
國  立  交  通  大  學 

資 訊 學 院 
 

資 訊 科 學 與 工 程 研 究 所 

博 士 論 文 
 

多執行緒多處理器網路處理器之資源分配--

針對計算密集及記憶體存取密集的網路應用

程式 

Resource Allocation in Multithreaded Multiprocessor 

Network Processors for Computational Intensive and 

Memory Access Intensive Network Applications 

 

研 究 生：林義能 

指導教授：林盈達  博士 

中 華 民 國 九 十 六 年 七 月 



 2 

多執行緒多處理器網路處理器之資源分配--針對計算密

集及記憶體存取密集的網路應用程式 
Resource Allocation in Multithreaded Multiprocessor 
Network Processors for Computational Intensive and 

Memory Access Intensive Network Applications 
 

研 究 生：林義能          Student：Yi-Neng Lin 

指導教授：林盈達          Advisor：Ying-Dar Lin 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

博 士 論 文 

A Dissertation Submitted to  

Department of Computer Science 

College of Computer Science 

National Chiao Tung University 

for the Degree of  

Doctor of Philosophy 

in 

Computer Science 

July 2007 

Hsinchu, Taiwan, Republic of China 

中華民國九十六年七月 



 3 

多執行緒多處理器網路處理器之資源分配--針對計算密

集 及 記 憶 體 存 取 密 集 的 網 路 應 用 程 式 

學生：林義能      指導教授：林盈達 

國立交通大學資訊科學與工程研究所博士班 

摘 要       

今日網路應用程式之處理需要強大的硬體平台以應付日益龐大的

計算量以及記憶體存取。此平台亦必須能夠隨著協定或產品規格

之變動而作有效的調整。沿用已久的多用途處理器架構，其效能

往往被“核心-使用者程式”間的溝通以及執行緒轉換的負擔拖

累；而常用的 ASIC 解決方式則受限於開發時程過久且調整不易的

缺陷而無法滿足需求。 

本篇論文主要探討(1)應用日益盛行的網路處理器架構來加速網路

網路封包處理的可行性，此網路處理器包含多個處理器且每個處

理器包含多個硬體執行緒，具有豐富硬體資源、較小的執行緒轉

換負擔以及可調整性等優點，和(2)用此平台來處理不同計算或記

憶體存取量的網路應用程式時硬體資源的分配。我們首先檢視各
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種不同的網路處理器並將其分成“助理處理器為主”和“核心處

理器為主”兩大類。就前者而言，助理處理器負責占封包處理主

要工作的資料面象部分，而後者則是由核心處理器兼顧所有的控

制面象和大部分的資料面象的處理。之後我們針對計算密集以及

記憶體存取密集的網路應用程式分別用“助理處理器為主”和

“核心處理器為主”的兩種網路處理器來實作並評估其效能。最

後，根據實作的經驗我們進一步設計出其數學模型以及模擬環

境，以期能找出設計、使用此二種架構時的參考。 
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Abstract 

Networking applications today demand a hardware platform with 

stronger computational or memory access capabilities as well as the 

ability to efficiently adapt to changes of protocols or product 

specifications. Being the ordinary options, however, neither a general 

purpose processor architecture, which is usually slowed down by 

kernel-user space communications and context switches, nor an ASIC, 

which lacks the flexibility and requires much development period, 

measures up.  

In this thesis, we discuss (1) the feasibility of applying the emerging 

alternative, network processors featuring the multithreaded 

multiprocessor architecture, rich resources, minor context switch 

overhead, and flexibility, to solve the problem, and (2) the ways of 

exploiting those resources when dealing with applications of different 
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computational and memory access requirements. We start by 

surveying network processors which are then categorized into two 

types, the coprocessors-centric and the core-centric ones. For the 

former, the coprocessors take care of the data plane manipulation 

whose load is usually much heavier than the one of the control plane, 

while in the latter the core processor handles the most part of packet 

processing, including the control plane and data plane. After that we 

evaluate real implementations of computational intensive and memory 

access intensive applications over the coprocessors-centric and 

core-centric platforms, respectively, aiming to unveil the bottlenecks 

of the implementations as well as the allocation measures. Finally, 

based on the evaluations, analytical models are formalized and 

simulation environments are built to observe possible design 

implications for these two types of network processors. 
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Chapter 1  

Introduction 

1.1  Challenges of Hardware Platforms for 

Modern Networking Applications 
Increasing link bandwidth demands faster nodal processing, especially of 

data-plane traffic. Nodal data-plane processing ranges from routing table lookup 

to various classifications for firewall, DiffServ and Web switching. The traditional 

general-purpose processor architecture is no longer sufficiently scalable for 

wire-speed processing, and some ASIC components or co-processors are 

commonly used to offload the data-plane processing, while leaving only 

control-plane processing to the original processor.  

Several ASIC-driven products have been announced in the market, such as the 

acceleration cards for encryption/decryption, VPN gateways, Layer 3 switches, 

DiffServ routers and Web switches. While accelerating the data-plane packet 

processing with special hardware blocks, much wider memory buses, and faster 

execution processes, these ASICs lack the flexibility of reprogrammability and 

have a long development cycle usually of months or even years. The cost of 

possible design failures is also high. 

Network processors are emerging as an alternative solution to ASICs for 

providing re-programmability while retaining scalability for data-plane packet 

processing. A network processor typically consists of one core processor and a 

number of coprocessors, so that developers can embed the control-plane and 

data-plane traffic management modules into the core and coprocessors, 

respectively. Scalability concerns due to the computational and memory access 

overhead, in data-plane packet processing could be satisfied with the hardware 

contexts of minor context switching overhead in each of the coprocessors as well 
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as the instructions specifically for networking. 

 

1.2  The Importance of Resource Allocation for 

Network Processors 
Though network processor is promising in its scalability and extensibility [LLP02, 

LLY+03, BH95], the determination of architectural parameters such as numbers of 

processors, threads in a processor, and memory banks, respectively, is not trivial 

given a specific application and hardware platform combination. Furthermore, 

since one proper configuration today may not be suitable tomorrow due to 

different evolving speeds of manufacturing technologies of the functional units, 

some general guidelines may be demanded for efficient and appropriate parameter 

determination. 

 

1.3  Coprocessors-centric and Core-centric 

Network Processors 
Two types of network processors, the coprocessors-centric and core-centric ones, 

are classified and addressed in the thesis. In the former, a number of coprocessors 

are used to take care of the data plane manipulation whose load is usually much 

heavier than the one of the control plane. In the latter the core processor handles 

the most part of packet processing, including the control plane and data plane; 

only few coprocessors are required to offload some computational intensive 

processing. 

Since the coprocessors-centric model is used mostly to offload the data plane, 

especially the memory access intensive processing, for its multithreading 

architecture, we investigate the resource allocation by implementing the Intrusion 

Detection and Prevention (IDP) system over the IXP2400 network processor.  
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As for the core-processor centric model, we implement the Virtual Private 

Network (VPN) gateway, which needs to offload limited portion of computational 

intensive operations to the coprocessors, over the IXP425. For both types we also 

investigate the effect of different architectural parameters through mathematical 

modeling. 

 

 

Fig. 1.1. Coprocessors-centric network processors. 

 

 

Fig. 1.2. Core-centric network processors. 

 

1.4 Related Works 
In this chapter, we present some prior groundwork for our thesis. To comply with 

our research directions mentioned previously, we discuss the related works in two 

aspects: (1) application implementation and (2) mathematical modeling and 

simulation. The following is summarized in Fig. 1.3. 
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Fig. 1.3. Related works on the network processor resource allocation problem. 

 

1.4.1 Application Design and Implementation  

For memory access intensive applications, some researches have focused on 

improving the throughput by the deployment of network processors. Bos and 

Huang [BH04] implemented an NIDS over the Intel IXP1200 [INT]. The 

prototype comprises only the receiver and packet processing using the 

Aho-Corasick [AC75] algorithm, but it does not support inspection of patterns 

across more than two packets as well as multiple flows. Clark et al. [CLS+04], 

designed a Network Intrusion Detection and Prevention System (NIDP) utilizing 

an IXP1200 and an FPGA. The former is for header processing and the latter 

serves as the signature matching engine, and the bottleneck is found to be the bus 

connecting them. Nevertheless, those researches did not discuss in detail on 

proper resource allocations. 

As for the computational intensive application over network processors, to date 
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only one can be found in the literature [TLY+04]. The authors implement various 

cryptographic algorithms over the IXP2800 network processor, analyze the 

instruction mix and compare it with other header processing applications, and 

finally propose implementation and optimization principles to improve overall 

performance. They find that the ALU operations occupy a significant share, 

79.9%, of the total instruction mix, compared to the 58% of the Commenbench 

[WF00] PPA (Payload Processing Applciations), 53.5% of the NpBench [LJ03], 

and 41% of the Commonbench HPA (Header Processing Applications).  

The implementation principles, besides some minor techniques, include the 

flow-level and intra-block-level parallelisms. In the flow-level parallelism in 

which each thread is allocated to a flow, it is observed that incorporating multiple 

threads does not necessarily improve the performance but depends on the 

algorithms. Another reason for the limited improvement is that multithreading is 

found only help consume more of the stalled cycles rather than the idle ones. To 

utilize the idle cycles, they use the intra-block level parallelism, in which one 

main ME (namely processor) and a helper ME are involved in processing a certain 

block of instructions. The helper ME pre-fetches the data from memory for the 

later use of the main ME. Some principles are also proposed for optimization such 

as (1) increasing the cache size on MEs to hold tables, (2) enlarging the memory 

and command queues and (3) organizing the MEs into a smaller cluster for fast 

shared-bus performance. 

 

1.4.2 Mathematical Modeling and Simulation 

Analytical approaches have been favored in many researches for its capability of 

fast evaluation of the systems under investigation [SMA03]. However, limited 

researches have devoted to the modeling of multithreaded multiprocessors. Rafael 

et al. [S-BCE90] proposed a model to obtain the performance, in terms of 

processor efficiency, of a multithreaded architecture with varying number of 

threads. The effect of multiprocessor can be mimicked by adjusting the memory 
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access latency which is assumed geometrically distributed. This model possesses 

good abstraction of the architecture; however, the interaction between the 

processing elements and the memory subsystem is disregarded. 

This problem was remedied in [NGG93] by including the memory subsystem in 

their model, in which the processing elements as well as the memory are 

distributed and shared. Each thread is capable of a complete packet processing, 

and has a rate to access local/remote memory modules during processing. 

Nevertheless, the model is not feasible since the queuing network adopted was a 

closed one, and thus does not consider the packet arrivals and departures of real 

networking applications. 

A number of recent works concerning the modeling of NPs can be found in 

[FW02, WT01, GKS03, CFB01, CB02]. Though detailed parameters are included 

and programming paradigms are analyzed in their models, the discussion and 

consideration of thread allocation are substantially ignored. Lakshmanamurthy et 

al. proposed a methodology for analyzing the performance of the Intel IXP2400 

[LLP02]. But they focused only on the validation of the system performance, 

while the processor and memory utilizations are not addressed and no design 

guidelines are suggested. In [SPK03] and [RJ03], the authors propose a 

programming model and an analytical method, respectively, for the IXP1200 as a 

case study. The former considerably accelerates the process of the application 

implementation and verification; the latter delivers the analytical bounds on the 

optimum number of threads. Moreover, Gries et al. in [GKS03] uses Network 

Calculus to model the IPv4 forwarding on the IXP1200. In [PRS04], the authors 

utilize the Linear Programming to achieve automated task allocation on 

multithreaded multiprocessor systems.  

 

1.5 Thesis Objective and Dissertation Road Map 
As mentioned in the previously, to leverage network processors for networking 
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applications, we may need to arrange well the hardware resources. Further, some 

design implications may also be demanded for future network processors. The 

objective of this thesis is therefore: 

 

to investigate resource allocation measure and design implications for network 

processors. 

 

The roadmap of the dissertation is organized as follows. Chapter 2 declares the 

methodologies to the problem. Chapter 3 and chapter 4 present the investigation 

on resource allocation for coprocessors-centric model by implementing the IDP 

over IXP2400 and by mathematically modeling the similar architecture, 

respectively. Chapter 5 and chapter 6 discuss the implementation and modeling 

for the core-centric model. The results summary of the dissertation is mentioned 

in chapter 7. 
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Chapter 2 

Research Methodologies 
 

2.1 Application Design and Implementation  
Since NPs are used to leverage the processing of networking applications, we 

need to verify the feasibility of doing so, namely by implementing those 

applications over NPs. We then try to identify possible bottlenecks after 

prototyping. The benefits from the identifications are two-fold: serve as (1) the 

implications for future NPs design, and (2) the foundation for further investigation 

on the optimal resource allocation. Before implementation, we need to understand 

the software architecture of the platforms. We also mention the environment and 

the tools for external and internal benchmarks. 

 

2.2.1 Software Architecture of IXP425 

The software architecture of IXP425 shown in Fig. 2.1 can be divided into two 

portions, namely the platform independent (applications and some higher level 

components such as networking protocol stacks in OS) and dependent parts 

(mainly device drivers). This design is favorable especially when an OS migration 

from a certain H/W platform to another is demanded, that is, the developers need 

to focus only on the dependent part, namely the development of drivers. When 

implementing device drivers, a set of software libraries collectively referred to as 

AccessLibrary can be used to drive devices such as NPEs, coprocessors, 

peripherals, etc. The AccessLibrary also provides utilities, such as OSSL and 

IxOSServices to implement some OS-related functions such as mutual exclusion. 

The software processing flow is described as follows with library functions 

adopted from the AccessLibrary. During the boot time a function named IxNpeDl 
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is called to download the corresponding code image into the instruction cache of 

each NPE. Then two functions, IxQmgr and IxNpeMh, are called to initialize the 

queue manager as well as the message handler responsible for the 

communications between NPEs and XScale. The Ethernet-related functions, 

IxEthAcc and IxEthDB, are used to receive and transmit Ethernet frames, while 

the IxCryptoAcc function is incorporated for possible cryptographic operations 

during packet processing. 

 

 

 

2.2.2 Software Architecture of IXP2400 

Figure 2.2 elaborates the development environment. The IXP2400 programming 

can be divided into the XScale programming and the microengine programming. 

While XScale programs are written in C/C++ under Tornado, microengine 

programs are written in assembly under Workbench for low-level packet 

processing capability. The compiled XScale executable is linked with object 

microcode compiled by the assembler, and loaded into the IXP2400 SRAM from 

which XScale initializes and loads microcode into the Control Store of 

microengines. The linked program can also be executed by the Transactor for pure 

software simulation. Besides, the XScale is little-endian and byte-addressable 

Fig. 2.1. Software architecture of IXP425. 
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while microengines are little-endian but longword-addressable. 

 

2.2.3 Performance Benchmark 

Figure 2.3 illustrates the external benchmark environments, for packet forwarding 

and IPsec. We use SmartBits, which is a networking traffic generator and a 

performance analyzer, to generate the input traffic and collect and analyze the 

performance results. For internal tests, some system utilities, such as vmstat, top 

and GProf, are employed to obtain the system state and other internal behaviors 

such as CPU utilization and memory usage. 

 

 

Fig. 2.3. Benchmark environments for (a) packet forwarding and (b) IPsec. 

 We also conduct a number of internal benchmarks, namely board-level 

simulations using the Transactor within the Workbench, in order to have detailed 

observations on the hardware utilizations.   

 

Fig. 2.2. Software architecture of IXP2400. 
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2.2 Mathematical Modeling and Simulation 
Real implementations reveal precise observations for specific software/hardware 

combinations; however, they can hardly reflect generalized implications because 

of the difficulty in adapting architectural parameters. To remedy this shortcoming, 

we incorporate mathematical modeling as well as simulations. The former has the 

best flexibility and efficiency in altering parameters; nonetheless, it often suffers 

from the problem of state-space explosion. Though being less flexible and 

efficient than the mathematical modeling, the latter captures well the behaviors of 

a certain system. 

 Since our goal is to consider I processors, each of which contains J threads, and 

then capture the behaviors of processors, threads and memory, we use the 

Continuous Time Markov chain to mimic a multithreaded multiprocessor network 

processor. Figure 2.4 exemplifies the transition diagram of a thread. In this 

example, a thread could be idle, active in processing, accessing memory, ready if 

not permitted to run, and finished if the packet processing is completed. Based on 

this concept we can have further extension to support the modeling of 

multithreaded multiprocessor architecture. 
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Fig. 2.4. Transition diagram of a thread in a multithreaded multiprocessor 

environment. 

 

 As for the simulation, we adopt the CPN Tools [RWL+03] to employee the 

timed and colored Petri nets [Mur89] that capture well component-level activities. 
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The features it supports, including the colored tokens, stochastic functions and 

hierarchical editing, provide efficiency in the construction of timed, colored Petri 

nets corresponding to both coprocessors-centric and core-centric models. Figure 

2.5 shows an example Petri net describing a multithreaded processor.  

 

 

 

 

 

 

 

 

 

Fig. 2.5. Petri net of a multithreaded processor. 
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Chapter 3 

Resource Allocation of the 

Coprocessors-centric Network 

Processors for Memory Access Intensive 

Applications 

 

3.1 Introduction 
Networking applications offering extra security and content-aware processing 

features demand much powerful hardware platforms to achieve high performance. 

For memory-access intensive applications such as the Network Intrusion 

Detection Systems (NIDSs) [Roe], general purpose processors with high speed 

memory banks are often adopted; however, the cost is considerable while the 

throughput is not satisfactory for that the processors’ utilization is low because of 

the heavy memory-access overhead. Rather, the Application-Specific Integrated 

Circuits (ASICs) [JS97] can meet the performance requirement with a circuitry 

designed for strict guarantees on memory-access latency using pipelined 

architecture and embedded memory. Nonetheless, the lack of flexibility and long 

development cycle make it less appealing. 

In this work, we implemented a memory-access intensive application, NIDS, 

over the Intel IXP2400 [INT] whose architecture is similar to most network 

processors, evaluated the effect of different resource allocations, and finally 

investigated the allocation measures. Two signature matching algorithms, the 

Aho-Corasick and Wu-Manber [WM94], were incorporated for their popularity in 
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many security-related implementations, for example, Snort. Several software 

components referred to as processing stages [ARB02] were characterized, in 

which a tentative processor/thread allocation was applied. After implementation, 

we then conducted both external and internal benchmarks. The former unveiled 

the throughput of the implementation while the latter analyzed the utilizations of 

the hardware components for observing potential bottlenecks. According to the 

benchmark result, the effect of the ME/thread allocation is reviewed and 

methodologies for the optimal revision of the allocation were subsequently 

proposed. Finally, since extra memory banks are often exploited to shorten the 

memory access latency, the feasibility and effectiveness of adopting multiple 

banks for string-matching applications are discussed. 

 

3.2 Hardware Platform (IXP2400) 
As depicted in Fig. 3.1, the IXP2400 consists of several components that are 

categorized as following. 

 

 

 

Multithreaded multiprocessor architecture 

The IXP2400 features nine programmable processors: one Intel XScale core [INT] 

Fig. 3.1. Hardware architecture of IXP2400. 
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and eight microengines (MEs), operating at 600MHz. The Intel XScale core is 

responsible for housekeeping functions such as table initialization and exception 

handling for control-plane packets such as ICMP unreachable packets. Data-plane 

processing, which accounts for the most part in packet processing, is implemented 

on MEs. Every ME has eight hardware threads, each of which having its own 

register set and program counter to support fast context switch when memory 

accesses occur.  

 

Hierarchical memory structure 

To ease the memory-access overhead, IXP2400 exploits four types of memories, 

DRAM, SRAM, scratchpad, and local memory in an ME, given tradeoffs between 

size and latency. IXP2400 has one channel of DDR running at 150MHz. The 

channel can support up to 2GB of DRAM, yielding enough capacity for storing 

packets. Two channels of Quad Data Rate (QDR) SRAM running at 200MHz are 

also provided, and up to 16MB can be populated on each channel. The SRAM is 

primary for accommodating packet descriptors for locating packets in DRAM, 

queue descriptors, and other data structures frequently used. The on-chip 16KB 

scratchpad memory operates in the form of rings and provides similar capability 

to SRAM, while the 2560-words local memory is frequently used as a cache for 

smaller data structures.  

 

Flexible external interface  

The Media Switch Fabric (MSF) is an external interface used to connect the Intel 

IXP2400 to a physical layer device and/or a switch fabric. The MSF consists of 

receiving and transmitting interfaces which can be configured for different 

protocols such as POS PHY Level 3 [POS] and CSIX-L1 [CSI]. Incoming packets 

are received into the Receive Buffer (RBUF) and outgoing packets are held in the 

Transmit Buffer (TBUF), which are both 8KB in size. The MEs can move data 

from RBUF to DRAM and from DRAM to TBUF using the DRAM[rbuf_rd] and 
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DRAM[tbuf_wr] instructions directly, greatly avoiding packet duplications and 

unnecessary memory accesses. 

 

Coprocessors 

Two kinds of hardware coprocessors, including a hash unit shared by all MEs and 

a Cyclic Redundancy Code (CRC) unit inside each ME, are incorporated in the 

system. The hash unit is capable of 48-bit, 64-bit and 128-bit polynomial divisions. 

A high quality hash alleviates the probability of hash collisions, contributing to 

fewer memory accesses; however, performing a high-quality hash in software, 

which occurs frequently in packet classification, is cycle-consuming, and thus 

should be offloaded to the coprocessor. Similarly, the CRC unit is used to 

offloading the CRC computation. 

 

Detailed Packet Flow in IXP2400 

The processing flow of an ordinary packet is elaborated below referring to Fig. 

3.1. Upon the arrival of a packet at the MSF of IXP2400, the MSF partitions the 

packet into several smaller chunks called mpackets, which can be configured to 

64, 128, and 256 bytes in size, and places them into the RBUF elements. The 

threads of the MEs dedicated for packet receiving in turn perform the reassembly 

of mpackets, and move them directly from the RBUF into DRAM, in which MEs 

and the Intel XScale core carry out further operations. The packet processing 

typically consists of packet classification followed by packet modification. During 

packet processing at MEs, chances are that some exception handling and 

housekeeping are manipulated by the Intel XScale core through the interrupt and 

message queue mechanism. In the later scenario of packet flow, the transmission 

process is just the reverse of the reception process, namely the packet is 

segmented into several mpackets by the threads dedicated for packet transmission, 

and then placed into the TBUF. 
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3.3 Problem Statements 
In addition to the implementation and evaluation of an NIDS, this work focuses 

on the impact of the processor, thread and memory bank allocations. Some 

problem statements are discussed below. 

 

Task Allocation and Bottleneck Observation  

Before implementing an NIDS, some functional blocks referred to as processing 

stages need to be identified and then mapped to the platform. During the mapping 

process, we try to exploit the hardware features such as the hierarchical memory 

structure and the multithreaded multiprocessor architecture. This involves mainly 

the assignment of memories to store different data structures, as well as the 

allocation of threads and MEs. After the system is implemented, we will try to 

identify possible bottlenecks through the internal and external benchmarks. 

 

Effect of Improper ME/Thread Allocations 

The performance of an application is affected by two factors, the computing 

power and the memory-access latency. The former is determined by the number of 

processors used referred to as I, while the latter can be alleviated by adjusting the 

total number of threads employed, namely JI × [LLP02], where J represents 

number of threads per processor. Observing that the number of processors is fixed 

to the hardware platform, it is interesting to see how an allocation (I, J), especially 

an improper one, affects the system performance.  

 

Optimal I and J 

It is known that memory-access intensive applications benefit directly from 

increasing the total number of threads, namely JI × , rather than individual I and J, 

because of its ability of hiding memory-access latency. Nonetheless, how to 

determine a fitting JI × , given a certain hardware spec such as clock rate and 
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memory service rate, remains unanswered. In addition, we are also interested in 

finding an optimal (I, J) combination, regardless of the limit on the numbers of 

MEs and threads per ME of the platform. A (I, J) is considered optimal when the 

utilizations of both ME and memory are cost-effectively high, as will be explained 

in section 3.5.  

 

Effectiveness of Employing Multiple Memory Banks 

Multiple memory banks reduce the average memory access latency. For 

memory-access intensive applications, more memory banks are supposed to 

improve the performance. Nonetheless, the effectiveness could be influenced by 

whether the accesses are evenly distributed into memory banks. Some 

experiments are therefore designed to investigate the effectiveness of adding 

memory banks. 

 

3.4 Design and Implementation  
In this section, we introduce basic operations of an NIDS, characterize the 

operations into processing stages, and finally implement the NIDS by associating 

the MEs and threads to the stages. Some design issues are discussed to ensure 

proper inspections. 

 

3.4.1 NIDS Briefing 

The processing of an NIDS, for example, Snort [Roe], mainly consists of three 

phases (1) the packet decoding phase which sets up pointers to packet data at 

different layers and stores them into data structures for later analysis by the 

detection engine; (2) the detecting phase, in which a group of rules matched 

against a packet header are applied for further signature matching, and (3) the 

alert phase, in which some alert or logging routines are carried out. Although later 

versions of Snort include the preprocessing phase performing the IP 
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de-fragmentation and TCP stream reassembly, it is optional and thus excluded in 

the implementation for simplicity.  

 

3.4.2 Design Issues 

According to the above-mentioned characteristic of an NIDS, it is clear that we 

can implement an NIDS over the IXP2400 by dividing the packet processing into 

a series of stages, namely the receiver, packet inspector and transmitter, and 

mapping them onto the MEs. The preprocessing phase is excluded in the mapping 

since oftentimes it is not done in the fast path [NSH02], but by the XScale. 

Moreover, packets can be distributed to a pool of MEs, and thus threads, in the 

packet inspector to exploit high parallelism. Nevertheless, two problems including 

packet ordering and flow interleaving arise. 

 

Packet ordering 

The issue of packet ordering occurs in a processing stage when multiple threads 

are dispatched to process the packets of a flow simultaneously. Oftentimes the 

amount of time to process a packet is not constant due to context switching, and 

thus the packet ordering may not be guaranteed, as shown in Fig. 3.2(a). To tackle 

this problem, a mechanism called ordered threads [JK03], is adopted requiring 

that threads handle packets in order in a processing stage of several functions, as 

presented in Fig. 3.2(b). For example, thread 1 is allowed to execute function 1 for 

a packet only after thread 0 completes the same function for another packet. When 

thread 0 completes function 1, it notifies thread 1 using inter-thread signaling. 

However, the effectiveness of multithreading could be greatly degraded if the 

function contains much memory accesses. The executing thread may not be able 

to context switch to other threads when performing memory accesses. 
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Flow interleaving 

In packet inspection, a pattern may stretch across multiple packets. If flows are 

interleaved, it is not guaranteed that two consecutively processed packets belong 

to the same flow, meaning that patterns across multiple packets can not be 

inspected appropriately.  

To fix these two problems, we refine our design by adding two processing 

stages, the flow classifier and thread dispatcher, supporting packet ordering. The 

main idea behind is to classify packets into different flow queues associated with a 

corresponding flow context, such that flows are no longer interleaved. The flow 

context comprises the SRAM address of the flow queue keeping the packet 

descriptors, state of inspection and some status flags. Further, each thread in the 

packet inspector stage is dispatched by the dispatcher to serve one flow queue. 

After finishing the inspection of a packet, the packet inspector thread stores the 

final state of the inspection for later reference by another thread serving the same 

queue. The implementation of the thread dispatcher will be detailed later in 

section 3.4.4. 

 

3.4.3 Mapping Processing Stages to the Hardware Platform 

Fig. 3.3 shows the processing stages of an NIDS, as well as the task and resource 

allocation for IXP2400. The NIDS processing is elaborated as follows. Upon 

Fig. 3.2. Timeline showing two consecutive packets (a) being out of order, and 

(b) being ordered in a processing stage. 
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receiving a packet from an input port, the packet data is moved from RBUF to 

DRAM; the corresponding packet descriptor is stored in SRAM while a duplicate 

is passed to the next stage through the receiving scratch ring. Subsequent the flow 

classifier retrieves a packet descriptor for flow classification which operates as 

following. First, the IP and port pairs in the packet are used to calculate a hash key 

for indexing in the hash table in SRAM in order to verify whether the flow which 

the packet belongs to exists. Since the task requires much computing power, the 

hash unit is adopted to offload the overhead. If a hash hit occurs, the hash entry 

pointing to a flow context in SRAM is referred to enqueue the packet descriptor 

for inspection; otherwise an entry for the new flow is created in the hash table. 

 

 

The dispatcher thread then round-robinly chooses a flow queue and dispatch an 

inspector thread to handle the first packet in the queue. Once a packet payload is 

matched against a pattern, a message is delivered to the XScale through the 

XScale scratch ring to signal an alert. Finally, the transmitter thread examines the 

transmitting scratch ring to determine whether a packet is waiting to be sent. If 

yes, it fetches the packet descriptor in SRAM and sends the entire packet in 

Fig. 3.3. The processing stages of an NIDS on IXP2400. 
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DRAM to TBUF for output.  

In our implementation, a tentative allocation of MEs and threads is determined 

based on the processing stages and the benchmark result of Snort, which argues 

that at least 31% of total processing time is consumed by the detecting phase 

[FV02]. So, each processing stage is allocated one ME except the packet inspector, 

which is given four MEs. That gives us totally four MEs, namely thirty-two 

threads for later adjustment and analysis. For thread allocation in the receiver, 

eight threads are evenly divided into four groups corresponding to four gigabit 

ports. Each port is served by two ordered threads to keep packets in order. As for 

the transmitter, eight ordered threads are assigned to one gigabit port. We adopt 

eight ordered threads in both classifier and dispatcher stages for the following two 

reasons leading to out-of-order packets: (1) classifying packets could take vastly 

different amount of time due to hash collisions, and (2) serving flow queues 

round-robinly needs that the round-robin counter be accessed by one thread at a 

time. In the packet inspector, it is manipulated that a flow queue is served by a 

thread at ay instance, in which ordinary thread scheduling mechanism,, rather than 

the ordered thread, is employed for better benefit from multithreading. Since a 

flow queue is served by one thread at a time, packets of a flow will never get out 

of order. Interaction between the thread dispatcher and packet inspector will be 

detailed in section 3.4.4. 

 

3.4.4 Algorithms Adopted and Packet Inspection  
 
3.4.4.1 String Matching Algorithms 

Packet inspection is a critical stage that influences the performance of an NIDS. 

Several string matching algorithms were proposed for improvement. However, 

coding microcode is difficult, since it depends heavily on the hardware 

characteristics. Two popular algorithms, Aho-Corasick referred to as A-C and 

Wu-Manber referred to as W-M, are thus used because they are easy to implement 
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and popular in many applications such as Snort. The two algorithms consist of 

two common phases: a pre-processing phase, which computes and builds 

necessary data structures in memory from the input patterns, and an inspection 

phase, in which patterns are looked up against the packet payload. Nevertheless, 

the pre-processing phase is time-consuming and typically done by the XSacle. In 

our implementation, we store the data structures in SRAM for fast retrieval. Since 

the operation of the A-C involves state transitions, we record the final state 

immediately after the processing of a packet for later inspection of the succeeding 

packet in the same flow queue. Similarly, we keep the shift value for the W-M so 

that patterns across multiple packets can be inspected. 

 

3.4.4.2 Thread Dispatcher and Packet Inspector 

Fig. 3.4 details the interactions between thread dispatcher and packet inspector. As 

mentioned in section 3.4.3, a flow queue is round-robinly selected and the first 

packet descriptor in that flow is passed to an inspector thread chosen from the free 

thread list of the ME. This process involves some operations. First, two flags, 

isEmpty and beingServed, of a flow context are checked in each round. The 

former indicates if the corresponding flow is empty while the latter denotes 

whether that flow is being served by a thread. If the flow is not empty and not 

being served, a packet descriptor is assigned to an inspector thread followed by 

the corresponding modifications of the two flags. This ensures that a flow is 

served by only one inspector thread at a time, by which preventing the state (for 

the A-C) or shift value (for the W-M) from being altered by other threads. The 

inspector thread then examines a packet payload against the patterns in SRAM 

and updates accordingly the state or shift value in the flow context. If no pattern is 

matched, the packet is passed to the transmitter thread to be sent out; otherwise 

the XScale is notified of a match. Finally, the packet inspector thread puts itself 

into the free thread list, waiting for the next signal from the dispatcher. The four 

free thread lists implemented using four scratch rings correspond to the four MEs. 
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The inspector threads are dispatched round-robinly among the MEs for better load 

balancing. To avoid the system resource being exhausted by excess idle flows, a 

timeout counter maintained by the XSacle is associated with each flow. Once the 

counter turns to zero, the flow queue as well as the flow context and hash entry 

are removed. 

 

 

3.5 System Benchmark and Bottleneck Analysis 
In this section, we evaluate the performance by externally and internally 

benchmarking the system implemented using two string matching algorithms. To 

have both MEs and memory, namely SRAM, well utilized, we investigate the 

appropriate numbers of I and J for the application. Since the memory access 

overhead accounts for a considerable portion in the packet processing, the 

feasibility of exploiting multiple memory banks for load balance is exploited. 

 

3.5.1 Benchmark Setup 

The XScale core in our design is responsible simply for the preprocessing and 

alerting; therefore, in this section we focus mainly on the performance of the MEs 

which are the main component that handles the most part of packet processing. 

Fig. 3.4. Interaction between the thread dispatcher and packet inspector. 
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Since the performance statistics including the ME and memory utilizations can 

only be obtained by the simulator, we evaluate the performance through 

simulations. The preprocessing phase originally done by the XScale is shifted to 

the receiver ME since the simulator does not comprise the XScale. Notably two 

MEs from two processing stages, the flow classifier and thread dispatcher, 

respectively, are borrowed in the analysis due to the dearth of MEs.  

 

3.5.1.1 Patterns for Packet Inspection 

Observing that 2475 patterns are used in the current Snort, we employ 2000 

random patterns in which characters are generated uniformly according to the 

guidelines discovered in [AAP04]. The shortest pattern length, LSP, which is 

known as a major factor on the performance of string matching algorithms such as 

W-M, is set to four [LHC04].  

 

3.5.1.2 Simulator Setup 

The IXP2400 Developer Workbench simulator provides tools for compiling the 

microC into microcode and a simulator called Transactor, for evaluating the 

performance. The simulator allows users to configure parameters. In our 

experiment, the clock of the ME is 600 MHz. The input interface of the MSF is 

divided into four gigabit ports, while the output interface is a four-gigabit one. 

The transmitter and receiver buffers are both 256 bytes. Four data streams of 

64-byte TCP/IP packets with randomly generated payload are injected. All 

simulations last for 50000 packets. 

 

3.5.2 Effect of Improper ME/Thread Allocations 

To investigate the effect of improper ME/thread allocations, we compare the 

performance, in terms of utilization, of the A-C for different (I,J) combinations. 

As shown in Fig. 3.5(a), I and J can be configured while the total number of 
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threads, JI × , is fixed to 12. Some observations are made. First, the throughput is 

influenced mostly by JI × , rather than I, as the throughput remains unchanged for 

the (I,J) combinations. Second, the average ME utilization degrades while 

increasing I. This is because the same traffic load is balanced by more MEs. The 

same explanation applies to the results of the W-M in Fig. 3.5(b). Third, the 

throughput of the W-M is only one-fourth of the one of A-C. This is due to the 

relatively high processing overhead of the W-M, as clarified in Fig. 6.  

 

 

Figure 3.6 profiles the total memory-access cycles referred to as P, as well as 

Fig. 3.5. Performance of the (a) A-C and (b) W-M for different (I,J) 
combinations. Total number of threads is fixed at 12. 
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the computational cycles referred to as M, required by the A-C and W-M for 

handling a 64-byte packet. From the figure we can see that the sum of P and M of 

the W-M is approximately 4 times of the one of A-C. This explains the relative 

low throughput of the W-M compared with the A-C. Further, the memory access 

overhead dominates the processing time of a packet, namely 94% for A-C and 

98% for W-M. Fortunately this un-balance situation is tolerated by multithreading, 

which makes the utilizations of MEs and memory much closer to each other than 

what otherwise will be. 

 

 

 

3.5.3 Estimating the Optimal (I,J) Pair 

Figure 3.7 depicts the performance of the two implementations by increasing 
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Fig. 3.6. Profiling of the total (a) memory access cycles and (b) 
computational cycles for processing a 64-byte packet. 

0

2000

4000

6000

8000

10000

12000

500 1000 2000

# of patterns

co
m

pu
ta

tio
na

l i
ns

tr
uc

tio
n

cy
cl

es

Aho-Corasick

Wu-Manber



 34 

number of MEs and therefore the total number of threads. Some observations can 

be made. First, the throughput of A-C is better due to less computational and 

memory-access overhead. Second, for number of MEs being from one to four, the 

ME utilizations of both implementations are almost the same, implying that the 

number of threads per ME is insufficient. Third, initially, the throughputs of both 

implementations increase with a direct ratio to JI × . Nevertheless, the throughput 

increases slightly as I = 5 for W-M and I = 6 for A-C, respectively, because 

memory is almost fully utilized. Fourth, as I increases and memory utilization 

approaches 90%, the average ME utilization degrades, because the load making 

memory saturated is diluted by large I.  

 

We can also estimate a combination of (I,J) such that both ME and memory are 

best utilized. As we learn from Fig. 3.7, when memory utilization is above 90%, 

increasing I, and therefore total number of threads contributes slightly to the 

performance and is not cost-effective. For example, the improvement of memory 

utilization from incorporating the sixth processor is about %8.38.916.95 ≈− and 

%6.19.915.93 ≈−  for A-C and W-M, respectively. Hence, 4085 =×  threads should 

be cost-effectively enough for both algorithms to well utilize the memory. 

Nonetheless, the ME utilization is low when I = 5, meaning that the computing 
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Fig. 3.7. The performance of A-C and W-M with different 

numbers of MEs (eight threads per ME). 
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power is unnecessarily much and should be further reduced. We fix this problem 

by employing four MEs, rather than five, so that the average utilization of MEs 

shall become %4.87
4

5%9.69 ≅×  (since %100%5.116
3

5%9.69 >≅× ), and J can thus be 

estimated to 10
4

40 = . Similarly, a combination of )13,3(  can be derived for the 

W-M. 

 

3.5.4 Effectiveness of Multiple Memory Banks 

One of the solutions to the memory bottleneck is to add more memory banks. To 

evaluate the benefit, we adopt two SRAM banks to store the data structures of the 

string matching algorithms. Table 3.1(a) shows that only minor improvement can 

be gained due to the difficulty of splitting the data structure, namely goto table, of 

A-C evenly into different memory banks. The W-M, on the contrary, benefits 

substantially (about 43.7%) from two banks as presented in Table 3.1(b). This is 

credited to the use of several tables which make the distribution of data a lot 

easier and more efficient to memory banks.  

 

Table. 3.1. Performance of (a) A-C and (b) W-M with one and two memory banks, 
respectively. (I,J) = (6,8). 

(a) 

 One memory bank Two memory banks 

Avg. ME util. (%) 61.1 63.2 

MEM util. (%) 95.6 95.2/1.8 

Throughput (Mbps) 670.6 674.4 

(b) 

 One memory bank Two memory banks 

Avg. ME util. (%) 44.0 63.2 

MEM util. (%) 93.5 70.0/57.2 

Throughput (Mbps) 133.2 191.4 
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3.6 Summary 
In this work, we elaborate the implementation of a memory-access intensive 

application, NIDS, over the IXP2400 network processor. We introduce the 

hardware platform, briefing the NIDS processing flow, and identify necessary 

processing stages to be mapped to the platform. Among those processing stages, 

the packet inspection is implemented with the Aho-Corasick and the Wu-Manber 

algorithm. Some design issues including packet ordering and flow interleaving, 

which may cause incorrect inspection results for patterns across multiple packets, 

are discussed and solved. After implementation, we externally and internally 

benchmark the system aiming to observe the effect of the allocations of processors, 

threads, and memory banks, as well as possible bottlenecks.   

The benchmark result shows that the system can support up to 670 Mbps when 

implemented using the Aho-Corasick and 133Mbps using the Wu-Manber. It is 

also observed that given a certain application and algorithm, the throughput is 

influenced mostly by the total number of threads as long as the ME utilizations do 

not exceed 100%. Although enlarging the total number of threads by adding more 

processors benefits the throughput, the ME utilization suffers. This is because the 

load saturating memory is diluted by the increased I, meaning that J instead 

should be extended.  

The bottleneck is then found to be the SRAM as the JI ×  exceeds the 

upperbound k that cost-effectively utilizes the memory. With the upper-bound, we 

can estimate an optimal (I, J) combination, i.e. (4, 10) for the Aho-Corasic and (3, 

13) for the Wu-Manber, respectively. In fact, supposed an application, algorithm 

and k, an optimal (I, J) can always be derived. Two workarounds are suggested to 

solve the SRAM bottleneck, namely when kJI >× . The first is to use multiple 

memory banks. Our result indicates that the performance gains a 43.7% 

improvement from two banks for Wu-Manber since the data structure itself makes 

it easy to be evenly distributed among banks. The other is to adopt a multi-port 
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memory which allows multiple simultaneous memory accesses. This is helpful 

especially to algorithms, such as the Aho-Corasick, having data structures difficult 

to be uniformly split. 

Two issues are to be investigated in the future. First, real traffic, rather than the 

synthetic one, should be adopted. The second is to investigate the allocation 

measures for computational-intensive applications. 
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Chapter 4 

Coprocessors-centric Network 

Processors: Analysis, Simulation, and 

Design Implications 

 

4.1 Introduction 
In this work, we aim to unveil possible hints, especially the thread allocation, for 

future NP design in two directions: (1) develop a preliminary analytical model 

using the Continuous Time Markov Chain, and (2) build a Petri net simulation 

environment which is also used for model validation. Our approach considered 

both memory and ready queuing effects that are often ignored in other works, and 

involves two important networking applications, Simple Forwarding and DiffServ, 

which have different computational and memory access requirements. We propose 

a concept named P-M ratio and discover that a large I , or J, is needed for high, or 

low, P-M ratio, and further that when processor overhead (P) is similar to the 

memory’s (M), the most appropriate number of threads is shown to be 5. Notably 

the core processor was not included in our model since the control-plane 

processing accounts for only a minor portion in the packet processing. 

Another concern in our approach is the selection of a thread allocation scheme. 

Thread allocation schemes decide how threads in a processor are arranged for 

processing packets; adopting an improper scheme could result in un-balanced load 

distribution among processors. We compared and discussed four possible 

allocation schemes, and chose the most appropriate one as the base assumption 

throughout this work. Factors influencing the selection include the amount of 
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hardware resources, design complexity, and flexibility in processing. 

The rest of this article is organized as follows. Section 4.2 introduces the 

concept of thread allocation schemes. Section 4.3 elaborates the analytical model. 

Section 4.4 details the construction of the Petri net simulation environment, 

validates our analytical model, and presents some interesting simulation results. 

Conclusive remarks and future work are given and discussed in section 4.5. 

 

4.2 Effect of Different Thread Allocation 

Schemes 
Thread allocations should be carefully involved and studied before analyzing the 

M-M architecture. Four thread allocation schemes are common in real 

implementations, in which at most one thread is active in a processor. The first is 

that a thread is assigned to process a complete packet. Nonetheless, this scheme 

may require intricate inter-thread communications in order to maintain the packet 

ordering in a flow. 

Another two schemes, which are shown in Fig. 4.1, are called homogeneous 

and heterogeneous thread allocations, respectively. In the homogeneous allocation, 

all threads in a processor belong to the same type, e.g., receiver, scheduler, 

transmitter, etc. Each thread in a processor deals with only part of the packet 

processing and after that, it signals a certain thread in the succeeding processor for 

further processing. A thread in a processor may have either fixed or dynamic task 

assignment, namely it may stick to a certain input port or it may support other 

ports whenever necessary. Notably, since all threads in a processor are of the same 

type, this scheme has a more relaxed requirement for the size of the instruction 

memory while exhibiting desirable data locality in cache. Nonetheless, in the 

homogeneous scheme, processing load can hardly be distributed to processors 

evenly, and packet ordering is unlikely to be maintained. 
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Fig. 4.1. Homogeneous and heterogeneous thread allocations. At most one thread 

is active per processor. 

 

This situation can be avoided with the heterogeneous allocation, where the traffic 

can be assigned to a processor with a lighter load by some load-balancing 

hardware and mechanisms [BDE01]. In this scheme, each thread in a processor 

belongs to different types and is supposed to take charge of an equal overhead in 

the packet processing. The requirement for a larger instruction memory will not be 

a problem because less than 5K of it is needed by general header processing 

applications [RW03], and that requirement has already been supported in many 

commercial products such as the Intel IXP2400 and Motorola C-5 [MOT]. 

Another edge of the scheme is the minor synchronization overhead, since the 

inter-thread communication is done using global registers in the processor. A 

comparison between these two strategies is shown in Table 4.1. For the reasons 

discussed above, we take the heterogeneous allocation as the basic assumption in 

our model throughout this work. 

 

Table 4.1. Comparison between the homogeneous and heterogeneous schemes. 

Allocation 
strategy 

Threads in 
a processor 

Packet 
processing 

Instruction 
memory 

Data 
locality 

Load 
balancing 

Sync. 
overhead 

Homogeneous Same type Partially Small High Hard High 
Heterogeneous Diff. types Completely Large Low Easy  Low 

 

R: 

S: 

T: 
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It is also possible to use the hybrid allocation scheme, in which processors of 

homogeneous or heterogeneous allocations are incorporated. This scheme 

preserves the strength of large instruction memory and high data locality, which 

can be achieved by assigning homogeneous processors to tasks exhibiting high 

data locality. However, the load balancing and packet ordering originally 

supported by the heterogeneous scheme no longer exist. 

 

4.3 Overview of the Analytical Model 
In this section we present an approximate analysis of the multithreaded 

multiprocessor network processor using a Continuous Time Markov chain. We 

define the state space of the model, derive the transition rates and solve the model. 

In addition to the heterogeneous allocation determined in the previous section, we 

proceed with the assumption of blocking processing, as shown in Fig. 4.2. The 

blocking processing contrasts with the non-blocking processing, which is also 

shown in Fig. 4.2 in that no buffer exists between two adjacent threads of a 

processor. That is, a thread cannot pass the processing result to its successor and 

accept another packet if the successor is busy with a packet. Since normally the 

packet processing overhead, including computation and memory access, is fairly 

distributed among threads, this simplified assumption has limited influence on the 

correctness of the model while considerably reducing the state space. 
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Fig. 4.2. The blocking and non-blocking packet processing schemes. A thread tT  

accesses memory with rate tr  during the processing. 

 

 

4.4 Markov Chain Formalization 

4.4.1 State Definition and State Space Determination 

Our model considers I processors, each of which contains J threads, and aims to 

characterize the behaviors of processors, threads and memory. To do that, we need 

to clarify possible activities, i.e. statuses transitions, of a thread. They are 

depicted in Fig. 4.3 and elaborated below. When a packet arrives at an idle thread, 

the thread either enters the ready queue of the processor waiting for execution, or 

enters the active status if no thread is currently active. Sometimes it issues a 

memory access to, for instance, perform table lookups and manipulate packet 

descriptors. Once serviced it re-enters the ready queue, or goes directly back to 

execution if the ready queue is empty. Normally, the thread becomes idle again 

after the packet is processed and passed to the succeeding thread. Nonetheless, it 

may get stuck and enter the finished status if the succeeding thread also has a 

packet under processing. 
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Fig. 4.3. Status transitions of a thread. 

 

According to the above descriptions we can formally define a state of the 

system as 

 JjIisssS jij <≤<≤= 0 and 0  ),......( ,,00,0 ,  

where }:4 ,:3 ,:2 ,:1 ,:0{, finishedreadymemactiveidles ji ∈  represents the 

status of jiT , , the jth thread in processor i. Furthermore we define 

} |{)( ,, ksskS jiji == , so that the number of executing processors and number of 

accesses in the memory system equal to |)1(| S  and |)2(| S , respectively. We 

also define }2|{ )( ,, == jiji ssih  so that the number of queued memory accesses 

of processor i is denoted by |)(| ih . Besides, the RSS (Random Selection for 

Service), rather than the FIFO, is assumed as the queuing discipline for both 

memory and ready queues. This assumption further diminishes the state space by 

disregarding the ordering information in the queues, and is proven not to affect the 

correctness of the analytical result in section 4.5. Taking (I,J)=(2,2) as an example, 

the state space can be derived by excluding exceptional states exhibiting the 

following properties: 

1. A processor has more than one active thread. For instance, 1,1,0,0) ( . 

2. At least one ready thread but no active thread, such as 2,3,0,0) ( . One of the 

ready threads must enter the active status as long as the previous active thread 

completes its processing. 

3. Jjss jiji <≤== + 0  ,0  while4 1,, . In this case, jiT ,  must pass the packet 
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immediately to the succeeding one. 

4. 41, =−Jis ; the same reason as the one in 3. 

 

4.4.2 Determination of the Status Transition Diagram and 

State Transition Matrix 

We will need the state transition matrix in order to solve the model. To derive the 

matrix, however, we have to deal with the status transition rate diagram of threads 

since a state change occurs when one or more threads alter its status. By assuming 

the packet arrival rate for processor i as iλ , memory access rate and service time 

of the jth thread in that processor as jir ,  and ji ,1 μ , memory service rate as m, 

and number of queued memory accesses from the processor as h, we can have the 

status transition rate diagram shown in Fig. 4.4. Notably the service rates, as well 

as the memory access rates, of threads having same thread index in all processors 

are set the same because of the homogeneity among those threads. That is, 

jji μμ =,  and jji rr =, . 

Notice that some status transitions in Fig. 4.4 do not have a rate because of 

being a follower transition. A transition is regarded as a follower if it does not 

initiate a status transition but follow a certain activator transition which actively 

launches a transition. For example, a finished thread (follower) blocked by its 

successor can enter the idle status only after the successor (activator) finishes 

processing and passes down the packet. Another example is that a ready thread 

(follower) will never enter the active status unless a thread switches out from 

active. 
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Fig. 4.4. Status transition rate diagram of jiT , . 

Observing the relationship between activator and follower, two additional 

transitions can be discovered out of Fig. 4.3 and shown in Fig. 4.4, the active to 

active and active to ready transitions. The former occurs when an active thread 

switches out and is then chosen again to execute for the packet passed by its 

finished predecessor; the latter is similar except that it is not chosen for execution 

but put into the ready queue. 

The state transitions and transition matrix can therefore be determined 

according to the status transition diagram. More specifically, a state transition is 

considered valid if there exists only one activation event containing an activator 

transition and possibly a number of corresponding follower transitions. Figure 4.5 

shows four example state transitions, assuming (I,J)=(1,6). The detailed matrix 

derivation is described in the following section. 

 

m
jr

μ

μ
μ μ

 

Fig. 4.5. Example state transitions. 
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4.4.3 Determination of the State Transition Matrix 

A state transition of a non-zero rate consists of one activation event containing an 

activator transition and possibly a number of corresponding follower transitions. 

To verify a state transition, we need to characterize the activation event, namely 

the activator and follower transitions. Obviously, a transition initiated by a thread 

in the active(1) or the memory access(2) status is always an activator transition, 

whereas a transition performed by a thread in the idle(0), ready(3) or finished(4) 

status is a follower transition with two exceptions. The exceptions occur when the 

transitioning thread is the first one in a processor, in which idle-to-active or 

idle-to-ready transitions are possible because of the packet arrival.  

With the observations above and the conditions defining the status of threads 

other than the activator thread, all activation events can be identified as 

summarized in Table 4.2. An activation event is considered valid if the 

corresponding conditions of the activator transition are satisfied. For instance, 

before recognizing an activation event with the activator transition being from 

active to finished, namely the thread is finishing the processing of a packet but 

getting blocked by its successor, two conditions need to be met. First, 1−< Jj  

and }4,3,2{ 1, ∈+jis , since if j equals J-1 or 0 1, =+jis , the thread would have 

been able to send out the packet. Second, for threads other than jiT ,  in processor 

i, their statuses remain unchanged if none of them is in the ready status; otherwise 

one thread shall be chosen for execution. Take (I,J)=(1,3) as an example, the 

activation events (2,2,1)=>(2,2,4), (2,1,0)=>(2,4,0), and (3,1,2)=>(3,4,2) are all 

invalid. 
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Table 4.2. Activation events initiated by jiT , , and the corresponding examples 

( }4,3{ ,1 ∈= JI ) and conditions. jis ,  and jis ,′  denote the source and destination 

status of jiT , , respectively. The status transition rates are shown in Fig. 4.4.  

 

Activator Example Condition 

act(1) => fin(4) 
j 4j 1

1, −jis

1, +jis

1, −′ jis

1, +′ jis

j 4j 1

1, −jis

1, +jis

1, −′ jis

1, +′ jis
 

Ex: (3,1,2) => (1,4,2) 

1. }4,3,2{ ,1 1, ∈−< +jisJj  

2. jijiji sssjj ′′′
∀ =≠≠′ ,,,   then  )3 ,( if  

  1  ,3   else ,,
! =′=∋≠′ ′′

∃
jiji ssjj  

act(1) => mem(2) Ex: (3,1,2) => (1,2,2) The same with (2) in 1=>4. 

act(1) => idle(0) Ex: (3,1,0) => (3,0,4) 

1. }3,1{ ,0  then  1 if 1,1, ∈′=−< ++ jiji ssJj  

2. 4 ,4  then  0 if 1,1, ≠′≠> −− jiji ssj  

3. The same with (2) in 1=>4 except 
}1,{ +∉′ jjj . 

mem(2) => rdy(3) 
j 3j 2

1, −jis

1, +jis

1, −′ jis

1, +′ jis

j 3j 2

1, −jis

1, +jis

1, −′ jis

1, +′ jis
 

Ex: (1,2,4) => (1,3,4) 

1. jiji ssjj ′′
∀ ′=≠′ ,, ,  

2. There exists an active thread. 

mem(2) => act(1) Ex: (2,2,4) => (2,1,4) jiji ssjj ′′
∀ ′=≠′ ,, ,  

idle(0) => act(1) Ex: (0,2,4) => (1,2,4) jiji ssjj ′′
∀ ′=≠′= ,, ,0  ;0  

idle(0) => rdy(3) Ex: (0,1,4) => (3,1,4) jiji ssjj ′′
∀ ′=≠′= ,, ,0  ;0  

act(1) => act(1)  
1j 1

4

0

3

3

{0,2,3} {0,2,3}

…4 0…

j 1j 1

4

0

3

3

{0,2,3} {0,2,3}

…4 0…

j

 
Ex: (4,4,1,0) => (0,3,1,3) 

1. 3  ,0  ,4 1,1,1, =′== ++− jijiji sss  

2. while n>0 { # n=j -1 
 )( 1,, −=′ nini sfs , where 

0)3()2()0(,3)4( ==== ffff  

  0 if , =′ nis  then break 

 else 1−= nn  } 
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act(1) => rdy(3) 
j 3j 1

4

0

{1,3}

{1,3}

{0,2,3} {0,2,3}

…4 0…

j 3j 1

4

0

{1,3}

{1,3}

{0,2,3} {0,2,3}

…4 0…

 
Ex: (4,4,1,0) => (0,1,3,3) 

1. 4 ,0 1, => −jisj  

2. 0  then  1 if 1, =′= −jisj  

3. }3,1{ ,0  then  1 if 1,1, ∈′=−< ++ jiji ssJj  

4. The same with 1=>1 except 
}.3,1{)4( ∈f  

 

 

4.4.4 Performance Estimation for the Analytical Model 

The performance metrics that we are interested in obtaining from the analytical 

model include the processor and memory efficiencies. We can compute these 

measures from the stationary probability vector, π , for the Markov chain. The 

mean number of executing processors, which we call processing power ( powerP ), 

and the processor utilization, which we call processor efficiency ( efficiencyP ), are 

then calculated from the vector as 

 

 |))1(|)(( SSP
S

power ×=∑ π  , and (1) 

  / IPP powerefficiency = . (2) 

 

Memory utilization, which we call memory efficiency ( efficiencyM ), number of 

memory accesses in memory system ( accessesM ), and ready queue length of a 

processor ( lengthR ) can be calculated as 
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4.5 Simulation and Analytical Model validation 
In this section, we describe the construction of a simulation environment based on 

timed, colored Petri nets (CPNs) [Mur89]. It is used to validate the analytical 

model discussed in the previous section as well as to observe possible hints for 

future NP design. 

 

4.5.1 Design of the Petri Net Based Simulation Environment 

The key challenge in simulating memory queuing effect is that an outgoing 

memory access must go back to the thread where it is issued. For that purpose, we 

adopt the event-driven CPN-Tools [RWL+03] as our simulator. The features it 

supports, including the colored tokens, stochastic functions and hierarchical 

editing, provide efficiency in the construction of timed, colored Petri nets 

corresponding to our model. To give a general idea of the design of the Petri net 

based model, we use an example whose configuration of (I,J) is (1,2) shown in 

Fig. 4.6. Simulations for larger I and J are constructed in a similar way. 

The sample Petri net implements the processor and memory subsystems shown 

in Fig 4.6(a) and 4.6(b), respectively, and works as following. A token is added in 

places such as the P0_token (for processor 0), TK0_0 and TK0_1 (for thread 0 

and 1), Pkt_Gen0 (for packet generator), and Init (for memory). Among those 

tokens the one in Pkt_Gen0 is designed to be a colored token, which represents a 

packet and carries information about the processor index (i), thread index (j), and 

the number of memory accesses (k) the thread is obligated to perform to process 

the packet. The tokens of the others are simply non-colored ones. 

In the processor subsystem, the inter-arrival time of packets is exponentially 
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distributed with mean E using the function expDelay, and the availability of a 

thread depends on whether a token is in places of the processor and thread. When 

a packet arrives at B0_0, namely a colored token is fired by the transition Delay0, 

and if there is a token in both P0_token and TK0_0, the packet is admitted by 

consuming those three tokens and firing the transition Tran0_0_0. After that, the 

packet is processed for P/J computation cycles (active state) and M/J memory 

accesses are assigned to the thread by setting k= M/J, where P and M denote the 

numbers of computational instructions and memory accesses required to process a 

packet, respectively. The CPI is assumed to be 1. 

The memory access takes place by firing transitions Tran0_0_1 and S1, and 

then enters the queue (M_buf) of the memory subsystem and gets serviced if no 

other access is present. After a service time of L cycles (memory access state), the 

packet is passed back to the place T0_0 where it is issued according to the i and j 

in the token. The same procedure executes repeatedly until k becomes 0. The 

packet is passed to B0_1, waiting to be admitted by the next thread where 

operations similar to the above are carried out before leaving the system. 
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Fig. 4.6. An example hierarchical CPN describing (a) a processor containing two 

threads, and (b) the memory subsystem. 

(a) 

(b) 
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The simulation design differs from the analytical model in that the memory 

access rate and thread service rate are fixed according to the requirement of the 

application. The memory queue not shown in the above example is implemented 

in the M_buf using utilities of the CPN-Tools.  

 

4.5.2 Model Validation By the Simulation 

The analytical model is validated by simulations. Parameters for the analytical 

model as well as the simulation are listed in Table 4.3.  

 
Table 4.3. The setup of parameters setup in the model validation. P=555 and 

M=30, and the system clock rate is denoted by C. 

 Simulation Analysis 

Packet arrival 
E = 7300 

(cyc/pkt) E
C

1×=λ  (pkt/sec) 

Instruction processing 

capability of a thread 
P/J (cyc/pkt) P

JCi ×=μ (pkt/sec) 

Memory access 

intensity of a thread 
M/J (acc/pkt) 

J

M
r ii ×= μ (acc/sec) 

Memory service time L=90 (cyc/acc) 
L

Cm
1×= (acc/sec) 

 

Our first observation is that, as presented in Table 4.4, the analytical results are 

mostly within 10% of the blocking simulation results. The discrepancy comes 

from the different assumptions between the model and the simulation. The former 

assumes non-deterministic behaviors in the instruction processing, memory access 

rate and memory service time, while the latter uses deterministic ones. In fact, the 

discrepancy can be reduced to be less than 3% if all activities are presumed to be 

non-deterministic in the simulation. Second, the deviation further extends to be 

within 5-25% when comparing the blocking against the non-blocking simulation, 



 53 

meaning that the existence of buffer fairly influences the precision of the model. 

Tough the results of the three cases have similar behaviors; we focus on the 

non-blocking scheme which resembles the real implementation to unveil possible 

design implications for network processors. 

 

Table 4.4. Validation of the analytical model against the blocking and 
non-blocking cases. The non-blocking case resembles the real implementation. 

 

 

 

4.5.3 Simulation Setup 

Two networking applications, Simple Forwarding (SF) and DiffServ (DS), are 

involved in the simulations, in which the numbers of computational cycles and 

memory accesses for handling a packet are configured according to [LLP02]. For 

simplicity, we assume that all memory accesses are of the same type, so the 

corresponding (P, M)s are configured as (235, 12) and (555, 30). Besides, in order 

to be realistic, we adopt the non-blocking scheme for the following simulations, in 
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which buffer is provided for packets processed by a thread.  

Our goal is to investigate the relationship among processors, threads and 

memory banks. To do this, a term named P-M ratio is defined as 

r accesslatency pe y accesses# of memor

snstructiontational i# of compu

adess overhememory acc

adnal overhecomputatio

×
= , 

and three sets of simulations are conducted: simulations with P-M ratio smaller 

than 1, close to 1, and larger than 1, respectively. A large (small) P-M ratio means 

the processor overhead is relatively higher (lower) than the memory’s and is 

thought to be an unbalanced combination of the processor and memory, while a 

P-M ratio close to 1 is considered as a sensible combination. Table 4.5 details the 

configurations of three different P-M ratios for the SF and the DF. The Intel 

IXP1200 and IXP2400 are considered in the simulation by setting the memory 

service time to 20 and 90 cycles, respectively [Com04]. 

 

Table 4.5. Different kinds P-M ratios: (a) smaller than 1, (b) close to 1, and (c) 
larger than 1. SF and DF are included and the memory access latencies are 
configured as the one of the IXP1200 and IXP2400. 
 

App. Comp. overhead Mem. access overhead P-M ratio 

SF 235 10809012 =×  (a) 0.217  235/1080=  

  2402012 =×  (b) 10.98 235/240 ≅=  

  60512 =×  (c) 3.92  235/60 =  

DF 555 27009030 =×  (a) 0.205  555/2700=  

  6002030 =×  (b) 10.925  555/600 ≅=  

  150530 =×  (c) 7.3150/555 =  

 

4.5.4 Effect of the RSS Memory Queuing Discipline 

Before proceeding with the issues mentioned above, we need to justify the use of 

the RSS queuing discipline in memory and ready queues. As mentioned in section 

4.4, the RSS is assumed to be the queuing discipline for both memory and ready 
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queues without affecting the correctness of the result. For the blocking case, 

according to Fig. 4.7, it is proven that the processor utilizations using RSS are 

very close to the corresponding ones using FIFO. Similar observation is seen for 

the non-blocking case. This is because of the power of averaging, namely 

memory accesses, from a thread, having higher priorities in the queue this time 

could have lower ones next time. The explanation applies to the memory queue, 

and is believed to hold for the ready queue. 

 

 

4.5.5 Unbalanced Load among Threads 

Another concern is the resilience of the heterogeneous thread allocation against 

the unbalanced load distribution. We evaluate the impact by involving the 

unbalance ratios, in which a ratio of n means the load of a thread is n times of the 

one of its predecessor. Figure 4.8 depicts the number of packets in the system for 

two ratios after executing 7103×  cycles. From the figure it is clear that for 

ratio=2, the number of packets in system increases notably as J increases. 

Nonetheless, only a slight raise is seen when ratio=1.5, meaning that as far as a 

sensible P-M ratio, which is close to 1, is considered, the system is quite resilient 

to the unbalanced load among threads. 
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4.5.6 Simulations with Three P-M Ratios 

Simulations with a P-M Ratio Larger Than One 

Figure 4.9 shows the results of the simulations with a P-M ratio larger than 1. 

Apparently the memory access overhead is relatively so large that the processor 

efficiency is low and only two threads are enough to utilize the memory. The SF 

and DS have similar processor and memory utilizations because their P-M ratios 

are similar. 
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Fig. 4.9. Processor and memory utilizations for the DS and SF with 

different numbers of threads. The memory service time is 90 cycles. 
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Simulations with a P-M Ratio Close to 1 

Figure 4.10 shows the results of the simulations with a P-M ratio close to 1. The 

SDRAM, in addition to the SRAM, with a service time of 40 cycles is involved 

for comparison. From the figure we can see that for SRAM-SF and SRAM-DS the 

utilizations of both processor and memory are similar because the ratios are close 

to 1. Moreover, the benefit of utilizing memory from adding threads, taking the 

SDRAM-SF as an example, becomes less obvious as the memory utilization 

exceeds 90%. This observation also suggests that J=5 is best for applications with 

a P-M ratio close to 1, since the memory utilization of the SRAM-SF has reached 

90% when J is 5, implying that adding the sixth thread can have merely limited 

gain. 

 

 

 

Simulations with a P-M Ratio Less Than 1 

Figure 4.11 shows the performance improvement by increasing the number of 

processors. The memory service time is assumed to be 5 cycles, indicating that the 
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memory overhead is less than the one of the processor. The memory sustains the 

access load until four processors are incorporated for both SF and DS. 

Interestingly, though memory is apparently not a bottleneck when I=1 and 2, the 

processor is not fully utilized as shown in Fig. 4.12. This suggests that the J, 

which could lead to the low processor utilization, must be carefully estimated 

before using a fast memory module. Another observation from Fig. 4.12 is that, 

the fifth processor contributes limitedly in utilizing the memory while resulting in 

low processor efficiency, implying that J, rather than I, should be increased when 

(I,J)=(4,3). 
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4.5.7 Solutions for the Memory Bottleneck 

Memory usually becomes the bottleneck not only because of the nature of the 

application but because of the speed gap between processor and memory. To 

tackle the problem, three common solutions are investigated and compared: 

enlarging the cache size for better hit ratio; adopting a memory access efficient 

algorithm, and adding more memory banks. Figure 4.13 compares the 

effectiveness of the solutions for the DS when (I,J)=(5,5) and L=20. The hit ratio 

is assumed to be 16.6% and 33.3%, respectively, by reducing the number of 

memory accesses from 30 to 25 and 20. As for the memory access efficient 

algorithm, we proceed by supposing a classification algorithm, which is part of 

the packet processing, having memory accesses 50% less (from 10 to 5 accesses) 

while computational instructions 100% more (from 160 to 320 instructions) than 

the original algorithm, i.e. (P,M) from (555,30) to (715,25). The idea is that more 

computational instructions are usually traded for less memory accesses. We 

consider the effect of multiple banks by employing two banks, looking into two 

situations in which memory accesses are (1) evenly distributed and (2) distributed 

with ratios of 1:2 and 1:4. The cause of the second situation is the data structure 

and the nature of the application or the algorithm. An example would be the 

pattern matching application using the classic Aho-Corasick algorithm [AC75]. It 

is hard to split the goto table evenly into memory banks, resulting in unbalanced 

memory access locality. Even if it is possible, the locality problem remains since 

the matching frequently returns to the root state stored in a certain bank. 
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Fig. 4.13. Performance improvement from the three solutions with respect to 
(I,J)=(5,5) performing the DS. The hit ratio of 16.6% and 33.3% are simulated by 
using (P,M)=(555,25) and (555,20), while (715,25) is designed to mimic a system 
with a memory access efficient classification algorithm. Ratios of 1:1, 1:2 and 1:4 
are investigated for the two banks case. 
 

From the figure we can see that with a hit ratio of 16.6%, an improvement of 21% 

can be obtained. The improvement advances to 51.5%, 2.5 times of the one of 

16.6% ratio, for a hit ratio of 33.3%. The benefit from a memory access efficient 

algorithm is 21.5%, similar to the one with 16.6% hit ratio, despite the increased 

number of computational instructions. The performance gain is best when 

introducing another memory bank. However, it degrades from 81% to 50% and 

15% as the distribution of memory accesses becomes unbalanced. 

 

4.6 Summary 
In this work, we try to derive possible design implications, especially the thread 

allocation, for network processors by developing a preliminary analytical model 

as well as simulations based on the timed, colored Petri net. Two real networking 

applications, the Simple Forwarding (SF) and DiffServ (DS), are involved. To 

date, this work is the first research that adopts the heterogeneous thread allocation 
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scheme and considers the queuing effects in memory and ready queues by 

practically modeling I processors and J threads per processor.  

Although the analytical model is verified to have similar behavior with the 

non-blocking simulation which quite resembles the real implementation, we focus 

on the latter in order to have precise observations. Key observations from the 

simulation results include (1) the Random Selection for Service (RSS) has similar 

effect with the FIFO when serving as the queuing discipline for both memory and 

ready queues; (2) the heterogeneous allocation is better than other schemes, and is 

resilient to the unbalanced load among threads for unbalance ratios smaller than 

1.5; (3) for a sensible P-M ratio, i.e. a ratio close to 1 as in the SF/DS over the 

IXP1200, the most appropriate number of threads is 5, and should be 

increased/decreased as the ratio decreases/increases, and (4) for solving the 

memory bottleneck, if any, adding memory banks best improves the performance, 

though the effectiveness depends heavily on the data structure of the 

application/algorithm. The observation (1) can be used for further state-space 

reduction while (2)~(4) serve as implications for the design and implementation of 

multithreaded multiprocessor network processors. Moreover, by applying the 

observation (3) assuming the IXP1200 as the hardware platform, we can assert 

that J <5 is appropriate for the VPN while J >5 for the Intrusion Detection and 

Prevention as well as the Anti-Virus. 

Some issues are to be investigated in the future. First, the analytical model 

should be revised for large (I, J)’s. Our model is currently limited to 8 threads in 

total, for example (2,4) and (4,2), due to the state-space explosion problem. 

Second, the simulation environment could be enhanced to support (I, J)’s larger 

than (5, 5). This is for identifying the I and J needed for application-platform 

combinations whose P-M ratio is much larger than 1, namely more computational 

overhead, and much smaller than 1, i.e. more memory access overhead, 

respectively. Though increasing I in the simulation is doable, J is currently 

confined to 5 because of the user interface of the tool.  Finally, since the ordinary 
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multi-bank memory suffers from the difficulty of splitting the data structure of 

certain applications/algorithms, a multi-port memory, which services multiple 

memory accesses at once, may be incorporated and considered in our model.  
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Chapter 5 

Resource Allocation of the Core-centric 

Network Processor for Computational 

Intensive Applications 

 

5.1 Introduction  

Today’s networking applications, such as virtual private network (VPN) [BGK99] 

and content filtering that offer extra security and application-aware processing, 

have demanded more powerful hardware devices to achieve high performance. 

The most straight-forward way to tackle this problem is to increase the clock rate 

of a general purpose processor, though some disadvantages, such as the cost and 

the technology limit, accompany. Moreover, the low efficiency is also expected 

since the processor, as its name suggests, is not specifically designed for the 

processing of networking packets.  

Another solution to this problem is to employ the concept of offloading, that is, 

to shift the computing-intensive tasks from the core processor to a number of 

additional processors. The Application-Specific Integrated Circuit (ASIC) [JS99] 

has been a possible candidate to serve as an additional processor. Nonetheless, this 

workaround might not be preferred in two aspects. First, since the functionalities 

are fixed once tapped out, it needs to be redesigned for any modifications. Second, 

the development period is so time-consuming that the time-to-market requirement 

may not be met.  

In this work, we explored the feasibility of implementing VPN, which is a 

computation intensive application, over the Intel IXP425 [INT] network processor 



 64 

featuring an XScale core, multiple hardware contexts and coprocessors, and tried 

to figure out the performance and possible bottlenecks of the implementation. The 

VPN mechanism, which is usually based on the IPSec [Atk95], comprises several 

processing stages such as packet reception (Rx) and transmission (Tx), encryption 

and decryption, authentication and table lookups, each of which needs a certain 

amount of processing. We analyzed the detailed packet flow and decided to 

offload packet transferring and cryptographic calculation to coprocessors. Some 

efforts have also been done to port the VPN application from ordinary PC to 

IXP425 in the meantime. We then externally and internally benchmarked the 

resulting prototype. The former characterized performance figures of the 

implementation, while the latter carried out the in-depth analysis of the 

observations which were left unexplained in the external benchmarks such as 

system bottlenecks. The Xscale is identified to be the bottleneck for IPSec 

processing. 

Some related works researching the bottlenecks of network processors can also 

be found in the literature: Spalink et al. [SKP01] presented the results of simple IP 

forwarding and Lin et al. [LLY+03] implemented DiffServ, both over Intel 

IXP1200. Nevertheless, our work differs from theirs in that (1) no coprocessor 

was involved in their implementations; (2) both the control-plane and part of the 

data-plane processing were handled in the core processor of IXP425 while the 

core of IXP1200 took care of the control-plane packets only, and (3) computation 

intensive VPN application was considered, as compared with simple forwarding 

and memory intensive classification of these two studies. 

This work is organized as follows. We first describe the hardware and software 

architectures of IXP425. Next, we elaborate the details of the design and 

implementation of VPN over IXP425. Then we present the results and 

observations from the external and internal benchmarks. Some conclusive remarks 

of this article are made finally. 
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5.2 Hardware Platform (IXP425) 
 
5.2.1 Hardware Architecture of IXP425 

The hardware block diagram of IXP425 is depicted in Fig. 5.1. The core of 

IXP425 is a 533MHz XScale processor handling system initialization and 

software objects execution. Three buses interconnected by two bridges provide the 

connectivity among components on IXP425. 

 

 

To assist the XScale core in processing networking packets, three 133MHz 

programmable network processor engines (NPEs) are used to execute in parallel 

the code image stored in internal memory for providing functions such as MAC, 

CRC checking/generation, AAL2, AES, DES, SHA-1 and MD5, in cooperate with 

a number of application-specific coprocessors. The support of hardware 

multithreading with single cycle context switch overhead further makes NPEs 

more tolerant to long memory accesses and thus reduces the number of processor 

Fig. 5.1. Hardware architecture of IXP425. 
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stalls. The communication between the XScale core and NPEs is handled by a 

hardware queue manager using interrupt and message queue mechanisms. The 

queue manager also contains 8KB SRAM divided into 64 independent queues 

manipulated as circular buffers for allocating free memory space to incoming 

packets and for locating packets in the memory. The SDRAM can be expanded up 

to 256MB for storing tables, policies and OS applications in addition to packets. A 

PCI interface is available for an additional PCI NIC. Some peripheral controllers, 

like USB and UART controllers, are also equipped into IXP425 for better 

extensibility. 

 

5.2.2 Detailed Packet Flow in IXP425 

The processing flow of an ordinary packet is elaborated below referring to Fig. 

5.1. Upon the arrival of a packet at the interface of an NPE, it is partitioned into 

several 32byte segments and stored at the Receive FIFO of an Ethernet 

coprocessor which in turn performs MAC-related operations. The NPE then 

moves those segments into corresponding addresses in SDRAM allocated by the 

queue manager, which then interrupts the XScale of the reception for further 

processing. During normal processing procedures such as IP and other higher 

layer protocol stacks at XScale, chances are that some authentic and cryptographic 

operations are needed. The XScale core may handle them either by itself or by 

offloading the computation overhead to appropriate coprocessors residing in NPE 

B. In the latter scenario, the coprocessors are directly invoked by NPE B, 

requested by the XScale, to process a certain data segment in SDRAM, where a 

message queue implemented in the queue manager is exploited to pass the request. 

The queue manager is informed by NPE B upon the completion of the operations 

and then interrupts the XScale. 

 

5.2.3 Software Architecture of IXP425 
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The software architecture shown in Fig. 5.2 is divided into two portions, namely 

the platform independent (applications and some higher level components such as 

networking protocol stacks in OS) and dependent parts (mainly device drivers). 

This design is favorable especially when an OS migration from a certain H/W 

platform to another is demanded, that is, the developers need to focus only on the 

dependent part, namely the development of drivers. When implementing device 

drivers, a set of software libraries collectively referred to as AccessLibrary can be 

used to drive devices such as NPEs, coprocessors, peripherals, etc. The 

AccessLibrary also provides utilities, such as OSSL and IxOSServices to 

implement some OS-related functions such as mutual exclusion. 

The software processing flow is described as follows with library functions 

adopted from the AccessLibrary. During the boot time a function named IxNpeDl 

is called to download the corresponding code image into the instruction cache of 

each NPE. Then two functions, IxQmgr and IxNpeMh, are called to initialize the 

queue manager as well as the message handler responsible for the 

communications between NPEs and XScale. The Ethernet-related functions, 

IxEthAcc and IxEthDB, are used to receive and transmit Ethernet frames, while 

the IxCryptoAcc function is incorporated for possible cryptographic operations 

during packet processing. 
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5.3 Processing Stages Analysis and Offloading 

Schemes Design 
In this section, we first introduce basic operations in a VPN environment and then 

analyze its packet processing flow in order to identify possible bottlenecks as 

offloading candidates. Finally, we describe how to implement a VPN gateway 

over IXP425. 

 

5.3.1 VPN Briefing 

Virtual Private Network (VPN) provides secure transmission over un-trusted 

networks. Normally the IPSec protocol is adopted as the underlying technique due 

to the popularity of the Internet Protocol. It supports data authentication, integrity 

and confidentiality, in which two gateways are employed as endpoints 

constructing a VPN tunnel for secure data transmission. Improving the 

performance of the gateways is decisive to the VPN throughput. 

 

Fig. 5.2. Software architecture of IXP425. 
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5.3.2 Identifying Offloading Candidates 

To resolve the performance issue, we analyze the VPN packet processing flow in 

order to identify possible candidates to be offloaded to coprocessors. A detailed 

inbound IPSec packet flow was displayed in Fig. 5.3. It consists of three main 

blocks, namely the packet reception, IPSec processing, and packet transmission. 

Their operations are elaborated below.  

Once an Ethernet frame is received by the physical interface, checking for 

frame check sequence screens out broken frames and the remaining frames are 

examined in accordance with possible MAC address filtering configurations. 

Reception is accomplished after the frame is moved into memory, followed by a 

classification recognizing it as an IPSec packet. At this time, some table lookups 

for processing rules and cryptographic parameters are performed and payload of 

this IPSec packet is decrypted or checked for authentication. Finally, a new packet 

decrypted from the original IP payload is further processed by higher-level 

protocols, or is transmitted according to the routing table. 

Tasks suitable to be offloaded to coprocessors can be identified by two 

characteristics: whether those tasks are repeated routines or computation intensive 

ones. As mentioned earlier this section, we know that IPSec processing, especially 

the cryptographic operation, is computation intensive. Hence, we decide to pick 

the cryptographic processing as an offloading candidate. Another candidate 

comprises the packet transfer, CRC checking/generation, MAC filtering, and 

packet movement between NPE and memory, since the procedures are precisely 

the same for every packet. From the hardware block diagram in section 5.2, it is 

obvious that the IXP425 has the hardware components for the identified 

candidates. 
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5.3.3 Implementation 

We adopt the NetBSD [Net], a secure, highly portable and open-source OS 

derived from 4.4BSD, as our operating system. Clean design between platform 

dependent and independent parts makes it a good implementation target for new 

hardware platform. Following relates three major components in prototyping a 

security gateway over IXP425. 

 

Operating System Porting. The most efficient way to porting an OS to a new 

platform is refer to the port of another similar platform and then implement 

drivers for the target platform based on that port [Kes95]. To port NetBSD over 

IXP425, therefore, we adopt the “EvbARM” port in NetBSD. It supports various 

evaluation boards that equip with XScale or other ARM-based core processors, so 

that only system-level modifications have to be done to enable normal operations 

of IXP425. Example modifications include the CPU identification, setup of 

board-specific memory map, and system initialization procedures. 

 

Driver Development. A number of drivers for devices such as UART, NPEs and 

Fig. 5.3. Processing flow of an inbound IPSec packet. Shaded blocks are 
candidates to be offloaded. 
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coprocessors need to be implemented for communication between the operating 

system and those devices. This effort can be alleviated with the help of the 

AccessLibrary introduced in section 5.2. Besides drivers, we have to modify two 

OS dependent modules, namely OSSL and IxOSServices, in AccessLibrary to 

ensure proper operations of the OS-related services. 

 

Offloading the Cryptographic Operations. The last modification to kernel 

concerns the offloading of in-kernel IPSec cryptographic computations from 

XScale to coprocessor. Ordinary method requires that the kernel performs and 

subsequently waits on the encryption/decryption operations carried out by the 

coprocessor. However, NetBSD provides another option named FAST_IPSec that 

makes use of the Open Crypto Framework (OCF) for offloading. In OCF, the 

cryptographic operations can be handled by a registered function. The 

FAST_IPSec prevails over the original offloading technique in that the XScale 

would not suspend during cryptographic operations. We exploit this technique by 

pre-registering the crypto driver, which drives the crypto coprocessor using 

functions in AccessLibrary, to the OCF. 

 

5.4 Benchmark and Bottleneck Observations 
In this section, we investigate the benefits from offloading by externally 

benchmarking the implementation using various offloading schemes. A number of 

internal tests are also conducted in order to observe what cannot be obtained in the 

external benchmarks. 

 

5.4.1 System Benchmark Setup 

To have a better understanding of the improvement from the network processor 

architecture as well as the offloading mechanisms, we design and benchmark 

systems of different offloading schemes, and compare their performance results. 
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Four offloading schemes are adopted: (1) offload both crypto operations and 

packet Rx/Tx to the corresponding coprocessors; (2) offload crypto operations 

only; (3) offload Tx/Rx only, and (4) no offloading. Figure 5.4 diagrams the 

corresponding data paths for the four schemes. 

 

As for the external benchmark environments for packet forwarding and IPSec, 

we use SmartBits to generate the input traffic and to collect and analyze the 

performance results. For internal tests, some system utilities such as vmstat, top 

and GProf, are employed to obtain the system state as well as other internal 

behaviors such as CPU and memory utilizations. 

 

5.4.2 Scalability Test 

Scalability tests aim to derive the maximum throughput of the prototypes of 

different offloading schemes. Another gateway implementation using Pentium III 

1GHz processor and 256MB SDRAM is also included for comparison between 

IXP425 and x86-based systems. 

Packet Forwarding. Figure 5.5 shows the performance results of 1-to-1 packet 

forwarding under the condition of zero packet loss. From the figure we can see 

that throughput of the IXP425 offloaded by two NPEs parallels the one of 

Pentium III 1GHz. Both of them can support wired speed for packet lengths larger 

than 512 bytes. Besides, a performance improvement of up to 60% contributed by 

Fig. 5.4. Data paths of the four offloading schemes. 



 73 

NPEs can also be gained. We also observed that the maximum throughput occurs 

when the packet length is 1024 bytes, rather than other larger lengths. This is 

because the longer processing time of larger packets counteracts the benefit from 

their reduced header processing overhead.  

 

IPSec Processing. Figure 5.6 depicts the throughput of DES for different packet 

lengths. Some observations can be made. First, offloading IPSec processing to 

coprocessors in NPE B improves the performance by 350%; in some cases 

IXP425 even outperforms the Pentium III 1GHz. Second, the maximum 

throughput occurs when the packet length is 1450 bytes, instead of 1518 bytes. 

This is because 1450 bytes is the largest length for a packet not to be fragmented 

when being encapsulated into an IPSec one. Third, the throughput of 3DES on 

IXP425, as shown in Fig. 5.7, is similar to the one of DES whereas the 

computation requirement of the former is almost triple of the later. The reason is 

that it is the XScale, not the coprocessors, that becomes the bottleneck. 
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5.4.3 Bottleneck Analysis 

Bottleneck of Packet Rx/Tx. To proceed the bottleneck analysis, we considered 

four main functional units likely to affect system performance: bus, memory 

system, NPE and XScale. It is obvious that neither the bus nor the memory is a 

bottleneck because wired speed can be achieved for some larger packet lengths. 

The NPE is not a bottleneck either, since, as observed by the netstat utility, all 

packets are received and stored at the memory. The bottleneck can therefore be 

identified as the XScale since the packet processing is carried out mostly by it. 

Fig. 5.7. IPSec Throughput: the 3DES case. 
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Figure 5.8 shows that the utilization of the XScale linearly advances as the traffic 

load increases. 

 

 

 

Bottleneck of IPSec Processing. The bottleneck in the IPSec processing is 

known to be the XScale before offloading is applied, since the cryptographic 

calculation demands much computing power. However, the XScale is again found 

to be the bottleneck even after offloaded by the crypto coprocessors. Figure 5.9 

shows that when traffic load is 50Mbps exceeding the maximum system 

throughput of 46Mbps, the utilization of XScale approaches 100% and the success 

ratio of IPSec packets significantly drops to 22%. This is because the processor is 

so busy that incoming packets are dropped due to limited buffer space. 
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The XScale bottleneck can be further confirmed with the turnaround times of 

the DES and 3DES requests, respectively, as shown in Fig. 5.10. The turnaround 

time means the duration from the time a request of cryptographic operations is 

issued by XScale to the queue manager, to the time the XScale is notified of the 

completion. As mentioned previously, the throughputs of DES and 3DES are 

similar, indicating that their turnaround times should also be the same. However, 

this contradicts the results in Fig. 5.10 in which the turnaround times of DES and 

3DES are different, justifying that the XScale, rather than the crypto coprocessor, 

is the bottleneck when performing DES and 3DES. The throughputs of DES and 

3DES are the same because they are bound by XScale. 
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We can also estimate the maximum throughput of the crypto coprocessor as the 

processing times of encryption and decryption are proportional to the data length. 

The estimated performances can be computed by △s/△t, where △s and △t 

represent the differences of two packet lengths and two latencies, respectively. 

Therefore, the crypto coprocessor is estimated to scale approximately to 

sec)/(4.162sec)u/(3.20
97117

10521458
Mbbytes =≅

−
−  for DES, and to 101Mbps for 3DES 

likewise. 

 

5.4.4 Turnaround Time Analysis of Functional Blocks 

Figure 5.11 depicts the turnaround time analysis of the functional blocks when 

processing DES and 3DES packets. Functional blocks considered consist of the IP 

processing, IPSec preprocessing including identity and SAD/SPD lookups, and 

IPSec encryption. Three kinds of testbed configurations are conducted for testing 

DES and 3DES: IXP425 with the cryptographic operations offloaded to the 

coprocessor; IXP425 without offloading, namely XScale only; and PIII processor.  

 

Fig. 5.10. Turnaround time of a cryptographic request for a packet. 
Packet size may vary. 
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From the figure we can see that cryptographic calculation accounts for a major 

portion, from 80% to 90%, in the packet processing time before offloading. After 

offloading to the coprocessor, the time for cryptographic calculation is reduced 

from 700 us to 100 us. Notably both the IXP425 and single XScale configurations 

have the same IP processing and IP preprocessing periods because those tasks are 

executed only by XScale. 

 

5.5 Summary 
In this work, we elaborate the implementation of a VPN gateway over the IXP425 

network processor, where a number of coprocessors are provided for offloading 

computation intensive tasks from the Xscale core. We introduce the hardware and 

software architectures of the platform, analyze the VPN, i.e. IPSec, processing 

flow, and then identify the packet Rx/Tx as well as encryption/decryption as the 

ones to be offloaded to coprocessors. We realize the offloading design by 

implementing a number of drivers in NetBSD, and finally externally and 

internally benchmark the system in order to find possible performance 

bottlenecks. 

The benchmark results show that the throughputs of packet Rx/Tx and IPSec 
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Fig. 5.11. Turnaround time of functional blocks. 
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processing are improved by 60% and 350%, respectively, after offloading. 

However, the Xscale is again found to be the bottleneck for both packet Rx/Tx 

and IPSec processing. 

Two issues are to be investigated in the future. First, more tasks may be 

offloaded to NPEs or to coprocessors. An example of this is the IPSec database 

lookup, which determines the policy to be applied to a certain IPSec packet. 

Second, the performance may be further improved if we call the related functions 

in the AccessLibrary directly for cryptographic operations, instead of going 

through the Open Crypto Framework. 
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Chapter 6 

Core-centric Network Processors: 

Analysis, Simulation, and Design 

Implications 

 

6.1 Introduction 

Networking applications offering extra security and content-aware processing 

features demand much powerful hardware platforms to achieve high performance. 

For computational intensive applications such as the Virtual Private Network 

(VPN) [BGK+99], general purpose processors are often adopted; however, the 

cost is considerable while the throughput is not satisfactory because of heavy 

cryptographic operations. Rather, the Application-Specific Integrated Circuits 

(ASICs) [JS97] can meet the performance requirement with a circuitry designed 

for both networking and cryptographic processing. Nonetheless, the lack of 

adaptability makes it less appealing. 

Network processors [Lek03] have been embraced as an alternative to tackle the 

above-mentioned problems for their core-processor/coprocessors -based 

architecture, on which control and data -plane processing can be separated for 

efficiency, and the re-programmability for functional adaptations. The core 

processor can perform complicated operations and is thus responsible for control 

messages, while a number of coprocessors, having specifically designed 
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instructions for networking purpose, are employed for mass data-plane processing. 

This kind of architectures, referred to as the coprocessors-centric model, is 

frequently applied as a core device which requires low configurability but high 

scalability [LLY+03][CLS+04][CM06][LCL+07][TLY+04]. When acting as an 

edge device that deals with relatively mild traffic volume, both control and 

data –plane packets are processed by the core processor. This is referred to as the 

core-centric model. Nonetheless, computational intensive tasks such as receiving, 

transmission and en/de-cyption can still be offloaded to certain 

application-specific coprocessors [LLL+05].  

Several studies have acknowledged the feasibility of adopting these models in 

packet processing for applications such as DiffServ, VPN, Cryptographic 

algorithms, Intrusion Detection and Prevention (IDP). In addition to evaluation 

through implementations of both models to discover system bottlenecks 

[LLY+03][CLS+04][CM06][LCL+07][TLY+04] [LLL+05], mathematical modeling 

[CB02][WF06][LW06] is favored in order to unveil possible design implications 

which are unlikely to observe through real benchmarking. Though, analytical 

resort for the emerging core-centric model is yet unattempted. 

In this work, we analyze the untapped core-centric network processors by 

modeling the IXP425 performing Virtual Private Network (VPN) application. The 

IXP425 [INTb] employs an XScale core processor in charge of general packet 

processing and coprocessors executing receiving, transmission and cryptographic 

operations. The task allocation and important parameters are obtained from real 

implementation [LLL+05], providing sufficient ground for model accuracy. Two 

analytical models are developed using Continuous Time Markov Chain, a method 

widely adopted for capturing system behaviors. The first is a busy-waiting model 

in which the core hands over the intermediate results to the coprocessor for certain 

processing, and keeps polling whether the coprocessor finishes. This primitive 

approach is used by some operating systems, for instance NetBSD, when certain 

coprocessors are incorporated. The busy-waiting model is then extended and 
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compared to an interrupt-driven model in which the core switches to another 

process while waiting for a signal indicating the completion of previously 

offloaded job. This technique is realized in NetBSD by enabling the OCF (Open 

Crypto Framework) option.  

Aside validation on the analytical model, the simulation is developed for 

inspecting internal characteristics of the system, which oftentimes cannot be 

obtained from real implementations and from mathematical analysis due to 

enormous state space. With these established analytical and simulation models, we 

aim at revealing design implications from system and IC vendors’ perspectives, 

respectively. The former includes the effects from processor run length, context 

switch overhead, while the latter covers the benefits from offloading and influence 

of the buffer size. 

Results of the analytical model prove to be closely inline with those of Petri net 

simulations and system benchmark. Though, context switch delay considered in 

the model is then found to be ineffective, implying minor, if not zero, switching 

overhead in the real implementation. The model is thus revised and shown to 

retain accuracy. 

This article is organized as follows. Section 2 briefs the overview of the 

core-centric IXP425 network processor system and our modeling approach. We 

develop the analytical models and simulation design in section 3 and section 4, 

respectively. Section 5 presents the results and observations. Some conclusive 

remarks of this article are made in section 6. 

 

6.2 Background 

6.2.1 Performance Model Overview  

The core of IXP425 is an XScale processor handling system initialization and 

software objects execution. Three buses interconnected by two bridges provide the 

connectivity among components on IXP425. To assist the XScale core in 
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processing networking packets, three coprocessors named network processor 

engines (NPEs) are used for providing functions such as MAC, CRC 

checking/generation, AAL2, AES, DES, SHA-1 and MD5, in cooperate with a 

number of application-specific coprocessors. Our analytical models for the 

processing flow are based on the implementation of VPN over the IXP425 

network processor. As shown in Fig. 1, the processing flow can be summarized 

into five tasks, namely (1) receiving, (2) IPSec preprocessing, (3) en/de-cryption, 

(4) IP processing, and finally (5) transmission. Notably the shadowed blocks, i.e. 

tasks #1, #3 and #5, are offloaded to corresponding coprocessors namely receiving 

coprocessor, computational coprocessor and transmission coprocessor, whereas 

tasks #2 and #4 are handled by the core through context switching.  

 

Fig. 6.1. Processing flow and task allocation of the VPN application over IXP425: 

physical and logical views. 

 

6.2.2 Architectural Assumptions 

Some coprocessors may incorporate multiple hardware threads [INT04] to 

alleviate memory access latency by switching out the processor control to another 

thread when issuing a memory access. Nevertheless, hardware multithreading 
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requires duplicate register sets which suggest an increased cost, and is helpful for 

only memory-access intensive applications such as DiffServ, Intrusion Detection 

and Prevention (IDS). Therefore, in this work we assume single thread in each 

coprocessor since VPN is computational intensive, rather than memory-access 

intensive. Buffer for each processing stage which is frequently involved 

practically are also encompassed, except for the busy-waiting model which needs 

no buffer between the core and the computational coprocessor. 

 

6.3 Analytical Model 

 

6.3.1 The Busy-waiting Model 

In this model, the core does not have buffer between and the computational 

coprocessor and therefore has to wait on the signal from the coprocessor. For 

example, when the core finishes the IPSec preprocessing, the result is passed to 

the computational coprocessor for en/de –cryption and is then again handed over 

to the core for IP processing. In this regards, the core and the computational 

coprocessor can be seen as different processes in a logical CORE processor, since 

only one of them can be active anytime. The scheme can further be simplified as 

three series queues, as shown in Fig. 2, in which all components are independent 

∞/1// MM  models and the departure-time distribution from a queue is identical 

to the interarrival-time distribution of another. The utilizations of the receiving 

and transmission coprocessors are trivial, whereas for CORE it can be obtained as 

 

BcorecopAcore TTT
CORE

__
 

++
= λμ ,                      (1) 

 

where λ  denotes the arrival process at the CORE and AcoreT _ , copT  and 
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BcoreT _  represent the processing time for IPSec preprocessing, en/de –cryption 

and IP processing, respectively. Finally we can have the utilizations for core and 

computational coprocessor as 

BcorecopAcore

BcoreAcore
COREcore TTT

TT

__

__

++
+

×= μμ , and               (2) 

 

corecop μμ −= 1 .                           (3) 

 

 

Fig. 6.2. The busy-waiting model. 

 

6.3.2 The Interrupt-driven Model 

Contrasted with busy-waiting, in this model the core passes the result of IPSec 

preprocessing to the computational coprocessor and resumes without being 

blocked. To realize this concept, two processes need to be forked in the core for 

IPSec preprocessing and IP processing, respectively, and buffer is required 

between the core and coprocessor. When the IPSec preprocessing is done and the 

packet is passed to the coprocessor’s buffer, the context is switched to the other 

process, with certain switching delay DT , for performing IP-related operations so 

that the core is not stalled. To reflect this enhancement, a processor control switch 
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referred to as PCS is adopted to capture behaviors of the two processes. According 

to the above descriptions we can formally define a state of the system as    

),,,,,( STBCARST = , 

 

where R, A, C, B and T denote the queue lengths for the five task stages, namely 

receiving, IPSec preprocessing indicated as Core_A, en/de –cryption indicated as 

Cop, IP processing indicated as Core_B, and transmission, while S denotes PCS. 

As shown in Fig. 3, S=0/S=1 means the core is processing packets at 

Core_A/Core_B. Notably the core could still be busy-waiting for (1) packet 

arrivals from its predecessor or (2) available buffer slots in its successor for 

passing the result. The PCS should be manipulated well to avoid these situations 

by setting (1) appropriate run lengths 1ST  at Core_A and 2ST  at Core_B so that 

the processing resource is reasonably distributed, and (2) correct transitions so as 

to ensure that context switches are performed upon those situations. Parameters 

used in the analytical model are described in Table 6.1.  
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Table 6.1. Notations for the analytical models. 
 λ  denotes packet arrival rate. 

 1ST  denotes the run length of PCS at Core_A. 

 2ST  denotes the run length of PCS at Core_B. 

 1Sλ  denotes the switching rate of PCS from 0 to 1. 11 /1 SS T=λ . 

 2Sλ  denotes the switching rate of PCS from 1 to 0. 22 /1 SS T=λ . 

 DT  denotes the context switch delay. 

 Dλ  denotes DT/1  

 Xμ  denotes the service rate of processing stage X. 

 

 

6.4 Simulation Environment 
Some tools have been available for simulating architectures similar to network 

processors [NFS04][DFL05]. Though accurate, they focus mainly on the 

low-level configuration such as cache structure and lack flexibility in task 

allocation. In this section, we describe the construction of the simulation 

environment based on timed, colored Petri nets (CPNs) [Mur89][ZGF98] which 

captures well component-level activities. It is used to validate the analytical model 

discussed in the previous section as well as to observe possible hints for future 

design. 

We adopt the event-driven CPN-Tools [RWL+03] as our simulator. The features 

it supports, including the colored tokens, stochastic functions and hierarchical 

editing, provide efficiency in the construction of timed, colored Petri nets 

corresponding to our model. As shown in Fig. 4, the net contains five transitions 

representing task stages, each of which associated with a control token indicating 

the availability of the processing resource, and equipped with a place representing 

buffers, namely B0, B1, IF_out, IF_in, and B2. The size of the buffers is 

configured in other five places, i.e. B0’, B1’, IF_out’, IF_in’ and B2’, respectively, 
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by marking them with a number of initial tokens. The following description 

exemplifies a sample processing flow. 

When a packet arrives at the receiving coprocessor, B0, with the inter-arrival 

time being exponentially distributed with mean λ , one token in B0’ is consumed 

indicating the occupation of a buffer slot. Once the receiving coprocessor is 

available (the R_tok place contains a token), the packet is processed for RP  usec 

and then passed to the Core_A stage, if room (B1’>0), while the tokens go back to 

the R_tok and B0’. If the token in P_tok is available, that is the Core_B is not 

executing, the Core_A starts to process the packet for AP  usec and then offloads 

en/de –cryption operations to the computational coprocessor which take for CP  

usec. Notably the token returning to P_tok costs additional DT  usec for context 

switch overhead. Similar procedures apply to the Core_B and the transmission 

coprocessor which last for BP  and TP  usec, respectively. 
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Fig. 6.4. The Petri net simulation model. 
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6.5 Evaluation 
In this section we first validate the analytical model with simulations and real 

implementation, through which the model is revised to be much precise. We then 

evaluate and analyze core-centric network processors from both system and IC 

vendors’ perspectives, and disclose possible design implications. 

 

6.5.1 Validation of the Analytical Model 

The analytical model is validated by simulations. Parameter settings for the 

analytical model as well as the simulation are listed in Table 2. 

 

Table 6.2. Processing time of the tasks evaluated in a real implementation.  

Task Processing time  

(1) Receive 27.3 us/pkt 

(2) IPSec prep 31 us/pkt 

(3) Crypto 12.6 us/pkt 

(4) IP processing 49 us/pkt 

(5) Transmit 27.3 us/pkt 

 

We first try to find the most appropriate transition rate for PCS. As Fig. 5 

presents, compared to the normal run length of 6666 usec [20], when choosing 

100 usec we can have 2.26 times improvement on the effective core utilization 

while consuming 20.5% less computational resource. Busy-waiting period, the 

difference of the utilization and effective utilization, is significantly alleviated. 
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In simulations, the context switch delay, DT , has been decreasingly reduced in 

order to have results inline with those of the analytical model. We finally find that, 

with DT  being very close to 0 the analytical results are mostly within 1% of the 

simulation, as presented in Fig. 6. The discrepancy comes from different 

assumptions between the model and simulation. The former assumes 

non-deterministic behaviors in the packet arrival and instruction processing, while 

the latter uses deterministic ones in order to be realistic. What can be further 

implied is that the context switch delay is minor in the implementation, which is 

quite unreasonable, suggesting that only one process in the core is employed for 

both IPSec preprocessing and IP processing. The utilization of the implementation 

is slightly higher (3%-4%) than the analytical model when lightly loaded because 

of the operating system overhead. The discrepancy noticeably increases when 

overloaded. It is also surprisingly learned that the limited buffer size, which is 

configured to 3, does not influence the accuracy of the model. We will discuss it 

later in this section. 

One observation concerning us is, as the validation proceeds, DT  in the 

analytical model does not have much effect than it should. We soon realize that 

the context switch overhead is actually not effective in the model, since the PCS 

Fig. 6.5. Run length vs. core utilization. 
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transits with no delay. 

 

 
The model is then revised by adding two statuses for the PCS and again proves 

to have results inline with those in Fig. 6. As Fig. 7 shows, the overhead is 

considered (2=>1 and 3=>0) after PCS decides to switch (0=>2 and 1=>3). Fig. 8 

elaborates five sample transitions, among which four of them are performing 

certain tasks and one is receiving packets. Since the buffer size is configured to 3, 

Core_B cannot pass the result to the transmission coprocessor whose buffer is 

already full. Similarly, PCS does not change from 0 (Core_A) to 1 (Core_B) to 

refrain from busy-waiting.  
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6.5.2 Differentiated Run Lengths 

Run lengths have been shown to be influent on the system performance. Rather 

than having same run length for Core_A and Core_B whose processing times are 

different, it is sensible to differentiate them so as to balance the load. As presented 

in Fig. 9, when 1ST  is configured as 100 secμ  which is found appropriate 

previously, the system performance improves as 2ST  increases, in which largest 

advance occurs when 2002 =ST . Nevertheless, given that the processing time for 

Core_A and Core_B is 31 secμ  and 49 secμ , respectively, the results do not 

necessarily suggest possible relationship between 1ST  and 2ST . 

 

 

Fig. 6.9. Benefits from differentiated run lengths for Core_A and Core_B. 1ST  is 

configured as 100 secμ . 
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6.5.3 Effect of the Context Switch Overhead 

Though context switching is helpful in alleviating the memory access overhead, 

for computational-intensive applications it could jeopardize the performance, as 

Fig. 10 explains. From the figure we can learn that a delay of 300 secμ  leads to 

low effective utilization (12%) but considerable context switching and 

busy-waiting burdens (38% and 47%). As the delay reduces, not only does the 

core utilize effectively but also lessen the overhead. The burden from 

busy-waiting can even be annihilated when DT =10 1ST  and 2ST  are further 

configured to 100 and 200 secμ , respectively. Since a context switch delay of 

10 secμ is quite unrealistic for current XScale core implementation (except for 

some coprocessors with hardware multithreads [INT04]), this result is also 

suggesting that system vendors adopt single process for multiple tasks in 

computational intensive applications.  

 

 

6.5.4 Benefit from Offloading 

Offloading complex, routine tasks to specially design coprocessors has been an 
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alternative to pure speeding up the core processor. However, the benefit from 

offloading is not well uninvestigated. Figure 11 demonstrates the gain of doing 

cryptographic operations, which is the most time-consuming task, by (1) 

multiplying the core clock rate, and (2) offloading to the computational 

coprocessor. The former includes (1) no speedup and (2) speedup for 2, 4 and 6 

times for the core processor, while the latter involves both interrupt-driven and 

busy-waiting schemes. As revealed in the figure, the throughput increases in direct 

proportion to the speedups. Nonetheless, the interrupt-driven scheme still 

outperforms the un-offloaded one equipped with a core of 6-time speedup 

resembling a 3.2 GHz P4 processor. The busy-waiting scheme also parallels the 

core of 4-time speedup. 

 

 
The performance figures can even be validated as follows. Let the capability of 

the core be m cycles/sec, and the processing time for Core_A, en/de –cryption and 

Core_B be x, y and z cycles/Mbits, respectively, we can have  

10=
++ zyx

m
(Mbps),                    (4) 

since the throughput of an ordinary core without offloading is 10 Mbps. Moreover, 

Fig. 6.11. Throughput of various offloading schemes. The clock rate of the XScale 

core in the implementation is 533MHz, as a reference for comparison. 
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because the core, namely XScale in the real implementation, is the performance 

bottleneck [LLL+05], we can also have 

T
zx

m =
+

(Mbps),                       (5) 

 

where T represents the throughput of the core executing Core_A and Core_B, and 

therefore the throughput of the interrupt-driven scheme as well. With (4) and (5) 

we can have 

10
:

)4(

)5( T

zx

zyz =
+

++
.                      (6) 

 

Since 4.66.12:)4931()(: ≅+=+ zxy , according to Table 2, the throughput T 

can finally derived as  

74
1

4.61
10 =+×=T  (Mbps),                 (7) 

 

which is very much close to the one from the analytical model. 

 

6.5.5 Effect of Limited Buffer Sizes 

As pointed out earlier in this section, the limited buffer size does not impact much 

on the accuracy of the model. This is verified in Fig. 12 which compares two 

significantly different sizes, 3 and 1000. From the figure we can see that the core 

utilization is the same for both sizes when input load does not exceed the system 

capability. The queue length, which is not shown, for the two cases does not grow 

noticeably, implying that the system is quite tolerant to the variance of the packet 

inter-arrival time. 
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6.6. Summary 
This work aims at deriving possible design implications for core-centric network 

processors by developing an analytical model as well as simulations based on the 

timed, colored Petri net. The computational intensive VPN application, which has 

some complex but routine tasks is adopted to explore the benefit from offloading 

to coprocessors. To date, this work is the first research that practically models the 

interrupt-driven and busy-waiting schemes over this emerging architecture.  

The analytical model is verified to have behaviors quite inline with the 

simulation (within 1%) and the implementation (within 3%-4%), indicating a 

satisfactory accuracy for detailed investigation on architectural-level issues which 

are unlikely to perceive on real implementations. Through both analytical and 

simulation measures we observe that  

 by adopting appropriate process run lengths, 2.26 times improvement on the 

effective core utilization and 20.5% less consumption on the computational 

resource can be achieved; better results can be have if run lengths are further 

Fig. 6.12. Core utilization under two buffer sizes.  
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differentiated according to the processing time; 

 by reducing the context switch delay from 300 secμ  to 10 secμ  we can 

have 2.6 times advance on the effective core utilization, and the switching 

overhead and busy-waiting time can be alleviated by as much as 90%; this 

observation also strongly suggests the use of single process for multiple tasks 

since 10 secμ  delay is normally unfeasible for today’s technology; 

 by incorporating coprocessors for bottleneck task, namely the en/de -cryption, 

the throughput boosts 7.5 times compared to that of single processor; 

 under Poisson arrival, the system is quite tolerant to limited buffer size. 

We believe the first two findings are useful for system vendors while the others 

may interest IC vendors. Discovery concluded in this study should be applicable 

to network processors of similar architecture. 

As future work, we plan to extend this approach by considering memory-access 

intensive applications such as IDP (Intrusion Detection and Prevention). In such 

extension, memory access operations can be offloaded to coprocessors 

specifically designed with wide memory bus. To further analyze the potential 

memory bottleneck, the model can also involve multiple memory modules or 

multi-port memory supporting concurrent accesses. 
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Chapter 7 

Conclusions 
The goals of this dissertation include (1) comparison of the thread allocation 

schemes in multithreading architecture; (2) design implications and (3) resource 

allocation strategies, for coprocessors-centric and core-centric network processors 

implementing different types of applications. For the first, we found that the 

heterogeneous thread allocation is the best scheme, since the load balance among 

processors is simple and effective, compared to the homogeneous and the hybrid 

schemes. It is also resilient to the unbalanced load among threads for unbalance 

ratios smaller than 1.5. Observations regarding others are categorized and stated 

as follows. 

 

General NP Design Implications 

1. Number of threads per processor: For a sensible P-M ratio, i.e. a ratio close to 

1 as in the SF/DS over the IXP1200, the most appropriate number of threads is 

5, and should be increased/decreased as the ratio decreases/increases. 

2. Solution to memory bottleneck: For solving the memory bottleneck, if any, 

adding memory banks best improves the performance, though the 

effectiveness depends heavily on the data structure of the 

application/algorithm. 

 

Resource Allocation for Coprocessors-centric NPs Implementing Memory 

Access Intensive Applications 

1. Most important architectural factor: Given a certain application and 

algorithm, the throughput is influenced mostly by the total number of threads 

as long as the processor utilizations do not exceed 100%. 

2. Although enlarging the total number of threads by adding more processors 
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benefits the throughput, the ME utilization suffers. This is because the load 

saturating memory is diluted by the increased I, meaning that J, rather than I, 

should be extended. 

3. Most appropriate (I,J) estimation through bottleneck identification. The 

bottleneck is found to be the SRAM as the JI ×  exceeds the upperbound k 

that cost-effectively utilizes the memory. With the upper-bound, we can 

always estimate a most appropriate (I, J) configuration for the application. 

 

Resource Allocation for Core-centric NPs Implementing Computational 

Intensive Applications 

1. Improvement from offloading: Offloading from the core processor to the 

coprocessors improves the overall performance for 7.5 times. Moreover, 

offloading the crypto processing benefits the throughput more than 

offloading the Ethernet processing.  

2. Bottleneck observation: The core tends to be the bottleneck even after 

offloading. 

3. Effect and implications from run length analysis: By adopting appropriate 

process run lengths, 2.26 times improvement on the effective core utilization 

and 20.5% less consumption on the computational resource can be achieved; 

better results can be had if run lengths are further differentiated according to 

the processing time; 

4. Effect and implications from context switch overhead analysis: By reducing 

the context switch delay from 300 secμ  to 10 secμ  we can have 2.6 times 

advance on the effective core utilization, and the switching overhead and 

busy-waiting time can be alleviated by as much as 90%; this observation also 

strongly suggests the use of single process for multiple tasks since 10 secμ  

delay is normally unfeasible for today’s technology. 
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