multiple images," Journal of the Chinese Institute of Engineers, Vol. 30, No. 4, pp. 753-757, 2007.
[30] R. Lukac and K. N. Plataniotis, "A cost-effective encryption scheme for color images," Real-Time Imaging, Vol. 11, pp. 454-464, 2005.
[31] C. C. Chang, C. C. Lin, C. H. Lin and Y. H. Chen, "A novel secret image sharing scheme in color images using small shadow images," Information Sciences, Vol. 178, pp. 2433-2447, 2008.
[32] C. Blundo and A. D. Santis, "Visual cryptography schemes with perfect reconstruction of black pixels," Computers and Graphics, Vol. 22, No. 4, pp. 449-455, 1998.
[33] S. J. Shyu, "Efficient visual secret sharing scheme for color images," Pattern

Recognition, Vol. 39, pp. 866-880, 2006.
[34] C. N. Yang and T. S. Chen, "Reduce shadow size in aspect ratio invariant visual secret sharing schemes using a square block-wise operation," Pattern Recognition, Vol. 39, pp. 1300-1314, 2006.
[35] C. Blundo, S. Cimato and A. D. Santis, "Visual cryptography schemes with optimal pixel expansion," Theoretical Computer Science, Vol. 369, pp. 169-182, 2006.
[36] Z. Zhou, G. R. Arce and G. D. Crescenzo, "Halftone visual cryptography," IEEE Transactions on Image Processing, Vol. 15, No. 8, pp. 2441-2453, 2006.
[37] R. Lukac and K. N. Plataniotis, "Digital image indexing using secret sharing schemes: a unified framework for single-sensor consumer electronics," IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, pp. 908-916, 2005.
[38] D. C. Lou, H. K. Tso and J. L. Liu, "A copyright protection scheme for digital images using visual cryptography technique," Computer Standards and Interfaces, Vol. 29, pp. 125-131, 2007.
[39] C. N. Yang, T. S. Chen, K. H. Yu and C. C. Wang, "Improvements of image sharing with steganography and authentication," The Journal of Systems and Software, Vol. 80, pp. 1070-1076, 2007.
[40] R. Z. Wang and S. J. Shyu, "Scalable secret image sharing," Signal Processing: Image Communication, vol. 22. pp. 363-373, 2007.
[41] C. M. Hu and W. G. Tzeng, "Cheating Prevention in Visual Cryptography," IEEE Transactions on Image Processing, Vol. 16, No. 1, pp. , 36-45, 2007.
[42] C. C. Chang, Y. P. Hsieh and C. H. Lin, "Sharing secrets in stego images with authentication," Pattern Recognition, Vol. 41, pp. 3130-3137, 2008.
[43] C. C. Chang, C. C. Lin, T. H. N. Le and H. B. Le, "Sharing a verifiable secret image using two shadows," Pattern Recognition, Vol. 42, pp. 3097-3114, 2009.
[44] G. Ateniese, C. Blundo, A. D. Santis and D. R. Stinson, "Visual cryptography for general access structures," Information and Computation, Vol. 129, pp. 86-106, 1996.
[45] Y. F. Chen, Y. K. Chan, C. C. Huang, M. H. Tsai and Y. P. Chu, "A multiple-level visual secret-sharing scheme without image size expansion," Information Sciences, Vol. 177, pp. 4696-4710, 2007.
[46] A. M. del Rey, J.P. Mateus and G. R. Sanchez, "A secret sharing scheme based on cellular automata," Applied Mathematics and Computation, vol. 170, pp. 1356-1364, 2005
[47] Z. Eslami, S. H. Razzaghi and J. Z. Ahmadabadi, "Secret image sharing based on cellular automata and steganography," Pattern Recognition, Vol. 43, pp. 397-404, 2010.
[48] M. H. Dehkordi and S. Mashhadi, "An efficient threshold verifiable multi-secret sharing," Computer Standards and Interfaces, vol. 30, pp. 187-190, 2008.
[49] Y. J. Chang, S. J. Lin and J. C. Lin, "Authentication and cross-recovery for multiple images," Journal of Electronic Imaging, Vol. 17, No. 4, pp. 043007-1-043007-12, 2008.

[50] W. P. Fang and J. C. Lin, "Multi-channel secret image transmission with fast decoding: by using bit-level sharing and economic-size shares," IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 5B, pp. 228-234, 2006.
[51] W. P. Fang and J. C. Lin, "Visual cryptography with extra ability of hiding confidential data," Journal of Electronic Imaging, Vol. 15, No. 2, pp. 023020-1-023020-7, 2006.

Vita

Kun-Yuan Chao received his B.S. degree in Computer and Information Science in 1996 from National Chiao Tung University, Taiwan. Then he received his M.S. degree in Computer Science and Information Engineering in 1999 from National Taiwan University, Taiwan. He is currently a Ph.D. candidate of the Computer and Information Science Department, National Chiao Tung University, Taiwan. His recent research interests include secret image sharing, visual cryptography and image

Publication List of Kun-Yuan Chao

A. Journal papers

Published:

1. Kun-Yuan Chao and Ja-Chin Lin, "Secret Image Sharing: a Boolean-operations-based Approach Combining Benefits of Polynomial-based and Fast Approaches," International Journal of Pattern Recognition and Artificial Intelligence, Vol. 23, No. 2, pp. 263-285, March 2009. (SCI)
2. Kun-Yuan Chao and Ja-Chin Lin, "User-friendly Image Sharing: a Progressive Approach Based on Modulus Operations," Journal of Electronic Imaging, Vol. 18, No. 3, pp. 033008-1-033008-9, July-September 2009. (SCI)

Kun-Yuan Chao, and Ja-Chin Lin, "Fault-tolerant and Non-expanded Visual Cryptography for Color Images," WSEAS Trans. on Information Science \& Applications, Issue 11, Vol. 3, pp. 2184-2191, November 2006.

1896

4. Kun-Yuan Chao, and Ja-Chin Lin, "Sharing of Multiple Images: an Economic-Size and Fast-Decoding Approach based on Modulus and Boolean Operations," Optical Engineering, November 2009. (SCI)

B. Conference papers

Published:

5. Kun-Yuan Chao, and Ja-Chin Lin, "(2, 3)-threshold Visual Cryptography for Color

Images," Proc. of the 6th WSEAS International Conference on Signal Processing, Computational Geometry \& Artificial Vision, Elounda, Greece, August 21-23, 2006 (pp. 89-94).
6. Kun-Yuan Chao, "A Progressive Visual Sharing Scheme with Multiple Thresholds", The 21th IPPR Conference on Computer Vision, Graphics and Image Processing (CVGIP2008), Yilan, Taiwan, R.O.C., August 24-26, 2008 (pp. 129).

