
 

 1 

Chapter 1 

Introduction 

 

In this chapter, motivation for the dissertation is first introduced in Section 1.1. A 

brief review of the related researches is presented in Section 1.2. Section 1.3 gives an 

overview of the dissertation. Finally, the organization of the dissertation is stated in 

Section 1.4. 

 

1.1 Motivation 

Polynomial-style sharing (PSS) [1] and visual cryptography (VC) [2] are two 

well-known sharing approaches to secure an image file for storage and transmission. 

In general, the two approaches share a secret or important image among several 

extremely noise-like images called shadows (or shares). Combing these shadows can 

reconstruct the secret or important image later. Several extended researches of [1] and 

[2] about image sharing have been reported. Examples include, but not limit to, Wang 

and Su‟s reduction of memory cost for shadows [3]; Lin and Tsai‟s extension of 

binary VC to grayscale images [4]; Lin and Lin‟s two-in-one sharing method VCPSS 

[5] that combined visual cryptography (VC) and polynomial-style sharing (PSS). 

Polynomial-style sharing using polynomials [1, 3, 6-9] is one of the popular 

secret sharing approaches to protect secret images. This kind of approach can restore 

the secret images without any loss, and the size of each shadow image can even be 

several times smaller than that of the given secret image [3, 6]. Therefore, 

space-wasting is seldom a problem for sharing using polynomials. However, the 

retrieval speed is very slow because of the evaluation of polynomials. 
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On the contrary, a fast approach called visual cryptography (VC) [2, 4, 10-12], 

which shares a secret image using several “size-enlarged” transparencies, is often 

utilized to deal with images whose brightness are only of a few levels (for example, 

black-and-white, 3-levels, or 4-levels). In the recovery phase of VC, a “size-enlarged” 

version of the secret image can be visually decoded instantly by human eyes after 

“physically stacking” the transparencies; therefore, there is no need to use a computer. 

However, as the images‟ gray levels increase from 2 or 4 levels to 256 levels, human 

eyes can no longer be utilized in decoding by generating transparencies, unless the 

256-level image is first pre-quantized to, saying, a 2-level image by approximation 

techniques such as halftone. Therefore, the decoding is not error-free, and it is just an 

approximation. Nevertheless, if we use a computer to replace the roles of human eyes 

as the decoder for VC, then there is no need to use the error-introduced 256-to-2 

pre-quantization, for the computer can handle each bit-plane individually. 

Unfortunately, even though the concept of using physical transparencies can be 

transformed to the concept of using digital files in a computer or network, each digital 

file is several times larger than the secret image file itself [13-15], for each 

transparency in VC is already several times larger than the secret image. 

Although people can use the digitalized version of an elegant method proposed 

in [16] that has no size expansion because of using probabilistic skill; the recovered 

secret image is not lossless. In general, size expansion problem is a disadvantage for 

VC-based fast approaches: to store digital shadow images in the computer often 

requires large storage space. 

From the analysis in above two paragraphs, we can see that these two kinds of 

sharing approaches are quite different, and each has its own speed-vs.-space 

advantage and disadvantage. A question arises naturally: “can a sharing system have 

both advantages in speed and space?” In other words, can people have some 
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economical-size shadows which can reconstruct the given secret image in a loss-free 

manner after only using a few operations to decode each pixel? The answer is positive. 

Wang et al. [17-18] had gracefully provided their answer, to certain level, in their 

second scheme [18] which is an (n, n) scheme. 

In Chapter 2, we will improve Wang et al.‟s (n, n) scheme in order to have the 

“missing-allowable” (k, n)-threshold ability, i.e. in the reconstruction of the secret, 

any k out of the n shadows will work. The proposed scheme generates the n desired 

shadows for a given color (grayscale/binary) image A, so that each shadow‟s size is 

less than two times the size of A. Furthermore, the lossless decoding process only uses 

quite a few exclusive-OR (XOR) operations. Hence there is no complex computation. 

In above two well-known sharing approaches, i.e. PSS [1] and VC [2], there are 

some other extensions which are “applications-oriented”, such as (1) user-friendly 

shadows [7, 19] for easier management of shadows, and (2) progressive decoding [9, 

19-22] of an image which is moderately sensitive but still need to be processed every 

day. For example, among the PSS approaches [7, 9, 20], Thien and Lin [7] firstly 

introduced the idea of using “user-friendly” (i.e. visually-recognizable) shadows; 

Chen and Lin [9] designed a sharing method for progressive transmission of images; 

Hung et al. [20] also proposed a progressive sharing method according to three 

pre-specified thresholds. In VC approaches [19, 21-22], Jin et al. [21] developed a 

progressive VC technique for grayscale/color images with three types of decryptions 

to enable the recovery in varying qualities; Fang reported in [19] a progressive 

viewing method which extended Fang and Lin‟s work [22] to utilize user-friendly 

shadows and progressive decoding simultaneously. 

From the viewpoint of shadows‟ management, to classify or locate a shadow, 

attaching a name-tag to each shadow in advance is needed if each shadow looks like 

random-noise (most reported methods [9, 20-22] have this kinds of shadows). Another 

http://search.ijcsns.org/02_search/02_search_02.php?keyfield=author&key=Wen-Pinn%20Fang&c_search=1
http://search.ijcsns.org/02_search/02_search_02.php?keyfield=author&key=%20Ja-Chen%20Lin&c_search=1
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way is to use visually-identifiable shadows. They are also called as user-friendly 

shadows (first mentioned in Ref. [7], then in Ref. [19]), for their visually-identifiable 

feature (each shadow looks like a visual-quality-reduced version of a given image) 

makes the managing job of shadows become easier for database manager. For 

example, if there are 100 important images and each creates 2 to 17 shadows of its 

own. Then it is easy to visually recognize that a stored shadow is from, saying, House 

image, rather than from other 99 images. 

Both [7] and [19] can be used in a system consisting of distributed storage 

branches, and each branch stores one of the shadow images. When a branch needs the 

original image, all other branches can transmit its own shadow to the receiver, and all 

other branches may transmit simultaneously in parallel. From the viewpoint of a local 

manager (the manager of a branch), noise-like shadow images are difficult to identify 

and manage, i.e. they are not user-friendly. Therefore, it is more convenient for a local 

manager to manage shadow images that look like visual-quality-reduced versions of 

the original images. Hence, user-friendly shadows such as those produced by [7] and 

[19] are welcome in distributed storage system. On the other hand, to avoid unfaithful 

local manager from selling the shadow stored in his branch, it is suggested that the 

image quality of each shadow cannot be too good. 

Although Thien and Lin
 
[7] firstly introduced the idea of using “user-friendly” 

(visually-recognizable) shadows, their method is not progressive, and the 

reconstruction by all shadows is not lossless. These two weaknesses will be avoided 

by our method proposed in Chapter 3. So far, only Fang‟s method [19] (which is 

lossless when all shadows are collected) simultaneously owns the following two 

application-convenient features: 1) user-friendly shadows and 2) progressive decoding. 

Unfortunately, its shadows are four times larger than the input image; and thus not 

economical in memory space if implemented on computers. To improve it, we 
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propose in Chapter 3 a novel progressive and user-friendly approach based on 

modulus operations. Better than Fang‟s method [19], our method possesses extra 

advantages: 3) non-expansion in size of shadows; 4) controllable quality of shadow 

images. Meanwhile, like Fang‟s method, our method has lossless recovery when all n 

shadows are used, and the decoding complexity is O(k) for the reconstruction using k 

shadows (kn). 

In the above, if a secret image is to be protected by some participants in a team, 

then each participant can hold some of the generated shadows after sharing the secret 

image. Later in a meeting, when the number of collected shadows from participants 

reaches a specified threshold value, then the shared secret image is reconstructed. 

However, in real life, a project team often process more than one secret image 

simultaneously. Therefore, some researches [23-29] shared multiple images in one 

encoding process. For example, the elegant PSS scheme [23] presented by Feng et al. 

used Lagrange interpolation to deal with multi-secret images. Their method is an 

economical method, for it has a very low O/I size ratio between 1 and 2, i.e. total 

input images‟ size is at least 50% of the total output shadows‟ size, and 100% is 

possible. But the computational complexity O(log
2
k) would be needed to reconstruct 

each secret pixel by using Lagrange interpolation from k required shadows. To the 

contrary, to save computational operations in the retrieval of secret images, Visual 

Cryptography (VC) schemes can be used. For example, Shyu et al. used two circular 

shadows to design a VC scheme [24] which can share more than two secret images. 

Feng et al. also presented a multi-secret VC scheme [25], and their shadows are in 

rectangular shape. By stacking the shadows (know as transparencies in VC field), 

these VC schemes are very fast in revealing all secret images. The disadvantage of 

using VC methods is their high O/I size ratio due to the high pixel-expansion-rate 

(per≧2) in generating shadows. (As for the disadvantage of the low-contrast of the 
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images recovered by stacking transparencies; it can be avoided if VC methods are 

implemented on computer.) When VC methods are implemented on computer to 

reconstruct n original secret images error-freely, the complexity to decode a pixel of a 

secret image would be O(n) due to the high per. Besides PSS and VC schemes, 

Alvarez et al. also developed a multi-secrets sharing scheme [26] for color images 

with different sizes based on modulus operations. Albeit their O/I size ratio is a very 

good value (n+1)/n after sharing n secret images by n+1 shadows; their reconstruction 

in each secret pixel needs one modulus operation and many mathematical operations 

(addition or subtraction) whose computational complexity is O(n). 

 Among the multi-secrets schemes [23-26], no one can simultaneously own the 

two advantages: (1) O/I size ratio is 1, and (2) only constant number of operations is 

needed to reconstruct each secret pixel. To achieve these two advantages 

simultaneously, we propose in Chapter 4 a novel sharing scheme for multiple images, 

by using modulus (MOD) and exclusive-OR (XOR) operations. The proposed method 

generates n extremely noise-like shadows for n given binary/grayscale/color secret 

images (notably, the n given images all have the same size), and each shadow‟s size is 

identical to each given image. When the n shadows replace the n original secret 

images in image database; since our O/I size ratio is always 1, we will not need extra 

storage space. Furthermore, after gathering all n shadows, our lossless decoding 

process only uses one XOR, one MOD, one addition (ADD) and one subtraction 

(SUB) operations (symbolized as “⊕”, “Mod”, “＋” and “－”) to reconstruct each 

pixel‟s 8-bits value of each secret image. This holds for all values of n. Hence, no 

matter how many secret images are shared, the CPU time in decoding each secret 

image will not increase. In summary, the proposed method is not only economical in 

storage space of shadows but also fast in decoding. 
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1.2 Related Studies 

1.2.1 Image Sharing Schemes with Small Shadows or Fast Decoding 

Shamir‟s polynomial secret sharing [1] is a popular technology to protect secret 

images. This technology uses polynomials to divide the secret image into several 

shadows, which have the same size as the secret image for perfect security. After an 

advanced method proposed by Thien and Lin [6] to improve [1], the size of each 

shadow image can even be k times smaller than that of the given secret image by 

letting k coefficients in the k-1 degree polynomial be the gray values of k pixels. Then, 

Wang and Su proposed a better method in [3] to encode the difference image from the 

secret image using Huffman coding scheme and evaluate the arithmetic calculations 

of the sharing functions in a power-of-two Galois Field GF(2
t
). Their experiment 

results show that each generated shadow image in their proposed method is about 

40% smaller than that of the method in [6]. Obviously, secret image sharing 

approaches using polynomials can save much space in storage of shadows, and they 

only need less time in transmission of shadows for recovery later. Besides the above 

two methods [3, 6], Chang et al. also had a polynomial secret image sharing scheme 

[31] in color images using small shadow images. 

On the other hand, a faster approach bases on visual cryptography is to use the 

digitalized versions of [2, 4, 10-12, 32-36] to share a digital image among several 

“size-enlarged” digital images also called shadows. Recently, to improve the 

efficiency and speed in sharing digital color images, Lukac and Plataniotis smartly 

proposed some implemented-easily methods [13-15, 30] whose decoding use 

“OR-like” operations or look up basis matrices. (The rule of OR-like operation is that: 

“the reconstructed pixel is black iff at least one of the corresponding sharing pixels is 

black; hence, the reconstructed pixel is white iff all corresponding sharing pixels are 
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white.”) Their new methods can recover the original image error-freely in a very fast 

speed by looking up basis matrices; although in [13-15] quite often the shadow 

images generated in their (k, n)-schemes are still several times larger than the secret 

image. (Notably, (k, n)-schemes means that in the reconstruction of the secret, any k 

out of the n shadows can get the secret; while less than k shadows cannot.) As for [30], 

the size of each shadow images is the same as the secret image size, but [30] is for 

k=n=2 only. 

Besides “OR-like” operations in VC, Wang et al. also proposed some fast 

schemes with the intention of small pixel expansion rate (per) in [17-18] by using 

Boolean operations. Their (k, n) scheme in [17] and their first scheme (a (2, n) scheme) 

in [18] are both probabilistic (and hence might be lossy in image retrieval). Their 

second scheme in [18] is a deterministic (n, n) scheme for grayscale images 

(extension to color images is also possible); and hence causes lossless retrieval. 

Notably, in their (n, n) scheme [18], it splits a secret image A among n shadows C1, 

C2, …, Cn, whose pixel expansion rate is one. After receiving all n shadows, it uses 

only n-1 XOR operations to reconstruct a pixel of A. Therefore, their scheme [18] 

owns acceptable size in shadows and fast decoding simultaneously. 

 

1.2.2 Image Sharing Schemes with User-friendly Shadows or Progressive 

Decoding 

User-friendly shadows and progressive decoding are two special extensions in 

image sharing. There are only few studies for the two different application purposes in 

PSS and VC, for example, user-friendly shadows in [7, 19] are for easier management 

of shadows and progressive decoding in [5, 9, 19-22] are for some important images 

which are moderately sensitive but still need to be processed every day.  

In the aspect of user-friendly shadows, Thien and Lin [7] utilize their fundamental 



 

 9 

work [6] to present the first user-friendly image-sharing method. In the first method, 

every pixels-block is classified as smooth or coarse one. If this block is smooth, the 

differences of pixel values in this block will be shared by using their fundamental 

polynomial sharing approach [6] and then hide these sharing results in the last pixel 

value of previous block. If this block is coarse, the quantized results of pixel values in 

this block will be shared and then hide these sharing results in the maximum pixel 

value of this block. Because all sharing values are hidden into some pixel values in 

input image, every shadow will reveal a visual-quality-reduced version of original 

image. Thien and Lin call these images with visual-quality-reduced version of input 

image as “user-friendly” shadows due to the easy management. Besides using 

polynomial sharing, Fang reported in [19] a new sharing method which extended 

Fang and Lin‟s work [22] to have user-friendly shadows and progressive viewing 

simultaneously. In this new sharing method, an input image first is expanded into four 

times in size by using (2, 2) threshold scheme of VC. And then the expanded version 

is shared into several shadows by his proposed mapping table. Because the mapping 

table is designed based on the relation between pixel values in expanded version and a 

stego image, the shadows will reveal the visual-quality-reduced version of the stego 

image. In addition, this new sharing method also owns the progressive decoding effect 

due to that it is an extension of the VC progressive scheme [22]. 

In the aspect of progressive decoding, there are more reported researches than in 

user-friendly shadows. For example in VC approaches, except that Fang and Lin use 

random distribution of black pixels in (2, 2) threshold VC scheme to propose the 

above progressive viewing scheme [22], Jin et al. [21] also developed a progressive 

VC technique for grayscale/color images with three types of decryptions to enable the 

recovery in varying qualities. In [21], the physical transparency stacking type of 

decryption enables the recovery of the traditional VC quality image; an enhanced 

http://search.ijcsns.org/02_search/02_search_02.php?keyfield=author&key=Wen-Pinn%20Fang&c_search=1
http://search.ijcsns.org/02_search/02_search_02.php?keyfield=author&key=%20Ja-Chen%20Lin&c_search=1
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stacking technique enables the decryption into a halftone quality image; finally, a 

computation-based decryption scheme makes the perfect recovery of the original 

image possible. Among the polynomial-sharing approaches, Chen and Lin [9] 

designed a sharing method for progressive transmission of images by bit plane 

scanning method to rearrange the gray value data of original image and different 

thresholds to share these rearranged data. Hung et al. [20] also proposed a progressive 

sharing method by using three pre-specified thresholds to share the DCT values in low, 

middle and high bands of input image. In addition, Lin and Lin‟s two-in-one sharing 

method VCPSS [5] has two different qualities in recovered images by combine VC 

and PSS both approaches. Besides the above two special extensions, many image 

sharing schemes [37-43] had been reported for other kinds of applications, such as 

digital image indexing [37], copyright protection [38], authentication [39, 42], etc.  

 

1.2.3 Secret Sharing Schemes for Multiple Images 

In order to process more than one secret image in a project for most meetings, 

some related researches reported based on the above two well-known approaches 

(PSS and VC) are to share multi-secret images in one encoding process. For example 

in PSS approach, a polynomial secret sharing scheme [23] presented by Feng et al. by 

using Largrange‟s interpolation is for processing multi-secret images in generalized 

access structures [44]. Their generated shared data for each qualified set is 1/(k-1) 

smaller than the original secret image if the corresponding qualified set has k 

participants. Therefore, their method has a maximal O/I size ratio as 2 when every 

qualified subgroup separates to each other in the worst case (which needs maximal 

additional qualified subgroups inserted to form the minimal sharing circle), and a 

minimal O/I size ratio as 1 when no any additional qualified subgroup is needed for 

the minimal sharing circle in the best situation. However, a higher computational 
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complexity O(log
2
k) will be needed to reconstruct each secret pixel due to 

Largrange‟s interpolation used in k required shadows. In another aspect, to avoid large 

number of computer‟s operations in retrieval of secret images, some VC schemes 

[24-25, 27, 45] are reported for this fast-decoding purpose. For example, Wu and 

Chang used two circle shadows to share two secret images in their VC scheme [27]. 

Then Shyu et al. also used two circle shares to design a VC scheme [24] which can 

share more than two secret images. To make the two shadows are in rectangular form 

rather than circle ones, Feng et al. also presented a multi-secret images VC scheme 

[25]. Although the above three VC schemes don‟t need any computation to reveal all 

secret images by stacking their transparencies (shadows), each revealed image is very 

low in contrast, such as 1/4 times lower contrast in [27], 1/2n times lower contrast in 

[24] and 1/3n times lower contrast in [25] as n secret images are shared. If their 

methods are implemented in computers to reconstruct original n secret image files 

error-freely, their O/I size ratios will be very high (O/I size ratios are 4, 4, 6 in [27], 

[24] and [25] respectively) due to high pixel-expansion-rate (per = 4 [27], 2n [24], 3n 

[25]) in their shadows. Moreover, their decoding computational complexity would be 

O(n), because 2n or 3n OR-like operations are needs to reconstruct each secret pixel 

in [24, 27] or [25]. Besides PSS and VC schemes, Alvarez et al. also developed a 

multi-secrets sharing scheme [26] for color images with different size based on the 

use of bi-dimensional reversible cellular automata [46-47]. After using one modulus 

and about 9n addition operations to create each sharing pixel, there are n+1 generated 

shadow images to replace input n secret images. One of these generated shadows is 

public. So that the O/I size ratio in [26] is a very low value (n+1)/n. Nevertheless, 

their reconstruction in each secret pixel needs one modulus operation and many 

mathematical operations (addition or subtraction) whose computational complexity is 

O(n). Albeit Tsai et al. proposed a multiple secrets sharing scheme [28] for digital 
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images to own simultaneously low O/I size ratio (n+1)/n and constant computational 

complexity (one XOR operation) in decoding each secret pixel, their method can not 

share one secret image to more than two participants. Besides the above 

efficiency-oriented purpose, some secret sharing schemes in multiple images had been 

reported for some special application purposes, such as verification [48], 

authentication and cross-recovery [49]. 

 

1.3 Overview of the Dissertation 

In the dissertation, three methods to improve image sharing are proposed for 

better efficiency or different kinds of applications. For single secret (important) image, 

the first proposed method gets small shadows and fast decoding by using Boolean 

operations, and the second method has both user-friendly shadows and progressive 

decoding by using modulus operations. For multi-secret images, the third proposed 

method uses both Boolean and Modulus operations to achieve a better efficiency for 

lower computational complexity in decoding, together with more economical storage 

space of shadow images. The framework of the dissertation is depicted in Fig. 1.1, 

and a brief overview of three proposed methods is given in the following subsections. 
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Fig. 1.1. The framework of the dissertation. 

 

1.3.1 Single Image Sharing with Small Shadows and Fast Decoding 

In Chapter 2, a missing-allowable (k, n) method in secret image sharing is 

proposed to be fast in decoding and with a reasonable pixel expansion rate (per) in 

shadows. The scheme generates n extremely noise-like shadow images for the given 

secret color image A, and any k out of these n shadows can recover A loss-freely. The 

method shares every pixel of secret image based on exclusive-OR operations, hence it 

has very fast speed in encoding and decoding phrases. In average, to decode a color 

(binary/grayscale) pixel of A, the retrieval uses only 3 exclusion-OR operations 

among 24-bit (1-bit/8-bit) numbers. In order to have a reasonable per, it‟s encoding 

uses two other new tools: the (k, n, m) shadows-assignment matrix, and the {B1, B2} 

partition-and-recombination process. Therefore, each final shadow will be at most two 

times larger than the secret image A, and its pixel expansion rate is always acceptable 

(0<per<2). 
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1.3.2 Single Image Sharing with User-friendly Shadows and Progressive 

Decoding 

In Chapter 3, we propose a novel user-friendly progressive sharing method based 

on modulus operations. The method generates n user-friendly shadows whose image 

quality (such as PSNR) is lower than the input image‟s quality; and later, the input 

image can be reconstructed with progressively-improved image quality after gathering 

k (2kn) shadows. The description of the method is divided into three subsections. 

First, a fundamental (n, n) sharing version based on modulus operations is introduced 

in Sec. 3.2.1. This simple version is neither user-friendly, nor progressive. Then, the 

fundamental version is extended in Sec. 3.2.2 to an intermediate version with 

user-friendly shadows, although the intermediate version is still non-progressive. 

Finally, Sec. 3.2.3 presents the final version by extending the intermediate 

(user-friendly) version further to the one with both progressive decoding and 

user-friendly features. A comparison between our progressive and user-friendly 

method (Sec. 3.2.3) and Fang‟s method [19] is in Sec. 3.2.4.1, while a stego version of 

our method is in Sec 3.2.4.2. According to the experimental results and comparisons 

in Sec. 3.3, besides being 1) user-friendly ; 2) progressive; 3) each pixel is 

reconstructed by k shadows quickly with about k operations; 4) the recovery is 

lossless after collecting all n shadows; the proposed method also owns following 

features: 5) the non-stego shadows‟ image quality can be controlled; 6) each shadow 

is not expanded in non-stego version (Sec. 3.2.3), and is only at most 1.6 times larger 

than original secret image in the stego version (Sec. 3.2.4.2); 7) the stego shadows 

have quality much better than Fang‟s shadows.  

 

1.3.3 Multi-Images Sharing with Economical Shadows and Fast Decoding 

In Chapter 4, we propose a novel secret sharing scheme for multiple images 
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based on modulus and Boolean operations. The proposed method generates n 

extremely noise-like shadows for n given color (binary/grayscale) secret images. To 

achieve two advantages mentioned in motivation: (1) lower O/I size ratio and (2) 

fewer decoding operations, two basic tools will be used in the proposed method. First 

tool is “MOD-based (2, 2) secret sharing tool” in Sec. 4.1.1, which can make our total 

size in generated shadows is identical to that in given secret images (our O/I size ratio 

is 1). Therefore, our proposed method will not need extra space in images-database to 

store the generated shadows instead of original secret images. Another tool is 

“XOR-based (n, n) shadows combination tool” in Sec. 4.1.2, which can make our (n, 

n)-threshold scheme only need constant operations to decode each pixel in each secret 

image whatever the n is. Hence, no matter how many secret images are used in our 

proposed method, the lossless decoding process only uses one XOR, one MOD, one 

ADD and one SUB operations to reconstruct each pixel‟s 8-bits value of given secret 

images after gathering all n shadows. 

 

1.4 Dissertation Organization 

In the rest of this dissertation, the proposed missing-allowable (k, n) secret image 

sharing method based on Boolean operations to combining benefits of 

polynomial-based and fast approaches is introduced in Chapter 2. Next, the proposed 

sharing method with all friendly shadows and progressive decoding based on modulus 

operations is described in Chapter 3. Then, the proposed multiple secret images 

sharing method based on modulus and Boolean operations to have lower O/I size ratio 

and fast decoding is presented in Chapter 4. Finally, the conclusions and future works 

are in Chapter 5. 
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Chapter 2 

Single Image Sharing with Small Shadows and Fast 

Decoding 

 

 

In this chapter, we propose a missing-allowable (k, n) method which is fast and 

with a reasonable pixel expansion rate (per). The method uses exclusive-OR (XOR) 

operations (symbolized as “⊕” in the dissertation) in encoding and decoding phases, 

hence it is fast. In order to have a reasonable per, it‟s encoding uses two other new 

tools: the (k, n, m) shadows-assignment matrix, and the {B1, B2} 

partition-and-recombination process.  

The rest of this chapter is organized as follows. Section 2.1 briefly reviews some 

polynomial-style and fast schemes for image sharing. The details of the proposed 

method are described in Section 2.2. Experimental results are shown in Section 2.3. 

The discussions are in Section 2.4, and the summary is in Section 2.5. 

 

2.1 Related Works 

This section first review two kinds of well-known techniques for sharing secret 

images: polynomial-style approaches [3, 6-9] are described in Sec. 2.1.1, and VC-like 

approaches [13-15, 30] are in Sec. 2.1.2. In addition, Sec. 2.1.3 briefly describes 

Wang et al.‟s second scheme in [18] based on Boolean operations. 

 

2.1.1 Polynomial-style Schemes 

All schemes in [1, 3, 6-9] apply the polynomial interpolation to divide a secret 
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data A into n distinct data sets D1, D2, …, Dn called shares or shadows; and the secret 

data A cannot be revealed until k of the n shadows become available. To share an 

image, the data A becomes the values of pixels. To split A into n shadows, people can 

pick a prime number p and a polynomial 

pxaxaaxq k

k mod)...()( 1

110



  

of degree k-1 in which a0 is the data A, and all other coefficients 
121 ,...,, kaaa  are 

randomly chosen from integer in 0 to (p-1). Then evaluate 

).(,),(,),1(1 nqDiqDqD ni    

Using any k pairs of the n produced pairs n

iiDi
1

),(


, people can get all coefficients 

121 ,...,, kaaa  in q(x) by the Largrange‟s interpolation, and hence the secret data 

0aA  is also revealed. To reveal the secret data A, the computation complexity is 

)log( 2 kkO  for Largrange‟s polynomial interpolation. 

 

2.1.2 Lukac and Plataniotis’s VC-like Schemes 

For fast decoding, digitalized versions based on [2, 4, 10-12] can be used. 

However, to share digital color images more effectively, Lukac and Plataniotis 

restructure the original digital color image files using an “OR-like” function or 

looking up basis matrices in their sharing methods [13-15, 30]. (The rule of the 

OR-like operation is that: “the reconstructed pixel is black iff at least one of the 

corresponding sharing pixels is black; hence, the reconstructed pixel is white iff all 

corresponding sharing pixels are white.”) 

Their new schemes to share and recover digital images are easy to implement, and 

the retrieval speeds are very fast. But in [13-15] the shadow images generated in their 

(k, n)-schemes are still several times larger than the secret image. The problem might 

get worse as the values of k and n become very large. (As for [30], as stated earlier, 
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the size of each shadow images is the same as the secret image size, but [30] is for 

k=n=2 only.) As a result, to store the created digital shadows often need larger storage 

space in computer. 

 

2.1.3 Wang et al.’s Fast (n, n) Scheme 

Wang et al. also proposed in [17-18] some fast schemes with the intention of 

small pixel expansion rate (per). Their (k, n) scheme in [17] and their first scheme (a 

(2, n) scheme) in [18] are both probabilistic (and hence might be lossy in image 

retrieval). Their second scheme in [18] is a deterministic (n, n) scheme for grayscale 

images (extension to color images is also possible); and hence causes lossless 

retrieval. Notably, in their (n, n) scheme [18], it splits a secret image A among n 

shadows C1, C2, …, Cn, whose pixel expansion rate is one. After receiving all n 

shadows, it uses only n-1 XOR operations to reconstruct a pixel of A. Their (n, 

n)-scheme algorithm is as follows: 

 

Coding: 

Step 1. Input a secret image A. 

Step 2. Generate n-1 random images B1, B2, …, Bn-1, each has size of A. 

Step 3. Compute the shadows as follows: 

               C1=B1, 

               C2=B1⊕B2, 

               …… 

               Cn-1=Bn-2⊕Bn-1, 

               Cn=Bn-1⊕A. 

Step 4. Output the n shadows C1, C2, …, Cn. 

Decoding: 
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Reveal A using the formula A=C1⊕C2⊕…⊕Cn. 

 

In this chapter, in order to extend Wang et al.‟s (n, n) no-threshold scheme to (k, n) 

threshold scheme; we introduce a (k, n, m) shadows-assignment matrix H, and a {B1, 

B2} partition-and-recombination process. The scheme still holds the two advantages 

of [18]: fast decoding speed and small pixel expansion rate. In fact, we only need 

three XOR operations in average to reconstruct a pixel; and the ratio of each shadow‟s 

size over the secret image‟s size is between 0 and 2, i.e. 0<per<2 (and per =2/n in the 

k=n case). The statement is true in all (k, n) cases. 

 

2.2 The Proposed Method 

To generate the desired shadows, the two new techniques described in Sec. 2.2.1 

and 2.2.2 will be needed in the encoding algorithm of Sec. 2.2.3. To help readers 

understand the encoding, a numerical example is also given in Sec. 2.2.4.  

Then, Sec. 2.2.5 introduces the decoding algorithm that retrieves the secret. For 

easier understanding of the decoding algorithm; a numerical example for decoding is 

also given in Sec. 2.2.6. 

 

2.2.1 The (k, n, m) Shadows-assignment Matrix H (which has n rows and m 

columns) 

To design a threshold (k, n) scheme, we may first directly utilize Wang et al.‟s 

non-threshold (m, m) scheme for some carefully chosen parameter 

n

kCm 1 . 

(The reason why m is chosen as n

kCm 1  will be explained later.) Notably, Wang et 
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al.‟s (m, m) method gives us n

kCm 1  shadows (these are not our final shadows; just 

consider them as our temporary shadows). Then, we duplicate each temporary shadow 

several times. Then, for the n people participating the sharing game, let each person 

get one or no copy from each of the m temporary shadows. Each person can have 

copies from more than one temporary shadow. However, no person can get copies 

from all m shadows; otherwise, that person alone can unveil the secret. 

After this distribution assignment of the copies of the m produced temporary 

shadows, we wish that when any k or more people gather together in an 

image-recovery meeting, the chairman of the meeting can collect all m temporary 

shadows from the attendants of this meeting; and hence, can restore the secret image 

according to Wang et al.‟s (m, m) image-recovery scheme. We also require that a 

meeting of less than k people together is insufficient to collect all m temporary 

shadows; and hence, cannot reveal the secret image. We will call the two requirements 

stated above in this paragraph as the “(k, n, m) shadows-assignment requirements”. 

From the idea above, we may create a matrix H of n rows and m columns. Its n 

rows represent the n persons; and its m columns represent the m (distinct) temporary- 

shadows produced by Wang et al.‟s deterministic (m, m) scheme. The element of H is 

either 0 or 1. The ith person (row) has a copy of the jth shadow image (column) if and 

only if Hij =1. In order to make the matrix meet the expected (k, n, m) 

shadows-assignment requirements described above, we let each column of H have 

exactly k-1 zeros and n-k+1 ones. More specifically, let H have n

kCm 1 columns, and 

each column of H be a permutation of the n-dimensional basic column vector 

(000…0011111…111) which has k-1 leading zeros followed by n-k+1 ones. 

This obviously guarantees that: i) each temporary shadow Cj will appear at least 

once when k out of the n persons attend the image-recovery meeting; ii) at least one 
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temporary shadow Cj will disappear when k-1 or fewer persons attend the recovery 

meeting. The proof is as follows: 

Proof: Consider the equation 

T

mnmnn

m

m

T

n X

X

X

HHH

HHH

HHH

P

P

P






































































2

1

21

22221

11211

2

1

,         (2.1) 

where Pi and Hij {0, 1} (i=1, 2, …, n; j=1, 2, …, m.). In this equation, Pi 

represents the attendance status of ith person (0 is absence and 1 is attendance); 

and H is the created (k, n, m) shadows-assignment matrix. Therefore,  

njnjjj HPHPHPX  2211               (2.2) 

counts the number of times (copies) that the temporary shadow Cj appear in the 

image-recovery meeting. Two observations are: 

i) When k persons attend the recovery meeting, then k of the n elements in 

(P1,…, Pn) are one, and the remaining n-k elements are zero. Therefore, each 

Xj must be at least one, for there is exactly k-1 zeros in every column j of H. 

This implies that each temporary shadow Cj will appear at least once in the 

recovery meeting. 

ii) When only k-1 or fewer persons attend the recovery meeting, then at most k-1 

of the n elements in (P1,…, Pn) are one; or equivalently, at least n-k+1 of the n 

elements in (P1,…, Pn) are zero. Let Colj = (H1j, H2j, …, Hnj) be a column of H 

whose n-k+1 ones happen to appear at the positions where the vector (P1,…, 

Pn) got these (at least) n-k+1 zeros. (If (P1,…, Pn) has more than n-k+1 zeros, 

then just randomly choose n-k+1 positions from the zero entries of (P1,…, Pn).) 

The inner product of the vector (P1,…, Pn) and this special Colj will be zero. 

In other words, Xj = 0. Hence the temporary shadow Cj disappears in the 
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recovery meeting.  

 

In the above construction of the matrix H, recall that we let all n

kCm 1  

permutations of the n-dim vector (000...001111…11), which has exactly k-1 leading 

zeros and n-k+1 ones, be used as the m columns; and thus obtain the expected n-by-m 

matrix H. Hereinafter, the matrix H will be called the “(k, n, m) shadows-assignment 

matrix”. 

Below is an example showing the (k, n, m) shadows-assignment matrix H. Assume 

(k, n)=(3, 4), hence 4

136  Cm . Note that each column is just a permutation of the 

first column, and the first column is an n=4 dimensional vector which has exactly 

k-1=3-1=2 zeros. 

H = 



















001011

010101

100110

111000

4

3

2

1

654321

P

P

P

P

CCCCCC

.     (2.3) 

As a result, H has four rows (since n=4) and six columns (since 4

136  Cm ). In this 

example, the person P1 owns (the copies of the) temporary shadows C4, C5, C6, the 

person P2 owns temporary shadows C2, C3, C6, the person P3 owns temporary 

shadows C1, C3, C5, and the person P4 owns temporary shadows C1, C2, C4. In this 

shadows-assignment process, any k=3 people gather together can guarantee the 

appearance of all six temporary shadows C1, C2, C3, C4, C5 and C6; but less than three 

persons cannot. In other words, three or more people can recover the secret image 

according to Wang et al.‟s deterministic (6, 6) scheme using these six temporary 

shadows. Less than three people cannot recover because some Cj disappears. 
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2.2.2 Partition-and-recombination Process of {B1, B2} 

In Sec. 2.2.1, after assigning the m temporary shadows to n people according to 

the matrix H, each person gets some temporary shadows. Each person i can combine 

the temporary shadows that he holds into a single shadow Di specially designed for 

him. Then these n final shadows D1, D2, …, Dn owned respectively by these n persons 

are the final output of a very simple (k, n)-threshold scheme.  

This simplest design is easy (it only needs the idea of using the H mentioned in 

Sec. 2.2.1 above, and matrix H itself is easy to construct). However, according to 

Wang et al.‟s deterministic (m, m) scheme, all m temporary shadows have the same 

size as that of secret image A. This often causes space-and-speed inefficiency problem. 

More specifically, as n

kCm 1  becomes larger, this very simple (k, n)-threshold 

scheme will have two drawbacks: (1) big-size problem for each Di of the final 

shadows {D1, D2, …, Dn}; and (2) many XOR operations in decoding. In order to 

avoid these two drawbacks, we do not use Wang et al.‟s output as the m temporary 

shadows. Instead, we create our own m temporary shadows. This can be done by the 

two-shadows partition-and-recombination preprocess proposed below. 

First, create a random image B1 whose size is identical to that of the secret image 

A. Then, generate another same-size image B2=B1⊕A using XOR in a bit-by-bit 

manner. Notably, according to the inverse property of XOR operation, secret image A 

can be recovered by the equation A=B1⊕B2. Then, create m temporary shadows C1, 

C2, …, Cm by partitioning and recombining B1 and B2, as follows (see Fig. 2.1 for an 

example using (k=3, n=4) ):  

Step 1. Randomly generate an image B1 whose size is identical to A‟s. Then partition 

B1 into n

kCm 1  non-overlapping blocks C11, C21, …, Cm1. The upper half of 

each temporary shadow Ci (1≦i≦m) is the block Ci1 contained in B1. 
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Step 2. Create the security mask C*, which is also a block, by the XOR equation  

C*=C11⊕C21⊕ …⊕Cm1. 

Step 3. Create an image B2=B1⊕A using XOR in a bit-by-bit manner. (A, B1 and B2 

have the same size.) Then partition B2 into m non-overlapping blocks C12, 

C22, …, Cm2.  

Step 4. For security reason, shift each Ci2 to Ci3 by the formula Ci3= Ci2⊕C*. 

Step 5. After physically attaching each Ci3 to Ci1, we obtain the m temporary shadows 

C1, C2, …, Cm. (Notably, the upper half of each Ci is Ci1, and the lower half of 

each Ci is Ci3.) 

 

As a remark, if B1 and B2 cannot be divided equally into m blocks of the same size, 

some redundant pixels can be filled in B1 and B2. In the (k, n)=(3, 4) example, if the 

size of A is 512×512, then B1 and B2 need two redundant pixels respectively, because 

512×512 is not a full multiple of n

kCm 1 =6. 

 

 

Fig. 2.1. A flowchart showing the process that transforms {B1, B2} to {C1, C2, …, C6}. 
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In this example, (k, n)=(3, 4); and
 

n

kCm 1 =6 accordingly. 

 

In the inverse process to obtain B1 and B2 from C1, C2, …, Cm , the algorithm is as 

follows (see Fig. 2.2 where we still use (k=3, n=4) as an example):  

Step 1. Extract m non-overlapping blocks C11, C21, …, Cm1 which are the upper half of 

C1, C2, …, Cm , respectively. 

Step 2. Recover the security mask C* by the equation C*=C11⊕C21⊕…⊕Cm1. 

Step 3. Recover the random image B1 by physically attach C11, C21, …, Cm1 to each 

other. 

Step 4. Extract the m non-overlapping blocks C13, C23, …, Cm3 which are the lower 

half of C1, C2, …, Cm , respectively. 

Step 5. Recover the m blocks C12, C22, …, Cm2 using the shift-back equation Ci2= Ci3

⊕C* (where 1≦i≦m). 

Step 6. Recover the image B2 by physically attaching C12, C22, …, Cm2 to each other. 

Step 7. Recover the secret image A by the equation A=B1⊕B2. 
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Fig. 2.2. A flowchart of the inverse process to recover B1 and B2 from C1, C2, …, Cm. 

In this example, (k, n)=(3, 4); and n

kCm 1 =6 accordingly. 

 

2.2.3 The Encoding Algorithm 

First, we illustrate here our encoding algorithm which creates n final shadows that 

meet the (k, n) threshold requirement. This encoding algorithm will use two other new 

tools: the (k, n, m) shadows-assignment matrix in Sec. 2.2.1, and the {B1, B2} 

partition-and-recombination process in Sec. 2.2.2. 

 

The encoding algorithm: 

Step 1. Input a color (binary/grayscale) secret image A. 

Step 2. Generate a random image B1 so that B1 and A have the same size. 

Step 3. Generate another image B2 using B2=B1⊕A, where ⊕ denotes bit-by-bit 

XOR. 

Step 4. Let n

kCm 1 . Generate the (k, n, m) shadows-assignment matrix H described 

in Sec. 2.2.1. Notably, the matrix H is public. 
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Step 5. Use the two images B1 and B2 to generate m temporary shadows C1, C2, …, Cm 

by using the {B1, B2} partition-and-recombination process (see Sec. 2.2.2 and 

Fig. 2.1). 

Step 6. Assign the duplicated copies of the m temporary shadows C1, C2, …, Cm to the 

n persons according to the shadows-assignment matrix H mentioned in Step 4 

(see Sec. 2.2.1 for detail of the assignment). For each person i, the final 

shadow Di that he has is exactly the union of those copies assigned to him. 

 

To understand the above encoding algorithm, see the example in Sec. 2.2.4. 

 

Remark: Each participant gets several temporary shadows which are all random 

matrixes. Thus, it is better to have a discussion about how to distinguish the 

temporary shadows so that the related temporary shadows inside each final shadow 

can be distinguished easily later to recover the image. 

Option 1. Assume that, according to the shadows-assignment matrix H, there is a 

person who owns three temporary shadows {C2, C3, C6}. Let us use this person as an 

example. If the size of each temporary shadow is w×h, then, before inserting the 

separator, the size of this person‟s final shadow was 3w×h. (The first w rows were C2, 

next w rows were C3, final w rows were C6.) Hence the number of rows of the final 

shadow was three times larger than that of each temporary shadow, but the columns (h) 

were the same. Now, after the first w rows, since we already finish C2, and C3 is to be 

attached behind C2, we insert a separator-row of (h/2)+(h/2)=h elements, i.e. 

222222222222222222222333333333333333333333, so that people can understand C2 

is above this separator-row and C3 is below this separator-row. Then we store the C3 

using next w rows. Then, insert another separator-row of h/2+ h/2= h elements, i.e.  

3333333333333333333336666666666666666666666, before attaching C6. In 
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summary, if separators are used, the final-shadow has (3w+2) rows rather than 3w 

rows, and the (3w+2) rows owned by this {C2, C3, C6} person will be 

 

[C2] (which has w rows, each row has h pixels ) 

 

222222222222222222222333333333333333333333 

 

[C3] (which has w rows, each row has h pixels ) 

 

3333333333333333333336666666666666666666666 

 

[C6] (which has w rows, each row has h pixels ) 

 

Notably, in Step 4 of the encoding algorithm, we already stated that the 

shadows-assignment matrix H is public, so the decoder can always read from H to 

know the number of temporary shadows owned by each participant. For example, in 

the H in Eq. (2.3), each participant gets 1+1+1=3 temporary shadows. Then, in Option 

1, the decoder can know that the number of rows in this final shadow is 3w+(3-1)= 

(3w+2). Therefore, the decoder can always figure out how many rows are in the final 

shadow, and hence, know how many pixels are in each row.  

Option 2 (an option using the convention of ascending-order indices.) In fact, 

from the viewpoint stated in the final paragraph of Option 1 above, the separator rows 

can also be omitted, as explained below. Assume each participant owns certain 

shadows. Let the shadow indices be all arranged in the ascending order. For example, 

if the matrix H is as shown in Eq. (2.3), then the person P1 owns (copies of the) 

temporary shadows C4, C5, C6, the person P2 owns temporary shadows C2, C3, C6, the 

person P3 owns C1, C3, C5, and the person P4 owns C1, C2, C4. Notice the indices are 

all in ascending order (namely 4<5<6; 2<3<6; 1<3<5; 1<2<4). Therefore, even if we 

do not use separators, the decoder can still read the “public” matrix H to know that 
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each participant own 3 temporary shadows; and hence, divide each person‟s final 

shadow into 3 parts of equal size; and then use matrix H to identify easily which 

temporary shadow is the first one-third of that person‟s final shadow, which 

temporary shadow is the middle one-third, and which temporary shadow is the final 

one-third. 

 

2.2.4 Numerical Example of Encoding 

In the following encoding example, we do it step by step. Without the loss of 

generality, assume (k=3, n=4), so n

kCm 1 =6. Also, for easier description, we just 

use gray-values rather than color-values in the example. 

Step 1. Assume the given secret image is a 2×3 image 









20213367

1867655
A , which 

has six grayscale pixel values. 

Step 2. Randomly generate an image B1 whose size is identical to A‟s. For example, 

randomly let 









3221093

41225149
1B . 

Step 3. Generate another image B2 by applying bit-by-bit XOR to B1 and A, i.e. 











2348730

147173162
12 ABB where 162=55⊕149, 173=76⊕225, etc. 

Step 4. According to the skill in Sec. 2.2.1, generate a (k=3, n=4) threshold 

shadows-assignment matrix 

     





















001011

010101

100110

111000

H  which has n=4 rows and n

kCm 1 = 6 columns. 

Note that each column is a permutation of the first column vector 0011. 

Step 5. Firstly, use bit-by-bit XOR on the elements of B1 to obtain the security block 

 242C  by the formula ]242[]32[]210[]93[]41[]225[]149[  .  

Then, according to Sec. 2.2.2, generate 6 temporary shadows 
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









80

149
1C , 










95

225
2C , 










97

41
3C ,  











236

93
4C , 










165

210
5C , 










24

32
6C  where the six lower halves are the 

result of transforming the six lower halves of B2, by doing bit-by-bit XOR 

with  242C . For example, 80 =162⊕242, and 95 =173⊕242. 

Step 6. According to the assignment matrix H, assign the copies of the m=6 temporary 

shadows {C1, C2, …, C6} to the n=4 persons. Hence, our n=4 final shadows, 

hold by the n=4 persons respectively, are 











24165236

3221093
1D , 










249795

3241225
2D ,  











1659780

21041149
3D , 










2369580

93225149
4D  

where D1 and D2 both have a copy of the temporary shadow 









24

32
6C . 

 

2.2.5 The Decoding Algorithm 

Given any k final shadows, for example the {D1, D2, …, Dk}, out of the n final 

shadows produced in Step 6 of Sec.2.2.3, the secret image A can be restored as 

follows: 

 

The decoding algorithm: 

Step 1. After referring to the (k, n) shadows-assignment matrix H generated in Step 4 

of the encoding algorithm, we can know which temporary shadows in {C1, 

C2, …, Cm} are included in each final shadow Di. Therefore, all m temporary 

shadows C1, C2, …, Cm can be extracted from these k final shadows. (For the 

reason, reader can see the (k, n, m) shadows-assignment requirements in Sec. 

2.2.1, and the proof near Eq. (2.2).  

Step 2. Use all m temporary shadows C1, C2, …, Cm to generate B1 and B2 by 
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implementing the inverse process of the {B1, B2}-partition-and-recombination 

process (see Sec. 2.2.2 and Fig. 2.2). 

Step 3. Reveal the secret image A using A=B1⊕B2. 

 

Remark: Step 1 above stated that we can know which temporary shadows in {C1, 

C2, …, Cm} are included in each final shadow Di. As for how to distinguish the 

temporary shadows in each final shadow Di (so that the related temporary shadows 

inside each final shadow Di can be distinguished easily to recover the image), see the 

Remark at the end of Sec. 2.2.3.  

 

2.2.6 Numerical Example for Decoding  

In the following decoding example, still assume (k=3, n=4). As a result, decoding 

needs any 3 of the 4 final shadows. Without the loss of generality, assume D1, D2, D3 

are the three available shadows. 

Step 1. With the help of the matrix H in Step 4 of encoding process, we extract 

all n

kCm 1 = 6 temporary shadows C1, C2, …, C6, which are the same as those 

created in Step 5 of encoding process of Sec. 2.2.4. 

Step 2. Recover B1 and B2, which are the same as those in Steps 2 and 3 of the 

encoding process, by implementing the inverse process of the {B1, B2} 

partition-and-recombination process to all six temporary shadows C1, C2, …, 

C6 (see Fig. 2.2). 

Step 3. Reveal the secret image A by 











20213367

1867655
21 BBA . 
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2.3 Experimental Results 

In our experiment, the input color image A is the popular test-image shown in Fig. 

2.3(a). For (k, n)=(2, 4) case, the n=4 final shadows D1, D2, D3, D4 generated in Sec. 

2.2.3 are shown in Fig. 2.3(b-e), and each has size 2×(n-k+1)/n=2×(4-2+1)/4=3/2 

times larger than size of A. Fig. 2.3(f) shows the error-freely recovered A using any 

k=2 of the four final shadows. 

Other experiments dealing with (k, n)=(3, 4) and (k, n)=(4, 4) cases are shown in 

Fig. 2.4 and 2.5 respectively. And their pixel expansion rates are 2×(n-k+1)/n=2×

(4-3+1)/4=1 and 2×(n-k+1)/n=2×(4-4+1)/4=1/2, respectively. 

To show our constant decoding-time property, we also record in Figures 2.6 and 

2.7 the actual CPU time taken in decoding. The computer used is an IBM laptop with 

an Intel Pentium 1.70GHz CPU, and the operating system is Microsoft Window XP 

SP2. From Fig. 2.6, which deals with (n, n) system, it can be seen that our decoding 

time really does not vary as the value of n varies, but this is not the case for Wang et 

al‟s scheme [18]. Notably, for all (k, n) systems, our decoding time still remain 

constant as n increases its value. An example showing this is given in Fig. 2.7 in 

which k=n/2. Note that Wang et al‟s [18] does not have (k, n) systems unless k is n or 

2. 

 

 

(a) 
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(b)                            (c) 

  

(d)                            (e) 

 

(f) 

Fig. 2.3. An example of (k=2, n=4). Here, (a) is the given 24-bit-per-pixel color image 

A; (b-e) are our final shadows D1, D2, D3, D4; (f) is the recovered error-free A using 

any two of the four final shadows.  
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(a)                            (b)  

  

(c)                            (d)  

 

(e) 

Fig. 2.4. An example of (k=3, n=4). Here, (a-d) are our final shadows D1, D2, D3, D4 ; 

(e) is the recovered error-free A using any three of the four final shadows. 

 

  

(a)                            (b)  
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(c)                            (d)  

 

(e) 

Fig. 2.5. An example of (k=4, n=4). Here, (a-d) are our final shadows D1, D2, D3, D4 ; 

(e) is the recovered error-free A using all four final shadows. 
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Fig. 2.6. The CPU time (milliseconds) for decoding (n, n) systems. 
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Fig. 2.7. The CPU time (milliseconds) for decoding each (n/2, n) systems by our 

scheme. There is no curve for Wang et al‟s scheme [18], for their scheme has no (n/2, 

n) system or other (k, n) systems when 2≦k<n. 

 

2.4 Discussions 

2.4.1 Recoverability and Security 

In general, each (k, n) threshold secret sharing scheme must satisfy both 

requirements: the recoverability (any k or more shadows can reveal all information of 

A) and the security (any k-1 or fewer shadows cannot reveal the secret image A). 

In our scheme, when any k out of the n final shadows are gathered (for example, 

D1, D2, …, Dk), the secret image A is revealed by Steps 1-3 of the decoding algorithm. 

These steps also explain why our scheme satisfies the recoverability requirement. 

Firstly, if k or more final shadows are gathered, then we can extract all m temporary 

shadows C1, C2, …, Cm from the k available final shadows according to the (k, n, m) 

shadows-assignment requirements of the matrix H. Secondly, after physically dividing 

each Ci into upper half Ci1 and lower half Ci3, we can get C* which is defined by 
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C*=C11⊕C21⊕ …⊕Cm1. Then, we can restore C12, C22, …, Cm2 using Ci2= Ci3⊕C* 

for each i=1,…,m. Then recover B1={C11, C21, …, Cm1} and B2={C12, C22, …, Cm2}. 

Therefore, the secret image A can be revealed using A=B1⊕B2. 

Our scheme also satisfies the security requirement. Assume that only k-1 or fewer 

final shadows are available. Then, according to the (k, n, m) shadows-assignment 

requirements of the matrix H, people cannot obtain all m temporary shadows C1, 

C2, …, Cm from these final shadows (see the proof (ii) below Equation (2.2) of Sec. 

2.2.1). Assume Cq is missing. As a result, people cannot obtain C* defined by C*=C11

⊕C21⊕ …⊕Cm1 , due to the lack of the Cq1 which is the upper half of Cq. Then, 

without C*, people cannot restore C12, C22, …, Cm2 defined by Ci2= Ci3⊕C* (1≦i≦

m). Therefore, people cannot generate B2. As a result, the secret image A=B1⊕B2 

cannot be revealed due to absence of B2.  

Below we discuss the probability of obtaining the right secret image A through 

guessing. Without the loss of generality, assume that a betrayal party of k-1 persons 

already gathers m-1 temporary shadows C1, C2, …, Cm-1 without Cm. Notably, A={Ai | 

1≦i≦m}, i.e. image A can be divided to m blocks, and the recovery of A can be done 

block by block; in other words, since A=B1⊕B2 , we have 

Ai= Ci1⊕Ci2= Ci1⊕(Ci3⊕C* )= Ci1⊕Ci3⊕(C11⊕C21⊕…⊕Cm1),  1≦i≦m. 

Because of the lack of Cm = [Cm1 | Cm3]
T
, the betrayal party will have to guess a value 

for a pixel in Cm1, then they use this guessing value to get a set of m-1 pixels‟ values 

(one value per block in A1, A2, …, Am-1). Then they need to guess the value of a pixel 

at the corresponding position of Cm3 (or Am) so that the pixel value at that position of 

Am can also be shown. The above is just to recover a pixel (for example, the 

top-leftmost pixel) of each block Ai ,1≦i≦m. This value-guessing of two pixels will 

repeat bksize times. Here, bksize is the size of each block Ai (1≦i≦m); hence bksize 

is m times smaller than image size of A. 
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From the description above, we can evaluate the probability of obtaining the right 

color image A with size w×h as follows. (For illustration, still assume (k, n)=(3, 4); 

hence n

kCm 1 =6 accordingly.) 

2
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if the image size is w×h = 512512 . Here, 

s=1/2
24

 is the probability to guess successfully a pixel‟s value; bksize1 is the number 

of pixels in Cm1; and bksize3 is the number of pixels in Cm3. To improve the security 

further, people can use a prime number as a key (a seed) of a random number 

generator to rearrange the pixel positions in the secret image A (as Thien and Lin did 

in [6]) before encoding. 

 

2.4.2 Time Complexity and Storage Space Needed 

In terms of computation complexity, Thien and Lin‟s polynomial sharing scheme 

[6] needs O(log
2
k) mathematical operations to reveal a pixel. Although Wang and Su 

[3] reduced 40% in size of Thien and Lin‟s shadow images, their scheme still need 

O(log
2
k) mathematical operations to reveal a pixel. As for the digitalized versions 

derived from [4, 10-12], they need O(k×per) OR operations to reveal a pixel. Here, the 

value k means the secret-recovery requires k gathered shadows, and the value per 

represents pixel expansion rate (per≧2 in [4, 10-12]). Lukac and Plataniotis‟s 

methods [13-15] also need O(k×per) “OR-like” operations to restore an original input 

pixel in (k, n)-threshold schemes. Lukac and Plataniotis‟s special method [30] needs 

only 1 B-bit “OR-like” operation to restore a pixel of B-bit color secret image, but [30] 

only deals with the k =2=n scheme. Fang and Lin [50] proposed two other SS (sharing 

schemes), i.e. an (n, n) XOR-SS and a (k, n) OR-SS, to reduce the size of shadows in 

Lukac and Plataniotis‟s [15]. But the (k, n) OR-SS scheme in [50] still needs many 
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OR operations in decoding, and the complexity is similar to that of Wang et al.‟s (k, n) 

colored probabilistic scheme [17]. In Wang et al.‟s (n, n) scheme [18], it only needs 

n-1 XOR operations to reconstruct each pixel, which is the same as Fang and Lin‟s (n, 

n) XOR-SS scheme [50]. Obviously, the decoding time of most inventions above 

increases as the value of k or n increases. 

For this concern, our new scheme tries to make the speed of Wang et al.‟s [18] 

more stable for any n. In any (k, n) threshold cases, no matter how large the value of n 

is, we only needs at most three bit-by-bit XOR operations to restore a pixel. Notably, 

each XOR is between a pair of 24-bit values if the image is color. 

To see this, assume that the size of secret image A is w×h, then the number of 

XOR operations needed to evaluate C*=C11⊕C21⊕ …⊕Cm1 is (m-1)×[(w×h)/m]＜w

×h because each Ci1 has size [(w×h)/m]. Then, to get C12, C22, …, Cm2, it needs m×[(w

×h)/m]= w×h XOR operations to evaluate Ci2= Ci3⊕C*, here 1≦i≦m. Finally, to 

reveal A, it needs w×h XOR operations to evaluate A=B1⊕B2. Together, it needs [(3×

m-1)/m]×(w×h)<3×(w×h) XOR operations to reveal A from any k final shadows. In 

average, since image A has w×h pixels, it needs at most three XOR operations to 

restore each pixel. Table 2.1 below shows a comparison with reported schemes. 

Obviously, the proposed scheme has the smallest decryption load in average. Notably, 

the proposed scheme also needs at most three XOR operations in encoding process to 

share each pixel of secret image into the n final shadows D1, D2, …, Dn, because the 

decoding process is exactly an inversion of encoding one. Besides Table 2.1, the 

readers can also read Figures 2.6 and 2.7 to see that our decoding time does not 

increase as n increases its value. Since, besides our method, Wang‟s [18] is one of the 

fastest schemes in Table 2.1, we only compare our CPU time with [18] in Fig. 2.6. As 

for Fig. 2.7, because [18] has no (k, n) design if 2<k<n, no curve for [18] is drawn 

there. (We only use this figure to show that our CPU time is really a constant.) 
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Table 2.1. Time complexity for decoding. (The time to reconstruct a pixel of image 

A.) 

Schemes (k, n) threshold (n, n) threshold 

Thien and Lin‟s 

polynomial scheme 

[6] 

O(log
2
k) (Math operations

(1)
) O(log

2
n) (Math operations) 

Wang and Sue‟s 

polynomial scheme 

[3] 

O(log
2
k) (Math operations) O(log

2
n) (Math operations) 

Digitalized version of 

[4, 10-12] 

O(k×per (2)
) (OR operations) O(n×per) (OR operations) 

Lukac and 

Plataniotis‟s schemes 

([13-15, 30]) 

O(k×per) (OR-like 

operations) for [13-15]. 

  

([30] is for (2, 2) case only; 

there is no (k, n) case in 

[30].)  

O(n×per) (OR-like 

operations) for [13-15]. 

 

([30] is for (2, 2) case only, 

and it needs only 2-1=1 

OR-like operation.) 

Fang & Lin‟s scheme 

[50] 

O(k×per) (OR operations) n-1 (XOR operations) 

Wang et al.‟s scheme 

[17-18] 

O(k×per) (OR operations) in 

Ref. [17]. 

[18] gave no (k, n) scheme
(3)

 

unless k=2; and its (2, n) 

scheme uses only 2-1=1 

O(n×per) (OR operations) in 

Ref. [17]. 

n-1 (XOR operations) in Ref. 

[18]. 
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XOR operation to 

reconstruct a pixel of A. 

Our scheme 3 (XOR operations) 3 (XOR operations) 

(1)
 Math operations: ＋, －, ×, ÷. 

(2)
 Note that per means “Pixel expansion rate”. Usually, per is a positive integer at 

least two in [4, 10-15, 17, 50]. 

(3)
 When k=2, the (2, n) scheme in [18] is a very fast one, for only one XOR operation 

is needed. But their decoding is not lossless. 

 

As for the space complexity, Thien and Lin‟s scheme [6] has a pixel expansion 

rate per=1/k for the (k, n) threshold cases. Wang and Su proposed the scheme [3] to 

reduce 40% of Thien and Lin‟s shadow images size. On the other hand, as the value of 

n increases, the per is very large for digital versions of schemes [4, 10-12]. Although 

the probabilistic scheme [16] has per=1, the reconstructed secret image is not 

error-free. The per in Lukac and Plataniotis‟s schemes [13-15] are at least two. Lukac 

and Plataniotis‟s special method [30] has no pixel expansion problem (per=1), but it is 

only for (2, 2) scheme. Although Fang and Lin‟s (n, n) and (k, n) schemes [50] have 

shadows of size smaller than Lukac and Plataniotis‟s [15], their (k, n) scheme still has 

a per larger than one. The per in Wang et al.‟s colored probabilistic (k, n) scheme [17] 

is still not less than one (per≧1). As for Wang et al.‟s deterministic (n, n) scheme [18], 

the per is one; but [18] does not have (k, n) schemes unless k=2. 

In the proposed scheme, our per is between 0 and 2; moreover, close to 0 is 

possible. To see this, let the size of secret image A is w×h. Since the size of every 

temporary shadow Ci (1≦i≦m) is 2×(w×h)/m, the size of every final shadow Di (1≦i

≦n) is  
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Here, we have used the fact that each final shadow Di contains 1

1





n

kC  temporary 

shadows. Now, after dividing the above by the size of A, we get our pixel expansion 

rate, i.e.  

per  =  2×(n-k+1)/n  <  2,   true for any (k, n).         (2.4) 

Therefore, each final shadow will be at most two times larger than the secret image A. 

When n is very large and k is two, the rate converges to its upper bound 2. On the 

other hand,  

       per < 1   if  k > 1+n/2.         (2.5) 

In the special case when k=n, our per is 2/n, and hence,  

     per= 2/n  0   if k=n∞.     (2.6) 

Therefore, each shadow will be very small when k=n. (See Fig. 2.5 for example in 

which per= 2/n=2/4=0.5 because n was only 4. If we had used a very large n, then the 

per would have been much smaller.)  

In summary, the proposed scheme does not have a serious pixel expansion 

problem or huge storage-space demanding for shadows (see Table 2.2). 

 

Table 2.2. Comparison of the pixel expansion rate (per) when shadows are created. 

Schemes (k, n) threshold (n, n) threshold 

Thien and Lin‟s 

polynomial scheme 

([6]) 

1/k 1/n 

Wang and Sue‟s 

polynomial scheme 

([3]) 

(1/k)×60% (1/n)×60% 
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Digital versions of [4, 

10-12] 

per is at least 2. per is at least 2 

Lukac and Plataniotis‟s 

schemes [13-15, 30] 

per is at least 2. 

(per =1 in [30], but [30] is 

for (2, 2) case only.) 

per is at least 2. 

(per =1 in [30], but [30] is 

for (2, 2) case only.)  

Fang & Lin‟s scheme 

[50] 

m×n/(n+1) 

for some integer m≧2. 

n/(n+1) 

Wang et al.‟s scheme 

[17-18] 

per≧1 in Ref. [17]. 

(Ref. [18] gave no (k, n) 

scheme unless k=2; and per 

= 1 in its (2, n) scheme.) 

per≧1 in Ref. [17]. 

(per =1 in (n, n) scheme Ref. 

[18].) 

Our scheme 0<per =2×(n-k+1)/n<2 0<per =2/n≦1 

 

2.4.3 Lossless Reconstruction and Core Works in Implementation 

Table 2.3 provides the information about lossless reconstruction. Most of 

schemes mentioned here are lossless in recovery, including our scheme. Exceptions 

are the digitalized versions of [4, 12, 17], and the (2, n) scheme of [18] when 2<n. 

 

Table 2.3. Comparison of the perfect reconstruction ability. 

Schemes (k, n) and (n, n) 

Thien and Lin‟s 

polynomial scheme ([6]) 

Lossless recovery 

Wang and Sue‟s 

polynomial scheme ([3]) 

Lossless recovery 

Digitalized versions of [10, 11] are lossless, but [4, 12] are lossy. 
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[4, 10-12] 

Lukac and Plataniotis‟s 

schemes [13-15, 30] 

Lossless recovery 

Fang & Lin‟s [50] Lossless recovery 

Wang et al.‟s scheme 

[17-18] 

Recovery might be lossy in [17] if per is close to 1.  

The (2, n) scheme of [18] is lossy. ([18] gives no (k, n) 

scheme unless k=2.) The (n, n) scheme of [18] is 

lossless. 

Our scheme Lossless recovery 

 

Finally, Table 2.4 gives the information about the kinds of work to implement 

each scheme. In summary, [3, 6-9] evaluated polynomials and the remaining schemes 

used OR-like operations, or XOR operations, or Look-Up-Tables. 

 

Table 2.4. The main work being used in coding/decoding for each scheme. 

Schemes Encoding Decoding 

Thien and Lin‟s 

polynomial scheme 

([6]) 

Evaluate a polynomial  Use Largrange‟s 

interpolation. 

Wang and Sue‟s 

polynomial scheme 

([3]) 

Evaluate a polynomial Use Largrange‟s 

interpolation. 

Digitalized versions of 

[4, 10-12] 

Either look up the basis 

matrices or use OR 

operations. 

Either look up the basis 

matrices or use OR 

operations. 
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Lukac and 

Plataniotis‟s schemes 

[13-15, 30] 

Either look up the basis 

matrices or use OR-like 

operations. 

Either look up the basis 

matrices or use OR-like 

operations. 

Fang & Lin‟s scheme 

[50] 

Either look up the basis 

matrices or use OR-like 

operations. 

Use XOR operations. 

Wang et al.‟s scheme 

[17-18] 

[17] either looks up the 

basis matrices or uses OR 

operations. 

[18] uses {AND, XOR} 

operations in the first 

scheme; uses XOR 

operations in the second 

scheme. 

[17] either looks up the basis 

matrices or uses OR 

operations. 

 [18] uses XOR operations 

in both first and second 

schemes. 

Our scheme Use XOR operations. Use XOR operations. 

 

2.5 Summary 

In polynomial-based sharing approach, the shadow size is never a problem, but the 

decoding speed is very slow due to the polynomial-interpolation evaluation. To the 

contrary, storage space for shadows is large for almost all fast methods (the pixel 

expansion rate per is usually at least 2 for (k, n)-threshold schemes, and per=1 is 

limited to lossy schemes or some (n, n) non-threshold schemes.) In this chapter, we 

have designed successfully a scheme so that: 1) the generated shadows are with 

reasonable size. The per is between 0 and 2; and close to 0 when k is large and close 

to n [see Eq. (2.4-2.6)] (our per=2/n in all (n, n) schemes); 2) the scheme only needs 
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three 24-bit XOR operations per pixel to get a recovery of the given color image; and 

3) unlike some probabilistic approaches, our recovered images are lossless; 4) our 

scheme is missing-allowable because it is a (k, n)-threshold scheme which requires 

only k out of the n shadows appear in the recovery meeting. 

We have implemented the cases with (k, n) being, respectively, (2, 2), (2, 3), (3, 3), 

(2, 4), (3, 4), (4, 4), etc. The results are satisfactory in terms of the above advantages. 

Notably, the method also works for binary or grayscale image because the method is 

based on bit-by-bit operation. In fact, the given secret image A can be B-bit per pixel 

for any positive integer B (for example, use B=1 for binary image, B=7 or 8 for 

grayscale image, B=15 for 5-5-5 pseudo-color image, B=24 for 8-8-8 color image). 
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Chapter 3 

Single Image Sharing with User-friendly Shadows 

and Progressive Decoding 

 

 

In this chapter, we propose a novel sharing method with n user-friendly shadows 

and progressive decoding based on modulus operations. First, a fundamental (n, n) 

sharing version based on modulus operations is introduced. This simple version is 

neither user-friendly, nor progressive. Then, the fundamental version is extended to an 

intermediate version with user-friendly shadows by using a smaller value m in the 

modulus operations, although the intermediate version is still non-progressive. Finally, 

the final version is proposed by extending the intermediate (user-friendly) version 

further to the one with both progressive decoding and user-friendly features.  

The remaining portion of this chapter is organized as follows. Section 3.1 briefly 

describes Fang‟s user-friendly progressive sharing method [19]. Section 3.2 presents 

the proposed method. Experimental results and some comparisons are shown in 

Section 3.3. Finally, the summary is in Section 3.4. 

 

3.1 A Simple Review of Fang‟s Method [19] 

This section reviews roughly Fang‟s progressive and user-friendly method [19]. 

His method is for binary (black or white) images; therefore, bit-plane by bit-plane 

processing is required when input image is grayscale or color. His sharing and 

recovering algorithms are as follows: 
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Sharing phase: (see Fig. 3.1 for the sharing phase of Fang‟s method [19]):  

Step 1. According to the two leftmost columns of Table 3.1, expand every pixel of the 

black-or-white input image O to a 2×2 block in the corresponding position of 

the expanded image O'. Notably, if the input pixel is black, then all pixels of 

the corresponding 2×2 block are black. Conversely, if the input pixel is white, 

then the corresponding 2×2 block contains two white and two black pixels (in 

this case, the corresponding 2×2 block is randomly selected from the six 

possibilities listed in lower part of column O' in Table 3.1). 

Step 2. For each 2×2 block of the expanded image O', by checking the pixel value at 

the corresponding position of a given stego-image T, Fang randomly picked up 

one of the corresponding patterns listed in the rightmost column of Table 3.1 

to create the 2×2 sharing block at the corresponding position of first shadow S1. 

Similar argument created each of the remaining n-1 shadows.  

 

 

Fig. 3.1. The sharing phase of Fang‟s method [19]. 
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Table 3.1 Fang‟s selection of sharing patterns in [19]. (See Fig. 3.1 to understand O, 

O' and T) 

Secret pixel 

O(x, y) 

Expanded 

secret O' 

Cover pixel 

T(x, y) 

Possible choices for the related 

2-by-2 block of a share Si (1in) 

 

B
(1)

 

 

(B,B,B,B) 

 

B 

(B,B,W,W),(B,W,B,W), (B,W,W,B), 

(W,B,B,W), (W,B,W,B), (W,W,B,B) 

   

W 

(W,W,W,W),(B,W,W,W),(W,B,W,W), 

(W,W,B,W), (W,W,W,B) 

W (B,B,W,W)
 (2)

 B (B,B,W,W) 

  W (W,W,W,W), (B,W,W,W), (W,B,W,W) 

 (B,W,B,W) B (B,W,B,W) 

  W (W,W,W,W), (B,W,W,W), (W,W,B,W) 

 (B,W,W,B) B (B,W,W,B) 

  W (W,W,W,W), (B,W,W,W), (W,W,W,B) 

 (W,B,B,W) B (W,B,B,W) 

  W (W,W,W,W), (W,B,W,W), (W,W,B,W) 

 (W,B,W,B) B (W,B,W,B) 

  W (W,W,W,W), (W,B,W,W), (W,W,W,B) 

 (W,W,B,B) B (W,W,B,B) 

  W (W,W,W,W), (W,W,B,W), (W,W,W,B) 

(1)
 „B‟ represents black pixel; „W‟ represents white pixel. 

(2)
 Each 2×2 block in the expanded image O' (or in each shadow Si) is represented as 

(left-up pixel, right-up pixel, left-bottom pixel, right-bottom pixel). 
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Recovering phase: (see Fig. 3.2 for Fang‟s experimental result) 

Assume that k shadows are collected. Then, each pixel j of the black-or-white image 

is reconstructed using the k sharing pixels at the same position j of the k shadows. The 

reconstruction rule is an OR-like operation: “the reconstructed pixel is black iff at 

least one of the k sharing pixels is black.” (Hence, the reconstructed pixel is white iff 

all k sharing pixels are white.) 

 

 

Fig. 3.2. Experimental result of the recovering phase in Fang‟s method: (a) one of the 

six (n=6) user-friendly shadows; (b-f) the reconstructed results using 2-6 shadows, 

respectively. 

 

Fang‟s method has two disadvantages: i) The size of each shadow Si is four times 

larger than the input image O because the sharing patterns in Step 2 of sharing phase 

are 2×2 blocks (see the fourth column of Table 3.1); ii) The image quality (such as 

PSNR) of shadows is not easy to control. We will improve them in this chapter. 
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3.2 The Proposed Method 

This section presents our user-friendly progressive sharing method based on 

modulus operations. The method generates n user-friendly shadows whose image 

quality (such as PSNR) is lower than the input image‟s quality; and later, the input 

image can be reconstructed with progressively-improved image quality after gathering 

k (2kn) shadows. The description of the method is divided into three subsections. 

First, a fundamental (n, n) sharing version based on modulus operations is introduced 

in Sec. 3.2.1. This simple version is neither user-friendly, nor progressive. Then, the 

fundamental version is extended in Sec. 3.2.2 to an intermediate version with 

user-friendly shadows, although the intermediate version is still non-progressive. 

Finally, Sec. 3.2.3 presents the final version by extending the intermediate 

(user-friendly) version further to the one with both progressive decoding and 

user-friendly features. A comparison between our progressive and user-friendly 

method (Sec. 3.2.3) and Fang‟s (Sec. 3.1) is in Sec. 3.2.4. A stego version of our 

method is in Sec 3.2.5. 

 

3.2.1 An (n, n) Fundamental Sharing Version Based on Modulus Operations 

This sub-section illustrates a fundamental (n, n) sharing version for grayscale 

images based on modulus operations. This version splits a grayscale image A among 

n extremely noise-like shadows B1, B2, …, Bn whose sizes are all the same as A. The n 

noise-like shadows together can reconstruct each pixel of A by using one modulus 

operation and n-1 addition. (In this dissertation, “＋” and “Mod” denote addition 

and modulus operations, respectively.) The sharing and recovering phases of the 

fundamental version are listed below. 
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Sharing phase: 

Step 1. Input a grayscale secret image A. 

Step 2. Generate n-1 random images B1, B2, …, Bn-1 as shadows. Each is as large as 

A. 

Step 3. Create the n
th

 shadow Bn by 

Bn = {A＋(256－[(B1＋B2＋…＋Bn-1)Mod 256])}Mod 256.       (3.1) 

Step 4. Output the n noise-like (non-friendly) shadows B1, B2, …, Bn. 

 

Recovering phase: 

Retrieve A using the formula  

A=(B1＋B2＋…＋Bn)Mod 256.                   (3.2) 

Notably, both “＋” and “Mod” are pixel-by-pixel operations. This sharing scheme 

also can work for binary or color images by using 2(=2
1
) and 16777216(=2

24
), 

respectively, to replace the constant 256 in the two formulas above. An experimental 

result using the grayscale image Lena as image A is shown in Fig. 3.3, with (n, n)=(4, 

4). 
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(a) 

    

(b)               (c)               (d)               (e) 

 

(f) 

Fig. 3.3. An example of the (n, n) fundamental sharing version introduced in Sec 3.2.1. 

Here, (n, n)=(4, 4);  (a) is the given grayscale image Lena A; (b-e) are the four 

generated “non-friendly” shadows B1, B2, B3, B4; (f) is the recovered error-free Lena 

using formula A=(B1＋B2＋B3＋B4)Mod 256. 

 

3.2.2 A User-friendly but Non-progressive (n, n) Version 

This sub-section describes how to extend the (n, n) fundamental version in Sec. 

3.2.1 to an intermediate version whose n shadows are all user-friendly, i.e. look like 

visual-quality-reduced versions of the natural image, so that the management of the n 

shadows is easier. What we do is to use a smaller value m to replace the value 256 in 

the modulus operations in Sec. 3.2.1. Notably, the version in Sec 3.2.2 here is still 
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non-progressive. 

 

Sharing phase: 

Step 1. Input an integer parameter m (2m256) and an 8-bit grayscale image A. 

Generate a smaller-range image 

A' = (A)Mod m                      (3.3) 

whose size is identical to A, but with pixel value less than m (rather than 256). 

Step 2. Generate n-1 “random” images 
121 ,,, 

nBBB   whose sizes are all as large as 

A; but each pixel is a random value chosen from {0, 1, 2, …, (m－1)}. Then 

create 

nB  = {A'＋(m－[( 1B＋ 2B＋…＋ 1

nB )Mod m])}Mod m      (3.4) 

which implies that ( 1B＋ 2B＋…＋ nB )Mod m = A'. 

Step 3. Output the n user-friendly shadows {B1, …, Bn} defined by  

Bi = (A－A')＋
iB     for i=1,…,n.            (3.5) 

 

Recovering phase: 

Retrieve A by 

A=[Bi－(Bi)Mod m]＋[(B1＋B2＋…＋Bn)Mod m].            (3.6) 

 

In Eq. (3.6), it does not matter which one of B1, B2, …, Bn is used as Bi; the result 

is the same. Also, if m=256 is used in Eq. (3.3)-(3.6), then this intermediate version is 

identical to the (n, n) sharing one in Sec. 3.2.1. 

 

3.2.3 The User-friendly and Progressive Version 

The intermediate version (Sec. 3.2.2) is still non-progressive, although 
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user-friendly. Sec. 3.2.3 extends the intermediate version so that progressiveness is 

also equipped with. The algorithm is presented here step by step. Because the version 

is an extension of Sec. 3.2.2, the modulus-base notation m (2m256) is still used 

here in Sec. 3.2.3. The new version can generate n friendly shadows and reconstruct 

the input image in a progressive manner, i.e. the reconstructed quality improves as the 

number of gathered shadows increases. 

 

Sharing phase: 

Step 1. Input an integer parameter m (2m256) and an 8-bit grayscale secret image A 

(A can also be one of the three 8-bit color-components of a 24-bit color 

image). 

Step 2. By a pixel-by-pixel manner, generate a smaller-range image 

A' = (A)Mod m                      (3.7) 

whose size is identical to A, but pixel value is at most m-1, rather than 255.  

Step 3. Generate n-1 random images R1, R2, …, Rn-1. (Each image Ri is as large as A, 

and each pixel of Ri is 8-bit.) 

Step 4. Create n images nBBB  ,,, 21   in a pixel-by-pixel manner: 

If A'=0 then 1B= 0; else 1B= (R1)Mod )1( A . Anyway, define 1A=A'－ 1B . 

If 1A=0 then 2B =0; else 2B =(R2)Mod )1( 1 A . Anyway, define 2A = 1A－ 2B . 

... 

If 
2


nA =0 then 1


nB =0; else 1


nB =(Rn-1)Mod )1( 2 

nA . Anyway, define 

1

nA = 2


nA － 1


nB . Finally, let nB = 1


nA . 

Step 5. Output n final shadows B1, B2, …, Bn defined by  

 Bi = (A－A')＋ iB     for i=1,…,n.       (3.8) 

 

(In Step 4 of the sharing phase above, “ 1B =(R1)Mod )1( A ” means that 
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“ 1B (t)=(R1(t))Mod   )1(  tA ” at pixel t. Then, after creating 1B (t), we create 1A (t) 

by the formula 1A (t)=A'(t)－ 1B (t). The explanation for the remaining operations 

in Step 4 is likewise.) Notably, as t changes, for random effect, we randomly 

switch the order of assigning these computed values to { )(,),(),( 21 tBtBtB n
  }. 

For example, when t=0, assign the computed values to )(,),(),( 21 tBtBtB n
   as 

above, respectively; then, when t=1, assign the computed values to 

),(,),(),( 11 tBtBtB nn


   respectively; then, when t=2, …. Here, we may use a 

random number generator to create the permutation order for this. 

 

Recovering phase: 

After gathering any k (2kn) shadows  

Bi(1), Bi(2), …, Bi(k)      (1i(j)n for 1jk), 

which are subset of the n shadows {B1, B2, …, Bn}, retrieve A using the formula  

A
~

 = [Bi(j)－(Bi(j))Mod m]＋[(Bi(1)＋Bi(2)＋…＋Bi(k))Mod m].      (3.9) 

Here, Bi(j) can be any one of Bi(1), Bi(2), …, Bi(k). 

 

Lemma 1. In Eq. (3.9), anyone in Bi(1), Bi(2), …, Bi(k) can be used as Bi(j) . 

Proof. Eq. (3.8) implies  

Bi－ iB  = A－A' for all i=1,…,n,                (3.10) 

hence we have (Bi(j)－ )( jiB )Mod m = (A－A')Mod m for all 1i(j)n for 1jk. However, 

(A－A')Mod m=0 because A' =(A)Mod m by Eq. (3.7). Therefore, (Bi(j)－ )( jiB )Mod m=0. So 

(Bi(j))Mod m = ( )( jiB )Mod m = )( jiB                 (3.11) 

where the last identity is due to the fact that )( jiB <(A'+1) by Step 4 above, and the 

range of A' is {0, …, m-1} by Eq. (3.7). We may thus say that  
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Bi(j)－(Bi(j))Mod m = Bi(j)－ )( jiB = A－A'   (Here, 1i(j)n for 1jk).     (3.12) 

-END of Proof- 

 

Lemma 2. In Step 4 of the sharing phase above,  

   A' = 1B＋ 2B＋…＋
1

nB ＋

nB .      (3.13) 

Proof. Because 1A= A'－ 1B , we have A' = 1B＋ 1A .  

Because 2A = 1A－ 2B , we have A' = 1B＋ 1A= 1B＋ 2B＋ 2A .  

Because 
3A = 2A－ 3B , we have A' = 1B＋ 2B＋ 3B＋ 3A .  

… 

Because 
1

nA =

2

nA －

1

nB , we have A' = 1B＋ 2B＋…＋

1

nB ＋

1

nA .  

Finally, because nB = 1

nA , we have A' = 1B＋ 2B＋…＋

1

nB ＋ nB . 

            -END of Proof- 

 

Lemma 3. When all n shadows are received, i.e. when k=n, then A can be recovered 

losslessly by Eq. (3.9). In other words, 

A = [Bi－(Bi)Mod m]＋[(B1＋B2＋…＋Bn)Mod m].           (3.14) 

(Again, it does not matter which one of {B1, B2, …, Bn } is used as the Bi.) 

Proof. Below we show why the recovery image A
~

 becomes the original image A 

when k=n. Since k=n, Equations (3.9), (3.12), and (3.13) imply 

A
~

 = [Bi(j)－(Bi(j))Mod m]＋[(Bi(1)＋Bi(2)＋…＋Bi(n))Mod m] 

= [Bi－(Bi)Mod m]＋[(B1＋B2＋…＋Bn)Mod m] 

= [A－A']＋[(B1)Mod m＋(B2)Mod m＋…＋(Bn)Mod m]Mod m 

= [A－A']＋[ 1B＋ 2B＋…＋ nB ]Mod m 

= [A－A']＋[A']  

= A    -END of Proof- 
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Step 4 above implies each pixel of 
nBBB  ,,, 21   is non-negative because each 

pixel is created by a modulus function. Moreover, in Step 4 above, the pixel values of 

A' is distributed randomly among 1B , 2B , …,
nB ; and Eq. (3.13) reads  

1B＋ 2B＋…＋
1

nB ＋

nB  = A'  

in which  all pixel values are non-negative; hence, to estimate the image quality 

(PSNR) of shadows B1, B2, …, Bn, we may start from the rough estimation  

n

A
Bi


 .                           (3.15) 

Now, the root-mean-square error (RMSE) for each 
iB  (1in), as compared with the 

input image A, is defined as 

 
    

 tCount

tBtA

BRMSE
tall

i

i

 



2

.                  (3.16) 

Here, A(t) is a pixel value in A, and  tBi  is in 
iB . By Eq. (3.8),  iBRMSE  is 

evaluated as

         

 tCount

tBtAtAtA
tall

i 
2

, which can be reduced as 

 

 tCount

n

ntA

tall

 






 
2

)1(

 by Eq. (3.15). Because 
n

n )1( 
 is a given 

constant due to the known value of n, the above rough estimation of  iBRMSE  can 

be re-written as

 

  n

n

tCount

tA
tall )1(

2





. Although the actual value of 

 

 tCount

tA
tall

 
2

 

depends on the histogram of the image A', we may roughly estimate 

 

 tCount

tA
tall

 
2

 as 

73.1/)1()1/()(

1

0

2 


mmdtt

m

                  (3.17) 
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which is the probabilistic average value considering the fact that 

   )1(,,1,0  mtA  . Therefore, we have  

 
n

nm
BRMSE i






73.1

)1()1(
.                 (3.18) 

Then, we can get the rough estimation  

 
   2

2

102

2

10

73.1

)1()1(

255
log10

255
log10















n

nmBRMSE
BPSNR

i

i .     (3.19) 

Some experimental results of  iBPSNR  are shown in Table 3.2, which uses five 

nature images in Fig. 3.3(a) and Fig. 3.4. From this table, we can see that the 

experimental value of PSNR is close to the estimation given by Eq. (3.19). 

In our experiments, for the same value k, all reconstructed images have similar 

PSNR values. For example, in each of the three experimental results of Fig. 3.5, 3.6 

and 3.7, the four images respectively reconstructed by shadows {B1, B2, B3} (or by 

{B1, B2, B4} , or by {B1, B3, B4}, or by {B2, B3, B4}) all have very similar PSNR 

values. Likewise, the six images reconstructed by any two shadows of {B1, B2, B3, B4} 

also have similar PSNR values. In recovering phase, when more shadows are 

gathered (k becomes larger), then the reconstructed image has higher image quality. 

In particular, when all n shadows are gathered, then k=n, and the reconstructed image 

A is error-free due to Lemma 3.3. In summary, the proposed version has progressive 

decoding feature; and it only uses one Subtraction, two Modulus operations and k 

Additions to reconstruct a gray value from pixels of k available shadows. 

The “＋”, “－” and “Mod” in this subsection are all byte-by-byte operations 

among gray values. Hence, if input image is color (24-bit per pixel), then A must be 

first decomposed into 3 components ( RA , GA  and BA ) of 8-bit each. Then the 

sharing process above is implemented for each component to generate n shadows. 
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Then, for each index i=1,…,n, combining the three corresponding shadows R

iB , G

iB  

and B

iB  to get final shadow Bi.  

 

    

(a)               (b)               (c)               (d) 

Fig. 3.4. Other four images {Jet, Baboon, Pepper, Boat} used in Table 3.2. 

 

Table 3.2. The PSNR of shadows when n=4 shadows were generated for each image. 

m‟s 

value 

 iBPSNR  

in Eq. 

(3.19) 

PSNR in 

Lena‟s 

shadows 

PSNR in 

Jet‟s 

shadows 

PSNR in 

Baboon‟s 

shadows 

PSNR in 

Pepper‟s 

shadows 

PSNR in 

Boat‟s 

shadows 

m=256 7.26 7.37 7.40 7.16 7.45 7.34 

m=128 13.31 13.41 13.74 13.12 13.09 13.50 

m=64 19.40 19.02 20.09 18.46 18.75 19.89 

m=32 25.56 25.45 25.13 25.36 25.46 25.85 

m=16 31.87 31.21 31.21 31.15 31.11 31.97 

 

3.2.4 Advantage over Fang’s Method [19]  

Comparing to Fang‟s method [19] reviewed in Sec. 3.1, which is also 

user-friendly and progressive, our method in Sec. 3.2.3 has two more advantages: 

(i) The size of our each shadow in B1, B2, …, Bn is the same as A (not expanded). 

(ii) Our shadows‟ image quality  iBPSNR  can be roughly controlled by the base 
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parameter m of modulus operations (2m256 is an integer). Just estimate m by 

 
1

)1(10

441

10








n

n
m

iBPSNR
.          (3.20) 

Eq. (3.20) is derived from Eq. (3.19), an estimation tool whose validity is checked in 

Table 3.2.  

 

3.2.5. The Stego Version of Our Method 

In Fang‟s method [19], each shadow is hidden using a cover image T (also known 

as host image) so that all shadows (called as stego-shadows) look like T. Our method 

in Sec. 3.2.3 can also be modified to have a stego version by using stego-shadows 

smaller in size than Fang‟s. Our stego version is as follows: 

 

Sharing phase: 

Step 1. Input an integer parameter m (2m64 in stego version; but 16m64 is 

suggested to avoid large per); input an 8-bit grayscale cover-image T whose 

size ( hw ) is also the size of the 8-bit grayscale secret image A. 

Step 2. Let  msz 2log/8 . Use pixels-duplication to expand T to a larger image T' 

whose size is  

      )()( hszwsz  .                      (3.21) 

Step 3. Generate n-1 random images R1, R2, …, Rn-1 . (Each image Ri is as large as A, 

and each pixel of Ri is 8-bit.) 

Step 4. Create n images nBBB  ,,, 21   according to Step 4 of sharing phase of Sec. 

3.2.3, except that here we use A to replace the role of A' in all formulas there. 

Step 5. Use a random key r to create an order to permute all pixels in 1B . Each of the 

remaining n-1 images nBB  ,,2   is also permuted using the random key r. 
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Then use Shamir‟s (2, n)-threshold sharing method
 
[1] to share the key r 

among n created numbers r1, r2, …, rn. Then, store ri in 
iB  for each i=1,…,n.  

Step 6. Treat each grayscale image 
iB (1in) as a bit stream (i.e. a very big binary 

integer), then partition each 
iB  to )()( hszwsz   smaller-range 

numbers )(tBi
  (here, 0 )(tBi

 <m and )(0 hwszt  ).  

Step 7. Then hide each number )(tBi
  in T'(t) to get a pixel value Bi(t) by the formula 

)(
)()(

)( tBm
m

tBtT
roundtB i

i
i








 
               (3.22) 

where the round operator rounds its argument to the nearest integer. Add 

(Subtract) m to (from) the result of Eq. (3.22) if Bi (t) <0 or >255. 

Step 8. Output n stego shadows B1, B2, …, Bn whose sizes are all identical to T'.  

 

Recovering phase: 

Step 1. After gathering any k (2kn) shadows {Bi(1), Bi(2), …, Bi(k)}  {B1, B2, …, Bn}   

where 1i(j)n for each j=1,…,k, retrieve all )( hwsz   smaller-range 

numbers )()( tB ji
  in each stego image Bi(j) by the de-hiding formula 

)()( tB ji
 = [Bi(j)(t)]Mod m   for t=0,…, 1)(  hwsz .    (3.23) 

Step 2. Combine the )( hwsz   smaller-range numbers )()( tB ji
  to retrieve each 

)( jiB  as an 8-bits grayscale image of hw  pixels. 

Step 3. Recover the random key r by inverse sharing. Then use the key r to restore 

original pixels‟ order in image )()2()1( ,...,, kiii BBB  . 

Step 4. Finally, retrieve A in pixel-by-pixel manner by the formula 

A
~

= )1(iB + )2(iB +…+ )(kiB .                   (3.24) 
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In our stego version above, the final stego shadows B1, B2, …, Bn are 

 mlog/sz 28  times larger than the input secret image A. Hence, the pixel 

expansion rate is per=  mlog/ 28 8/4=2 if we set the parameter m16. An example 

using m=32 is shown in Fig. 3.8 where Jets are stego-shadows utilized to cover (and 

progressively recover) the important image Lena. In this (m=32) example, our 

stego-version‟s pixel expansion rate is per=8/5=1.6, better than Fang‟s per=4 (shown 

in Fig. 3.9(c)). Moreover, our shadows image quality is also better than Fang‟s. For 

example, as shown in Fig. 3.8(a-d) or Fig. 3.9(a), our Jet-shadows have image quality 

of PSNR=26.66 db (PSNR would be 31.26 db, as shown in Fig. 3.9(b), if we used 

m=16 to get the shadows whose size are all 2 times larger than original Jet image.) To 

the contrary, after implementing Fang‟s method in each bit-plane of the same 

grayscale important image A (Lena) and same cover image T (Jet), each of Fang‟s n=4 

quadruple-size stego-shadows has PSNR=10.02 db only (see Fig. 3.9(c)). Our stego 

version is still progressive in decoding; lossless when all n shadows are collected; and 

have small decoding complexity O(k) when k of the n shadows are used in decoding. 

 

3.3 Experimental Results and Some Comparisons 

3.3.1 Experimental Results 

In the proposed method in Sec. 3.2.3, the input image A is the grayscale image 

Lena in Fig. 3.3(a). Fig. 3.5 shows the experimental result for (n=4) case when 

m=256. The image A can be roughly seen in any of the four generated user-friendly 

shadows shown in Fig. 3.5(a-d). In Fig. 3.5(e-g), when more shadows are available in 

retrieval, the recovered image has better quality. 

Other experiments using m=64 and m=16 for (n=4) case are shown in Fig. 3.6 and 

3.7 respectively. The shadows in Fig. 3.7 have higher PSNR than those in Fig. 3.5 and 
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3.6 due to the use of a smaller m value. (This is according to Eq. (3.19), where we 

have  
2

2

102

2

10
]3)1[(

)4441(
log10

)]1()1[(

)441(
log10











mnm

n
BPSNR i  

because n=4). 

Notably, when m=256, 64, and 16, respectively, the PSNR(Bi) values estimated by 

Eq. (3.19) are 7.26 db, 19.40 db, and 31.87 db. They are all very close to the actual 

PSNR values of the shadows (7.37 db, 19.02 db, and 31.21 db; respectively) shown in 

Fig. 3.5, 3.6, and 3.7. 

 

    

(a)               (b)               (c)               (d) 

   

(e)               (f)               (g) 

Fig. 3.5. An example of (n=4) case using m=256 in non-stego version (Sec. 3.2.3). 

Here, (a-d) are the final shadows B1, B2, B3, B4 (RMSE=109.13 and PSNR=7.37 for 

(a-d)); (e-g) are the recovered Lena images (RMSE=80.22 and PSNR=10.04 for (e); 

RMSE=49.75 and PSNR=14.20 for (f); Lossless for (g)) using (respectively) any two, 

any three, and all four final shadows. 
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(a)               (b)               (c)               (d) 

   

(e)               (f)               (g) 

Fig. 3.6. An example of (n=4) case using m=64 in non-stego version (Sec. 3.2.3). Here, 

(a-d) are the final shadows B1, B2, B3, B4 (RMSE=28.54 and PSNR=19.02 for (a-d)); 

(e-g) are the recovered Lena images (RMSE=21.07 and PSNR=21.66 for (e); 

RMSE=13.10 and PSNR=25.79 for (f); Lossless for (g)) using (respectively) any two, 

any three, and all four final shadows. 

 

    

(a)               (b)               (c)               (d) 

   

(e)               (f)               (g) 
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Fig. 3.7. An example of (n=4) case using m=16 in non-stego version (Sec. 3.2.3). Here, 

(a-d) are the final shadows B1, B2, B3, B4 (RMSE=7.01 and PSNR=31.21 for (a-d)); 

(e-g) are the recovered Lena images (RMSE=5.21 and PSNR=33.79 for (e); 

RMSE=3.28 and PSNR=37.81 for (f); Lossless for (g)) using (respectively) any two, 

any three, and all four final shadows. 

 

   

(a)                    (b) 

  

(c)                   (d) 

   

(e)               (f)               (g) 

Fig. 3.8. An example of (n=4) case using m=32 in stego version (Sec. 3.2.5). Here, 

(a-d) are the final stego-shadows B1, B2, B3, and B4; (e-g) are the progressively 

recovered Lena images using, respectively, “any” two, “any” three, and all four final 
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shadows. PSNR=26.66 for (a-d); PSNR=10.04 for (e); PSNR=14.21 for (f); and (g) is 

lossless. 

 

  

(a)                    (b) 

  

(c)  

Fig. 3.9. Comparing the stego-shadows in two stego methods for (n=4) case. The 

hidden image is Lena (Fig. 3.3(a)) and host image is Jet (Fig. 3.4(a)). Here, (a) is one 

of the four stego-shadows with PSNR=26.66 db in our stego version (when m=32); (b) 

is one of the four stego-shadows with PSNR=31.26 db in our stego version (when 

m=16); (c) is one of the four stego-shadow with PSNR=10.02 in Fang‟s method (Sec. 

3.1). Note that our stego size is only 1.6 times (in (a)) or 2 times (in (b)) larger than 

original Jet image‟s size, whereas Fang‟s stego size is 4 times larger than original Jet. 
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3.3.2 Comparisons 

This sub-section gives a comparison with related researches of other people [3-7, 9, 

18-22, 51]. From Table 3.3, we can see that the proposed method owns all these four 

advantages: user-friendly, progressive, economical-size, and lossless reconstruction 

(when all n shadows are available). 

 

Table 3.3 Comparisons with reported image sharing methods [3-7, 9, 18-22, 51]. 

Methods 
Friendly 

shadows 

Progressive 

decoding 

Non-expansion in 

size of shadows 

(n, n) lossless 

recovery
(1)

 

Wang and Su [3] x
(2)

 x yes
 (3)

 yes 

Wang et al. [18] x x yes yes 

Lin and Tsai [4] x x x yes 

Lin and Lin [5] x yes x x 

Thien and Lin [7] 

yes 

(uncontrollable 

quality) 

x yes x 

Fang [19] 

yes 

(uncontrollable 

quality) 

yes x yes 

Chen and Lin [9] x yes yes yes 

Hung et al. [20] x yes yes x 

Jin et al. [21] x yes x yes 

Fang and Lin [22] x yes x yes 

Thien and Lin [6] x x yes yes 

Fang and Lin [51] x x x yes 
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Proposed method 

yes 

(controllable 

quality) 

yes yes yes 

(1)
 The ability to get lossless recovery after gathering all n shadows. 

(2)
 The symbol „x‟ means that the mentioned method doesn‟t have this advantage. 

(3)
 The symbol „yes‟ means that the mentioned method has this advantage. 

There is an important display from the above Table 3.3, our method owns at least 

two convenient features: user-friendly and progressive. Besides showing the item 

comparisons in Table 3.3, we may compare ours with other image-sharing researches 

[3, 4, 7, 18, 19, 21] in Table 3.4 to show quantity comparisons in three aspects: 1) 

computational complexity to reconstruct a pixel; 2) memory space of a shadow 

(represented by pixel expansion rate [per], as compared to the size of input image); 

and 3) image quality of the image recovered by all n shadows. Table 3.4 shows that in 

our method: 1) each pixel can be reconstructed by k shadows using about k operations; 

2) the size of each shadow is not expanded (per=1) for non-stego version, and ; 3) the 

recovery by all n shadows is lossless. Although our per or computational complexity 

is in the middle rank rather than the best; note that in Table 3.4, only Ref. [7, 19] and 

ours are user-friendly (provide visually-recognizable shadows). In these three 

user-friendly approaches, Ref. [19] is 4 times expanded in shadow size, whereas Ref. 

[7] is neither progressive nor lossless in recovery. As for Ref. [3, 4, 18, 21], they are 

neither progressive nor user-friendly.  

To compare with Fang‟s [19] further, we provide our stego-version in Sec 3.2.5, in 

which the pixel expansion rate (per) is 1.33 per=  mlog/ 28 2 when 64m16. For 

example, per=1.6 when m=32. These per values are still better than Fang‟s per=4. 
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(Hence, no matter it is stego version or not, our per is better than Fang‟s.) Moreover, 

our stego shadow‟s image quality is also better than Fang‟s (see Fig. 3.9, our 

Jet-stego-shadows are with PSNR=26.66 db for m=32 and 31.26 db for m=16, both 

are better than Fang‟s 10.02 db).  

 

Table 3.4. Quantity comparisons with reported image sharing methods [3, 4, 7, 18, 19, 

21]. 

Methods 
Computational 

complexity
(1)

 

Memory 

size
(2)

 for 

each shadow 

Recovered 

quality
(3)

 

Wang and Su [3] 
O(log

2
k) (Math 

operations
(4)

) 

per  (1/k)×

60%  (1/n)×

60% 

Lossless 

Wang et al. [18] 
k1 (XOR 

operations) 
per = 1 Lossless 

Lin and Tsai [4] 
O(k×per) (OR-like 

operations) 

per ≧ 2 Lossless 

Thien and Lin 

[7] (visually 

recognizable  

shadows) 

 

O(log
2
k) (Math 

operations) 

 

per  1/k  

1/n 

 

Lena‟s PSNR = 37.98 

Jet‟s PSNR = 39.93 

Baboon‟s PSNR = 35.33  

Fang [19] 

(visually 

recognizable  

shadows and 

4×(k1) (OR-like 

operations) 
per = 4 Lossless 
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progressive) 

Jin et al. [21]
 

(progressive) 

4×(k1) (XOR 

operations) 
per = 4 Lossless 

Our Sec 3.2.3 

(visually 

recognizable  

shadows and 

progressive) 

k additions; 2 Mod 

operations; 1 

subtraction  

per = 1 Lossless 

Our stego 

version Sec 3.2.5 

(visually 

recognizable  

shadows and 

progressive) 

(k1) additions; 2 

Mod operations; 1 

attaching of a short 

binary number to the 

other to get an 8-bit 

number  

1.33 per= 

 mlog/ 28 2 

when 

64m16 

Lossless 

(1)
 Operations needed to recover one secret pixel by k shadows in (k, n) system.  

(2)
 The pixel expansion rate (per) of each shadow, as compared to the input secret 

image. 

(3)
 The secret image recovered by all shadows. 

(4)
 Math operations: ＋,－,×,÷. 

 

3.4 Summary 

Many researches in image sharing had been reported, usually traditional 

approaches: polynomial sharing or visual cryptography. In this chapter, based on 

modulus operations, we successfully designed a novel image sharing method with 

user-friendly shadows and progressive decoding. According to the experimental 
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results and comparisons in Sec. 3.3, besides being 1) user-friendly ; 2) progressive; 3) 

each pixel is reconstructed by k shadows quickly with about k operations; 4) the 

recovery is lossless after collecting all n shadows; the proposed method also owns 

following features: 5) the non-stego shadows‟ image quality can be controlled by the 

parameter value m using Eq. (3.20); 6) each shadow is not expanded in non-stego 

version (Sec. 3.2.3), and is only 1.33per=  mlog/ 28 1.6 times larger than original 

secret image if we restrict 64m32 in the stego version (Sec. 3.2.5); 7) the stego 

shadows have quality much better than Fang‟s shadows (Fig. 3.9). 
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Chapter 4 

Multi-Images Sharing with Economical Shadows 

and Fast Decoding 

 

 

In this chapter, we proposed a novel secret sharing scheme for multiple images 

based on modulus (MOD) and exclusive-OR (XOR) operations to simultaneously 

achieve these two advantages: (1) O/I size ratio is very close to 1, and (2) only 

constant computational operations are needed to reconstruct each secret pixel. Notably, 

when multiple input images are shared by a scheme, the “O/I size ratio” in this 

dissertation denotes the ratio of total size of output shadows divided by total size of 

input images. The proposed method generates n extremely noise-like shadows for n 

given grayscale (binary/color) secret images (notably, all n given images have the 

same size), so that each shadow‟s size is identical to the given images‟. In other words, 

our O/I size ratio is 1; therefore, our method will not need extra space in 

images-database, when we use the generated shadows to replace original secret 

images. Furthermore, after gathering all n shadows, the lossless decoding process only 

uses one XOR, one MOD, one addition (ADD) and one subtraction (SUB) operations 

(symbolized as “⊕”, “Mod”, “＋” and “－” in this dissertation) to reconstruct each 

pixel‟s 8-bits value of given secret images, whatever the value of n is. Therefore, no 

matter how many secret images are used in our method, the CPU time in decoding 

each secret image will not increase as the number of secret images increase. Hence, 

the proposed method is not only economical in storage space of shadows but also fast 

in decoding of secret images.  
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The remaining portion of the chapter is organized as follows. Section 4.1 

describes two basic tools based on MOD and XOR operations respectively; and these 

tools will be used in the proposed method. Section 4.2 presents the proposed method. 

Section 4.3 gives security analysis. Experimental result and comparisons are in 

Section 4.4. Finally, the summary is in Section 4.5. 

 

4.1 Two Basic Tools Used in the Proposed Scheme 

To achieve the two advantages (lower O/I size ratio and fewer decoding 

operations) mentioned in Sec. 1.1, two basic tools will be used in the proposed 

method. The first is the “MOD-based (2, 2) secret sharing tool” in Sec. 4.1.1, which 

can make our O/I size ratio be 1. The other is the “XOR-based (n, n) shadows 

combination tool” in Sec. 4.1.2, which can make our (n, n) scheme only need constant 

operations to decode each secret pixel, no matter how large the value of n is. 

 

4.1.1 MOD-based (2, 2) secret sharing tool 

Thien and Lin proposed a modified version [6] of Shamir‟s (k, n)-threshold PSS 

approach [1] to reduce the size of shadows. They use polynomials to share a secret 

image A among n shadows nBBB ,...,, 21
; and each of them is k times smaller than A in 

size. A cannot be revealed unless k of the n shadows are gathered. In their encoding, 

to transform a sector { 110 ,...,, kaaa } formed of k secret pixel values of A into n 

shadow pixel values {
nbbb ,...,, 21

} (where each biBi), they use a prime number 

p=251 to create a polynomial 

)...()( 1

110



 k

k xaxaaxq Mod p                  (4.1) 

of degree k-1. Then evaluate ).(,),2(),1( 21 nqbqbqb n    Later, using any k of 
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the n produced pairs n

iibi
1

),(


, people can recover all k coefficients 
110 ,...,, kaaa  in 

q(x) by constructing the interpolation polynomial. 

To let our method have shadows with small size, we apply [6]. More specifically, 

apply [6] in a special manner (k=2, n=2). We call this (2, 2) scheme as “MOD-based 

(2, 2) secret sharing tool”. The tool is described as follows: 

 

Sharing Phase: (see “(2, 2)-MOD-SS” in left-top part of Fig. 4.1) 

Step 1. Use a prime number key to generate a permutation sequence to permute all 

pixels‟ positions of the given grayscale image A. Then attach the key in the 

permuted image A
~

. 

Step 2. Sequentially read in gray values {pi} of A
~

 and then store in array E 

according to the rules: 

Step 2.1. If pi<250, then store pi in E. 

Step 2.2. If pi≧250, then split pi into two values 250 and (pi－250). Store 

these two values in E (first 250, then pi－250). 

Step 3. Sequentially grab two not-shared-yet elements 
0a  and 1a  of E. Use the 

grabbed (
0a , 1a ) to evaluate 

)()1( 101 aaqb  Mod 251 ,                    (4.2) 

)2()2( 102  aaqb Mod 251.                  (4.3) 

Then attach 1b  to shadow B1, and attach 2b  to shadow B2. 

Step 4. Repeat Step 3 until all elements of the array E are processed. 

 

Notably, Step 2.2 is to handle the gray values larger than 250 (see [6]), which 

seldom happens for most natural images. Therefore, the size of E, which equals to the 

total size of B1 and B2, is very close to size of A. In other words, each of the created B1 
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and B2 is about two times smaller than A in size. 

 

Reveal Phase: (see “Reveal of (2, 2)-MOD-SS” in bottom part of Fig. 4.2) 

Step 1. Take the first non-used pixel from each of the two shadows B1 and B2. Call the 

two values as ( 1b , 2b ). 

Step 2. Use these two values ( 1b , 2b ) to recover the two coefficients (
0a , 1a ) in Eq. 

(4.2-4.3) by 

)251( 121  bba Mod 251,                      (4.4) 

)251( 110  aba Mod 251.                      (4.5) 

The recovered (
0a , 1a ) are the two corresponding values in E. 

Step 3. Repeat Steps 1-2 until all values of the two shadows B1 and B2 are processed. 

Step 4. Sequentially grab an element pi of E, then do: 

Sub-step 4.1. If pi<250, then store pi in A
~

. Now, delete pi from E because the 

information contained in pi has been used. 

Sub-step 4.2. If pi＝250, then read in pi+1 immediately. Then store the single 

value (250＋pi+1) in A
~

. Now, delete both pi and pi+1 from E because the 

information in pi and pi+1 have both been used. 

Step 5. Extract the prime number key from A
~

 and apply the inverse-permutation 

operation to the permuted image A
~

 to get back to the secret image A. 

 

In the reveal algorithm above, only three operations (one SUB, one ADD and one 

MOD) are needed in Eq. (4.4) or Eq. (4.5) to reconstruct each secret pixel of A
~

. 

Because usually there are only a few pixels in A (and hence, in A
~

) whose gray values 

are above 250, the ADD operation in Sub-step 4.2 seldom occurs. Also, for each pixel, 

Step 5 uses one mapping operation (indexing) rather than computational operation. 
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4.1.2 XOR-based (n, n) shadows combination tool 

Once all given n secret images 
nAAA ,...,, 21
 are processed by MOD-based (2, 2) 

secret sharing tool described in Sec. 4.1.1, each secret image 
iA  ( ni 1 ) 

generates two half-size temporary shadows 1,iB  and 2,iB . To avoid any secret 

leaking when collecting less than n final shadows, we use the following steps of 

Combination Phase to form the final shadow
iC . 

 

Combination Phase: (see right-top and bottom parts of Fig. 4.1) 

Step 1. (Size-synchronization.) If some shadows jiB ,  ( ni 1  and 21  j ) have 

distinct size due to the existence of pixels whose gray values are in 251-255 in 

some images 
iA , then add suitable number of dummy pixels in all shadows to 

make all shadows jiB ,  have the same size as the one with the largest size. 

Step 2. (Stacking.) Take the first not-yet-processed pixel 1,ib  from each shadow 1,iB  

( ni 1 ). Then evaluate the corresponding pixel *b  for a new image *B  

by 

1,1,21,1* nbbbb   .                      (4.6) 

After all pixels of all 1,iB  are processed, the generation of image *B  is done, 

and its size is the same as 1,iB  (and 2,iB , too). 

Step 3. (Shifting 2,iB to 3,iB .)  Take next not-yet-processed pixel 2,ib  from each 

shadow 2,iB  ( ni 1 ), and, at the same pixel position, take the 

corresponding pixel *b  *B . Then create the corresponding pixel value 3,ib  
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of a new image 3,iB  by 

*2,3, bbb ii     ( ni 1 ).                   (4.7) 

After all pixels in all 2,iB  are processed, all n images 3,iB  are generated. 

Notably, each 3,iB  is as large as each 2,iB . 

Step 4. (Physically gluing.) For ni 1 , physically combine each pair of 1,iB  and 

3,iB  to generate their final shadow
iC =( 1,iB ; 3,iB ) . Because 1,iB  and 3,iB  are 

both about two times smaller than
iA , each 

iC  is about as large as
iA . 

 

When all n final shadows 
nCCC ,...,, 21
 are gathered, we can reconstruct all 1,iB  

and 2,iB  ( ni 1 ) by using the following steps of Decomposing Phase whose 

computation is very low. 

 

Decomposition Phase: (see top part of Fig. 4.2) 

Step 1. For ni 1 , physically separate each iC =( 1,iB ; 3,iB ) into two halves to 

get 1,iB  (front half) and 3,iB  (rear half). 

Step 2. Take next not-yet-processed pixel 1,ib  from each 1,iB  ( ni 1 ). Then 

evaluate the corresponding pixel *b  in the image *B  by Eq. (4.6). After all 

pixels of all 1,iB  are processed, the image *B  is generated. 

Step 3. Take next not-yet-processed pixel 3,ib  from each 3,iB  ( ni 1 ), and, at the 

same pixel position, take the corresponding pixel *b  from *B . Then 

evaluate the corresponding pixel 2,ib  for each image 2,iB  by 
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*3,2, bbb ii     ( ni 1 ).                   (4.8) 

After all pixels of all 3,iB  are processed, all 2,iB  are recovered. 

 

In average, only one XOR operation is needed to recover a pixel of a secret image; 

and this statement is true for each secret image
iA  ( ni 1 ). The analysis is as 

follows. Assume size of each 
iA  is w×h, then each 1,iB  in Step 2 uses averagely 

[(n-1)/n]×[(w×h)/2] XOR operations in Eq. (4.6) to create the *B . And each 3,iB  in 

Step 3 uses averagely (w×h)/2 XOR operations in Eq. (4.8) to recover 2,iB . Therefore, 

for each secret image
iA , the total number of XOR operations needed in the 

Decomposition Phase is {[(n-1)/n]+1}×[(w×h)/2], which will be smaller than 1 after 

dividing by 
iA ‟s size w×h. In other words, less than one XOR operation is needed in 

the Decomposition Phase to recover a pixel of a secret image
iA . 

 

4.2 The Proposed Method 

4.2.1 Encoding 

The encoding uses the Sharing Phase of MOD-based (2, 2) secret sharing tool in 

Sec. 4.1.1, followed by the Combination Phase of XOR-based (n, n) shadows 

combination tool in Sec. 4.1.2. The encoding creates n shadows nCCC ,...,, 21
 to 

replace the n given secret images nAAA ,...,, 21 . Main steps are as follows: 

 

Encoding algorithm: (see its diagram in Fig. 4.1) 

Input: n input binary/grayscale/color secret images nAAA ,...,, 21  of the same size. 

Step 1. No matter the image is binary or gray or color, just treat each iA  ( ni 1 ) 

as a long byte-stream (hence each element has 8-bits, and can be considered as 
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a gray-value pixel). 

Step 2. Then, for each stream 
iA  ( ni 1 ), use the Sharing Phase of MOD-based 

(2, 2) secret sharing tool in Sec. 4.1.1 to create its half-size shadows 

{ 1,iB , 2,iB }. 

Step 3. Use all { 1,iB , 2,iB } ni 1  in the Combination Phase of XOR-based (n, n) 

shadows combination tool in Sec. 4.1.2 to generate n final 

shadows
nCCC ,...,, 21
. 

 

Notably, each final shadow 
iC  is (nearly) as large as

iA . As a result, even from 

multi-secrets‟ view, the O/I size ratio is also 1, because total secrets‟ size 

|{ nAAA ,...,, 21
}| is identical to total shadows‟ size |{

nCCC ,...,, 21
}|. 

 

 

Fig. 4.1. A diagram of the proposed encoding algorithm. 
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4.2.2 Decoding 

To recover the n secret images 
nAAA ,...,, 21

 from the n final shadows 

nCCC ,...,, 21
, the decoding uses the Decomposition Phase of the XOR-based (n, n) 

shadows combination tool in Sec. 4.1.2, followed by the Reveal Phase of the 

MOD-based (2, 2) secret sharing tool in Sec. 4.1.1. Main steps are as follows: 

 

Decoding algorithm: (see its diagram in Fig. 4.2) 

Step 1. Use the Decomposition Phase of the XOR-based (n, n) shadows combination 

tool in Sec. 4.1.2 to reconstruct the half-size images { 1,iB ; 2,iB } ni 1  from 

the n final shadows {
nCCC ,...,, 21
}. 

Step 2. For each pair { 1,iB ; 2,iB }, where ni 1 , use the Reveal Phase of MOD-based 

(2, 2) secret sharing tool in Sec. 4.1.1 to recover the secret image 
iA  from 

{ 1,iB ; 2,iB }. 

Step 3. If the original secret images are not gray-valued, then transform all n 8-bits 

images nAAA ,...,, 21  to their binary/color equivalent. 

 

In average, the decoding only needs one XOR, one MOD, one ADD and one SUB 

operations (all are between bytes) to reconstruct each 1-byte (8-bits) pixel value of a 

secret image. More specifically, in Step 1 of decoding, one XOR operation is needed 

to recover a 1-byte pixel value of 2,iB  for the Decomposition Phase of the 

XOR-based (n, n) shadows combination tool. In Step 2, one MOD, one ADD and one 

SUB operations are needed to recover a 1-byte pixel value of iA  in the Reveal Phase 

of the MOD-based (2, 2) secret sharing tool. 
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Fig. 4.2. A diagram of the proposed decoding algorithm. 

 

4.3 Security Analysis 

Assume that only n-1 final shadows are available, and a shadow jC  is missing. 

Then, people cannot obtain *B  created by 1,1,21,1* nbbbb    in Eq. (4.6), 

due to the lack of the 1,jb  which is in the front half of jC . Without *B , people 

cannot reconstruct 2,2,22,1 ,...,, nBBB  defined by *3,2, bbb ii   ( ni 1 ) in Eq. 

(4.8). As a result, no secret image iA  can be recovered (see the Reveal Phase of 

MOD-based (2, 2) secret sharing tool in Sec. 4.1.1) due to absence of all 2,iB  

( ni 1 ). 

Below we discuss the probability of obtaining some right secret images iA  

through guessing. Without the loss of generality, assume that a betrayal party of n-1 

participants gathers their n-1 final shadows 121 ,...,, nCCC , and try to recover some of 

the n secret images, without the cooperation of the missing shadow nC . From Eq. (4.6) 
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and (4.8) , we have 

1,1,21,13,3,2, * niii bbbbbbb      ( ni 1 ).         (4.9) 

Because of the lack of 
nC =[ 1,nB ; 3,nB ], for each pixel 1,nb  in 1,nB , the betrayal party 

will have to guess a value, and then they use this guessing value to get a set of n-1 

pixels‟ values 2,12,22,1 ,...,, nbbb  in 2,12,22,1 ,...,, nBBB  respectively at the same pixel 

position (there is no 2,nb  value in 2,nB  due to the lack of 3,nb ). Then the 2×(n-1) 

secret pixels in 121 ,...,, nAAA  can be reconstructed by using 1,ib  and 2,ib  

( 11  ni ) in the Reveal Phase of MOD-based (2, 2) secret sharing tool in Sec. 

4.1.1. The above is just to reconstruct two pixels in each 
iA  ( 11  ni ). This 

value-guessing of one pixel, like 1,nb , will repeat (w×h)/2 times if the size of each 
iA  

is w×h (then, size of 1,nB  is 0.5×w×h). 

From the description above, we can evaluate the probability of obtaining some 

right grayscale images iA  of size w×h as follows: 

22 )
251

1
()

range values

1
(yProbabilit

hwhw 

   

which is 31453010131072)
251

1
(2/512512)

251

1
(   

if each image size is 512512 . 

Here, 
251

1

range values

1
  is the probability to guess successfully a pixel‟s value 

whose range is from 0 to 250; 
2

hw
 is the number of pixels in 1,nB . In fact, for each 

secret image iA  ( ni 1 ) in the encoding process (as we did in Step 1 of the 

Sharing Phase of MOD-based (2, 2) secret sharing tool in Sec. 4.1.1), we already use 

a prime number as a key (a seed) of a random number generator to rearrange all 

pixels‟ positions of iA . Even if many pixels‟ values in 1,nB  are guessed successfully, 
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in Step 4 of Reveal Phase of MOD-based (2, 2) secret sharing tool in Sec. 4.1.1, the 

recovered images
iA

~
 ( 11  ni ) are still extremely noise-like. Therefore, the 

security guardian is of double levels. 

 

4.4 Experimental Result and Comparisons 

4.4.1 Experimental Result 

In the experiment here, n=5 and the n input images {
521 ,...,, AAA } are the 

512512  grayscale images {Jet, Lena, Pepper, Scene and Baboon} shown in Fig. 

4.3(a-e). The n=5 final shadows {
521 ,...,, CCC } generated in Sec. 4.2.1 are shown in 

Fig. 4.4(a-e), and each shadow is as large as each input image. Fig. 4.5(a-e) shows 

five error-free recovered images 
521 ,...,, AAA  (Jet, Lena, Pepper, Scene and Baboon) 

in Sec. 4.2.2 using all n=5 final shadows
521 ,...,, CCC . If we only get four shadows, 

saying, the 421 ,...,, CCC  in Fig. 4.4(a-d); and then guess the pixel values of images 

1,5B  and 2,5B ; then the five recovered images of 521 ,...,, AAA are the extremely 

noise-like images shown in Fig. 4.6. In addition, to show our constant decoding-time 

property in the retrieval, we also record in Fig. 4.7 the actual CPU time taken in 

decoding. The computer used is an IBM laptop with an Intel Pentium 1.70GHz CPU. 

From Fig. 4.7, which deals with n images for 102  n , it can be seen that our 

decoding time for each one of the n secret image really does not vary as the value of n 

varies. 
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(a)                    (b) 

   

(c)                    (d)                    (e) 

Fig. 4.3. The five input grayscale images in the n=5 case. 

 

 

 

 

 

 

  

(a)                    (b) 
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(c)                    (d)                    (e) 

Fig. 4.4. The five generated noise-like shadows {
521 ,...,, CCC } in the n=5 case. 

 

 

 

  

(a)                    (b) 

   

(c)                    (d)                    (e) 

Fig. 4.5. The five error-free images recovered by using all five shadows (Fig. 4.4) in 

the n=5 case. 
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(a)                    (b) 

   

(c)                    (d)                    (e) 

Fig. 4.6. The n=5 images
54321 ,,,, AAAAA  recovered by using only four shadows 

4321 ,,, CCCC  (Fig. 4.4 (a-d)) and two guessed images 1,5B  and 2,5B  in the n=5 

case.  
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Fig. 4.7. The CPU time (milliseconds) for decoding 512×512 pixels of one image in 

our (n, n) systems. (So the CPU time for decoding 512×512 pixels of all n images are 

15n milliseconds.) 

 

4.4.2 Comparisons 

Table 4.1 compares between our method and other multi-secrets schemes [23-26] 

in terms of two quantifiable measures: 1) O/I size ratio and 2) decoding computational 

complexity. For comparison, the same conditions hold for each scheme; they are: (1) 

there are n secret images; (2) every recovered image must be lossless; (3) The 

computer versions of VC schemes [24, 25] are implemented using OR-like operation 

to simulate the stacking action of transparencies. From Table 4.1, we can see that our 

method not only keeps O/I size ratio as small as 1, but also needs only constant 

decoding operations to reconstruct a secret pixel. Other schemes either have O/I size 

ratio larger than 1, or need non-constant decoding complexity to reconstruct a secret 

pixel. 

 

 

Table 4.1. O/I size ratio and decoding complexity.  

Schemes O/I size ratio
(1) 

(smaller is better) 

Decoding complexity
(2) 

(smaller is better) 

Feng et al. [23] 1 ~ 2 O(log
2
k) (Math operations)

 (3)
 

Shyu et al. [24] 4 2×n (OR-like operations) 

Feng et al. [25] 6 3×n (OR-like operations) 

Alvarez et al. [26]  (n+1)/n 1 (MOD operation) and 

O(n) (Math operations
(4)

) 
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Our scheme 1 1 XOR, 1 MOD, 1 ADD 

, and 1 SUB operations 

(1)
 Total size of shadows divided by total size of input images. 

 

(2)
 Complexity to decode a pixel of a secret image.

 

(3)
 k is a user-specified threshold value, it can depend on n or not; e.g. k=0.5n or k=3. 

(4)
 Math operations: ＋, －, ×, ÷. 

 

4.5 Summary 

In this chapter, a novel lossless sharing scheme for multiple secret images is 

designed using MOD and XOR operations. Our advantages are: i) the total size of the 

n given secret images are the same as the total size of the n final shadows (hence our 

O/I size ratio is 1); ii) we only needs one XOR, one MOD, one ADD and one SUB 

(all are byte-to-byte) operations to get a lossless recovery of each secret pixel‟s 8-bits 

value for the given binary/grayscale/color images (hence our decoding computational 

complexity for each pixel is a constant and independent of n). 
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Chapter 5 

Conclusions and Future Works 

 

 

5.1 Conclusions 

In this dissertation, we have proposed three methods to improve and extend 

image sharing techniques. The first is a Boolean-based missing-allowable (k, n) 

scheme which is fast and with reasonable size of shadows. The second is a 

modulus-operations-based sharing scheme equipped with user-friendly shadows and 

progressive decoding simultaneously. The last is a scheme that shares multiple images 

by using both Boolean and modulus operations; it is with economical shadow size and 

low decoding computational load. 

In order to improve secret sharing for single image in storage space and 

computational complexity, we have designed successfully an economical and fast 

scheme based on Boolean (XOR) operations in Chapter 2. In that method, the pixel 

expansion rate (per) of the generated shadows is between 0 and 2, hence the storage 

space of shadows is reasonable. Moreover, it is close to 0 when the value if k is large 

and close to the value of n in a (k, n) scheme, e.g. per=2/n in all (n, n) schemes. In 

computational complexity, the scheme only uses three 1-bit/8-bit/24-bit XOR 

operations per secret pixel to recover the given binary/grayscale/color image. Besides, 

unlike some probabilistic approaches, our recovered image is lossless. Our scheme is 

missing-allowable because it is a (k, n)-threshold scheme, which requires only k out of 

the n shadows appear in the recovery meeting. 

In Chapter 3, besides being with user-friendly shadows and progressive decoding, 

our method also owns other advantages: (1) the non-stego shadows‟ image quality can 
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be controlled by a parameter value; (2) each shadow is not expanded in the non-stego 

version (Sec. 3.2.3), and it is at most only 1.6 times larger than original secret image 

in the stego version (Sec. 3.2.5); (3) each pixel can be reconstructed by k shadows 

quickly with linear computational complexity O(k); and (4) the recovery is lossless 

after collecting all n shadows. 

In order to deal with multiple images, based on Boolean (XOR) and modulus 

operations, we have designed successfully a multi-images scheme in Chapter 4 that 

saves storage space of shadows and reduces decoding computational complexity. In 

the proposed method, the total size of the generated shadows is identical to that of the 

given secret images. Therefore, our method will not need extra space in 

images-database to store the generated shadows that replaces the original secret 

images. Furthermore, after gathering all n shadows, the lossless decoding process only 

uses constant operations to reconstruct each pixel of each given secret image, 

whatever the n is. Hence no matter how many secret images are used in our method, 

the CPU time in decoding each secret image will not increase as the number of secret 

images increases. 

 

5.2 Future Works 

In Chapters 2 and 3, the two proposed methods only work for single image: they 

can not deal with two or more images simultaneously in one sharing process. 

However, simultaneous dealing with multiple images is very common in today‟s 

business. Several studies in sharing of multiple images had been reported [23-29]. 

Unfortunately, these reported methods either have big-size shadow images [24-25, 27] 

or huge stego images [23, 29]) or need an extra shadow image called public shadow 

[26]. Moreover, for decoding, the amount of operations linearly increases as the 
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number of secret images [26] or gathered shadows [23] increases. In Chapter 4, we 

had successfully designed an improved multiple-images method, emphasizing the 

reduction of both storage space and computational complexity. Our multi-images 

scheme can share n given secret images and generate n non-expanded shadow images. 

This novel scheme only needs a few computational operations in the recovery of each 

secret pixel; whatever the value of n is. 

Although our method is better than other multi-images schemes in O/I size ratio 

and decoding time; the multi-images schemes [23-26] have advantages of their own: 1) 

Feng et al.‟s [23] uses generalized access structures to achieve higher flexibility; 2) if 

the shadows are printed in transparencies, then the VC schemes [24-25] can also 

reveal images by doing physical stacking of transparencies (although true-color 

images will be very hard for VC to retrieve error-freely by stacking transparencies); 3) 

Alvarez et al.‟s method [26] can process n given secret images of non-equal sizes.  

To improve our multi-images sharing scheme in the future, the above three 

advantages of [23-26] will be the main guideline of ours. Also, besides the space and 

time efficiency that we already achieved herein; in the future, we hope to add to our 

multi-images scheme some other features, such as the missing-allowable property, 

user-friendly shadows, and progressive decoding. 
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