Chapter 1

Introduction
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Polyno e of the popular
secret sharing approaches et images. Thi d of approach can restore
the secret images without any loss, and the size of each shadow image can even be
several times smaller than that of the given secret image [3, 6]. Therefore,

space-wasting is seldom a problem for sharing using polynomials. However, the

retrieval speed is very slow because of the evaluation of polynomials.



On the contrary, a fast approach called visual cryptography (VC) [2, 4, 10-12],
which shares a secret image using several “size-enlarged” transparencies, is often
utilized to deal with images whose brightness are only of a few levels (for example,
black-and-white, 3-levels, or 4-levels). In the recovery phase of VC, a “size-enlarged”
version of the secret image-can be visually decoded instantly by human eyes after
“physically stacking™ the transparencies, therefore, there is.no need to use a computer.
However,as the images’ gray levels increase from 2 or 4 levels to 256 levels, human
eyes. can no longer be utilized in decoding by generating.transparencies, unless. the
256-level image is-first-pre-quantized to, saying, a 2-level image by approximation
techniques such as halftone. Therefore, the decoding Is not error-free; and it is just-an
approximation. Nevertheless, if we use a computer to replace the roles of human eyes
as the decoder for VC, then there is no need to use the error-introduced 256-to-2
pre-quantization, for the computer can -handle.each bit-plane individually.
Unfortunately, even though the concept of .using physical transparencies can be
transformed to the concept of using digital files in a computer or network, each digital
file .is several times ‘larger .than the secret image file itself [13-15], for each
transparency in VVC is already several times largerithan the secret image.

Although people can use the digitalized version of an elegant method proposed
in [16] that has.no size expansion because of using probabilistie skill; the.recovered
secret image_is not lossless. In general, size expansion problem is a disadvantage for
VC-based fast approaches; to store digital shadow images'in the computer often
requires large storage space.

From the analysis in above two paragraphs, we can see that these two kinds of
sharing approaches are quite different, and each has its own speed-vs.-space
advantage and disadvantage. A question arises naturally: “can a sharing system have

both advantages in speed and space?” In other words, can people have some
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economical-size shadows which can reconstruct the given secret image in a loss-free
manner after only using a few operations to decode each pixel? The answer is positive.
Wang et al. [17-18] had gracefully provided their answer, to certain level, in their
second scheme [18] which is an (n, n) scheme.

In Chapter 2, we will improve Wang et al.’s (n, n)sscheme in order to have the
“missing-allowable’ (k, n)-threshold ability, I.e. in the reconstruction of the secret,
any k out«of the n'shadows will work. The proposed scheme generates.the n desired
shadows for a given color (grayscale/binary) image A, so.that each shadow’s size is
less than two timessthe:size-of-AxFurthermore, the lossless decoding process. only uses
quite a few exclusive-OR (XOR) operations. Hence there is no complex computation.

In above two well-known-sharing approaches, i.e. PSS [1] and VC [2], there are
some other extensions which are “applications-oriented”, such as (1) user-friendly
shadows [7, 19] for easier management of shadows, and (2) progressive decoding [9,
19-22] of an image which is moderately sensitive but still need to be processed every
day. For example, amang the PSS approaches [7, 9, 20], Thien and Lin [7] firstly
mtroduced the idea of using “user-friendly” (i.e. visually-recognizable) shadows;
Chen and Lin [9] designed a sharing method for‘progressive transmission of images;
Hung et al. [20] also proposed a progressive sharing method according to three
pre-specified thresholds. In VC approaches [19, 21-22], Jin et.al. [21] developed a
progressive VVC technique for grayscale/color images with three types of.decryptions
to enable the recovery in varying qualities; Fang reported in [19] a progressive
viewing method which extended Fang and Lin’s work [22] to utilize user-friendly
shadows and progressive decoding simultaneously.

From the viewpoint of shadows’ management, to classify or locate a shadow,
attaching a name-tag to each shadow in advance is needed if each shadow looks like

random-noise (most reported methods [9, 20-22] have this kinds of shadows). Another
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way is to use visually-identifiable shadows. They are also called as user-friendly
shadows (first mentioned in Ref. [7], then in Ref. [19]), for their visually-identifiable
feature (each shadow looks like a visual-quality-reduced version of a given image)

makes the managing job of shadows become easier for database manager. For

example, if there are 100 impo ages and each creates 2 to 17 shadows of its
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by our method proposed in Chapter 3. So far, only Fang’s method [19] (which is
lossless when all shadows are collected) simultaneously owns the following two
application-convenient features: 1) user-friendly shadows and 2) progressive decoding.
Unfortunately, its shadows are four times larger than the input image; and thus not

economical in memory space if implemented on computers. To improve it, we
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propose in Chapter 3 a novel progressive and user-friendly approach based on
modulus operations. Better than Fang’s method [19], our method possesses extra
advantages: 3) non-expansion in size of shadows; 4) controllable quality of shadow
images. Meanwhile, like Fang’s method, our method has lossless recovery when all n
shadows are used, and the decoding complexity is O(k) for the reconstruction using k
shadows (k<n).

In thedabove, If a secret image is to be protected by some participants in a team,
then.each participant can hold some of the generated shadows after sharing the secret
image. Later in azmeeting;-when:the number of collected shadows from participants
reaches a specified threshold value, then the shared secret image is reconstructed.
However, in real life, a project team_often process more. than' one secret Image
simultaneously. Therefore, some researches [23-29] shared multiple images in one
encoding process. For example, the elegant PSS scheme [23] presented by Feng et al.
used Lagrange interpolation to deal with multi-secret images. Their method is an
economical method, for it has a very-low O/l size ratio between 1 and 2, i.e. total
Input " images’ size Is at least:50% of the total output shadows’ size, and 100% Is
possible: But the computational complexity O(log?k) would be'needed to réconstruct
each  secret pixel by using Lagrange interpolation from k required shadows. To the
contrary, to.save computational operations in the retrieval of secret-images, Visual
Cryptography (VC) schemes can:be used. For example, Shyu-et al. used two circular
shadows to design a VC scheme [24] which can share more than two secret images.
Feng et al. also presented a multi-secret MC scheme [25], and their shadows are in
rectangular shape. By stacking the shadows (know as transparencies in VC field),
these VC schemes are very fast in revealing all secret images. The disadvantage of
using VC methods is their high O/I size ratio due to the high pixel-expansion-rate
(per=2) in generating shadows. (As for the disadvantage of the low-contrast of the
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images recovered by stacking transparencies; it can be avoided if VC methods are
implemented on computer.) When VC methods are implemented on computer to
reconstruct n original secret images error-freely, the complexity to decode a pixel of a
secret image would be O(n) due to the high per. Besides PSS and VC schemes,
Alvarez et al. also developed a multi-secrets sharing seheme [26] for color images
with different sizes based on modulus operations. Albeit their O/I size ratio is a very
good value (n+1)/n after sharing n secret images by n+1 shadows; their reconstruction
in each secret pixel needs one modulus operation and many mathematical operations
(addition or subtraction) whose computational complexity is O(n).

Among the multi-secrets schemes [23-26], ‘ne one can simultaneously own the
two advantages: (1) OfIsizeratio is 1, and (2) only constant.number of operations is
needed to reconstruct each secret pixel. To achieve these two advantages
simultaneously, we propose in Chapter 4 a novel sharing scheme for multiple images,
by using modulus (MOD) and exclusive-OR (XOR) operations. The proposed method
generates n extremely \noise-like shadows for n given binary/grayscale/color secret
images (notably, the n given images all have the same size), and each shadow’s size is
identical to each given image. When the n shadows+replace the n original secret
images in image database; since our O/l size ratio is always 1, we will.not need extra
storage space. Furthermore, after gathering all n shadows, our lossless. decoding
process only. uses one XOR, one.MOD, one addition (ADD) and one: subtraction
(SUB) operations (symbolized as “@®”, “Mod”, “+” and “—") to reconstruct each
pixel’s 8-bits value of each secret image. This holds for all values of n. Hence, no
matter how many secret images are shared, the CPU time in decoding each secret
image will not increase. In summary, the proposed method is not only economical in

storage space of shadows but also fast in decoding.



1.2 Related Studies

1.2.1 Image Sharing Schemes with Small Shadows or Fast Decoding

Shamir’s polynomial secret sharing [1] is a popular technology to protect secret
images. This technology uses polynomials to divide the secret image into several
shadows, which have the same size as the secret image for perfect security. After an
advanced method proposed by Thien and Lin [6] to.improve [1], the size of each
shadow. image.can_ even be k times smaller than that of the given secret image by
letting k coefficients in the k-1 degree polynomial be the gray values of k.pixels: Then,
Wang and Su proposed a better method in [3] to encode the difference image from the
secret image using Huffman coding scheme and. evaluate the arithmetic calculations
of the sharing functions=in-a=power-of-two Galois Field<GF(2'). Their experiment
results show that each generated shadow image in their proposed method is about
40% smaller than that of the method .in [6]. .Obviously, secret image sharing
approaches using polynomials can.save much space In storage of shadows, and they
only need less time in transmission-of shadows for recovery later. Besides the above
two methods [3, 6], Chang et al. also had a polynomial secret image sharing scheme
[31] in color images using small shadow images.

On the other hand, a faster approach bases on visual cryptography is to.use the
digitalized<versions of [2, 4, 10-12, 32-36] to share a digital image among several
“size-enlarged” digital. images also called shadows...Recently, .to improve the
efficiency and speed in sharing digital color images, Lukac and Plataniotis smartly
proposed some implemented-easily methods [13-15, 30] whose decoding use
“OR-like” operations or look up basis matrices. (The rule of OR-like operation is that:
“the reconstructed pixel is black iff at least one of the corresponding sharing pixels is

black; hence, the reconstructed pixel is white iff all corresponding sharing pixels are



white.””) Their new methods can recover the original image error-freely in a very fast
speed by looking up basis matrices; although in [13-15] quite often the shadow
images generated in their (k, n)-schemes are still several times larger than the secret

image. (Notably, (k, n)-schemes means that in the reconstruction of the secret, any k
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User-friendly shadows /and prog a ‘ pecial extensions in

image sharing. There are only few studies for t 0 different application purposes in
PSS and VC, for example, user-friendly shadows in [7, 19] are for easier management
of shadows and progressive decoding in [5, 9, 19-22] are for some important images
which are moderately sensitive but still need to be processed every day.

In the aspect of user-friendly shadows, Thien and Lin [7] utilize their fundamental
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work [6] to present the first user-friendly image-sharing method. In the first method,
every pixels-block is classified as smooth or coarse one. If this block is smooth, the
differences of pixel values in this block will be shared by using their fundamental
polynomial sharing approach [6] and then hide these sharing results in the last pixel
value of previous block. If this block is coarse, the quantized results of pixel values in
this block will be shared and then hide these sharing results in‘the maximum pixel
value of this.block. Because all sharing values are hidden-into.some pixel-values in
input image, every shadow will reveal a visual-quality-reduced version of original
image. Thien and Lin call these images with visual-quality-reduced version of input
image /as “user-friendly” shadows due to the" easy management. Besides. using
polynomial sharing,“Fang reported in_[19] a new sharing_method which extended
Fang and Lin’s work [22] to have user-friendly shadows and progressive viewing
simultaneously. In this new sharing method, an input image first is expanded into four
times in size by using (2, 2) thresholdscheme-of VVC. And then the expanded version
IS shared into several shadows by his.proposed mapping table. Because the mapping
table is designed based on the relation between pixel values in expanded version and a
stego Image, the shadows will reveal the visual<quality=reduced version of the stego
image. In addition, this'new sharing method also owns the progressive decoding effect
due to'that it Is an extension of the VVC progressive scheme [22].

In the aspect of progressive decoding, there are.more reported researches than in
user-friendly shadows: For example in \VC approaches, except that Fang and Lin use
random distribution of black pixels‘in (2,°2) threshold VC scheme to propose the
above progressive viewing scheme [22], Jin et al. [21] also developed a progressive
VC technique for grayscale/color images with three types of decryptions to enable the
recovery in varying qualities. In [21], the physical transparency stacking type of

decryption enables the recovery of the traditional VC quality image; an enhanced
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stacking technique enables the decryption into a halftone quality image; finally, a
computation-based decryption scheme makes the perfect recovery of the original
image possible. Among the polynomial-sharing approaches, Chen and Lin [9]
designed a sharing method for progressive transmission of images by bit plane
scanning method to rearrange the gray value data of eriginal image and different
thresholds to share these rearranged data. Hung et al. [20] also proposed a progressive
sharing method by using three pre-specified thresholds to share.the DCT values in low,
middle and high bands of input image. In addition, Lin and'Lin’s two-in-one sharing
method VCPSS [5] has two-different qualities in recovered images by combine VC
and ‘PSS both approaches. Besides the above two: special extensions, many. image
sharing schemes [37-43] hadbeen reported for other kinds.of applications, such as

digital image indexing [37], copyright protection [38], authentication [39, 42], etc.

1.2.3 Secret Sharing Schemes for Multiple dmages

In order to process more.than one secret image in a project for most meetings,
some' related researches reported based on the above two well-known approaches
(PSS and VC) are to share multi-secret images in‘one encoding process. For example
in PSS approach, a polynomial secret sharing scheme [23] presented by ‘Feng et al..by
using ‘Largrange’s interpolation is for processing multi-secret images in generalized
access structures [44]. Their generated shared data-for each-qualified set is 1/(k-1)
smaller than the original ;secret image If the corresponding qualified set has k
participants. Therefore, their method has"a maximal O/I size ratio as 2 when every
qualified subgroup separates to each other in the worst case (which needs maximal
additional qualified subgroups inserted to form the minimal sharing circle), and a
minimal O/I size ratio as 1 when no any additional qualified subgroup is needed for

the minimal sharing circle in the best situation. However, a higher computational
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complexity O(log’k) will be needed to reconstruct each secret pixel due to
Largrange’s interpolation used in k required shadows. In another aspect, to avoid large
number of computer’s operations in retrieval of secret images, some VC schemes
[24-25, 27, 45] are reported for this fast-decoding purpose. For example, Wu and
Chang used two circle shadews to share two secret images in their VC scheme [27].
Then Shyu et al. also used.two circle shares.to design a \VC scheme [24] which can
share more than two secret images. To make the two shadows-are in rectangular form
rather than circle ones, Feng et al. also _presented a multi-secret images VC scheme
[25]. Although thes:abovesthreeVC schemes don’t need any computation to. reveal-all
secret images by stacking their transparencies (shadows), each revealed image is very
low in contrast, such-as 1/4-times lower contrast in[27], 1/2n times lower contrast in
[24] and 1/3n times lower contrast in [25] as n secret images are shared. If their
methods are implemented in computers to reconstruct original n secret image files
error-freely, their O/I size ratios will be very_ high (O/I size ratios are 4, 4,6 in [27],
[24] and [25] respectively) due to high-pixel-expansion-rate (per = 4 [27], 2n [24], 3n
[25]) 'in their shadows. Moreover, their decoding computational complexity would be
O(n), because 2n or 3n OR-like operations are needs torreconstruct each secret pixel
in [24, 27] or [25]. Besides PSS and VC schemes, Alvarez et al. also developed. a
multi-secrets sharing.scheme [26] for color images with different Size based on the
use of bi-dimensional reversible-cellular automata.[46-47]. After using one modulus
and about 9n addition operations to create each sharing pixel, there are n+1 generated
shadow images to replace input n secret images. One of these generated shadows is
public. So that the O/I size ratio in [26] is a very low value (n+1)/n. Nevertheless,
their reconstruction in each secret pixel needs one modulus operation and many
mathematical operations (addition or subtraction) whose computational complexity is

O(n). Albeit Tsai et al. proposed a multiple secrets sharing scheme [28] for digital
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images to own simultaneously low O/I size ratio (n+1)/n and constant computational
complexity (one XOR operation) in decoding each secret pixel, their method can not
share one secret image to more than two participants. Besides the above

efficiency-oriented purpose, some secret sharing schemes in multiple images had been

reported for some speci lication  purposes, h as verification [48],

authentication and cross

UITICTETL KIT
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2ed in e‘oding and decoding phrases. In average, to de a color

(binary/grayscale)..p of A, the retrieval uses only 3 exclusion-OR operations
among 24-bit"(1-b . ; ave a re able per, it’s encoding

uses two other new tools: (K, n, m) shadows-ass atrix, and the {B), B,}

partition-and-recombination process. Therefore, each final shadow will be at most two
times larger than the secret image A, and its pixel expansion rate is always acceptable

(O<per<2).
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1.3.2 Single Image Sharing with User-friendly Shadows and Progressive
Decoding
In Chapter 3, we propose a novel user-friendly progressive sharing method based

on modulus operations. The method generates n user-friendly shadows whose image

quality (such as PSNR) is loweér than the nage’s-quality; and later, the input

image can be reco /"ﬂm“‘“m\ ty after gathering
k (2<k<n ] ’ ‘ e subsections.

-.h/ he description of the method is divid
ental (n, n) sharing version based on mod

First, a f

: eing

ressive and user-friend

lossless afte I n shadows; the proposed method G
features: 5) the no 0 ima ality.can be con d; 6) each shadow

is not expanded in non-stego ve and 1s'only ost 1.6 times larger
than original secret image in the stego version (Sec. 3.2.4.2); 7) the stego shadows

have quality much better than Fang’s shadows.

1.3.3 Multi-Images Sharing with Economical Shadows and Fast Decoding

In Chapter 4, we propose a novel secret sharing scheme for multiple images
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based on modulus and Boolean operations. The proposed method generates n
extremely noise-like shadows for n given color (binary/grayscale) secret images. To
achieve two advantages mentioned in motivation: (1) lower O/l size ratio and (2)

fewer decoding operations, two basic tools will be used in the proposed method. First

tool is “MOD-based (2, 2) secret sharing

size in generated ¢ 'illl-‘im'mnm et images (our O/I size ratio
is 1). Therefe proposed method will not nee ages-database to

store shadows instead of original secre

I”in See. 4.1:1, which can make our total

ial‘base proaches is introduced in > proposed
sharing method with & dly sha ressive di ased on modulus

operations is described in Chapter , the proposed Itiple secret images
sharing method based on modulus and Boolean operations to have lower O/I size ratio
and fast decoding is presented in Chapter 4. Finally, the conclusions and future works

are in Chapter 5.
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Chapter 2

Single Image Sharing with Small Shadows and Fast

Decoding

- ) o kinds of well-known technique ng secret
images: polynomia oaches Jescribe ec, 2.1.1, and VC-like

approaches [13-15, 307] ar c. 2.1. dition, . 2.1.3 briefly describes

Wang et al.’s second scheme in [18] based on Boolean operations.

2.1.1 Polynomial-style Schemes

All schemes in [1, 3, 6-9] apply the polynomial interpolation to divide a secret
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data 4 into »n distinct data sets D;, D,, ..., D, called shares or shadows; and the secret
data 4 cannot be revealed until £ of the n shadows become available. To share an
image, the data 4 becomes the values of pixels. To split 4 into n shadows, people can

pick a prime number p and a polynomial

q(x)= (

of degree k-1. h s the : C
rando en 1 in 0 to (p-1). Then evaluate

D, =q(),-

21 &g are

one of the

corresponding sharing hence, tl 1 is white iff all

corresponding sharing pixels are white.”)

Their new schemes to share and recover digital images are easy to implement, and
the retrieval speeds are very fast. But in [13-15] the shadow images generated in their
(k, n)-schemes are still several times larger than the secret image. The problem might

get worse as the values of £ and n become very large. (As for [30], as stated earlier,
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the size of each shadow images is the same as the secret image size, but [30] is for
k=n=2 only.) As a result, to store the created digital shadows often need larger storage

space in computer.

2.1.3 Wang et al.’s Fast ( Sche
Nropos [17-18] some fast mes v e intention of
heir (k, n) scheme in : irst s

Wang et al. a

small pixe

{1896

shadows as follows:

B,.1, each has size of A

Cn-lan-Z EBBn-ls
Cn:Bn-l @A
Step 4. Output the n shadows Cy, Cs, ..., C,.

Decoding:
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Reveal A using the formula A=C,® ;D ... D C,.

In this chapter, in order to extend Wang et al.’s (n, n) no-threshold scheme to (k, n)

threshold scheme; we introduce a (k, n, m) shadows-assignment matrix H, and a {B,

B2} partition-and-recombi

of [18]: fast decoding ed and .-m-mfm-»:ur ict, we only need
three XOR ope / reconstruct a pixel; and 3 each shadow’s
size.ove secret image’s size is betw

io S. The 'scheme still holds the two advantages

e IVIEeLN(

221

C N, m) adows-assignment Matrix H (whi :
columns) \_/

To design a threshold n) scheme, we t d

ctly utilize Wang et al.’s

non-threshold (m, m) scheme for some carefully chosen parameter

m=C,,.

(The reason why m is chosen as m=C, , will be explained later.) Notably, Wang et
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n

al.’s (m, m) method gives us m=C, , shadows (these are not our final shadows; just

consider them as our temporary shadows). Then, we duplicate each temporary shadow
several times. Then, for the n people participating the sharing game, let each person
get one or no copy from each of the m temporary shadows. Each person can have
copies from more thansone temporary shadow. However, no.person can get copies
from all m shadows; otherwise,.that person alone can-unveil the secret.

After this distribution assignment of the copies of the m produced temporary
shadows, we' wish that when any Kk or rmore people gather ‘together «in an
image-recovery meeting, the chairman of the meeting can collect all m temporary
shadows from the attendants of this meeting; and hence, can restore the secret image
according to Wang-et-al-’s«(m, m) image-recovery scheme. We. also require that a
meeting of less than k people together is insufficient to collect all m temporary
shadows; and hence, cannot reveal the secret image.\\We will call the two requirements
stated above in this paragraph as the “(k, n,.m) shadows-assignment requirements”.

From the idea/above, we may create a matrix H of n rows and m columns. Its n
rows represent the n persons; and its m columns represent the m (distinct) temporary-
shadows produced by Wang et al.’s deterministic (m, m) scheme. The element of H is
either O or 1. The.ith person (row) has a copy of the jth shadow image (column) ifand
only if Hjj =1. \In"order to make the matrix meet the expected (k, n, m)

shadows-assignment requirements described above, we.let each column of H have

exactly k-1 zeros and n-k+1 ones. More specifically, let H havem = C,’ , columns, and

each column of H be a permutation of the n-dimensional basic column vector
(000...0011111...111) which has k-1 leading zeros followed by n-k+1 ones.
This obviously guarantees that: i) each temporary shadow C; will appear at least

once when k out of the n persons attend the image-recovery meeting; ii) at least one
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temporary shadow C; will disappear when k-1 or fewer persons attend the recovery

meeting. The proof is as follows:

Proof: Consider the equation

i) When k per

(P1,..., P,) are

st k-1

-k+1 of the n
elements in (P, i : : . ) be a column of H
whose n-k+1 ones happen to' appe > positions where the vector (Py,...,
P,) got these (at least) n-k+1 zeros. (If (Py,..., P,) has more than n-k+1 zeros,
then just randomly choose n-k+1 positions from the zero entries of (Py,..., P,).)
The inner product of the vector (Pi,..., P,) and this special Col; will be zero.

In other words, X; = 0. Hence the temporary shadow C; disappears in the
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recovery meeting.

In the above construction of the matrix H, recall that we let all m=C,,

permutations of the n-dim vector (000...001111...11), which has exactly k-1 leading

zeros and n-k+1 ones, be us ‘- and 1 Obtain the expected n-by-m

matrix H. Hereina e ma De Cé ' 1 adows-assignment

matrix’

person. P, fem emporary

shadows 1 Cy. In this

1

shadows-assignme : athe jet can guarantee the
appearance of all six temporary shadows Cy, C;, €5, C4, Cs and Cg; but less than three
persons cannot. In other words, three or more people can recover the secret image
according to Wang et al.’s deterministic (6, 6) scheme using these six temporary

shadows. Less than three people cannot recover because some C; disappears.
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2.2.2 Partition-and-recombination Process of {B;, B,}
In Sec. 2.2.1, after assigning the m temporary shadows to n people according to
the matrix H, each person gets some temporary shadows. Each person i can combine

the temporary shadows that he holds into a single shadow D, specially designed for

him. Then these n final shadews Dy, Da, ..., D, ﬁl respectively by these n persons
are the final outp l:-'m"lﬂ‘rgq.m\
This simples sign 18 easy (it only needs the idea o ng ntioned in

and matrix H itself is easy to construc

manner. ordi Ders secret.image A

can be recovered ary shadows Cj,
Cy, ..., C, by partitioning and i as follows (see Fig. 2.1 for an
example using (k=3, n=4) ):

Step 1. Randomly generate an image B; whose size is identical to A’s. Then partition

By into m=C, , non-overlapping blocks Cy, Cy, ..., Cy1. The upper half of

each temporary shadow C; (1 =i=m) is the block C;; contained in B.
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Step 2. Create the security mask C*, which is also a block, by the XOR equation
C=CndCu® ...0Cu.
Step 3. Create an image B,=B;®A4 using XOR in a bit-by-bit manner. (4, B; and B,

have the same size.) Then partition B, into m non-overlapping blocks Ci,,

C22, ey sz.

Step 4. For securit '--nm-m.m ! B C*
Step 5. After physicall ; J s shadows

of

12 is not a full m

| 11 21 31 || Car 51 61 r
13 23 || €33 || Cas || Csz || Ces
Step 5
B Ch | Car | O Step 1 Step 2 *
By= Co || Cor || Gt || Car || Cs1 || Can > C
Car | Cs1 | Coy
a Step 5
. 1 Step 1
A .----»: Cia || Coz || Caz || Caz || Csz || Cos
. ‘Step?)
Step 4
B Cia | Cop | O Step 3 Step 4
B,= Cio || Con || €32 || Caz || Csz || Coz | *
Cap | Csp | Cop

Fig. 2.1. A flowchart showing the process that transforms {B, B} to {C}, C,, ..., Ce}.
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In this example, (k, n)=(3, 4); and m =C, =6 accordingly.

In the inverse process to obtain B, and B, from Cj, (s, ..., C, , the algorithm is as

follows (see Fig. 2.2 where we still use (k=3, n=4) as an example):

Step 1. Extract m non-overlapping blc C are the upper half of
C17 G
Step 2. Rec

Step 3. R
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Ch | G | O Step 3 Step 2

B= Co || Co || Can || Can || Co1 || Can c*
Cyy 51 61

; Il kel T ]
1 ¢, G C C, Cs Cy
| Il I I I I I
1

; 1 1 || Ca 31 || Car || Cs1 || Cen

I A | 4= === Step7 Ci || Cos || Cas || Cas || Cs3 || Cos

Y| —

o
o8}

Step 5
A —————————

Lh
w5}

——— o —— -
[o'] o]
= =
t— | )|
——

Cia | Cop | O Step 6

GQ
BQ
é’)
é’)
é’)
%Q

C42 C52 CG2 b

2.3 The Encoding

rst, we illustrate ates n final shadows

The encg

Step 1. Input a color (b ale

Step 2. Generate a random image B 3, and A have the same size.

Step 3. Generate another image B, using B,=B;A4, where © denotes bit-by-bit

XOR.
Step 4. Letm = C,' ;. Generate the (k, n, m) shadows-assignment matrix H described

in Sec. 2.2.1. Notably, the matrix H is public.
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Step 5. Use the two images B, and B; to generate m temporary shadows Cj, Cs, ..., Cy,
by using the {B,, B} partition-and-recombination process (see Sec. 2.2.2 and
Fig. 2.1).

Step 6. Assign the duplicated copies of the m temporary shadows C,, Cs, ..., Cy, to the

n persons according.to the she 1SS t matrix H mentioned in Step 4

/,-imﬁm or each person i, the final

as 1s exactly the union of those co 1 C him.

(see Sec.

shadow wai - arg n.tha emp out the columns (/)

were the same. Now), ¢ W y W e finish C», and Cj is to be

attached behind C,, we insert a separator-row of (h/2)+(h/2)=h elements, i.e.
222222222222222222222333333333333333333333, so that people can understand C,
is above this separator-row and Cj is below this separator-row. Then we store the C;
using next w rows. Then, insert another separator-row of 4/2+ h/2= h elements, i.e.

3333333333333333333336666666666666666666666, before attaching Cs. In

27



summary, if separators are used, the final-shadow has (3w+2) rows rather than 3w

rows, and the (3w+2) rows owned by this {C,, Cs, Cs} person will be

[C>] (which has w rows, each row has % pixels )

333333333333

2222222222

33333
I |

/

s-assignm

ably, in

the

e H in Eq. (2.3), ea

> decoder can kno nal shadow is 3w+(

). Therefore, the dee always figu } W many rows are in t

and hence
I\

from the \s nt stated in the final paragraph of Option 1 above,

can also o\‘u certain

ed below. Assume each ,
shadows. Let the shado es be all'arranged i the ng order. For example,

if the matrix H is as shown in Eq. (2.3), then the person P; owns (copies of the)

temporary shadows Cj, Cs, Cg, the person P, owns temporary shadows C,, Cs, Cg, the
person P; owns Cy, C;, Cs, and the person P4 owns C;, C,, C4. Notice the indices are
all in ascending order (namely 4<5<6; 2<3<6; 1<3<5; 1<2<4). Therefore, even if we

do not use separators, the decoder can still read the “public” matrix H to know that
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each participant own 3 temporary shadows; and hence, divide each person’s final
shadow into 3 parts of equal size; and then use matrix /A to identify easily which
temporary shadow is the first one-third of that person’s final shadow, which
temporary shadow is the middle one-third, and which temporary shadow is the final

one-third.

IC]_Lldll CO10

C,,= 6 columns.

0100

Note that each column is a permutation of the first column vector 0011.

Step 5. Firstly, use bit-by-bit XOR on the elements of B to obtain the security block
Cx=[242] by the formula[149] @ [225] ® [41] @ [93] ® [210] ®[32] = [242].
Then, according to Sec. 2.2.2, generate 6 temporary shadows
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149 225 41
C1 = 5 Cz = ) C3 = )
80 95 97
93 210 32
C, ={ }, C, ={ }, Cs =[ } where the six lower halves are the

236 165 24
result of transforming the six lower halves of B,, by doing bit-by-bit XOR

with Cx =[242]. For example;80,=162242, and 95 =173 0 242.

Step 6. According te the assi I pies of the m=6 temporary

shado Ci, G g . 1al shadows,

=4 persons respectively, are

210 32

236 165 241"
a1 n~an]
07 1RK |~

* 180

The Decoding Al

iven any k final s

The de

Step 1. Af

of the encoding algc c.can k c rary shadows in {C|,
Cy, ..., Cy} are include erefore, all m temporary
shadows Cj, C,, ..., C,, can be extracted from these k& final shadows. (For the
reason, reader can see the (k, n, m) shadows-assignment requirements in Sec.

2.2.1, and the proof near Eq. (2.2).

Step 2. Use all m temporary shadows C;, C,, ..., C, to generate B, and B, by
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implementing the inverse process of the {B), B}-partition-and-recombination
process (see Sec. 2.2.2 and Fig. 2.2).

Step 3. Reveal the secret image A using A=B,® B,.

Remark: Step 1 above stated t Cé I- chutemporary shadows in {Cj,

] nmﬂ""“r-ﬁﬂ.v-- 0
temporary: shad § inal shadow D; (so that the relate
inside ee ow D; can be

Cy, ..., Cy} are o0 distinguish the

shadows

, see the

partition-an
Ce (see Fig. 2.

Step 3. Reveal the secret image 4 by

55 76 186}

A=B ®B, =
e {67 133 202
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2.3 Experimental Results

In our experiment, the input color image A is the popular test-image shown in Fig.
2.3(a). For (k, n)=(2, 4) case, the n=4 final shadows D, D,, Ds, D4 generated in Sec.

2.2.3 are shown in Fig. 2.3(b-e), and each has size 2x(n-k+1)/n=2x(4-2+1)/4=3/2

times larger than size of A. Fig. S : ecovered A using any

k=2 of the fo

own in
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Fig. 2.3. An example of (k=2, n=4). Here, (@) is'the given 24-bit-per-pixel color image

A; (b-e) are our final shadows Dy, D,, D3, Dy; (f) is the recovered error-free A using

any two of the four final shadows.
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(@) (b)
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(©) (d)

180
160
140
120
millisecond 100
80
60
40
20

0

—B- Proposed Scheme

—a— Wang's Scheme [18]

10 20 30 40 50 60 70 80 90 100

n
T I e

Fig. 2.6. The CPU time (milliseconds) for decoding (n, n) systems.
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200
180
160
140
120
millisecond 100
80
60
40
20
0

—- Proposed Scheme

10 20 30 40 50 60 70 80 90 100

L/,/

eme. There is

The CP

_tme_(mitil E 3 eac
3], fo

ste

Discussions

ecoverab
eral,

I\ X

k-1 or fewer shadows cannot reveal the se

eme, whe k out of the n final shadows _ %o example,
D1, D, ..., Dy), the se \!mmm of the decoding algorithm.
These steps also explain why our sche e 'recoverability requirement.
Firstly, if k£ or more final shadows are gathered, then we can extract all m temporary
shadows Cy, C, ..., C, from the k available final shadows according to the (k, n, m)
shadows-assignment requirements of the matrix H. Secondly, after physically dividing

each C; into upper half C;; and lower half Cj, we can get C* which is defined by
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C*=C DCyD ...DCy. Then, we can restore Cp, Ca, ..., Cp using Cp= C3DC*
for each i=1,...,m. Then recover B1={Ci1, Ca1, ..., Cp} and Br={Cia, C2s, ..., Cy2}.
Therefore, the secret image A can be revealed using 4=B; D B,.

Our scheme also satisfies the security requirement. Assume that only &-1 or fewer

final shadows are availables Then, (kswh, m) shadows-assignment

requirements o /""ummx-"\ ary shadows Ci,
Cy, ..., C se-final shadows (see the proof (ii) belowEquation(2.2) of Sec.
missing. As a re

people cannot ob

Because of the le = C - alue
for a pixel his_guessi alue 2.8 m-1 pixels’ values

(one value per block in 4, . y need to guess the value of a pixel

at the corresponding position of C,3 (or 4,,) sothat the pixel value at that position of
A, can also be shown. The above is just to recover a pixel (for example, the
top-leftmost pixel) of each block 4;,1 =i=m. This value-guessing of two pixels will
repeat bksize times. Here, bksize is the size of each block A4; (1 =i=m); hence bksize

is m times smaller than image size of 4.
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From the description above, we can evaluate the probability of obtaining the right

color image 4 with size wxh as follows. (For illustration, still assume (k, n)=(3, 4);

hence m=C, ;=6 accordingly.)

wxh wxh wxh
Probability _ Sbksizel % SbksizeS _ (;) m o 1 1
0 SC

ym = G " which is

xelscale

(151251213 18 e 'size/is wxdn=512 x 512 . Here,
2 >

s=1/2** is 1e number

terms of computa

eds O(log’k)

value per
represents pi expans . and Plataniotis’s
methods [13-15] also perations to ore an original input
pixel in (k, n)-threshold schemes. Lukac and Plataniotis’s special method [30] needs
only 1 B-bit “OR-like” operation to restore a pixel of B-bit color secret image, but [30]
only deals with the £k =2=n scheme. Fang and Lin [50] proposed two other SS (sharing
schemes), i.e. an (n, n) XOR-SS and a (k, n) OR-SS, to reduce the size of shadows in
Lukac and Plataniotis’s [15]. But the (k, n) OR-SS scheme in [50] still needs many
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OR operations in decoding, and the complexity is similar to that of Wang et al.’s (k, n)
colored probabilistic scheme [17]. In Wang et al.’s (n, n) scheme [18], it only needs
n-1 XOR operations to reconstruct each pixel, which is the same as Fang and Lin’s (7,

n) XOR-SS scheme [50]. Obviously, the decoding time of most inventions above

increases as the value of k or:n increa

For this concern, our ne me tries.to. make speed of Wang et al.’s [18]
more stable for hreshold cases Je alue of n
is, We 0 ost three bit-by-bit XOR operation es \otably,

e this, assume that the siz : g > n the numt
R operations needed-to-eva S D ... % wxh)

2

1= wxt i3 & < m. Finall

needs

1l A, it needs wxh B,. Together, it

n]x(Wxh)<3x(wx : rati ny k final shado

since i

h pi

roposé@me has the smallest decryption load in average
the proposec needs at most three XOR operations in / DI'O
share each pixel : into_the » final shadows , , D, because the

decoding process 1S exactly a : 1g ‘one. Besides Table 2.1, the

readers can also read Figures 2.6 and 2.7 to'see that our decoding time does not
increase as n increases its value. Since, besides our method, Wang’s [18] is one of the
fastest schemes in Table 2.1, we only compare our CPU time with [18] in Fig. 2.6. As
for Fig. 2.7, because [18] has no (k, n) design if 2<k<n, no curve for [18] is drawn

there. (We only use this figure to show that our CPU time is really a constant.)
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Table 2.1. Time complexity for decoding. (The time to reconstruct a pixel of image

A)

Schemes (k, n) threshold (n, n) threshold

Thien and Lin’s O(log’n) (Math operations)

polynomial sche

O(log’k) (Math operations

s

erations) for [1

2, 2) case

Fang in’s scheme.  O(kxper) (OR operations)

[50]
Wang et al.’s scheme’  O(kXper) (O ) (OR operations) in
[17-18] Ref. [1 Ref. [17].

[18] gave no (k, n) scheme®  n-1 (XOR operations) in Ref.
unless £=2; and its (2, n) [18].

scheme uses only 2-1=1
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XOR operation to
reconstruct a pixel of 4.

Our scheme 3 (XOR operations) 3 (XOR operations)

) Math operations: +, —, x, +.

@ Note that per means “Pixel €xpansion rate llygper is a positive integer at
least two in [4, 10
) When the ( ¢ OR operation

is neede
=1/k for t

(]
{ probabilistic sche 5 ted secret i

\,
'\

are at least two.

(per=1),

o iy o e

heme [17]
is still not less than e A ng et al.’s i scheme [18],
the per is one; but [18

In the proposed scheme, our per-is between 0 and 2; moreover, close to 0 is
possible. To see this, let the size of secret image A is wxh. Since the size of every
temporary shadow C; (1 =i=m) is 2x(wxh)/m, the size of every final shadow D; (1=i

=n)is
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[2x (wxh)/m]xC]7 =[2x(wxh)/C},]xC}
=2(wxh)(n-k+1)/n

Here, we have used the fact that each final shadow D; contains C]; temporary

shadows. Now, after dividing the above by the size of A, we get our pixel expansion

rate, i.e.

' Ue . (2.4)

Therefore, ea et image A.

When«n is Vi

othe

Schemes

Thien and Lin’s

polynomial scheme

(9))
Wang and Sue’s (1/k)x60% (1/m)x60%

polynomial scheme

(3D
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Digital versions of [4,  per is at least 2. per is at least 2
10-12]
Lukac and Plataniotis’s  per is at least 2. per is at least 2.

schemes [13-15, 30] (per=11n[30], but [30]is  (per=1in [30], but [30] is

for(2, a ) for(2, 2) case only.)
Fang & Lin’s sche
[50] 0T some integer m =2.

Wang et g per=11n Re

Schemes

Thien and Lin’s
polynomial scheme ([6])
Wang and Sue’s Lossless recovery
polynomial scheme ([3])

Digitalized versions of [10, 11] are lossless, but [4, 12] are lossy.
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[4, 10-12]
Lukac and Plataniotis’s Lossless recovery
schemes [13-15, 30]

Fang & Lin’s [50] Lossless recovery

Wang et al.’s scheme

]

] if per is close to 1.

[17-18 gives no (k, n)

(9))
Wang and S

polynomial scheme

(3D
Digitalized versions of  Either look up the basis Either look up the basis
[4,10-12] matrices or use OR matrices or use OR

operations. operations.
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Lukac and Either look up the basis Either look up the basis
Plataniotis’s schemes  matrices or use OR-like matrices or use OR-like
[13-15, 30] operations. operations.

Fang & Lin’s scheme  Either look up the basis Use XOR operations.

[50]

operations.

arlng approach, the shadow size is never a

To the

ing_speed e to the polynomial-interpolation ¢ ation
contrary, storage space shadov aln st methods (the pixel

ows Talm

expansion rate per is usually at least 2 (

)-threshold schemes, and per=1 is
limited to lossy schemes or some (n, n) non-threshold schemes.) In this chapter, we
have designed successfully a scheme so that: 1) the generated shadows are with

reasonable size. The per is between 0 and 2; and close to 0 when k is large and close

to n [see Eq. (2.4-2.6)] (our per=2/n in all (n, n) schemes); 2) the scheme only needs
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three 24-bit XOR operations per pixel to get a recovery of the given color image; and
3) unlike some probabilistic approaches, our recovered images are lossless; 4) our
scheme is missing-allowable because it is a (k, n)-threshold scheme which requires

only k out of the n shadows appear in the recovery meeting.

We have implemented the cases ( ing, respectively, (2, 2), (2, 3), (3, 3),

(2,4), (3, 4), (4, 4), etc. The he above advantages.

Notably, the mc % v ag Se 1 ethod is

based o
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Chapter 3
Single Image Sharing with User-friendly Shadows

and Progressive Decoding

In this cha , . ndly shadows

and .pro

3.1ASi

This section reviews r. ser-friendly method [19].
His method is for binary (black or white) images; therefore, bit-plane by bit-plane

processing is required when input image is grayscale or color. His sharing and

recovering algorithms are as follows:
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Sharing phase: (see Fig. 3.1 for the sharing phase of Fang’s method [19]):

Step 1. According to the two leftmost columns of Table 3.1, expand every pixel of the
black-or-white input image O to a 2x2 block in the corresponding position of

the expanded image O'. Notably, if the input pixel is black, then all pixels of

the corresponding b ; sely, if the input pixel is white,
then the correspondir , ite and two black pixels (in

2 the six

nding poSiti

one of the

Stego-
image T

Compare

iR
A “’“ Share 1

L e 6
e T
| )

7

Expanded
image O’

Fig. 3.1. The sharing phase of Fang’s method [19].
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Table 3.1 Fang’s selection of sharing patterns in [19]. (See Fig. 3.1 to understand O,

O'and T)
Secret pixel ~ Expanded Cover pixel Possible choices for the related
O(x, y) secret O' T(X,Y) 2-by-2 block of a share S; (1<i<n)

" b = 9W7B7M7 (BDWDWDB)’

> % , (W,W,W,B)

y BN

@ B’ represents black pixe W eprese

@) Each 2x2 block in the expanded image O (or in each shadow S;) is represented as

(left-up pixel, right-up pixel, left-bottom pixel, right-bottom pixel).
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Recovering phase: (see Fig. 3.2 for Fang’s experimental result)

Assume that k£ shadows are collected. Then, each pixel j of the black-or-white image
is reconstructed using the & sharing pixels at the same position j of the k£ shadows. The
reconstruction rule is an OR-like operation: “the reconstructed pixel is black iff at
least one of the k sharing pixels'is black.”” (Hence, the reconstructed pixel is white iff

all £ sharing pixels are white.)

Fig«3.2. Experimental result of the recovering phase in Fang’s method:(a).one of the
six (n=6) user-friendly shadows; (b-f) the reconstructed resultsiusing 2-6. shadows,

respectively.

Fang’s method has two disadvantages: 1) The size of each shadow S; is four times
larger than the input image O because the sharing patterns in Step 2 of sharing phase
are 2x2 blocks (see the fourth column of Table 3.1); i1) The image quality (such as

PSNR) of shadows is not easy to control. We will improve them in this chapter.
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3.2 The Proposed Method

This section presents our user-friendly progressive sharing method based on
modulus operations. The method generates n user-friendly shadows whose image

quality (such as PSNR) is lower than the input image’s quality; and later, the input

image can be reconst age. quality after gathering
k (2<k<n) sh: S e des et l.into three subsections.

First, a fundamenta a itroduced

1S

images based or

nodulus operations. This version splits a graysca age A among
n extremely noise- \"‘. ﬁﬂy same as A. The n
noise-like shadows together can recons 1 pixel A by using one modulus
operation and n-1 addition. (In this dissertation, “-+> and “Mod” denote addition

and modulus operations, respectively.) The sharing and recovering phases of the

fundamental version are listed below.

51




Sharing phase:

Step 1. Input a grayscale secret image A.
Step 2. Generate n-1 random images B, B, ..., B,.; as shadows. Each is as large as
A

Step 3. Create the n™ shadov

(3.1)

Step 4. Ov
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B>+ B3+ B4)Mod 256

3.2.2 A User-friendly but Non-progress ) Sia

This sub-section describes how to extend (n, n) fundamental version in Sec.

3.2.1 to an intermediate version whose n shadows are all user-friendly, i.e. look like
visual-quality-reduced versions of the natural image, so that the management of the n
shadows is easier. What we do is to use a smaller value m to replace the value 256 in

the modulus operations in Sec. 3.2.1. Notably, the version in Sec 3.2.2 here is still
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non-progressive.

Sharing phase:

Step 1. Input an integer parameter m (2<m<256) and an 8-bit grayscale image A.

Generate a smaller-range imacg

/"'”’"“"-*-h (3.3)
: d al to A, but with pixel value le ' ather than 256).
: ‘random” images

arge as

1896
=Q8i)md m] +[(B1+B2+ ...+ Bn)mod ml-

In Eq. (3.6), it.doe matte s used as Bj; the result
is the same. Also, if 56 is used in Eq. (3.3)-(3.6), then this intermediate version is

identical to the (n, n) sharing one in Sec. 3.2.1.

3.2.3 The User-friendly and Progressive Version

The intermediate version (Sec. 3.2.2) is still non-progressive, although
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user-friendly. Sec. 3.2.3 extends the intermediate version so that progressiveness is
also equipped with. The algorithm is presented here step by step. Because the version
is an extension of Sec. 3.2.2, the modulus-base notation m (2<m<256) is still used

here in Sec. 3.2.3. The new version can generate » friendly shadows and reconstruct

the input image in a progressive'manner, i.e. the reconstructed quality improves as the

number of gathered shac

_pDeE_0oNne Of1

A=A, — B, Finally, I
Step 5. Output # final shadows By, B, ..., B, defined by

Bi=(A—A)+ B fori=1,...,n. (3.8)

(In Step 4 of the sharing phase above, “ B/ =(Ri)mod (A'+1)” means that
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“B! ()=(R1())mod (A(t)+1)” at pixel t. Then, after creating B; (t), we create A (1)
by the formula A/ (t)=4'(t)— B/ (t). The explanation for the remaining operations

in Step 4 is likewise.) Notably, as t changes, for random effect, we randomly

switch the order of assigning these computed values to { B(t), B, (t),..., B/ (t) }.

For example, when t=0, assign comp

0 B/ (t), B, (t),..., B/ (t) as

above, respective ! -H-mm.\-
B/ (t), B, 4(t). . ; then, when t=2, ... e
rando ator to create the pe

alues to

mutation order fo

ering phas l S
Jathering a , Jows
J 1 <-

(3.10)

hence we have (B : , i A <j<k. However,
(A—A"od m=0 because A’ =(4)mod efore, (Big)— B/(;, JMod m=0. S0

(Bi)modm = (Bj(j IMoam = Bjj; (3.11)
where the last identity is due to the fact that B[, <(4"1) by Step 4 above, and the

range of 4"is {0, ..., m-1} by Eq. (3.7). We may thus say that

56



Bi(j)_(Bi(j))Mod m = Big)— Bi'(j) =A—A’" (Here, 1<i(j)<n for 1<j<K). (3.12)

-END of Proof-

Lemma 2. In Step 4 of the sharing phase above,

(3.13)

Proof. Because

A= \Eilmumfﬁﬁ

= [Bi— (Bi)moam]+ [(Bs + Bz + ... +-Ba)mo

= [A—AT+(Bu)wmod m + (B2)mod m - + (Bn)mod m]mod m
=[A—AT+[B] + B, +...+ B, Imodm
=[A—AT+[4]

=A -END of Proof-
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Step 4 above implies each pixel of B,B;,...,B; is non-negative because each

pixel is created by a modulus function. Moreover, in Step 4 above, the pixel values of

A'is distributed randomly among B/, B,, ..., B/ ; and Eq. (3.13) reads

I+ ! : — A

n

in which all pixel va S -mamﬂ'ﬂ—-mm\' e._image quality
(PSNR) of shad 2 ..., By, We may start from the rough.e atio

A!

D/

IEIS

0 (38), R @ (B

can be redu

can

D AR

allt

Count(t)

2 ALY

allt

Count(t) as

vn value of n, the above rough estimation of
y |

t b U ac e of

be re-written as
Count(t

depends on the histogram of the image A', we may roughly estimate

J(mj 24t /(m-1) = (m —1)/1.73 a1
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which is the probabilistic average value considering the fact that
A(t)e{0,1,...,(m-1)}. Therefore, we have

_(m=-D)x(n-1)
1.73xn

RMSE(B;) (3.18)

Then, we can get the rough esti

PSNR(B, )= (3.19)

al results of PSNR(B.) are shown in

O FSINR IS |

ogressive

decoding feature; a s acti perations and k
Additions to reconstruct a alu v V3 e shadows.

The “+7, “—” and “Mod” in"this subsection are all byte-by-byte operations

among gray values. Hence, if input image is color (24-bit per pixel), then A must be

first decomposed into 3 components ( A%, A® and A®) of 8-bit each. Then the

sharing process above is implemented for each component to generate n shadows.
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Then, for each index i=1,...,n, combining the three corresponding shadows Bf, B°

and B° to get final shadow B;.

3.2.4 Advantage over Fang’s 1

Comparing to Fang’s method [19] reviewed in Sec. 3.1, which is also
user-friendly and progressive, our method in Sec. 3.2.3 has two more advantages:
(i) The size of our each shadow in By, B, ..., B, is the same as A (not expanded).

(i) Our shadows’ image quality PSNR(B,) can be roughly controlled by the base
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parameter m of modulus operations (2<m<256 is an integer). Just estimate m by

441 < n

\/ PSNR(B;) +1 (3.20)
10 1° x(n—21)

Eq. (3.20) is derived from Eqg. (3.19), an estimation tool whose validity is checked in

Table 3.2.

Step 3. Generate is‘as large as A,

and each pixel of R
Step 4. Create n images B/, B,,...,B, according to Step 4 of sharing phase of Sec.

3.2.3, except that here we use 4 to replace the role of 4" in all formulas there.
Step 5. Use a random key r to create an order to permute all pixels in B, . Each of the

remaining n-1 images B,,...,B/ is also permuted using the random key r.
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Then use Shamir’s (2, n)-threshold sharing method [1] to share the key r

among n created numbers ry, ro, ..., Ih. Then, store r;in B/ for each i=1,...,n.

Step 6. Treat each grayscale image B/ (1<i<n) as a bit stream (i.e. a very big binary

integer), then partition each B! to_ (v/sz xw)x (/sz xh) smaller-range
numbers B/

Step 7. T C , ber B/(t) in T'(¢) to get a pixe
T'(H)-Bi(®)

B, (t) = round m+ B

. After gathering

where 1<i(j)<n

’
Bi(i) .

Step 3. Recover the rando Then use the key r to restore

original pixels’ order in image B/, B/ ,,-.-, Bj,-
Step 4. Finally, retrieve A in pixel-by-pixel manner by the formula

A= B

’
ot B!

it Bl (3.24)
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In our stego version above, the final stego shadows B;, B, ..., B, are

sz:8/|_log2 m—| times larger than the input secret image A. Hence, the pixel

expansion rate is per=8/ |_Iogz m—|38/4:2 if we set the parameter m>16. An example

using m=32 is shown in Fig. 3.8 where Jets are stego-shadows utilized to cover (and

progressively recover)«the iImportant image Lena. In this.(m=32) example, our

on-rat “bette n g’s per=4 (shown

stego-version’s pixel expans ner=8/5
in Fig. 3.9 r shadows image quality is

scale image

Lena in Fig. 3. XPerime sult for (n=4) case when
m=256. The image A can be roughly see any of the four generated user-friendly
shadows shown in Fig. 3.5(a-d). In Fig. 3.5(e-g), when more shadows are available in
retrieval, the recovered image has better quality.

Other experiments using m=64 and m=16 for (n=4) case are shown in Fig. 3.6 and

3.7 respectively. The shadows in Fig. 3.7 have higher PSNR than those in Fig. 3.5 and
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3.6 due to the use of a smaller m value. (This is according to Eq. (3.19), where we

(441 x n)? (441 x 4)?

have PSNR(B,)~10x log,, > >
[(Mm—1)x(n—-1)] [(m—1)x3]

=10 xlog,,

because n=4).

Notably, when m=256, 64, and 16, respectively, the PSNR(B;) values estimated by
Eq. (3.19) are 7.26 db,19.40 db, and 31.87 db. They are allwery close to the actual
PSNR values.of the shadows (7.37 db, 19.02 db, and 3.1.21 db; respectively) shown in

Fig. 3.5, 3.6, and 3.7:

(€) () (9)

Fig. 3.5. An example of (n=4) case using m=256 in non-stego version (Sec. 3.2.3).

Here, (a-d) are the final shadows By, Bs, B3, Bs (RMSE=109.13 and PSNR=7.37 for
(a-d)); (e-g) are the recovered Lena images (RMSE=80.22 and PSNR=10.04 for (e);
RMSE=49.75 and PSNR=14.20 for (f); Lossless for (g)) using (respectively) any two,

any three, and all four final shadows.
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Fig. 3.7. An example of (n=4) case using m=16 in non-stego version (Sec. 3.2.3). Here,
(a-d) are the final shadows B, B,, B3, B4 (RMSE=7.01 and PSNR=31.21 for (a-d));
(e-g) are the recovered Lena images (RMSE=5.21 and PSNR=33.79 for (e);

RMSE=3.28 and PSNR=37.81 for (f); Lossless for (g)) using (respectively) any two,

any three, and all four final shadows.

(€) () (9)

Fig. 3.8. An example of (n=4) case using m=32 in stego version (Sec. 3.2.5). Here,
(a-d) are the final stego-shadows B, B,, B;, and B4; (e-g) are the progressively

recovered Lena images using, respectively, “any” two, “any” three, and all four final
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shadows. PSNR=26.66 for (a-d); PSNR=10.04 for (¢); PSNR=14.21 for (f); and (g) is

lossless.

Fig. 3.9. Comparing C he

hidden image is Le , a)) and host image is Je ). e, (a) is one
of the four stego-shadows w SNR=26.66 db.in-¢ ( SiO hen m=32); (b)

is one of the four stego-shadows with PSNR=31.26 db In our stego version (when

m=16); (c) is one of the four stego-shadow with PSNR=10.02 in Fang’s method (Sec.
3.1). Note that our stego size is only 1.6 times (in (a)) or 2 times (in (b)) larger than

original Jet image’s size, whereas Fang’s stego size is 4 times larger than original Jet.
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3.3.2 Comparisons
This sub-section gives a comparison with related researches of other people [3-7, 9,
18-22, 51]. From Table 3.3, we can see that the proposed method owns all these four

advantages: user-friendly, progressive, economical-size, and lossless reconstruction

(when all n shadows are availab

Chen and Lin

Hung et al. [20] ‘ . Sy ‘ V3 x
Jin et al. [21] yes X yes
Fang and Lin [22] X yes X yes
Thien and Lin [6] X X yes yes
Fang and Lin [51] X X X yes

68



yes

Proposed method (controllable yes yes yes

quality)

) The ability to get lossless recovery after gathering all » shadows.

@ The symbol ‘x’ means thatthé mention ethod doesn’t have this advantage.

®) The symbol ‘yes’ mez

[ ( Dd O D> W ot
¢ |! ] :! E; bmpa

Of DIXCL. [/ 1]

] is 4 times expan cas Ref.
i or lossless in recovery. As ¢ , 8, 21], they are

neither progressive nor user-friendly.

user-frie

[7] is neither prog

To compare with Fang’s [19] further, we provide our stego-version in Sec 3.2.5, in

which the pixel expansion rate (per) is 1.33< per:8/]_logz m-\sz when 64>m>16. For

example, per=1.6 when m=32. These per values are still better than Fang’s per=4.
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(Hence, no matter it is stego version or not, our per is better than Fang’s.) Moreover,
our stego shadow’s image quality is also better than Fang’s (see Fig. 3.9, our
Jet-stego-shadows are with PSNR=26.66 db for m=32 and 31.26 db for m=16, both

are better than Fang’s 10.02 db).

Table 3.4. Quanti S —

- (N10Z K)

Thien and Lin
[7] (visually Lena’s PSNR = 37.98
O(log’k) (Math per ~ 1/k >
recognizable Jet’s PSNR =39.93
operations) 1/n
shadows) Baboon’s PSNR = 35.33
Fang [19]
(visually 4x(k—1) (OR-like
per =4 Lossless
recognizable operations)
shadows and
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progressive)

Jin et al. [21] 4x(k-1) (XOR

per =4 Lossless
(progressive) operations)
Our Sec 3.2.3

(visually k additions .

recognizable -—-l—-ru ossless
shadows and
// \

sec 3.2.5

sually

[
adows and .

progressive)

0 (k, n) system.

' 8396
age re@ by all shadows.

— X,

erations needed to reco

input sect

ixel expa

3.4 Summary
Many researches in image sharing had been reported, usually traditional

approaches: polynomial sharing or visual cryptography. In this chapter, based on
modulus operations, we successfully designed a novel image sharing method with

user-friendly shadows and progressive decoding. According to the experimental
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results and comparisons in Sec. 3.3, besides being 1) user-friendly ; 2) progressive; 3)
each pixel is reconstructed by k shadows quickly with about k operations; 4) the
recovery is lossless after collecting all n shadows; the proposed method also owns

following features: 5) the non-stego shadows’ image quality can be controlled by the

parameter value m using Eg: (3.20); 6) h 'shac is.not expanded in non-stego

version (Sec. 3.2.3), anc v 1.33<per=8/{log, m |<1.6 times larger than original

m232 in the stego ver Z

shadows have quality much better t

secret imag e stego
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Chapter 4

Multi-Images Sharing with Economical Shadows

and Fast Decoding

JB) operations

(symbolized as “E - S S )n) to.reconstruct each

pixel’s 8-bits value of given secret image VE ue of n is. Therefore, no
matter how many secret images are used in our method, the CPU time in decoding
each secret image will not increase as the number of secret images increase. Hence,
the proposed method is not only economical in storage space of shadows but also fast

in decoding of secret images.
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The remaining portion of the chapter is organized as follows. Section 4.1
describes two basic tools based on MOD and XOR operations respectively; and these
tools will be used in the proposed method. Section 4.2 presents the proposed method.

Section 4.3 gives security analysis. Experimental result and comparisons are in

Section 4.4. Finally, the summary is i .

/ ols Used in the Proposed Scheme
eve the two advantag er C

1

n shadows B, B,,..., B, ; and each of them is k times sma han'A'in

o
size. A can s ath - coding,

to transform™a sec { ues of A into n

shadow pixel values ey use a prime number

)
p=251 to create a polynomial

q(x) = (8 + X +...+a, ;X ") Modp (4.1)

of degree k-1. Then evaluate b, =q(1),b, =q(2),---,b, =q(n). Later, using any k of
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the n produced pairs {(i,b,)}",, people can recover all k coefficients a,,a,...,a,, in

q(x) by constructing the interpolation polynomial.
To let our method have shadows with small size, we apply [6]. More specifically,

apply [6] in a special manner (k=2, n=2). We call this (2, 2) scheme as “MOD-based

(2, 2) secret sharing tool”?

lade A,

a
Step 2.1.
Step 2.2. If pi=

50 and (pi—250). $

these two values

Then attac

Step 4. Repeat Step 3 until

Notably, Step 2.2 is to handle the gray values larger than 250 (see [6]), which
seldom happens for most natural images. Therefore, the size of E, which equals to the

total size of B; and By, is very close to size of A. In other words, each of the created B;
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and B, is about two times smaller than A in size.

Reveal Phase: (see “Reveal of (2, 2)-MOD-SS” in bottom part of Fig. 4.2)
Step 1. Take the first non-used pixel from each of the two shadows B; and B,. Call the

two values as (b, b

Step 2. Use thesetwo eS b, ) t0_recover the oeffici a,, a,)inEq.

4

2 SUB, one ADD and one

In the reveal algorithm abo

MOD) are needed in Eq. (4.4) or Eq. (4.5) to reconstruct each secret pixel of A.
Because usually there are only a few pixels in A (and hence, in ;5\) whose gray values

are above 250, the ADD operation in Sub-step 4.2 seldom occurs. Also, for each pixel,

Step 5 uses one mapping operation (indexing) rather than computational operation.
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4.1.2 XOR-based (n, n) shadows combination tool
Once all given n secret images A, A,,...,A, are processed by MOD-based (2, 2)

secret sharing tool described in Sec. 4.1.1, each secret image A (1<i<n)

generates two half-size_tempo i1 and'B; , . To avoid any secret

ving steps of

leaking whenccollecting less_th NVE L he fo

Combination P

Size-sync

SO 1un 513

2 with the large ize.

make all shado

p 2. (Stacking.).Take the fi om each shado

' b*=b, ®b,, ®---®b,,. 6)
After a » . of imag is done,

and its size is the same as B,; (and B, ,, toC

Step 3. (ShiftingB;,t0B,,.) Take next not-yet-processed pixel b, from each

shadow B;, (1<i<n), and, at the same pixel position, take the

corresponding pixel b*e B*. Then create the corresponding pixel value b,
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of anew image B, by
b,=b,®b* (1<i<n). 4.7

After all pixels in all B,, are processed, all n images B, are generated.

Notably, each B.

Step 4. (Phys

Ul
,

ly. 10.).| =n, C

a ’
enerate their final shadowC, =(B;,; B, ;) . Because

ot-yet-processed pixel b,, from ez
evaluate the correspc pixel Lk : B

pixelsof all B, , are process ‘ iS generated.

g. (4.6). After all

Step 3. Take next not-yet-processed pixel b,, fromeach B, (1<i<n), and, at the

same pixel position, take the corresponding pixel b* from B*. Then

evaluate the corresponding pixel b;, foreachimage B;, by
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b, =b,®b* (1<i<n). (4.8)

After all pixels of all B, , are processed, all B, , are recovered.

In average, only one XOR operation issneeded to.recover a pixel of a secret image;

and this statement_is ‘true each i e i.<n)..The analysis is as

follows. Assu : es, averagely

XOR operations.in-Eg cate. t . ‘ in

1896

ring Phase of MOD-based (2, 2) secret sha

combinatio ir

replace the n given'secret i

Encoding algorithm: (see its diagram in Fig. 4.1)
Input: n input binary/grayscale/color secret images A, A,,...,A, of the same size.
Step 1. No matter the image is binary or gray or color, just treat each A (1<i<n)

as a long byte-stream (hence each element has 8-bits, and can be considered as
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a gray-value pixel).
Step 2. Then, for each stream A (1<i<n), use the Sharing Phase of MOD-based

(2, 2) secret sharing tool in Sec. 4.1.1 to create its half-size shadows

1B B2}

Step 3. Use all {B,,,B;,} 1<i i i n Phase of XOR-based (n, n)

ate. n final

. each final sha esult, even fro

SCrets’ Vi X %' secret

b*=bljl@b271@bn71
b
1.1 .
Secret | 5 5y viop-ss 4B :
Image >
b bi3=b®b* /|y
12 . P13
141 Bl,g Bl,3

‘ i1 ~
. Secret (2. 21 MOD-SS 2B, | '
Image > B .
An anBn,Z bn37bn ZeBb bnSan
B, B, Combinati Fmal Fmal
N N ombination , Sha dOVV Sha dOVV
B 1.3 Bn,S Cl Cn

Fig. 4.1. Adiagram of the proposed encoding algorithm.
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4.2.2 Decoding
To recover the n secret images A,A,,..,A, from the n final shadows

C,,C,,...,.C,, the decoding uses the Decomposition Phase of the XOR-based (n, n)

shadows combination tool in Sec. 4.1.2, followed by the Reveal Phase of the

MOD-based (2, 2) secret sharing .1.1. Mainssteps are as follows:

Decoding

{BiiiBi,}

3. If the original

opera

secret image..Mor 3 in.Ster in e X( n is needed

to recover a 1-byte sition Phase of the

XOR-based (n, n) shadows combination tool. In Step 2, one MOD, one ADD and one

SUB operations are needed to recover a 1-byte pixel value of A in the Reveal Phase

of the MOD-based (2, 2) secret sharing tool.
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b*= bl,l @szl @an b B*
: h
1.1 .
Final Separation B 1.1 :
Shadow b13B bl 2:b1 3@1)* b] 1z
Cl 1.3 1.2
Final Senarat Pl B,
eparation :
Shadow |— - o o L
Cn nSans n2  "n3 nZan
B, B, , Secret
. L . Reveal of | Ima ge
(2, 2)-MOD-SS
BI,Z Bn,2 Al

Assume that only

d Phase of
e to absence of all B,

Below we discuss the probability of obtaining some right secret images A

(4.8). image A can be recovere
MOD-based 2) secre : in_Sec. 4

(1<i<n).

through guessing. Without the loss of generality, assume that a betrayal party of n-1
participants gathers their n-1 final shadowsC,,C,....,.C, ;, and try to recover some of

the n secret images, without the cooperation of the missing shadow C, . From Eq. (4.6)
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and (4.8) , we have

b,=b,®b*=b,®b,®b, ®---®b,, (1<i<n). (4.9
Because of the lack of C =[B,,;B, ], foreach pixel b,, in B ,, the betrayal party

will have to guess a value, and thensthey use ithis guessing value to get a set of n-1

pixels’ values b, 4B, ,;...;b, ectively-at the same pixel

position (t

( 1 )131072 _ 10314590
251

if each imag

Here, he probability to gue essf pixel’s value

value

whose range is from 0to 2t : S er of pixels'in'B,, . In fact, for each

secret image A (1<i<n) in the encoding process (as we did in Step 1 of the
Sharing Phase of MOD-based (2, 2) secret sharing tool in Sec. 4.1.1), we already use

a prime number as a key (a seed) of a random number generator to rearrange all

pixels’ positions of A . Even if many pixels’ valuesin B, , are guessed successfully,
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in Step 4 of Reveal Phase of MOD-based (2, 2) secret sharing tool in Sec. 4.1.1, the
recovered images A'i (1<i<n-1) are still extremely noise-like. Therefore, the

security guardian is of double levels.

4.4 ExperimentaliResult

4.4.1 Expe

From our
decoding t 4 e value of n
varies.
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b

(

(a)
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(©) (d) (€)

Fig. 4.5. The five error-free images recovered by using all five shadows (Fig. 4.4) in

the n=5 case.
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,,C;,C, (Fig. 4.4

30

20
millisecond

10

n 2 3 4 5 6 7 8 9 10

millisecond [15ms|15ms|{15ms|15ms|{15 ms|15 ms|15 ms|15 ms|15 ms

87



Fig. 4.7. The CPU time (milliseconds) for decoding 512x512 pixels of one image in
our (n, n) systems. (So the CPU time for decoding 512x512 pixels of all n images are

15n milliseconds.)

4.4.2 Comparisons
Table 4.1 compares between our method.and othe ecrets schemes [23-26]
in terms o : i i 2) decc computational

co

decoding complexity.

/1 size ratio® Decodin 2
nalleris better er i bette

IgBet®

Feng et al. [23] ’ o ﬂ ath operations) ©
Shyu et al. [24] xn (OR-like operations)
Feng et al. [25] 6 3xn (OR-like operations)
Alvarez et al. [26] (n+1)/n 1 (MOD operation) and

O(n) (Math operations®®)
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Our scheme 1 1 XOR, 1 MOD, 1 ADD

, and 1 SUB operations

@ Total size of shadows divided by total size of input images.

@ Complexity to decode a pixel of a secret image.

®) k is a user-specified threshold'Valug depend on nior not; e.g. k=0.5n or k=3.

) Math operatio

using

secret im
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Chapter 5

Conclusions and Future Works

5.1 Conclusia

a_Boolean-based<missing

ge in storage ace

1 economical and f:

computational com e ¢ ree 8-bit/24-bit XOR
operations per secret p 0 rec ¢ ry/grayscale/color image. Besides,
unlike some probabilistic approaches, our recovered image is lossless. Our scheme is
missing-allowable because it is a (k, n)-threshold scheme, which requires only & out of
the n shadows appear in the recovery meeting.

In Chapter 3, besides being with user-friendly shadows and progressive decoding,

our method also owns other advantages: (1) the non-stego shadows’ image quality can
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be controlled by a parameter value; (2) each shadow is not expanded in the non-stego
version (Sec. 3.2.3), and it is at most only 1.6 times larger than original secret image
in the stego version (Sec. 3.2.5); (3) each pixel can be reconstructed by k shadows

quickly with linear computational complexity O(k); and (4) the recovery is lossless

after collecting all n shadows
In order to_de /ll"’ﬁr‘_mﬂ! 0 : (XOR) and modulus
/d esigned successfully a mult 1 Chapter 4 that

e of shadows and reduces decoding computatio C xity. In

operations

JES. 1 NEIET

consta
ever the n is. Henc

PU time in decod

1S 2 o proposed methods only wo single image: they
can not deal with twc more- , aneq 0 haring process.

However, simultaneous dealing wit o[ ; ery common in today’s
business. Several studies in sharing of multiple images had been reported [23-29].
Unfortunately, these reported methods either have big-size shadow images [24-25, 27]
or huge stego images [23, 29]) or need an extra shadow image called public shadow

[26]. Moreover, for decoding, the amount of operations linearly increases as the
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number of secret images [26] or gathered shadows [23] increases. In Chapter 4, we
had successfully designed an improved multiple-images method, emphasizing the
reduction of both storage space and computational complexity. Our multi-images

scheme can share n given secret images and generate n non-expanded shadow images.

This novel scheme only needs a ational operations in the recovery of each

secret pixel; whate

Altho ou th
and decc

size ratio
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