A2 5
Resource Allocation in Multithreaded M ultiprocessor

Network Processors for Computational Intensive and

Memory Access Intensive Network Applications

g4 A&
s kEE EL
e S e 4 F e]

SREHE I L ERRILE 2 TR AR R
B2 RUTPTEDRERY &5
Resource Allocation in Multithreaded M ultiprocessor
Network Processors for Computational |ntensive and
Memory Access Intensive Network Applications

e M F Student : Yi-Neng Lin
R e R R Advisor : Ying-Dar Lin

<k

Bz 2o+ F

-

Pty B 5

i

LR

A Dissertation Submitted to
Department of Computer Science
College of Computer Science
National Chiao Tung University
for the Degree of
Doctor of Philosophy
in
Computer Science

July 2007
Hsinchu, Taiwan, Republic of China

PEAEY L E

RTH S AL E R AL E L TRA - H R R
: : B oo BB O* A2 RN

F24 U HR& R s P

1= 2 & ?F;&#J?El ﬁiﬁﬁ’i’ ’—"T‘]’E: 4 77

£
SPRREY AN BT R AT MT SR P E R

A AR

M
ﬁ

"L

h‘ >
N
<m\

FERUE R LT SRR

/i

we
m

’%

2 $dem (£F sRenB B o jL % © X eh L A A
LAk “Pro- FAaeT BB MR JERER] B

Bod ¥ OASICfEA S NP RO EFREA T AER S
#Fam B e L R

A LEFF)EY PEFE T ORI E R R i R
RELIHE RILAT (I S RRAIEE § I RAREEY R B
BEe 5 BAMRAFE B3 H5AMT R i) ol (740
Bl ENETARFLEEL o ST 5 RL A R R A

B G E eRR Y NPT R oo AP LRARE

B e e gl B A S B A EL AT o Pk

BELLT Ao Fa T HERIEEF 4 e RILA

FIB G o WA DT ARG §AIL o 2 BN PSR E R
B G R ERERET RN AR HEEITEL AT o

“ProEIEE L A7 hd AR AT B kP T

1—5
H
I
St
b
H\
= »
oo

G
—
3
S
bt

%ﬁj‘gmgg,»\. i %z i’!ﬂﬁi? A 7R B TR

B R R R AR R

Resource Allocation in Multithreaded Multiprocessor
Network Processors for Computational Intensive and

Memory Access Intensive Network Applications

Student: Yi-Neng Lin Advisor: Dr. Ying-Dar Lin

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

Abstract

Networking applications today demand a hardware platform with
stronger computational or memory access capabilities as well as the
ability to efficiently adapt to changes of protocols or product
specifications. Being the ordinary options, however, neither a general
purpose processor architecture, which is usually sowed down by
kernel-user space communications and context switches, nor an ASIC,
which lacks the flexibility and requires much development period,
measures up.

In thisthesis, we discuss (1) the feasibility of applying the emerging
aternative, network processors featuring the multithreaded
multiprocessor architecture, rich resources, minor context switch
overhead, and flexibility, to solve the problem, and (2) the ways of

exploiting those resources when dealing with applications of different

computational and memory access requirements. We start by
surveying network processors which are then categorized into two
types, the coprocessors-centric and the core-centric ones. For the
former, the coprocessors take care of the data plane manipulation
whose load is usually much heavier than the one of the control plane,
while in the latter the core processor handles the most part of packet
processing, including the control plane and data plane. After that we
evaluate real implementations of computational intensive and memory
access intensive applications over the coprocessors-centric and
core-centric platforms, respectively, aming to unveil the bottlenecks
of the implementations as well as the allocation measures. Finally,
based on the evaluations, analytica models are formalized and
simulation environments are built to observe possible design

implications for these two types of network processors.

®H

EAL AR KRR el T kB A 0 e
- ERES FEER SR AFH N AR R hPEK
Peoo TAFGR KGR F R EE @R TP G R
- BPAHTR 2 ZFPEED T S o Bt ARFER e A E I
ok BT R 3 -

FPERBEARIELE S P opiih ety Lppe kR
LG e HIIE AL TR T AL R L REE T
R NRER & U EX S Y Sb S sl sl

BB AT (§ §HBBIEET F) S8 AR) o
oo b TaEF § H AR SRS i aG F Y 1 oG
2o B e e G P R GRS § T

Bisehd B oo A AGPRA o

Contents

I 1 110 (1 Tox £ o o PSS 7
1.1 Challenges of Hardware Platforms for Modern Networking
FY o] o] [z= A o] 0 1S SRR P S PSOPT 7
1.2 Thelmportance of ResourceAllocation for Network Processors.........ccocovevvereeneee. 8
1.3 Coprocessors-centric and Core-centric Network ProCessors.......occvveveeieeneesieenenn 8
1.4 RGO WOIKS ...ttt et r e ne e 9
1.4.1 App“canon De5|gn and |mp|ernentat|on ... 10
1.4.2 Mathematical Modeling and SIMUIHON -++++++-severerreerernerniies 11
1.5 ThesisObjective and Dissertation Road Mapcccccvevveieniiinniiesnessessee e seee s 12
2. Research MethodolOgIESccocveeie e 14
2.1 Application Design and Implementation...........ccocevivnieeieceeeciesse s 14
221 Software ArchiteCture Of IXPA2S <« ccccerrrrrmrmnaaaaaiaraeaeeeeeeernnnnrnas e e eeseeeeeeennnes 14
2.2.2 Software Architecture of X P2400 - «««-««rerurruaaerarrreeeeerrrrermnnnnnaereereeeeerennne 15
2.2.3 Performance BENCNMAK «««--«----=rrrreereererrmmmmmmmmmmmnaanearereeeeerereerrnsnnnnn 16
2.2 Mathematical Modeling and SImulation...........ccccveiieieiinnin e 17
3. Resource Allocation of the Coprocessors-centric Network
Processors for Memory Access Intensive Applications.........cccceeevveeeeieeenn, 19
00 R 1 14 0o [Tox 1 o] ISP PPTPR TR 19
3.2 Hardware Platform (I XP2400)cccoviiiiiieieiiesieeseeee et sre s s sre e e 20
Detailed Packet FIOW iN [XP2400 - -«-rrrrrrrrnrarmmmeeeeerrrmmmmmmmnnnnaasseeseeeereeresnnnnnnn 22
3.3 Problem SAtEMENES.......cooi et nae e 23
3.4 Design and IMpPIementationcccccoeveierereneieenesese e 24
3.4.1 NIDS Bneﬁng .. 24
342 Deggn | SSUES + v vererer e rnrr e st e e s e 25
343 Mapp| ng Processi ng Stages to the Hardware Platform -« eererrmememmnnnnnnnnnnn, 26
344 A|gor|thmsAd0pted and Packet |nspect| O verrrrrrerre e 28
3.5 System Benchmark and Bottleneck ANalySiS........ccocvviirinineneieeeeseseseeeee 30
3.5.1 Benchmark Setup ... 30
3.5.2 Effect of |mproper ME/Thread AllOCatiONS -« eerererereremririririiiiiinea 31
3.5.3 Estimati ng the Opt| mal (| 1J) Pail -oeerererer 33
3.5.4 Effectiveness of Multi p|e Mernory Banks: - orerererrariiii 35

4. Coprocessors-centric Network Processors. Analysis, Simulation, and

D= To [T Hng] o= 1 o] SR 38
v R 014 oo [§ o] o SRS 38
4.2 Effect of Different Thread Allocation SChemes.........cccevveveeviee s, 39
4.3 Overview of the Analytical MOUEL.........ccccoiiiieiirie e e 41
4.4 Markov Chain FOrmaliZationccceeceeieeiieecie e 42

4.4.1 Sate Definition and State Space Determination -« s reererriiiin, 42
4.4.2 Determination of the Status Transition Diagram and State Transition
VP2 0 T 44
4.4.3 Determination of the State TranSition MaLIiX «««««««-s«erseerseesrersreerrersinesieesseesnnes 46
4.4.4 Performance Estimation for the Analytical Model ««-:xoreeereenniiiin, 48
4.5 Simulation and Analytical Mode validationccccooeriieniineninieneee e 49
4.5.1 Design of the Petri Net Based Simulation Environment -« 49
4.5.2 Mode Validation By the SIMUIHON ++««ssesreeresrermenmerniisieins s 52
453 SimulaonSerUpe e i Y. . Sl e 53
4.5.4 Effect of the RSS Memory Queuing DiSCIpling -+ -« e, 54
4.5.5 Unbalanced Load among TAr@adS: -« -« wereseesinmisiinisiininisiins 55
45.6 SiMulations With THree P-M RaliQS:+««--«««seerreesersrreerserrseeseesiesseessessessseesees 56
4.5.7 Solutions for the Memory BOtHENECK «+++«+«sseereserrrinisnrnemniinisiininie s 59
4.6 SUIMIMAIY ..ttt sttt ettt et sb e sae e s e she e eb e e e ae e eae e e s besaee e s e enbeenbeeteebeenaeanseas 60
5. Resource Allocation of the Core-centric Network Processor for

Computational Intensive APPlICALIONS.........ccceeiieeeiieeciie e esee e e 63
Co 300 R 1 1 oo [T o T PSS 63
5.2 Hardware Platfor m (IXPA25) ..o et 65

5.2.1 Hardware ArchiteCture of [XPA25 -« «cceeeerrrrmmmmmarairarreeeerereeemenrsnnnn e eeeseeees 65
5.2.2 Detailed Packet FIOW iN IXPA25 <« ceerrrrrrmmmmmmmaianeeeeaeeeieereannensnn e eeseeees 66
5.2.3 Software ArchiteCture of IXPA25 <« eceeerermrmuaaraarrieeeeeeeeeernnnnnns e eeeeeeeeeeeeens 66
5.3 Processing SagesAnalysisand Offloading Schemes Design...........ccccvecvvecveenneee. 68
5.3.1 VPN BIEfiNg - eeeseeeseesesesesesinteeee s 68
5.3.2 Identifying Offloading Candiclates: - - -ssrerrerrerremiiniiniiniinis s 69
5.3.3 IMPIEMENLALION -+vvrerereeerensssnsees e 70
5.4 Benchmark and Bottleneck Observations...........ccccevviiieniiiiese e 71

5.4.2 SCAl@Dility TESE-sweserrereresseesisiei e 72

5.4.3 BOtIENECK ANAlYSIS:++ereesereressemsseieiiiieieii 74

5.4.4 Turnaround Time Analysis of FuNnctional BIOCKS -+« swesesieenmniniiniiiiiin, 77

5.5 SUMM@IY ..t et st e e nabe s st e e s be e e neeenbeeennneas 78
6. Core-centric Network Processors. Analysis, Simulation, and Design

Hp70] 1107 (o] 3RS 80

G200 R 1 1 oo [[o PSS 80

(O = T Tox (01 [PSR 82

6.2.1 Performance Model OVErVi@W ««« -« rerrerrrrimriiii e 82

6.2.2 Architectural ASSUMPLIONS -+« +sesesrsesesesintmsnsirin s 83

6.3 ANAIYLICAl MOAE ... et 84

6.3.1 TheBusy-Waiting Model - i, 84

6.3.2 The Interrupt-driven Model i, 85

6.4 Simulation ENVIFONMENT.......ccccciiiieeieccieesie et se e e sreesr e sre e reennee e 87

LI V7= [= L1 o] I PR 89

6.5.1 Validation of the Analytical Model -« wseeeremminininnns 89

6.5.2 Differentiated RUN LENGths «:-coeeeersenisniniiiiiiiiis s 92

6.5.3 Effect of the Context SWIitch OVErNEa: --+++reterrrrrrrrrrrrimmiiiie e 03

6.5.4 Benefit from Offloading e 03

6.5.5 Effect of Limited BUFfEr SIZES: -« rwrterrrrrrrrremmmirriieesinrrreeesssssnssessssssnnseeeses 95

B.6. SUMIMEIY «+eerereremrrsssssesisistst st s 96

7. CONCIUSIONS.eeeiieeiiiiiiiee e e ettt e e e e e ettt e e e e e et e e e e e e s eaaaeeeeeseaaasbeeeeessesnsreeens 98

BiblOgraphyeeeieee e 100

List of Tables

3.1 Performance of (a) A-C and (b) W-M with one and two memory banks., ««««-«-xeeeeeee 35
4.1 Comparison between the homogeneous and heterogeneous SChemes. -« e 40
2.2 ACHVELI ON QUENLS, «+++++++e+rseerseerseessersseereeaseraseasseessessesasesseassesssesasesssssssssssesnsesssesssesssees 47
4.3 The setup of parameters setup in the model validation. ««« e 52
4.4 Validation of the analytical model against the blocking and non-blocking cases:-«-«-«-- 53
4.5 DIfFErent KNGS OF P-Il [aliOS, «+«-++«+seerseersersreesrerrrsemisemmseesseesseeseessessiesssesssesssesssesssesssenns 54
6.1 Notations for the ana yt|Ca| MOCEIS, «+ e 87

List of Figures

1.1 COProcessors-Centric NEWOrK PrOCESSOIS, -« rwererrsmmmrissisisisst s 6
1.2 COre-Centric NEtWOTK PrOCESSOFS, «++«xwrsrerrrrrrrmrimiisistststsss s 6
1.3 Related works on the network processor resource allocation problem. ««-eweeeeeeenienne 7
2.1 Software architeCture Of 1XP425. -« ssrrrrrrrmmmiiiiiiiiiiiiiii s 12
2.2. Software architecture of IXP2400. -««sreererrermmmmiiiiiiiiiiiii i 15
2.3 Benchmark environments for (a) packet forwarding and (D) IPSEC. ««-ereereememinniniennnee, 16
2.4 Transition diagram of athread in a multithreaded Multiprocessor. -« «xeeremersmnenennne, 16
2.5 Petri net of a Multithreaded ProCESSOL. «+-:-swwrreeesimrmririiiis s 18
3.1 Hardware architecture of 1)XP2400. ««««« - esrrrrreriiiiiiiiiiees it siinssss s sssssses s ssnssaees 20
3.2 Timeline showing two CONSECULIVE PACKELS, «+++++xwererererrrrmmimiinininins s, 26
3.3 The processing stages of an NIDS 0n IXP2400. «++«wewereerrrsrnmnmnininnmi s, 27
3.4 Interaction between the thread dispatcher and packet iNSPECLOr. «-««xxwrererrrmsniininnninens 30
3.5 Performance of the (a) A-C and (b) W-M for different (1,J) combinations, ««-«-«-eeeeeeee 32
3.6 Profiling of the total (a) memory access cycles and (b) computational Cycles. -« «-xwe-ee- 33
3.7 The performance of A-C and W-M with different numbers of MES. ««-:-eeveeseriniininnens 34
4.1 Homogeneous and heterogeneous thread allocations. -+« «««xxeeeeeeimiminninn, 40
4.2 The blocking and non-blocking packet processing SCEMES. «+««-«xerrerrersnimmn, 42
4.3 StAtUS tranSitions Of @NIEAL. ««-«eeereererrerririiiii et 43
4.4 Status transition rate diagram Of Ti,j. - e 45
4.5 EXaMple State tranSitions, «««- s esesrmmmsminsis s 45
4.6 An example hierarchiCal CPIN. -« et 51
4.7 Effect of different memory queuing disciplines for SF. «--eoeeeresmn, 55
4.8 No. of packets in system under different unbalance ratios and no. of threads. ««««-«-:----- 56
4.9 Processor and memory utilizations for the DS and SF. ««-««-eeerrervemnnin 56
4.10 Memory access latency and utilization of various numbers of threads. «-«-«-eweeeeeenee 57
4.11 Performance relative to (1,3). -« e 58
4.12 Processor and memory efficiencies for different 1S, -« e 58
4.13 Performance improvement from the three SOlULIONS. ««+««xereerermni 60
5.1 Hardware architeCture of IXPA25. .- ettt 65
5.2 Software architeCture of 1XPA25. - oo errrrrmiiiiiiiiiiieiine e 68
5.3 Processing flow of an inbound [PSEC PaCKEL. ««+++«+wreremrmerrmmiini e, 70

5.4 Data pmhs of the four offloadi ng SCHEMES, -+ v rrrrr et 72

5.5 Throughput Of Packet FOrWarTing. «+-++-++++++sseeeeereremsiiin e 73
5.6 IPSec Throughput: the DES CaSe, «-+++wwsessesrsrrssesisinisintisii s 74
5.7. IPSec Throughput: the 3DES Case. -+++++++-swsrsrsrrssesisinisissiis s, 74
5.8 Input traffic load vs. XScale utilization for two packet |engths, -«««--eeeeememinininnns 75
5.9 | PSec packet SUCCesS ratio VS, X Scale UtiliZation. -« reerrrsisninnn i, 76
5.10 Turnaround time of a cryptographic request for apacket. -« -, 77
5.11 Turnaround time of FUNCE ONGl DIOCKS. +++++++trerrerrerrerrerrerrerresmenseresrereeeseeeeseeseseseseenes 78
6.1 Processing flow and task allocation of the VPN application over I XP425., «-eooeeeeeeeene 83
6.2 The DUSY-Wating MOGEI. «++eereereereereiririer i 85
6.3 The iNterrupt-ariven MOGEL. -+« e 86
6.4 The Petri Net SIMUISEON MOGEL . <+« rerrerrerrerrerrerereieeieeeese st se e e eneas 88
6.5 RUN 1ENGLN VS, COTE UL ZBEION. ++++++++eserererserseis ittt 90
6.6 Analytical model validation against the simulation and real implementation. -« 91
6.7 The reviSad ANAlYHICEL. -+ s ereereereereisiintisi s o1
6.8 Example state transitions of the revised MOGE. e 92
6.9 Benefits from differentiated run lengths for Core_A and Core _B. -, 92
6.10 Core usage distribution for different context Switch delays. - ««-«-erememsnnnne, 93
6.11 Throughput of various offl0ading SCHEMES, «+++++wxwswererrertiniiniiniiin s o4
6.12 Core Utilization UNGEr TWO DUFFEr SIZES, -+« rerrerrerrersermmieeeeesesessesressesressesseseseeeeeesens 96

Chapter 1
| ntroduction

1.1 Challenges of Hardware Platforms for
Modern Networking Applications

Increasing link bandwidth demands faster nodal processing, especialy of
data-plane traffic. Nodal data-plane processing ranges from routing table lookup
to various classifications for firewall, DiffServ and Web switching. The traditiona
genera-purpose processor architecture is no longer sufficiently scalable for
wire-speed processing, and some ASIC components Or CO-processors are
commonly used to offload the data-plane processing, while leaving only
control-plane processing to the original processor.

Several ASIC-driven products have been announced in the market, such as the
acceleration cards for encryption/decryption, VPN gateways, Layer 3 switches,
DiffServ routers and Web switches. While accelerating the data-plane packet
processing with special hardware blocks, much wider memory buses, and faster
execution processes, these ASICs lack the flexibility of reprogrammability and
have a long development cycle usualy of months or even years. The cost of
possible design failuresis also high.

Network processors are emerging as an aternative solution to ASICs for
providing re-programmability while retaining scalability for data-plane packet
processing. A network processor typicaly consists of one core processor and a
number of coprocessors, so that developers can embed the control-plane and
data-plane traffic management modules into the core and coprocessors,
respectively. Scalability concerns due to the computational and memory access
overhead, in data-plane packet processing could be satisfied with the hardware

contexts of minor context switching overhead in each of the coprocessors as well

astheinstructions specifically for networking.

1.2 The Importance of Resource Allocation for

Network Processors

Though network processor is promising in its scalability and extensibility [LLPO2,
LLY 03, BH95], the determination of architectural parameters such as numbers of
processors, threads in a processor, and memory banks, respectively, is not trivia
given a specific application and hardware platform combination. Furthermore,
since one proper configuration today may not be suitable tomorrow due to
different evolving speeds of manufacturing technologies of the functional units,
some general guidelines may be demanded for efficient and appropriate parameter

determination.

1.3 Coprocessors-centric and Core-centric

Network Processors

Two types of network processors, the coprocessors-centric and core-centric ones,
are classified and addressed in the thesis. In the former, a number of coprocessors
are used to take care of the data plane manipulation whose load is usually much
heavier than the one of the control plane. In the latter the core processor handles
the most part of packet processing, including the control plane and data plane;
only few coprocessors are required to offload some computationa intensive
processing.

Since the coprocessors-centric model is used mostly to offload the data plane,
especidly the memory access intensive processing, for its multithreading
architecture, we investigate the resource allocation by implementing the Intrusion

Detection and Prevention (IDP) system over the | XP2400 network processor.

As for the core-processor centric model, we implement the Virtual Private
Network (VPN) gateway, which needs to offload limited portion of computational
intensive operations to the coprocessors, over the 1XP425. For both types we aso
investigate the effect of different architectural parameters through mathematical

modeling.

Control-plane processing

Ctrl Ctrl
¢______£_mf%___3_m_s§_____,
- >

Data-plane processing

Fig. 1.1. Coprocessors-centric network processors.

Ctrl msg Ctrl msg
e e >/ e ——————- ———
Traffic : Traffic,

Fig. 1.2. Core-centric network processors.

1.4 Related Works

In this chapter, we present some prior groundwork for our thesis. To comply with
our research directions mentioned previously, we discuss the related works in two
aspects. (1) application implementation and (2) mathematica modeling and

simulation. The following is summarized in Fig. 1.3.

=> Resource allocation [LLP02]

=> VPN over NPs [LLL05] => DiffServ over NPs [LLY03]
--- Offloading scheme design => Cryptographic algorithms over
--- Bottleneck analysis NPs [TLY04]

=> Network intrusion and detection
over NPs [CLS04], [BH04]

Core-centric Coprocessors-centric

Application implementation

Mathematical modeling and simulation

Core-centric Coprocessors-centric

To be researched => Multithreaded architectures
analysis [S-BCE90]

=> Multithreaded multiprocessor
with distributed shared memory

=> Case study (IXP1200) [NGG93], [ZGF98]

--- Programming model [SPK03] => Automated task allocation
--- Analytical bounds on threads [RJ03] [PRS04]

Fig. 1.3. Related works on the network processor resource allocation problem.

1.4.1 Application Design and Implementation

For memory access intensive applications, some researches have focused on
improving the throughput by the deployment of network processors. Bos and
Huang [BHO4] implemented an NIDS over the Intel 1XP1200 [INT]. The
prototype comprises only the recelver and packet processing using the
Aho-Corasick [AC75] algorithm, but it does not support inspection of patterns
across more than two packets as well as multiple flows. Clark et al. [CLS'04],
designed a Network Intrusion Detection and Prevention System (NIDP) utilizing
an 1XP1200 and an FPGA. The former is for header processing and the latter
serves as the signature matching engine, and the bottleneck is found to be the bus
connecting them. Nevertheless, those researches did not discuss in detail on
proper resource allocations.

As for the computational intensive application over network processors, to date

10

only one can be found in the literature [TLY *04]. The authors implement various
cryptographic agorithms over the 1XP2800 network processor, analyze the
instruction mix and compare it with other header processing applications, and
finaly propose implementation and optimization principles to improve overall
performance. They find that the ALU operations occupy a significant share,
79.9%, of the tota instruction mix, compared to the 58% of the Commenbench
[WF00] PPA (Payload Processing Applciations), 53.5% of the NpBench [LJO3],
and 41% of the Commonbench HPA (Header Processing Applications).

The implementation principles, besides some minor techniques, include the
flow-level and intra-block-level parallelisms. In the flow-level paraléism in
which each thread is allocated to a flow, it is observed that incorporating multiple
threads does not necessarily improve the performance but depends on the
algorithms. Another reason for the limited improvement is that multithreading is
found only help consume more of the stalled cycles rather than the idle ones. To
utilize the idle cycles, they use the intra-block level paraléelism, in which one
main ME (namely processor) and a helper ME are involved in processing a certain
block of instructions. The helper ME pre-fetches the data from memory for the
later use of the main ME. Some principles are al so proposed for optimization such
as (1) increasing the cache size on MEs to hold tables, (2) enlarging the memory
and command queues and (3) organizing the MEs into a smaller cluster for fast

shared-bus performance.

1.4.2 Mathematical Modeling and Simulation

Analytical approaches have been favored in many researches for its capability of
fast evaluation of the systems under investigation [SMAOQO3]. However, limited
researches have devoted to the modeling of multithreaded multiprocessors. Rafael
et a. [SBCE9Q] proposed a model to obtain the performance, in terms of
processor efficiency, of a multithreaded architecture with varying number of

threads. The effect of multiprocessor can be mimicked by adjusting the memory

1

access latency which is assumed geometrically distributed. This model possesses
good abstraction of the architecture; however, the interaction between the
processing elements and the memory subsystem is disregarded.

This problem was remedied in [NGG93] by including the memory subsystem in
their model, in which the processing elements as well as the memory are
distributed and shared. Each thread is capable of a complete packet processing,
and has a rate to access local/remote memory modules during processing.
Nevertheless, the model is not feasible since the queuing network adopted was a
closed one, and thus does not consider the packet arrivals and departures of rea
networking applications.

A number of recent works concerning the modeling of NPs can be found in
[FW02, WT01, GKS03, CFB01, CB02]. Though detailed parameters are included
and programming paradigms are analyzed in their models, the discussion and
consideration of thread allocation are substantially ignored. Lakshmanamurthy et
al. proposed a methodology for analyzing the performance of the Intel 1XP2400
[LLPOZ2]. But they focused only on the validation of the system performance,
while the processor and memory utilizations are not addressed and no design
guidelines are suggested. In [SPKO03] and [RJO3], the authors propose a
programming model and an analytical method, respectively, for the IXP1200 as a
case study. The former considerably accelerates the process of the application
implementation and verification; the latter delivers the analytical bounds on the
optimum number of threads. Moreover, Gries et a. in [GKS03] uses Network
Caculus to model the IPv4 forwarding on the IXP1200. In [PRS04], the authors
utilize the Linear Programming to achieve automated task allocation on

multithreaded multiprocessor systems.

1.5 Thesis Objective and Dissertation Road Map

As mentioned in the previoudly, to leverage network processors for networking

12

applications, we may need to arrange well the hardware resources. Further, some
design implications may aso be demanded for future network processors. The

objective of thisthesisistherefore:

to investigate resource allocation measure and design implications for network

[ProCessors.

The roadmap of the dissertation is organized as follows. Chapter 2 declares the
methodol ogies to the problem. Chapter 3 and chapter 4 present the investigation
on resource alocation for coprocessors-centric model by implementing the IDP
over IXP2400 and by mathematically modeling the similar architecture,
respectively. Chapter 5 and chapter 6 discuss the implementation and modeling
for the core-centric model. The results summary of the dissertation is mentioned

in chapter 7.

13

Chapter 2
Research Methodologies

2.1 Application Design and I mplementation

Since NPs are used to leverage the processing of networking applications, we
need to verify the feasbility of doing so, namely by implementing those
applications over NPs. We then try to identify possible bottlenecks after
prototyping. The benefits from the identifications are two-fold: serve as (1) the
implications for future NPs design, and (2) the foundation for further investigation
on the optimal resource allocation. Before implementation, we need to understand
the software architecture of the platforms. We also mention the environment and

the tools for external and internal benchmarks.

2.2.1 Software Architecture of 1XP425

The software architecture of 1XP425 shown in Fig. 2.1 can be divided into two
portions, namely the platform independent (applications and some higher level
components such as networking protocol stacks in OS) and dependent parts
(mainly device drivers). Thisdesign is favorable especially when an OS migration
from a certain H/W platform to another is demanded, that is, the developers need
to focus only on the dependent part, namely the development of drivers. When
implementing device drivers, a set of software libraries collectively referred to as
AccessLibrary can be used to drive devices such as NPES, coprocessors,
peripherals, etc. The AccessLibrary also provides utilities, such as OSSL and
IXOSServices to implement some OS-related functions such as mutual exclusion.
The software processing flow is described as follows with library functions

adopted from the AccessLibrary. During the boot time a function named IxNpeDI

14

is called to download the corresponding code image into the instruction cache of
each NPE. Then two functions, IxQmgr and IXNpeMh, are called to initiaize the
queue manager as well as the message handler responsible for the
communications between NPEs and XScale. The Ethernet-related functions,
IXEthAcc and IXEthDB, are used to receive and transmit Ethernet frames, while
the IXCryptoAcc function is incorporated for possible cryptographic operations

during packet processing.

Xscale Core
| Application |
erating System - i ———
Opeteting 01§ o,
| TCP/IP Network Protocol Stack | | |
: — 1
| Driver | | |
2 5 5[mBiAce | [KCryotoAcc | [xEmDB | |
8 = & Others |
< gll IxNpeDIl | | IxNpeMh | | IxQmgr |]
G r———— —— g — —— ey T S -,
| NPEs and peripherials ”

Fig. 2.1. Software architecture of 1XP425.

2.2.2 Software Architecture of 1XP2400

Figure 2.2 elaborates the development environment. The IXP2400 programming
can be divided into the XScale programming and the microengine programming.
While XScale programs are written in C/C++ under Tornado, microengine
programs are written in assembly under Workbench for low-level packet
processing capability. The compiled XScae executable is linked with object
microcode compiled by the assembler, and loaded into the IXP2400 SRAM from
which XScale initiadlizes and loads microcode into the Control Store of
microengines. The linked program can also be executed by the Transactor for pure
software simulation. Besides, the XScale is little-endian and byte-addressable

15

while microengines are little-endian but longword-addressable.

Host PC

I XP2400
C/C++
—>| compiler 5 > XScale
= A
[a]
Tornado 5 A 2 Control-plane
- o ()
v § Data-plane
—>| Assembler |—>| Linker | e _
2 >
% MEO > OuttPfut
Workbench Loader » [lraffic
Contr'(';l T T T
Store Input Traffic

Fig. 2.2. Software architecture of 1XP2400.

2.2.3 Performance Benchmark

Figure 2.3 illustrates the external benchmark environments, for packet forwarding
and IPsec. We use SmartBits, which is a networking traffic generator and a
performance analyzer, to generate the input traffic and collect and analyze the
performance results. For internal tests, some system utilities, such as vmstat, top
and GProf, are employed to obtain the system state and other internal behaviors
such as CPU utilization and memory usage.

(A) (B)
SmartBits SmartBits
DUT DUT ! ;/I:b?’l:ll;nglj > DUT

Fig. 2.3. Benchmark environments for (a) packet forwarding and (b) | Psec.
We aso conduct a number of internal benchmarks, namely board-level
simulations using the Transactor within the Workbench, in order to have detailed

observations on the hardware utilizations.

16

2.2 Mathematical Modeling and Simulation

Real implementations reveal precise observations for specific software/hardware
combinations; however, they can hardly reflect generalized implications because
of the difficulty in adapting architectural parameters. To remedy this shortcoming,
we incorporate mathematical modeling as well as ssmulations. The former has the
best flexibility and efficiency in altering parameters; nonetheless, it often suffers
from the problem of state-space explosion. Though being less flexible and
efficient than the mathematical modeling, the latter captures well the behaviors of
acertain system.

Since our god isto consider | processors, each of which contains J threads, and
then capture the behaviors of processors, threads and memory, we use the
Continuous Time Markov chain to mimic a multithreaded multiprocessor network
processor. Figure 2.4 exemplifies the transition diagram of a thread. In this
example, athread could be idle, active in processing, accessing memory, ready if
not permitted to run, and finished if the packet processing is completed. Based on
this concept we can have further extension to support the modeling of

multithreaded multiprocessor architecture.

Fig. 2.4. Transition diagram of athread in a multithreaded multiprocessor

environment.

As for the simulation, we adopt the CPN Tools [RWL 03] to employee the
timed and colored Petri nets [Mur89] that capture well component-level activities.

17

The features it supports, including the colored tokens, stochastic functions and

hierarchical editing, provide efficiency in the construction of timed, colored Petri

nets corresponding to both coprocessors-centric and core-centric models. Figure

2.5 shows an example Petri net describing a multithreaded processor.

g 1{0,00) @+0 A
T
 110,0,0) @+expDelay(E)
{ijik)
e
-
ifj=0 \J (]
then 1'(ij.k .
LM)@+Pi len {ij.k) ij.K)
: N
T
if k=1 ()
PO token then 1'(ij+1.k if k==1
else amply then 1ij.k-1)
e else emply
then 1'{ij.k)
{ijMuy@+P oot
Dut
< J
e
then 1'e
else emply then 1'(ij.k-1)
\ else emply

Fig. 2.5. Petri net of a multithreaded processor.

18

Chapter 3
Resource Allocation of the

Coprocessors-centric Network
Processors for Memory Access Intensive

Applications

3.1 Introduction

Networking applications offering extra security and content-aware processing
features demand much powerful hardware platforms to achieve high performance.
For memory-access intensive applications such as the Network Intrusion
Detection Systems (NIDSs) [Roeg], genera purpose processors with high speed
memory banks are often adopted; however, the cost is considerable while the
throughput is not satisfactory for that the processors’ utilization is low because of
the heavy memory-access overhead. Rather, the Application-Specific Integrated
Circuits (ASICs) [JS97] can meet the performance requirement with a circuitry
designed for strict guarantees on memory-access latency using pipelined
architecture and embedded memory. Nonetheless, the lack of flexibility and long
development cycle make it less appealing.

In this work, we implemented a memory-access intensive application, NIDS,
over the Intel 1XP2400 [INT] whose architecture is similar to most network
processors, evaluated the effect of different resource allocations, and finaly
investigated the alocation measures. Two signature matching agorithms, the
Aho-Corasick and Wu-Manber [WM94], were incorporated for their popularity in

19

many security-related implementations, for example, Snort. Several software
components referred to as processing stages [ARB02] were characterized, in
which a tentative processor/thread allocation was applied. After implementation,
we then conducted both external and internal benchmarks. The former unveiled
the throughput of the implementation while the latter analyzed the utilizations of
the hardware components for observing potential bottlenecks. According to the
benchmark result, the effect of the ME/thread alocation is reviewed and
methodologies for the optimal revision of the allocation were subsequently
proposed. Finally, since extra memory banks are often exploited to shorten the
memory access latency, the feasibility and effectiveness of adopting multiple

banks for string-matching applications are discussed.

3.2 Hardware Platform (1XP2400)

As depicted in Fig. 3.1, the IXP2400 consists of several components that are

categorized as following.

packets <]:D Media Switch Scratchpad SRAM SRAM DEAM

Fubric e mOTy controller [controller 1 cotitroller

@ ﬁ AOOMH? @ 20NMHz @ @ISHMHE

L o 1 L 0

Hach PCI ME ME ME ME kel
it gontroller 0 (k1 1:0 Ll Wieale
oo
ME ME ME WE
03 02 1:3 1:2 A00MI =

GMIMHzZ /R threads per ME

Fig. 3.1. Hardware architecture of 1XP2400.

Multithreaded multiprocessor architecture

The 1XP2400 features nine programmable processors: one Intel XScale core [INT]

20

and eight microengines (MES), operating at 600MHz. The Intel XScale core is
responsible for housekeeping functions such as table initialization and exception
handling for control-plane packets such as ICMP unreachable packets. Data-plane
processing, which accounts for the most part in packet processing, is implemented
on MEs. Every ME has eight hardware threads, each of which having its own
register set and program counter to support fast context switch when memory

aCCesses occur.

Hierarchical memory structure

To ease the memory-access overhead, |XP2400 exploits four types of memories,
DRAM, SRAM, scratchpad, and local memory in an ME, given tradeoffs between
size and latency. 1XP2400 has one channel of DDR running at 150MHz. The
channel can support up to 2GB of DRAM, yielding enough capacity for storing
packets. Two channels of Quad Data Rate (QDR) SRAM running at 200MHz are
also provided, and up to 16MB can be populated on each channel. The SRAM is
primary for accommodating packet descriptors for locating packets in DRAM,
gueue descriptors, and other data structures frequently used. The on-chip 16KB
scratchpad memory operates in the form of rings and provides similar capability
to SRAM, while the 2560-words local memory is frequently used as a cache for

smaller data structures.

Flexible external interface

The Media Switch Fabric (MSF) is an externd interface used to connect the Intel
IXP2400 to a physical layer device and/or a switch fabric. The MSF consists of
receiving and transmitting interfaces which can be configured for different
protocols such as POS PHY Level 3 [POS] and CSIX-L1 [CSI]. Incoming packets
are received into the Recelve Buffer (RBUF) and outgoing packets are held in the
Transmit Buffer (TBUF), which are both 8KB in size. The MEs can move data
from RBUF to DRAM and from DRAM to TBUF using the DRAM[rbuf_rd] and

21

DRAM([tbuf_wr] instructions directly, greatly avoiding packet duplications and

unnecessary memory acCesses.

Coprocessors

Two kinds of hardware coprocessors, including a hash unit shared by all MEs and
a Cyclic Redundancy Code (CRC) unit inside each ME, are incorporated in the
system. The hash unit is capable of 48-bit, 64-bit and 128-bit polynomial divisions.
A high quality hash aleviates the probability of hash collisions, contributing to
fewer memory accesses; however, performing a high-quality hash in software,
which occurs frequently in packet classification, is cycle-consuming, and thus
should be offloaded to the coprocessor. Similarly, the CRC unit is used to
offloading the CRC computation.

Detailed Packet Flow in 1 XP2400

The processing flow of an ordinary packet is elaborated below referring to Fig.
3.1. Upon the arrival of a packet at the MSF of 1XP2400, the MSF partitions the
packet into severa smaller chunks called mpackets, which can be configured to
64, 128, and 256 bytes in size, and places them into the RBUF elements. The
threads of the MEs dedicated for packet receiving in turn perform the reassembly
of mpackets, and move them directly from the RBUF into DRAM, in which MEs
and the Intel XScale core carry out further operations. The packet processing
typically consists of packet classification followed by packet modification. During
packet processing at MEs, chances are that some exception handling and
housekeeping are manipulated by the Intel X Scale core through the interrupt and
message queue mechanism. In the later scenario of packet flow, the transmission
process is just the reverse of the reception process, namely the packet is
segmented into several mpackets by the threads dedicated for packet transmission,
and then placed into the TBUF.

22

3.3 Problem Statements

In addition to the implementation and evaluation of an NIDS, this work focuses
on the impact of the processor, thread and memory bank alocations. Some

problem statements are discussed below.

Task Allocation and Bottleneck Observation

Before implementing an NIDS, some functional blocks referred to as processing
stages need to be identified and then mapped to the platform. During the mapping
process, we try to exploit the hardware features such as the hierarchical memory
structure and the multithreaded multiprocessor architecture. This involves mainly
the assignment of memories to store different data structures, as well as the
alocation of threads and MEs. After the system is implemented, we will try to

identify possible bottlenecks through the internal and external benchmarks.

Effect of Improper ME/Thread Allocations

The performance of an application is affected by two factors, the computing
power and the memory-access latency. The former is determined by the number of
processors used referred to as |, while the latter can be alleviated by adjusting the
total number of threads employed, namely |xJ[LLPO2], where J represents
number of threads per processor. Observing that the number of processors is fixed
to the hardware platform, it isinteresting to see how an alocation (I, J), especialy

an improper one, affects the system performance.

Optimal | and J

It is known that memory-access intensive applications benefit directly from
increasing the total number of threads, namely | xJ, rather than individua | and J,
because of its ability of hiding memory-access latency. Nonetheless, how to

determine a fitting 1xJ, given a certain hardware spec such as clock rate and

23

memory service rate, remains unanswered. In addition, we are also interested in
finding an optimal (I, J) combination, regardless of the limit on the numbers of
MEs and threads per ME of the platform. A (I, J) is considered optimal when the
utilizations of both ME and memory are cost-effectively high, as will be explained
in section 3.5.

Effectiveness of Employing Multiple Memory Banks

Multiple memory banks reduce the average memory access latency. For
memory-access intensive applications, more memory banks are supposed to
improve the performance. Nonetheless, the effectiveness could be influenced by
whether the accesses are evenly distributed into memory banks. Some
experiments are therefore designed to investigate the effectiveness of adding

memory banks.

3.4 Design and I mplementation

In this section, we introduce basic operations of an NIDS, characterize the
operations into processing stages, and finally implement the NIDS by associating
the MEs and threads to the stages. Some design issues are discussed to ensure

proper inspections.

34.1 NIDSBriefing

The processing of an NIDS, for example, Snort [Roe], mainly consists of three
phases (1) the packet decoding phase which sets up pointers to packet data at
different layers and stores them into data structures for later analysis by the
detection engine; (2) the detecting phase, in which a group of rules matched
against a packet header are applied for further signature matching, and (3) the
alert phase, in which some aert or logging routines are carried out. Although later

versions of Snort include the preprocessing phase performing the IP

24

de-fragmentation and TCP stream reassembly, it is optional and thus excluded in

the implementation for simplicity.

3.4.2 Design Issues

According to the above-mentioned characteristic of an NIDS, it is clear that we
can implement an NIDS over the IXP2400 by dividing the packet processing into
a series of stages, namely the receiver, packet inspector and transmitter, and
mapping them onto the MES. The preprocessing phase is excluded in the mapping
since oftentimes it is not done in the fast path [NSHO2], but by the XScale.
Moreover, packets can be distributed to a pool of MEs, and thus threads, in the
packet inspector to exploit high parallelism. Nevertheless, two problems including

packet ordering and flow interleaving arise.

Packet ordering

The issue of packet ordering occurs in a processing stage when multiple threads
are dispatched to process the packets of a flow simultaneoudly. Oftentimes the
amount of time to process a packet is not constant due to context switching, and
thus the packet ordering may not be guaranteed, as shown in Fig. 3.2(a). To tackle
this problem, a mechanism called ordered threads [JK03], is adopted requiring
that threads handle packets in order in a processing stage of severa functions, as
presented in Fig. 3.2(b). For example, thread 1 is alowed to execute function 1 for
a packet only after thread O completes the same function for another packet. When
thread O completes function 1, it notifies thread 1 using inter-thread signaling.
However, the effectiveness of multithreading could be greatly degraded if the
function contains much memory accesses. The executing thread may not be able

to context switch to other threads when performing memory accesses.

25

Packet N

inter-thread

processed by thread 0 |—> Thread 0 funl ~-—-1 fun2 X ——————————

inter-thread signaling
Packet N+1 ionali
44 processed by thread 1|—> Thread 1 — gga_m_g}v fun 1 —7‘ fun 2 F----—
. waiting for waiting for
Time , a signal a signal Time
@ (b)

Fig. 3.2. Timeline showing two consecutive packets () being out of order, and
(b) beina ordered in a processing stace.

Flow interleaving

In packet inspection, a pattern may stretch across multiple packets. If flows are
interleaved, it is not guaranteed that two consecutively processed packets belong
to the same flow, meaning that patterns across multiple packets can not be
inspected appropriately.

To fix these two problems, we refine our design by adding two processing
stages, the flow classifier and thread dispatcher, supporting packet ordering. The
main idea behind isto classify packets into different flow queues associated with a
corresponding flow context, such that flows are no longer interleaved. The flow
context comprises the SRAM address of the flow queue keeping the packet
descriptors, state of inspection and some status flags. Further, each thread in the
packet inspector stage is dispatched by the dispatcher to serve one flow queue.
After finishing the inspection of a packet, the packet inspector thread stores the
fina state of the inspection for later reference by another thread serving the same
gueue. The implementation of the thread dispatcher will be detailed later in

section 3.4.4.

3.4.3 Mapping Processing Stages to the Hardware Platform

Fig. 3.3 shows the processing stages of an NIDS, as well as the task and resource
alocation for 1XP2400. The NIDS processing is elaborated as follows. Upon

26

receiving a packet from an input port, the packet data is moved from RBUF to
DRAM,; the corresponding packet descriptor is stored in SRAM while a duplicate
is passed to the next stage through the receiving scratch ring. Subsequent the flow
classifier retrieves a packet descriptor for flow classification which operates as
following. First, the IP and port pairs in the packet are used to calculate a hash key
for indexing in the hash table in SRAM in order to verify whether the flow which
the packet belongs to exists. Since the task requires much computing power, the
hash unit is adopted to offload the overhead. If a hash hit occurs, the hash entry
pointing to a flow context in SRAM is referred to enqueue the packet descriptor

for inspection; otherwise an entry for the new flow is created in the hash table.

SRAM flow queues
and
packet descriptors Patterns in SRAM
- i
{0 | oo | .
i round Four scratch rings
OO T "
OO round A O
. T robin {}| OO
: p : F- T ,* EEnmsnnw) -
V| oo |V V|, DD)
\ \ | free thread lists :
ME ME { i
Thread
Receiver Flow classifier :> dispatcher Packet 1nspeclor Transmltter

Recelvmg scratch ring Transmzttmg scratch ring

* - XScale scratch ring
Hash o
- I l .

SRAM peiflow context

Fig. 3.3. The processing stages of an NIDS on I XP2400.

The dispatcher thread then round-robinly chooses a flow queue and dispatch an
inspector thread to handle the first packet in the queue. Once a packet payload is
matched against a pattern, a message is delivered to the XScae through the
XScale scratch ring to signal an aert. Finally, the transmitter thread examines the
transmitting scratch ring to determine whether a packet is waiting to be sent. If

yes, it fetches the packet descriptor in SRAM and sends the entire packet in

27

DRAM to TBUF for output.

In our implementation, a tentative allocation of MEs and threads is determined
based on the processing stages and the benchmark result of Snort, which argues
that at least 31% of total processing time is consumed by the detecting phase
[FV02]. So, each processing stage is allocated one ME except the packet inspector,
which is given four MEs. That gives us totally four MEs, namely thirty-two
threads for later adjustment and anaysis. For thread alocation in the receiver,
eight threads are evenly divided into four groups corresponding to four gigabit
ports. Each port is served by two ordered threads to keep packets in order. As for
the transmitter, eight ordered threads are assigned to one gigabit port. We adopt
eight ordered threads in both classifier and dispatcher stages for the following two
reasons leading to out-of-order packets: (1) classifying packets could take vastly
different amount of time due to hash collisions, and (2) serving flow queues
round-robinly needs that the round-robin counter be accessed by one thread at a
time. In the packet inspector, it is manipulated that a flow queue is served by a
thread at ay instance, in which ordinary thread scheduling mechanism,, rather than
the ordered thread, is employed for better benefit from multithreading. Since a
flow queue is served by one thread at a time, packets of a flow will never get out
of order. Interaction between the thread dispatcher and packet inspector will be
detailed in section 3.4.4.

3.4.4 Algorithms Adopted and Packet Inspection

3441 Sring MatchingAlgorithms

Packet inspection is a critical stage that influences the performance of an NIDS.
Several string matching algorithms were proposed for improvement. However,
coding microcode is difficult, since it depends heavily on the hardware
characteristics. Two popular agorithms, Aho-Corasick referred to as A-C and
Wu-Manber referred to as W-M, are thus used because they are easy to implement

28

and popular in many applications such as Snort. The two algorithms consist of
two common phases. a pre-processing phase, which computes and builds
necessary data structures in memory from the input patterns, and an inspection
phase, in which patterns are looked up against the packet payload. Nevertheless,
the pre-processing phase is time-consuming and typically done by the XSacle. In
our implementation, we store the data structures in SRAM for fast retrieval. Since
the operation of the A-C involves state transitions, we record the fina state
immediately after the processing of a packet for later inspection of the succeeding
packet in the same flow queue. Similarly, we keep the shift value for the W-M so

that patterns across multiple packets can be inspected.

3.4.4.2 Thread Dispatcher and Packet I nspector

Fig. 3.4 detail s the interactions between thread dispatcher and packet inspector. As
mentioned in section 3.4.3, a flow queue is round-robinly selected and the first
packet descriptor in that flow is passed to an inspector thread chosen from the free
thread list of the ME. This process involves some operations. First, two flags,
isEmpty and beingServed, of a flow context are checked in each round. The
former indicates if the corresponding flow is empty while the latter denotes
whether that flow is being served by a thread. If the flow is not empty and not
being served, a packet descriptor is assigned to an inspector thread followed by
the corresponding modifications of the two flags. This ensures that a flow is
served by only one inspector thread at a time, by which preventing the state (for
the A-C) or shift value (for the W-M) from being atered by other threads. The
inspector thread then examines a packet payload against the patterns in SRAM
and updates accordingly the state or shift value in the flow context. If no patternis
matched, the packet is passed to the transmitter thread to be sent out; otherwise
the XScale is notified of a match. Finally, the packet inspector thread puts itself
into the free thread list, waiting for the next signal from the dispatcher. The four
free thread lists implemented using four scratch rings correspond to the four MEs.

29

The inspector threads are dispatched round-robinly among the MEs for better load
balancing. To avoid the system resource being exhausted by excess idle flows, a
timeout counter maintained by the XSacle is associated with each flow. Once the

counter turns to zero, the flow queue as well as the flow context and hash entry

are removed.
Packet inspection processing
ﬂOW context in SRAM . Slgnalmg Retrieve Pattern
Being served ? State or shift last state matching
Is empty ? A A value or shift ¢
D I N value | [7_ Todai
State or shift
f value
Choose a Check Assign a packet +
flow context»{ flow P desctoa free Alert D Put “Sdf. »
in RR status threadinRR | [into a freelist
Thread Dispatcher thread One packet inspector thread

Fia. 3.4. Interaction between the thread dispatcher and packet inspector.

3.5 System Benchmark and Bottleneck Analysis

In this section, we evaluate the performance by externaly and internally
benchmarking the system implemented using two string matching algorithms. To
have both MEs and memory, namely SRAM, well utilized, we investigate the
appropriate numbers of | and J for the application. Since the memory access
overhead accounts for a considerable portion in the packet processing, the

feasibility of exploiting multiple memory banks for load balance is exploited.

3.5.1 Benchmark Setup

The XScale core in our design is responsible simply for the preprocessing and
alerting; therefore, in this section we focus mainly on the performance of the MEs

which are the main component that handles the most part of packet processing.

30

Since the performance statistics including the ME and memory utilizations can
only be obtained by the simulator, we evaluate the performance through
simulations. The preprocessing phase originaly done by the XScale is shifted to
the receiver ME since the simulator does not comprise the XScale. Notably two
MEs from two processing stages, the flow classifier and thread dispatcher,

respectively, are borrowed in the analysis due to the dearth of MEs.

3.5.1.1 Patternsfor Packet | nspection

Observing that 2475 patterns are used in the current Snort, we employ 2000
random patterns in which characters are generated uniformly according to the
guidelines discovered in [AAPO4]. The shortest pattern length, LSP, which is
known as amagjor factor on the performance of string matching algorithms such as
W-M, is set to four [LHCO4].

3.5.1.2 Simulator Setup
The IXP2400 Developer Workbench simulator provides tools for compiling the

microC into microcode and a simulator called Transactor, for evaluating the
performance. The simulator alows users to configure parameters. In our
experiment, the clock of the ME is 600 MHz. The input interface of the MSF is
divided into four gigabit ports, while the output interface is a four-gigabit one.
The transmitter and receiver buffers are both 256 bytes. Four data streams of
64-byte TCP/IP packets with randomly generated payload are injected. All
simulations last for 50000 packets.

3.5.2 Effect of Improper ME/Thread Allocations

To investigate the effect of improper ME/thread allocations, we compare the
performance, in terms of utilization, of the A-C for different (1,J) combinations.

As shown in Fig. 3.5(a), | and J can be configured while the total number of

31

threads, | x J, is fixed to 12. Some observations are made. First, the throughput is
influenced mostly by | x J, rather than I, as the throughput remains unchanged for
the (I,J) combinations. Second, the average ME utilization degrades while
increasing I. This is because the same traffic load is balanced by more MEs. The
same explanation applies to the results of the W-M in Fig. 3.5(b). Third, the
throughput of the W-M is only one-fourth of the one of A-C. This is due to the
relatively high processing overhead of the W-M, as clarified in Fig. 6.

100
Link (1000M bps)
U . T = e — =~ — | BME
g
o
i
I
N
=

(IJ) combinations

@

Link (1000M bps) |-
BME
B MEM

Utilization (%)

2x6 3x4 4x3 6x2

(1,J) combinations

(b)

Fig. 3.5. Performance of the (a) A-C and (b) W-M for different (1,J)
combinations. Total number of threadsisfixed at 12.

Figure 3.6 profiles the total memory-access cycles referred to as P, as well as

32

the computational cycles referred to as M, required by the A-C and W-M for
handling a 64-byte packet. From the figure we can see that the sum of P and M of
the W-M is approximately 4 times of the one of A-C. This explains the relative
low throughput of the W-M compared with the A-C. Further, the memory access
overhead dominates the processing time of a packet, namely 94% for A-C and
98% for W-M. Fortunately this un-balance situation is tolerated by multithreading,
which makes the utilizations of MEs and memory much closer to each other than

what otherwise will be.

300000 .
250000 @O Aho-Coresick, o
Wu-M anber

8]

S

o

o

o
T

150000 == - -Boo oo A L et ol SO L

=

3

o

(=]

o
T

50000 |

Memory acess cycles

500 1000 2000

of pattemns

12000
10000 - B Aho-Corasick
Wu-Manber

8000 |-
6000 |
4000
2000 |- TR T

cycles

computationd ingruction

500 1000 2000
of patterns

Fig. 3.6. Profiling of the total (a) memory access cycles and (b)
computationa cycles for processing a 64-byte packet.

3.5.3 Estimating the Optimal (I,J) Pair

Figure 3.7 depicts the performance of the two implementations by increasing

33

number of MEs and therefore the total number of threads. Some observations can
be made. First, the throughput of A-C is better due to less computational and
memory-access overhead. Second, for number of MEs being from one to four, the
ME utilizations of both implementations are amost the same, implying that the
number of threads per ME is insufficient. Third, initially, the throughputs of both
implementations increase with a direct ratio to | x J . Nevertheless, the throughput
increases dlightly as | = 5 for W-M and | = 6 for A-C, respectively, because
memory is amost fully utilized. Fourth, as | increases and memory utilization
approaches 90%, the average ME utilization degrades, because the load making
memory saturated is diluted by large I.

| | B Aho-Corasick| (ME Util., MEM Util.) (69.9,91.8) (61.1,95.6)
B Wu-Manber

Throughput(

), 93.5)

of MEs

Fig. 3.7. The performance of A-C and W-M with different
numbers of MEs (eiaht threads per ME).

We can also estimate a combination of (I,J) such that both ME and memory are
best utilized. As we learn from Fig. 3.7, when memory utilization is above 90%,
increasing |, and therefore total number of threads contributes dightly to the
performance and is not cost-effective. For example, the improvement of memory
utilization from incorporating the sixth processor is about 956-91.8~3.8%and
935-91.9~16% for A-C and W-M, respectively. Hence, 5x8=40 threads should
be cost-effectively enough for both agorithms to well utilize the memory.

Nonetheless, the ME utilization is low when | = 5, meaning that the computing

34

power is unnecessarily much and should be further reduced. We fix this problem

by employing four MEs, rather than five, so that the average utilization of MES

shall become 69-9:/0>< 5_g749 (since 6992?“ 5 _1165%>100%), and J can thus be

estimated t0%9 _10. Similarly, a combination of (313) can be derived for the
4

W-M.

3.5.4 Effectiveness of Multiple Memory Banks

One of the solutions to the memory bottleneck is to add more memory banks. To
evaluate the benefit, we adopt two SRAM banks to store the data structures of the
string matching algorithms. Table 3.1(a) shows that only minor improvement can
be gained due to the difficulty of splitting the data structure, namely goto table, of
A-C evenly into different memory banks. The W-M, on the contrary, benefits
substantialy (about 43.7%) from two banks as presented in Table 3.1(b). Thisis
credited to the use of severa tables which make the distribution of data a lot

easier and more efficient to memory banks.

Table. 3.1. Performance of (a) A-C and (b) W-M with one and two memory banks,
respectively. (1,J) = (6,8).

@)
Onememory bank | Two memory banks
Avg. ME util. (%) 61.1 63.2
MEM util. (%) 95.6 95.2/1.8
Throughput (Mbps) 670.6 674.4
(b)
One memory bank | Two memory banks
Avg. ME util. (%) 440 63.2
MEM util. (%) 935 70.0/57.2
Throughput (Mbps) 133.2 191.4

35

3.6 Summary

In this work, we elaborate the implementation of a memory-access intensive
application, NIDS, over the 1XP2400 network processor. We introduce the
hardware platform, briefing the NIDS processing flow, and identify necessary
processing stages to be mapped to the platform. Among those processing stages,
the packet inspection is implemented with the Aho-Corasick and the Wu-Manber
algorithm. Some design issues including packet ordering and flow interleaving,
which may cause incorrect inspection results for patterns across multiple packets,
are discussed and solved. After implementation, we externally and internally
benchmark the system aiming to observe the effect of the allocations of processors,
threads, and memory banks, as well as possible bottlenecks.

The benchmark result shows that the system can support up to 670 Mbps when
implemented using the Aho-Corasick and 133Mbps using the Wu-Manber. It is
also observed that given a certain application and algorithm, the throughput is
influenced mostly by the total number of threads as long as the ME utilizations do
not exceed 100%. Although enlarging the total number of threads by adding more
processors benefits the throughput, the ME utilization suffers. This is because the
load saturating memory is diluted by the increased |, meaning that J instead
should be extended.

The bottleneck is then found to be the SRAM as the IxJ exceeds the
upperbound k that cost-effectively utilizes the memory. With the upper-bound, we
can estimate an optimal (I, J) combination, i.e. (4, 10) for the Aho-Corasic and (3,
13) for the Wu-Manber, respectively. In fact, supposed an application, agorithm
and k, an optimal (I, J) can always be derived. Two workarounds are suggested to
solve the SRAM bottleneck, namely when 1 xJ>k. The first is to use multiple
memory banks. Our result indicates that the performance gains a 43.7%
improvement from two banks for Wu-Manber since the data structure itself makes

it easy to be evenly distributed among banks. The other is to adopt a multi-port

36

memory which alows multiple simultaneous memory accesses. This is helpful
especialy to algorithms, such as the Aho-Corasick, having data structures difficult
to be uniformly split.

Two issues are to be investigated in the future. First, rea traffic, rather than the
synthetic one, should be adopted. The second is to investigate the allocation

measures for computational -intensive applications.

37

Chapter 4
Coprocessors-centric Network

Processors. Analysis, Simulation, and

Design Implications

4.1 Introduction

In this work, we aim to unvell possible hints, especially the thread alocation, for
future NP design in two directions: (1) develop a preliminary analytica model
using the Continuous Time Markov Chain, and (2) build a Petri net simulation
environment which is also used for model validation. Our approach considered
both memory and ready queuing effects that are often ignored in other works, and
involves two important networking applications, Simple Forwarding and DiffServ,
which have different computational and memory access requirements. \We propose
a concept named P-M ratio and discover that alarge | , or J, is needed for high, or
low, P-M ratio, and further that when processor overhead (P) is similar to the
memory’s (M), the most appropriate number of threads is shown to be 5. Notably
the core processor was not included in our model since the control-plane
processing accounts for only a minor portion in the packet processing.

Another concern in our approach is the selection of athread allocation scheme.
Thread allocation schemes decide how threads in a processor are arranged for
processing packets, adopting an improper scheme could result in un-balanced load
distribution among processors. We compared and discussed four possible
allocation schemes, and chose the most appropriate one as the base assumption

throughout this work. Factors influencing the selection include the amount of

38

hardware resources, design complexity, and flexibility in processing.

The rest of this article is organized as follows. Section 4.2 introduces the
concept of thread allocation schemes. Section 4.3 elaborates the analytical model.
Section 4.4 details the construction of the Petri net simulation environment,
validates our analytical model, and presents some interesting simulation results.

Conclusive remarks and future work are given and discussed in section 4.5.

4.2 Effect of Different Thread Allocation

Schemes

Thread allocations should be carefully involved and studied before analyzing the
M-M architecture. Four thread alocation schemes are common in real
implementations, in which at most one thread is active in a processor. The first is
that a thread is assigned to process a complete packet. Nonetheless, this scheme
may require intricate inter-thread communications in order to maintain the packet
ordering in aflow.

Another two schemes, which are shown in Fig. 4.1, are called homogeneous
and heterogeneous thread allocations, respectively. In the homogeneous allocation,
al threads in a processor belong to the same type, e.g., receiver, scheduler,
transmitter, etc. Each thread in a processor deas with only part of the packet
processing and after that, it signals a certain thread in the succeeding processor for
further processing. A thread in a processor may have either fixed or dynamic task
assignment, namely it may stick to a certain input port or it may support other
ports whenever necessary. Notably, since al threads in a processor are of the same
type, this scheme has a more relaxed requirement for the size of the instruction
memory while exhibiting desirable data locality in cache. Nonetheless, in the
homogeneous scheme, processing load can hardly be distributed to processors

evenly, and packet ordering is unlikely to be maintained.

39

Traffic

Traffic

Heterogeneous

Processor

%
S—— Rece1ve1

Scheduler

Tr: ansrmtteI

Homogeneous

Fig. 4.1. Homogeneous and heterogeneous thread allocations. At most one thread

IS active per processor.

This situation can be avoided with the heterogeneous allocation, where the traffic
can be assigned to a processor with a lighter load by some load-balancing
hardware and mechanisms [BDEO1]. In this scheme, each thread in a processor
belongs to different types and is supposed to take charge of an equal overhead in
the packet processing. The requirement for alarger instruction memory will not be
a problem because less than 5K of it is needed by genera header processing
applications [RWO03], and that requirement has already been supported in many
commercia products such as the Inte IXP2400 and Motorola C-5 [MOT].
Another edge of the scheme is the minor synchronization overhead, since the
inter-thread communication is done using global registers in the processor. A
comparison between these two strategies is shown in Table 4.1. For the reasons
discussed above, we take the heterogeneous allocation as the basic assumption in

our model throughout this work.

Table 4.1. Comparison between the homogeneous and heterogeneous schemes.

Allocation Threadsin Packet Instruction | Data Load Sync.
strategy aprocessor | processing | memory | locality | balancing | overhead

Homogeneous | Sametype Partially Small High Hard High

Heterogeneous | Diff. types | Completely Large Low Easy Low

40

It is also possible to use the hybrid allocation scheme, in which processors of
homogeneous or heterogeneous alocations are incorporated. This scheme
preserves the strength of large instruction memory and high data locality, which
can be achieved by assigning homogeneous processors to tasks exhibiting high
data locality. However, the load balancing and packet ordering originaly

supported by the heterogeneous scheme no longer exist.

4.3 Overview of the Analytical Model

In this section we present an approximate analysis of the multithreaded
multiprocessor network processor using a Continuous Time Markov chain. We
define the state space of the model, derive the transition rates and solve the model.
In addition to the heterogeneous allocation determined in the previous section, we
proceed with the assumption of blocking processing, as shown in Fig. 4.2. The
blocking processing contrasts with the non-blocking processing, which is also
shown in Fg. 4.2 in that no buffer exists between two adjacent threads of a
processor. That is, a thread cannot pass the processing result to its successor and
accept another packet if the successor is busy with a packet. Since normally the
packet processing overhead, including computation and memory access, is fairly
distributed among threads, this simplified assumption has limited influence on the

correctness of the model while considerably reducing the state space.

41

Blocking Non-blocking
Facket Facket
arrival | @ TD arrival | @ TD
()T OFr
TI'I. Tn

v v

Fig. 4.2. The blocking and non-blocking packet processing schemes. A thread T,
accesses memory with rate r, during the processing.

4.4 Markov Chain Formalization
4.4.1 State Definition and State Space Determination

Our model considers | processors, each of which contains J threads, and aims to
characterize the behaviors of processors, threads and memory. To do that, we need
to clarify possible activities, i.e. statuses transitions, of a thread. They are
depicted in Fig. 4.3 and elaborated below. When a packet arrives at an idle thread,
the thread either enters the ready queue of the processor waiting for execution, or
enters the active status if no thread is currently active. Sometimes it issues a
memory access to, for instance, perform table lookups and manipulate packet
descriptors. Once serviced it re-enters the ready queue, or goes directly back to
execution if the ready queue is empty. Normally, the thread becomes idle again
after the packet is processed and passed to the succeeding thread. Nonetheless, it
may get stuck and enter the finished status if the succeeding thread also has a
packet under processing.

42

1
TS

Fig. 4.3. Status transitions of athread.

According to the above descriptions we can formally define a state of the
system as

S=(Sp0S;-S;) 0<si<land0<j<J,
where s ;e{0:idle1:active,2: mem,3:ready, 4: finished} represents the

status of T .

ihjo?

the jth thread in processor i. Furthermore we define
S(k) ={s ; Is; =k}, so that the number of executing processors and number of
accesses in the memory system equal to |S(1)| and |S(2)|, respectively. We
aso define h(i)={s ;|s,; =2 so that the number of queued memory accesses

of processor i is denoted by |h(i)|. Besides, the RSS (Random Selection for
Service), rather than the FIFO, is assumed as the queuing discipline for both
memory and ready queues. This assumption further diminishes the state space by
disregarding the ordering information in the queues, and is proven not to affect the
correctness of the analytical result in section 4.5. Taking (I,J)=(2,2) as an example,
the state space can be derived by excluding exceptional states exhibiting the
following properties:

1. A processor has more than one active thread. For instance, (1,1,0,0).

2. At least one ready thread but no active thread, such as (2,3,0,0). One of the
ready threads must enter the active status as long as the previous active thread

completes its processing.

3. §;=4whiles;,=0,0<j<J. In this case, T; must pass the packet

43

immediately to the succeeding one.

4. s, , =4, thesamereason astheonein 3.

4.4.2 Determination of the Status Transition Diagram and
State Transition Matrix

We will need the state transition matrix in order to solve the model. To derive the
matrix, however, we have to deal with the status transition rate diagram of threads
since a state change occurs when one or more threads alter its status. By assuming

the packet arrival rate for processor i as A , memory access rate and service time

of the jth thread in that processor as r,; and 1/ ; , memory service rate as m,

and number of queued memory accesses from the processor as h, we can have the
status transition rate diagram shown in Fig. 4.4. Notably the service rates, as well
as the memory access rates, of threads having same thread index in al processors
are set the same because of the homogeneity among those threads. That is,
Mo =p and r=r,.

Notice that some status transitions in Fig. 4.4 do not have a rate because of
being a follower transition. A transition is regarded as a follower if it does not
initiate a status transition but follow a certain activator transition which actively
launches a transition. For example, a finished thread (follower) blocked by its
successor can enter the idle status only after the successor (activator) finishes
processing and passes down the packet. Another example is that a ready thread
(follower) will never enter the active status unless a thread switches out from

active.

Fig. 4.4. Satustransition rate diagramof T, ;.

Observing the relationship between activator and follower, two additional
transitions can be discovered out of Fig. 4.3 and shown in Fig. 4.4, the active to
active and active to ready transitions. The former occurs when an active thread
switches out and is then chosen again to execute for the packet passed by its
finished predecessor; the latter is similar except that it is not chosen for execution
but put into the ready queue.

The state transitions and transition matrix can therefore be determined
according to the status transition diagram. More specifically, a state transition is
considered valid if there exists only one activation event containing an activator
transition and possibly a number of corresponding follower transitions. Figure 4.5
shows four example state transitions, assuming (1,J)=(1,6). The detailed matrix

derivation is described in the following section.

Fig. 4.5. Example state transitions.

45

4.4.3 Determination of the State Transtion Matrix

A state transition of a non-zero rate consists of one activation event containing an
activator transition and possibly a number of corresponding follower transitions.
To verify a state transition, we need to characterize the activation event, namely
the activator and follower transitions. Obvioudly, a transition initiated by a thread
in the active(1l) or the memory access(2) status is always an activator transition,
whereas a transition performed by a thread in the idie(0), ready(3) or finished(4)
status is afollower transition with two exceptions. The exceptions occur when the
transitioning thread is the first one in a processor, in which idle-to-active or
idle-to-ready transitions are possible because of the packet arrival.

With the observations above and the conditions defining the status of threads
other than the activator thread, al activation events can be identified as
summarized in Table 4.2. An activation event is considered valid if the
corresponding conditions of the activator transition are satisfied. For instance,
before recognizing an activation event with the activator transition being from
active to finished, namely the thread is finishing the processing of a packet but

getting blocked by its successor, two conditions need to be met. First, j<J-1

and s,,€{234, since if j equas J-1 or s, =0, the thread would have

i+

been able to send out the packet. Second, for threads other than T, ; in processor

i, their statuses remain unchanged if none of them isin the ready status; otherwise
one thread shall be chosen for execution. Take (1,J)=(1,3) as an example, the
activation events (2,2,1)=>(2,2,4), (2,1,0=>(2,4,0), and (3,1,2)=>(3,4,2) are all
invalid.

46

Table 4.2. Activation events initiated by T, and the corresponding examples

(1=1J3e{34) and conditions.

s . and

1]

s ; denote the source and destination

statusof T, respectively. The status trangition rates are shown in Fig. 4.4.
Activator Example Condition
S S 1L j<J-1s,,€{234
act(1) => fin(4) 1= 4’ 2. if("j'#j,5, #3 thens ; =5,
S,j+1 S,j+1

Ex: (3,1,2) => (1,4,2)

el%a!j,;ﬁ J asyj/ :3, S/yj, :l

act(1) => mem(2)

Ex: (3,1,2) = (1,2,2)

The same with (2) in 1=>4.

act(1) => idle(0)

Ex: (3,1,0) => (3,0,4)

1 ifj<J-1thens =075 ,,,{13
2. if j>0thens ,,#45s ,#4

3. The same with (2) in 1=>4 except
i'e{i.i+3.

mem(2) => rdy(3)

7

S,j1 S.ia
> 8
S,j+1 S,,jJrl

Ex: (1,2,4) => (1,3,4)

Y .2 . ,
1L)p#)s;,=5;

2. There exists an active thread.

mem(2) => act(1)

Ex: (2,2,4) => (2,1,4)

vj,i j’S,j’ :S’,j’

idle(0) => act(1)

Ex: (0,2,4) => (1,2,4)

j=0 "j’#0,s, =5,

idle(0) => rdy(3)

Ex: (0,1,4) => (3,1,4)

j=0 "j’#0,s, =5,

act(1) => act(1)

{0,2,3} {0,2,3}
4 0
4 3
1 1
0 3

Ex: (4,4,1,0) => (0,3,1,3)

1 Sija=]

2. whilen>0 { #n=j -1

S = (S n4), Where
f(4=3f0)=12=f3)=0
if ', =0 then break

ese n=n-1}

4’ S,j+l =

Y
0, 8;,=3

47

{0,2,3} {0,2,3}
4 0 1 j>0, Sja.=4
; wa) 2. if j=1then s/, , =0
act(1) => rdy(3) L Ds 3. if j<Jd-1thens,,=0,5 {13
0 s 4. The same with 1=>1 except
f(4)e{13.
Ex: (4,4,1,0) =>(0,1,3,3)

4.4.4 Performance Estimation for the Analytical Model

The performance metrics that we are interested in obtaining from the analytical
model include the processor and memory efficiencies. We can compute these

measures from the stationary probability vector, 7z, for the Markov chain. The

mean number of executing processors, which we call processing power (P,),
and the processor utilization, which we call processor efficiency (P,) @€
then calculated from the vector as
Prover Z(%(S)X 1S@ D . (1
Pefficiency = I:)power II i (2)
Memory utilization, which we call memory efficiency (M e), NUMber of

memory accesses in memory system (M), and ready queue length of a

accesses

processor (R,) can be calculated as

efﬂmency Z_ﬂ'(S) (3)
M access ZF(S)XI S(2) |, and (4)

48

Rengtn = (ZE(S)X | S(3) |j/| .

4.5 Simulation and Analytical Model validation

In this section, we describe the construction of a simulation environment based on
timed, colored Petri nets (CPNs) [Mur89]. It is used to validate the analytical
model discussed in the previous section as well as to observe possible hints for
future NP design.

4.5.1 Design of the Petri Net Based Simulation Environment

The key challenge in simulating memory queuing effect is that an outgoing
memory access must go back to the thread where it isissued. For that purpose, we
adopt the event-driven CPN-Tools [RWL*03] as our simulator. The features it
supports, including the colored tokens, stochastic functions and hierarchical
editing, provide efficiency in the construction of timed, colored Petri nets
corresponding to our model. To give a genera idea of the design of the Petri net
based model, we use an example whose configuration of (I,J) is (1,2) shown in
Fig. 4.6. Smulationsfor larger | and J are constructed in asimilar way.

The sample Petri net implements the processor and memory subsystems shown
in Fig 4.6(a) and 4.6(b), respectively, and works as following. A token is added in
places such as the PO_token (for processor 0), TKO 0 and TKO 1 (for thread O
and 1), Pkt _GenO (for packet generator), and Init (for memory). Among those
tokens the one in Pkt_Gen0 is designed to be a colored token, which represents a
packet and carries information about the processor index (i), thread index (j), and
the number of memory accesses (K) the thread is obligated to perform to process
the packet. The tokens of the others are simply non-colored ones.

In the processor subsystem, the inter-arrival time of packets is exponentialy

49

()

distributed with mean E using the function expDelay, and the availability of a
thread depends on whether atoken is in places of the processor and thread. When
a packet arrives at BO_0, namely a colored token is fired by the transition DelayO,
and if there is a token in both PO_token and TKO_O, the packet is admitted by
consuming those three tokens and firing the transition TranO_0 0. After that, the
packet is processed for P/J computation cycles (active state) and M/J memory
accesses are assigned to the thread by setting k= M/J, where P and M denote the
numbers of computational instructions and memory accesses required to process a
packet, respectively. The CPI is assumed to be 1.

The memory access takes place by firing transitions Tran0_0 1 and S1, and
then enters the queue (M_buf) of the memory subsystem and gets serviced if no
other access is present. After a service time of L cycles (memory access state), the
packet is passed back to the place TO_0 where it is issued according to the i and |
in the token. The same procedure executes repeatedly until k becomes 0. The
packet is passed to BO 1, waiting to be admitted by the next thread where

operations similar to the above are carried out before |eaving the system.

50

é 140,0,0) @+0 R
1{000] @+expDelay(E)
e
P
ifj=0 ¥ il

i MU@+PI then 14 k)

else em j k)
: il

T
if k=<1
then 1'(ij+1,k)
@0 else emply
E F
ifj=1
- then 1'(ij.k)
{ij.MU)@+PN else emply
< vy
&
then 1'e
if k==1
else emply then 1'{ij.k-1)
S elke emply
€Y
if i=0
then 1101 k)
else emply
{ijk {1k
33
T
1'e

[]
Processord

T (b)

Fig. 4.6. An example hierarchical CPN describing (a) a processor containing two

threads, and (b) the memory subsystem.

51

The simulation design differs from the analytical model in that the memory
access rate and thread service rate are fixed according to the requirement of the
application. The memory queue not shown in the above example is implemented
inthe M_buf using utilities of the CPN-Tools.

4.5.2 Mode Validation By the Simulation

The anaytical model is validated by simulations. Parameters for the analytical
model as well asthe simulation are listed in Table 4.3.

Table 4.3. The setup of parameters setup in the model vaidation. P=555 and
M=30, and the system clock rateis denoted by C.

Simulation Analysis
E = 7300
Packet arriva st A 1, (pkt/sec)
(cyc/pkt) =

Instruction processing

P/J (cyc/pkt 1, =Cx I/ (pkt/sec)
capability of athread (cyclpkt) %3

Memory access
ey M/J (acclpkt) | 1 =, x- (acc/sec)
intensity of athread J

Memory servicetime | L=90 (cyc/acc) m=Cx i (acc/sec)

Our first observation is that, as presented in Table 4.4, the analytical results are
mostly within 10% of the blocking simulation results. The discrepancy comes
from the different assumptions between the model and the simulation. The former
assumes non-deterministic behaviors in the instruction processing, memory access
rate and memory service time, while the latter uses deterministic ones. In fact, the
discrepancy can be reduced to be less than 3% if all activities are presumed to be
non-deterministic in the ssimulation. Second, the deviation further extends to be

within 5-25% when comparing the blocking against the non-blocking simulation,

52

meaning that the existence of buffer fairly influences the precision of the model.
Tough the results of the three cases have similar behaviors, we focus on the
non-blocking scheme which resembles the rea implementation to unveil possible

design implications for network processors.

Table 4.4. Validation of the anaytical model against the blocking and
non-blocking cases. The non-blocking case resembles the real implementation.

Processor Utilization (%)

()] . Non-
Ana. Blocking Blocking %o(ana-B) %(B-NB)
(1,4) 535 6.17 7.58 13.29 18.6
2,2) 531 5.78 7.76 8.13 25.5
(2,3) 6.84 7.13 7.8 4.06 8.6
2.4) 697 7.21 7.75 3.33 6.97
(3,2) 482 52 6.85 7.31 24.1
4,2) 4.57 4.79 SNl [l 4.59 6.26
(a)
Memory Utilization (%)
L7 i Non-
Ana. Blocking Blocking %(ana-B) %(B-NB)
(1,4 2656 2931 36.56 9.38 19.83
(2,2) 51.1 56.57 74.15 9.67 23.7
(2,3) 6777 70.63 74.92 4.05 5.72
24 6845 7126 74.58 3.94 4.45
(3,2) 06878 77.11 99.84 10.8 22.76
(4,2) 8743 99.84 99.99 4.14 8.78
(®)
4.5.3 Simulation Setup

Two networking applications, Simple Forwarding (SF) and DiffServ (DS), are
involved in the simulations, in which the numbers of computational cycles and
memory accesses for handling a packet are configured according to [LLPO2]. For
simplicity, we assume that all memory accesses are of the same type, so the
corresponding (P, M)s are configured as (235, 12) and (555, 30). Besides, in order
to be redlistic, we adopt the non-blocking scheme for the following simulations, in

53

which buffer is provided for packets processed by athread.
Our god is to investigate the relationship among processors, threads and
memory banks. To do this, aterm named P-M ratio is defined as

computational overhead # of computational instructions
memory access overhead — # of memory accesses x latency per access '

and three sets of simulations are conducted: simulations with P-M ratio smaller
than 1, close to 1, and larger than 1, respectively. A large (small) P-M ratio means
the processor overhead is relatively higher (lower) than the memory’'s and is
thought to be an unbalanced combination of the processor and memory, while a
P-M ratio close to 1 is considered as a sensible combination. Table 4.5 details the
configurations of three different P-M ratios for the SF and the DF. The Intel
IXP1200 and 1XP2400 are considered in the simulation by setting the memory
service time to 20 and 90 cycles, respectively [Com04].

Table 4.5. Different kinds P-M ratios: (a) smaller than 1, (b) closeto 1, and (c)
larger than 1. SF and DF are included and the memory access latencies are
configured as the one of the IXP1200 and I X P2400.

App. | Comp. overhead | Mem. access over head P-M ratio
SF 235 12x90=1080 (a) 235/1080=0.217
12x 20 =240 (b) 235/240=0.98=1
12x5=60 (C) 235/60=3.92
DF 555 30%x90= 2700 (8) 555/2700=0.205
3020 = 600 (b) 555/600=0.925=1
30x5=150 (c)555/150=3.7

4.5.4 Effect of the RSS Memory Queuing Discipline

Before proceeding with the issues mentioned above, we need to justify the use of
the RSS queuing discipline in memory and ready queues. As mentioned in section

4.4, the RSS is assumed to be the queuing discipline for both memory and ready

54

gueues without affecting the correctness of the result. For the blocking case,
according to Fig. 4.7, it is proven that the processor utilizations using RSS are
very close to the corresponding ones using FIFO. Similar observation is seen for
the non-blocking case. This is because of the power of averaging, namely
memory accesses, from a thread, having higher priorities in the queue this time
could have lower ones next time. The explanation applies to the memory queue,

and is believed to hold for the ready queue.

12% [~ SRR e :
_10% | — ——
IS
~— 8% 77
5
g= 6% -~ —&— Proc_util for RSS, blocking ~ t------
;,El 19 |- - —®— Proc_util for FIFO, blocking |
g v —&— Proc_util for RSS, non-blocking
2% Sy —>%— Proc_util for FIFO, non-blocking |~~~ "~
O% L sl

(1,2) (1,3) (1,4) @5)
(I,J) combinations

Fig. 4.7. Effect of different memory queuing disciplines for Sk

4.5.5 Unbalanced Load among Threads

Another concern is the resilience of the heterogeneous thread allocation against
the unbalanced load distribution. We evaluate the impact by involving the
unbalance ratios, in which aratio of n means the load of a thread is n times of the
one of its predecessor. Figure 4.8 depicts the number of packets in the system for
two ratios after executing 3x10° cycles. From the figure it is clear that for
ratio=2, the number of packets in system increases notably as J increases.
Nonetheless, only a dight raise is seen when ratio=1.5, meaning that as far as a
sensible P-M ratio, which is close to 1, is considered, the system is quite resilient
to the unbalanced load among threads.

55

700

600 -1 . o
—X—ratio=1.5

00 7 -ratio=2 | w0
400 [~ T T

300 |
200 |
T

of packets in system

o

(1,2) (1,3) (1,4) (1,5
(I])) combinations

Fig. 4.8. No. of packetsin system under different unbalance
ratios and no. of threads.

4.5.6 Simulations with Three P-M Ratios

Simulationswith a P-M Ratio Larger Than One

Figure 4.9 shows the results of the simulations with a P-M ratio larger than 1.
Apparently the memory access overhead is relatively so large that the processor
efficiency is low and only two threads are enough to utilize the memory. The SF
and DS have similar processor and memory utilizations because their P-M ratios

are similar.

25% — 100%

1 90%

1 80% =
L

1 70% 5

60% =

=
11 50% =

[SRAM-SF-Proc | 2

"B == sravps e | | 40% S
—a— SRAMSFMem || 4 30% &

Processor utilization

—%— SRAM-DS-Mem |
7 1 20%

1 10%
0%

(13
(IJ) combinations
Fig. 4.9. Processor and memory utilizations tor the DS and SF with

different numbers of threads. The memory service timeis 90 cycles.

56

Simulationswith a P-M Ratio Closeto 1

Figure 4.10 shows the results of the simulations with a P-M ratio close to 1. The
SDRAM, in addition to the SRAM, with a service time of 40 cycles is involved
for comparison. From the figure we can see that for SRAM-SF and SRAM-DS the
utilizations of both processor and memory are ssimilar because the ratios are close
to 1. Moreover, the benefit of utilizing memory from adding threads, taking the
SDRAM-SF as an example, becomes less obvious as the memory utilization
exceeds 90%. This observation also suggests that J=5 is best for applications with
aP-M ratio close to 1, since the memory utilization of the SRAM-SF has reached
90% when J is 5, implying that adding the sixth thread can have merely limited

gain.

100%

90%
80%
g 70%
-% 60%
N 500 |
5 40% -
30%
20%) DRAM-F-proc iz DRAM-DSproc |
1 SRAM-SF-proc Y SRAM-DSproc
10% —— DRAM-F-mem
—B8— RAM-S-mem —O0— RAM-DSmem
0%

(1,1) (1,2) (1,3) (1,4) (1,5
(1,J) combinations

Fig. 4.10. Memory access latency and utilization of various numbers
of threads.

Simulationswith a P-M Ratio LessThan 1
Figure 4.11 shows the performance improvement by increasing the number of

processors. The memory service timeis assumed to be 5 cycles, indicating that the

57

memory overhead is less than the one of the processor. The memory sustains the
access load until four processors are incorporated for both SF and DS
Interestingly, though memory is apparently not a bottleneck when 1=1 and 2, the
processor is not fully utilized as shown in Fig. 4.12. This suggests that the J,
which could lead to the low processor utilization, must be carefully estimated
before using a fast memory module. Another observation from Fig. 4.12 is that,
the fifth processor contributes limitedly in utilizing the memory while resulting in

low processor efficiency, implying that J, rather than |, should be increased when
(1,9)=(4,3).

N elne
= v
'R

(2,3) (3,3) 4,3) 5,3)

(I,)) combinations
Fig. 4.11. Performance relative to (1,3).

100%
% |
c 80%
S 60%%
= o |
7 P .
N 4
= 40% I -
= ’ %
D 20% | W ———
0% _ _ A

(13 (3 (B3 43 (653
(1,J) combinations
Fig. 4.12. Processor and memory efficiencies for different Is.

58

4.5.7 Solutions for the Memory Bottleneck

Memory usually becomes the bottleneck not only because of the nature of the
application but because of the speed gap between processor and memory. To
tackle the problem, three common solutions are investigated and compared:
enlarging the cache size for better hit ratio; adopting a memory access efficient
algorithm, and adding more memory banks. Figure 4.13 compares the
effectiveness of the solutions for the DS when (1,J)=(5,5) and L=20. The hit ratio
is assumed to be 16.6% and 33.3%, respectively, by reducing the number of
memory accesses from 30 to 25 and 20. As for the memory access efficient
algorithm, we proceed by supposing a classification algorithm, which is part of
the packet processing, having memory accesses 50% less (from 10 to 5 accesses)
while computational instructions 100% more (from 160 to 320 instructions) than
the origina algorithm, i.e. (P,M) from (555,30) to (715,25). The ideais that more
computational instructions are usually traded for less memory accesses. We
consider the effect of multiple banks by employing two banks, looking into two
situations in which memory accesses are (1) evenly distributed and (2) distributed
with ratios of 1:2 and 1:4. The cause of the second situation is the data structure
and the nature of the application or the agorithm. An example would be the
pattern matching application using the classic Aho-Corasick algorithm [AC75]. It
is hard to split the goto table evenly into memory banks, resulting in unbalanced
memory access locality. Even if it is possible, the locality problem remains since

the matching frequently returnsto the root state stored in a certain bank.

59

1
I I I I I I
10 20 30 40 50 60 70
Performance improvement (%)

Two : | | |
banks . bl:b2=1:2 : | | |

I I I I I

‘ ‘ ‘ I I I I

b1l:b2=1:4 : : : :

I I I I I I I

Mem acc : : : : : :
efficient : : : : : :
algorithm R
| | | | | |

Cache HR=16.6% E i i i

T T L 1 L | | |

effects I I i
HR=33.3% Lo

I T T T | I I

8

Fig. 4.13. Performance improvement from the three solutions with respect to
(1,9)=(5,5) performing the DS. The hit ratio of 16.6% and 33.3% are ssimulated by
using (PRM)=(555,25) and (555,20), while (715,25) is designed to mimic a system
with a memory access efficient classification a gorithm. Ratios of 1:1, 1:2 and 1:4
are investigated for the two banks case.

From the figure we can see that with a hit ratio of 16.6%, an improvement of 21%
can be obtained. The improvement advances to 51.5%, 2.5 times of the one of
16.6% ratio, for a hit ratio of 33.3%. The benefit from a memory access efficient
algorithm is 21.5%, similar to the one with 16.6% hit ratio, despite the increased
number of computational instructions. The performance gain is best when
introducing another memory bank. However, it degrades from 81% to 50% and

15% as the distribution of memory accesses becomes unbal anced.

46 Summary

In this work, we try to derive possible design implications, especially the thread
alocation, for network processors by developing a preliminary anaytical model
as well as simulations based on the timed, colored Petri net. Two real networking
applications, the Simple Forwarding (SF) and DiffServ (DS), are involved. To
date, thiswork is the first research that adopts the heterogeneous thread allocation

60

scheme and considers the queuing effects in memory and ready queues by
practically modeling | processors and J threads per processor.

Although the analytica model is verified to have similar behavior with the
non-blocking simulation which quite resembles the real implementation, we focus
on the latter in order to have precise observations. Key observations from the
simulation results include (1) the Random Selection for Service (RSS) has similar
effect with the FIFO when serving as the queuing discipline for both memory and
ready queues; (2) the heterogeneous allocation is better than other schemes, and is
resilient to the unbalanced load among threads for unbalance ratios smaller than
1.5; (3) for a sensible P-M ratio, i.e. aratio close to 1 as in the SF/DS over the
IXP1200, the most appropriate number of threads is 5, and should be
increased/decreased as the ratio decreases/increases, and (4) for solving the
memory bottleneck, if any, adding memory banks best improves the performance,
though the effectiveness depends heavily on the data structure of the
application/algorithm. The observation (1) can be used for further state-space
reduction while (2)~(4) serve as implications for the design and implementation of
multithreaded multiprocessor network processors. Moreover, by applying the
observation (3) assuming the 1XP1200 as the hardware platform, we can assert
that J <5 is appropriate for the VPN while J >5 for the Intrusion Detection and
Prevention aswell as the Anti-Virus.

Some issues are to be investigated in the future. First, the analytica model
should be revised for large (I, J)'s. Our model is currently limited to 8 threads in
total, for example (2,4) and (4,2), due to the state-space explosion problem.
Second, the simulation environment could be enhanced to support (I, J)’s larger
than (5, 5). This is for identifying the | and J needed for application-platform
combinations whose P-M ratio is much larger than 1, namely more computational
overhead, and much smaller than 1, i.e. more memory access overhead,
respectively. Though increasing | in the ssimulation is doable, J is currently

confined to 5 because of the user interface of thetool. Finally, since the ordinary

61

multi-bank memory suffers from the difficulty of splitting the data structure of
certain applications/algorithms, a multi-port memory, which services multiple

memory accesses at once, may be incorporated and considered in our model.

62

Chapter 5
Resource Allocation of the Core-centric

Network Processor for Computational

Intensive Applications

5.1 Introduction

Today’'s networking applications, such as virtual private network (VPN) [BGK99]
and content filtering that offer extra security and application-aware processing,
have demanded more powerful hardware devices to achieve high performance.
The most straight-forward way to tackle this problem is to increase the clock rate
of a general purpose processor, though some disadvantages, such as the cost and
the technology limit, accompany. Moreover, the low efficiency is aso expected
since the processor, as its name suggests, is not specifically designed for the
processing of networking packets.

Another solution to this problem is to employ the concept of offloading, that is,
to shift the computing-intensive tasks from the core processor to a number of
additiona processors. The Application-Specific Integrated Circuit (ASIC) [JS99]
has been a possible candidate to serve as an additional processor. Nonethel ess, this
workaround might not be preferred in two aspects. First, since the functionalities
are fixed once tapped out, it needs to be redesigned for any modifications. Second,
the development period is so time-consuming that the time-to-market requirement
may not be met.

In this work, we explored the feasibility of implementing VPN, which is a

computation intensive application, over the Intel IXP425 [INT] network processor

63

featuring an XScale core, multiple hardware contexts and coprocessors, and tried
to figure out the performance and possible bottlenecks of the implementation. The
VPN mechanism, which is usually based on the IPSec [Atk95], comprises severa
processing stages such as packet reception (Rx) and transmission (Tx), encryption
and decryption, authentication and table lookups, each of which needs a certain
amount of processing. We anayzed the detailed packet flow and decided to
offload packet transferring and cryptographic calculation to coprocessors. Some
efforts have also been done to port the VPN application from ordinary PC to
IXP425 in the meantime. We then externally and internally benchmarked the
resulting prototype. The former characterized performance figures of the
implementation, while the latter carried out the in-depth anaysis of the
observations which were left unexplained in the externa benchmarks such as
system bottlenecks. The Xscale is identified to be the bottleneck for IPSec
processing.

Some related works researching the bottlenecks of network processors can also
be found in the literature: Spalink et al. [SKPO1] presented the results of ssimple IP
forwarding and Lin et a. [LLY'03] implemented DiffServ, both over Intel
IXP1200. Nevertheless, our work differs from theirs in that (1) no coprocessor
was involved in their implementations; (2) both the control-plane and part of the
data-plane processing were handled in the core processor of 1XP425 while the
core of 1XP1200 took care of the control-plane packets only, and (3) computation
intensive VPN application was considered, as compared with simple forwarding
and memory intensive classification of these two studies.

This work is organized as follows. We first describe the hardware and software
architectures of 1XP425. Next, we elaborate the details of the design and
implementation of VPN over IXP425. Then we present the results and
observations from the external and internal benchmarks. Some conclusive remarks

of thisarticle are made finally.

64

5.2 Hardware Platform (1XP425)

5.2.1 Hardware Architecture of 1 XP425

The hardware block diagram of 1XP425 is depicted in Fig. 5.1. The core of
IXP425 is a 533MHz XScale processor handling system initialization and
software objects execution. Three buses interconnected by two bridges provide the

connectivity among components on 1 XP425.

133 MHz
A WAN/Voice NPE | IXP425
©
o 32
& al SDRAM < /; SDRAM
> gtmet JEL-A £ “| Controller 4 256MB
< e P
MII g A
Ethernet NPE B N?ueue
> Do | < anager
4 MII ’ AES CoP SKBiRAM
Hash CoP Bridge
66 MHz .
Bridge
¢ — 133 MHz
A4 —_— — —
. v 1
Peripherals Intel XScale Core | [PCI Controller |« _,: Extra |
(266/400/533 MHz) | PCINIC |
—_— — =4

Fig. 5.1. Hardware architecture of 1XP425.

To assist the XScale core in processing networking packets, three 133MHz
programmable network processor engines (NPES) are used to execute in parallel
the code image stored in internal memory for providing functions such as MAC,
CRC checking/generation, AAL2, AES, DES, SHA-1 and MD5, in cooperate with
a number of application-specific coprocessors. The support of hardware
multithreading with single cycle context switch overhead further makes NPEs

more tolerant to long memory accesses and thus reduces the number of processor

65

stalls. The communication between the XScale core and NPEs is handled by a
hardware queue manager using interrupt and message queue mechanisms. The
gueue manager also contains 8KB SRAM divided into 64 independent queues
manipulated as circular buffers for allocating free memory space to incoming
packets and for locating packets in the memory. The SDRAM can be expanded up
to 256MB for storing tables, policies and OS applications in addition to packets. A
PCI interface is available for an additional PCl NIC. Some peripheral controllers,
like USB and UART controllers, are aso equipped into IXP425 for better

extensibility.

5.2.2 Detailed Packet Flow in IXP425

The processing flow of an ordinary packet is elaborated below referring to Fig.
5.1. Upon the arrival of a packet at the interface of an NPE, it is partitioned into
several 32byte segments and stored at the Receive FIFO of an Ethernet
coprocessor which in turn performs MAC-related operations. The NPE then
moves those segments into corresponding addresses in SDRAM dlocated by the
gueue manager, which then interrupts the XScale of the reception for further
processing. During normal processing procedures such as IP and other higher
layer protocol stacks at X Scale, chances are that some authentic and cryptographic
operations are needed. The XScale core may handle them either by itself or by
offloading the computation overhead to appropriate coprocessors residing in NPE
B. In the latter scenario, the coprocessors are directly invoked by NPE B,
requested by the XScale, to process a certain data segment in SDRAM, where a
message gqueue implemented in the queue manager is exploited to pass the request.
The queue manager is informed by NPE B upon the completion of the operations
and then interrupts the X Scale.

5.2.3 Software Architecture of 1XP425

66

The software architecture shown in Fig. 5.2 is divided into two portions, namely
the platform independent (applications and some higher level components such as
networking protocol stacks in OS) and dependent parts (mainly device drivers).
This design is favorable especially when an OS migration from a certain H/W
platform to another is demanded, that is, the developers need to focus only on the
dependent part, namely the development of drivers. When implementing device
drivers, a set of software libraries collectively referred to as AccessLibrary can be
used to drive devices such as NPEs, coprocessors, peripherals, etc. The
AccessLibrary aso provides utilities, such as OSS. and IxOSServices to
implement some OS-related functions such as mutual exclusion.

The software processing flow is described as follows with library functions
adopted from the AccessLibrary. During the boot time a function named IxNpeDlI
is caled to download the corresponding code image into the instruction cache of
each NPE. Then two functions, IxQmgr and IxNpeMh, are called to initialize the
gueue manager as well as the message handler responsible for the
communications between NPEs and XScale. The Ethernet-related functions,
IXEthAcc and IXEthDB, are used to receive and transmit Ethernet frames, while
the IxCryptoAcc function is incorporated for possible cryptographic operations
during packet processing.

67

Xscale Core
Application
Operating System - - ==
P g5y : OSSL :
TCP/IP Network Protocol Stack IxOSServices

| Driver | ||
‘g| ________________ I
25 2l nBmAc | | KCryowAce | | mEWDB | I

g8 = 8' Others
<3 E| bpNpeDl | | DNpeMh | | KQmer | |
Se———— = _————

NPEs and peripherials]

Fig. 5.2. Software architecture of 1 XP425.

5.3 Processing Stages Analysis and Offloading

Schemes Design

In this section, we first introduce basic operations in a VPN environment and then
anayze its packet processing flow in order to identify possible bottlenecks as
offloading candidates. Finally, we describe how to implement a VPN gateway
over |XP425.

5.3.1 VPN Briefing

Virtual Private Network (VPN) provides secure transmission over un-trusted
networks. Normally the IPSec protocol is adopted as the underlying technique due
to the popularity of the Internet Protocol. It supports data authentication, integrity
and confidentiality, in which two gateways are employed as endpoints
constructing a VPN tunnel for secure data transmission. Improving the

performance of the gateways is decisive to the VPN throughput.

68

5.3.2 ldentifying Offloading Candidates

To resolve the performance issue, we anayze the VPN packet processing flow in
order to identify possible candidates to be offloaded to coprocessors. A detailed
inbound IPSec packet flow was displayed in Fig. 5.3. It consists of three main
blocks, namely the packet reception, IPSec processing, and packet transmission.
Their operations are elaborated below.

Once an Ethernet frame is received by the physica interface, checking for
frame check sequence screens out broken frames and the remaining frames are
examined in accordance with possible MAC address filtering configurations.
Reception is accomplished after the frame is moved into memory, followed by a
classification recognizing it as an 1PSec packet. At this time, some table lookups
for processing rules and cryptographic parameters are performed and payload of
this IPSec packet is decrypted or checked for authentication. Finally, a new packet
decrypted from the origina IP payload is further processed by higher-level
protocaols, or is transmitted according to the routing table.

Tasks suitable to be offloaded to coprocessors can be identified by two
characteristics: whether those tasks are repeated routines or computation intensive
ones. As mentioned earlier this section, we know that 1PSec processing, especialy
the cryptographic operation, is computation intensive. Hence, we decide to pick
the cryptographic processing as an offloading candidate. Another candidate
comprises the packet transfer, CRC checking/generation, MAC filtering, and
packet movement between NPE and memory, since the procedures are precisely
the same for every packet. From the hardware block diagram in section 5.2, it is
obvious that the IXP425 has the hardware components for the identified

candidates.

69

Packet Reception

I Upper L
J CRC . Packet I Packet pper Layer
Checking MAC Filter Moving | Classification Protocol
I | Stacks
! Identity SPD&SAD ESP/AH Crypto/Auth ! IP Protocol
i Lookup Lookup Processing Processing i Processing

Routing
Table
Lookup

CRC Packet I
] .

Packet Transmission

Fig. 5.3. Processing flow of an inbound IPSec packet. Shaded blocks are
candidates to be offloaded.

5.3.3 Implementation

We adopt the NetBSD [Net], a secure, highly portable and open-source OS
derived from 4.4BSD, as our operating system. Clean design between platform
dependent and independent parts makes it a good implementation target for new
hardware platform. Following relates three maor components in prototyping a

security gateway over | XP425.

Operating System Porting. The most efficient way to porting an OS to a new
platform is refer to the port of another similar platform and then implement
drivers for the target platform based on that port [Kes95]. To port NetBSD over
I XP425, therefore, we adopt the “EVbARM” port in NetBSD. It supports various
evauation boards that equip with XScale or other ARM-based core processors, so
that only system-level modifications have to be done to enable normal operations
of IXP425. Example modifications include the CPU identification, setup of

board-specific memory map, and system initialization procedures.

Driver Development. A number of drivers for devices such as UART, NPEs and

70

coprocessors need to be implemented for communication between the operating
system and those devices. This effort can be aleviated with the help of the
AccessLibrary introduced in section 5.2. Besides drivers, we have to modify two
OS dependent modules, namely OSSL and IxOSServices, in AccessLibrary to

ensure proper operations of the OS-related services.

Offloading the Cryptographic Operations. The last modification to kernel
concerns the offloading of in-kernel IPSec cryptographic computations from
XScale to coprocessor. Ordinary method requires that the kernel performs and
subsequently waits on the encryption/decryption operations carried out by the
coprocessor. However, NetBSD provides another option named FAST _IPSec that
makes use of the Open Crypto Framework (OCF) for offloading. In OCF, the
cryptographic operations can be handled by a registered function. The
FAST_IPSec prevails over the original offloading technique in that the XScale
would not suspend during cryptographic operations. We exploit this technique by
pre-registering the crypto driver, which drives the crypto coprocessor using

functionsin AccessLibrary, to the OCF.

5.4 Benchmark and Bottleneck Observations

In this section, we investigate the benefits from offloading by externaly
benchmarking the implementation using various offloading schemes. A number of
internal tests are also conducted in order to observe what cannot be obtained in the

external benchmarks.

54.1 System Benchmark Setup

To have a better understanding of the improvement from the network processor
architecture as well as the offloading mechanisms, we design and benchmark

systems of different offloading schemes, and compare their performance results.

71

Four offloading schemes are adopted: (1) offload both crypto operations and
packet Rx/Tx to the corresponding coprocessors; (2) offload crypto operations
only; (3) offload Tx/Rx only, and (4) no offloading. Figure 5.4 diagrams the

corresponding data paths for the four schemes.

NPE Xscale
O | |
Possible Offloading Schemes:
P 1. Offload crypto and pkt Tx/Rx
@ < Crypio 2. Offload crypto only
CO:P P 3. Offload pkt Tx/Rx only
i : 4. No offloading
PCI NIC : :
> @

Fig. 5.4. Data paths of the four offloading schemes.

As for the external benchmark environments for packet forwarding and IPSec,
we use SmartBits to generate the input traffic and to collect and analyze the
performance results. For internal tests, some system utilities such as vmstat, top
and GProf, are employed to obtain the system state as well as other interna

behaviors such as CPU and memory utilizations.

5.4.2 Scalability Test

Scalability tests am to derive the maximum throughput of the prototypes of
different offloading schemes. Another gateway implementation using Pentium 111
1GHz processor and 256MB SDRAM is also included for comparison between
| XP425 and x86-based systems.

Packet Forwarding. Figure 5.5 shows the performance results of 1-to-1 packet
forwarding under the condition of zero packet loss. From the figure we can see
that throughput of the IXP425 offloaded by two NPEs parallels the one of
Pentium I11 1GHz. Both of them can support wired speed for packet lengths larger

than 512 bytes. Besides, a performance improvement of up to 60% contributed by

72

NPEs can also be gained. We also observed that the maximum throughput occurs
when the packet length is 1024 bytes, rather than other larger lengths. This is
because the longer processing time of larger packets counteracts the benefit from

their reduced header processing overhead.

100

S8,

o]

=

= 60

2 :

g , | | —e—IxpasNPENPE

2 —o— IXP425: NPE-NIC

(@]

= o0 L | —A—IXPaSNICNIC | A
= —— PIII 1G

1518 1280 1024 512 256 128 64
Packet Length (bytes)

Fig. 5.5. Throughput of packet forwarding when

different numbers of NPEs are used for offloading.
| PSec Processing. Figure 5.6 depicts the throughput of DES for different packet
lengths. Some observations can be made. First, offloading IPSec processing to
coprocessors in NPE B improves the performance by 350%; in some cases
IXP425 even outperforms the Pentium Ill 1GHz. Second, the maximum
throughput occurs when the packet length is 1450 bytes, instead of 1518 bytes.
This is because 1450 bytes is the largest length for a packet not to be fragmented
when being encapsulated into an 1PSec one. Third, the throughput of 3DES on
IXP425, as shown in Fig. 5.7, is similar to the one of DES whereas the
computation requirement of the former is amost triple of the later. The reason is
that it isthe X Scale, not the coprocessors, that becomes the bottleneck.

73

Throughput (Mbps)

Throughput (Mbps)

,,,,,,,,,,,,,,,,,,,,, —o— Xscae+NPE+CoP
—B— XscdetCoP
—A— Xscde+NPE
—x— Xscde
—K— x86
1518 1450 512 64
Packet Length (bytes)
Fig. 5.6. IPSec Throughput: the DES case.
oy T .
F —o— XscaletNPE+Cop
SEE |- - - - B == Bl i —B— XscdetCoP |
—A— XscaletNPE
0! U —>¢— Xscale i
iVm
30 [--bdT - -
28 | - - - - P SR NG
10

1518

1450

1024 512 64

Packet Length (bytes)
Fig. 5.7. IPSec Throughput: the 3DES case.

5.4.3 Bottleneck Analysis

Bottleneck of Packet Rx/Tx. To proceed the bottleneck analysis, we considered

four main functional units likely to affect system performance: bus, memory
system, NPE and XScale. It is obvious that neither the bus nor the memory is a
bottleneck because wired speed can be achieved for some larger packet lengths.
The NPE is not a bottleneck either, since, as observed by the netstat utility, al
packets are received and stored at the memory. The bottleneck can therefore be

identified as the XScale since the packet processing is carried out mostly by it.

Figure 5.8 shows that the utilization of the XScale linearly advances as the traffic

load increases.

XScale utilization (%)

0 (179 L L L I P

g

10 20 30 40 50 60 70 80 90 100
Traffic Load (Mbps)

Fig. 5.8. Input traffic load vs. X Scale utilization
for two packet lengths (bytes).

Bottleneck of IPSec Processing. The bottleneck in the IPSec processing is
known to be the XScale before offloading is applied, since the cryptographic
calculation demands much computing power. However, the XScale is again found
to be the bottleneck even after offloaded by the crypto coprocessors. Figure 5.9
shows that when traffic load is 50Mbps exceeding the maximum system
throughput of 46M bps, the utilization of X Scale approaches 100% and the success
ratio of 1PSec packets significantly drops to 22%. This is because the processor is

so busy that incoming packets are dropped due to limited buffer space.

75

28
<
<
<
)

[oNeoNe)
T

o

o

1 —6— Pkt successratio [L . |
—B— X&ale utilization

o

Percentage (%)
P DNWD 8 o N

[eoNe]

5 10 15 20 25 30 35 40 45 50 55
Traffic Load (Mbps)

Fig. 5.9. IPSec packet success ratio vs. X Scale utilization.

The X Scale bottleneck can be further confirmed with the turnaround times of
the DES and 3DES requests, respectively, as shown in Fig. 5.10. The turnaround
time means the duration from the time a request of cryptographic operations is
issued by XScale to the queue manager, to the time the XScale is notified of the
completion. As mentioned previoudly, the throughputs of DES and 3DES are
similar, indicating that their turnaround times should aso be the same. However,
this contradicts the results in Fig. 5.10 in which the turnaround times of DES and
3DES are different, justifying that the XScale, rather than the crypto coprocessor,
is the bottleneck when performing DES and 3DES. The throughputs of DES and
3DES are the same because they are bound by X Scale.

76

160

120 |

80 -]

—o— DES
40 F--4 e

—5— 3DES

Latency (usec)

1458 1052 540 284
Packet length (bytes)

Fig. 5.10. Turnaround time of a cryptographic request for a packet.
Packet size may vary.

We can aso estimate the maximum throughput of the crypto coprocessor as the
processing times of encryption and decryption are proportional to the data length.

The estimated performances can be computed by AS/\t, where As and At

represent the differences of two packet lengths and two latencies, respectively.
Therefore, the crypto coprocessor is estimated to scade approximately to

14581052 for DES, and to 101Mbps for 3DES

= 20.3(bytes/ =162.4(Mb/
117-97 (bytes/ usec) (=4

likewise.

5.4.4 Turnaround Time Analysis of Functional Blocks

Figure 5.11 depicts the turnaround time analysis of the functional blocks when
processing DES and 3DES packets. Functional blocks considered consist of the IP
processing, IPSec preprocessing including identity and SAD/SPD lookups, and
IPSec encryption. Three kinds of testbed configurations are conducted for testing
DES and 3DES:. 1XP425 with the cryptographic operations offloaded to the
coprocessor; | XP425 without offloading, namely X Scale only; and PlI1 processor.

77

DES@IXP425 [B

0| P processing

3DES@IXPA25 [B El | Psec preprocessing

IPsec encryption

DES@PI [B777

SDES@PIN [B777777777

0O 100 200 300 400 500 600 700 800
Turnaround time (uSec)

Fig. 5.11. Turnaround time of functional blocks.

From the figure we can see that cryptographic calculation accounts for a major
portion, from 80% to 90%, in the packet processing time before offloading. After
offloading to the coprocessor, the time for cryptographic calculation is reduced
from 700 us to 100 us. Notably both the IXP425 and single X Scale configurations

have the same IP processing and | P preprocessing periods because those tasks are
executed only by XScale.

5.5 Summary

In thiswork, we elaborate the implementation of a VPN gateway over the | XP425
network processor, where a number of coprocessors are provided for offloading
computation intensive tasks from the Xscale core. We introduce the hardware and
software architectures of the platform, analyze the VPN, i.e. IPSec, processing
flow, and then identify the packet Rx/Tx as well as encryption/decryption as the
ones to be offloaded to coprocessors. We redize the offloading design by
implementing a number of drivers in NetBSD, and finaly externaly and
internally benchmark the system in order to find possible performance
bottlenecks.

The benchmark results show that the throughputs of packet Rx/Tx and 1PSec

78

processing are improved by 60% and 350%, respectively, after offloading.
However, the Xscae is again found to be the bottleneck for both packet Rx/Tx
and IPSec processing.

Two issues are to be investigated in the future. First, more tasks may be
offloaded to NPEs or to coprocessors. An example of this is the IPSec database
lookup, which determines the policy to be applied to a certain IPSec packet.
Second, the performance may be further improved if we call the related functions
in the AccessLibrary directly for cryptographic operations, instead of going
through the Open Crypto Framework.

79

Chapter 6
Core-centric Network Processors:

Analysis, Simulation, and Design

|mplications

6.1 Introduction

Networking applications offering extra security and content-aware processing
features demand much powerful hardware platforms to achieve high performance.
For computationa intensive applications such as the Virtual Private Network
(VPN) [BGK*99], general purpose processors are often adopted; however, the
cost is considerable while the throughput is not satisfactory because of heavy
cryptographic operations. Rather, the Application-Specific Integrated Circuits
(ASICs) [JS97] can meet the performance requirement with a circuitry designed
for both networking and cryptographic processing. Nonetheless, the lack of

adaptability makes it less appealing.

Network processors [Lek03] have been embraced as an dternative to tackle the
above-mentioned problems for their core-processor/coprocessors -based
architecture, on which control and data -plane processing can be separated for
efficiency, and the re-programmability for functional adaptations. The core
processor can perform complicated operations and is thus responsible for control

messages, while a number of coprocessors, having specifically designed

80

instructions for networking purpose, are employed for mass data-plane processing.
This kind of architectures, referred to as the coprocessors-centric model, is
frequently applied as a core device which requires low configurability but high
scalability [LLY03][CLS"04][CMO6][LCL*07][TLY*04]. When acting as an
edge device that deals with relatively mild traffic volume, both control and
data —plane packets are processed by the core processor. Thisis referred to as the
core-centric model. Nonetheless, computational intensive tasks such as receiving,
transmission and en/de-cyption can dill be offloaded to certain
application-specific coprocessors [LLL*05].

Severa studies have acknowledged the feasibility of adopting these models in
packet processing for applications such as DiffServ, VPN, Cryptographic
algorithms, Intrusion Detection and Prevention (IDP). In addition to evaluation
through implementations of both models to discover system bottlenecks
[LLY 03][CLS"04][CMO6][LCL 07][TLY 04] [LLL"05], mathematical modeling
[CBO2][WF06][LWO06] is favored in order to unveil possible design implications
which are unlikely to observe through real benchmarking. Though, analytical
resort for the emerging core-centric model is yet unattempted.

In this work, we analyze the untapped core-centric network processors by
modeling the 1XP425 performing Virtual Private Network (VPN) application. The
IXP425 [INTb] employs an XScale core processor in charge of general packet
processing and coprocessors executing receiving, transmission and cryptographic
operations. The task allocation and important parameters are obtained from real
implementation [LLL*05], providing sufficient ground for model accuracy. Two
analytical models are developed using Continuous Time Markov Chain, a method
widely adopted for capturing system behaviors. The first is a busy-waiting model
in which the core hands over the intermediate results to the coprocessor for certain
processing, and keeps polling whether the coprocessor finishes. This primitive
approach is used by some operating systems, for instance NetBSD, when certain

coprocessors are incorporated. The busy-waiting model is then extended and

81

compared to an interrupt-driven model in which the core switches to another
process while waiting for a signal indicating the completion of previously
offloaded job. This technique is realized in NetBSD by enabling the OCF (Open
Crypto Framework) option.

Aside vdidation on the analytica model, the simulation is developed for
inspecting interna characteristics of the system, which oftentimes cannot be
obtained from real implementations and from mathematical analysis due to
enormous state space. With these established analytical and simulation models, we
am at revealing design implications from system and |C vendors perspectives,
respectively. The former includes the effects from processor run length, context
switch overhead, while the latter covers the benefits from offloading and influence
of the buffer size.

Results of the analytical model prove to be closely inline with those of Petri net
simulations and system benchmark. Though, context switch delay considered in
the model is then found to be ineffective, implying minor, if not zero, switching
overhead in the real implementation. The model is thus revised and shown to
retain accuracy.

This article is organized as follows. Section 2 briefs the overview of the
core-centric 1XP425 network processor system and our modeling approach. We
develop the analytical models and simulation design in section 3 and section 4,
respectively. Section 5 presents the results and observations. Some conclusive

remarks of this article are made in section 6.

6.2 Background

6.2.1 Performance Mode Overview

The core of 1XP425 is an XScale processor handling system initialization and
software objects execution. Three buses interconnected by two bridges provide the

connectivity among components on IXP425. To assist the XScale core in

82

processing networking packets, three coprocessors named network processor
engines (NPEs) are used for providing functions such as MAC, CRC
checking/generation, AAL2, AES, DES, SHA-1 and MD5, in cooperate with a
number of application-specific coprocessors. Our analytical models for the
processing flow are based on the implementation of VPN over the 1XP425
network processor. As shown in Fig. 1, the processing flow can be summarized
into five tasks, namely (1) receiving, (2) IPSec preprocessing, (3) en/de-cryption,
(4) 1P processing, and finally (5) transmission. Notably the shadowed blocks, i.e.
tasks #1, #3 and #5, are offloaded to corresponding coprocessors namely receiving
coprocessor, computational coprocessor and transmission coprocessor, whereas

tasks #2 and #4 are handled by the core through context switching.

| gt el — gl — s———— e Cw? —m— A l_ ______ l
[CRC | Packet | | | Packet || Upper Layer
Checking MACRItEL Moving 17| Classification | Protocol
L | | | Stacks
| '_______Ii___’i___"
I Identity SPD&SAD ESP/AH I Crypto/Auth ! IP Protocol I
I Lookup Lookup Processing I Proc (3) ! Processing I
1 — | ! |
IPSec Processing @~ @~ ———————— _— — — — el :
| CRC Packet | putng |
&) . t
Generation (5) Moving | Lookup (4) |
L E—7 g
—»{ Rx Cop. >
p "l Core »| Comp.
P Processor [€ Cop.
<— TxCop. [«

Fig. 6.1. Processing flow and task allocation of the VPN application over I XP425:
physical and logical views.

6.2.2 Architectural Assumptions

Some coprocessors may incorporate multiple hardware threads [INTO04] to
alleviate memory access latency by switching out the processor control to another

thread when issuing a memory access. Nevertheless, hardware multithreading

83

requires duplicate register sets which suggest an increased cost, and is helpful for
only memory-access intensive agpplications such as DiffServ, Intrusion Detection
and Prevention (IDS). Therefore, in this work we assume single thread in each
coprocessor since VPN is computational intensive, rather than memory-access
intensive. Buffer for each processing stage which is frequently involved
practically are also encompassed, except for the busy-waiting model which needs

no buffer between the core and the computational coprocessor.

6.3 Analytica Model

6.3.1 The Busy-waiting Model

In this model, the core does not have buffer between and the computational
coprocessor and therefore has to wait on the signal from the coprocessor. For
example, when the core finishes the IPSec preprocessing, the result is passed to
the computational coprocessor for en/de —cryption and is then again handed over
to the core for IP processing. In this regards, the core and the computational
coprocessor can be seen as different processes in alogical CORE processor, since
only one of them can be active anytime. The scheme can further be simplified as
three series queues, as shown in Fig. 2, in which al components are independent
M /M /1/e~ models and the departure-time distribution from a queue isidentical
to the interarrival-time distribution of another. The utilizations of the receiving

and transmission coprocessors are trivial, whereas for CORE it can be obtained as

A
Teore_ A+ Teop+ Teore_B ’

M core = (1)

where A denotes the arrival process at the CORE and Tcore_a, Teop and

84

Teore_B represent the processing time for 1PSec preprocessing, en/de —cryption
and |P processing, respectively. Finaly we can have the utilizations for core and

computational coprocessor as

T +T

core_A core_B
:ucore = IUCORE X N - ’ and (2)
Tcore_A +Tcop +Tcore_B
lucop =1- Heore - (3)
e e ORE WL
@-—F 2
— 1 Rx cop.‘—ﬂﬂ ard 8860

_|
=
o
o
©
o
o]
5]
S
®
w
w
o
]
A
o
Y
o
L5

Rec CORE Trans

—> (I} 11— 11—
Fig. 6.2. The busy-waiting model.

6.3.2 The Interrupt-driven Model

Contrasted with busy-waiting, in this model the core passes the result of IPSec
preprocessing to the computational coprocessor and resumes without being
blocked. To realize this concept, two processes need to be forked in the core for
IPSec preprocessing and IP processing, respectively, and buffer is required
between the core and coprocessor. When the 1PSec preprocessing is done and the
packet is passed to the coprocessor’s buffer, the context is switched to the other

process, with certain switching delay T, for performing IP-related operations so

that the coreis not stalled. To reflect this enhancement, a processor control switch

85

referred to as PCSis adopted to capture behaviors of the two processes. According

to the above descriptions we can formally define a state of the system as

ST=(RAC,BT,S),

where R, A, C, B and T denote the queue lengths for the five task stages, namely
receiving, |PSec preprocessing indicated as Core_A, en/de —cryption indicated as
Cop, IP processing indicated as Core B, and transmission, while S denotes PCS.
As shown in Fig. 3, S=0/S=1 means the core is processing packets at
Core_A/Core B. Notably the core could dtill be busy-waiting for (1) packet
arrivals from its predecessor or (2) available buffer slots in its successor for
passing the result. The PCS should be manipulated well to avoid these situations
by setting (1) appropriate run lengths T, a Core A and Ty, at Core B so that
the processing resource is reasonably distributed, and (2) correct transitions so as
to ensure that context switches are performed upon those situations. Parameters

used in the analytical model are described in Table 6.1.

Rec Core A Cop Core B Trans

A ST T T T 1>

Hg Ha Hc Hg Hr

Fig. 6.3. Theinterrupt-driven model.

86

Table 6.1. Notations for the ana ytica models.

A denotes packet arrival rate.

e T, denotestherunlength of PCSat Core A.

e T, denotestherunlength of PCSat Core B.

e A denotesthe switching rate of PCSfrom0to 1. Ag =1/Tg,.
e A, denotestheswitching rate of PCSfrom1t00. Ag, =1/Tg,.
e T, denotesthe context switch delay.

e A, denotes 1/T,

e U, denotesthe service rate of processing stage X.

6.4 Simulation Environment

Some tools have been available for ssimulating architectures similar to network
processors [NFS04][DFLO5]. Though accurate, they focus mainly on the
low-level configuration such as cache structure and lack flexibility in task
alocation. In this section, we describe the construction of the simulation
environment based on timed, colored Petri nets (CPNs) [Mur89][ZGF98] which
captures well component-level activities. It is used to validate the analytical model
discussed in the previous section as well as to observe possible hints for future
design.

We adopt the event-driven CPN-Tools [RWL 03] as our simulator. The features
it supports, including the colored tokens, stochastic functions and hierarchical
editing, provide efficiency in the construction of timed, colored Petri nets
corresponding to our model. As shown in Fig. 4, the net contains five transitions
representing task stages, each of which associated with a control token indicating
the availability of the processing resource, and equipped with a place representing
buffers, namely BO, B1, IF out, IF_in, and B2. The size of the buffers is
configured in other five places, i.e. BO’, B1', IF_out’, IF_in" and B2, respectively,

87

by marking them with a number of initial tokens. The following description
exemplifies a sample processing flow.

When a packet arrives at the receiving coprocessor, BO, with the inter-arrival
time being exponentially distributed with mean A, one token in BO'" is consumed
indicating the occupation of a buffer dot. Once the recelving coprocessor is
available (the R_tok place contains a token), the packet is processed for P, usec
and then passed to the Core_A stage, if room (B1'>0), while the tokens go back to
the R_tok and BO'. If the token in P_tok is available, that is the Core B is not

executing, the Core_A starts to process the packet for P, usec and then offloads
en/de —cryption operations to the computational coprocessor which take for P,

usec. Notably the token returning to P_tok costs additional T, usec for context
switch overhead. Similar procedures apply to the Core B and the transmission

coprocessor which last for P, and B, usec, respectively.

1'e@+expD(1)

Delay Rec @ @
e e e@+p e e

& A
e@+P,+T,
e@+P, +T, @+P, ~

Fig. 6.4. The Petri net simulation model.

6.5 Evauation

In this section we first validate the analytical model with simulations and real
implementation, through which the model is revised to be much precise. We then
evauate and anayze core-centric network processors from both system and 1C

vendors' perspectives, and disclose possible design implications.

6.5.1 Validation of the Analytical Model

The analyticadl model is vaidated by simulations. Parameter settings for the
anaytical model aswell asthe simulation are listed in Table 2.

Table 6.2. Processing time of the tasks evaluated in areal implementation.

Task Processing time
(1) Receive 27.3 us/pkt
(2) IPSec prep 31 us/pkt
(3) Crypto 12.6 us/pkt
(4) IP processing 49 us/pkt
(5) Transmit 27.3 ug/pkt

We first try to find the most appropriate transition rate for PCS. As Fig. 5
presents, compared to the normal run length of 6666 usec [20], when choosing
100 usec we can have 2.26 times improvement on the effective core utilization
while consuming 20.5% less computational resource. Busy-waiting period, the

difference of the utilization and effective utilization, is significantly aleviated.

89

100

Core utilization (%)

6666 1000 800 600 400 200 100 50
Run length (u sec)
Fig. 6.5. Run length vs. core utilization.

In simulations, the context switch delay, T, has been decreasingly reduced in
order to have resultsinline with those of the analytical model. We finaly find that,
with T, being very close to O the analytical results are mostly within 1% of the
simulation, as presented in Fg. 6. The discrepancy comes from different
assumptions between the model and simulation. The former assumes
non-deterministic behaviors in the packet arrival and instruction processing, while
the latter uses deterministic ones in order to be redlistic. What can be further
implied is that the context switch delay is minor in the implementation, which is
quite unreasonable, suggesting that only one process in the core is employed for
both 1PSec preprocessing and | P processing. The utilization of the implementation
is dightly higher (3%-4%) than the analytical model when lightly loaded because
of the operating system overhead. The discrepancy noticeably increases when
overloaded. It is aso surprisingly learned that the limited buffer size, which is
configured to 3, does not influence the accuracy of the model. We will discuss it
later in this section.

One observation concerning us is, as the validation proceeds, T, in the

anaytical model does not have much effect than it should. We soon realize that
the context switch overhead is actually not effective in the model, since the PCS

90

transits with no delay.

| —O— Experimental
| —A— Sm-buf3
| | —¢— Analysis-buf3

Core Utilization
a1
o

5 10 15 20 25 30 35 40 45
Input Load (Mbps)
Fig. 6.6. Analytical model validation against the simulation and real

implementation.

The model is then revised by adding two statuses for the PCS and again proves
to have results inline with those in Fig. 6. As Fig. 7 shows, the overhead is
considered (2=>1 and 3=>0) after PCS decides to switch (0=>2 and 1=>3). Fig. 8
elaborates five sample transitions, among which four of them are performing
certain tasks and one is receiving packets. Since the buffer size is configured to 3,
Core B cannot pass the result to the transmission coprocessor whose buffer is
aready full. Similarly, PCS does not change from O (Core _A) to 1 (Core B) to

refrain from busy-waiting.

As Ao
=i
@ Ay Asp @

Rec Core A Cop Core B Trans

AT 1> (1> 11> 11—

Hr Ha He Hp My
Fig. 6.7. Therevised anaytica

91

(R,A,C,BT,Y9

Fig. 6.8. Example state transitions of the revised model.

6.5.2 Differentiated Run Lengths

Run lengths have been shown to be influent on the system performance. Rather
than having same run length for Core_A and Core_B whose processing times are
different, it is sensible to differentiate them so as to balance the load. As presented

in Fig. 9, when T is configured as 100 zsec which is found appropriate
previoudly, the system performance improves as T, increases, in which largest
advance occurs when T, = 200. Nevertheless, given that the processing time for
Core A and Core B is 31usec and 49 usec, respectively, the results do not

necessarily suggest possible relationship between Ty, and T, .

100 200 400 600 800 1000 6666
Run length for Core_B (u sec)

Fig. 6.9. Benefits from differentiated run lengths for Core_A and Core B. T, is
configured as 100 u sec.

92

6.5.3 Effect of the Context Switch Overhead

Though context switching is helpful in aleviating the memory access overhead,
for computational-intensive applications it could jeopardize the performance, as

Fig. 10 explains. From the figure we can learn that a delay of 300 xsec leads to

low effective utilization (12%) but considerable context switching and
busy-waiting burdens (38% and 47%). As the delay reduces, not only does the
core Uutilize effectively but aso lessen the overhead. The burden from

busy-waiting can even be annihilated when T,=10 T,, and T, are further
configured to 100 and 200 x sec, respectively. Since a context switch delay of
10z secis quite unredlistic for current XScale core implementation (except for

some coprocessors with hardware multithreads [INTO4]), this result is aso
suggesting that system vendors adopt single process for multiple tasks in

computational intensive applications.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Core usage distribution

300 200 100 50 25
Context swtich delay (usec)

Fig. 6.10. Core usage distribution for different context switch delays. The
asterisk means Ty, and T, areconfigured to 100 and 200 x sec.

6.5.4 Benefit from Offloading

Offloading complex, routine tasks to specialy design coprocessors has been an

93

aternative to pure speeding up the core processor. However, the benefit from
offloading is not well uninvestigated. Figure 11 demonstrates the gain of doing
cryptographic operations, which is the most time-consuming task, by (1)
multiplying the core clock rate, and (2) offloading to the computationa
coprocessor. The former includes (1) no speedup and (2) speedup for 2, 4 and 6
times for the core processor, while the latter involves both interrupt-driven and
busy-waiting schemes. Asrevealed in the figure, the throughput increasesin direct
proportion to the speedups. Nonetheless, the interrupt-driven scheme till
outperforms the un-offloaded one equipped with a core of 6-time speedup
resembling a 3.2 GHz P4 processor. The busy-waiting scheme also parallels the
core of 4-time speedup.

T ‘
sives [| |
rimes TIIENIEEEIEIT & |

Intermupt-cven]

Busywaiting | & e ‘ :

0 10 20 30 40 50 60 70 80
Throughput (Mbps)

L-time 10

2-times

Fig. 6.11. Throughput of various offloading schemes. The clock rate of the XScale
core in the implementation is 533MHz, as areference for comparison.

The performance figures can even be validated as follows. Let the capability of
the core be m cycles/sec, and the processing time for Core_A, en/de —cryption and
Core B bex, y and z cyclesMbits, respectively, we can have

m

X+Yy+2z
since the throughput of an ordinary core without offloading is 10 Mbps. Moreover,

=10(Mbps), (4)

94

because the core, namely XScale in the rea implementation, is the performance
bottleneck [LLL*05], we can also have

M _T(Mbps), (5)
X+ 2

where T represents the throughput of the core executing Core_A and Core B, and
therefore the throughput of the interrupt-driven scheme as well. With (4) and (5)

we can have

(5 .z+y+z T ()
e T o

Since y:(X+2z)=(31+49):12.6= 6.4, according to Table 2, the throughput T
can finaly derived as

T —10x 1+ 6.4

=74 (Mbps), @)

which is very much close to the one from the analytical model.

6.5.5 Effect of Limited Buffer Sizes

As pointed out earlier in this section, the limited buffer size does not impact much
on the accuracy of the model. This is verified in Fig. 12 which compares two
significantly different sizes, 3 and 1000. From the figure we can see that the core
utilization is the same for both sizes when input load does not exceed the system
capability. The queue length, which is not shown, for the two cases does not grow
noticeably, implying that the system is quite tolerant to the variance of the packet

inter-arriva time.

95

90
80 -
70 F-- @1000 pkts [~ T
60 -- E3pkts |------- --
50 |
4 F----------
30 |
20 |
10 |

Core utilization (%)

10 40

20 30
Input load (Mbps)

Fig. 6.12. Core utilization under two buffer sizes.

6.6. Summary

This work aims at deriving possible design implications for core-centric network
processors by developing an analytical model as well as simulations based on the
timed, colored Petri net. The computational intensive VPN application, which has
some complex but routine tasks is adopted to explore the benefit from offloading
to coprocessors. To date, thiswork is the first research that practically models the
interrupt-driven and busy-waiting schemes over this emerging architecture.

The analytical model is verified to have behaviors quite inline with the
simulation (within 1%) and the implementation (within 3%-4%), indicating a
satisfactory accuracy for detailed investigation on architectural-level issues which
are unlikely to perceive on rea implementations. Through both analytical and

simulation measures we observe that
B by adopting appropriate process run lengths, 2.26 times improvement on the
effective core utilization and 20.5% less consumption on the computational

resource can be achieved; better results can be have if run lengths are further

96

differentiated according to the processing time;

B by reducing the context switch delay from 300 zsec to 10usec we can
have 2.6 times advance on the effective core utilization, and the switching
overhead and busy-waiting time can be alleviated by as much as 90%; this
observation also strongly suggests the use of single process for multiple tasks

since 10 usec delay is normally unfeasible for today’s technology;
B by incorporating coprocessors for bottleneck task, namely the en/de -cryption,
the throughput boosts 7.5 times compared to that of single processor;

B under Poisson arrival, the system is quite tolerant to limited buffer size.

We believe the first two findings are useful for system vendors while the others
may interest IC vendors. Discovery concluded in this study should be applicable
to network processors of similar architecture.

As future work, we plan to extend this approach by considering memory-access
intensive applications such as IDP (Intrusion Detection and Prevention). In such
extension, memory access operations can be offloaded to coprocessors
specifically designed with wide memory bus. To further analyze the potential
memory bottleneck, the model can also involve multiple memory modules or

multi-port memory supporting concurrent accesses.

97

Chapter 7
Conclusions

The goals of this dissertation include (1) comparison of the thread allocation
schemes in multithreading architecture; (2) design implications and (3) resource
allocation strategies, for coprocessors-centric and core-centric network processors
implementing different types of applications. For the first, we found that the
heterogeneous thread allocation is the best scheme, since the load balance among
processors is simple and effective, compared to the homogeneous and the hybrid
schemes. It is also resilient to the unbalanced load among threads for unbalance
ratios smaller than 1.5. Observations regarding others are categorized and stated

asfollows.

General NP Design Implications

1. Number of threads per processor: For asensible P-M ratio, i.e. aratio closeto
1 asin the SF/DS over the IXP1200, the most appropriate number of threadsis
5, and should be increased/decreased as the ratio decreases/increases.

2. Solution to memory bottleneck: For solving the memory bottleneck, if any,
adding memory banks best improves the performance, though the
effectiveness depends heavily on the data structure of the

application/algorithm.

Resource Allocation for Coprocessors-centric NPs Implementing Memory

Access | ntensive Applications

1. Most important architectural factor: Given a certain application and
algorithm, the throughput is influenced mostly by the total number of threads
as long as the processor utilizations do not exceed 100%.

2. Although enlarging the total number of threads by adding more processors

98

benefits the throughput, the ME utilization suffers. This is because the load
saturating memory is diluted by the increased |, meaning that J, rather than I,
should be extended.

Most appropriate (1,J) estimation through bottleneck identification. The
bottleneck is found to be the SRAM as the | xJ exceeds the upperbound k
that cost-effectively utilizes the memory. With the upper-bound, we can
always estimate a most appropriate (I, J) configuration for the application.

Resource Allocation for Core-centric NPs Implementing Computational

Intensive Applications

1.

Improvement from offloading: Offloading from the core processor to the
coprocessors improves the overall performance for 7.5 times. Moreover,
offloading the crypto processing benefits the throughput more than
offloading the Ethernet processing.

Bottleneck observation: The core tends to be the bottleneck even after
offloading.

Effect and implications from run length analysis: By adopting appropriate
process run lengths, 2.26 times improvement on the effective core utilization
and 20.5% less consumption on the computational resource can be achieved;
better results can be had if run lengths are further differentiated according to
the processing time;

Effect and implications from context switch overhead analysis: By reducing
the context switch delay from 300 #sec to 10 sec we can have 2.6 times
advance on the effective core utilization, and the switching overhead and
busy-waiting time can be alleviated by as much as 90%; this observation also

strongly suggests the use of single process for multiple tasks since 10 x sec

delay is normally unfeasible for today’s technology.

99

Bibliography

[AAPO4] S. Antonatos, K. G Anagnostakis, M. Polychronakis, and E. P. Markatos,
“Performance Analysis of Content Matching Intrusion Detection
Systems,” Proc. of the International Symposium on Applications and
the Internet (SAINT2004), January 2004.

[AC75] A. Aho and M. Corasick, “Efficient string matching: An aid to
bibliographic search,” Communications of the ACM, vol. 18 issue 6,
P.333-340, 1975.

[ARBO2] M. Adiletta, et al., “The Next Generation of Intel IXP Network
Processors,” Intel Technology Journal, vol.6 issue 3, 2002.

[Atk95] R. Atkinson, “Security architecture for the Internet protocol,”
RFC1825, IETF Network Working Group, August 1995.

[BDEO1] W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R. P. Luijten,
“Technologies and Building Blocks for Fast Packet Forwarding,” |EEE
Communications Magazne, January 2001.

[BGK™99] T. Braun, M. Ginter, M. Kasumi and |. Khalil, “Virtual Private
Network Architecture,” Technical Report IAM-99-001, CATI, April
1999.

[BHO4] H. Bos and K. Huang, “A network instruction detection system on
I XP1200 network processors with support for large rule sets,” Leiden
Univeristry Techical Report 2004-02.

[BHO95] G Byrd and M. Holliday, “Multithreaded Processor Architectures,”
|EEE Spectrum, vol. 32 issue 8, 1995.

[CBO2] P Crowley and J-L. Baer, “A Modeling Framework for Network
Processor Systems,” Proc. of the Network Processor Workshop in
conjunction with Eighth International Symposium on High
Performance Computer Architecture (HPCA-8), 2002.

[CFBO1] P Crowley, M. Fiuczynski, and J.-L. Baer, “On the Performance of

100

Multithreaded Architectures for Network Processors,” UW Technical
Report, October 2001.

[CLS'04] C. Clark, et a., “A Hardware Platform for Network Intrusion Detection

[CMO6]

[Com04]

[CSI]

[DFLO5]

[FV02]

[FW02]

and Prevention," Proc. of the 3" Workshop on Network Processors and
Applications (NP3), Madrid, Spain, February 2004.

D. Comer and M. Martynov, “Building Experimental Virtual Routers
with Network Processors,” Proc. of the 2nd International Conference
on Testbeds and Research Infrastructures for the Development of
Networ ks and Communities, TRIDENTCOM'’ 06, 2006.

D. E. Comer, “Network Systems Design using Network Processors,” p.
282, Prentice Hall, 2004.

CSIX-L1: Common Witch Interface Specification,
http://www.npforum.org/csixL 1.pdf.

JD. Davis, C. Fu, and J. Laudon, “The RASE (Rapid, Accurate
Simulation Environment) for Chip Multiprocessors,” Proc. of the
Workshop on Design, Architecture and Smulation of Chip
Multi processors, November 2005.

M. Fisk and G Varghese, “Applying Fast String Matching to Intrusion
Detection,” SEP’ 02, 2002.

M. Franklin and T. Wolf, “A Network Processor Performance and
Design Model with Benchmark Parameterization,” in Network
Processor Wbrkshop in conjunction with Eighth International
Symposium on High Performance Computer Architecture (HPCA-8),
February 2002.

[GKS03] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer, “Comparing Analytical

[INTH]

Modeling with Simulation for Network Processors. A Case Study,” in
Proc. of the Design, Automation, and Test in Europe (DATE), 2003.

Intel IXP12XX Product Line of Network Processors,
http://www.intel.com/ desi gn/network/products/npfamily/ixp1200.htm.

101

[INTb]

[INTC]

[INTO4]

[JKO03]

[JS97]

[JS99]

[K es95]

[LCL*07]

[Lek03]

[LHCO4]

[LJO3]

Intel 1XP425 Network Processor, http://www.intel.com/design/
network/ products/npfamily/ixp425.htm.
Intel XScale Microarchitecture, http://www.intel.com/design/
intel XScale.
IXP2400 Data Sheet, Intel document number 301164-011, February
2004.
E. J. Johnson and A. R. Kunze, “1XP2400/2800 Programming— The
Complete Microengine Coding Guide,” Intel Press, April 2003.
M. John and S. Smith, “Application-Specific Integrated Circuits,”
Addison-Wesley Publishing Company, ISBN 0-201-50022-1, June
1997.
M. John and S. Smith, “Application-Specific Integrated Circuits,”
Addison-Wesley Publishing Company, ISBN 0-201-50022-1, June
1997.
Lawrence Kesteloot, “Porting BSD UNIX to a New Platform,”
January 1995.
Y.-N. Lin, Y.-C. Chang, Y.-D. Lin, and Y.-C. La, “Resource
Allocation in Network Processors for Memory Access Intensive
Applications,” to appear in the Journal of Systems and Software.
P. C. Lekkas, “Network Processors: Architectures, Protocols and
Platforms (Telecom Engineering),” McGraw-Hill Professional, ISBN
0071409866, July 2003.
R.-T. Liu, N.-F Huang, C.-H. Chen and C.-N. Kao, "a fast
string-matching algorithm for network processor-based intrusion
detection system,” ACM Transactions on Embedded Computing
Systems, vol 3issue 3, P.614-633, August 2004.
B.K. Lee and L.K. John, “NpBench: A Benchmark Suite for Control
Plane and Data Plane Applications for Network Processors,” Proc. of
the |EEE Int’| Conf. Computer Design (ICCD 03), 2003, pp. 226-233.

102

[LLPO2] S. Lakshmanamurthy, K. Y. Liu, Y. Pun, L. Huston, and U. Naik,
“Network Processor Performance Anaysis Methodology,” Intel
Technology Journal vol. 6 issue 3, 2002.

[LLL¥05] Y.-N. Lin, C.-H. Lin, Y.-D. Lin and Y.-C. Lai, “VPN Gateways over
Network Processors:. Implementation and Evaluation,” Proc. of the
11th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS05), San Francisco, March 2005.

[LLY*03] Y. D. Lin, Y. N. Lin, S. C. Yang, and Y.S. Lin, “DiffServ Edge Routers
over Network Processors. Implementation and Evaluation,” |EEE
Network, Special Issue on Network Processors, July 2003.

[LW0O6] J Lu and J Wang, “Anaytica performance analysis of
network-processor-based application designs,” Proc. of the 15th
International Conference on Computer Communications and Networks
(IC3NO06), Arlington, VA, Oct. 2006. |EEE Press, Pages 33-39.

[MOT] Motorola C-5 network processor, http://e-www.motorola.con.

[Mur89] T. Murata, “Petri Nets. Properties, Analysis and Applications,”
Proceedings of the IEEE, vol. 77, no. 4, 1989.

[Net] The NetBSD Project, http://www.netbsd.org/.

[NFSO04] D. Nussbaum, A. Fedorova, and C. Small, “An Overview of the Sam
CMT Smulator Kit,” Technical Report of Sun microsystems, June
2004.

[NGG93] S. S. Nemawarkar, R. Govindargan, G R. Gao, and V. K. Agarwal,
“Analysis of Multithreaded Multiprocessor Architectures with
Distributed Shared Memory”, Proc. of the Fifth IEEE Symposium on
Parallel and Distributed Processing, Dallas, pp.114-121, 1993.

[NSHO2] U. Nalk, et a., “IXA Portability Framework: Preserving Software
Investment in Network Processor Applications,” Intel Technology
Journal, vol.6 issue 3, 2002.

[POS] POS PHY Leve 3 Link Reference Design,

103

http://www.| atti cesemi.com/products/devtool /ip/refdesigns/pos_phy.cf
m.

[PRSO4] W. Plishker, K. Ravindran, N. Shah, and K. Keutzer, “Automated Task
Allocation on Single Chip, Hardware Multithreaded, Multiprocessor
Systems,” Proc. of the Workshop on Embedded Parallel Architectures
(WEPA-1), 2004.

[Rog] M. Roesh, “Snort: The open source network intrusion detection
system,” http://www.snort.org.

[RJIO3] S. T. G S. Ramakrishna, H. S. Jamadagni, “Analytical Bounds on the
Threads in 1XP1200 Network Processor,” Proc. of the Euromicro
Symposium on Digital System Design (DSD’03), pp. 426-429, 2003.

[RWO03] R. Ramaswamy and T. Wolf, “PacketBench: A Tool for Workload
Characterization of Network Processing,” Proc. of the 6th IEEE
Annual Workshop on Workload Characterization, 2003.

[RWL'03] A. V. Ratzer et al., “CPN Tools for Editing, Simulating, and
Analysing Coloured Petri Nets,” Proc. of the International Conference
on Applications and Theory of Petri Nets, 2003.

[SBCE9O] R. SB, D. Culler, and T. Eicken, “Analysis of multithreaded
architectures for parallel computing,” Proc. of the 2nd Annual ACM
Symposium. on Parallel Algorithms and Architectures, 1990.

[SKPO1] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building a Robust
Software-Based Router Using Network Processors,” Proc. of the 18th
ACM Symposium on Operating Systems Principles (SOSP), 2001.

[SMAO3] K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja, and V. S. Pai,
“Challenges in Computer Architecture Evaluation,” |EEE Compulter,
2003.

[SPK 03] Nirgj Shah, William Plishker, Kurt Keutzer, “NP-Click: A
Programming Model for the Intel 1XP1200,” Proc. of the 2™ Workshop

on Network Processors (NP-2), held in conjuction with the 9"

104

[TLY 04]

[WFOO]

[WFO6]

[WM94]

[WTO1]

[ZGF98]

International Symposium on High Performance Computer Architecture
(HPCA), 2003.

Z. Tan, C. Lin, H. Yin, and B. Li, “Optimization and Benchmark of
Cryptographic Algorithms on Network Processors,” IEEE Micro, vol.
24, no. 5, pp. 55-69, 2004.

T. Wolf and M. Franklin, “CommBench: A Telecommunication
Benchmark for Network Processors,” Proc. |EEE Int'l Symp.
Performance Analysis of Systems and Software (I1SPASS 00), IEEE
Press, 2000, pp. 154-162.

T. Wolf and M. K. Franklin, “Performance Models for Network
Processor Design,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 17, No. 6, pp. 548-561, June 2006.

S. Wu and U. Manber, “A fast agorithm for multi-pattern searching,”
Technical Report TR94-17, Department of Computer Science,
University of Arizona.

T. Wolf and J. S. Turner, “Design Issues for High- Performance Active
Routers,” IEEE Journal on Selected Areas in Communications, vol. 19,
no. 3, 2001.

W. M. Zuberek, R. Govindargan, F. Suciu, “Timed Colored Petri net
Models of Distributed Memory Multithreaded Multiprocessors,” Proc.
of the Workshop on Practical Use of Coloured Petri Nets and Design,
pages 253-270, Aarhus University, June 1998.

105

