
國 立 交 通 大 學

資 訊 學 院

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

多執行緒多處理器網路處理器之資源分配--

針對計算密集及記憶體存取密集的網路應用

程式

Resource Allocation in Multithreaded Multiprocessor

Network Processors for Computational Intensive and

Memory Access Intensive Network Applications

研 究 生：林義能

指導教授：林盈達 博士

中 華 民 國 九 十 六 年 七 月

 2

多執行緒多處理器網路處理器之資源分配--針對計算密

集及記憶體存取密集的網路應用程式
Resource Allocation in Multithreaded Multiprocessor
Network Processors for Computational Intensive and

Memory Access Intensive Network Applications

研 究 生：林義能 Student：Yi-Neng Lin

指導教授：林盈達 Advisor：Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation Submitted to

Department of Computer Science

College of Computer Science

National Chiao Tung University

for the Degree of

Doctor of Philosophy

in

Computer Science

July 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

 3

多執行緒多處理器網路處理器之資源分配--針對計算密

集 及 記 憶 體 存 取 密 集 的 網 路 應 用 程 式

學生：林義能 指導教授：林盈達

國立交通大學資訊科學與工程研究所博士班

摘 要

今日網路應用程式之處理需要強大的硬體平台以應付日益龐大的

計算量以及記憶體存取。此平台亦必須能夠隨著協定或產品規格

之變動而作有效的調整。沿用已久的多用途處理器架構，其效能

往往被“核心-使用者程式”間的溝通以及執行緒轉換的負擔拖

累；而常用的 ASIC 解決方式則受限於開發時程過久且調整不易的

缺陷而無法滿足需求。

本篇論文主要探討(1)應用日益盛行的網路處理器架構來加速網路

網路封包處理的可行性，此網路處理器包含多個處理器且每個處

理器包含多個硬體執行緒，具有豐富硬體資源、較小的執行緒轉

換負擔以及可調整性等優點，和(2)用此平台來處理不同計算或記

憶體存取量的網路應用程式時硬體資源的分配。我們首先檢視各

 4

種不同的網路處理器並將其分成“助理處理器為主”和“核心處

理器為主”兩大類。就前者而言，助理處理器負責占封包處理主

要工作的資料面象部分，而後者則是由核心處理器兼顧所有的控

制面象和大部分的資料面象的處理。之後我們針對計算密集以及

記憶體存取密集的網路應用程式分別用“助理處理器為主”和

“核心處理器為主”的兩種網路處理器來實作並評估其效能。最

後，根據實作的經驗我們進一步設計出其數學模型以及模擬環

境，以期能找出設計、使用此二種架構時的參考。

 5

Resource Allocation in Multithreaded Multiprocessor

Network Processors for Computational Intensive and

Memory Access Intensive Network Applications

Student: Yi-Neng Lin Advisor: Dr. Ying-Dar Lin

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

Abstract

Networking applications today demand a hardware platform with

stronger computational or memory access capabilities as well as the

ability to efficiently adapt to changes of protocols or product

specifications. Being the ordinary options, however, neither a general

purpose processor architecture, which is usually slowed down by

kernel-user space communications and context switches, nor an ASIC,

which lacks the flexibility and requires much development period,

measures up.

In this thesis, we discuss (1) the feasibility of applying the emerging

alternative, network processors featuring the multithreaded

multiprocessor architecture, rich resources, minor context switch

overhead, and flexibility, to solve the problem, and (2) the ways of

exploiting those resources when dealing with applications of different

 6

computational and memory access requirements. We start by

surveying network processors which are then categorized into two

types, the coprocessors-centric and the core-centric ones. For the

former, the coprocessors take care of the data plane manipulation

whose load is usually much heavier than the one of the control plane,

while in the latter the core processor handles the most part of packet

processing, including the control plane and data plane. After that we

evaluate real implementations of computational intensive and memory

access intensive applications over the coprocessors-centric and

core-centric platforms, respectively, aiming to unveil the bottlenecks

of the implementations as well as the allocation measures. Finally,

based on the evaluations, analytical models are formalized and

simulation environments are built to observe possible design

implications for these two types of network processors.

 2

致 謝

回首研究生生涯，從剛開始的懵懂，到後來終於培養出自己

的一套做事方法與態度，這都必須歸功於我的指導老師 林盈達教

授。也正是因為他的教誨、包容與鼓勵，遇到困難的時候總能夠

一路披荊斬棘，也及時導正了方向。在此，我要誠摯地表達出對

林老師的感謝。

 高速網路實驗室學長學弟們的討論與扶持也是這幾年來重要

的支撐。謝謝賴源正學長、尹維銘學長、曹世強學長、林柏青、

曾國坤以及學弟們，讓我能夠感受到滿滿的情誼。

 最後要感謝家人（爸爸媽媽妹妹弟弟）這幾年來精神上的支

持。融洽的家庭氣氛對於我情緒與壓力的排解有著非常正面的幫

助。謝謝子晴、筱玲、和佳筠，你們的陪伴與傾聽讓我有堅持到

最後的力量。你們是我永遠的家人。

 1

Contents

1. Introduction... 7

1.1 Challenges of Hardware Platforms for Modern Networking
Applications .. 7
1.2 The Importance of Resource Allocation for Network Processors............................ 8
1.3 Coprocessors-centric and Core-centric Network Processors 8
1.4 Related Works .. 9

1.4.1 Application Design and Implementation···10

1.4.2 Mathematical Modeling and Simulation ···11
1.5 Thesis Objective and Dissertation Road Map ... 12

2. Research Methodologies ... 14

2.1 Application Design and Implementation.. 14
2.2.1 Software Architecture of IXP425 ···14

2.2.2 Software Architecture of IXP2400··15

2.2.3 Performance Benchmark ··16
2.2 Mathematical Modeling and Simulation.. 17

3. Resource Allocation of the Coprocessors-centric Network
Processors for Memory Access Intensive Applications............................... 19

3.1 Introduction .. 19
3.2 Hardware Platform (IXP2400) ... 20

Detailed Packet Flow in IXP2400 ··22
3.3 Problem Statements.. 23
3.4 Design and Implementation .. 24

3.4.1 NIDS Briefing··24

3.4.2 Design Issues ···25

3.4.3 Mapping Processing Stages to the Hardware Platform····································26

3.4.4 Algorithms Adopted and Packet Inspection ··28
3.5 System Benchmark and Bottleneck Analysis... 30

3.5.1 Benchmark Setup ···30

3.5.2 Effect of Improper ME/Thread Allocations ··31

3.5.3 Estimating the Optimal (I,J) Pair ··33

3.5.4 Effectiveness of Multiple Memory Banks···35

 2

3.6 Summary ... 36

4. Coprocessors-centric Network Processors: Analysis, Simulation, and
Design Implications ... 38

4.1 Introduction .. 38
4.2 Effect of Different Thread Allocation Schemes ... 39
4.3 Overview of the Analytical Model... 41
4.4 Markov Chain Formalization ... 42

4.4.1 State Definition and State Space Determination··42

4.4.2 Determination of the Status Transition Diagram and State Transition

Matrix ···44

4.4.3 Determination of the State Transition Matrix··46

4.4.4 Performance Estimation for the Analytical Model ··48
4.5 Simulation and Analytical Model validation ... 49

4.5.1 Design of the Petri Net Based Simulation Environment··································49

4.5.2 Model Validation By the Simulation···52

4.5.3 Simulation Setup··53

4.5.4 Effect of the RSS Memory Queuing Discipline ··54

4.5.5 Unbalanced Load among Threads···55

4.5.6 Simulations with Three P-M Ratios··56

4.5.7 Solutions for the Memory Bottleneck ···59
4.6 Summary ... 60

5. Resource Allocation of the Core-centric Network Processor for
Computational Intensive Applications.. 63

5.1 Introduction .. 63
5.2 Hardware Platform (IXP425) ... 65

5.2.1 Hardware Architecture of IXP425 ··65

5.2.2 Detailed Packet Flow in IXP425 ··66

5.2.3 Software Architecture of IXP425 ···66
5.3 Processing Stages Analysis and Offloading Schemes Design.................................. 68

5.3.1 VPN Briefing···68

5.3.2 Identifying Offloading Candidates··69

5.3.3 Implementation ··70
5.4 Benchmark and Bottleneck Observations.. 71

 3

5.4.1 System Benchmark Setup···71

5.4.2 Scalability Test···72

5.4.3 Bottleneck Analysis··74

5.4.4 Turnaround Time Analysis of Functional Blocks ··77
5.5 Summary ... 78

6. Core-centric Network Processors: Analysis, Simulation, and Design
Implications ... 80

6.1 Introduction .. 80
6.2 Background... 82

6.2.1 Performance Model Overview··82

6.2.2 Architectural Assumptions ···83
6.3 Analytical Model .. 84

6.3.1 The Busy-waiting Model··84

6.3.2 The Interrupt-driven Model ··85
6.4 Simulation Environment.. 87
6.5 Evaluation ... 89

6.5.1 Validation of the Analytical Model ···89

6.5.2 Differentiated Run Lengths ··92

6.5.3 Effect of the Context Switch Overhead···93

6.5.4 Benefit from Offloading···93

6.5.5 Effect of Limited Buffer Sizes··95

6.6. Summary ···96

7. Conclusions... 98

Bibliography ... 100

 4

List of Tables

3.1 Performance of (a) A-C and (b) W-M with one and two memory banks. ························35

4.1 Comparison between the homogeneous and heterogeneous schemes.·····························40

4.2 Activation events. ··47

4.3 The setup of parameters setup in the model validation. ··52

4.4 Validation of the analytical model against the blocking and non-blocking cases ·············53

4.5 Different kinds of P-M ratios. ··54

6.1 Notations for the analytical models. ···87

 5

List of Figures

1.1 Coprocessors-centric network processors.··· 6

1.2 Core-centric network processors. ·· 6

1.3 Related works on the network processor resource allocation problem. ···························· 7

2.1 Software architecture of IXP425. ···12

2.2. Software architecture of IXP2400. ··15

2.3 Benchmark environments for (a) packet forwarding and (b) IPsec. ································16

2.4 Transition diagram of a thread in a multithreaded multiprocessor. ··································16

2.5 Petri net of a multithreaded processor. ···18

3.1 Hardware architecture of IXP2400.··20

3.2 Timeline showing two consecutive packets. ···26

3.3 The processing stages of an NIDS on IXP2400. ···27

3.4 Interaction between the thread dispatcher and packet inspector. ·····································30

3.5 Performance of the (a) A-C and (b) W-M for different (I,J) combinations. ·····················32

3.6 Profiling of the total (a) memory access cycles and (b) computational cycles. ················33

3.7 The performance of A-C and W-M with different numbers of MEs. ·······························34

4.1 Homogeneous and heterogeneous thread allocations. ···40

4.2 The blocking and non-blocking packet processing schemes. ··42

4.3 Status transitions of a thread. ···43

4.4 Status transition rate diagram of Ti,j.··45

4.5 Example state transitions. ··45

4.6 An example hierarchical CPN. ···51

4.7 Effect of different memory queuing disciplines for SF. ··55

4.8 No. of packets in system under different unbalance ratios and no. of threads.·················56

4.9 Processor and memory utilizations for the DS and SF. ···56

4.10 Memory access latency and utilization of various numbers of threads. ·························57

4.11 Performance relative to (1,3).···58

4.12 Processor and memory efficiencies for different Is. ··58

4.13 Performance improvement from the three solutions. ··60

5.1 Hardware architecture of IXP425.··65

5.2 Software architecture of IXP425. ···68

5.3 Processing flow of an inbound IPSec packet. ···70

 6

5.4 Data paths of the four offloading schemes.···72

5.5 Throughput of packet forwarding.··73

5.6 IPSec Throughput: the DES case. ··74

5.7. IPSec Throughput: the 3DES case.··74

5.8 Input traffic load vs. XScale utilization for two packet lengths. ······································75

5.9 IPSec packet success ratio vs. XScale utilization.···76

5.10 Turnaround time of a cryptographic request for a packet. ···77

5.11 Turnaround time of functional blocks.··78

6.1 Processing flow and task allocation of the VPN application over IXP425. ·····················83

6.2 The busy-waiting model. ···85

6.3 The interrupt-driven model. ···86

6.4 The Petri net simulation model. ···88

6.5 Run length vs. core utilization.···90

6.6 Analytical model validation against the simulation and real implementation. ·················91

6.7 The revised analytical. ···91

6.8 Example state transitions of the revised model. ··92

6.9 Benefits from differentiated run lengths for Core_A and Core_B. ··································92

6.10 Core usage distribution for different context switch delays.··93

6.11 Throughput of various offloading schemes.··94

6.12 Core utilization under two buffer sizes. ··96

 7

Chapter 1

Introduction

1.1 Challenges of Hardware Platforms for

Modern Networking Applications
Increasing link bandwidth demands faster nodal processing, especially of

data-plane traffic. Nodal data-plane processing ranges from routing table lookup

to various classifications for firewall, DiffServ and Web switching. The traditional

general-purpose processor architecture is no longer sufficiently scalable for

wire-speed processing, and some ASIC components or co-processors are

commonly used to offload the data-plane processing, while leaving only

control-plane processing to the original processor.

Several ASIC-driven products have been announced in the market, such as the

acceleration cards for encryption/decryption, VPN gateways, Layer 3 switches,

DiffServ routers and Web switches. While accelerating the data-plane packet

processing with special hardware blocks, much wider memory buses, and faster

execution processes, these ASICs lack the flexibility of reprogrammability and

have a long development cycle usually of months or even years. The cost of

possible design failures is also high.

Network processors are emerging as an alternative solution to ASICs for

providing re-programmability while retaining scalability for data-plane packet

processing. A network processor typically consists of one core processor and a

number of coprocessors, so that developers can embed the control-plane and

data-plane traffic management modules into the core and coprocessors,

respectively. Scalability concerns due to the computational and memory access

overhead, in data-plane packet processing could be satisfied with the hardware

contexts of minor context switching overhead in each of the coprocessors as well

 8

as the instructions specifically for networking.

1.2 The Importance of Resource Allocation for

Network Processors
Though network processor is promising in its scalability and extensibility [LLP02,

LLY+03, BH95], the determination of architectural parameters such as numbers of

processors, threads in a processor, and memory banks, respectively, is not trivial

given a specific application and hardware platform combination. Furthermore,

since one proper configuration today may not be suitable tomorrow due to

different evolving speeds of manufacturing technologies of the functional units,

some general guidelines may be demanded for efficient and appropriate parameter

determination.

1.3 Coprocessors-centric and Core-centric

Network Processors
Two types of network processors, the coprocessors-centric and core-centric ones,

are classified and addressed in the thesis. In the former, a number of coprocessors

are used to take care of the data plane manipulation whose load is usually much

heavier than the one of the control plane. In the latter the core processor handles

the most part of packet processing, including the control plane and data plane;

only few coprocessors are required to offload some computational intensive

processing.

Since the coprocessors-centric model is used mostly to offload the data plane,

especially the memory access intensive processing, for its multithreading

architecture, we investigate the resource allocation by implementing the Intrusion

Detection and Prevention (IDP) system over the IXP2400 network processor.

 9

As for the core-processor centric model, we implement the Virtual Private

Network (VPN) gateway, which needs to offload limited portion of computational

intensive operations to the coprocessors, over the IXP425. For both types we also

investigate the effect of different architectural parameters through mathematical

modeling.

Fig. 1.1. Coprocessors-centric network processors.

Fig. 1.2. Core-centric network processors.

1.4 Related Works
In this chapter, we present some prior groundwork for our thesis. To comply with

our research directions mentioned previously, we discuss the related works in two

aspects: (1) application implementation and (2) mathematical modeling and

simulation. The following is summarized in Fig. 1.3.

 10

Fig. 1.3. Related works on the network processor resource allocation problem.

1.4.1 Application Design and Implementation

For memory access intensive applications, some researches have focused on

improving the throughput by the deployment of network processors. Bos and

Huang [BH04] implemented an NIDS over the Intel IXP1200 [INT]. The

prototype comprises only the receiver and packet processing using the

Aho-Corasick [AC75] algorithm, but it does not support inspection of patterns

across more than two packets as well as multiple flows. Clark et al. [CLS+04],

designed a Network Intrusion Detection and Prevention System (NIDP) utilizing

an IXP1200 and an FPGA. The former is for header processing and the latter

serves as the signature matching engine, and the bottleneck is found to be the bus

connecting them. Nevertheless, those researches did not discuss in detail on

proper resource allocations.

As for the computational intensive application over network processors, to date

 11

only one can be found in the literature [TLY+04]. The authors implement various

cryptographic algorithms over the IXP2800 network processor, analyze the

instruction mix and compare it with other header processing applications, and

finally propose implementation and optimization principles to improve overall

performance. They find that the ALU operations occupy a significant share,

79.9%, of the total instruction mix, compared to the 58% of the Commenbench

[WF00] PPA (Payload Processing Applciations), 53.5% of the NpBench [LJ03],

and 41% of the Commonbench HPA (Header Processing Applications).

The implementation principles, besides some minor techniques, include the

flow-level and intra-block-level parallelisms. In the flow-level parallelism in

which each thread is allocated to a flow, it is observed that incorporating multiple

threads does not necessarily improve the performance but depends on the

algorithms. Another reason for the limited improvement is that multithreading is

found only help consume more of the stalled cycles rather than the idle ones. To

utilize the idle cycles, they use the intra-block level parallelism, in which one

main ME (namely processor) and a helper ME are involved in processing a certain

block of instructions. The helper ME pre-fetches the data from memory for the

later use of the main ME. Some principles are also proposed for optimization such

as (1) increasing the cache size on MEs to hold tables, (2) enlarging the memory

and command queues and (3) organizing the MEs into a smaller cluster for fast

shared-bus performance.

1.4.2 Mathematical Modeling and Simulation

Analytical approaches have been favored in many researches for its capability of

fast evaluation of the systems under investigation [SMA03]. However, limited

researches have devoted to the modeling of multithreaded multiprocessors. Rafael

et al. [S-BCE90] proposed a model to obtain the performance, in terms of

processor efficiency, of a multithreaded architecture with varying number of

threads. The effect of multiprocessor can be mimicked by adjusting the memory

 12

access latency which is assumed geometrically distributed. This model possesses

good abstraction of the architecture; however, the interaction between the

processing elements and the memory subsystem is disregarded.

This problem was remedied in [NGG93] by including the memory subsystem in

their model, in which the processing elements as well as the memory are

distributed and shared. Each thread is capable of a complete packet processing,

and has a rate to access local/remote memory modules during processing.

Nevertheless, the model is not feasible since the queuing network adopted was a

closed one, and thus does not consider the packet arrivals and departures of real

networking applications.

A number of recent works concerning the modeling of NPs can be found in

[FW02, WT01, GKS03, CFB01, CB02]. Though detailed parameters are included

and programming paradigms are analyzed in their models, the discussion and

consideration of thread allocation are substantially ignored. Lakshmanamurthy et

al. proposed a methodology for analyzing the performance of the Intel IXP2400

[LLP02]. But they focused only on the validation of the system performance,

while the processor and memory utilizations are not addressed and no design

guidelines are suggested. In [SPK03] and [RJ03], the authors propose a

programming model and an analytical method, respectively, for the IXP1200 as a

case study. The former considerably accelerates the process of the application

implementation and verification; the latter delivers the analytical bounds on the

optimum number of threads. Moreover, Gries et al. in [GKS03] uses Network

Calculus to model the IPv4 forwarding on the IXP1200. In [PRS04], the authors

utilize the Linear Programming to achieve automated task allocation on

multithreaded multiprocessor systems.

1.5 Thesis Objective and Dissertation Road Map
As mentioned in the previously, to leverage network processors for networking

 13

applications, we may need to arrange well the hardware resources. Further, some

design implications may also be demanded for future network processors. The

objective of this thesis is therefore:

to investigate resource allocation measure and design implications for network

processors.

The roadmap of the dissertation is organized as follows. Chapter 2 declares the

methodologies to the problem. Chapter 3 and chapter 4 present the investigation

on resource allocation for coprocessors-centric model by implementing the IDP

over IXP2400 and by mathematically modeling the similar architecture,

respectively. Chapter 5 and chapter 6 discuss the implementation and modeling

for the core-centric model. The results summary of the dissertation is mentioned

in chapter 7.

 14

Chapter 2

Research Methodologies

2.1 Application Design and Implementation
Since NPs are used to leverage the processing of networking applications, we

need to verify the feasibility of doing so, namely by implementing those

applications over NPs. We then try to identify possible bottlenecks after

prototyping. The benefits from the identifications are two-fold: serve as (1) the

implications for future NPs design, and (2) the foundation for further investigation

on the optimal resource allocation. Before implementation, we need to understand

the software architecture of the platforms. We also mention the environment and

the tools for external and internal benchmarks.

2.2.1 Software Architecture of IXP425

The software architecture of IXP425 shown in Fig. 2.1 can be divided into two

portions, namely the platform independent (applications and some higher level

components such as networking protocol stacks in OS) and dependent parts

(mainly device drivers). This design is favorable especially when an OS migration

from a certain H/W platform to another is demanded, that is, the developers need

to focus only on the dependent part, namely the development of drivers. When

implementing device drivers, a set of software libraries collectively referred to as

AccessLibrary can be used to drive devices such as NPEs, coprocessors,

peripherals, etc. The AccessLibrary also provides utilities, such as OSSL and

IxOSServices to implement some OS-related functions such as mutual exclusion.

The software processing flow is described as follows with library functions

adopted from the AccessLibrary. During the boot time a function named IxNpeDl

 15

is called to download the corresponding code image into the instruction cache of

each NPE. Then two functions, IxQmgr and IxNpeMh, are called to initialize the

queue manager as well as the message handler responsible for the

communications between NPEs and XScale. The Ethernet-related functions,

IxEthAcc and IxEthDB, are used to receive and transmit Ethernet frames, while

the IxCryptoAcc function is incorporated for possible cryptographic operations

during packet processing.

2.2.2 Software Architecture of IXP2400

Figure 2.2 elaborates the development environment. The IXP2400 programming

can be divided into the XScale programming and the microengine programming.

While XScale programs are written in C/C++ under Tornado, microengine

programs are written in assembly under Workbench for low-level packet

processing capability. The compiled XScale executable is linked with object

microcode compiled by the assembler, and loaded into the IXP2400 SRAM from

which XScale initializes and loads microcode into the Control Store of

microengines. The linked program can also be executed by the Transactor for pure

software simulation. Besides, the XScale is little-endian and byte-addressable

Fig. 2.1. Software architecture of IXP425.

 16

while microengines are little-endian but longword-addressable.

2.2.3 Performance Benchmark

Figure 2.3 illustrates the external benchmark environments, for packet forwarding

and IPsec. We use SmartBits, which is a networking traffic generator and a

performance analyzer, to generate the input traffic and collect and analyze the

performance results. For internal tests, some system utilities, such as vmstat, top

and GProf, are employed to obtain the system state and other internal behaviors

such as CPU utilization and memory usage.

Fig. 2.3. Benchmark environments for (a) packet forwarding and (b) IPsec.

 We also conduct a number of internal benchmarks, namely board-level

simulations using the Transactor within the Workbench, in order to have detailed

observations on the hardware utilizations.

Fig. 2.2. Software architecture of IXP2400.

XScale

ME0

Input Traffic

Tornado

Linker

C/C++
compiler

Assembler

Loader
Workbench

Control-plane

Data-plane

IXP2400Host PC

Et
he

rn
et

 o
r s

er
ia

l p
or

t

Output
Traffic

Control
Store

SRAMSRAM1

 17

2.2 Mathematical Modeling and Simulation
Real implementations reveal precise observations for specific software/hardware

combinations; however, they can hardly reflect generalized implications because

of the difficulty in adapting architectural parameters. To remedy this shortcoming,

we incorporate mathematical modeling as well as simulations. The former has the

best flexibility and efficiency in altering parameters; nonetheless, it often suffers

from the problem of state-space explosion. Though being less flexible and

efficient than the mathematical modeling, the latter captures well the behaviors of

a certain system.

 Since our goal is to consider I processors, each of which contains J threads, and

then capture the behaviors of processors, threads and memory, we use the

Continuous Time Markov chain to mimic a multithreaded multiprocessor network

processor. Figure 2.4 exemplifies the transition diagram of a thread. In this

example, a thread could be idle, active in processing, accessing memory, ready if

not permitted to run, and finished if the packet processing is completed. Based on

this concept we can have further extension to support the modeling of

multithreaded multiprocessor architecture.

 λ
jr

idle (0) active (1)

h
m

finished (4)

λ

mem (2)ready (3)

1
ju

h
m

2
ju

3
ju

4
ju λ

jr

idle (0) active (1)

h
m

finished (4)

λ

mem (2)ready (3)

1
ju

h
m

2
ju

3
ju

4
ju

Fig. 2.4. Transition diagram of a thread in a multithreaded multiprocessor

environment.

 As for the simulation, we adopt the CPN Tools [RWL+03] to employee the

timed and colored Petri nets [Mur89] that capture well component-level activities.

 18

The features it supports, including the colored tokens, stochastic functions and

hierarchical editing, provide efficiency in the construction of timed, colored Petri

nets corresponding to both coprocessors-centric and core-centric models. Figure

2.5 shows an example Petri net describing a multithreaded processor.

Fig. 2.5. Petri net of a multithreaded processor.

 19

Chapter 3

Resource Allocation of the

Coprocessors-centric Network

Processors for Memory Access Intensive

Applications

3.1 Introduction
Networking applications offering extra security and content-aware processing

features demand much powerful hardware platforms to achieve high performance.

For memory-access intensive applications such as the Network Intrusion

Detection Systems (NIDSs) [Roe], general purpose processors with high speed

memory banks are often adopted; however, the cost is considerable while the

throughput is not satisfactory for that the processors’ utilization is low because of

the heavy memory-access overhead. Rather, the Application-Specific Integrated

Circuits (ASICs) [JS97] can meet the performance requirement with a circuitry

designed for strict guarantees on memory-access latency using pipelined

architecture and embedded memory. Nonetheless, the lack of flexibility and long

development cycle make it less appealing.

In this work, we implemented a memory-access intensive application, NIDS,

over the Intel IXP2400 [INT] whose architecture is similar to most network

processors, evaluated the effect of different resource allocations, and finally

investigated the allocation measures. Two signature matching algorithms, the

Aho-Corasick and Wu-Manber [WM94], were incorporated for their popularity in

 20

many security-related implementations, for example, Snort. Several software

components referred to as processing stages [ARB02] were characterized, in

which a tentative processor/thread allocation was applied. After implementation,

we then conducted both external and internal benchmarks. The former unveiled

the throughput of the implementation while the latter analyzed the utilizations of

the hardware components for observing potential bottlenecks. According to the

benchmark result, the effect of the ME/thread allocation is reviewed and

methodologies for the optimal revision of the allocation were subsequently

proposed. Finally, since extra memory banks are often exploited to shorten the

memory access latency, the feasibility and effectiveness of adopting multiple

banks for string-matching applications are discussed.

3.2 Hardware Platform (IXP2400)
As depicted in Fig. 3.1, the IXP2400 consists of several components that are

categorized as following.

Multithreaded multiprocessor architecture

The IXP2400 features nine programmable processors: one Intel XScale core [INT]

Fig. 3.1. Hardware architecture of IXP2400.

 21

and eight microengines (MEs), operating at 600MHz. The Intel XScale core is

responsible for housekeeping functions such as table initialization and exception

handling for control-plane packets such as ICMP unreachable packets. Data-plane

processing, which accounts for the most part in packet processing, is implemented

on MEs. Every ME has eight hardware threads, each of which having its own

register set and program counter to support fast context switch when memory

accesses occur.

Hierarchical memory structure

To ease the memory-access overhead, IXP2400 exploits four types of memories,

DRAM, SRAM, scratchpad, and local memory in an ME, given tradeoffs between

size and latency. IXP2400 has one channel of DDR running at 150MHz. The

channel can support up to 2GB of DRAM, yielding enough capacity for storing

packets. Two channels of Quad Data Rate (QDR) SRAM running at 200MHz are

also provided, and up to 16MB can be populated on each channel. The SRAM is

primary for accommodating packet descriptors for locating packets in DRAM,

queue descriptors, and other data structures frequently used. The on-chip 16KB

scratchpad memory operates in the form of rings and provides similar capability

to SRAM, while the 2560-words local memory is frequently used as a cache for

smaller data structures.

Flexible external interface

The Media Switch Fabric (MSF) is an external interface used to connect the Intel

IXP2400 to a physical layer device and/or a switch fabric. The MSF consists of

receiving and transmitting interfaces which can be configured for different

protocols such as POS PHY Level 3 [POS] and CSIX-L1 [CSI]. Incoming packets

are received into the Receive Buffer (RBUF) and outgoing packets are held in the

Transmit Buffer (TBUF), which are both 8KB in size. The MEs can move data

from RBUF to DRAM and from DRAM to TBUF using the DRAM[rbuf_rd] and

 22

DRAM[tbuf_wr] instructions directly, greatly avoiding packet duplications and

unnecessary memory accesses.

Coprocessors

Two kinds of hardware coprocessors, including a hash unit shared by all MEs and

a Cyclic Redundancy Code (CRC) unit inside each ME, are incorporated in the

system. The hash unit is capable of 48-bit, 64-bit and 128-bit polynomial divisions.

A high quality hash alleviates the probability of hash collisions, contributing to

fewer memory accesses; however, performing a high-quality hash in software,

which occurs frequently in packet classification, is cycle-consuming, and thus

should be offloaded to the coprocessor. Similarly, the CRC unit is used to

offloading the CRC computation.

Detailed Packet Flow in IXP2400

The processing flow of an ordinary packet is elaborated below referring to Fig.

3.1. Upon the arrival of a packet at the MSF of IXP2400, the MSF partitions the

packet into several smaller chunks called mpackets, which can be configured to

64, 128, and 256 bytes in size, and places them into the RBUF elements. The

threads of the MEs dedicated for packet receiving in turn perform the reassembly

of mpackets, and move them directly from the RBUF into DRAM, in which MEs

and the Intel XScale core carry out further operations. The packet processing

typically consists of packet classification followed by packet modification. During

packet processing at MEs, chances are that some exception handling and

housekeeping are manipulated by the Intel XScale core through the interrupt and

message queue mechanism. In the later scenario of packet flow, the transmission

process is just the reverse of the reception process, namely the packet is

segmented into several mpackets by the threads dedicated for packet transmission,

and then placed into the TBUF.

 23

3.3 Problem Statements
In addition to the implementation and evaluation of an NIDS, this work focuses

on the impact of the processor, thread and memory bank allocations. Some

problem statements are discussed below.

Task Allocation and Bottleneck Observation

Before implementing an NIDS, some functional blocks referred to as processing

stages need to be identified and then mapped to the platform. During the mapping

process, we try to exploit the hardware features such as the hierarchical memory

structure and the multithreaded multiprocessor architecture. This involves mainly

the assignment of memories to store different data structures, as well as the

allocation of threads and MEs. After the system is implemented, we will try to

identify possible bottlenecks through the internal and external benchmarks.

Effect of Improper ME/Thread Allocations

The performance of an application is affected by two factors, the computing

power and the memory-access latency. The former is determined by the number of

processors used referred to as I, while the latter can be alleviated by adjusting the

total number of threads employed, namely JI × [LLP02], where J represents

number of threads per processor. Observing that the number of processors is fixed

to the hardware platform, it is interesting to see how an allocation (I, J), especially

an improper one, affects the system performance.

Optimal I and J

It is known that memory-access intensive applications benefit directly from

increasing the total number of threads, namely JI × , rather than individual I and J,

because of its ability of hiding memory-access latency. Nonetheless, how to

determine a fitting JI × , given a certain hardware spec such as clock rate and

 24

memory service rate, remains unanswered. In addition, we are also interested in

finding an optimal (I, J) combination, regardless of the limit on the numbers of

MEs and threads per ME of the platform. A (I, J) is considered optimal when the

utilizations of both ME and memory are cost-effectively high, as will be explained

in section 3.5.

Effectiveness of Employing Multiple Memory Banks

Multiple memory banks reduce the average memory access latency. For

memory-access intensive applications, more memory banks are supposed to

improve the performance. Nonetheless, the effectiveness could be influenced by

whether the accesses are evenly distributed into memory banks. Some

experiments are therefore designed to investigate the effectiveness of adding

memory banks.

3.4 Design and Implementation
In this section, we introduce basic operations of an NIDS, characterize the

operations into processing stages, and finally implement the NIDS by associating

the MEs and threads to the stages. Some design issues are discussed to ensure

proper inspections.

3.4.1 NIDS Briefing

The processing of an NIDS, for example, Snort [Roe], mainly consists of three

phases (1) the packet decoding phase which sets up pointers to packet data at

different layers and stores them into data structures for later analysis by the

detection engine; (2) the detecting phase, in which a group of rules matched

against a packet header are applied for further signature matching, and (3) the

alert phase, in which some alert or logging routines are carried out. Although later

versions of Snort include the preprocessing phase performing the IP

 25

de-fragmentation and TCP stream reassembly, it is optional and thus excluded in

the implementation for simplicity.

3.4.2 Design Issues

According to the above-mentioned characteristic of an NIDS, it is clear that we

can implement an NIDS over the IXP2400 by dividing the packet processing into

a series of stages, namely the receiver, packet inspector and transmitter, and

mapping them onto the MEs. The preprocessing phase is excluded in the mapping

since oftentimes it is not done in the fast path [NSH02], but by the XScale.

Moreover, packets can be distributed to a pool of MEs, and thus threads, in the

packet inspector to exploit high parallelism. Nevertheless, two problems including

packet ordering and flow interleaving arise.

Packet ordering

The issue of packet ordering occurs in a processing stage when multiple threads

are dispatched to process the packets of a flow simultaneously. Oftentimes the

amount of time to process a packet is not constant due to context switching, and

thus the packet ordering may not be guaranteed, as shown in Fig. 3.2(a). To tackle

this problem, a mechanism called ordered threads [JK03], is adopted requiring

that threads handle packets in order in a processing stage of several functions, as

presented in Fig. 3.2(b). For example, thread 1 is allowed to execute function 1 for

a packet only after thread 0 completes the same function for another packet. When

thread 0 completes function 1, it notifies thread 1 using inter-thread signaling.

However, the effectiveness of multithreading could be greatly degraded if the

function contains much memory accesses. The executing thread may not be able

to context switch to other threads when performing memory accesses.

 26

Flow interleaving

In packet inspection, a pattern may stretch across multiple packets. If flows are

interleaved, it is not guaranteed that two consecutively processed packets belong

to the same flow, meaning that patterns across multiple packets can not be

inspected appropriately.

To fix these two problems, we refine our design by adding two processing

stages, the flow classifier and thread dispatcher, supporting packet ordering. The

main idea behind is to classify packets into different flow queues associated with a

corresponding flow context, such that flows are no longer interleaved. The flow

context comprises the SRAM address of the flow queue keeping the packet

descriptors, state of inspection and some status flags. Further, each thread in the

packet inspector stage is dispatched by the dispatcher to serve one flow queue.

After finishing the inspection of a packet, the packet inspector thread stores the

final state of the inspection for later reference by another thread serving the same

queue. The implementation of the thread dispatcher will be detailed later in

section 3.4.4.

3.4.3 Mapping Processing Stages to the Hardware Platform

Fig. 3.3 shows the processing stages of an NIDS, as well as the task and resource

allocation for IXP2400. The NIDS processing is elaborated as follows. Upon

Fig. 3.2. Timeline showing two consecutive packets (a) being out of order, and

(b) being ordered in a processing stage.

fun 1

fun 1

fun 2

fun 2

Thread 0

Thread 1

Time

inter-thread
signalinginter-thread

signaling

waiting for
a signal

waiting for
a signal

(a) (b)

 27

receiving a packet from an input port, the packet data is moved from RBUF to

DRAM; the corresponding packet descriptor is stored in SRAM while a duplicate

is passed to the next stage through the receiving scratch ring. Subsequent the flow

classifier retrieves a packet descriptor for flow classification which operates as

following. First, the IP and port pairs in the packet are used to calculate a hash key

for indexing in the hash table in SRAM in order to verify whether the flow which

the packet belongs to exists. Since the task requires much computing power, the

hash unit is adopted to offload the overhead. If a hash hit occurs, the hash entry

pointing to a flow context in SRAM is referred to enqueue the packet descriptor

for inspection; otherwise an entry for the new flow is created in the hash table.

The dispatcher thread then round-robinly chooses a flow queue and dispatch an

inspector thread to handle the first packet in the queue. Once a packet payload is

matched against a pattern, a message is delivered to the XScale through the

XScale scratch ring to signal an alert. Finally, the transmitter thread examines the

transmitting scratch ring to determine whether a packet is waiting to be sent. If

yes, it fetches the packet descriptor in SRAM and sends the entire packet in

Fig. 3.3. The processing stages of an NIDS on IXP2400.

 28

DRAM to TBUF for output.

In our implementation, a tentative allocation of MEs and threads is determined

based on the processing stages and the benchmark result of Snort, which argues

that at least 31% of total processing time is consumed by the detecting phase

[FV02]. So, each processing stage is allocated one ME except the packet inspector,

which is given four MEs. That gives us totally four MEs, namely thirty-two

threads for later adjustment and analysis. For thread allocation in the receiver,

eight threads are evenly divided into four groups corresponding to four gigabit

ports. Each port is served by two ordered threads to keep packets in order. As for

the transmitter, eight ordered threads are assigned to one gigabit port. We adopt

eight ordered threads in both classifier and dispatcher stages for the following two

reasons leading to out-of-order packets: (1) classifying packets could take vastly

different amount of time due to hash collisions, and (2) serving flow queues

round-robinly needs that the round-robin counter be accessed by one thread at a

time. In the packet inspector, it is manipulated that a flow queue is served by a

thread at ay instance, in which ordinary thread scheduling mechanism,, rather than

the ordered thread, is employed for better benefit from multithreading. Since a

flow queue is served by one thread at a time, packets of a flow will never get out

of order. Interaction between the thread dispatcher and packet inspector will be

detailed in section 3.4.4.

3.4.4 Algorithms Adopted and Packet Inspection

3.4.4.1 String Matching Algorithms

Packet inspection is a critical stage that influences the performance of an NIDS.

Several string matching algorithms were proposed for improvement. However,

coding microcode is difficult, since it depends heavily on the hardware

characteristics. Two popular algorithms, Aho-Corasick referred to as A-C and

Wu-Manber referred to as W-M, are thus used because they are easy to implement

 29

and popular in many applications such as Snort. The two algorithms consist of

two common phases: a pre-processing phase, which computes and builds

necessary data structures in memory from the input patterns, and an inspection

phase, in which patterns are looked up against the packet payload. Nevertheless,

the pre-processing phase is time-consuming and typically done by the XSacle. In

our implementation, we store the data structures in SRAM for fast retrieval. Since

the operation of the A-C involves state transitions, we record the final state

immediately after the processing of a packet for later inspection of the succeeding

packet in the same flow queue. Similarly, we keep the shift value for the W-M so

that patterns across multiple packets can be inspected.

3.4.4.2 Thread Dispatcher and Packet Inspector

Fig. 3.4 details the interactions between thread dispatcher and packet inspector. As

mentioned in section 3.4.3, a flow queue is round-robinly selected and the first

packet descriptor in that flow is passed to an inspector thread chosen from the free

thread list of the ME. This process involves some operations. First, two flags,

isEmpty and beingServed, of a flow context are checked in each round. The

former indicates if the corresponding flow is empty while the latter denotes

whether that flow is being served by a thread. If the flow is not empty and not

being served, a packet descriptor is assigned to an inspector thread followed by

the corresponding modifications of the two flags. This ensures that a flow is

served by only one inspector thread at a time, by which preventing the state (for

the A-C) or shift value (for the W-M) from being altered by other threads. The

inspector thread then examines a packet payload against the patterns in SRAM

and updates accordingly the state or shift value in the flow context. If no pattern is

matched, the packet is passed to the transmitter thread to be sent out; otherwise

the XScale is notified of a match. Finally, the packet inspector thread puts itself

into the free thread list, waiting for the next signal from the dispatcher. The four

free thread lists implemented using four scratch rings correspond to the four MEs.

 30

The inspector threads are dispatched round-robinly among the MEs for better load

balancing. To avoid the system resource being exhausted by excess idle flows, a

timeout counter maintained by the XSacle is associated with each flow. Once the

counter turns to zero, the flow queue as well as the flow context and hash entry

are removed.

3.5 System Benchmark and Bottleneck Analysis
In this section, we evaluate the performance by externally and internally

benchmarking the system implemented using two string matching algorithms. To

have both MEs and memory, namely SRAM, well utilized, we investigate the

appropriate numbers of I and J for the application. Since the memory access

overhead accounts for a considerable portion in the packet processing, the

feasibility of exploiting multiple memory banks for load balance is exploited.

3.5.1 Benchmark Setup

The XScale core in our design is responsible simply for the preprocessing and

alerting; therefore, in this section we focus mainly on the performance of the MEs

which are the main component that handles the most part of packet processing.

Fig. 3.4. Interaction between the thread dispatcher and packet inspector.

 31

Since the performance statistics including the ME and memory utilizations can

only be obtained by the simulator, we evaluate the performance through

simulations. The preprocessing phase originally done by the XScale is shifted to

the receiver ME since the simulator does not comprise the XScale. Notably two

MEs from two processing stages, the flow classifier and thread dispatcher,

respectively, are borrowed in the analysis due to the dearth of MEs.

3.5.1.1 Patterns for Packet Inspection

Observing that 2475 patterns are used in the current Snort, we employ 2000

random patterns in which characters are generated uniformly according to the

guidelines discovered in [AAP04]. The shortest pattern length, LSP, which is

known as a major factor on the performance of string matching algorithms such as

W-M, is set to four [LHC04].

3.5.1.2 Simulator Setup

The IXP2400 Developer Workbench simulator provides tools for compiling the

microC into microcode and a simulator called Transactor, for evaluating the

performance. The simulator allows users to configure parameters. In our

experiment, the clock of the ME is 600 MHz. The input interface of the MSF is

divided into four gigabit ports, while the output interface is a four-gigabit one.

The transmitter and receiver buffers are both 256 bytes. Four data streams of

64-byte TCP/IP packets with randomly generated payload are injected. All

simulations last for 50000 packets.

3.5.2 Effect of Improper ME/Thread Allocations

To investigate the effect of improper ME/thread allocations, we compare the

performance, in terms of utilization, of the A-C for different (I,J) combinations.

As shown in Fig. 3.5(a), I and J can be configured while the total number of

 32

threads, JI × , is fixed to 12. Some observations are made. First, the throughput is

influenced mostly by JI × , rather than I, as the throughput remains unchanged for

the (I,J) combinations. Second, the average ME utilization degrades while

increasing I. This is because the same traffic load is balanced by more MEs. The

same explanation applies to the results of the W-M in Fig. 3.5(b). Third, the

throughput of the W-M is only one-fourth of the one of A-C. This is due to the

relatively high processing overhead of the W-M, as clarified in Fig. 6.

Figure 3.6 profiles the total memory-access cycles referred to as P, as well as

Fig. 3.5. Performance of the (a) A-C and (b) W-M for different (I,J)
combinations. Total number of threads is fixed at 12.

0

10

20

30

40

50

60

70

80

90

2x6 3x4 4x3 6x2

(I,J) combinations

U
til

iz
at

io
n

(%
)

Link (1000Mbps)

ME

MEM

(a

0

20

40

60

80

100

2x6 3x4 4x3 6x2

(I,J) combinations

U
til

iz
at

io
n

(%
)

Link (1000Mbps)

ME

MEM

(a)

(b)

 33

the computational cycles referred to as M, required by the A-C and W-M for

handling a 64-byte packet. From the figure we can see that the sum of P and M of

the W-M is approximately 4 times of the one of A-C. This explains the relative

low throughput of the W-M compared with the A-C. Further, the memory access

overhead dominates the processing time of a packet, namely 94% for A-C and

98% for W-M. Fortunately this un-balance situation is tolerated by multithreading,

which makes the utilizations of MEs and memory much closer to each other than

what otherwise will be.

3.5.3 Estimating the Optimal (I,J) Pair

Figure 3.7 depicts the performance of the two implementations by increasing

0

50000

100000

150000

200000

250000

300000

500 1000 2000

of patterns

M
em

or
y

ac
es

s
cy

cl
es

Aho-Corasick

Wu-Manber

Fig. 3.6. Profiling of the total (a) memory access cycles and (b)
computational cycles for processing a 64-byte packet.

0

2000

4000

6000

8000

10000

12000

500 1000 2000

of patterns

co
m

pu
ta

tio
na

l i
ns

tr
uc

tio
n

cy
cl

es

Aho-Corasick

Wu-Manber

 34

number of MEs and therefore the total number of threads. Some observations can

be made. First, the throughput of A-C is better due to less computational and

memory-access overhead. Second, for number of MEs being from one to four, the

ME utilizations of both implementations are almost the same, implying that the

number of threads per ME is insufficient. Third, initially, the throughputs of both

implementations increase with a direct ratio to JI × . Nevertheless, the throughput

increases slightly as I = 5 for W-M and I = 6 for A-C, respectively, because

memory is almost fully utilized. Fourth, as I increases and memory utilization

approaches 90%, the average ME utilization degrades, because the load making

memory saturated is diluted by large I.

We can also estimate a combination of (I,J) such that both ME and memory are

best utilized. As we learn from Fig. 3.7, when memory utilization is above 90%,

increasing I, and therefore total number of threads contributes slightly to the

performance and is not cost-effective. For example, the improvement of memory

utilization from incorporating the sixth processor is about %8.38.916.95 ≈− and

%6.19.915.93 ≈− for A-C and W-M, respectively. Hence, 4085 =× threads should

be cost-effectively enough for both algorithms to well utilize the memory.

Nonetheless, the ME utilization is low when I = 5, meaning that the computing

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

of MEs

T
hr

ou
gh

pu
t(

M
bp

s)

Aho-Corasick

Wu-Manber

(61.1, 95.6)

(44.0, 93.5)

(69.9, 91.8)

(61.2, 87.3)

(71.8, 78.3)

(63.0, 70.1)

(73.8, 64.4)

(61.2, 54.2)

(72.7, 46.7)

(63.2, 40.7)

(75.2, 30.3)

(ME Util., MEM Util.)

Fig. 3.7. The performance of A-C and W-M with different

numbers of MEs (eight threads per ME).

 35

power is unnecessarily much and should be further reduced. We fix this problem

by employing four MEs, rather than five, so that the average utilization of MEs

shall become %4.87
4

5%9.69 ≅× (since %100%5.116
3

5%9.69 >≅×), and J can thus be

estimated to 10
4

40 = . Similarly, a combination of)13,3(can be derived for the

W-M.

3.5.4 Effectiveness of Multiple Memory Banks

One of the solutions to the memory bottleneck is to add more memory banks. To

evaluate the benefit, we adopt two SRAM banks to store the data structures of the

string matching algorithms. Table 3.1(a) shows that only minor improvement can

be gained due to the difficulty of splitting the data structure, namely goto table, of

A-C evenly into different memory banks. The W-M, on the contrary, benefits

substantially (about 43.7%) from two banks as presented in Table 3.1(b). This is

credited to the use of several tables which make the distribution of data a lot

easier and more efficient to memory banks.

Table. 3.1. Performance of (a) A-C and (b) W-M with one and two memory banks,
respectively. (I,J) = (6,8).

(a)

 One memory bank Two memory banks

Avg. ME util. (%) 61.1 63.2

MEM util. (%) 95.6 95.2/1.8

Throughput (Mbps) 670.6 674.4

(b)

 One memory bank Two memory banks

Avg. ME util. (%) 44.0 63.2

MEM util. (%) 93.5 70.0/57.2

Throughput (Mbps) 133.2 191.4

 36

3.6 Summary
In this work, we elaborate the implementation of a memory-access intensive

application, NIDS, over the IXP2400 network processor. We introduce the

hardware platform, briefing the NIDS processing flow, and identify necessary

processing stages to be mapped to the platform. Among those processing stages,

the packet inspection is implemented with the Aho-Corasick and the Wu-Manber

algorithm. Some design issues including packet ordering and flow interleaving,

which may cause incorrect inspection results for patterns across multiple packets,

are discussed and solved. After implementation, we externally and internally

benchmark the system aiming to observe the effect of the allocations of processors,

threads, and memory banks, as well as possible bottlenecks.

The benchmark result shows that the system can support up to 670 Mbps when

implemented using the Aho-Corasick and 133Mbps using the Wu-Manber. It is

also observed that given a certain application and algorithm, the throughput is

influenced mostly by the total number of threads as long as the ME utilizations do

not exceed 100%. Although enlarging the total number of threads by adding more

processors benefits the throughput, the ME utilization suffers. This is because the

load saturating memory is diluted by the increased I, meaning that J instead

should be extended.

The bottleneck is then found to be the SRAM as the JI × exceeds the

upperbound k that cost-effectively utilizes the memory. With the upper-bound, we

can estimate an optimal (I, J) combination, i.e. (4, 10) for the Aho-Corasic and (3,

13) for the Wu-Manber, respectively. In fact, supposed an application, algorithm

and k, an optimal (I, J) can always be derived. Two workarounds are suggested to

solve the SRAM bottleneck, namely when kJI >× . The first is to use multiple

memory banks. Our result indicates that the performance gains a 43.7%

improvement from two banks for Wu-Manber since the data structure itself makes

it easy to be evenly distributed among banks. The other is to adopt a multi-port

 37

memory which allows multiple simultaneous memory accesses. This is helpful

especially to algorithms, such as the Aho-Corasick, having data structures difficult

to be uniformly split.

Two issues are to be investigated in the future. First, real traffic, rather than the

synthetic one, should be adopted. The second is to investigate the allocation

measures for computational-intensive applications.

 38

Chapter 4

Coprocessors-centric Network

Processors: Analysis, Simulation, and

Design Implications

4.1 Introduction
In this work, we aim to unveil possible hints, especially the thread allocation, for

future NP design in two directions: (1) develop a preliminary analytical model

using the Continuous Time Markov Chain, and (2) build a Petri net simulation

environment which is also used for model validation. Our approach considered

both memory and ready queuing effects that are often ignored in other works, and

involves two important networking applications, Simple Forwarding and DiffServ,

which have different computational and memory access requirements. We propose

a concept named P-M ratio and discover that a large I , or J, is needed for high, or

low, P-M ratio, and further that when processor overhead (P) is similar to the

memory’s (M), the most appropriate number of threads is shown to be 5. Notably

the core processor was not included in our model since the control-plane

processing accounts for only a minor portion in the packet processing.

Another concern in our approach is the selection of a thread allocation scheme.

Thread allocation schemes decide how threads in a processor are arranged for

processing packets; adopting an improper scheme could result in un-balanced load

distribution among processors. We compared and discussed four possible

allocation schemes, and chose the most appropriate one as the base assumption

throughout this work. Factors influencing the selection include the amount of

 39

hardware resources, design complexity, and flexibility in processing.

The rest of this article is organized as follows. Section 4.2 introduces the

concept of thread allocation schemes. Section 4.3 elaborates the analytical model.

Section 4.4 details the construction of the Petri net simulation environment,

validates our analytical model, and presents some interesting simulation results.

Conclusive remarks and future work are given and discussed in section 4.5.

4.2 Effect of Different Thread Allocation

Schemes
Thread allocations should be carefully involved and studied before analyzing the

M-M architecture. Four thread allocation schemes are common in real

implementations, in which at most one thread is active in a processor. The first is

that a thread is assigned to process a complete packet. Nonetheless, this scheme

may require intricate inter-thread communications in order to maintain the packet

ordering in a flow.

Another two schemes, which are shown in Fig. 4.1, are called homogeneous

and heterogeneous thread allocations, respectively. In the homogeneous allocation,

all threads in a processor belong to the same type, e.g., receiver, scheduler,

transmitter, etc. Each thread in a processor deals with only part of the packet

processing and after that, it signals a certain thread in the succeeding processor for

further processing. A thread in a processor may have either fixed or dynamic task

assignment, namely it may stick to a certain input port or it may support other

ports whenever necessary. Notably, since all threads in a processor are of the same

type, this scheme has a more relaxed requirement for the size of the instruction

memory while exhibiting desirable data locality in cache. Nonetheless, in the

homogeneous scheme, processing load can hardly be distributed to processors

evenly, and packet ordering is unlikely to be maintained.

 40

Fig. 4.1. Homogeneous and heterogeneous thread allocations. At most one thread

is active per processor.

This situation can be avoided with the heterogeneous allocation, where the traffic

can be assigned to a processor with a lighter load by some load-balancing

hardware and mechanisms [BDE01]. In this scheme, each thread in a processor

belongs to different types and is supposed to take charge of an equal overhead in

the packet processing. The requirement for a larger instruction memory will not be

a problem because less than 5K of it is needed by general header processing

applications [RW03], and that requirement has already been supported in many

commercial products such as the Intel IXP2400 and Motorola C-5 [MOT].

Another edge of the scheme is the minor synchronization overhead, since the

inter-thread communication is done using global registers in the processor. A

comparison between these two strategies is shown in Table 4.1. For the reasons

discussed above, we take the heterogeneous allocation as the basic assumption in

our model throughout this work.

Table 4.1. Comparison between the homogeneous and heterogeneous schemes.

Allocation
strategy

Threads in
a processor

Packet
processing

Instruction
memory

Data
locality

Load
balancing

Sync.
overhead

Homogeneous Same type Partially Small High Hard High
Heterogeneous Diff. types Completely Large Low Easy Low

R:

S:

T:

 41

It is also possible to use the hybrid allocation scheme, in which processors of

homogeneous or heterogeneous allocations are incorporated. This scheme

preserves the strength of large instruction memory and high data locality, which

can be achieved by assigning homogeneous processors to tasks exhibiting high

data locality. However, the load balancing and packet ordering originally

supported by the heterogeneous scheme no longer exist.

4.3 Overview of the Analytical Model
In this section we present an approximate analysis of the multithreaded

multiprocessor network processor using a Continuous Time Markov chain. We

define the state space of the model, derive the transition rates and solve the model.

In addition to the heterogeneous allocation determined in the previous section, we

proceed with the assumption of blocking processing, as shown in Fig. 4.2. The

blocking processing contrasts with the non-blocking processing, which is also

shown in Fig. 4.2 in that no buffer exists between two adjacent threads of a

processor. That is, a thread cannot pass the processing result to its successor and

accept another packet if the successor is busy with a packet. Since normally the

packet processing overhead, including computation and memory access, is fairly

distributed among threads, this simplified assumption has limited influence on the

correctness of the model while considerably reducing the state space.

 42

Fig. 4.2. The blocking and non-blocking packet processing schemes. A thread tT

accesses memory with rate tr during the processing.

4.4 Markov Chain Formalization

4.4.1 State Definition and State Space Determination

Our model considers I processors, each of which contains J threads, and aims to

characterize the behaviors of processors, threads and memory. To do that, we need

to clarify possible activities, i.e. statuses transitions, of a thread. They are

depicted in Fig. 4.3 and elaborated below. When a packet arrives at an idle thread,

the thread either enters the ready queue of the processor waiting for execution, or

enters the active status if no thread is currently active. Sometimes it issues a

memory access to, for instance, perform table lookups and manipulate packet

descriptors. Once serviced it re-enters the ready queue, or goes directly back to

execution if the ready queue is empty. Normally, the thread becomes idle again

after the packet is processed and passed to the succeeding thread. Nonetheless, it

may get stuck and enter the finished status if the succeeding thread also has a

packet under processing.

 43

Fig. 4.3. Status transitions of a thread.

According to the above descriptions we can formally define a state of the

system as

 JjIisssS jij <≤<≤= 0 and 0),......(,,00,0 ,

where }:4 ,:3 ,:2 ,:1 ,:0{, finishedreadymemactiveidles ji ∈ represents the

status of jiT , , the jth thread in processor i. Furthermore we define

} |{)(,, ksskS jiji == , so that the number of executing processors and number of

accesses in the memory system equal to |)1(| S and |)2(| S , respectively. We

also define }2|{)(,, == jiji ssih so that the number of queued memory accesses

of processor i is denoted by |)(| ih . Besides, the RSS (Random Selection for

Service), rather than the FIFO, is assumed as the queuing discipline for both

memory and ready queues. This assumption further diminishes the state space by

disregarding the ordering information in the queues, and is proven not to affect the

correctness of the analytical result in section 4.5. Taking (I,J)=(2,2) as an example,

the state space can be derived by excluding exceptional states exhibiting the

following properties:

1. A processor has more than one active thread. For instance, 1,1,0,0) (.

2. At least one ready thread but no active thread, such as 2,3,0,0) (. One of the

ready threads must enter the active status as long as the previous active thread

completes its processing.

3. Jjss jiji <≤== + 0 ,0 while4 1,, . In this case, jiT , must pass the packet

 44

immediately to the succeeding one.

4. 41, =−Jis ; the same reason as the one in 3.

4.4.2 Determination of the Status Transition Diagram and

State Transition Matrix

We will need the state transition matrix in order to solve the model. To derive the

matrix, however, we have to deal with the status transition rate diagram of threads

since a state change occurs when one or more threads alter its status. By assuming

the packet arrival rate for processor i as iλ , memory access rate and service time

of the jth thread in that processor as jir , and ji ,1 μ , memory service rate as m,

and number of queued memory accesses from the processor as h, we can have the

status transition rate diagram shown in Fig. 4.4. Notably the service rates, as well

as the memory access rates, of threads having same thread index in all processors

are set the same because of the homogeneity among those threads. That is,

jji μμ =, and jji rr =, .

Notice that some status transitions in Fig. 4.4 do not have a rate because of

being a follower transition. A transition is regarded as a follower if it does not

initiate a status transition but follow a certain activator transition which actively

launches a transition. For example, a finished thread (follower) blocked by its

successor can enter the idle status only after the successor (activator) finishes

processing and passes down the packet. Another example is that a ready thread

(follower) will never enter the active status unless a thread switches out from

active.

 45

 λ
jr

idle (0) active (1)

h
m

finished (4)

λ

mem (2)ready (3)

jμ h
m

jμ

jμ

jμ

Fig. 4.4. Status transition rate diagram of jiT , .

Observing the relationship between activator and follower, two additional

transitions can be discovered out of Fig. 4.3 and shown in Fig. 4.4, the active to

active and active to ready transitions. The former occurs when an active thread

switches out and is then chosen again to execute for the packet passed by its

finished predecessor; the latter is similar except that it is not chosen for execution

but put into the ready queue.

The state transitions and transition matrix can therefore be determined

according to the status transition diagram. More specifically, a state transition is

considered valid if there exists only one activation event containing an activator

transition and possibly a number of corresponding follower transitions. Figure 4.5

shows four example state transitions, assuming (I,J)=(1,6). The detailed matrix

derivation is described in the following section.

m
jr

μ

μ
μ μ

Fig. 4.5. Example state transitions.

 46

4.4.3 Determination of the State Transition Matrix

A state transition of a non-zero rate consists of one activation event containing an

activator transition and possibly a number of corresponding follower transitions.

To verify a state transition, we need to characterize the activation event, namely

the activator and follower transitions. Obviously, a transition initiated by a thread

in the active(1) or the memory access(2) status is always an activator transition,

whereas a transition performed by a thread in the idle(0), ready(3) or finished(4)

status is a follower transition with two exceptions. The exceptions occur when the

transitioning thread is the first one in a processor, in which idle-to-active or

idle-to-ready transitions are possible because of the packet arrival.

With the observations above and the conditions defining the status of threads

other than the activator thread, all activation events can be identified as

summarized in Table 4.2. An activation event is considered valid if the

corresponding conditions of the activator transition are satisfied. For instance,

before recognizing an activation event with the activator transition being from

active to finished, namely the thread is finishing the processing of a packet but

getting blocked by its successor, two conditions need to be met. First, 1−< Jj

and }4,3,2{ 1, ∈+jis , since if j equals J-1 or 0 1, =+jis , the thread would have

been able to send out the packet. Second, for threads other than jiT , in processor

i, their statuses remain unchanged if none of them is in the ready status; otherwise

one thread shall be chosen for execution. Take (I,J)=(1,3) as an example, the

activation events (2,2,1)=>(2,2,4), (2,1,0)=>(2,4,0), and (3,1,2)=>(3,4,2) are all

invalid.

 47

Table 4.2. Activation events initiated by jiT , , and the corresponding examples

(}4,3{ ,1 ∈= JI) and conditions. jis , and jis ,′ denote the source and destination

status of jiT , , respectively. The status transition rates are shown in Fig. 4.4.

Activator Example Condition

act(1) => fin(4)
j 4j 1

1, −jis

1, +jis

1, −′ jis

1, +′ jis

j 4j 1

1, −jis

1, +jis

1, −′ jis

1, +′ jis

Ex: (3,1,2) => (1,4,2)

1. }4,3,2{ ,1 1, ∈−< +jisJj

2. jijiji sssjj ′′′
∀ =≠≠′ ,,, then)3 ,(if

 1 ,3 else ,,
! =′=∋≠′ ′′

∃
jiji ssjj

act(1) => mem(2) Ex: (3,1,2) => (1,2,2) The same with (2) in 1=>4.

act(1) => idle(0) Ex: (3,1,0) => (3,0,4)

1. }3,1{ ,0 then 1 if 1,1, ∈′=−< ++ jiji ssJj

2. 4 ,4 then 0 if 1,1, ≠′≠> −− jiji ssj

3. The same with (2) in 1=>4 except
}1,{ +∉′ jjj .

mem(2) => rdy(3)
j 3j 2

1, −jis

1, +jis

1, −′ jis

1, +′ jis

j 3j 2

1, −jis

1, +jis

1, −′ jis

1, +′ jis

Ex: (1,2,4) => (1,3,4)

1. jiji ssjj ′′
∀ ′=≠′ ,, ,

2. There exists an active thread.

mem(2) => act(1) Ex: (2,2,4) => (2,1,4) jiji ssjj ′′
∀ ′=≠′ ,, ,

idle(0) => act(1) Ex: (0,2,4) => (1,2,4) jiji ssjj ′′
∀ ′=≠′= ,, ,0 ;0

idle(0) => rdy(3) Ex: (0,1,4) => (3,1,4) jiji ssjj ′′
∀ ′=≠′= ,, ,0 ;0

act(1) => act(1)
1j 1

4

0

3

3

{0,2,3} {0,2,3}

…4 0…

j 1j 1

4

0

3

3

{0,2,3} {0,2,3}

…4 0…

j

Ex: (4,4,1,0) => (0,3,1,3)

1. 3 ,0 ,4 1,1,1, =′== ++− jijiji sss

2. while n>0 { # n=j -1
)(1,, −=′ nini sfs , where

0)3()2()0(,3)4(==== ffff

 0 if , =′ nis then break

 else 1−= nn }

 48

act(1) => rdy(3)
j 3j 1

4

0

{1,3}

{1,3}

{0,2,3} {0,2,3}

…4 0…

j 3j 1

4

0

{1,3}

{1,3}

{0,2,3} {0,2,3}

…4 0…

Ex: (4,4,1,0) => (0,1,3,3)

1. 4 ,0 1, => −jisj

2. 0 then 1 if 1, =′= −jisj

3. }3,1{ ,0 then 1 if 1,1, ∈′=−< ++ jiji ssJj

4. The same with 1=>1 except
}.3,1{)4(∈f

4.4.4 Performance Estimation for the Analytical Model

The performance metrics that we are interested in obtaining from the analytical

model include the processor and memory efficiencies. We can compute these

measures from the stationary probability vector, π , for the Markov chain. The

mean number of executing processors, which we call processing power (powerP),

and the processor utilization, which we call processor efficiency (efficiencyP), are

then calculated from the vector as

 |))1(|)((SSP
S

power ×=∑ π , and (1)

 / IPP powerefficiency = . (2)

Memory utilization, which we call memory efficiency (efficiencyM), number of

memory accesses in memory system (accessesM), and ready queue length of a

processor (lengthR) can be calculated as

 ∑
=∃

=
2 : ,

)(
jisS

efficiency SM π , (3)

 |)2(|)(SSM
S

access ×=∑π , and (4)

 49

 ISSR
S

length /|)3(|)(⎟
⎠

⎞
⎜
⎝

⎛ ×= ∑π . (5)

4.5 Simulation and Analytical Model validation
In this section, we describe the construction of a simulation environment based on

timed, colored Petri nets (CPNs) [Mur89]. It is used to validate the analytical

model discussed in the previous section as well as to observe possible hints for

future NP design.

4.5.1 Design of the Petri Net Based Simulation Environment

The key challenge in simulating memory queuing effect is that an outgoing

memory access must go back to the thread where it is issued. For that purpose, we

adopt the event-driven CPN-Tools [RWL+03] as our simulator. The features it

supports, including the colored tokens, stochastic functions and hierarchical

editing, provide efficiency in the construction of timed, colored Petri nets

corresponding to our model. To give a general idea of the design of the Petri net

based model, we use an example whose configuration of (I,J) is (1,2) shown in

Fig. 4.6. Simulations for larger I and J are constructed in a similar way.

The sample Petri net implements the processor and memory subsystems shown

in Fig 4.6(a) and 4.6(b), respectively, and works as following. A token is added in

places such as the P0_token (for processor 0), TK0_0 and TK0_1 (for thread 0

and 1), Pkt_Gen0 (for packet generator), and Init (for memory). Among those

tokens the one in Pkt_Gen0 is designed to be a colored token, which represents a

packet and carries information about the processor index (i), thread index (j), and

the number of memory accesses (k) the thread is obligated to perform to process

the packet. The tokens of the others are simply non-colored ones.

In the processor subsystem, the inter-arrival time of packets is exponentially

 50

distributed with mean E using the function expDelay, and the availability of a

thread depends on whether a token is in places of the processor and thread. When

a packet arrives at B0_0, namely a colored token is fired by the transition Delay0,

and if there is a token in both P0_token and TK0_0, the packet is admitted by

consuming those three tokens and firing the transition Tran0_0_0. After that, the

packet is processed for P/J computation cycles (active state) and M/J memory

accesses are assigned to the thread by setting k= M/J, where P and M denote the

numbers of computational instructions and memory accesses required to process a

packet, respectively. The CPI is assumed to be 1.

The memory access takes place by firing transitions Tran0_0_1 and S1, and

then enters the queue (M_buf) of the memory subsystem and gets serviced if no

other access is present. After a service time of L cycles (memory access state), the

packet is passed back to the place T0_0 where it is issued according to the i and j

in the token. The same procedure executes repeatedly until k becomes 0. The

packet is passed to B0_1, waiting to be admitted by the next thread where

operations similar to the above are carried out before leaving the system.

 51

Fig. 4.6. An example hierarchical CPN describing (a) a processor containing two

threads, and (b) the memory subsystem.

(a)

(b)

 52

The simulation design differs from the analytical model in that the memory

access rate and thread service rate are fixed according to the requirement of the

application. The memory queue not shown in the above example is implemented

in the M_buf using utilities of the CPN-Tools.

4.5.2 Model Validation By the Simulation

The analytical model is validated by simulations. Parameters for the analytical

model as well as the simulation are listed in Table 4.3.

Table 4.3. The setup of parameters setup in the model validation. P=555 and

M=30, and the system clock rate is denoted by C.

 Simulation Analysis

Packet arrival
E = 7300

(cyc/pkt) E
C

1×=λ (pkt/sec)

Instruction processing

capability of a thread
P/J (cyc/pkt) P

JCi ×=μ (pkt/sec)

Memory access

intensity of a thread
M/J (acc/pkt)

J

M
r ii ×= μ (acc/sec)

Memory service time L=90 (cyc/acc)
L

Cm
1×= (acc/sec)

Our first observation is that, as presented in Table 4.4, the analytical results are

mostly within 10% of the blocking simulation results. The discrepancy comes

from the different assumptions between the model and the simulation. The former

assumes non-deterministic behaviors in the instruction processing, memory access

rate and memory service time, while the latter uses deterministic ones. In fact, the

discrepancy can be reduced to be less than 3% if all activities are presumed to be

non-deterministic in the simulation. Second, the deviation further extends to be

within 5-25% when comparing the blocking against the non-blocking simulation,

 53

meaning that the existence of buffer fairly influences the precision of the model.

Tough the results of the three cases have similar behaviors; we focus on the

non-blocking scheme which resembles the real implementation to unveil possible

design implications for network processors.

Table 4.4. Validation of the analytical model against the blocking and
non-blocking cases. The non-blocking case resembles the real implementation.

4.5.3 Simulation Setup

Two networking applications, Simple Forwarding (SF) and DiffServ (DS), are

involved in the simulations, in which the numbers of computational cycles and

memory accesses for handling a packet are configured according to [LLP02]. For

simplicity, we assume that all memory accesses are of the same type, so the

corresponding (P, M)s are configured as (235, 12) and (555, 30). Besides, in order

to be realistic, we adopt the non-blocking scheme for the following simulations, in

 54

which buffer is provided for packets processed by a thread.

Our goal is to investigate the relationship among processors, threads and

memory banks. To do this, a term named P-M ratio is defined as

r accesslatency pe y accesses# of memor

snstructiontational i# of compu

adess overhememory acc

adnal overhecomputatio

×
= ,

and three sets of simulations are conducted: simulations with P-M ratio smaller

than 1, close to 1, and larger than 1, respectively. A large (small) P-M ratio means

the processor overhead is relatively higher (lower) than the memory’s and is

thought to be an unbalanced combination of the processor and memory, while a

P-M ratio close to 1 is considered as a sensible combination. Table 4.5 details the

configurations of three different P-M ratios for the SF and the DF. The Intel

IXP1200 and IXP2400 are considered in the simulation by setting the memory

service time to 20 and 90 cycles, respectively [Com04].

Table 4.5. Different kinds P-M ratios: (a) smaller than 1, (b) close to 1, and (c)
larger than 1. SF and DF are included and the memory access latencies are
configured as the one of the IXP1200 and IXP2400.

App. Comp. overhead Mem. access overhead P-M ratio

SF 235 10809012 =× (a) 0.217 235/1080=

 2402012 =× (b) 10.98 235/240 ≅=

 60512 =× (c) 3.92 235/60 =

DF 555 27009030 =× (a) 0.205 555/2700=

 6002030 =× (b) 10.925 555/600 ≅=

 150530 =× (c) 7.3150/555 =

4.5.4 Effect of the RSS Memory Queuing Discipline

Before proceeding with the issues mentioned above, we need to justify the use of

the RSS queuing discipline in memory and ready queues. As mentioned in section

4.4, the RSS is assumed to be the queuing discipline for both memory and ready

 55

queues without affecting the correctness of the result. For the blocking case,

according to Fig. 4.7, it is proven that the processor utilizations using RSS are

very close to the corresponding ones using FIFO. Similar observation is seen for

the non-blocking case. This is because of the power of averaging, namely

memory accesses, from a thread, having higher priorities in the queue this time

could have lower ones next time. The explanation applies to the memory queue,

and is believed to hold for the ready queue.

4.5.5 Unbalanced Load among Threads

Another concern is the resilience of the heterogeneous thread allocation against

the unbalanced load distribution. We evaluate the impact by involving the

unbalance ratios, in which a ratio of n means the load of a thread is n times of the

one of its predecessor. Figure 4.8 depicts the number of packets in the system for

two ratios after executing 7103× cycles. From the figure it is clear that for

ratio=2, the number of packets in system increases notably as J increases.

Nonetheless, only a slight raise is seen when ratio=1.5, meaning that as far as a

sensible P-M ratio, which is close to 1, is considered, the system is quite resilient

to the unbalanced load among threads.

0%

2%

4%

6%

8%

10%

12%

(1,2) (1,3) (1,4) (1,5)

(I,J) combinations

U
til

iz
at

io
n

(%
)

Proc_util for RSS, blocking

Proc_util for FIFO, blocking

Proc_util for RSS, non-blocking

Proc_util for FIFO, non-blocking

Fig. 4.7. Effect of different memory queuing disciplines for SF.

 56

4.5.6 Simulations with Three P-M Ratios

Simulations with a P-M Ratio Larger Than One

Figure 4.9 shows the results of the simulations with a P-M ratio larger than 1.

Apparently the memory access overhead is relatively so large that the processor

efficiency is low and only two threads are enough to utilize the memory. The SF

and DS have similar processor and memory utilizations because their P-M ratios

are similar.

0

100

200

300

400

500

600

700

(1,2) (1,3) (1,4) (1,5)

(I,J) combinations

o
f

pa
ck

et
s

in
 s

ys
te

m
ratio=1.5
ratio=2

Fig. 4.8. No. of packets in system under different unbalance

ratios and no. of threads.

Fig. 4.9. Processor and memory utilizations for the DS and SF with

different numbers of threads. The memory service time is 90 cycles.

0%

5%

10%

15%

20%

25%

(1,1) (1,2) (1,3) (1,4) (1,5)

(I,J) combinations

P
ro

ce
ss

or
 u

ti
li

za
ti

on

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
em

or
y

ut
il

iz
at

io
n

SRAM-SF-Proc

SRAM-DS-Proc

SRAM-SF-Mem

SRAM-DS-Mem

 57

Simulations with a P-M Ratio Close to 1

Figure 4.10 shows the results of the simulations with a P-M ratio close to 1. The

SDRAM, in addition to the SRAM, with a service time of 40 cycles is involved

for comparison. From the figure we can see that for SRAM-SF and SRAM-DS the

utilizations of both processor and memory are similar because the ratios are close

to 1. Moreover, the benefit of utilizing memory from adding threads, taking the

SDRAM-SF as an example, becomes less obvious as the memory utilization

exceeds 90%. This observation also suggests that J=5 is best for applications with

a P-M ratio close to 1, since the memory utilization of the SRAM-SF has reached

90% when J is 5, implying that adding the sixth thread can have merely limited

gain.

Simulations with a P-M Ratio Less Than 1

Figure 4.11 shows the performance improvement by increasing the number of

processors. The memory service time is assumed to be 5 cycles, indicating that the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(1,1) (1,2) (1,3) (1,4) (1,5)

(I,J) combinations

U
ti

li
za

ti
on

SDRAM-SF-proc SDRAM-DS-proc
SRAM-SF-proc SRAM-DS-proc
SDRAM-SF-mem SDRAM-DS-mem
SRAM-SF-mem SRAM-DS-mem

Fig. 4.10. Memory access latency and utilization of various numbers

of threads.

 58

memory overhead is less than the one of the processor. The memory sustains the

access load until four processors are incorporated for both SF and DS.

Interestingly, though memory is apparently not a bottleneck when I=1 and 2, the

processor is not fully utilized as shown in Fig. 4.12. This suggests that the J,

which could lead to the low processor utilization, must be carefully estimated

before using a fast memory module. Another observation from Fig. 4.12 is that,

the fifth processor contributes limitedly in utilizing the memory while resulting in

low processor efficiency, implying that J, rather than I, should be increased when

(I,J)=(4,3).

0%

20%

40%

60%

80%

100%

(1,3) (2,3) (3,3) (4,3) (5,3)
(I,J) combinations

U
ti

li
za

ti
on

SF-proc
DS-proc
SF-mem
DS-mem

Fig. 4.12. Processor and memory efficiencies for different Is.

0

1

2

3

4

5

(2,3) (3,3) (4,3) (5,3)

(I,J) combinations

Im
pr

ov
em

en
t (

tim
es

)

SF

DS

Fig. 4.11. Performance relative to (1,3).

 59

4.5.7 Solutions for the Memory Bottleneck

Memory usually becomes the bottleneck not only because of the nature of the

application but because of the speed gap between processor and memory. To

tackle the problem, three common solutions are investigated and compared:

enlarging the cache size for better hit ratio; adopting a memory access efficient

algorithm, and adding more memory banks. Figure 4.13 compares the

effectiveness of the solutions for the DS when (I,J)=(5,5) and L=20. The hit ratio

is assumed to be 16.6% and 33.3%, respectively, by reducing the number of

memory accesses from 30 to 25 and 20. As for the memory access efficient

algorithm, we proceed by supposing a classification algorithm, which is part of

the packet processing, having memory accesses 50% less (from 10 to 5 accesses)

while computational instructions 100% more (from 160 to 320 instructions) than

the original algorithm, i.e. (P,M) from (555,30) to (715,25). The idea is that more

computational instructions are usually traded for less memory accesses. We

consider the effect of multiple banks by employing two banks, looking into two

situations in which memory accesses are (1) evenly distributed and (2) distributed

with ratios of 1:2 and 1:4. The cause of the second situation is the data structure

and the nature of the application or the algorithm. An example would be the

pattern matching application using the classic Aho-Corasick algorithm [AC75]. It

is hard to split the goto table evenly into memory banks, resulting in unbalanced

memory access locality. Even if it is possible, the locality problem remains since

the matching frequently returns to the root state stored in a certain bank.

 60

Cache
effects

Mem acc
efficient

algorithm

Two
banks

10 20 30 40 50 60 70 80

HR=33.3%

HR=16.6%

b1:b2 = 1:2

Performance improvement (%)

b1:b2 = 1:1

b1:b2=1:4

Fig. 4.13. Performance improvement from the three solutions with respect to
(I,J)=(5,5) performing the DS. The hit ratio of 16.6% and 33.3% are simulated by
using (P,M)=(555,25) and (555,20), while (715,25) is designed to mimic a system
with a memory access efficient classification algorithm. Ratios of 1:1, 1:2 and 1:4
are investigated for the two banks case.

From the figure we can see that with a hit ratio of 16.6%, an improvement of 21%

can be obtained. The improvement advances to 51.5%, 2.5 times of the one of

16.6% ratio, for a hit ratio of 33.3%. The benefit from a memory access efficient

algorithm is 21.5%, similar to the one with 16.6% hit ratio, despite the increased

number of computational instructions. The performance gain is best when

introducing another memory bank. However, it degrades from 81% to 50% and

15% as the distribution of memory accesses becomes unbalanced.

4.6 Summary
In this work, we try to derive possible design implications, especially the thread

allocation, for network processors by developing a preliminary analytical model

as well as simulations based on the timed, colored Petri net. Two real networking

applications, the Simple Forwarding (SF) and DiffServ (DS), are involved. To

date, this work is the first research that adopts the heterogeneous thread allocation

 61

scheme and considers the queuing effects in memory and ready queues by

practically modeling I processors and J threads per processor.

Although the analytical model is verified to have similar behavior with the

non-blocking simulation which quite resembles the real implementation, we focus

on the latter in order to have precise observations. Key observations from the

simulation results include (1) the Random Selection for Service (RSS) has similar

effect with the FIFO when serving as the queuing discipline for both memory and

ready queues; (2) the heterogeneous allocation is better than other schemes, and is

resilient to the unbalanced load among threads for unbalance ratios smaller than

1.5; (3) for a sensible P-M ratio, i.e. a ratio close to 1 as in the SF/DS over the

IXP1200, the most appropriate number of threads is 5, and should be

increased/decreased as the ratio decreases/increases, and (4) for solving the

memory bottleneck, if any, adding memory banks best improves the performance,

though the effectiveness depends heavily on the data structure of the

application/algorithm. The observation (1) can be used for further state-space

reduction while (2)~(4) serve as implications for the design and implementation of

multithreaded multiprocessor network processors. Moreover, by applying the

observation (3) assuming the IXP1200 as the hardware platform, we can assert

that J <5 is appropriate for the VPN while J >5 for the Intrusion Detection and

Prevention as well as the Anti-Virus.

Some issues are to be investigated in the future. First, the analytical model

should be revised for large (I, J)’s. Our model is currently limited to 8 threads in

total, for example (2,4) and (4,2), due to the state-space explosion problem.

Second, the simulation environment could be enhanced to support (I, J)’s larger

than (5, 5). This is for identifying the I and J needed for application-platform

combinations whose P-M ratio is much larger than 1, namely more computational

overhead, and much smaller than 1, i.e. more memory access overhead,

respectively. Though increasing I in the simulation is doable, J is currently

confined to 5 because of the user interface of the tool. Finally, since the ordinary

 62

multi-bank memory suffers from the difficulty of splitting the data structure of

certain applications/algorithms, a multi-port memory, which services multiple

memory accesses at once, may be incorporated and considered in our model.

 63

Chapter 5

Resource Allocation of the Core-centric

Network Processor for Computational

Intensive Applications

5.1 Introduction

Today’s networking applications, such as virtual private network (VPN) [BGK99]

and content filtering that offer extra security and application-aware processing,

have demanded more powerful hardware devices to achieve high performance.

The most straight-forward way to tackle this problem is to increase the clock rate

of a general purpose processor, though some disadvantages, such as the cost and

the technology limit, accompany. Moreover, the low efficiency is also expected

since the processor, as its name suggests, is not specifically designed for the

processing of networking packets.

Another solution to this problem is to employ the concept of offloading, that is,

to shift the computing-intensive tasks from the core processor to a number of

additional processors. The Application-Specific Integrated Circuit (ASIC) [JS99]

has been a possible candidate to serve as an additional processor. Nonetheless, this

workaround might not be preferred in two aspects. First, since the functionalities

are fixed once tapped out, it needs to be redesigned for any modifications. Second,

the development period is so time-consuming that the time-to-market requirement

may not be met.

In this work, we explored the feasibility of implementing VPN, which is a

computation intensive application, over the Intel IXP425 [INT] network processor

 64

featuring an XScale core, multiple hardware contexts and coprocessors, and tried

to figure out the performance and possible bottlenecks of the implementation. The

VPN mechanism, which is usually based on the IPSec [Atk95], comprises several

processing stages such as packet reception (Rx) and transmission (Tx), encryption

and decryption, authentication and table lookups, each of which needs a certain

amount of processing. We analyzed the detailed packet flow and decided to

offload packet transferring and cryptographic calculation to coprocessors. Some

efforts have also been done to port the VPN application from ordinary PC to

IXP425 in the meantime. We then externally and internally benchmarked the

resulting prototype. The former characterized performance figures of the

implementation, while the latter carried out the in-depth analysis of the

observations which were left unexplained in the external benchmarks such as

system bottlenecks. The Xscale is identified to be the bottleneck for IPSec

processing.

Some related works researching the bottlenecks of network processors can also

be found in the literature: Spalink et al. [SKP01] presented the results of simple IP

forwarding and Lin et al. [LLY+03] implemented DiffServ, both over Intel

IXP1200. Nevertheless, our work differs from theirs in that (1) no coprocessor

was involved in their implementations; (2) both the control-plane and part of the

data-plane processing were handled in the core processor of IXP425 while the

core of IXP1200 took care of the control-plane packets only, and (3) computation

intensive VPN application was considered, as compared with simple forwarding

and memory intensive classification of these two studies.

This work is organized as follows. We first describe the hardware and software

architectures of IXP425. Next, we elaborate the details of the design and

implementation of VPN over IXP425. Then we present the results and

observations from the external and internal benchmarks. Some conclusive remarks

of this article are made finally.

 65

5.2 Hardware Platform (IXP425)

5.2.1 Hardware Architecture of IXP425

The hardware block diagram of IXP425 is depicted in Fig. 5.1. The core of

IXP425 is a 533MHz XScale processor handling system initialization and

software objects execution. Three buses interconnected by two bridges provide the

connectivity among components on IXP425.

To assist the XScale core in processing networking packets, three 133MHz

programmable network processor engines (NPEs) are used to execute in parallel

the code image stored in internal memory for providing functions such as MAC,

CRC checking/generation, AAL2, AES, DES, SHA-1 and MD5, in cooperate with

a number of application-specific coprocessors. The support of hardware

multithreading with single cycle context switch overhead further makes NPEs

more tolerant to long memory accesses and thus reduces the number of processor

Fig. 5.1. Hardware architecture of IXP425.

 66

stalls. The communication between the XScale core and NPEs is handled by a

hardware queue manager using interrupt and message queue mechanisms. The

queue manager also contains 8KB SRAM divided into 64 independent queues

manipulated as circular buffers for allocating free memory space to incoming

packets and for locating packets in the memory. The SDRAM can be expanded up

to 256MB for storing tables, policies and OS applications in addition to packets. A

PCI interface is available for an additional PCI NIC. Some peripheral controllers,

like USB and UART controllers, are also equipped into IXP425 for better

extensibility.

5.2.2 Detailed Packet Flow in IXP425

The processing flow of an ordinary packet is elaborated below referring to Fig.

5.1. Upon the arrival of a packet at the interface of an NPE, it is partitioned into

several 32byte segments and stored at the Receive FIFO of an Ethernet

coprocessor which in turn performs MAC-related operations. The NPE then

moves those segments into corresponding addresses in SDRAM allocated by the

queue manager, which then interrupts the XScale of the reception for further

processing. During normal processing procedures such as IP and other higher

layer protocol stacks at XScale, chances are that some authentic and cryptographic

operations are needed. The XScale core may handle them either by itself or by

offloading the computation overhead to appropriate coprocessors residing in NPE

B. In the latter scenario, the coprocessors are directly invoked by NPE B,

requested by the XScale, to process a certain data segment in SDRAM, where a

message queue implemented in the queue manager is exploited to pass the request.

The queue manager is informed by NPE B upon the completion of the operations

and then interrupts the XScale.

5.2.3 Software Architecture of IXP425

 67

The software architecture shown in Fig. 5.2 is divided into two portions, namely

the platform independent (applications and some higher level components such as

networking protocol stacks in OS) and dependent parts (mainly device drivers).

This design is favorable especially when an OS migration from a certain H/W

platform to another is demanded, that is, the developers need to focus only on the

dependent part, namely the development of drivers. When implementing device

drivers, a set of software libraries collectively referred to as AccessLibrary can be

used to drive devices such as NPEs, coprocessors, peripherals, etc. The

AccessLibrary also provides utilities, such as OSSL and IxOSServices to

implement some OS-related functions such as mutual exclusion.

The software processing flow is described as follows with library functions

adopted from the AccessLibrary. During the boot time a function named IxNpeDl

is called to download the corresponding code image into the instruction cache of

each NPE. Then two functions, IxQmgr and IxNpeMh, are called to initialize the

queue manager as well as the message handler responsible for the

communications between NPEs and XScale. The Ethernet-related functions,

IxEthAcc and IxEthDB, are used to receive and transmit Ethernet frames, while

the IxCryptoAcc function is incorporated for possible cryptographic operations

during packet processing.

 68

5.3 Processing Stages Analysis and Offloading

Schemes Design
In this section, we first introduce basic operations in a VPN environment and then

analyze its packet processing flow in order to identify possible bottlenecks as

offloading candidates. Finally, we describe how to implement a VPN gateway

over IXP425.

5.3.1 VPN Briefing

Virtual Private Network (VPN) provides secure transmission over un-trusted

networks. Normally the IPSec protocol is adopted as the underlying technique due

to the popularity of the Internet Protocol. It supports data authentication, integrity

and confidentiality, in which two gateways are employed as endpoints

constructing a VPN tunnel for secure data transmission. Improving the

performance of the gateways is decisive to the VPN throughput.

Fig. 5.2. Software architecture of IXP425.

 69

5.3.2 Identifying Offloading Candidates

To resolve the performance issue, we analyze the VPN packet processing flow in

order to identify possible candidates to be offloaded to coprocessors. A detailed

inbound IPSec packet flow was displayed in Fig. 5.3. It consists of three main

blocks, namely the packet reception, IPSec processing, and packet transmission.

Their operations are elaborated below.

Once an Ethernet frame is received by the physical interface, checking for

frame check sequence screens out broken frames and the remaining frames are

examined in accordance with possible MAC address filtering configurations.

Reception is accomplished after the frame is moved into memory, followed by a

classification recognizing it as an IPSec packet. At this time, some table lookups

for processing rules and cryptographic parameters are performed and payload of

this IPSec packet is decrypted or checked for authentication. Finally, a new packet

decrypted from the original IP payload is further processed by higher-level

protocols, or is transmitted according to the routing table.

Tasks suitable to be offloaded to coprocessors can be identified by two

characteristics: whether those tasks are repeated routines or computation intensive

ones. As mentioned earlier this section, we know that IPSec processing, especially

the cryptographic operation, is computation intensive. Hence, we decide to pick

the cryptographic processing as an offloading candidate. Another candidate

comprises the packet transfer, CRC checking/generation, MAC filtering, and

packet movement between NPE and memory, since the procedures are precisely

the same for every packet. From the hardware block diagram in section 5.2, it is

obvious that the IXP425 has the hardware components for the identified

candidates.

 70

5.3.3 Implementation

We adopt the NetBSD [Net], a secure, highly portable and open-source OS

derived from 4.4BSD, as our operating system. Clean design between platform

dependent and independent parts makes it a good implementation target for new

hardware platform. Following relates three major components in prototyping a

security gateway over IXP425.

Operating System Porting. The most efficient way to porting an OS to a new

platform is refer to the port of another similar platform and then implement

drivers for the target platform based on that port [Kes95]. To port NetBSD over

IXP425, therefore, we adopt the “EvbARM” port in NetBSD. It supports various

evaluation boards that equip with XScale or other ARM-based core processors, so

that only system-level modifications have to be done to enable normal operations

of IXP425. Example modifications include the CPU identification, setup of

board-specific memory map, and system initialization procedures.

Driver Development. A number of drivers for devices such as UART, NPEs and

Fig. 5.3. Processing flow of an inbound IPSec packet. Shaded blocks are
candidates to be offloaded.

 71

coprocessors need to be implemented for communication between the operating

system and those devices. This effort can be alleviated with the help of the

AccessLibrary introduced in section 5.2. Besides drivers, we have to modify two

OS dependent modules, namely OSSL and IxOSServices, in AccessLibrary to

ensure proper operations of the OS-related services.

Offloading the Cryptographic Operations. The last modification to kernel

concerns the offloading of in-kernel IPSec cryptographic computations from

XScale to coprocessor. Ordinary method requires that the kernel performs and

subsequently waits on the encryption/decryption operations carried out by the

coprocessor. However, NetBSD provides another option named FAST_IPSec that

makes use of the Open Crypto Framework (OCF) for offloading. In OCF, the

cryptographic operations can be handled by a registered function. The

FAST_IPSec prevails over the original offloading technique in that the XScale

would not suspend during cryptographic operations. We exploit this technique by

pre-registering the crypto driver, which drives the crypto coprocessor using

functions in AccessLibrary, to the OCF.

5.4 Benchmark and Bottleneck Observations
In this section, we investigate the benefits from offloading by externally

benchmarking the implementation using various offloading schemes. A number of

internal tests are also conducted in order to observe what cannot be obtained in the

external benchmarks.

5.4.1 System Benchmark Setup

To have a better understanding of the improvement from the network processor

architecture as well as the offloading mechanisms, we design and benchmark

systems of different offloading schemes, and compare their performance results.

 72

Four offloading schemes are adopted: (1) offload both crypto operations and

packet Rx/Tx to the corresponding coprocessors; (2) offload crypto operations

only; (3) offload Tx/Rx only, and (4) no offloading. Figure 5.4 diagrams the

corresponding data paths for the four schemes.

As for the external benchmark environments for packet forwarding and IPSec,

we use SmartBits to generate the input traffic and to collect and analyze the

performance results. For internal tests, some system utilities such as vmstat, top

and GProf, are employed to obtain the system state as well as other internal

behaviors such as CPU and memory utilizations.

5.4.2 Scalability Test

Scalability tests aim to derive the maximum throughput of the prototypes of

different offloading schemes. Another gateway implementation using Pentium III

1GHz processor and 256MB SDRAM is also included for comparison between

IXP425 and x86-based systems.

Packet Forwarding. Figure 5.5 shows the performance results of 1-to-1 packet

forwarding under the condition of zero packet loss. From the figure we can see

that throughput of the IXP425 offloaded by two NPEs parallels the one of

Pentium III 1GHz. Both of them can support wired speed for packet lengths larger

than 512 bytes. Besides, a performance improvement of up to 60% contributed by

Fig. 5.4. Data paths of the four offloading schemes.

 73

NPEs can also be gained. We also observed that the maximum throughput occurs

when the packet length is 1024 bytes, rather than other larger lengths. This is

because the longer processing time of larger packets counteracts the benefit from

their reduced header processing overhead.

IPSec Processing. Figure 5.6 depicts the throughput of DES for different packet

lengths. Some observations can be made. First, offloading IPSec processing to

coprocessors in NPE B improves the performance by 350%; in some cases

IXP425 even outperforms the Pentium III 1GHz. Second, the maximum

throughput occurs when the packet length is 1450 bytes, instead of 1518 bytes.

This is because 1450 bytes is the largest length for a packet not to be fragmented

when being encapsulated into an IPSec one. Third, the throughput of 3DES on

IXP425, as shown in Fig. 5.7, is similar to the one of DES whereas the

computation requirement of the former is almost triple of the later. The reason is

that it is the XScale, not the coprocessors, that becomes the bottleneck.

0

20

40

60

80

100

1518 1280 1024 512 256 128 64

Packet Length (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

IXP425: NPE-NPE

IXP425: NPE-NIC

IXP425: NIC-NIC

PIII 1G

Fig. 5.5. Throughput of packet forwarding when
different numbers of NPEs are used for offloading.

 74

5.4.3 Bottleneck Analysis

Bottleneck of Packet Rx/Tx. To proceed the bottleneck analysis, we considered

four main functional units likely to affect system performance: bus, memory

system, NPE and XScale. It is obvious that neither the bus nor the memory is a

bottleneck because wired speed can be achieved for some larger packet lengths.

The NPE is not a bottleneck either, since, as observed by the netstat utility, all

packets are received and stored at the memory. The bottleneck can therefore be

identified as the XScale since the packet processing is carried out mostly by it.

Fig. 5.7. IPSec Throughput: the 3DES case.

0

10

20

30

40

50

60

1518 1450 1024 512 64
Packet Length (bytes)

T
hr

ou
gh

pu
t (

M
bp

s) Xscale+NPE+Cop
Xscale+CoP
Xscale+NPE
Xscale
x86

Fig. 5.6. IPSec Throughput: the DES case.

0

10

20

30

40

50

60

70

80

1518 1450 1024 512 64

Packet Length (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)
Xscale+NPE+CoP
Xscale+CoP
Xscale+NPE
Xscale
x86

 75

Figure 5.8 shows that the utilization of the XScale linearly advances as the traffic

load increases.

Bottleneck of IPSec Processing. The bottleneck in the IPSec processing is

known to be the XScale before offloading is applied, since the cryptographic

calculation demands much computing power. However, the XScale is again found

to be the bottleneck even after offloaded by the crypto coprocessors. Figure 5.9

shows that when traffic load is 50Mbps exceeding the maximum system

throughput of 46Mbps, the utilization of XScale approaches 100% and the success

ratio of IPSec packets significantly drops to 22%. This is because the processor is

so busy that incoming packets are dropped due to limited buffer space.

0

10

20

30

40
50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Traffic Load (Mbps)

X
S

ca
le

 u
til

iz
at

io
n

(%
)

256

1450

Fig. 5.8. Input traffic load vs. XScale utilization
for two packet lengths (bytes).

 76

The XScale bottleneck can be further confirmed with the turnaround times of

the DES and 3DES requests, respectively, as shown in Fig. 5.10. The turnaround

time means the duration from the time a request of cryptographic operations is

issued by XScale to the queue manager, to the time the XScale is notified of the

completion. As mentioned previously, the throughputs of DES and 3DES are

similar, indicating that their turnaround times should also be the same. However,

this contradicts the results in Fig. 5.10 in which the turnaround times of DES and

3DES are different, justifying that the XScale, rather than the crypto coprocessor,

is the bottleneck when performing DES and 3DES. The throughputs of DES and

3DES are the same because they are bound by XScale.

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 25 30 35 40 45 50 55

Traffic Load (Mbps)

Pe
rc

en
ta

ge
 (%

)

Pkt success rat io

XScale utilization

Fig. 5.9. IPSec packet success ratio vs. XScale utilization.

 77

We can also estimate the maximum throughput of the crypto coprocessor as the

processing times of encryption and decryption are proportional to the data length.

The estimated performances can be computed by △s/△t, where △s and △t

represent the differences of two packet lengths and two latencies, respectively.

Therefore, the crypto coprocessor is estimated to scale approximately to

sec)/(4.162sec)u/(3.20
97117

10521458
Mbbytes =≅

−
− for DES, and to 101Mbps for 3DES

likewise.

5.4.4 Turnaround Time Analysis of Functional Blocks

Figure 5.11 depicts the turnaround time analysis of the functional blocks when

processing DES and 3DES packets. Functional blocks considered consist of the IP

processing, IPSec preprocessing including identity and SAD/SPD lookups, and

IPSec encryption. Three kinds of testbed configurations are conducted for testing

DES and 3DES: IXP425 with the cryptographic operations offloaded to the

coprocessor; IXP425 without offloading, namely XScale only; and PIII processor.

Fig. 5.10. Turnaround time of a cryptographic request for a packet.
Packet size may vary.

0

40

80

120

160

1458 1052 540 284

Packet length (bytes)

L
at

en
cy

 (
μs

ec
)

DES

3DES

 78

From the figure we can see that cryptographic calculation accounts for a major

portion, from 80% to 90%, in the packet processing time before offloading. After

offloading to the coprocessor, the time for cryptographic calculation is reduced

from 700 us to 100 us. Notably both the IXP425 and single XScale configurations

have the same IP processing and IP preprocessing periods because those tasks are

executed only by XScale.

5.5 Summary
In this work, we elaborate the implementation of a VPN gateway over the IXP425

network processor, where a number of coprocessors are provided for offloading

computation intensive tasks from the Xscale core. We introduce the hardware and

software architectures of the platform, analyze the VPN, i.e. IPSec, processing

flow, and then identify the packet Rx/Tx as well as encryption/decryption as the

ones to be offloaded to coprocessors. We realize the offloading design by

implementing a number of drivers in NetBSD, and finally externally and

internally benchmark the system in order to find possible performance

bottlenecks.

The benchmark results show that the throughputs of packet Rx/Tx and IPSec

0 100 200 300 400 500 600 700 800

3DES@PIII

DES@PIII

3DES@XScale

DES@XScale

3DES@IXP425

DES@IXP425

Turnaround time (μSec)

IP processing

IPsec preprocessing

IPsec encryption

Fig. 5.11. Turnaround time of functional blocks.

 79

processing are improved by 60% and 350%, respectively, after offloading.

However, the Xscale is again found to be the bottleneck for both packet Rx/Tx

and IPSec processing.

Two issues are to be investigated in the future. First, more tasks may be

offloaded to NPEs or to coprocessors. An example of this is the IPSec database

lookup, which determines the policy to be applied to a certain IPSec packet.

Second, the performance may be further improved if we call the related functions

in the AccessLibrary directly for cryptographic operations, instead of going

through the Open Crypto Framework.

 80

Chapter 6

Core-centric Network Processors:

Analysis, Simulation, and Design

Implications

6.1 Introduction

Networking applications offering extra security and content-aware processing

features demand much powerful hardware platforms to achieve high performance.

For computational intensive applications such as the Virtual Private Network

(VPN) [BGK+99], general purpose processors are often adopted; however, the

cost is considerable while the throughput is not satisfactory because of heavy

cryptographic operations. Rather, the Application-Specific Integrated Circuits

(ASICs) [JS97] can meet the performance requirement with a circuitry designed

for both networking and cryptographic processing. Nonetheless, the lack of

adaptability makes it less appealing.

Network processors [Lek03] have been embraced as an alternative to tackle the

above-mentioned problems for their core-processor/coprocessors -based

architecture, on which control and data -plane processing can be separated for

efficiency, and the re-programmability for functional adaptations. The core

processor can perform complicated operations and is thus responsible for control

messages, while a number of coprocessors, having specifically designed

 81

instructions for networking purpose, are employed for mass data-plane processing.

This kind of architectures, referred to as the coprocessors-centric model, is

frequently applied as a core device which requires low configurability but high

scalability [LLY+03][CLS+04][CM06][LCL+07][TLY+04]. When acting as an

edge device that deals with relatively mild traffic volume, both control and

data –plane packets are processed by the core processor. This is referred to as the

core-centric model. Nonetheless, computational intensive tasks such as receiving,

transmission and en/de-cyption can still be offloaded to certain

application-specific coprocessors [LLL+05].

Several studies have acknowledged the feasibility of adopting these models in

packet processing for applications such as DiffServ, VPN, Cryptographic

algorithms, Intrusion Detection and Prevention (IDP). In addition to evaluation

through implementations of both models to discover system bottlenecks

[LLY+03][CLS+04][CM06][LCL+07][TLY+04] [LLL+05], mathematical modeling

[CB02][WF06][LW06] is favored in order to unveil possible design implications

which are unlikely to observe through real benchmarking. Though, analytical

resort for the emerging core-centric model is yet unattempted.

In this work, we analyze the untapped core-centric network processors by

modeling the IXP425 performing Virtual Private Network (VPN) application. The

IXP425 [INTb] employs an XScale core processor in charge of general packet

processing and coprocessors executing receiving, transmission and cryptographic

operations. The task allocation and important parameters are obtained from real

implementation [LLL+05], providing sufficient ground for model accuracy. Two

analytical models are developed using Continuous Time Markov Chain, a method

widely adopted for capturing system behaviors. The first is a busy-waiting model

in which the core hands over the intermediate results to the coprocessor for certain

processing, and keeps polling whether the coprocessor finishes. This primitive

approach is used by some operating systems, for instance NetBSD, when certain

coprocessors are incorporated. The busy-waiting model is then extended and

 82

compared to an interrupt-driven model in which the core switches to another

process while waiting for a signal indicating the completion of previously

offloaded job. This technique is realized in NetBSD by enabling the OCF (Open

Crypto Framework) option.

Aside validation on the analytical model, the simulation is developed for

inspecting internal characteristics of the system, which oftentimes cannot be

obtained from real implementations and from mathematical analysis due to

enormous state space. With these established analytical and simulation models, we

aim at revealing design implications from system and IC vendors’ perspectives,

respectively. The former includes the effects from processor run length, context

switch overhead, while the latter covers the benefits from offloading and influence

of the buffer size.

Results of the analytical model prove to be closely inline with those of Petri net

simulations and system benchmark. Though, context switch delay considered in

the model is then found to be ineffective, implying minor, if not zero, switching

overhead in the real implementation. The model is thus revised and shown to

retain accuracy.

This article is organized as follows. Section 2 briefs the overview of the

core-centric IXP425 network processor system and our modeling approach. We

develop the analytical models and simulation design in section 3 and section 4,

respectively. Section 5 presents the results and observations. Some conclusive

remarks of this article are made in section 6.

6.2 Background

6.2.1 Performance Model Overview

The core of IXP425 is an XScale processor handling system initialization and

software objects execution. Three buses interconnected by two bridges provide the

connectivity among components on IXP425. To assist the XScale core in

 83

processing networking packets, three coprocessors named network processor

engines (NPEs) are used for providing functions such as MAC, CRC

checking/generation, AAL2, AES, DES, SHA-1 and MD5, in cooperate with a

number of application-specific coprocessors. Our analytical models for the

processing flow are based on the implementation of VPN over the IXP425

network processor. As shown in Fig. 1, the processing flow can be summarized

into five tasks, namely (1) receiving, (2) IPSec preprocessing, (3) en/de-cryption,

(4) IP processing, and finally (5) transmission. Notably the shadowed blocks, i.e.

tasks #1, #3 and #5, are offloaded to corresponding coprocessors namely receiving

coprocessor, computational coprocessor and transmission coprocessor, whereas

tasks #2 and #4 are handled by the core through context switching.

Fig. 6.1. Processing flow and task allocation of the VPN application over IXP425:

physical and logical views.

6.2.2 Architectural Assumptions

Some coprocessors may incorporate multiple hardware threads [INT04] to

alleviate memory access latency by switching out the processor control to another

thread when issuing a memory access. Nevertheless, hardware multithreading

 84

requires duplicate register sets which suggest an increased cost, and is helpful for

only memory-access intensive applications such as DiffServ, Intrusion Detection

and Prevention (IDS). Therefore, in this work we assume single thread in each

coprocessor since VPN is computational intensive, rather than memory-access

intensive. Buffer for each processing stage which is frequently involved

practically are also encompassed, except for the busy-waiting model which needs

no buffer between the core and the computational coprocessor.

6.3 Analytical Model

6.3.1 The Busy-waiting Model

In this model, the core does not have buffer between and the computational

coprocessor and therefore has to wait on the signal from the coprocessor. For

example, when the core finishes the IPSec preprocessing, the result is passed to

the computational coprocessor for en/de –cryption and is then again handed over

to the core for IP processing. In this regards, the core and the computational

coprocessor can be seen as different processes in a logical CORE processor, since

only one of them can be active anytime. The scheme can further be simplified as

three series queues, as shown in Fig. 2, in which all components are independent

∞/1// MM models and the departure-time distribution from a queue is identical

to the interarrival-time distribution of another. The utilizations of the receiving

and transmission coprocessors are trivial, whereas for CORE it can be obtained as

BcorecopAcore TTT
CORE

__

++
= λμ , (1)

where λ denotes the arrival process at the CORE and AcoreT _ , copT and

 85

BcoreT _ represent the processing time for IPSec preprocessing, en/de –cryption

and IP processing, respectively. Finally we can have the utilizations for core and

computational coprocessor as

BcorecopAcore

BcoreAcore
COREcore TTT

TT

__

__

++
+

×= μμ , and (2)

corecop μμ −= 1 . (3)

Fig. 6.2. The busy-waiting model.

6.3.2 The Interrupt-driven Model

Contrasted with busy-waiting, in this model the core passes the result of IPSec

preprocessing to the computational coprocessor and resumes without being

blocked. To realize this concept, two processes need to be forked in the core for

IPSec preprocessing and IP processing, respectively, and buffer is required

between the core and coprocessor. When the IPSec preprocessing is done and the

packet is passed to the coprocessor’s buffer, the context is switched to the other

process, with certain switching delay DT , for performing IP-related operations so

that the core is not stalled. To reflect this enhancement, a processor control switch

 86

referred to as PCS is adopted to capture behaviors of the two processes. According

to the above descriptions we can formally define a state of the system as

),,,,,(STBCARST = ,

where R, A, C, B and T denote the queue lengths for the five task stages, namely

receiving, IPSec preprocessing indicated as Core_A, en/de –cryption indicated as

Cop, IP processing indicated as Core_B, and transmission, while S denotes PCS.

As shown in Fig. 3, S=0/S=1 means the core is processing packets at

Core_A/Core_B. Notably the core could still be busy-waiting for (1) packet

arrivals from its predecessor or (2) available buffer slots in its successor for

passing the result. The PCS should be manipulated well to avoid these situations

by setting (1) appropriate run lengths 1ST at Core_A and 2ST at Core_B so that

the processing resource is reasonably distributed, and (2) correct transitions so as

to ensure that context switches are performed upon those situations. Parameters

used in the analytical model are described in Table 6.1.

0 1

Rec Core_A Core_BCop Trans

DS

DS

DS TT λλ
λλ

+
=

+ 1

1

1

1

Rμ Aμ Cμ Bμ Tμ

DS

DS

λλ
λλ

+2

2

λ

Fig. 6.3. The interrupt-driven model.

 87

Table 6.1. Notations for the analytical models.
 λ denotes packet arrival rate.

 1ST denotes the run length of PCS at Core_A.

 2ST denotes the run length of PCS at Core_B.

 1Sλ denotes the switching rate of PCS from 0 to 1. 11 /1 SS T=λ .

 2Sλ denotes the switching rate of PCS from 1 to 0. 22 /1 SS T=λ .

 DT denotes the context switch delay.

 Dλ denotes DT/1

 Xμ denotes the service rate of processing stage X.

6.4 Simulation Environment
Some tools have been available for simulating architectures similar to network

processors [NFS04][DFL05]. Though accurate, they focus mainly on the

low-level configuration such as cache structure and lack flexibility in task

allocation. In this section, we describe the construction of the simulation

environment based on timed, colored Petri nets (CPNs) [Mur89][ZGF98] which

captures well component-level activities. It is used to validate the analytical model

discussed in the previous section as well as to observe possible hints for future

design.

We adopt the event-driven CPN-Tools [RWL+03] as our simulator. The features

it supports, including the colored tokens, stochastic functions and hierarchical

editing, provide efficiency in the construction of timed, colored Petri nets

corresponding to our model. As shown in Fig. 4, the net contains five transitions

representing task stages, each of which associated with a control token indicating

the availability of the processing resource, and equipped with a place representing

buffers, namely B0, B1, IF_out, IF_in, and B2. The size of the buffers is

configured in other five places, i.e. B0’, B1’, IF_out’, IF_in’ and B2’, respectively,

 88

by marking them with a number of initial tokens. The following description

exemplifies a sample processing flow.

When a packet arrives at the receiving coprocessor, B0, with the inter-arrival

time being exponentially distributed with mean λ , one token in B0’ is consumed

indicating the occupation of a buffer slot. Once the receiving coprocessor is

available (the R_tok place contains a token), the packet is processed for RP usec

and then passed to the Core_A stage, if room (B1’>0), while the tokens go back to

the R_tok and B0’. If the token in P_tok is available, that is the Core_B is not

executing, the Core_A starts to process the packet for AP usec and then offloads

en/de –cryption operations to the computational coprocessor which take for CP

usec. Notably the token returning to P_tok costs additional DT usec for context

switch overhead. Similar procedures apply to the Core_B and the transmission

coprocessor which last for BP and TP usec, respectively.

λ RP

AP

DA TP +

DB TP + CP

CP

CP

BP
BP

AP

TP

RP
RP

Fig. 6.4. The Petri net simulation model.

 89

6.5 Evaluation
In this section we first validate the analytical model with simulations and real

implementation, through which the model is revised to be much precise. We then

evaluate and analyze core-centric network processors from both system and IC

vendors’ perspectives, and disclose possible design implications.

6.5.1 Validation of the Analytical Model

The analytical model is validated by simulations. Parameter settings for the

analytical model as well as the simulation are listed in Table 2.

Table 6.2. Processing time of the tasks evaluated in a real implementation.

Task Processing time

(1) Receive 27.3 us/pkt

(2) IPSec prep 31 us/pkt

(3) Crypto 12.6 us/pkt

(4) IP processing 49 us/pkt

(5) Transmit 27.3 us/pkt

We first try to find the most appropriate transition rate for PCS. As Fig. 5

presents, compared to the normal run length of 6666 usec [20], when choosing

100 usec we can have 2.26 times improvement on the effective core utilization

while consuming 20.5% less computational resource. Busy-waiting period, the

difference of the utilization and effective utilization, is significantly alleviated.

 90

In simulations, the context switch delay, DT , has been decreasingly reduced in

order to have results inline with those of the analytical model. We finally find that,

with DT being very close to 0 the analytical results are mostly within 1% of the

simulation, as presented in Fig. 6. The discrepancy comes from different

assumptions between the model and simulation. The former assumes

non-deterministic behaviors in the packet arrival and instruction processing, while

the latter uses deterministic ones in order to be realistic. What can be further

implied is that the context switch delay is minor in the implementation, which is

quite unreasonable, suggesting that only one process in the core is employed for

both IPSec preprocessing and IP processing. The utilization of the implementation

is slightly higher (3%-4%) than the analytical model when lightly loaded because

of the operating system overhead. The discrepancy noticeably increases when

overloaded. It is also surprisingly learned that the limited buffer size, which is

configured to 3, does not influence the accuracy of the model. We will discuss it

later in this section.

One observation concerning us is, as the validation proceeds, DT in the

analytical model does not have much effect than it should. We soon realize that

the context switch overhead is actually not effective in the model, since the PCS

Fig. 6.5. Run length vs. core utilization.

0

10

20
30

40

50

60

70
80

90

100

6666 1000 800 600 400 200 100 50

Run length (u sec)

C
or

e
ut

ili
za

tio
n

(%
).

Overall core utilization
Effective core utilization

 91

transits with no delay.

The model is then revised by adding two statuses for the PCS and again proves

to have results inline with those in Fig. 6. As Fig. 7 shows, the overhead is

considered (2=>1 and 3=>0) after PCS decides to switch (0=>2 and 1=>3). Fig. 8

elaborates five sample transitions, among which four of them are performing

certain tasks and one is receiving packets. Since the buffer size is configured to 3,

Core_B cannot pass the result to the transmission coprocessor whose buffer is

already full. Similarly, PCS does not change from 0 (Core_A) to 1 (Core_B) to

refrain from busy-waiting.

0 1

Rec Core_A Core_BCop Trans

Rμ Aμ Cμ Bμ Tμ

2

3

1Sλ Dλ

2SλDλ

λ

Fig. 6.7. The revised analytical

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 25 30 35 40 45

Input Load (Mbps)

C
or

e
U

til
iz

at
io

n

Experimental
Sim-buf3
Analysis-buf3

Fig. 6.6. Analytical model validation against the simulation and real

implementation.

 92

6.5.2 Differentiated Run Lengths

Run lengths have been shown to be influent on the system performance. Rather

than having same run length for Core_A and Core_B whose processing times are

different, it is sensible to differentiate them so as to balance the load. As presented

in Fig. 9, when 1ST is configured as 100 secμ which is found appropriate

previously, the system performance improves as 2ST increases, in which largest

advance occurs when 2002 =ST . Nevertheless, given that the processing time for

Core_A and Core_B is 31 secμ and 49 secμ , respectively, the results do not

necessarily suggest possible relationship between 1ST and 2ST .

Fig. 6.9. Benefits from differentiated run lengths for Core_A and Core_B. 1ST is

configured as 100 secμ .

81.4 80.4 80 79.8
72.4 72.8 73 73.3

83.8
79.579.9

72.9
67.6

71.2

0

10

20

30

40

50

60

70

80

90

100 200 400 600 800 1000 6666

Run length for Core_B (u sec)

U
til

iz
at

io
n

(%
).

Overall core utilization

Effective core utilization

Fig. 6.8. Example state transitions of the revised model.

0,3,1,1,3,03,2,1,1,3,0

1,2,1,1,3,0

1,1,2,1,3,01,2,1,1,2,0

1,2,0,2,3,0

Cμ

Rμ

Aμ

Tμ
λ

(R, A, C, B, T, S)

 93

6.5.3 Effect of the Context Switch Overhead

Though context switching is helpful in alleviating the memory access overhead,

for computational-intensive applications it could jeopardize the performance, as

Fig. 10 explains. From the figure we can learn that a delay of 300 secμ leads to

low effective utilization (12%) but considerable context switching and

busy-waiting burdens (38% and 47%). As the delay reduces, not only does the

core utilize effectively but also lessen the overhead. The burden from

busy-waiting can even be annihilated when DT =10 1ST and 2ST are further

configured to 100 and 200 secμ , respectively. Since a context switch delay of

10 secμ is quite unrealistic for current XScale core implementation (except for

some coprocessors with hardware multithreads [INT04]), this result is also

suggesting that system vendors adopt single process for multiple tasks in

computational intensive applications.

6.5.4 Benefit from Offloading

Offloading complex, routine tasks to specially design coprocessors has been an

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

300 200 100 50 25 10 10*

Context swtich delay (u sec)

C
or

e
us

ag
e

di
st

ri
bu

tio
n.

Idle
Ctx switching
Busy-waiting
Effective

Fig. 6.10. Core usage distribution for different context switch delays. The
asterisk means 1ST and 2ST are configured to 100 and 200 secμ .

 94

alternative to pure speeding up the core processor. However, the benefit from

offloading is not well uninvestigated. Figure 11 demonstrates the gain of doing

cryptographic operations, which is the most time-consuming task, by (1)

multiplying the core clock rate, and (2) offloading to the computational

coprocessor. The former includes (1) no speedup and (2) speedup for 2, 4 and 6

times for the core processor, while the latter involves both interrupt-driven and

busy-waiting schemes. As revealed in the figure, the throughput increases in direct

proportion to the speedups. Nonetheless, the interrupt-driven scheme still

outperforms the un-offloaded one equipped with a core of 6-time speedup

resembling a 3.2 GHz P4 processor. The busy-waiting scheme also parallels the

core of 4-time speedup.

The performance figures can even be validated as follows. Let the capability of

the core be m cycles/sec, and the processing time for Core_A, en/de –cryption and

Core_B be x, y and z cycles/Mbits, respectively, we can have

10=
++ zyx

m
(Mbps), (4)

since the throughput of an ordinary core without offloading is 10 Mbps. Moreover,

Fig. 6.11. Throughput of various offloading schemes. The clock rate of the XScale

core in the implementation is 533MHz, as a reference for comparison.

43.2

75

63

41

19

10

0 10 20 30 40 50 60 70 80

Busy-waiting

Interrupt-driven

6-times

4-times

2-times

1-time

Throughput (Mbps)

 95

because the core, namely XScale in the real implementation, is the performance

bottleneck [LLL+05], we can also have

T
zx

m =
+

(Mbps), (5)

where T represents the throughput of the core executing Core_A and Core_B, and

therefore the throughput of the interrupt-driven scheme as well. With (4) and (5)

we can have

10
:

)4(

)5(T

zx

zyz =
+

++
. (6)

Since 4.66.12:)4931()(: ≅+=+ zxy , according to Table 2, the throughput T

can finally derived as

74
1

4.61
10 =+×=T (Mbps), (7)

which is very much close to the one from the analytical model.

6.5.5 Effect of Limited Buffer Sizes

As pointed out earlier in this section, the limited buffer size does not impact much

on the accuracy of the model. This is verified in Fig. 12 which compares two

significantly different sizes, 3 and 1000. From the figure we can see that the core

utilization is the same for both sizes when input load does not exceed the system

capability. The queue length, which is not shown, for the two cases does not grow

noticeably, implying that the system is quite tolerant to the variance of the packet

inter-arrival time.

 96

6.6. Summary
This work aims at deriving possible design implications for core-centric network

processors by developing an analytical model as well as simulations based on the

timed, colored Petri net. The computational intensive VPN application, which has

some complex but routine tasks is adopted to explore the benefit from offloading

to coprocessors. To date, this work is the first research that practically models the

interrupt-driven and busy-waiting schemes over this emerging architecture.

The analytical model is verified to have behaviors quite inline with the

simulation (within 1%) and the implementation (within 3%-4%), indicating a

satisfactory accuracy for detailed investigation on architectural-level issues which

are unlikely to perceive on real implementations. Through both analytical and

simulation measures we observe that

 by adopting appropriate process run lengths, 2.26 times improvement on the

effective core utilization and 20.5% less consumption on the computational

resource can be achieved; better results can be have if run lengths are further

Fig. 6.12. Core utilization under two buffer sizes.

0

10

20

30

40

50

60

70

80

90

10 20 30 40

Input load (Mbps)

C
or

e
ut

ili
za

tio
n

(%
).

1000 pkts
3 pkts

 97

differentiated according to the processing time;

 by reducing the context switch delay from 300 secμ to 10 secμ we can

have 2.6 times advance on the effective core utilization, and the switching

overhead and busy-waiting time can be alleviated by as much as 90%; this

observation also strongly suggests the use of single process for multiple tasks

since 10 secμ delay is normally unfeasible for today’s technology;

 by incorporating coprocessors for bottleneck task, namely the en/de -cryption,

the throughput boosts 7.5 times compared to that of single processor;

 under Poisson arrival, the system is quite tolerant to limited buffer size.

We believe the first two findings are useful for system vendors while the others

may interest IC vendors. Discovery concluded in this study should be applicable

to network processors of similar architecture.

As future work, we plan to extend this approach by considering memory-access

intensive applications such as IDP (Intrusion Detection and Prevention). In such

extension, memory access operations can be offloaded to coprocessors

specifically designed with wide memory bus. To further analyze the potential

memory bottleneck, the model can also involve multiple memory modules or

multi-port memory supporting concurrent accesses.

 98

Chapter 7

Conclusions
The goals of this dissertation include (1) comparison of the thread allocation

schemes in multithreading architecture; (2) design implications and (3) resource

allocation strategies, for coprocessors-centric and core-centric network processors

implementing different types of applications. For the first, we found that the

heterogeneous thread allocation is the best scheme, since the load balance among

processors is simple and effective, compared to the homogeneous and the hybrid

schemes. It is also resilient to the unbalanced load among threads for unbalance

ratios smaller than 1.5. Observations regarding others are categorized and stated

as follows.

General NP Design Implications

1. Number of threads per processor: For a sensible P-M ratio, i.e. a ratio close to

1 as in the SF/DS over the IXP1200, the most appropriate number of threads is

5, and should be increased/decreased as the ratio decreases/increases.

2. Solution to memory bottleneck: For solving the memory bottleneck, if any,

adding memory banks best improves the performance, though the

effectiveness depends heavily on the data structure of the

application/algorithm.

Resource Allocation for Coprocessors-centric NPs Implementing Memory

Access Intensive Applications

1. Most important architectural factor: Given a certain application and

algorithm, the throughput is influenced mostly by the total number of threads

as long as the processor utilizations do not exceed 100%.

2. Although enlarging the total number of threads by adding more processors

 99

benefits the throughput, the ME utilization suffers. This is because the load

saturating memory is diluted by the increased I, meaning that J, rather than I,

should be extended.

3. Most appropriate (I,J) estimation through bottleneck identification. The

bottleneck is found to be the SRAM as the JI × exceeds the upperbound k

that cost-effectively utilizes the memory. With the upper-bound, we can

always estimate a most appropriate (I, J) configuration for the application.

Resource Allocation for Core-centric NPs Implementing Computational

Intensive Applications

1. Improvement from offloading: Offloading from the core processor to the

coprocessors improves the overall performance for 7.5 times. Moreover,

offloading the crypto processing benefits the throughput more than

offloading the Ethernet processing.

2. Bottleneck observation: The core tends to be the bottleneck even after

offloading.

3. Effect and implications from run length analysis: By adopting appropriate

process run lengths, 2.26 times improvement on the effective core utilization

and 20.5% less consumption on the computational resource can be achieved;

better results can be had if run lengths are further differentiated according to

the processing time;

4. Effect and implications from context switch overhead analysis: By reducing

the context switch delay from 300 secμ to 10 secμ we can have 2.6 times

advance on the effective core utilization, and the switching overhead and

busy-waiting time can be alleviated by as much as 90%; this observation also

strongly suggests the use of single process for multiple tasks since 10 secμ

delay is normally unfeasible for today’s technology.

 100

Bibliography
[AAP04] S. Antonatos, K. G. Anagnostakis, M. Polychronakis, and E. P. Markatos,

“Performance Analysis of Content Matching Intrusion Detection

Systems,” Proc. of the International Symposium on Applications and

the Internet (SAINT2004), January 2004.

[AC75] A. Aho and M. Corasick, “Efficient string matching: An aid to

bibliographic search,” Communications of the ACM, vol. 18 issue 6,

P.333-340, 1975.

[ARB02] M. Adiletta, et al., “The Next Generation of Intel IXP Network

Processors,” Intel Technology Journal, vol.6 issue 3, 2002.

[Atk95] R. Atkinson, “Security architecture for the Internet protocol,”

RFC1825, IETF Network Working Group, August 1995.

[BDE01] W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R. P. Luijten,

“Technologies and Building Blocks for Fast Packet Forwarding,” IEEE

Communications Magazine, January 2001.

[BGK+99] T. Braun, M. Günter, M. Kasumi and I. Khalil, “Virtual Private

Network Architecture,” Technical Report IAM-99-001, CATI, April

1999.

[BH04] H. Bos and K. Huang, “A network instruction detection system on

IXP1200 network processors with support for large rule sets,” Leiden

Univeristry Techical Report 2004-02.

[BH95] G. Byrd and M. Holliday, “Multithreaded Processor Architectures,”

IEEE Spectrum, vol. 32 issue 8, 1995.

[CB02] P. Crowley and J.-L. Baer, “A Modeling Framework for Network

Processor Systems,” Proc. of the Network Processor Workshop in

conjunction with Eighth International Symposium on High

Performance Computer Architecture (HPCA-8), 2002.

[CFB01] P. Crowley, M. Fiuczynski, and J.-L. Baer, “On the Performance of

 101

Multithreaded Architectures for Network Processors,” UW Technical

Report, October 2001.

[CLS+04] C. Clark, et al., “A Hardware Platform for Network Intrusion Detection

and Prevention," Proc. of the 3rd Workshop on Network Processors and

Applications (NP3), Madrid, Spain, February 2004.

[CM06] D. Comer and M. Martynov, “Building Experimental Virtual Routers

with Network Processors,” Proc. of the 2nd International Conference

on Testbeds and Research Infrastructures for the Development of

Networks and Communities, TRIDENTCOM’06, 2006.

[Com04] D. E. Comer, “Network Systems Design using Network Processors,” p.

282, Prentice Hall, 2004.

[CSI] CSIX-L1: Common Witch Interface Specification,

http://www.npforum.org/csixL1.pdf.

[DFL05] J.D. Davis, C. Fu, and J. Laudon, “The RASE (Rapid, Accurate

Simulation Environment) for Chip Multiprocessors,” Proc. of the

Workshop on Design, Architecture and Simulation of Chip

Multiprocessors, November 2005.

[FV02] M. Fisk and G. Varghese, “Applying Fast String Matching to Intrusion

Detection,” SEP’02, 2002.

[FW02] M. Franklin and T. Wolf, “A Network Processor Performance and

Design Model with Benchmark Parameterization,” in Network

Processor Workshop in conjunction with Eighth International

Symposium on High Performance Computer Architecture (HPCA-8),

February 2002.

[GKS03] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer, “Comparing Analytical

Modeling with Simulation for Network Processors: A Case Study,” in

Proc. of the Design, Automation, and Test in Europe (DATE), 2003.

[INTa] Intel IXP12XX Product Line of Network Processors,

http://www.intel.com/ design/network/products/npfamily/ixp1200.htm.

 102

[INTb] Intel IXP425 Network Processor, http://www.intel.com/design/

network/ products/npfamily/ixp425.htm.

[INTc] Intel XScale Microarchitecture, http://www.intel.com/design/

intelXScale.

[INT04] IXP2400 Data Sheet, Intel document number 301164-011, February

2004.

[JK03] E. J. Johnson and A. R. Kunze, “IXP2400/2800 Programming– The

Complete Microengine Coding Guide,” Intel Press, April 2003.

[JS97] M. John and S. Smith, “Application-Specific Integrated Circuits,”

Addison-Wesley Publishing Company, ISBN 0-201-50022-1, June

1997.

[JS99] M. John and S. Smith, “Application-Specific Integrated Circuits,”

Addison-Wesley Publishing Company, ISBN 0-201-50022-1, June

1997.

[Kes95] Lawrence Kesteloot, “Porting BSD UNIX to a New Platform,”

 January 1995.

[LCL+07] Y.-N. Lin, Y.-C. Chang, Y.-D. Lin, and Y.-C. Lai, “Resource

 Allocation in Network Processors for Memory Access Intensive

 Applications,” to appear in the Journal of Systems and Software.

[Lek03] P. C. Lekkas, “Network Processors: Architectures, Protocols and

 Platforms (Telecom Engineering),” McGraw-Hill Professional, ISBN

 0071409866, July 2003.

[LHC04] R.-T. Liu, N.-F. Huang, C.-H. Chen and C.-N. Kao, “a fast

string-matching algorithm for network processor-based intrusion

detection system,” ACM Transactions on Embedded Computing

Systems, vol 3 issue 3, P.614-633, August 2004.

[LJ03] B.K. Lee and L.K. John, “NpBench: A Benchmark Suite for Control

Plane and Data Plane Applications for Network Processors,” Proc. of

the IEEE Int’l Conf. Computer Design (ICCD 03), 2003, pp. 226-233.

 103

[LLP02] S. Lakshmanamurthy, K. Y. Liu, Y. Pun, L. Huston, and U. Naik,

“Network Processor Performance Analysis Methodology,” Intel

Technology Journal vol. 6 issue 3, 2002.

[LLL+05] Y.-N. Lin, C.-H. Lin, Y.-D. Lin and Y.-C. Lai, “VPN Gateways over

Network Processors: Implementation and Evaluation,” Proc. of the

11th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS'05), San Francisco, March 2005.

[LLY+03] Y. D. Lin, Y. N. Lin, S. C. Yang, and Y.S. Lin, “DiffServ Edge Routers

over Network Processors: Implementation and Evaluation,” IEEE

Network, Special Issue on Network Processors, July 2003.

[LW06] J. Lu and J. Wang, “Analytical performance analysis of

network-processor-based application designs,” Proc. of the 15th

International Conference on Computer Communications and Networks

(IC3N06), Arlington, VA, Oct. 2006. IEEE Press, Pages 33-39.

[MOT] Motorola C-5 network processor, http://e-www.motorola.com/.

[Mur89] T. Murata, “Petri Nets: Properties, Analysis and Applications,”

Proceedings of the IEEE, vol. 77, no. 4, 1989.

[Net] The NetBSD Project, http://www.netbsd.org/.

[NFS04] D. Nussbaum, A. Fedorova, and C. Small, “An Overview of the Sam

 CMT Simulator Kit,” Technical Report of Sun microsystems, June

 2004.

[NGG93] S. S. Nemawarkar, R. Govindarajan, G. R. Gao, and V. K. Agarwal,

“Analysis of Multithreaded Multiprocessor Architectures with

Distributed Shared Memory”, Proc. of the Fifth IEEE Symposium on

Parallel and Distributed Processing, Dallas, pp.114-121, 1993.

[NSH02] U. Naik, et al., “IXA Portability Framework: Preserving Software

Investment in Network Processor Applications,” Intel Technology

Journal, vol.6 issue 3, 2002.

[POS] POS PHY Level 3 Link Reference Design,

 104

http://www.latticesemi.com/products/devtools/ip/refdesigns/pos_phy.cf

m.

[PRS04] W. Plishker, K. Ravindran, N. Shah, and K. Keutzer, “Automated Task

Allocation on Single Chip, Hardware Multithreaded, Multiprocessor

Systems,” Proc. of the Workshop on Embedded Parallel Architectures

(WEPA-1), 2004.

[Roe] M. Roesh, “Snort: The open source network intrusion detection

system,” http://www.snort.org.

[RJ03] S. T. G. S. Ramakrishna, H. S. Jamadagni, “Analytical Bounds on the

Threads in IXP1200 Network Processor,” Proc. of the Euromicro

Symposium on Digital System Design (DSD’03), pp. 426-429, 2003.

[RW03] R. Ramaswamy and T. Wolf, “PacketBench: A Tool for Workload

Characterization of Network Processing,” Proc. of the 6th IEEE

Annual Workshop on Workload Characterization, 2003.

[RWL+03] A. V. Ratzer et al., “CPN Tools for Editing, Simulating, and

Analysing Coloured Petri Nets,” Proc. of the International Conference

on Applications and Theory of Petri Nets, 2003.

[S-BCE90] R. S-B, D. Culler, and T. Eicken, “Analysis of multithreaded

architectures for parallel computing,” Proc. of the 2nd Annual ACM

Symposium. on Parallel Algorithms and Architectures, 1990.

[SKP01] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building a Robust

Software-Based Router Using Network Processors,” Proc. of the 18th

ACM Symposium on Operating Systems Principles (SOSP), 2001.

[SMA03] K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja, and V. S. Pai,

“Challenges in Computer Architecture Evaluation,” IEEE Computer,

2003.

[SPK 03] Niraj Shah, William Plishker, Kurt Keutzer, “NP-Click: A

Programming Model for the Intel IXP1200,” Proc. of the 2nd Workshop

on Network Processors (NP-2), held in conjuction with the 9th

 105

International Symposium on High Performance Computer Architecture

(HPCA), 2003.

[TLY+04] Z. Tan, C. Lin, H. Yin, and B. Li, “Optimization and Benchmark of

Cryptographic Algorithms on Network Processors,” IEEE Micro, vol.

24, no. 5, pp. 55-69, 2004.

[WF00] T. Wolf and M. Franklin, “CommBench: A Telecommunication

Benchmark for Network Processors,” Proc. IEEE Int’l Symp.

Performance Analysis of Systems and Software (ISPASS 00), IEEE

Press, 2000, pp. 154-162.

[WF06] T. Wolf and M. K. Franklin, “Performance Models for Network

Processor Design,” IEEE Transactions on Parallel and Distributed

Systems, Vol. 17, No. 6, pp. 548-561, June 2006.

[WM94] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”

Technical Report TR94-17, Department of Computer Science,

University of Arizona.

[WT01] T. Wolf and J. S. Turner, “Design Issues for High- Performance Active

Routers,” IEEE Journal on Selected Areas in Communications, vol. 19,

no. 3, 2001.

[ZGF98] W. M. Zuberek, R. Govindarajan, F. Suciu, “Timed Colored Petri net

Models of Distributed Memory Multithreaded Multiprocessors,” Proc.

of the Workshop on Practical Use of Coloured Petri Nets and Design,

pages 253-270, Aarhus University, June 1998.

