
4.5  時效熱處理對旋形 C-250 EBW銲件之機械性質與顯微組織
的影響 

4.5.1 試驗目的與流程 

經固溶熱處理後之麻時效鋼具有高韌性、銲接性良好等特性，且

可藉由時效熱處理來強化材料的機械性質。電子束銲接屬於高能量密

度銲接，具有熱輸入小、銲縫及熱影響區窄等優點，非常適合於旋形

麻時效鋼的精密銲接。但文獻[3,4,5,30,66]表示，麻時效鋼經銲接後，
銲道為質軟之鑄造組織，必須再以時效熱處理來強化材料的機械性

質。然而，因銲道強化元素的偏析及逆變態沃斯田鐵池生成，使強度

及延伸率降低[5,67,68]。 
因此，為改善旋形 C-250麻時效鋼電子束銲件經時效熱處理後，

延伸率不足之問題，本節規劃除標準時效熱處理 480℃/6h/AC之外，
並以過時效熱處理（510℃、540℃/6h/AC）之不同條件，藉由析出粒

子粗大化提高材料之延伸率，並探討不同時效熱處理條件及逆變態沃

斯田鐵對銲道之機械性質與顯微組織之影響，期能以最適化之時效熱

處理製程獲得最佳之機械性質。本試驗流程如圖 4-26所示。 
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  圖 4-26  時效熱處理對旋形 C-250麻時效鋼 EBW銲件影響之試驗流程 
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4.5.2 微硬度量測與顯微組織觀察 

C-250 麻時效鋼經 58% 壁厚縮減率之順流旋形加工後，施以

EBW，量測其截面平均微硬度值分佈，如圖 4-27 所示。由曲線圖中
顯示，銲道部分與母材相比已有明顯降低，且恢復至接近未旋形前之

硬度，呈現非均勻水平的杯狀分佈。 
 

                
圖 4-27  旋形 C-250麻時效鋼電子束銲件微硬度分佈值 

 
由圖 4-28 C-250之電子束銲件相關位置與相圖的溫度關係示意圖

[5]中可以了解：當旋形麻時效鋼施以銲接時，銲道溫度高於液相線將

基材熔融而達到接合，隨著遠離銲道中心，其尖峰溫度遽降，至粗晶

區溫度已降至 γ相區域，由於 γ相區頗寬，所以反應於熱影響區亦最
寬。因尖峰溫度接近熔點，此時冷加工之殘留應力已釋放，而為質軟

富有延性之特性，隨著溫度降至 γ、γ+α 相線下方，此區域則發生回
復或時效效應，其微硬度值高於母材。圖 4-27顯示，旋形 C-250 EBW
銲件銲道其硬度值約 31～33 HRC ，恢復至麻時效鋼未旋形加工前固

溶處理的硬度值；熱影響區硬度值隨著接近母材而逐漸增高，且 EBW
銲件母材部份區域發生回復與時效處理的作用，微硬度曲線呈現「U」
字型。 
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圖 4-28 C-250之EBW銲件相關位置與相圖的溫度關係示意圖[5]

 

旋形 C-250 電子束銲件經不同時效熱處理後，經量測其微硬度大

幅提升，且呈現非均勻水平滴狀分布，如圖 4-29所示。然而銲道硬度

均低於母材，這主要是強化元素偏析導致時效析出不完全及於晶界間

生成逆變態沃斯田鐵，以致銲道硬度比母材低[3,4,5,67,68]。 
圖 4-29為 C-250電子束銲件經不同時效熱處理之微硬度分佈值， 

480℃標準時效及 510℃過時效熱處理，銲道、熱影響區及母材的微硬

度值分布非常接近，但仍以 480℃時效熱處理之微硬度值較高。過時

效溫度 540℃，因析出粒子粗大化及已有微量質軟沃斯田鐵相生成，

使硬度下降。 
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圖 4-29  旋形 C-250電子束銲件經不同時效熱處理之微硬度分佈值 
 
 

圖 4-30～圖 4-33為 58% 旋形 C-250麻時效鋼電子束銲件及經不

同熱處理之金相圖。 

銲道部分：由圖 4-30 c、d觀察，58% 旋形 C-250麻時效鋼經由電子

束銲接後之銲道呈現鑄造組織，銲道中間大部份為柱狀及枝狀晶，在

高真空環境凝固過程中，先前加工硬化效應已消除，恢復至未旋形加

工前的硬度值。根據學者[6]表示，此時麻時效鋼之銲道含有較高的差

排密度及少量的沃斯田鐵外，其餘皆為質軟富有延性與母材相同之低

碳麻田散鐵基地。圖 4-31 d觀察，58% 旋形麻時效鋼施以 480℃時效
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熱處理後，於晶界間可觀察出白色區域，依據學者[4,5]表示，由於逆

變態沃斯田鐵池大量奪取基地的硬化元素，使銲道析出反應不完全，

而導致銲道強度降低。且 R.Kapoor 等學者[69]研究結果也證實，Ni

的偏析會降低逆變態沃斯田鐵發生的開始溫度，導致麻時效鋼電子束

銲件，在 480℃時效溫度即會生成逆變態沃斯田鐵。當溫度達 540℃

時，仍無法有效消除銲道逆變態沃斯田鐵相。 

粗晶區：隨著由銲道向母材方向，其尖峰溫度坡度下降，硬度值隨溫

度降低而漸增。由圖 4-28所示，粗晶區溫度銲接時受熱加溫至 γ相區

域上半部位置，空冷後皆再結晶成粗大麻田散鐵組織（圖 4-30 e、圖

4-31 e、圖 4-32 e、圖 4-33 e），接近銲道融熔線之晶粒因受高溫熔融

熱影響，故析出之晶粒尺寸亦愈粗大。此區受高溫影響，冷加工之殘

留應力已釋放，成為質軟、富延性之特性。從金相圖觀察，58% 旋形

麻時效鋼電子束銲件經不同時效熱處理後，皆為粗大麻田散鐵組織，

尺寸變化並不明顯。 

暗浸蝕帶：熱影響區之暗浸蝕帶因銲接熱影響，其溫度範圍約 600℃

～730℃間的 α' +γ'雙相區內（如圖 4-28所示）[4]，主要為麻田散鐵組

織及有細微的逆變態沃斯田鐵組織，經由浸蝕後金相巨觀呈現黑色帶

狀，如圖 4-30 a、圖 4-31 a、圖 4-32 a、圖 4-33 a所示。 

由圖 4-30 a、圖 4-31 a、圖 4-32 a、圖 4-33 a巨觀觀察 58% 旋形

麻時效鋼、時效及過時效之電子束銲件，暗浸蝕帶以 58% 旋形麻時

效鋼電子束銲件最為明顯。旋形麻時效鋼電子束銲件經 480℃、510℃

及 540℃時效熱處理後，暗浸蝕帶則隨著溫度增加愈不明顯。 
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圖 4-30 旋形麻時效鋼電子束銲件之金相圖：（a）熱影響區巨觀；（b）銲

道巨觀；（c）、（d）銲道之柱狀晶與枝狀晶顯微組織；（e）熔融
線；（f）暗浸蝕帶

圖 4-30 旋形麻時效鋼電子束銲件之金相圖：（a）熱影響區巨觀；（b）銲
道巨觀；（c）、（d）銲道之柱狀晶與枝狀晶顯微組織；（e）熔融
線；（f）暗浸蝕帶
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圖 4-31 旋形麻時效鋼電子束銲件經 480℃/6h/AC 時效熱處理之金相圖：

（a）熱影響區巨觀；（b）銲道巨觀；（c）銲道之顯微組織結構；
（d）晶界間逆變態沃斯田鐵顯微組織結構；（e）熔融線及粗晶區；
（f）暗浸蝕帶
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圖 4-32 旋形麻時效鋼電子束銲件經 510℃/6h/AC時效熱處理之金相圖：（a）

熱影響區巨觀；（b）銲道巨觀；（c）銲道顯微組織結構；（d）晶界
間逆變態沃斯田鐵顯微組織結構；（e）熔融線及粗晶區；（f） 熱影
響區

圖 4-32 旋形麻時效鋼電子束銲件經 510℃/6h/AC時效熱處理之金相圖：（a）
熱影響區巨觀；（b）銲道巨觀；（c）銲道顯微組織結構；（d）晶界
間逆變態沃斯田鐵顯微組織結構；（e）熔融線及粗晶區；（f） 熱影
響區
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圖 4-33 旋形麻時效鋼電子束銲件經 540℃/6h/AC時效熱處理之金相圖：（a）

熱影響區巨觀；（b）銲道巨觀；（c）銲道之顯微組織結構；（d）晶
界間逆變態沃斯田鐵顯微組織結構；（e）熔融線及粗晶區；（f） 暗
浸蝕帶

圖 4-33 旋形麻時效鋼電子束銲件經 540℃/6h/AC時效熱處理之金相圖：（a）
熱影響區巨觀；（b）銲道巨觀；（c）銲道之顯微組織結構；（d）晶
界間逆變態沃斯田鐵顯微組織結構；（e）熔融線及粗晶區；（f） 暗
浸蝕帶
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4.5.3 機械性質測試結果與分析 

表 4-7為旋形 C-250麻時效鋼經電子束銲接及不同時效熱處理製

程條件後之拉伸機械性質結果。 
 
表 4-7  旋形 C-250 EBW銲件經不同時效強化熱處理之機械性質 

Sample code 
(Forming 58%) 

Heat treating process 

YS (MPa) 

(0.2% offset)
UTS (MPa) 

Elongation (%)

(Gage 50.8 mm)

AMS 6520D  1689 1758 2.5 

FE EBW 1048 1162 3.4 

FEA480 EBW→aging(480℃/6h/AC) 1925 1965 1.7 

FEA510 EBW→aging(510℃/6h/AC) 1900 1963 2.7 

FEA540 EBW→aging(540℃/6h/AC) 1775 1873 4.8 

 
由表 4-7及圖 4-34顯示，旋形麻時效鋼電子束銲件未經時效硬化

處理，延伸率可滿足 AMS 6520D規範規格，但其降伏強度與抗拉強

度分別僅達規格值 62% 及 66%。母材雖因旋形加工硬化作用及熱影
響區受到銲接融熔熱擴散效應產生時效硬化，但由於麻時效鋼在經電

子束銲接後，銲道形成低碳麻田散鐵組織與少量的沃斯田鐵組織結

構，導致銲道強度降低，以致受到拉伸應力作用時，由相對強度較低

的銲道處發生破裂，如圖 4-35 a。  
麻時效鋼電子束銲件經 480℃/6h/AC時效熱處理後，同樣形成機

械強度上升及延伸率下降的趨勢，但降伏強度及抗拉強度卻分別僅高

出規範值 14% 及 12%，延伸率（1.7%）卻大幅降低。銲道因為強化

合金元素的偏析作用及沃斯田鐵池大量奪取基地硬化元素，使銲道析

出強化反應不完全，導致銲道硬度降低[5,67,68]，受到拉伸應力作用

時於銲道處發生斷裂。 
為獲得旋形麻時效鋼電子束銲件材料強度及延伸率最佳化，藉由

提高時效熱處理溫度以析出粒子粗大化及產生微量質軟的逆變態沃

斯田鐵提升 C-250麻時效鋼電子束銲件延伸率。旋形麻時效鋼電子束

銲件經 510℃/6h/AC及 540℃/6h/AC時效熱處理後，降伏及抗拉強度
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均滿足 AMS 6520D規範要求，且延伸率分別高出規範值 8%及 92%。
由拉伸結果顯示，過時效溫度雖促使微量的逆變態沃斯田鐵生成，降

低材料強度，卻可提升銲件的延伸率。 

 

圖 4-34  旋形 C-250 EBW銲件經不同時效熱處理之機械性質比較 
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4.5.4 拉伸破斷面觀察與分析 

 1.電子束銲件 

 
圖 4-35 為旋形 C-250 電子束銲件拉伸破斷試片。由巨觀相片圖

4-35 a顯示，破裂發生在質軟的銲道內，呈現大幅頸縮的破裂形式。

同時觀察 SEM巨觀破斷面（圖 4-35 b）顯示，破斷截面呈現大幅頸縮
的延性破斷形態。由 SEM 的顯微觀察顯示均為非均勻之漩渦狀顯微

組織結構，如圖 4-35 c及圖 4-35 d所示。 
 

 
2.5mm 

a b

0.5mm

 
 25µm 

c d

 25µm 

 
圖 4-35  旋形 C-250 EBW銲件拉伸試片破斷圖：（a）OM巨觀；（b）上、

下兩側頸縮破壞形式 SEM；（c）、（d）漩渦狀組織 SEM。 
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     2. 電子束銲件+時效熱處理(480℃/6h/AC) 
 

圖 4-36 為 C-250 旋形電子束銲件經 480℃/6h/AC時效熱處理之

拉伸破斷試片。由巨觀相片圖 4-36 a顯示，破斷發生在強度較低的銲

道內，呈現類似準劈裂破斷形式，同時觀察 SEM巨觀破斷面（圖 4-36 
b）顯示，破斷表面平整且並無明顯頸縮現象。由 SEM的顯微觀察顯
示，為非均勻低延性細小的漩渦狀顯微組織，且部分區域呈現準劈裂

面的破斷形式，如圖 4-36 c及圖 4-36 d所示。 
破斷面雖為非均勻延性漩渦狀組織，然而，從巨觀準劈裂破斷形

式及延伸率（1.7%）顯示，58% 旋形麻時效鋼電子束銲件經標準時
效熱處理後，材料延性並不理想。 

 
 

 2.5mm 

a b

0.5mm

 
圖 4-36  旋形 C-250 EBW銲件+ 480℃/6h/AC 拉伸試片破斷圖：（a）OM巨

觀破斷相；（b）準劈裂面之破斷截面 SEM；（c）、（d）低延性漩渦
狀組織 SEM。 

d

 25µm  25µm 
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     3. 電子束銲件+時效熱處理(510℃/6h/AC) 
 

圖 4-37 為 C-250 旋形電子束銲件經 510℃/6 h/AC過時效熱處理

之拉伸破斷試片。由巨觀相片圖 4-37 a顯示，母材因過時效熱處理後，

析出物已開始成長呈現質軟現象，母材因拉伸作用產生變形頸縮現

象。然而，銲道因逆變態沃斯田鐵生成，銲道硬度仍較母材低，故破

斷仍發生在銲道內。同時觀察 SEM巨觀破斷面（圖 4-37 b）顯示，破
斷截面呈現準劈裂面形式。由 SEM 的顯微觀察顯示，延劈裂線拉起

之漩渦狀組織，且部分漩渦狀組織有微量成長之趨勢（圖 4-37 c 所
示），圖 4-37 d顯示，非均勻之漩渦狀組織，且部份區域發生空孔組

織破斷現象。 
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圖 4-37  旋形 C-250 EBW銲件+ 510℃/6h/AC 拉伸試片破斷圖：（a）微量

頸縮之 OM巨觀；（b）準劈裂破斷截面 SEM；（c）延劈裂線拉起

之漩渦狀顯微組織 SEM；（d）非均勻漩渦狀及杯狀顯微組織 SEM。 
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     4. 電子束銲件+時效熱處理(540℃/6h/AC) 
 

圖 4-38 為 C-250 旋形電子束銲件經 540℃/6 h/AC過時效熱處理

之拉伸破斷試片。由巨觀相片圖 4-38 a顯示，破斷仍發生在銲道內，
由於母材因 540℃/6 h/AC過時效熱處理，已有析出粒子粗大化及微量

的沃斯田鐵相生成，使母材頸縮現象更為明顯。同時觀察 SEM 巨觀
破斷面（圖 4-38 b）顯示，呈現準劈裂面現象，破斷面中間出現少許

空孔。由 SEM的顯微觀察顯示，混合著纖維狀及延性漩渦狀組織（圖

4-38 c所示），圖 4-38 d為空孔及漩渦狀顯微組織。 
 

 

2.5mm 

a b

 
0.2mm

 

c d

25µm 25µm 

圖 4-38  旋形 C-250 EBW銲件+ 540℃/6h/AC 拉伸試片破斷圖：（a）OM巨
觀；（b）SEM破壞斷面；（c）階梯狀之破裂顯微組織 SEM；（d）
漩渦狀及空孔顯微組織 SEM。 
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4.5.5 本節結論 

1. 58% 旋形 C-250 麻時效鋼經電子束銲接後，銲道已恢復至接近未旋

形前之固溶硬度，呈現非均勻水平的杯狀分佈。經 480℃時效熱處理

後，銲道因為強化合金元素的偏析作用，使銲道析出強化反應不完

全，導致銲道硬度較母材低，硬度呈現非均勻滴狀分布。 
2. 480℃/6h/AC時效熱處理後，58% 旋形麻時效鋼電子束銲件之降伏強

度（1925 MPa）及抗拉強度（1965 MPa）仍為最佳，分別高出規範值
14% 及 12% 。然而，延伸率（1.7%）已無法滿足 AMS 6520D規範
規格。 

3. 540℃/6h/AC 過時效熱處理，因析出粒子粗大化及母材產生微量的逆

變態沃斯田鐵，獲得較佳的延伸率（4.8%），高出規範值 92%，可有
效改善銲件直接時效熱處理後，材料延伸率不足之問題。 

4. 工程應用上，若需求為較佳延伸率時，建議時效熱處理溫度不高於

540℃，避免材料生成多量的逆變態沃斯田鐵相所帶來的負面影響。 
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4.6  後熱處理對旋形 C-250 EBW銲件之機械性質與顯微組織的
影響 

4.6.1 試驗目的與流程 

由 4.5節結果顯示，58% 旋形麻時效鋼電子束銲件經 540℃過時
效溫度熱處理後，其銲道逆變態沃斯田鐵池仍無法加以消除，且隨著

時效溫度升高，使銲件之拉伸強度下降。 
為改善 C-250麻時效鋼電子束銲件經時效熱處理後，銲道逆變態

沃斯田鐵池生成之問題，學者 Y.Arata 的研究及建議，可利用更高溫

的均質化熱處理以消除逆變態沃斯田鐵池。然而，卻導致晶粒粗大化

及材料偏脆化的負面影響[3,4,6,7]。因此，為避免均質化過高溫度及

長時間熱處理，導致材料偏脆化的負面影響及改善試件直接時效熱處

理延伸率不足之問題。依學者研究[41,42]及 4.4 節試驗結果顯示，麻
時效鋼經熱處理溫度 940℃保溫 3 分鐘後，即會發生再結晶的現象，
且可有效消除因冷加工所形成之畸變組織，改善直接時效熱處理延伸

率不足之問題。因此，本節規劃以短時間固溶（810℃）至均質化溫
度（1150℃）之不同熱處理條件，探討不同熱處理條件對銲道之逆變

態沃斯田鐵生成及機械性質的影響，並與規範 AMS 6512E[60]麻時效
鋼標準熱處理作比較，期能獲得對 58% 旋形麻時效鋼銲件最佳化之
機械性質。本試驗流程如圖 4-39所示。 

 
 

 
 
 
 
 
 
 

C-250 Tube Solution
815℃/1h/AC

Preform by 
machining

Forward flow
forming(58%)

Micro-
hardness

Tensile test

Optical
microscopy

SEM

AgingEBW

Homogeniza-
tion

Solution

Aging:480℃/6h/AC
Solution:810℃/1h/AC;850℃, 880℃, 910℃, 940℃, 970℃/3min/AC   
Homogenization:1150℃/3min, 6h/AC

 
圖 4-39  後熱處理對旋形 C-250麻時效鋼 EBW銲件影響之試驗流程 
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4.6.2 微硬度量測與顯微組織觀察 

欲了解短時間與規範標準熱處理對 58%旋形麻鋼電子束銲件的
影響，規劃 810℃及 1150℃分別施以三分鐘及一小時之熱處理程序，

其微硬度分佈結果，如圖 4-36所示。 
 

    
             （a）              （b） 

 
圖 4-40 旋形 C-250麻時效鋼 EBW銲件經不同時間固溶及均質化溫度熱處

理微硬度值分佈圖：（a）810℃；（b）1150℃ 
 

圖 4-40 a顯示，麻時效鋼電子束銲件於時效熱處理前，分別施以

三分鐘及標準固溶熱處理後，其微硬度值略高於標準固溶熱處理，且

此兩程序之熱處理銲件銲道硬度皆較母材低。主要原因為 58% 旋形
麻時效鋼電子束銲件經 810℃/3min/AC或 810℃/1h/AC熱處理，再施

以時效熱處理後，銲道仍存有質軟逆變態沃斯田鐵所致，如圖 4-42 c、
圖 4-43 c所示。 

圖 4-40 b為麻時效鋼電子束銲件於時效熱處理前，分別施以三分

鐘及標準均質化一小時熱處理後，兩者微硬度值分佈非常接近。且銲

道、熱影響區及母材硬度呈近似均勻水平分佈。主要是因為銲道柱狀

與晶狀組織微偏析的現象，因高溫作用使偏析元素重溶回基地中，再

經時效熱處理後獲得均勻的硬度分佈[3,4]。由此證明，58% 旋形麻鋼
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電子束銲件經三分鐘與標準規範熱處理熱處理具有相同之效益。 
圖 4-41為 58% 旋形 C-250麻時效鋼電子束銲件經三分鐘之不同

後熱處理條件後再施以時效熱處理，量測其截面平均微硬度值分佈。 
    
  

    
 （a）810℃/3min/AC + 480℃/6h/AC （b）850℃/3min/AC + 480℃/6h/AC 
 

    
 （c）880℃/3min/AC + 480℃/6h/AC （d）910℃/3min/AC + 480℃/6h/AC 

 
  圖 4-41旋形 C-250麻時效鋼 EBW銲件經不同熱處理微硬度值分佈圖 
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（e）940℃/3min/AC + 480℃/6h/AC  （f）970℃/3min/AC + 480℃/6h/AC 
 
 

 
 （g）1150℃/3min/AC + 480℃/6h/AC 

 
圖 4-41旋形 C-250麻時效鋼 EBW銲件經不同熱處理微硬度值分佈圖（續） 
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圖 4-41 了解，旋形 C-250麻鋼電子束銲件經三分鐘不同前置熱處

理後，隨著熱處理溫度增高，母材因再結晶晶粒成長，其微硬度有下

降之趨勢。然而，銲道處硬度不隨溫度增加而改變，其微硬度值大約

為 50 HRC。 
圖 4-41 a顯示，旋形 C-250麻鋼電子束銲件，母材位置因固溶熱

處理而轉變為沃斯田鐵相，冷卻後變態為無加工硬化麻田散鐵組織。

經時效熱處理後，母材硬度較直接時效熱處理者下降約 3～5 HRC，
銲道硬度則呈現較母材為低的「滴狀」分佈。金相圖 4-42 b 了解，旋

形麻鋼 EBW銲件經 810℃/3min/AC熱處理後，仍無法有效消除銲道

晶界間逆變態沃斯田鐵生成，呈現質軟之現象。熱處理溫度達 970℃
時，銲道、熱影響區及母材硬度近似水平分佈。 

圖 4-42～圖 4-50 為旋形 C-250 麻時效鋼電子束銲件經不同後熱

處理之金相圖。圖 4-42 為旋形 C-250 麻時效鋼電子束銲件經
810℃/3min/AC + 480℃/6h/AC熱處理之金相圖。圖 4-42 b、c顯示，
此時銲道呈現柱狀與枝狀晶的顯微組織，且在晶界處有多量的逆變態

沃斯田鐵池生成。根據學者[7]所做研究指出，固溶熱處理雖可重新孕

核結晶，使沃斯田鐵完全消失，但因溫度尚不夠高，無法使銲道內合

金元素偏析現象消除，故再施以時效熱處理時，沃斯田鐵池又再度出

現。將固溶熱處理時間延長至一小時，經時效熱處理後銲道仍呈現柱

狀與枝狀晶的顯微組織，且銲道中仍存有逆變態沃斯田鐵，如圖 4-43 
b、c所示。 

學者表示[70]麻時效鋼銲件，先施以固溶熱處理 810℃/1h/AC，沃
斯田鐵雖會完全消失，但再施以時效熱處理後，其逆變態沃斯田鐵池

又再度出現，因此，需施以更高均質化溫度才可有效消除沃斯田鐵生

成。 
隨著熱處理溫度升高，銲道逆變態沃斯田鐵池面積及數量隨之減

少，且銲道柱狀與枝狀顯微組織亦愈不明顯，如圖 4-42～圖 4-50 所
示。當 C-250麻時效鋼電子束銲件施以 940℃/3min/AC + 480℃/6h/AC
熱處理後，銲道逆變態沃斯田鐵組織已大幅消除，且再結晶晶粒開始

成長，使得銲道柱狀晶與晶界顯微組織較不明顯，如圖 4-47 b、c 所
示。當熱處理溫度提升至 970℃/3min/AC時，銲道中殘餘些許逆變態
沃斯田鐵，且板條狀麻田散鐵組織已開始明顯成長，如圖 4-48所示。 
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圖 4-49顯示，當熱處理溫度提升至 1150℃/3min/AC時，由於均
質化高溫的作用下，銲道鑄造組織、晶粒粗大之熱影響區及因冷加工

產生纖維化之母材，均轉變為粗大的板條狀麻田散鐵組織，已無法明

顯分辨出銲道及熱影響區的位置。 
由微硬度及金相圖了解，旋形 C-250 麻時效鋼電子束銲件經

970℃/3min/AC 熱處理後，微硬度值呈現近似水平分佈且可大幅消除

銲道之逆變態沃斯田鐵顯微組織。當熱處理溫度達 1150℃時，從微硬
度及金相觀察，三分鐘與規範標準一小時熱處理效益相同，可提供後

續工業處理薄殼麻時效鋼電子束銲件熱處理更有效益之選擇。
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圖 4-42 旋形麻時效鋼電子束銲件經 810℃/3min/AC + 480℃/6h/AC熱處理

之金相圖：（a）銲道巨觀；（b）銲道顯微組織結構；（c）晶界間逆
變態沃斯田鐵顯微組織結構；（d）熔融線及粗晶區；（e）熱影響
區
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圖 4-43 旋形麻時效鋼電子束銲件經 810℃/1h/AC + 480℃/6h/AC熱處理之

金相圖：（a）銲道巨觀；（b）銲道顯微組織；（c）晶界間逆變態沃
斯田鐵顯微組織結構；（d）熔融線及粗晶區；（e）熱影響區
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圖 4-44 旋形麻時效鋼電子束銲件經 850℃/3min/AC + 480℃/6h/AC熱處理

之金相圖：（a）銲道巨觀；（b）銲道之顯微組織結構；（c）晶界間
逆變態沃斯田鐵顯微組織結構；（d）熔融線及粗晶區；（e）熱影
響區
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圖 4-45 旋形麻時效鋼電子束銲件經 880℃/3min/AC + 480℃/6h/AC熱處理

之金相圖：（a）銲道巨觀；（b）銲道顯微組織結構；（c）晶界間逆
變態沃斯田鐵顯微組織結構；（d）熔融線及粗晶區；（e）熱影響
區
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圖 4-46 旋形麻時效鋼電子束銲件經 910℃/3min/AC + 480℃/6h/AC熱處理

之金相圖：（a）銲道巨觀；（b）銲道之顯微組織；（c）晶界間逆變
態沃斯田鐵顯微組織結構；（d）熔融線及粗晶區；（e）熱影響區
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圖 4-47 旋形麻時效鋼電子束銲件經 940℃/3min/AC + 480℃/6h/AC熱處理

之金相圖：（a）銲道巨觀；（b）銲道中心顯微組織；（c）銲道顯微
組織；（d）熔融線及粗晶區；（e）熱影響區
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圖 4-48 旋形麻時效鋼電子束銲件經 970℃/3min/AC + 480℃/6h/AC熱處理

之金相圖：（a）銲道巨觀；（b）銲道中心已出現板狀晶；（c）銲道
顯微組織與微細空孔；（d）熱影響區；（e）母材
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圖 4-49 旋形麻時效鋼電子束銲件經 1150℃/3min/AC + 480℃/6h/AC熱處

理之金相圖：（a）銲道巨觀；（b）銲道中心顯微組織；（c）銲道之
板狀晶與細微空孔顯微組織；（d）熱影響區；（e）母材 
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圖 4-50 旋形麻時效鋼電子束銲件經 1150℃/1h/AC + 480℃/6h/AC熱處理

之金相圖：（a）銲道巨觀；（b）銲道中心顯微組織；（c）銲道之板
狀晶與細微空孔顯微組織；（d）熱影響區；（e）母材 

圖 4-50 旋形麻時效鋼電子束銲件經 1150℃/1h/AC + 480℃/6h/AC熱處理

之金相圖：（a）銲道巨觀；（b）銲道中心顯微組織；（c）銲道之板
狀晶與細微空孔顯微組織；（d）熱影響區；（e）母材 
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4.6.3 機械性質測試結果與分析 

表 4-8為旋形 C-250麻時效鋼電子束銲件經不同後熱處理製程條

件後之拉伸機械性質結果。 
 

表 4-8  旋形 C-250 EBW銲件經不同後熱處理之機械性質 

Sample code 
(Forming 58%) 

Heat treating process 

YS (MPa) 

(0.2% offset)
UTS (MPa) 

Elongation (%)

(Gag 50.8 mm)

AMS 6520D  1689 1758 2.5 

ES810m3 EBW→810℃/3min/AC→aging 1922 1964 4.0 

ES810h1 EBW→810℃/1h/AC→aging 1913 1962 3.5 

ES940m3 EBW→940℃/3min/AC→aging 1834 1886 5.1 

EH1150m3 EBW→1150℃/3min/AC→aging 1695 1764 4.4 

EH1150h1 EBW→1150℃/1h/AC→aging 1695 1760 3.7 

 
由表 4-8顯示，58% 旋形 C-250麻時效鋼電子束銲件於時效熱處

理前，分別施以 810℃、940℃、1150℃三分鐘及規範標準ㄧ小時熱處
理後，其機械性均可滿足 AMS 6520D規範規格。 

58% 旋形 C-250 麻時效鋼電子束銲件 ES810m3，與銲件直接時
效熱處理相比，其降伏強度及抗拉強度分別只降低 0.6%及 0.05%，但
延伸率卻大幅提升 135%，有效改善麻時效鋼銲件經時效熱處理後延

伸率不足問題。隨著固溶熱處理時間增加而下降，使材料偏脆性。圖

4-40 a顯示，固溶時間僅有三分鐘時，母材因冷作加工之應力未能充

分消除，硬度高於銲道約 3～4 HRC。雖然銲道之單位截面積較大，
在拉伸作用下，仍於強度相對較弱之銲道斷裂，如圖 4-51 a所示。經
一小時固溶熱處理後，加工應力可充分消除，硬度高於銲道約 2～3 
HRC，在拉伸作用下，呈現穿破銲道破斷方式，如圖 4-52 a。 

當固溶熱處理溫度達 940℃時，經拉伸試驗後，銲件皆斷在母材

處，如圖 4-53 a 所示。由於旋形 C-250 麻時效鋼電子束銲件經      
940℃/3min/AC + 480℃/6h/AC熱處理後，銲道逆變態沃斯田鐵組織已

大幅消除且硬度約低於母材 1~2 HRC，加上銲道截面積較母材大可承
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受較大之拉伸應力等原因，導致材料斷裂在母材現象。此時，延伸率

（5.1%）達最大值。 
當熱處理溫度達 1150℃時，由於麻時效鋼銲件 EH1150m3晶粒粗

大化，導致降伏、抗拉強度及延伸率皆不及銲件 ES940m3。 
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4.6.4 拉伸破斷面觀察與分析 

   1.固溶熱處理(810℃/3min/AC)+時效熱處理(480℃/6h/AC) 
 

圖 4-51 為 C-250 旋形電子束銲件經三分鐘固溶熱處理及時效熱

處理之拉伸破斷試片。由巨觀相片圖 4-51 a顯示，破斷發生在銲道內，
銲件呈現微量的頸縮現象，同時觀察 SEM巨觀破斷面（圖 4-51 b）顯
示，破斷截面呈現類似準劈裂面。由 SEM 的顯微觀察顯示為非均勻
細小之延性漩渦狀顯微組織結構，如圖 4-51 c及圖 4-51 d所示。 

 

2.5mm 

a 

 

b

0.2mm 

 

c d

25µm 25µm 

圖 4-51  旋形 C-250 EBW銲件經 810℃/3min/AC + 480℃/6h/AC 拉伸試片

破斷圖：（a）OM巨觀破斷形式；（b）類似準劈裂破斷面 SEM；（c）
延性非均勻細小之漩渦狀組織 SEM；（d）劈裂線及非均勻大小之

漩渦狀顯微組織 SEM。 
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     2. 固溶熱處理(810℃/1h/AC)+時效熱處理(480℃/6h/AC) 
 

圖 4-52 為 C-250 旋形電子束銲件經ㄧ小時固溶熱處理及時效熱

處理之拉伸破斷試片。由巨觀相片圖 4-52 a顯示，破斷面呈現微量頸

縮及不規則破斷性質，為穿破銲道的破斷現象，破斷現象與 ES810m3 
試片不同。同時觀察 SEM巨觀破斷面（圖 4-52 b）顯示，呈現些許頸
縮及準劈裂面現象，破斷面中間出現少許空孔。由 SEM 的顯微觀察
顯示，準劈裂面上之纖維狀組織，呈現明顯高低落差之破斷現象（圖

4-52 c所示），圖 4-52 d為沿劈裂線拉起之漩渦狀顯微組織。 
 

2.5mm 

a b

 
0.2mm

c d

 
 25µm 25µm 

圖 4-52  旋形 C-250 EBW銲件經 810℃/1h/AC + 480℃/6h/AC 拉伸試片破

斷圖：（a）銲件 OM巨觀；（b）準劈裂破斷截面 SEM；（c）高低
不平及非均勻漩渦狀之破斷面 SEM；（d）劈裂線及非均勻漩渦狀

組織 SEM。 
 
 

 - 107 - 



     3. 固溶熱處理(940℃/3min/AC)+時效熱處理(480℃/6h/AC) 
 

圖 4-53 為 C-250 旋形電子束銲件經 940℃/3min/AC +       
480℃/6h/AC熱處理之拉伸破斷試片。由巨觀相片圖 4-53 a顯示，破
斷發生在母材處。同時觀察 SEM巨觀破斷截面（圖 4-53 b）顯示，類

似延性頸縮破裂方式。由 SEM的顯微觀察顯示，圖 4-53 c為延性破
裂及階梯相，圖 4-53 d為漩渦狀顯微組織，且有明顯空孔的破斷現象。 

 

2.5mm 
銲道 

a b

0.2mm
 

 

c d

25µm 25µm 

 
圖 4-53  旋形 C-250 EBW銲件經 940℃/3min/AC + 480℃/6h/AC 拉伸試片

破斷圖：（a）銲件 OM巨觀；（b）破斷截面 SEM；（c）為延性漩
渦狀顯微組織及破裂階梯相之 SEM；（d）漩渦狀組織及空孔 SEM。 
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     4. 均質化熱處理(1150℃/3min/AC)+時效熱處理(480℃/6h/AC) 
 

圖 4-54 為 C-250 旋形電子束銲件經 1150℃/3min/AC +      
480℃/6h/AC熱處理之拉伸破斷試片。由巨觀相片圖 4-54 a顯示，破
斷發生在母材處，且呈現小幅頸縮及不規則破斷形式。同時觀察 SEM
巨觀破斷面（圖 4-54 b）顯示，上、下兩側呈現些許頸縮及鬆散現象

發生，顯示 EH1150m3銲件經高溫均質化熱處理後，材料仍偏脆性發

展。由 SEM的顯微觀察顯示，圖 4-54 c為非均勻漩渦狀組織，且有

明顯成長之趨勢，圖 4-54 d為漩渦狀顯微組織，且部分區域呈現空孔

的破斷現象。。 
 

 2.5mm 
銲道 

a b

0.2mm

 

c d

25µm 25µm 

圖 4-54  旋形 C-250 EBW銲件經 1150℃/3min/AC + 480℃/6h/AC 拉伸試片

破斷圖：（a）銲件 OM巨觀；（b）破斷截面 SEM；（c）非均勻漩
渦狀顯微組織 SEM；（d）漩渦狀及空孔顯微組織 SEM。 
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     5. 均質化熱處理(1150℃/1h/AC)+時效熱處理(480℃/6h/AC) 
 

圖 4-55 為 C-250 旋 形 電 子 束 銲 件 經 1150℃/1h/AC +        
480℃/6h/AC熱處理之拉伸破斷試片。由巨觀相片圖 4-55 a顯示，破
斷發生在母材處，呈現不規則破斷現象。同時觀察 SEM 巨觀破斷面
（圖 4-55 b）顯示，準劈裂面破斷現象較明顯，顯示經長時間高溫均

質化熱處理，使材料偏脆性、延伸率降低。圖 4-55 c為延性低的劈裂

面及淺的漩渦狀顯微組織，圖 4-55 d為經高溫均質化熱處理後，部份

區域漩渦狀組織呈現粗大化。 
 

 2.5mm 
銲道 

a b

 0.2mm

 
圖 4-55  旋形 C-250 EBW銲件經 1150℃/1h/AC + 480℃/6h/AC 拉伸試片破

斷圖：（a）銲件 OM巨觀；（b）準劈裂破斷截面 SEM；（c）延性
低的劈裂面及淺的漩渦狀顯微組織 SEM；（d）粗大化漩渦狀顯微

組織 SEM。 
 

d

 25µm 25µm 
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4.6.5 本節結論 

1. 經微硬度量測、OM 金相及 SEM觀察，短時間 3分鐘均質化熱處
理對薄壁 1.7mm 58% 旋形麻時效鋼與施以一小時之熱處理效益

是相同的，可提供後續工程熱處理上的選用。 
2. 時效析出強化前分別施以 810℃、940℃、1150℃不同溫度熱處理

後，以 810℃/3min/AC + 480℃/6h/AC 熱處理條件之降伏     
（1922 MPa）及抗拉強度（1964 MPa）為最高；延伸率則以

940℃/3min/AC + 480℃/6h/AC熱處理條件為最佳（5.1%），隨著
熱處理溫度提升至 1150℃時，因再結晶晶粒粗大化的關係，造成

材料偏脆及延伸率下降。 
3. 麻時效鋼電子束銲件經 940℃/3min/AC再施以標準時效熱處理

後，已可大幅消除銲道內之逆變態沃斯田鐵池，且銲道開始發生

再結晶現象。 
4. 旋形電子束銲件經高溫均質化熱處理雖可消除銲道之逆變態沃斯

田鐵池，但由於過高的均質化溫度，於實際生產製程中工件產生

變形是設計者必須考量的問題。 
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五、結論 

5.1  旋形試件之熱處理性質 

1. 板條狀麻田散鐵組織之 C-250麻時效鋼經 58% 壁厚減縮率之順流

旋形加工後，微硬度值提升 11.7%，具有加工硬化之效果。且冷作

加工後其微硬度值呈近似水平分佈，顯示 C-250 麻時效鋼冷作成形

性佳，非常適合旋形加工製程。 
2. 旋形 C-250麻時效鋼經不同時效熱處理後，以 480℃6h/AC條件為
最佳，因加工硬化及時效析出強化之複合作用，其降伏（2014 MPa）
及抗拉強度（2058 MPa）為最高，分別高出規範值 19 %及 17%。
540℃/6h/AC過時效熱處理，因析出粒子粗大化及微量質軟的逆變

態沃斯田鐵相的生成，獲得較佳的延伸率（8.2%），並高出規範值
229%。 

3. 若工程應用需求為較佳延伸性時，建議時效熱處理溫度不超過

540℃，避免多量的逆變態沃斯田鐵相生成帶來之負面影響。 
4. 旋形C-250麻時效鋼經 940 /3m℃ in/AC熱處理即可有效消除冷加工

之畸變組織，且試件也發生再結晶現象，再施以標準時效熱處理

後，可有效提升材料延伸率，但由於過高的熱處理溫度，於實際生

產製程中工件產生變形是設計者必須考量的問題。 
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5.2  旋形銲件之熱處理 

1. 58% 旋形麻時效鋼電子束銲件經 480℃/6h/AC 時效熱處理後，降

伏強度及抗拉強度仍為最佳，分別高出規範值 14% 及 12% 。然
而，延伸率（1.7%）已無法滿足 AMS 6520D規範規格。540℃/6h/AC
過時效熱處理，因析出粒子粗大化及母材產生微量的逆變態沃斯田

鐵，獲得較佳的延伸率（4.8%），高出規範值 92%，可有效改善銲
件直接時效熱處理後，材料延伸率不足之問題。 

2. 58% 旋形麻時效鋼電子束銲件經 810 /3min/AC℃ ，再施以標準時效

熱處理後，雖可改善銲後直接時效熱處理，材料延伸率不足之問

題，但仍無法消除銲道逆變態沃斯田鐵生成。當施以 940℃/3min/AC 
+ 480℃/6h/AC熱處理時，已可大幅消除銲道逆變態沃斯田鐵池，

且降伏、抗拉強度及延伸率均滿足 AMS 6520D規範規格。提供後
續工程應用上之選擇。 

3. 經微硬度量測、OM 金相及 SEM 觀察，短時間 3 分鐘均質化熱處
理對薄壁 1.7mm 58% 旋形麻時效鋼與施以一小時之熱處理具有相

同的效益，可提供後續工程熱處理上的選用。然而，材料經短時間

熱處理，對材料之應力腐蝕、抗疲勞或其他負面問題值得後續探討

及研究。 
4. 旋形 C-250麻時效鋼電子束銲件經高於 970℃熱處理溫度時，雖可

大幅改善銲直接時效熱處理後銲道所產生的逆變態沃斯田鐵池，但

由於過高的溫度，導致晶粒粗大化及材料偏脆化的負面影響是設計

者必須考量的問題。 
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5.3  未來研究與發展方向之建議 

1. 對旋形 C-250 麻時效鋼進行短時間溫度與晶粒細化及 γ↔α 相變化
實驗，以研究旋形加工與相變化對晶粒細化與機械性質的影響。 

2. 旋形C-250麻時效鋼電子束銲件經三分鐘前置固溶熱處理，與AMS 
6512E規範標準具有相近的機械性質之效益，但短時間熱處理是否

使偏析元素完全重溶於基地及時效析出之強化機構，進行 TEM 研
究與分析。 

3. 麻時效鋼電子束銲件經短時間固溶熱處理後，其應力腐蝕、高溫拉

伸、材料疲勞性質等機械性質進行探討及研究。 
4. 旋形麻時效鋼電子束銲件經 970℃熱處理後，金相圖可觀察得到在

母材及銲道晶界處，有類似顆粒物質聚集於拉伸試片破斷面中，大

型漩渦狀發現有顆粒狀夾雜物存在，成為拉伸試片破裂產生之起始

點。由於，這些夾雜物對材料機械性質有極大的影響，後續可針對

此一現象在原材料冶金過程中，何以形成與如何消除進行探討與研

究。 
5. 銲接「能量」與固溶熱處理「時間」、「溫度」，對銲道內逆變態沃

斯田鐵池之影響進行探討與研究。 
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