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Abstract

In this dissertation, we investigate fault-tolerant capabilities of the k-ary n-cubes with

respect to the hamiltonian and hamiltonian connected properties. The k-ary n-cube is

a bipartite graph if and only if k is an even integer. Let F be a faulty set with nodes

and/or links, and let k ≥ 3 be an odd integer. When |F | ≤ 2n − 2, we show that there

exists a hamiltonian cycle in a wounded k-ary n-cube. In addition, when |F | ≤ 2n − 3,

we prove that, for two arbitrary nodes, there exists a hamiltonian path connecting these

two nodes in a wounded k-ary n-cube. Since the k-ary n-cube is regular of degree 2n, the

degrees of fault-tolerance 2n − 3 and 2n − 2 respectively, are optimal in the worst case.
The Möbius cube MQn, crossed cube CQn, and twisted cube TQn are alternatives to

the popular hypercube network. However, the diameters of these three interconnection

networks are about one half of that of the hypercube. Recently, MQn was shown to be

pancyclic, i.e., cycles of any length at least four can be embedded into it. Due to the

importance of the fault tolerance in the parallel processing area, in this dissertation, we

study injured MQn, CQn, and TQn with mixed node and link faults. We show that they

are (n − 2)-fault-tolerant pancyclic for n ≥ 3, that is, injured n-dimensional MQn, CQn,

and TQn are still pancyclic with up to (n−2) faults. Furthermore, our results are optimal
in the sense that if there are n − 1 faults, there is no guarantee of having a cycle of a

certain length in them.

The hypercube Qn is one of the most popular networks. In this dissertation , we first

prove that the n-dimensional hypercube is 2n − 5 conditional fault-bipancyclic. That is,

an injured hypercube with up to 2n− 5 faulty links has a cycle of length l for every even

4 ≤ l ≤ 2n when each node of the hypercube is incident with at least two healthy links.

In addition, if a certain node is incident with less than two healthy links, we show that

an injured hypercube contains cycles of all even lengths except hamiltonian cycles with

up to 2n− 3 faulty links. Furthermore, the above two results are optimal. In conclusion,
we find cycles of all possible lengths in injured hypercubes with up to 2n − 5 faulty links
under all possible fault distributions.

Keywords: cycle embedding, Möbius cube, twisted cube, crossed cube, hypercube, k-ary

n-cube, pancyclic, hamiltonian, fault-tolerant.
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Chapter 1

Introduction and Motivation

1.1 Hamiltonian Circuit and Linear Array Embed-

dings in Faulty k-Ary n-Cubes

In many parallel computer systems, processors are connected based on an interconnection

network. Such networks usually have a regular degree, i.e., every node is incident with the

same number of links. Popular instances of interconnection networks include hypercubes,

star graphs, meshs, the k-ary n-cubes, etc.

The k-ary n-cube, denoted by Qk
n, has a regular degree of 2n, and is highly symmetric.

As a result, it possesses lots of good properties. Some topological properties and hamil-

tonian cycle embeddings in healthy k-ary n-cubes were discussed in [6]. Also, various

topological properties were studied by using Lee distance [10]. The conditional node con-

nectivity problem of Qk
n was investigated in [16]. In [5], n edge disjoint hamiltonian cycles

were found in Qk
n. Ashir et al. studied the problem of hamiltonian cycle embeddings in

Qk
n with a possibility of link failures [4].

Hamiltonian circuit and linear array embeddings are desired properties in an inter-

connection network. Many works related to embeddings of longest cycles and paths in

various interconnection networks have been studied previously, including hypercubes [11],

[38], k-ary n-cubes [4], stars [25], [51], arrangement graphs [26], [41], etc.

Ashir et al. [4] showed that, with only edge faults and under the condition that every
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node is incident with at least two fault-free edges, a wounded k-ary n-cube still has a

hamiltonian circuit, provided that faulty edges are no more than 4n − 5. The situation

of having both faulty nodes and faulty links remains unanswered, and the hamiltonian

linear array embeddings in Qk
n has not been discussed yet even in a healthy Qk

n.

Since failures are inevitable, fault-tolerance is an important issue in multiprocessor

systems. In this dissertation, we consider a possibility of both node and link failures, and

discuss the fault-tolerant capabilities of the k-ary n-cubes with respect to the hamiltonian

and hamiltonian connected properties. Let F be a faulty set with nodes and/or links.

We observe that Qk
n is bipartite if and only if k is even. When k is even and there is a

faulty node, there exists neither a hamiltonian cycle nor a hamiltonian path between two

vertices in different partite sets in a wounded Qk
n. Therefore, throughout this dissertation,

we suppose that k is an odd integer with k ≥ 3. Then, a ring of maximum length, or a

hamiltonian cycle, in a wounded Qk
n can be constructed, provided that |F | ≤ 2n − 2 for

n ≥ 2. On the other hand, if |F | ≤ 2n − 3 for n ≥ 2, we provide a construction of a

linear array of maximum length, or a hamiltonian path, connecting two arbitrary vertices

in a wounded Qk
n. In both cases, we have achieved optimal solutions. The reason is as

follows. First, any hamiltonian cycles cannot be found in a wounded Qk
n when there are

2n-1 faulty edges incident to a single node. Second, suppose that there are 2n − 2 edge

faults incident to a node x. Let y and z be two nodes of Qk
n incident to x. Then, there is

no hamiltonian path connecting y and z when all the edges incident to x are faulty except

(x, y) and (x, z).

1.2 Fault-Tolerant Pancyclicity of the Möbius Cubes,

Crossed Cubes, and Twisted Cubes

The topology of an interconnection network is an important issue for parallel and dis-

tributed systems. Many topologies have been proposed in the last decades, for example,

[7, 15, 18, 39, 45]. Among them, the hypercube is the most popular one, because of

its simple and symmetric structure, recursive property, relatively low diameter, and easy

routing. However, it was observed that by changing some links of the hypercube, we may

obtain different cubes with improved properties; for example, the diameter can be reduced.

Some variations of the hypercube have been studied in the literature [1, 12, 15, 19, 39].
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The crossed cube CQn introduced by Efe [19], the Möbius cube MQn proposed by

Cull et al. [15], and the twisted cube TQn proposed by Hilbers et al. [22] are n-regular

networks with 2n nodes. Their diameters were shown to be only one half of that of the

hypercube. And they are superior to the hypercube in several other properties. Thus

they are alternatives to the hypercube network.

Many researches on the topological properties of interconnection networks have been

done over the years. Among them, graph embedding of a guest graph into a host graph is

useful for the applicability of the known algorithms that were created before [2, 36, 52].

An embedding of a guest graph G into a host graph H consists of two mappings. One

is a mapping of each vertex of G into a vertex of H , and the other is a mapping of each

edge of G into a path of H . Two important arguments in evaluating the quality of an

embedding are dilation and congestion. The dilation is the maximum length of a path of

H which is mapped by an edge of G. The congestion is the maximum number of times

that an edge of H is mapped. The smaller the dilation and the congestion, the better

the embedding. In particular, if the embedding has dilation 1 and congestion 1, G is a

subgraph of H . All of the embeddings in this dissertation have dilation 1 and congestion

1.

The ring structure embedding into various topologies have been heavily discussed

[24, 44, 46, 47, 51]. However, the above researches all focused on the hamiltonian cycle

embedding. In recent years, a lot of people studied the problem of the existence of cycles of

arbitrary lengths in various interconnection networks [3, 14, 20, 21, 27, 31]. In particular,

Fan [20] showed that the Möbius cube is pancyclic. Let G be a simple undirected graph.

We use |V (G)| to denote the number of vertices of G. G is pancyclic if any cycle of

length l can be embedded into it, where 4 ≤ l ≤ |V (G)|. However, a pancyclic graph
G means that it has any cycle of length l, 3 ≤ l ≤ |V (G)| in the literature [8, 9, 42].
Unfortunately, it is easy to check that CQn, MQn, and TQn have girth 4. Therefore, for

ease of discussion, we adapted the previous definition, and we consider an extension of

the result of Fan from the fault-tolerant point of view in this dissertation.

The fault tolerance is a crucial matter for parallel computing, especially when the

network is large. Therefore, in this dissertation, we study the fault-tolerant capability of

the crossed cube, the Möbius cube, and the twisted cube. Using the recursive structure

of the three networks, we prove that all of them are (n − 2)-fault-tolerant pancyclic for
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n ≥ 3. That is, we can embed cycles of any length at least four into injured CQn, MQn,

and TQn with up to (n− 2) faults, where faults can be mixed; both nodes and links may
be faulty. Furthermore, this result is optimally fault-tolerant in the sense that if there are

(n − 1) faults around a single node, then there does not exist a hamiltonian cycle in any
of them.

1.3 Highly fault-tolerant cycle embeddings of hyper-

cubes

Processors of a multiprocessor system are connected according to a given interconnection

network. Many interconnection networks have been proposed with their superb merits

demonstrated. Among them, the hypercube network is one of the most popular candidates

when choosing an interconnection network. Newly proposed properties or measures with

respect to interconnection networks are usually studied first on the hypercube because of

its symmetric structure and popularity.

In order to speed up computations, a number of processors are grouped together to

run a given parallel algorithm. A cycle is a preferred structure for a group of processors

to carry out an algorithm because it is branch-free and has low degree. In addition, a ring

structure can be used as a control or data flow structure for distributed computations.

For more benefits and applications of cycles, refer to [17, 32, 48]. Many researchers

have studied the existence of cycle structures in various interconnection networks, for

example, [11, 17, 26, 32, 40, 51, 53].

Failures of interconnection network components are inevitable. Accordingly, various

fault-tolerant measures have been proposed in the literature, including fault diameter [45],

fault hamiltonicity [26], fault bipancyclicity [40], and fault hamiltonian laceability [49]. In

particular, Tsai et al. [40] studied the fault-tolerant bipancyclic property on hypercube.

A network or a graph G is bipancyclic if G has cycles of all even lengths ranging from

4 to the number of vertices of G. They found that an injured hypercube Qn with up to

n− 2 faulty links is bipancyclic. However, this measure underestimates the fault-tolerant
capability of an interconnection network. Although there is no hamiltonian cycle in an

injured hypercube if there are n − 1 faulty links incident to a single node, this is the

unique case.
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In this paper, we study a kind of fault-tolerant measure, the conditional fault-tolerant

bipancyclicity, on the hypercube. By restricting fault distributions, an injured hypercube

is still bipancyclic with a large amount of faulty links. We show that an injured hypercube

is bipancyclic with up to 2n−5 faulty links under the condition that every node is incident
with at least two healthy links. Normally, this condition makes sense since the probability

that a certain node is incident with more than n − 2 faulty links is low when n is large.

Some other conditional properties concerning with connectivity [37], diameter [43], and

hamiltonian cycle embeddings [11] have been studied. Furthermore, as mentioned above,

there is no hamiltonian cycle with n − 1 faulty links in the worst case, so we are curious
whether cycles of smaller even lengths exist? Our finding is that all of them do exist.

When the condition is not satisfied, i.e., a certain node is incident with less than two

healthy links, an injured hypercube has cycles of all even lengths except hamiltonian

cycles with up to 2n − 3 faulty links. The above two results are optimal, and for details,
refer to Chapter 6. Based on these results , we conclude that we can find cycles of all

possible lengths in an injured hypercube with up to arbitrary 2n − 5 faulty links.

1.4 Basic Definitions and Notation

An interconnection network can be represented by an undirected simple graph G. Given a

graph G, its vertex set and edge set are denoted by V (G) and E(G), respectively. A path,

denoted by 〈v1, v2, . . . , vk〉, is defined as a sequence of vertices where two successive vertices
are adjacent in G. A path is said to be a hamiltonian path if it traverses all the vertices of

G exactly once. A graph G is hamiltonian connected if there is a hamiltonian path between

any two arbitrarily chosen vertices of G. A cycle is a path that begins and ends with the

same vertex. A hamiltonian cycle of G is a cycle which walks through every vertex of G

exactly once. A hamiltonian graph is a graph that contains a hamiltonian cycle. In this

dissertation, a pancyclic graph is a graph which contains, for each l, 4 ≤ l ≤ |V (G)|, a
cycle of length l.

In this dissertation, the notion of the fault tolerance is as follows. Let V ′ ⊆ V (G).

G−V ′ is the subgraph of G induced by V − V ′. Let F be a faulty set which may contain

vertex faults and/or edge faults. We use G − F to denote the subgraph of G induced

by V − F after removing the edges in F . Let k be a positive integer. A graph G is k-

fault-tolerant hamiltonian connected (abbreviated as k-hamiltonian connected) if G−F is
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hamiltonian connected for any F with |F | ≤ k. A graph G is k-fault-tolerant hamiltonian

(abbreviated as k-hamiltonian) if G − F is hamiltonian for any F with |F | ≤ k. Let

Fv = V (G)
⋂

F . A graph G is k-fault-tolerant pancyclic (abbreviated as k-pancyclic) if

G − F is pancyclic for any F with |F | ≤ k, i.e., G − F contains every cycle of length l,

where 4 ≤ l ≤ |V (G)| − |Fv|.

1.5 Outline of this dissertation

The rest of this dissertation is organized as follows: We show that the k-ary n-cube is

(2n−2)-hamiltonian and (2n−3)-hamiltonian connected for every odd k ≥ 3 in Chapter 2.

Then, we discuss the fault-tolerant pancyclicity of CQn, MQn, and TQn in Chapter 3, 4,

and 5, respectively. After that, we investigate the highly fault-tolerant cycle embeddings

of hypercubes in Chapter 6. Finally, the conclusion is given in Chapter 7.
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Chapter 2

Hamiltonian Circuit and Linear
Array Embeddings in Faulty k-Ary
n-Cubes

2.1 Preliminaries

.

Q[0]

.

Q[1] Q[k-1]Q[k-2]

...

...

...

...

...

.

.
.
. .

.

. .
.
.

Figure 2.1: Qk
n is divided into Q[0], Q[1], . . ., Q[k − 1].

The k-ary n-cube Qk
n is a graph consisting of kn vertices labeled by the integers from

0 to kn − 1. Two vertices are adjacent if and only if the representations of their labels

in base k differ by one (modulo k) in exactly one position. We refer to (x, y) ∈ E(Qk
n)
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where x differs from y in the dth position, for 0 ≤ d ≤ n − 1, as an edge of dimension

d. We say that Qk
n is divided into Qk

n[0], Q
k
n[1], . . ., Qk

n[k − 1] (abbreviated as Q[0], Q[1],

. . ., Q[k − 1], if there are no ambiguities) along dimension d for some 0 ≤ d ≤ n − 1 if

Q[l], for every 0 ≤ l ≤ k − 1, is a subgraph of Qk
n induced by the vertices labeled by

xn−1 . . . xd+1lxd−1 . . . x0 (see Figure 2.1). It is clear that each Q[l] is isomorphic to Qk
n−1

for 0 ≤ l ≤ k − 1. Note that Qk
n can be divided into k copies of Qk

n−1 along n different

dimensions. For 0 ≤ i, j ≤ k − 1, we use [i, j] to denote a set of integers: [i, j] = {l |
i ≤ l ≤ j} if i ≤ j, and [i, j] = {l | i ≤ l ≤ k − 1 or 0 ≤ l ≤ j} if i > j. Qk

n[i, j]

(abbreviated as Q[i, j] if there is no ambiguity) denotes the subgraph of Qk
n which is

induced by {u | u ∈ V (Q[l]); l ∈ [i, j]}.

2.2 Fundamental tools

Q[i] Q[j]

ui

uj

Q[i+1,j-1]

(b) Lemma 2.

Q[i]

ui

vi

Q[i+1,j]

(a) Lemma 1.

Q[i]

ui

Q[i+1,j]

(c) Lemma 3.

us

Figure 2.2: Hamiltonian paths in faulty Q[i, j].

Let k be an odd integer with k ≥ 3, and let n be an integer. Let F ⊆ V (Qk
n)

⋃
E(Qk

n)
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be the set of faulty vertices and/or edges in Qk
n, and let F l = F

⋂
(V (Q[l])

⋃
E(Q[l])) for

every 0 ≤ l ≤ k − 1. We refer to an edge (x, y) ∈ E(Qk
n) where all of x, y, and (x, y) are

fault-free, as a safe crossing-edge.

In the following lemmas, namely Lemma 1, Lemma 2, and Lemma 3, we shall construct

hamiltonian paths in faulty Q[i, j] for every i, j ∈ [0, k − 1] when each faulty Q[l] is

hamiltonian connected for l ∈ [i, j]. These preliminaries would be useful for further

discussions.

As a first step, we shall construct a hamiltonian path between two arbitrary vertices

belonging to Q[i] in a faulty Q[i, j] (see Figure 2.2 (a)).

Lemma 1 Let i, j ∈ [0, k − 1], and let F ⊆ V (Q[i, j])
⋃

E(Q[i, j]) be a faulty set with

|F | ≤ 2n − 3. If Q[l] − F l is hamiltonian connected for every l ∈ [i, j], there exists a

hamiltonian path connecting every two vertices ui and vi ∈ V (Q[i]−F i) in Q[i, j]−F for

every n ≥ 3 and odd k ≥ 3.

Proof. If i = j, this lemma holds. So we suppose that i �= j. We may assume without

loss of generality that i = 0 in the following discussion. Since Q[l] − F l is hamiltonian

connected for every l ∈ [0, j], there is a hamiltonian path, say P0(u0, v0) (u0 = ui and

v0 = vi), in Q[0]− F 0 (see Figure 2.3 (a)). The length of P0(u0, v0) = |V (Q[0]− F 0)| − 1
≥ kn−1 − |F 0| − 1, and the number of faults outside Q[0] is at most (2n − 3) − |F 0|.
When n and k ≥ 3, kn−1−|F 0|−1

2
≥ 3n−1−|F 0|−1

2
> (2n − 3)− |F 0|. Hence, we can find two

consecutive vertices, say w0 and z0, on P0(u0, v0) such that (w0, w1) and (z0, z1) are safe

crossing-edges where w1 and z1 are the neighbors of w0 and z0 in Q[1] respectively. Let

〈u0, P0,1(u0, w0), w0, z0, P0,2(z0, v0), v0〉 = P0(u0, v0) , and let P1(w1, z1) be a hamiltonian

path in Q[1] − F 1. 〈u0, P0,1(u0, w0), w0, w1, P1(w1, z1), z1, z0, P0,2(z0, v0), v0〉 forms a
hamiltonian path in Q[0, 1]−F . Repeating the above construction, we have a hamiltonian

path in Q[0, j]− F . ✷

In the following lemma, we shall construct a hamiltonian path between two arbitrary

vertices ui ∈ V (Q[i] − F i) and uj ∈ V (Q[j]− F j) in a faulty Q[i, j] (see Figure 2.2 (b)).

Note that Q[i, j] can tolerate 2n−2 faults in this lemma, which is the maximum degree of

the fault-tolerance of hamiltonian cycle embeddings. In addition, we want all the vertices

in Q[j]− F j to form a subpath on this hamiltonian path for proving Lemma 3.
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Q[1]
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z0

P0,1(u0,w 0)
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P0(u0,v 0) P1(w1,z1)

Q[0] Q[j]

u0

v0
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uj

Q[1, j-1]

vj-1

v1

P0(u0,v0)
,uj)

R(u0,vj-1 )

(a) The proof of Lemma 1. (b) The proof of Lemma 2.

S(vj

Figure 2.3: The proofs of Lemma 1 and Lemma 2.

Lemma 2 Let i, j ∈ [0, k − 1], and let F ⊆ V (Q[i, j])
⋃

E(Q[i, j]) be a faulty set with

|F | ≤ 2n − 2. If Q[l] − F l is hamiltonian connected for every l ∈ [i, j], there exists a

hamiltonian path connecting two arbitrary vertices ui ∈ V (Q[i]−F i) and uj ∈ V (Q[j]−F j)

in Q[i, j] − F such that all the vertices in Q[j] − F j form a subpath on this hamiltonian

path for every n ≥ 3 and odd k ≥ 3.

Proof. If i = j, the statement follows. Hence, we suppose that i �= j. Without loss of

generality, we may assume that i = 0 (see Figure 2.3 (b)). Note that |F | = (2n − 2) and
|V (Q[0])| = kn−1. Since kn−1 − (2n− 2) ≥ 9− 4 = 5 for every n ≥ 3 and odd k ≥ 3, there

exists a safe crossing-edge, say (v0, v1), where v0 �= u0, v0 ∈ V (Q[0] − F 0), v1 �= uj, and

v1 ∈ V (Q[1]−F 1). By assumption, Q[l]−F l is hamiltonian connected for every l ∈ [0, j],
so we have a hamiltonian path, say P0(u0, v0), in Q[0]− F 0. Continuing this process, we

can join all hamiltonian paths in Q[l]−F l, for all l ∈ [0, j−1], to form a hamiltonian path,

namely R(u0, vj−1), in Q[0, j − 1] − F such that (vj−1, vj) is a safe crossing-edge where

vj−1 �= u0, vj−1 ∈ V (Q(j − 1)−F j−1), vj �= uj, and vj ∈ V (Q[j]−F j). Let S(vj , uj) be a

hamiltonian path in Q[j]. 〈u0, R(u0, vj−1), vj−1, vj , S(vj, uj), uj〉 is a hamiltonian path in
Q[0, j]− F , and S(vj, uj) contains all vertices in Q[j]− F j. ✷

14



In the following lemma, we construct a hamiltonian path between two arbitrary ver-

tices ui ∈ V (Q[i] − F i) and us ∈ V (Q[s] − F s) with s ∈ [i, j] in a faulty Q[i, j] (see

Figure 2.2 (c)). Note that Q[i, j] can tolerate 2n − 3 faults in this lemma, which is the

maximum degree of the fault-tolerance of hamiltonian path embeddings.

Lemma 3 Let i, j ∈ [0, k − 1], and let F ⊆ V (Q[i, j])
⋃

E(Q[i, j]) be a faulty set with

|F | ≤ 2n − 3. If Q[l] − F l is hamiltonian connected for every l ∈ [i, j], there exists a

hamiltonian path connecting every two vertices ui ∈ V (Q[i]− F i) and us ∈ V (Q[s]− F s)

in Q[i, j]− F with s ∈ [i, j] for every n ≥ 3 and odd k ≥ 3.

Proof. If i = j, the statement is true. Therefore, we assume that i �= j. By Lemma 2,

there exists a hamiltonian path, say R(ui, us), in Q[i, s] − F such that all the vertices

in Q[s] − F s form a subpath on R(ui, us). Using the counting argument in the proof of

Lemma 1, we can find two consecutive vertices, say us and vs ∈ V (Q[s]), on R(ui, us) such

that (us, us+1) and (vs, vs+1) are safe crossing-edges where us+1 and vs+1 ∈ V (Q[s + 1]).

By Lemma 1, there is a hamiltonian path, namely S(us+1, vs+1), in Q[s+1, j]−F . Let 〈ui,

R1(ui, us), us, vs, R2(vs, vi), vi〉 = R(ui, us). Then, 〈ui, R1(ui, us), us, us+1, S(us+1, vs+1),

vs+1, vs, R2(vs, vi), vi〉 forms a hamiltonian path in Q[j]− F . ✷

2.3 Fault-tolerant hamiltonicity and hamiltonian con-

nectivity

The m × n torus is a graph of mn vertices labeled as ab where a and b are integers with

0 ≤ a ≤ m−1 and 0 ≤ b ≤ n−1. Two vertices ab and cd are adjacent if and only if either

a = c and b = d ± 1(mod n) or b = d and a = c ± 1(mod m). Therefore, Qk
2 is a k × k torus

for every k ≥ 3 by the definition. The following theorem related to the fault-tolerant

hamiltonicity of the m × n torus is proved in [33].

Theorem 1 [33] If m ≥ 3, n ≥ 3, and n is odd, m × n torus is 2-hamiltonian and

1-hamiltonian connected.

The following corollary immediately follows by Theorem 1.

Corollary 1 If k is odd with k ≥ 3, Qk
2 is 2-hamiltonian and 1-hamiltonian connected.
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Using the fault-tolerant hamiltonian and hamiltonian connected properties of Qk
n−1,

we shall show the fault-tolerant hamiltonian property of Qk
n.

Theorem 2 Let k be an odd integer with k ≥ 3. If Qk
n−1 is (2n − 4)-hamiltonian and

(2n − 5)-hamiltonian connected for some n ≥ 3, Qk
n is (2n − 2)-hamiltonian.

Proof. We claim that we can divide Qk
n into Q[0], Q[1], . . ., Q[k − 1] along some

dimension such that |F l| ≤ 2n− 3 for every 0 ≤ l ≤ k − 1. If |F | ≤ 2n− 3, it is done. So
we assume that |F | = 2n− 2. Then, if there is a faulty edge, we can divide Qk

n along the

dimension of this faulty edge. On the other hand, suppose that F ⊆ V (Qk
n). Since |F | ≥ 4

for every n ≥ 3, picking arbitrarily two faulty vertices in Qk
n, we can divide Qk

n along some

dimension such that these two faulty vertices are in different Qk
n−1’s. Hence, the claim

follows. Furthermore, without loss of generality, we may assume that |F 0| ≥ |F l| for every
l ∈ [0, k− 1]. We discuss the existence of a hamiltonian cycle in the following three cases.

Case 1. |F 0| = 2n − 3 (see Figure 2.4 (a)).

By assumption, Qk
n−1 is (2n− 4)-hamiltonian. Therefore, there is a hamiltonian path,

namely P0(u0, v0), in Q[0] − F 0. Let u1 and v1 be the neighbors of u0 and v0 in Q[1]

respectively, and let uk−1 and vk−1 be the neighbors of u0 and v0 in Q[k − 1] respectively.
Since there is at most one fault outside Q[0], either the two edges (u0, u1) and (v0, v1)

are safe crossing-edges or the two edges (u0, uk−1) and (v0, vk−1) are safe crossing-edges.

Without loss of generality, we may assume that (u0, u1) and (v0, v1) are safe crossing-

edges. By assumption, Qk
n−1 is (2n− 5)-hamiltonian connected and 2n− 5 ≥ 1 for n ≥ 3,

so Q[l]− F l is hamiltonian connected for every l ∈ [1, k − 1] and n ≥ 3. Since 1 < 2n− 3
for n ≥ 3, by Lemma 3, there is a hamiltonian path, namely R(u1, v1), in Q[1, k − 1]−F .

Therefore, 〈u0, P0(u0, v0), v0, v1, R(v1, u1), u1, u0〉 forms a hamiltonian cycle in Qk
n − F .

Case 2. |F 0| = 2n − 4.

By assumption, Qk
n−1 is (2n−4)-hamiltonian. Therefore, there is a hamiltonian cycle,

say C0, in Q[0] − F 0. Since there are at most two faults outside Q[0], we can find two

consecutive vertices, namely u0 and v0, on C0 for n ≥ 3 such that (u0, u1) and (v0, v1) are

safe crossing-edges, where u1 and v1 are the neighbors of u0 and v0 in Q[1] respectively.

Note that Q[l] − F l is hamiltonian-connected for every l ∈ [1, k − 1] and n ≥ 4. In this
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(a) Case 1.
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(b) Case 2 (when Q[i]-F is not hamiltonian connected).

P0(u0,v0)

v0
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vi

u0 u1
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R(u1,ui-1 )
,vk-1 )

vk-1

vi+1

C0
Ci

S(v
i+1

Figure 2.4: Cases of Theorem 2.

situation, the proof is similar to Case 1.

When n = 3, it is possible that in addition to Q[0], there exists another copy of

Qk
n−1, say Q[i], which contains two faults. Hence, both of Q[0] − F 0 and Q[i] − F i

are not hamiltonian connected, but both are hamiltonian. There is a hamiltonian cy-

cle, say Ci, in Q[i] (see Figure 2.4 (b)). Note that there is no fault outside Q[0] and

Q[i], and Q[l] − F l is hamiltonian connected for every l /∈ {0, i}. We may assume with-
out loss of generality that i �= k − 1. We can find a safe crossing-edge, say (ui−1, ui),

where ui−1 ∈ Q[i − 1] and ui ∈ Q[i]. By Lemma 3, there is a hamiltonian path,

namely R(u1, ui−1), in Q[1, i − 1]. Let vk−1 ∈ V (Q[k − 1]) be a neighbor of v1. Let

vi be adjacent to ui on Ci such that vi+1, the neighbor of vi in Q[i + 1], �= vk−1. By

Lemma 3, there exists a hamiltonian path, namely S(vi+1, vk−1), in Q[i+1, k−1]. Further-
more, let 〈u0, P0(u0, v0), v0〉 = C0 and 〈ui, Pi(ui, vi), vi〉 = Ci. Then, 〈u0, u1, R(u1, ui−1),

ui−1, ui, Pi(ui, vi), vi, vi+1, S(vi+1, vk−1), vk−1, v0, P0(v0, u0), u0〉 is a hamiltonian cycle inQk
3−

F .

Case 3. |F 0| ≤ 2n − 5.
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Since kn−1 > 2n − 2 for k ≥ 3 and n ≥ 3, we can find a safe crossing-edge, say

(u0, uk−1), where u0 ∈ Q[1] and uk−1 ∈ Q[k − 1]. |F 0| ≤ 2n − 5, and, by assumption,

Qk
n−1 is (2n − 5)-hamiltonian connected. Therefore, Q[l] − F l is hamiltonian connected

for every 0 ≤ l ≤ k − 1. By Lemma 2, there is a hamiltonian path, namely P (u0, uk−1),

in Q[0, k − 1]. Therefore, 〈u0, P (u0, uk−1), uk−1, u0〉 is a hamiltonian cycle in Qk
n − F . ✷

Using the fault-tolerant hamiltonian and hamiltonian connected properties of Qk
n−1

again, we shall prove the fault-tolerant hamiltonian connected property of Qk
n as follows.

Theorem 3 Let k be an odd integer with k ≥ 3. If Qk
n−1 is (2n − 4)-hamiltonian and

(2n − 5)-hamiltonian connected for some n ≥ 3, Qk
n is (2n − 3)-hamiltonian connected.

Proof. We want to prove that there exists a hamiltonian path connecting every two

vertices x and y in Qk
n − F for every F with |F | ≤ 2n − 3. Since x �= y, we can divide

Qk
n into Q[0], Q[1] . . ., Q[k − 1] along some dimension such that x and y are in different

Qk
n−1’s. Furthermore, without loss of generality, we may assume that |F 0| ≥ |F l| for every

0 ≤ l ≤ k − 1. We discuss the existence of a hamiltonian path connecting x and y in the

following three cases.

Case 1. |F 0| = 2n − 3.

By assumption, Qk
n−1 is (2n − 4)-hamiltonian. Hence, there is a hamiltonian path,

namely P0(u0, v0), in Q[0] − F 0. Note that there is no fault outside Q[0]. So Q[l] is

hamiltonian connected for every l ∈ [1, k − 1]. We divide this case further into two

subcases Case 1.1 and Case 1.2 as follows.

Case 1.1. x ∈ V (Q[0]− F 0) and y ∈ V (Q[i]− F i) where i �= 0 (see Figure 2.5 (a)).

We may assume that the distance from x to u0 is at least as far as the distance from x

to v0 on P0(u0, v0). Let 〈u0, P0,1(u0, w0), w0, x, P0,2(x, v0), v0〉 = P0(u0, v0). |V (P0(u0, v0))|
≥ kn−1 − (2n − 3) ≥ 32 − 3 = 6 for k and n ≥ 3, so w0 �= u0 and w0 �= x. Since either

u0 or w0 is not a neighbor of y, we may assume without loss of generality that u0 is not a

neighbor of y. Furthermore, without loss of generality, we may assume that i �= 1. Then,
let v1 and w1 be the neighbors of v0 and w0 in Q[1] respectively. By Lemma 3, there

is a hamiltonian path R(v1, w1) in Q[1, i − 1]. Furthermore, let uk−1 be the neighbor of
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u0 in Q[k − 1]. By Lemma 3, there exists a hamiltonian path S(uk−1, y) in Q[i, k − 1].

Then, 〈x, P0,2(x, v0), v0, v1, R(v1, w1), w1, w0, P0,1(w0, u0), u0, uk−1, S(uk−1, y), y〉 forms a
hamiltonian path in Qk

n − F .

Q[i, k-1]

S(u ,y )

uk-1

y

k-1

Q[1, i-1]Q[0]

v0

u0

x

w0

w1

v1

R(v1,w1 )P0(u0,v0)

P0,1(u0,w0)

P0,2(x,v0)

Q[1, k-2]

y

Q[0]

v0

u0

w0

Q[k-1]

vk-1

x

w1

z0 z1

R(w1,z1 )P0(u0,v0)

P0,1(u0,w0)

P0,2(z,v0)0

Q[1, i-1]

y

Q[0]

v0

u0

Q[i, k-1]

vk-1

x

P0(u0,v0)

T(u1,y )

Pk-1(x,vk-1) S(x,vk-1)

u1

(a)

(b) (c)

Figure 2.5: Case 1 of Theorem 3.

Case 1.2. x ∈ V (Q[i]− F i) and y ∈ V (Q[j]− F j) where i, j �= 0.

We may assume that i > j. Suppose that both of x and y are neighbors of u0(or v0).

Then, x ∈ Q[k − 1] and y ∈ Q[1] (see Figure 2.5 (b)). Let vk−1 be the neighbor of v0 in

Q[k − 1]. There exists a hamiltonian path, say Pk−1(x, vk−1), in Q[k − 1]. Let w0 and

z0 be two consecutive vertices on P0(u0, v0). Also, let w1 and z1 be the neighbors of w0

and z0 in Q[1] respectively. By Lemma 3, there is a hamiltonian path, namely R(w1, z1),

in Q[1, k − 2] − y. Let 〈u0, P0,1(u0, w0), w0, z0, P0,2(z0, v0), v0〉 = P0(u0, v0). 〈y, u0,

P0,1(u0, w0), w0, w1, R(w1, z1), z1, z0, P0,2(z0, v0), v0, vk−1, Pk−1(vk−1, x), x〉 is a hamiltonian
path connecting x and y in Qk

n − F . Otherwise, let u1 ∈ Q[1] and vk−1 ∈ Q[k − 1] be
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neighbors of u0 and v0 respectively (see Figure 2.5 (c)). We may assume without loss

of generality that u1 �= y and vk−1 �= x. By Lemma 3, there exist hamiltonian paths,

say S(x, vk−1) and T (u1, y), in Q[i, k − 1] and Q[1, i − 1] respectively. As a result, 〈x,

S(x, vk−1), vk−1, v0, P0(v0, u0), u0, u1, T (u1, y), y〉 is a hamiltonian path connecting x and

y in Qk
n − F .

Case 2. |F 0| = 2n − 4.

By assumption, Q[0] is (2n− 4)-hamiltonian. So there is a hamiltonian cycle, namely
C0, in Q[0]− F 0. Note that there is at most one fault outside Q[0]. Therefore, Q[l]− F l

is hamiltonian connected for every l ∈ [1, k − 1]. We divide this case further into two

subcases Case 2.1 and Case 2.2 as follows.

Case 2.1. x ∈ V (Q[0]− F 0) and y ∈ V (Q[i]− F i) where i �= 0 (see Figure 2.6 (a)).

Let u0 ∈ V (C0) be adjacent to x on C0 such that u0 is not a neighbor of y. Let

u1 ∈ V (Q[1]− F 1) be a neighbor of u0. Since there is at most one fault outside Q[0], we

may assume without loss of generality that (u0, u1) is a safe crossing-edge. By Lemma 3,

there is a hamiltonian path, namely R(u1, y), in Q[1, k − 1]− F . Let 〈x, P0(x, u0), u0, x〉
= C0. 〈x, P0(x, u0), u0, u1, R(u1, y), y〉 forms a hamiltonian path connecting x and y in

Qk
n − F .

Q[1, k-1]Q[0]

u0

Q[1, i-1]

y

Q[0]

v0
u0

Q[i, k-1]

x

P0(u0,v0)

R(v1,y )

(a) Case 2.1. (b) Case 2.2.

P0(x,u0)

x v1u1

R(u1,y )

y

S(x,uk-1)

uk-1

C0 C0

Figure 2.6: Case 2 of Theorem 3.

Case 2.2. x ∈ V (Q[i]−F i) and y ∈ V (Q[j]−F j) where i, j �= 0 (see Figure 2.6 (b)).
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We may assume that i > j. Since there is at most one fault outside Q[0], we can

choose two adjacent vertices, say u0 and v0, on C0 such that (u0, uk−1) and (v0, v1) are safe

crossing-edges, uk−1 �= x, and v1 �= y where uk−1 ∈ Q[k−1] and v1 ∈ Q[1] are neighbors of

u0 and v0 respectively. By Lemma 3, there exists a hamiltonian path, namely R(v1, y), in

Q[1, i−1]−F . Also, there is a hamiltonian path, namely S(x, uk−1), in Q[i, k−1]−F . Let

〈u0, P0(u0, v0), v0, u0〉 = C0. Then, 〈x, S(x, uk−1), uk−1, u0, P0(u0, v0), v0, v1, R(v1, y), y〉 is
a hamiltonian path in Qk

n − F .

Case 3. |F 0| ≤ 2n − 5.

As a result, Q[l]−F l is hamiltonian connected for every l ∈ [0, k−1]. We may assume
without loss of generality that x ∈ V (Q[0] − F 0). Since |F | ≤ 2n − 3, by Lemma 3,

there is a hamiltonian path connecting x and y in Q[0, k − 1]− F . Hence there exists a

hamiltonian path connecting x and y in Qk
n − F . ✷

In conclusion, the fault-tolerant hamiltonicity of Qk
n is given in the following theorem.

Theorem 4 If k is odd with k ≥ 3 and n ≥ 2, Qk
n is (2n− 2)-hamiltonian and (2n− 3)-

hamiltonian connected.

Proof. By Corollary 1, Theorem 2, Theorem 3, and a simple mathematical induction,

this theorem is proved. ✷
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Chapter 3

Fault-Ttolerant Cycle-Embedding of
Crossed Cubes

3.1 Crossed Cubes

Given a simple graph G, we use V (G) and E(G) to denote the vertex and edge sets

of G, respectively. In order to define the crossed cube CQn, as proposed by Efe [19],

the pair related set R is introduced. Let R = {(00, 00), (10, 10), (11, 01), (01, 11)}. Two
binary strings a1a2 and b1b2 of length 2 are pair related, denoted by a1a2 ∼ b1b2, if

(a1a2, b1b2) ∈ R. The following is the recursive definition of the n-dimensional crossed

cube CQn. CQn has 2
n vertices, each labeled by a binary string of length n. CQ1 is

a complete graph with two vertices labeled 0 and 1, respectively. For n ≥ 2, CQn is

obtained by taking two copies of CQn−1, denoted by CQ0
n−1 and CQ1

n−1, respectively,

and adding 2n−1 edges as follows:

Let V (CQ0
n−1) = {0xn−2 . . . x1x0 : xi = 0 or 1} and V (CQ1

n−1) = {1yn−2 . . . y1y0 : yi

= 0 or 1}. A vertex 0xn−2 . . . x1x0 ∈ V (CQ0
n−1) and a vertex 1yn−2 . . . y1y0 ∈ V (CQ1

n−1)

are adjacent if

(1) xn−2 = yn−2 if n is even, and

(2) x2i+1x2i ∼ y2i+1y2i for 0 ≤ i < �n−1
2
�.

We take CQ3 and CQ4 as examples and display them in Figures 3.1(a) and (b),

respectively. In Figure 3.1(c), we use a different way to draw CQ3 in order to see its

vertex-symmetry.
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Figure 3.1: (a) CQ3, (b) CQ4, and (c) CQ3 drawn in a different way.

3.2 Main Result

We use CQij
n−2 to denote an (n−2)-dimensional crossed cube which is a subgraph of CQn

induced by the vertices labeled ijxn−3 . . . x0. We say that an edge is a critical edge of

CQn if it is an edge in CQi
n−1 with one endpoint in CQi0

n−2 and the other in CQi1
n−2 for

i ∈ {0, 1}.

Lemma 4 Let (u1, u2) be a critical edge of CQn which is in CQ0
n−1, and v1, v2 be the

neighbors of u1 and u2 in CQ1
n−1, respectively, for n ≥ 4. Then (v1, v2) is also a critical

edge of CQn in CQ1
n−1.

Proof. We discuss two cases: (1) n is even, and (2) n is odd.

Case 1. n is even. Without loss of generality, we assume that u1 = 00xn−3xn−4 . . . x1x0

and u2 = 01yn−3yn−4 . . . y1y0, where x2i+1x2i ∼ y2i+1y2i for 0 ≤ i ≤ �n−3
2
�. Then

v1 = 10yn−3yn−4 . . . y1y0, and v2 = 11xn−3xn−4 . . . x1x0. By definition, v1 and v2 are

adjacent, and (v1, v2) is a critical edge in CQ1
n−1.

Case 2. n is odd. Without loss of generality, we assume that u1 = 00xn−3xn−4

xn−5 . . . x1x0. Suppose that xn−3 = 0. Then u1 = 000xn−4 xn−5 . . . x1x0, u2 = 010yn−4

yn−5 . . . y1y0, where x2i+1x2i ∼ y2i+1y2i for 0 ≤ i ≤ �n−4
2
�, v1 = 100yn−4 yn−5 . . . y1y0, and

v2 = 110xn−4 xn−5 . . . x1x0. Thus, v1 and v2 are adjacent, and (v1, v2) is a critical edge in

CQ1
n−1. It can be checked that the statement is also true for the case xn−3 = 1. ✷

It is observed that vertices u1, u2, v1, v2 in the above lemma form a 4-cycle. We call

this cycle a crossed 4-cycle in CQn. It is clear that, for each vertex 00xn−3 · · ·x0, there
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is exactly one crossed 4-cycle corresponding to the vertex. Thus, there are 2n−2 disjoint

crossed 4-cycles in CQn. We note that a crossed 4-cycle contains two critical edges.

Huang et al. [29] showed the validity of the following theorem. Based on this theorem,

we show the pancyclicity of the crossed cube by induction.

Theorem 5 [29] The crossed cube CQn is (n − 2)-hamiltonian and (n − 3)-hamiltonian

connected for n ≥ 3.

The base case is n = 3, and the proof is given in the following.

Theorem 6 CQ3 is 1-pancyclic.

Proof. Note that CQ3 can be redrawn as Figure 3.1(c), and it is vertex-transitive.

We consider two cases (1) one faulty vertex, and (2) one faulty edge as follows:

Case 1. One faulty vertex. Without loss of generality, we assume that vertex

x = 000 is faulty. We list cycles of lengths from 4 to 7 as follows: 〈001, 111, 101, 011, 001〉,
〈001, 111, 110, 010, 011, 001〉, 〈001, 111, 110, 100, 101, 011, 001〉, and 〈001, 111, 101, 100,
110, 010, 011, 001〉.

Case 2. One faulty edge. Without loss of generality, we assume that the faulty

edge e is incident to 000. By Case 1, there are cycles of lengths from 4 to 7 in the faulty

CQ3. For a cycle of length 8, suppose that e = (000, 010). Then 〈000, 001, 111, 110,
010, 011, 101, 100, 000〉 is the desired one. Suppose that e = (000, 001). Then 〈000, 010,
110, 111, 001, 011, 101, 100, 000〉 is a cycle of length 8. If e = (000, 100), the case is

symmetric to the case e = (000, 001). ✷

Let F be a set of faults in CQn. We say that a vertex u in one subcube of CQn is a

safe crossing-point in CQn −F if u still connects to the neighbor in the other subcube in

CQn − F , i.e., the corresponding neighbor u′ in the other subcube of u is fault-free, and

the edge (u, u′) is also fault-free. The main result is as follows.

Theorem 7 The crossed cube CQn is (n − 2)-pancyclic for n ≥ 3.

Proof. We prove this by induction on n. It follows from Theorem 6 that CQ3 is 1-

pancyclic. Now we proceed to the induction step. Suppose that CQn−1 is (n−3)-pancyclic
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for some n ≥ 4. We will show that CQn is (n−2)-pancyclic. Let F ⊆ V (CQn)∪E(CQn)

be the set of faults. We divide F into five disjoint parts: F 0
v = F ∩ V (CQ0

n−1), F 0
e =

F ∩ E(CQ0
n−1), F 1

v = F ∩ V (CQ1
n−1), F 1

e = F ∩ E(CQ1
n−1), and F c

e = F ∩ {(u, v) | (u, v)

is an edge between CQ0
n−1 and CQ1

n−1}. Let f = |F |, f 0
v = |F 0

v |, f 0
e = |F 0

e |, f 1
v = |F 1

v |,
f 1

e = |F 1
e |, and f c

e = |F c
e |. For convenience of discussion, we define the following subsets

of F : Fv = F ∩ V (CQn), Fe = F ∩ E(CQn), F 0 = F 0
v ∪ F 0

e , and F 1 = F 1
v ∪ F 1

e . And let

fv = |Fv|, fe = |Fe|, f 0 = |F 0|, and f 1 = |F 1|. Note that f 0 + f 1 = f − f c
e .

Case 1. There is a subcube containing all the (n−2) faults. Without loss of generality,
we assume that f 0 = n − 2. Thus, there is no fault outside CQ0

n−1, i.e., f 1 = f c
e = 0.

We discuss the existence of cycles of lengths from 4 to 2n − fv according to the following

cases.

Case 1.1. Cycles of lengths from 4 to 2n−1 . Since CQn−1 is (n − 3)-pancyclic ,
CQ1

n−1 contains cycles of lengths from 4 to 2n−1 for n ≥ 4. Clearly, CQn−F also contains

cycles of these lengths.

Case 1.2. A cycle of length 2n−1+1. (See Figure 3.2(a).) We want to construct a

cycle containing 2n−1 − 1 vertices in CQ1
n−1 and two vertices in CQ0

n−1. To avoid faults

in CQ0
n−1, we introduce a term called the shadows of the faults. Let 〈u1, u2, v2, v1, u1〉

be a crossed 4-cycle with u1, u2 in CQ0
n−1 and v1, v2 in CQ1

n−1, respectively. If there is

a fault on this cycle but the fault is not in CQ1
n−1, we call edge (v1, v2) a shadow fault

of F on CQ1
n−1. (Similarly, we may define a shadow fault on CQ0

n−1.) Let F s = {e |
edge e is a shadow fault of F on CQ1

n−1}. Since all crossed 4-cycles are vertex disjoint,
|F s| ≤ n− 2. If |F s| = n− 2, we arbitrarily pick an edge e1 in F s , and let F ′ = F s − e1,

or else F ′ = F s. Then |F ′| ≤ n − 3 and CQ1
n−1 − F ′ is still pancyclic. So there is a

cycle C of length 2n−1 − 1 in CQ1
n−1 − F ′. Clearly, there are two critical edges on C. Let

(a, b) �= e1 be a critical edge on C, so (a, b) /∈ F s. Let a′, b′ be the neighbors of a and b

in CQ0
n−1, respectively. Then 〈a, a′, b′, b, a〉 is a fault-free crossed 4-cycle. Suppose that

C = 〈a, Q, b, a〉. Then 〈a′, a, Q, b, b′, a′〉 forms a cycle of length 2n−1 + 1 in CQn − F .

Case 1.3. Cycles of lengths from 2n−1 + 2 to 2n − fv. (See Figure 3.2(b).) By

Theorem 8, CQ0
n−1 is (n − 3)-hamiltonian and f 0 = n − 2, CQ0

n−1 − F 0 still contains a

hamiltonian path, say P = 〈u1, u2, . . ., u2n−1−f0
v
〉, where f 0

v = fv. Let 2 ≤ l ≤ 2n−1 − fv.

We construct a cycle of length 2n−1 + l as follows: Suppose that the neighbors of u1 and

ul in CQ1
n−1 are v1 and vl, respectively. Since CQn−1 is (n − 4)-hamiltonian connected

and n ≥ 4, there is a hamiltonian path Q in CQ1
n−1 between v1 and vl containing 2

n−1

vertices. So 〈u1, · · · , ul, vl, Q, v1, u1〉 forms a cycle of length 2n−1 + l.
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Figure 3.2: Cases of Theorem 9

Case 2. Both f 0 and f 1 are at most n − 3. By induction hypothesis, CQ0
n−1 − F 0

and CQ1
n−1 −F 1 are still pancyclic. We discuss the existence of cycles of all lengths from

4 to 2n − fv in the following cases.

Case 2.1. Cycles of lengths from 4 to 2n−1−f 1
v . By induction hypothesis, CQ1

n−1

is (n − 3)-pancyclic. Thus, we have cycles of lengths from4 to 2n−1 − f 1
v in CQ1

n−1 − F 1.

Case 2.2. A cycle of length 2n−1 − f 1
v + 1. (See Figure 3.2(c).) We construct the

cycle using a similar way used in Case 1.2. Let F s = {e | edge e is a shadow fault of F on

CQ1
n−1}. Then |F s∪F 1| ≤ n−2. If |F s∪F 1| = n−2, we arbitrarily choose an edge e1 in

F s, and let F ′ = F s ∪ F 1 − e1,or else F ′ = F s ∪ F 1 . Then |F ′| ≤ n − 3 and CQ1
n−1 − F ′

is still pancyclic. Since F ′ ∩ V (CQ1
n−1) = F 1

v , there is a cycle C of length 2n−1 − f 1
v − 1

in CQ1
n−1 − F ′. Since 2n−1 − f 1

v − 1 > 2n−2 for n ≥ 4, C contains two critical edges. Let

(a, b) �= e1 be a critical edge on C, so (a, b) /∈ F s. Let a′, b′ be the neighbors of a and b

in CQ0
n−1, respectively. Then 〈a, a′, b′, b, a〉 is a fault-free crossed 4-cycle. Suppose that

C = 〈a, Q, b, a〉. Then 〈a′, a, Q, b, b′, a′〉 forms a cycle of length 2n−1 − f 1
v +1 in CQn −F .

Case 2.3. Cycles of lengths from 2n−1 − f 1
v + 2 to 2n − fv. (See Figure 3.2(d).)

Without loss of generality, we assume that n−3 ≥ f 0 ≥ f 1. If f 1 = n−3, then f 0 = n−3,
and 2n−6 ≤ n−2 = f , which implies n ≤ 4. Thus, we need to discuss the case f 1 = n−3
just for n = 4. We leave this particular case to Appendix A, and assume that f 1 ≤ n− 4
in the following discussion.

By Theorem 8, CQ1
n−1−F 1 is still hamiltonian connected, i.e., there is a path of length

2n−1 − f 1
v − 1 between any two vertices in CQ1

n−1 −F 1. As a result, if we can find a path

of length l in CQ0
n−1 −F 0 with the two endpoints being safe crossing-points, then we find

a cycle of length l+2+(2n−1− f 1
v −1). Since we want to construct cycles of lengths from
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2n−1 − f 1
v + 2 to 2

n − fv, 1 ≤ l ≤ 2n−1 − (fv − f 1
v )− 1 = 2n−1 − f 0

v − 1. Now we construct
a path of length l in CQ0

n−1 for each l, 1 ≤ l ≤ 2n−1 − f 0
v − 1. By Theorem 8, CQ0

n−1 is

(n−3)-hamiltonian. Thus we have a hamiltonian cycle C = 〈u0, u1, . . . , u2n−1−f0
v−1, u0〉 of

length 2n−1−f 0
v in CQ0

n−1−F 0. We claim that there exist two safe crossing-points ui and

uj on C such that (j − i)
(mod 2n−1−f0

v )
= l. Suppose on the contrary that there do not

exist such ui and uj. Then there are at least �2n−1−f0
v

2
� faults outside CQ0

n−1. However,

�2n−1−f0
v

2
� + f 0

v ≥ 2n−2 > n − 2 for n ≥ 2. We obtain a contradiction. Thus, there exist

such two vertices ui and uj. And then we find a path of length l on C.

Hence, the theorem follows. ✷
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Chapter 4

Fault-Tolerant Pancyclicity of the
Möbius Cubes

4.1 The Möbius Cubes

An n-dimensional Möbius cube MQn consists of 2
n vertices and each vertex is labeled by

a unique n-bit binary string. Each vertex has n neighbors as follows.

A vertex x = x1x2 . . . xi−1 xixi+1 . . . xn−1xn connects to its ith neighbor, for 2 ≤ i ≤ n,

xi = x1x2 . . . xi−1 x̄ixi+1 . . . xn−1xn if xi−1 = 0,

x1x2 . . . xi−1 x̄ix̄i+1 . . . x̄n−1x̄n if xi−1 = 1.

For i = 1, since there is no bit on the left of x1, the first neighbor of x can be defined as

x̄1x2 . . . xn or x̄1x̄2 . . . x̄n. We call the cube 0-MQn if the first neighbor of x is x̄1x2 . . . xn,

or 1-MQn if the first neighbor of x is x̄1x̄2 . . . x̄n. For example, MQ4 is illustrated in

Figure 4.1.

Therefore, MQn is an n-regular graph and can be recursively defined as follows: Both

0-MQ1 and 1-MQ1 are complete graphs K2 with one vertex labeled 0 and the other

1. 0-MQn and 1-MQn are both composed of a subcube MQ0
n−1 which is isomorphic

to 0-MQn−1 and a subcube MQ1
n−1 which is isomorphic to 1-MQn−1. The first bit of

each vertex of MQ0
n−1 is 0, and the first bit of each vertex of MQ1

n−1 is 1. Each vertex

x = 0x2x3 . . . xn−1xn ∈ V (MQ0
n−1) connects to 1x2x3 . . . xn−1xn ∈ V (MQ1

n−1) in 0-MQn
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Figure 4.1: The 4-dimensional Möbius cube MQ4.

and to 1x̄2x̄3 . . . x̄n−1x̄n ∈ V (MQ1
n−1) in 1-MQn. For convenience of discussion, if there

are no ambiguities, MQn denotes either 0-MQn or 1-MQn in the rest of this paper.

4.2 Properties of the Möbius Cubes

We say that an edge (u, v) in one subcube of MQn is a shared-edge in MQn if the corre-

sponding neighbors of u and v in the other subcube of MQn are also adjacent. Clearly,

these neighbors of u and v must be the first neighbors of u and v. The following lemma

states that, for each vertex in 0-MQn, all the edges incident to it are shared-edges except

two.

Lemma 5 Let x = x1x2 · · ·xn be a vertex of 0-MQn and xi be the ith neighbor of x for

3 ≤ i ≤ n and n ≥ 3. Then (x, xi) is a shared-edge in 0-MQn.

Proof. By definition, (x, xi) is an edge in one subcube of 0-MQn. Suppose that

xi−1 = 0. Then xi = x1x2 . . . xi−1x̄ixi+1 . . . xn−1xn. And the first neighbors of x and xi

are x̄1x2 · · ·xn and x̄1x2 . . . xi−1 x̄ixi+1 . . . xn−1xn, respectively. Clearly, the two neighbors

are adjacent. On the other hand, suppose that xi−1 = 1, then xi = x1x2 . . . xi−1 x̄ix̄i+1

. . . x̄n−1x̄n. And the first neighbors of x and xi are x̄1x2 · · ·xn and x̄1x2 . . . xi−1 x̄ix̄i+1

. . . x̄n−1x̄n, respectively. The two neighbors are also adjacent. Thus, (x, xi) is a shared-

edge, and the lemma follows. ✷
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By Lemma 5, we have the following corollary.

Corollary 2 Let P be a path in one subcube MQi
n−1 of 0-MQn for i = 0, 1 and n ≥ 3.

For any two consecutive edges on P , at least one of them is a shared-edge in MQn.

Let F be a set of faults in MQn. We say that a vertex u is a safe crossing-point in

MQn − F if u still connects to its first neighbor in MQn − F . And we say that an edge

(u, v) is a safe shared-edge in MQn − F if (u, v) is a shared-edge in MQn − F , i.e., the

corresponding first neighbors u′ and v′ of u and v, respectively are fault-free, and edges

(u, u′), (v, v′) and (u′, v′) are also fault-free.

Lemma 6 Let C be a cycle of length l in one subcube MQi
n−1 of 0-MQn for i = 0, 1,

n ≥ 3. Suppose that f is the number of faults outside MQi
n−1, and 3f < l. Then there is

a safe shared-edge on C, and there is a cycle of length l + 2 in 0-MQn.

Proof. Suppose on the contrary that there does not exist any safe shared-edge on

C. By Corollary 2, there exists a shared-edge e on C, which is not safe. Let C =

〈u1, u2, . . . , ul, u1〉. Let v1 and v2 be the first neighbors of u1 and u2, respectively. Without

loss of generality, we assume that e = (u1, u2) and that at least one of (u1, v1), v1, or

(v1, v2) is faulty. For each consecutive three vertices u3i+2, u3i+3 and u3i+4 on cycle C, by

Corollary 2, one of the edges (u3i+2, u3i+3) and (u3i+3, u3i+4) is a shared-edge in 0-MQn,

but is not a safe shared-edge in MQn − F , 0 ≤ i ≤ � l−1
3
� − 1. Each of these corresponds

to a distinct fault, so the total number of faults is at least � l−1
3
�+1. And 3(� l−1

3
�+1) ≥ l,

which contradicts to the assumption that 3f < l. Let (a, b) be a safe shared-edge on C.

Let C = 〈a, P, b, a〉, where P is a subpath of C between a and b. Let a′ and b′ be the
first neighbors of a and b, respectively. Then 〈a, P, b, b′, a′, a〉 forms a cycle of length l+2.

This proves the lemma. ✷

We have a similar result for a path, and the proof is also similar to that of Lemma 6.

Lemma 7 Let P be a path containing l vertices in one subcube MQi
n−1 of 0-MQn for

i = 0, 1, n ≥ 3. Suppose that f is the number of faults outside MQi
n−1, and 3f < l − 2.

Then there is a safe shared-edge on P .

Huang et al. [29] proved the following theorem concerning the hamiltonicity of MQn.

We will use it later in our proof of Theorem 9.
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Theorem 8 [29] The Möbius cube MQn is (n− 2)-hamiltonian and (n− 3)-hamiltonian

connected for n ≥ 3.

4.3 Fault-tolerant pancyclicity

Now we prove our main result.

Theorem 9 The Möbius cube MQn is (n − 2)-pancyclic for n ≥ 3.

Proof. We prove this by induction on n. We show the cases n = 3, 4 in Appendix

B. In fact, we also use a computer program to verify the statements. Now we shall go

directly to the inductive step. Suppose that MQn−1 is (n − 3)-pancyclic for some n ≥ 5.

We will show that MQn is (n − 2)-pancyclic. Let F ⊆ V (MQn) ∪E(MQn) be the set of

faults. We divide F into five disjoint parts: F 0
v = F ∩ V (MQ0

n−1), F
0
e = F ∩ E(MQ0

n−1),

F 1
v = F ∩ V (MQ1

n−1), F 1
e = F ∩ E(MQ1

n−1), and F c
e = F ∩ {(u, v) | (u, v) is an edge

between MQ0
n−1 and MQ1

n−1}. Let f = |F |, f 0
v = |F 0

v |, f 0
e = |F 0

e |, f 1
v = |F 1

v |, f 1
e = |F 1

e |,
and f c

e = |F c
e |. For convenience of discussion, we define the following subsets of F :

Fv = F ∩ V (MQn), Fe = F ∩ E(MQn), F 0 = F 0
v ∪ F 0

e , and F 1 = F 1
v ∪ F 1

e . And let

fv = |Fv|, fe = |Fe|, f 0 = |F 0|, and f 1 = |F 1|. Note that f 0 + f 1 = f − f c
e .

In addition, throughout this paper, we only considers the case f = n − 2, since it is

the same as considering all the cases f ≤ n − 2. The reason is as follows: Suppose that

f ≤ n − 2, and let F ′ ⊆ E(MQn) − Fe with f + |F ′| = n − 2. So, MQn − F − F ′ is a
subgraph of MQn − F . Trivially, if MQn − F − F ′ has a cycle C, MQn − F has C . For

further discussion, we consider the following cases.

Case 1. There is a subcube containing all the (n − 2) faults.

Without loss of generality, we assume that f 0 = n − 2. Thus, f 1 = f c
e = 0. By

Theorem 8, MQ0
n−1 is (n − 3)-hamiltonian. Thus, it is clear that MQ0

n−1 − F 0 still

contains a hamiltonian path, say, P = 〈u1, u2, . . ., u2n−1−f0
v
〉, where f 0

v = fv. We discuss

the existence of cycles of every length from 4 to 2n − fv according to the following cases.

Case 1.1. Cycles of lengths from 4 to 2n−1.
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Since MQn−1 is (n − 3)-pancyclic , MQ1
n−1 contains cycles of lengths from 4 to 2n−1

for n ≥ 5. Clearly, MQn − F also contains cycles of these lengths.

Case 1.2. Cycles of lengths from 2n−1 + 2 to 2n − fv. (See Figure 4.2 (a).)

Let 2 ≤ l ≤ 2n−1 − fv. We construct a cycle of length 2
n−1 + l as follows: Suppose

that the first neighbors of u1 and ul are v1 and vl, respectively, which are in MQ1
n−1.

Since MQn−1 is (n− 4)-hamiltonian connected and n ≥ 5, there is a hamiltonian path Q

in MQ1
n−1 between v1 and vl containing 2

n−1 vertices. So 〈u1, · · · , ul, vl, Q, v1, u1〉 forms
a cycle of length 2n−1 + l. Note that there are no faults outside MQ0

n−1. Thus all the

vertices on P are safe crossing-points.

Q'

0
1 nMQ 1

1 nMQ

(b)  Case 1.3

u1

u2

v
n f

u
  12

v1

v2

v1

v
n f

u
  12

vl

Q

0
1 nMQ 1

1 nMQ

(a)   Case 1.2

u1

ul

Figure 4.2: Case 1.2 and Case 1.3.

Case 1.3. A cycle of length 2n−1 + 1. (See Figure 4.2 (b).)

Consider the vertices u1 and u2 on P and their first neighbors v1 and v2, respectively,

in MQ1
n−1. By Theorem 8, MQ1

n−1 is (n − 4)-hamiltonian connected for n ≥ 5. Since

f 1 = 0, we may find a path Q′ between v1 and v2 containing 2
n−1 − 1 vertices in MQ1

n−1.

Then 〈u1, u2, v2, Q
′, v1, u1〉 forms a cycle of length 2n−1 + 1.
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Case 2. Both f 0 and f 1 are at most n − 3.

By induction hypothesis, MQ0
n−1 − F 0 and MQ1

n−1 − F 1 are still pancyclic. Without

loss of generality, we assume that f 0 ≥ f 1. We claim that f 1 ≤ n− 4 for n ≥ 5. Suppose

for the sake of contradiction that f 1 = n − 3. Since f 0 ≥ f 1, f 0 = n − 3. The total

number of faults is at most (n − 2). Thus (n − 3) + (n − 3) ≤ n − 2. This implies that

n ≤ 4, which is a contradiction. Thus MQ1
n−1 − F 1 is still hamiltonian connected. We

discuss the existence of cycles of all lengths from 4 to 2n − fv in the following cases.

Case 2.1. Cycles of lengths from 4 to 2n−1 − f 1
v .

By induction hypothesis, MQ1
n−1 is (n−3)-pancyclic. Thus, we have cycles of lengths

from 4 to 2n−1 − f 1
v in MQ1

n−1 − F 1.

vi

Q

1
1 nMQ

vj

ui+1

ui

0
1 nMQ

uj

Figure 4.3: Case 2.2.

Case 2.2. Cycles of lengths from 2n−1 − f 1
v + 2 to 2

n − fv. (See Figure 4.3.)

By Theorem 8, MQ0
n−1 is (n − 3)-hamiltonian. Thus, we have a hamiltonian cycle

C = 〈u0, u1, . . . , u2n−1−f0
v−1, u0〉 of length 2n−1−f 0

v in MQ0
n−1−F 0. Let 2 ≤ l ≤ 2n−1−f 0

v .

We construct a cycle of length 2n−1 − f 1
v + l as follows: First, we claim that there exist

two safe crossing-points ui and uj on C such that (j − i)
(mod 2n−1−f0

v )
= l − 1. Suppose
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on the contrary that there do not exist such ui and uj. Then there are at least �2n−1−f0
v

2
�

faults outside MQ0
n−1. However, �2n−1−f0

v

2
� + f 0

v ≥ 2n−2 > n − 2 for n ≥ 2. We obtain a

contradiction. Thus, there exist such ui and uj. Let vi and vj be the first neighbors of ui

and uj, respectively. By Theorem 8, MQ1
n−1 − F 1 is hamiltonian connected. Therefore,

there is a hamiltonian path Q in MQ1
n−1 − F 1 between vi and vj. Clearly, Q contains

(2n−1−f 1
v ) vertices. Then 〈ui, ui+1, · · · , uj, vj , Q, vi, ui〉 forms a cycle of length 2n−1−f 1

v+l.

Case 2.3. A cycle of length 2n−1 − f 1
v + 1.

We divide this case into two parts:

Case 2.3.1. MQn is a 0-MQn.

By Theorem 8, MQ1
n−1 is (n − 3)-hamiltonian, but f 1 ≤ n − 4. Thus we have a cycle

of length 2n−1 − f 1
v − 1 in MQ1

n−1 − F 1. Since 3(n − 2) < 2n−1 − f 1
v − 1 for n ≥ 5, by

lemma 6, we can find a cycle of length 2n−1 − f 1
v + 1 in MQn − F .

Case 2.3.2. MQn is a 1-MQn.

Let G and H be two induced subgraphs of 1-MQn where V (G) = {v ∈ V (MQn) |
v1v2 = 00 or 11} and V (H) = {v ∈ V (MQn) | v1v2 = 01 or 10}. It is not difficult to check
that, using the definition of the Möbius cube, both G and H are isomorphic to 1-MQn−1,

and {V (G), V (H)} is a partition of V (MQn). (See Figure 4.4.)

We divide F into five parts: F G
v = F ∩ V (G), F G

e = F ∩ E(G), F H
v = F ∩ V (H),

F H
e = F ∩ E(H), and F GH

e = F ∩ {(u, v) | (u, v) is an edge between G and H}. Let
fG

v = |F G
v |, fG

e = |F G
e |, fH

v = |F H
v |, fH

e = |F H
e |, and fGH

e = |F GH
e |. We shall also use

the following notation: F G = F G
v ∪ F G

e and F H = F H
v ∪ F H

e . And let fG = |F G| and
fH = |F H |. Since G and H are isomorphic, there are two situations: (1) All the faults

are within G, and (2) fH ≤ fG ≤ n − 3.

(1) All the faults are within G.
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Figure 4.4: G and H .

Thus, there is no fault outside G. Suppose that f 1
v ≥ 1. Since H is isomorphic to

1-MQn−1, which is (n − 3)-pancyclic, H − F H contains a cycle of length 2n−1 − f 1
v + 1.

Suppose that f 1
v = 0. Treating G and H as MQ0

n−1 and MQ1
n−1, respectively, we may

construct a cycle of length 2n−1 + 1 by the same method used in Case 1.3.

(2) fH ≤ fG ≤ n − 3.

By induction hypothesis, G − F G and H − F H are still pancyclic. Suppose that

f 1
v > fH

v . Then H − F H contains a cycle of length 2n−1 − f 1
v + 1. Second, suppose that

f 1
v < fH

v . Let l = (2n−1 − f 1
v + 1) − (2n−1 − fH

v ). Then l ≥ 2. Since fH ≤ n − 4 for

n ≥ 5, by Theorem 8, H − F H is still hamiltonian connected. We may construct a cycle

of length 2n−1 − fH
v + l by the same method used in Case 2.2. Finally, suppose that

f 1
v = fH

v . We may virtually suppose that one vertex v of MQ10
n−2 − F is faulty. That is,

let F ′ = F H ∪ {v}. Hence, if H − F ′ has a cycle C, H − F H has C. Since |F ′| ≤ n − 3

(fH ≤ n − 4) and H is isomorphic to 1-MQn−1, by the same method used in Case 1.2 or

Case 2.2, H−F ′ has a cycle C of length 2n−1−f 1
v −1, where all the vertices inMQ01

n−2−F

are consecutive in C for n ≥ 6. Let P be the maximal subpath of C contained in MQ01
n−2.
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We claim that there exists a safe shared-edge on P in MQ0
n−1 −F 0. Then we have a cycle

of length 2n−1 − f 1
v + 1 as illustrated in Figure 4.5.

00
2 nMQ 11

2 nMQ

10
2 nMQ01

2 nMQ

G

H
C

P

Figure 4.5: Case 2.3.2 for n ≥ 6.

Now we prove the claim. Let F 01
v = F

⋂
V (MQ01

n−2), F 01
e = F

⋂
E(MQ01

n−2) and

F 01 = F 01
v

⋃
F 01

e . Let f 01
v = |F 01

v |, f 01
e = |F 01

e | and f 01 = |F 01|. P has 2n−2 − f 01
v

vertices. The number of faults outside MQ01
n−2 in MQ0

n−1 is at most (n − 3)− f 01
v . Since

3(n − 3− f 01
v ) < 2n−2 − f 01

v − 2 for n ≥ 6 ,by lemma 7, we have a safe shared-edge on P .

Suppose that n = 5 and f 01 = 1. Since fH ≤ n − 4, we may virtually suppose that

one vertex of MQ01
3 − F is faulty. By the same method used in case 1.2, we have a cycle

C of length 2n−1 − f 1
v − 1 in H −F H , where all the vertices in MQ01

3 −F are consecutive

in C. Let P be the maximal subpath of C contained in MQ01
n−2. P has at least 6 vertices.

Since (n − 3)− f 01 = 1, by lemma 7, we have a cycle of length 2n−1 − f 1
v + 1.
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nonshared-edge

shared edge

Figure 4.6: P for n = 5.

Suppose that n = 5 and f 01
v = 0. Since fH ≤ n − 4, we may virtually suppose that

one vertex of MQ10
3 − F is faulty. By the same method used in case 1.2, we have a cycle

C of length 2n−1 − f 1
v − 1 in H − F H , where all the vertices in MQ01

3 are consecutive in

C. Let P be the maximal subpath of C contained in MQ01
n−2. P has 8 vertices. Since

(n− 3)− f 01 = 2, by Corollary 2, there is a safe shared-edge on P except the case that P

has exactly three nonshared-edges at the head, tail and in the middle of P , respectively,

and the other four edges are all shared-edges. (See Figure 4.6.) But such path does

not exist between any two vertex x and y in MQ3. Assume that such path exists, and

we traverse it starting from x = x1x2x3. In 0-MQ3, x1x2x3 → x̄1x2x3 → x̄1x̄2x3 (or

x̄1x2x̄3) → x̄1x̄2x̄3 → x1x̄2x̄3 → x1x̄2x3 (or x1x2x̄3) → x1x2x3. In 1-MQ3, x1x2x3 →
x̄1x̄2x̄3 → x̄1x2x̄3 (or x̄1x̄2x3) → x̄1x2x3 → x1x̄2x̄3 → x1x2x̄3 (or x1x̄2x3) → x1x2x3. In

either case, we have a cycle of length 6, and it is a contradiction. So, the theorem is

proved. ✷

37



Chapter 5

On Eembedding Cycles Into Faulty
Twisted Cubes

5.1 Twisted Cubes

The twisted cube was firstly proposed by Hilbers et al. in [22]. In the following, we give the

recursive definition of the n-dimensional twisted cube TQn for any odd integer n ≥ 1. TQn

has 2n vertices, and each of them is labeled by a binary string of length n. To define TQn,

first of all, a parity function Pi(x) is introduced. Let u = un−1un−2 . . . u1u0 ∈ V (TQn).

For 0 ≤ i ≤ n − 1, Pi(u) = ui ⊕ ui−1 ⊕ . . . u1 ⊕ u0, where ⊕ is the exclusive-or operation.

TQ1 is a complete graph with two vertices labeled by 0 and 1, respectively. For an

odd integer n ≥ 3, TQn is obtained by taking four copies of TQn−2 and adding some

additional edges to connect them. We use TQij
n−2 to denote an (n−2)-dimensional twisted

cube which is a subgraph of TQn induced by the vertices labeled by ijun−3 . . . u0, where

i, j ∈ {0, 1}. Each vertex u = un−1un−2 . . . u1u0 ∈ V (TQn) is adjacent to ūn−1un−2 . . . u1u0

and ūn−1ūn−2 . . . u1u0 if Pn−3(u) = 0; and to ūn−1un−2 . . . u1u0 and un−1ūn−2 . . . u1u0 if

Pn−3(u) = 1. Figure 5.1 illustrates TQ3.

5.2 Properties of the Twisted Cubes

Lemma 8 Let G be a graph. G is k-pancyclic if G − F is pancyclic for every faulty set

F with |F | = k.
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Figure 5.1: TQ3.

Proof. Suppose that |F | ≤ k, and let F ′ ⊆ E(G) − Fe with |F | + |F ′| = k. So,

(G − F ) − F ′ is a subgraph of G − F . Trivially, if (G − F ) − F ′ has a cycle C, G − F

contains C . This implies that if (G − F )− F ′ is pancyclic, G − F is also pancyclic. ✷

Therefore, throughout this paper, whenever we prove that a graph G is k-pancyclic,

we only consider the case |F | = k.

A matching M of a graph G is a set of pairwise disjoint edges. M is a perfect matching

if each vertex of G belongs to some edge in M .

Lemma 9 [30] For n ≥ 1, both of the subgraphs induced by V (TQ00
n )

⋃
V (TQ10

n ) and

V (TQ01
n )

⋃
V (TQ11

n ) are isomorphic to TQn×K2. Furthermore, the edges joining V (TQ00
n )⋃

V (TQ10
n ) and V (TQ01

n )
⋃

V (TQ11
n ) is a perfect matching of TQn+2.

Let G and H be two graphs having the same number of vertices. G
⊕

M H denotes a

graph which has copies ofG andH connected by a matchingM . LetG0
n+1 andG1

n+1 be the

subgraphs induced by V (TQ00
n )

⋃
V (TQ10

n ) and V (TQ01
n )

⋃
V (TQ11

n ), respectively. Then

by Lemma 9, both of G0
n+1 and G1

n+1 are isomorphic to TQn × K2, and G0
n+1

⊕
M G1

n+1

is isomorphic to TQn+2 for a specific matching M . In addition, TQn ×K2 has two copies

of TQn, and we use TQ0
n and TQ1

n to denote them, respectively. For convenience of

discussion, we add 0 to every vertex v ∈ V (TQ0
n) and 1 to every vertex u ∈ V (TQ1

n),

respectively, as the leading bits. As a result, each vertex of TQn × K2 is represented by
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a binary string of length n+ 1.

Let F be a set of faults in TQn × K2 (TQn+2, respectively). We say that a vertex

u in TQ0
n (G

0
n+1, respectively) is a safe crossing-point in TQn × K2 − F (TQn+2 − F ,

respectively) if u still connects to the neighbor v in TQ1
n (G

1
n+1, respectively) in TQn ×

K2 − F (TQn+2 − F , respectively), i.e., vertices u, v and edge (u, v) are fault-free. If u is

in TQ1
n (G

1
n+1, respectively), we may define safe crossing-point in the same way.

Huang et al. [30] proved the following theorem concerning fault hamiltonicity and

fault hamiltonian connectivity of TQn, and we shall use it in the proof of Theorem 12.

Theorem 10 [30] TQn is (n−2)-hamiltonian and (n−3)-hamiltonian connected for any

odd integer n ≥ 3.

5.3 Base Case

111 011

000

001

010

100

101

110

Figure 5.2: Another layout of TQ3.

Theorem 11 TQ3 is 1-pancyclic.

Proof. Figure 5.2 is another layout of TQ3, and it is vertex-transitive. We consider

two cases (1) one faulty vertex and (2) one faulty edge as follows:
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Case 1. One faulty vertex. Without loss of generality, we assume that vertex

000 is faulty. We list cycles of lengths from 4 to 7 as follows: 〈001, 101, 111, 011, 001〉,
〈010, 100, 101, 111, 011, 010〉, 〈001, 101, 111, 110, 010, 011, 001〉, and 〈001, 101, 100, 010,
110, 111, 011, 001〉.

Case 2. One faulty edge. We may assume that the faulty edge e is incident to

000 because of the symmetry of TQ3. By Case 1, there are cycles of lengths from 4

to 7 in the faulty TQ3. For a cycle of length 8, suppose that e = (000, 100). Then

〈000, 001, 011, 010, 100, 101, 111, 110, 000〉 is a desired one. Suppose that e = (000, 001).

Then 〈000, 110, 111, 101, 001, 011, 010, 100, 000〉 is a cycle of length 8. If e = (000, 100),

this case is symmetric to the case e = (000, 110). ✷

5.4 Inductive case

Theorem 12 Let n ≥ 3 be an odd integer. If TQn is (n − 2)-pancyclic, TQn × K2 is

(n − 1)-pancyclic.

Proof. Suppose that TQn is (n − 2)-pancyclic for some n ≥ 3. We will show that

TQn × K2 is (n − 1)-pancyclic. Let F ⊆ V (TQn × K2) ∪ E(TQn × K2) be a set of

faults. We divide F into five disjoint parts: F 0
v = F ∩ V (TQ0

n), F 0
e = F ∩ E(TQ0

n),

F 1
v = F ∩ V (TQ1

n), F 1
e = F ∩ E(TQ1

n), and F c
e = F ∩ {(u, v) | (u, v) is an edge between

TQ0
n and TQ1

n}. Let f = |F |, f 0
v = |F 0

v |, f 0
e = |F 0

e |, f 1
v = |F 1

v |, f 1
e = |F 1

e |, and f c
e = |F c

e |.
For convenience of discussion, we define the following subsets of F : Fv = F∩V (TQn×K2),

Fe = F ∩ E(TQn × K2), F 0 = F 0
v ∪ F 0

e , and F 1 = F 1
v ∪ F 1

e . And let fv = |Fv|, fe = |Fe|,
f 0 = |F 0|, and f 1 = |F 1|. Note that f 0 + f 1 = f − f c

e .

For further discussion, we consider the following cases.

Case 1. There is a subcube containing all the n − 1 faults.

Without loss of generality, we assume that TQ0
n contains all the faults, i.e., f

0 = n−1.
Thus, f 1 = f c

e = 0. We discuss the existence of cycles of all lengths from 4 to 2n+1 − fv

according to the following cases.
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Figure 5.3: Case 1.2 and Case 1.3 of Theorem 12.

Case 1.1. Cycles of lengths from 4 to 2n.

Since TQn is (n−2)-pancyclic , TQ1
n contains cycles of lengths from 4 to 2n for n ≥ 3.

Thus, TQn × K2 − F also contains cycles of these lengths.

Case 1.2. Cycles of lengths from 2n + 2 to 2n+1 − fv (see Figure 5.3(a)).

TQ0
n is (n − 2)-pancyclic, and hence (n − 2)-hamiltonian. Clearly, TQ0

n − F 0 still

contains a hamiltonian path, say, P = 〈u1, u2, . . ., u2n−f0
v
〉, where f 0

v = fv. Let 2 ≤ l ≤
2n − fv. We construct a cycle of length 2

n + l as follows: Suppose that v1 and vl are the

neighbors in TQ1
n of u1 and ul, respectively. By Theorem 10, TQn is (n− 3)-hamiltonian

connected and n ≥ 3. Therefore, there is a hamiltonian path Q in TQ1
n between v1 and

vl containing 2
n vertices, and 〈u1, · · · , ul, vl, Q, v1, u1〉 forms a cycle of length 2n+ l. Note

that there are no faults outside TQ0
n. Thus, all the vertices on P are safe crossing-points.

Case 1.3. A cycle of length 2n + 1 (see Figure 5.3(b)).

Since TQ1
n is (n−2)-pancyclic and fault-free, we have a cycle C = 〈v1, v2, . . . , v2n−1, v1〉

of length 2n−1 in TQ1
n. There are n−1 faults in total, and 2n−1

2
> n−1 for n ≥ 3. So there

exist two safe crossing-points vk and vk+1 on C, and also their neighbors in TQ0
n, say, uk
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and uk+1, respectively are connected in TQ0
n−F 0. 〈vk+1, vk+2, . . . , v2n−1, . . . , vk, uk, uk+1, vk+1〉

is a fault-free cycle of length 2n + 1.

ui+1

ui vi

Q

uj

vj

(a)   Case 2.2.

0
nTQ 1

nTQ

(b)   Case 2.3.

C

0
nTQ 1

nTQ

uk

uk+1

vk

vk+1

vk+2

Figure 5.4: Case 2.2 and Case 2.3 of Theorem 12.

Case 2. Both f 0 and f 1 are at most n − 2.

Since f i ≤ n − 2 for any i ∈ {0, 1}, TQ0
n − F 0 and TQ1

n − F 1 are still pancyclic.

Without loss of generality, we assume that f 0 ≥ f 1. We discuss the existence of cycles of

all lengths from 4 to 2n+1 − fv in the following cases.

Case 2.1. Cycles of lengths from 4 to 2n − f 1
v .

Since TQ1
n is (n−2)-pancyclic, we have cycles of lengths from 4 to 2n−f 1

v in TQ1
n−F 1.

Hence, TQn × K2 − F also has cycles of these lengths.

Case 2.2. Cycles of lengths from 2n − f 1
v + 2 to 2

n+1 − fv (see Figure 5.4(a)).

For the case f 0 = f 1 = n − 2, we leave it to Appendix C because of its tediousness.

For f 1 ≤ n − 3, the proof is as follows: TQ0
n − F 0 is pancyclic, and hence hamiltonian.

We have a hamiltonian cycle C = 〈u1, u2, . . . , u2n−f0
v
, u1〉 of length 2n − f 0

v in TQ0
n − F 0.

Let 2 ≤ l ≤ 2n − f 0
v . We construct a cycle of length 2

n − f 1
v + l as follows: We claim that

there exist two safe crossing-points ui and uj on C such that (j− i) = l−1(mod 2n−f 0
v ).
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Suppose on the contrary that there do not exist such ui and uj. Then there are at least

�2n−f0
v

2
� faults outside TQ0

n. However, �2n−f0
v

2
� + f 0

v ≥ 2n−1 > n − 1 for n ≥ 1. We

obtain a contradiction. Thus, there exist such ui and uj. By Theorem 10, TQ1
n is (n−3)-

hamiltonian connected and f 1 ≤ n − 3, so TQ1
n − F 1 is still hamiltonian connected. Let

vi and vj be the neighbors in TQ1
n of ui and uj, respectively. There is a hamiltonian

path Q in TQ1
n − F 1 between vi and vj . Clearly, Q contains (2n − f 1

v ) vertices. Then

〈ui, ui+1, · · · , uj, vj, Q, vi, ui〉 forms a cycle of length 2n − f 1
v + l.

Case 2.3. A cycle of length 2n − f 1
v + 1 (see Figure 5.4(b)).

Since TQ1
n−F 1 is pancyclic, there is a cycle 〈v1, v2, . . . , v2n−f1

v−1, v1〉 of length 2n−f 1
v −1

in TQ1
n − F 1. Furthermore, there are (n − 1) − f 1 faults outside TQ1

n, and
2n−f1

v−1
2

≥
2n−1

2
− f 1 > (n − 1) − f 1 for n ≥ 3. Thus there exist two safe crossing-points vk and

vk+1 on C, and also their neighbors in TQ0
n, say, uk and uk+1, respectively are adjacent

in TQ0
n −F 0. 〈vk+1, vk+2, . . . , v2n−f1

v−1, . . . , vk, uk, uk+1, vk+1〉 is a fault-free cycle of length
2n − f 1

v + 1 in TQn × K2 − F . This completes the proof of the theorem. ✷

For the following discussion, we recall that G0
n+1 and G1

n+1 are the subgraphs induced

by V (TQ00
n )

⋃
V (TQ10

n ) and V (TQ01
n )

⋃
V (TQ11

n ), respectively. We say that an edge is a

critical edge of TQn+2 if it is an edge in Gi
n+1 with one endpoint in TQi0

n and the other

in TQi1
n for i ∈ {0, 1}.

Lemma 10 Let n ≥ 3 be an odd integer, and (u1, u2) be a critical edge of TQn+2 which

is in G0
n+1, and v1, v2 be the neighbors in G1

n+1 of u1 and u2, respectively. Then (v1, v2) is

also a critical edge of TQn+2 in G1
n+1.

Proof. Without loss of generality, we assume that u1 = 00xn−3xn−4 . . . x1x0. If

Pn−3(u1) = 0, u2 = 10xn−3xn−4 . . . x1x0, v1 = 11xn−3xn−4 . . . x1x0, and v2 = 01xn−3xn−4 . . . x1x0.

By definition, v1 and v2 are adjacent, and (v1, v2) is a critical edge in G1
n+1. It can be

checked that the statement is also true if Pn−3(u1) = 1. ✷

It is observed that vertices u1, u2, v1, v2 in the above lemma form a 4-cycle. We call

this cycle a crossed 4-cycle in TQn+2. It is clear that, for each vertex 00xn−3 · · ·x0, there

is exactly one crossed 4-cycle corresponding to this vertex. Thus, there are 2n disjoint

crossed 4-cycles in TQn+2. We note that a crossed 4-cycle contains two critical edges.

44



Huang et al. [30] proved the following theorem.

Theorem 13 [30] TQn × K2 is (n − 1)-hamiltonian and (n − 2)-hamiltonian connected

for any odd integer n ≥ 3.

Theorem 14 Let n ≥ 3 be an odd integer. If TQn is (n − 2)-pancyclic, TQn+2 is n-

pancyclic.

Proof. Suppose that TQn is (n − 2)-pancyclic for some n ≥ 3. By Theorem 12,

TQn × K2 is (n − 1)-pancyclic. That is, both G0
n+1 and G1

n+1 in TQn+2 are (n − 1)-

pancyclic. We will show that TQn+2 is n-pancyclic. Let F ⊆ V (TQn+2)∪E(TQn+2) be a

set of faults. We divide F into five disjoint parts: F 0
v = F ∩V (G0

n+1), F
0
e = F ∩E(G0

n+1),

F 1
v = F ∩ V (G1

n+1), F 1
e = F ∩ E(G1

n+1), and F c
e = F ∩ {(u, v) | (u, v) is an edge between

G0
n+1 and G1

n+1}. Let f = |F |, f 0
v = |F 0

v |, f 0
e = |F 0

e |, f 1
v = |F 1

v |, f 1
e = |F 1

e |, and f c
e = |F c

e |.
For convenience of discussion, we define the following subsets of F : Fv = F ∩ V (TQn+2),

Fe = F ∩ E(TQn+2), F 0 = F 0
v ∪ F 0

e , and F 1 = F 1
v ∪ F 1

e . And let fv = |Fv|, fe = |Fe|,
f 0 = |F 0|, and f 1 = |F 1|. Note that f 0 + f 1 = f − f c

e .

For further discussion, we consider the following cases.

v1

v
n f

u
  12

vl

Q

(a)   Case 1.2.

u1

ul

Q'

(b)  Case 1.3

u1

u2

v
n f

u
  12

v1

v2

0
1 nG 1

1 nG 0
1 nG 1

1 nG

Figure 5.5: Case 1.2 and Case 1.3 of Theorem 14.

Case 1. There is a subcube containing all the n faults.
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Without loss of generality, we assume that f 0 = n. Thus, f 1 = f c
e = 0. G0

n+1 is (n−1)-
pancyclic, and hence (n−1)-hamiltonian. Clearly, G0

n+1 −F 0 still contains a hamiltonian

path, say, P = 〈u1, u2, . . ., u2n+1−f0
v
〉, where f 0

v = fv. We discuss the existence of cycles

of all lengths from 4 to 2n+2 − fv according to the following cases.

Case 1.1. Cycles of lengths from 4 to 2n+1.

Since G1
n+1 is (n − 1)-pancyclic , G1

n+1 contains cycles of lengths from 4 to 2n+1 for

n ≥ 3. So, TQn+2 − F also contains cycles of these lengths.

Case 1.2. Cycles of lengths from 2n+1 + 2 to 2n+2 − fv (see Figure 5.5(a)).

Let 2 ≤ l ≤ 2n+1 − fv. We construct a cycle of length 2
n+1 + l as follows: Suppose

that the neighbors in G1
n+1 of u1 and ul are v1 and vl, respectively. By Theorem 13, G1

n+1

is (n − 2)-hamiltonian connected and n ≥ 3. Hence there is a hamiltonian path Q in

G1
n+1 between v1 and vl containing 2

n+1 vertices. 〈u1, · · · , ul, vl, Q, v1, u1〉 forms a cycle of
length 2n+1 + l. Note that there are no faults outside G0

n+1. So all the vertices on P are

safe crossing-points.

Case 1.3. A cycle of length 2n+1 + 1 (see Figure 5.5(b)).

Consider the vertices u1 and u2 on P and their neighbors in G1
n+1, say v1 and v2,

respectively. By Theorem 13, G1
n+1 is (n − 2)-hamiltonian connected for n ≥ 3. Since

f 1 = 0, we may find a path Q′ between v1 and v2 containing 2
n+1 − 1 vertices in G1

n+1.

Then 〈u1, u2, v2, Q
′, v1, u1〉 forms a cycle of length 2n+1 + 1.

Case 2. Both f 0 and f 1 are at most n − 1.

Since both of G0
n+1 and G1

n+1 are (n − 1)-pancyclic for n ≥ 3, both of G0
n+1 − F 0 and

G1
n+1 − F 1 are still pancyclic. Without loss of generality, we assume that f 0 ≥ f 1. We

discuss the existence of cycles of all lengths from 4 to 2n − fv in the following cases.

Case 2.1. Cycles of lengths from 4 to 2n+1 − f 1
v .
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Since G1
n+1 − F 1 is pancyclic for n ≥ 3, we have cycles of lengths from 4 to 2n+1 − f 1

v

in G1
n+1 − F 1.

(b)   Case 2.3.
real fault
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b Q
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shadow- fault

ui+1

ui vi
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uj
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0
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1 nG 0
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Figure 5.6: Case 2.2 and Case 2.3 of Theorem 14.

Case 2.2. Cycles of lengths from 2n+1 − f 1
v + 2 to 2

n+2 − fv (see Figure 5.6(a)).

SinceG0
n+1−F 0 is pancyclic, we have a hamiltonian cycle C = 〈u0, u1, . . . , u2n+1−f0

v−1, u0〉
of length 2n+1 − f 0

v in G0
n+1 − F 0. Let 2 ≤ l ≤ 2n+1 − f 0

v . We construct a cycle of length

2n+1 − f 1
v + l as follows: First, we claim that there exist two safe crossing-points ui and

uj on C such that (j − i) = l− 1(mod 2n+1 − f 0
v ). Suppose on the contrary that there do

not exist such ui and uj. Then there are at least �2n+1−f0
v

2
� faults outside G0

n+1. However,

�2n+1−f0
v

2
�+ f 0

v ≥ 2n > n for n ≥ 0. We obtain a contradiction. Thus, there exist such ui

and uj, and our claim is true. Secondly, we claim that f 1 ≤ n− 2 for n ≥ 3. Suppose for

the sake of contradiction that f 1 = n − 1. Since f 0 ≥ f 1, f 0 = n − 1. The total number
of faults is at most n. Thus (n − 1) + (n − 1) ≤ n. This implies that n ≤ 2, which is

a contradiction. This completes the proof of our second claim. By Theorem 13, G1
n+1 is

(n−2)-hamiltonian connected and f 1 ≤ n−2 for n ≥ 3. Hence G1
n+1−F 1 is hamiltonian

connected. Let vi and vj be the neighbors in G1
n+1 of ui and uj, respectively. There is

a hamiltonian path Q in G1
n+1 − F 1 between vi and vj . Clearly, Q contains (2n+1 − f 1

v )

vertices. Then 〈ui, ui+1, · · · , uj, vj, Q, vi, ui〉 forms a cycle of length 2n+1 − f 1
v + l.

Case 2.3. A cycle of length 2n+1 − f 1
v + 1 (see Figure 5.6(b)).

47



We want to construct a cycle containing 2n+1 − f 1
v − 1 vertices in G1

n+1 − F 1 and two

vertices in G0
n+1 − F 0. To avoid faults in G0

n+1, we introduce a term called shadows of

faults. Let 〈u1, u2, v2, v1, u1〉 be a crossed 4-cycle with u1, u2 in G0
n+1 and v1, v2 in G1

n+1,

respectively. If there is a fault on this cycle but the fault is not in G1
n+1, we call edge

(v1, v2) a shadow fault of F onG1
n+1 (similarly, we may define a shadow fault on G0

n+1). Let

F s = {e | edge e is a shadow fault of F on G1
n+1}. Then |F s∪F 1| ≤ n. If |F s∪F 1| = n, we

arbitrarily choose an edge e1 in F s, and let F ′ = F s ∪F 1 − e1, otherwise let F ′ = F s ∪F 1

. Then |F ′| ≤ n − 1 and G1
n+1 − F ′ is still pancyclic. Since F ′ ∩ V (G1

n+1) = F 1
v , there is

a cycle C of length 2n+1 − f 1
v − 1 in G1

n+1 − F ′. Since 2n+1 − f 1
v − 1 > 2n for n ≥ 3, C

contains two critical edges. Let (a, b) �= e1 be a critical edge on C, so (a, b) /∈ F s. Let

a′, b′ be the neighbors of a and b in G0
n+1, respectively. Then 〈a, a′, b′, b, a〉 is a fault-free

crossed 4-cycle. Suppose that C = 〈a, Q, b, a〉. Then 〈a′, a, Q, b, b′, a′〉 forms a cycle of
length 2n+1 − f 1

v + 1 in TQn+2 − F . ✷

By Theorem 11, Theorem 14 and using the mathematical induction, we obtain the

following theorem.

Theorem 15 The twisted cube TQn is (n − 2)-pancyclic for any odd integer n ≥ 3.
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Chapter 6

Highly fault-tolerant cycle
embeddings of hypercubes

6.1 Preliminaries

The hypercube Qn is a graph with |V (Qn)| = 2n and |E(Qn)| = n2n−1. Vertices are

assigned binary strings of length n ranging from 0 to 2n − 1. Two vertices are adjacent if
they differ only in one bit position.

A bipartite graph is hamiltonian laceable if, for two arbitrary vertices x and y in

different partite sets, there is a hamiltonian path connecting x and y. A bipartite graph

G is bipancyclic if, for every even integer l with 4 ≤ l ≤ |V (G)|, G has a cycle of length l.

Let F ⊆ E(G) be a faulty set containing edges of G. G − F denotes the subgraph of

G obtained by deleting the edges in F from G. Let k be a positive integer. A bipartite

graph G is k edge fault-tolerant hamiltonian laceable (abbreviated as k fault-hamiltonian

laceable in this dissertation) if G−F is hamiltonian laceable for every F with |F | ≤ k. A

bipartite graph G is k edge fault-tolerant bipancyclic (abbreviated as k fault-bipancyclic)

if G − F is bipancyclic for every F with |F | ≤ k. A bipartite graph G is k conditional

edge fault-tolerant bipancyclic (abbreviated as k conditional fault-bipancyclic) if G− F is

bipancyclic for every F with |F | ≤ k under the condition that every vertex is incident

with at least two nonfaulty edges.
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The following lemma is proved in [49].

Theorem 16 [49] Qn is (n − 2) edge fault-tolerant hamiltonian laceable for n ≥ 2.

For convenience of further discussion, we say that Qn is divided into Q0
n−1 and Q1

n−1

along dimension k for 0 ≤ k ≤ n − 1 if Qi
n−1 is an (n − 1)-dimensional hypercube which

is a subgraph of Qn induced by the vertices labeled by xn−1 . . . xk+1ixk−1 . . . x0. We say

that (x, y) ∈ E(Qn) is a k-dimensional edge if x differs from y in the kth position for

0 ≤ k ≤ n− 1. In addition, let F ⊂ E(Qn) be the set of faulty edges, F0 = F
⋂

E(Q0
n−1),

and F1 = F
⋂

E(Q1
n−1).

6.2 Conditional fault bipancyclic

The following theorem states that, under the condition that each node of Qn is incident

with at least two healthy links, an injured Qn is still bipancyclic with F ≤ 2n − 5 for

n ≥ 3. We note that this condition implies that the number of faulty edges incident to

any vertex is at most n − 2.

Tsai [50] proved the following theorem at the same time we did. We had not been

informed until this work was completed. We obtained the result independently.

Theorem 17 The hypercube Qn is (2n − 5) conditional fault-bipancyclic for n ≥ 3.

Proof. We prove this by induction on n. It is straightforward to see that Q3 is 1

edge fault-tolerant bipancyclic. Since 2×3−5 = 1, the theorem holds for n = 3. Assume

that Qn−1 is 2(n− 1)− 5 = 2n− 7 conditional fault-bipancyclic for some n ≥ 4. We shall

prove that Qn is (2n − 5) conditional fault-bipancyclic. There are three possible fault

distributions:

(1) There is only one vertex incident with n−2 faulty edges. Without loss of generality,
we may assume that one of these n − 2 faulty edges is an (n − 1)-dimensional edge.

(2) There are two vertices which share a faulty edge and are both incident with n− 2
faulty edges. Without loss of generality, we may assume that the faulty edge they share

is an (n − 1)-dimensional edge.
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(3) Every vertex is incident with less than n−2 faulty edges. We may assume without
loss of generality that one of them is an (n − 1)-dimensional edge.

Note that there cannot be more than two vertices which are incident with n−2 faulty
edges for n ≥ 3. Then, we can divide Qn into Q0

n−1 and Q0
n−1 along dimension n − 1. So

both of Q0
n−1 and Q1

n−1 satisfy the condition that every vertex is incident with at least two

nonfaulty edges. Furthermore, we may assume without loss of generality that |F 0| ≥ |F 1|.
Since (2n−5)−1

2
= n−3, |F 1| ≤ n−3. We discuss the existence of cycles of all even lengths

from 4 to 2n in the following two cases.

Case 1. Cycles of even lengths from 4 to 2n−1. Note that |F 1| ≤ n − 3 ≤ 2n − 7 for
n ≥ 4. By induction hypothesis, Q1

n−1 is (2n−7) conditional fault-bipancyclic, so Q1−F 1

contains cycles of all even lengths from 4 to 2n−1.

Case 2. Cycles of even lengths from 2n−1 + 2 to 2n. We divide this case further into

two subcases.

Case 2.1. |F 0| = 2n − 6 (see Figure 6.1 (a)). Hence, there is only one (n − 1)-

dimensional faulty edge, say e. Let x ∈ V (Q0
n−1) be the vertex incident with e. Notice

that there are at most n−3 faulty edges incident with x in Q0
n−1. Since 2n−6 > n−3 for

n ≥ 4, there must be a faulty edge in Q0
n−1, say e′, such that it is not incident to x. Let

F ′ = F 0−e′. Clearly, |F ′| = 2n−7. By induction hypothesis, Q0
n−1 is (2n−7) conditional

fault-bipancyclic, so Q0
n−1 − F ′ contains a hamiltonian cycle, say C. Then, Q0

n−1 − F 0

contains a hamiltonian path on C, say P = 〈u1, u2, . . . , u2n−1〉, such that u1 �= x and

u2n−1 �= x. Let 2 ≤ l ≤ 2n−1 be an even integer. We construct a cycle of length 2n−1 + l

as follows. Since the edge e is the only faulty edge in (n− 1)-dimension, there must exist
two vertices ui and uj such that the two (n − 1)-dimensional edges incident to ui and

uj, respectively, are nonfaulty and j − i = l − 1. Let vi and vj be the neighbors of ui

and uj in Q1
n−1, respectively. Since j − i is odd, ui and uj are in different partite sets,

and then vi and vj are also in different partite sets. By Theorem 16, Q1
n−1 is (n − 3)

fault-hamiltonian laceable. Since |F 1| ≤ n − 3, Q1
n−1 − F 1 contains a hamiltonian path,

say Q. Then, 〈ui, ui+1, · · · , uj, vj, Q, vi, ui〉 is a cycle of length 2n−1 + l in Qn − F .

Case 2.2. |F 0| ≤ 2n − 7 (see Figure 6.1 (b)). By induction hypothesis, Q0
n−1 is

(2n−7) conditional fault-bipancyclic. Therefore, Q0
n−1−F 0 contains a hamiltonian cycle,
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Figure 6.1: Case 2.1 and Case 2.2 of Theorem 17.

say C = 〈u1, u2, . . . , u2n−1, u1〉. Let l be an even integer for 2 ≤ l ≤ 2n−1. We construct

a cycle of length 2n−1 + l as follows: First, we claim that there exist two vertices ui and

uj on C such that the two (n − 1)-dimensional edges incident to ui and uj, respectively

are nonfaulty, and (j − i) = l− 1(mod 2n−1). Suppose on the contrary that there do not

exist such ui and uj. Then there are at least
2n−1

2
= 2n−2 (n−1)-dimensional faulty edges.

However, 2n−2 > 2n − 5 for n ≥ 4. We obtain a contradiction. Thus, there exist such ui

and uj. By Theorem 16, Q1
n−1 is (n − 3) fault-hamiltonian laceable. Since |F 1| ≤ n − 3,

Q1
n−1 − F 1 is still hamiltonian laceable. Let vi and vj be the neighbors of ui and uj in

Q1
n−1, respectively. Since ui and uj are in different partite sets, vi and vj are also in

different partite sets. There is a hamiltonian path P in Q1
n−1 − F 1 between vi and vj .

Then 〈ui, ui+1, · · · , uj, vj , P, vi, ui〉 forms a cycle of length 2n−1 + l. ✷

The above result is optimal in the sense that if there are more than 2n−5 faulty edges,
there is no guarantee to have a fault-free cycle in an injured hypercube. For example,

let 〈a, b, c, d, a〉 be a 4-cycle in Qn (see Figure 6.2). Assume that all the edges incident

to b are faulty except (a, b) and (b, c), and all the edges incident to d are faulty except

(a, d) and (d, c). Then, there are (n − 2) + (n − 2) = 2n− 4 faulty edges, and there is no
hamiltonian cycle in the injured hypercube.
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Figure 6.2: There are n − 2 fault edges incident to b and d, respectively, and the injured
hypercube has no hamiltonian cycle.

6.3 Smaller lengths of cycles

If the condition is not satisfied, i.e., there are more than n − 2 faulty edges incident to a
certain vertex, there cannot be a hamiltonian cycle in an injured hypercube. But what

about the other cycles of even lengths? The following two theorems address this problem.

Our finding is that the hamiltonian cycle is the only missing cycle.

Theorem 18 If there are 2 or 3 faulty edges incident to some vertex in Q3, then Q3 −F

contains cycles of lengths 4 and 6 with |F | ≤ 3.

Proof. Since Q3 is vertex symmetric (see Figure 6.3), we may assume that 000 is

incident with 2 or 3 faulty edges. First, suppose that there are two faulty edges incident

to 000, and the other faulty edge, say e, is not. We observe that e is not on one of the 4-

cycles (see Figure 6.3 (a), (b), and (c)): 〈100, 101, 111, 110, 100〉, 〈001, 101, 111, 011, 001〉,
and 〈010, 011, 111, 110, 010〉. Also, e is not on one of the 6-cycles (see Figure 6.3 (d),

(e), and (f)): 〈010, 011, 001, 101, 111, 110, 010〉, 〈001, 101, 100, 110, 111, 011, 001〉, and
〈010, 011, 111, 101, 100, 110, 010〉. Therefore, we have cycles of lengths 4 and 6 in Q3 −F .

Second, suppose that there are three faulty edges incident to 000. Since 000 is not on all

the above cycles, Q3 − F contains all the above cycles. The proof is complete. ✷
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Figure 6.3: 4-cycles and 6-cycles in Q3 − F .

Theorem 19 If there are more than n − 2 faulty edges incident to some vertex in Qn,

then Qn − F contains cycles of all even lengths from 4 to 2n − 2 with |F | ≤ 2n − 3 for

n ≥ 3.

Proof. This theorem is proved by induction on n. By Theorem 18, the theorem holds

for n = 3. Assume that the theorem is true for Qn−1 with some n ≥ 4. We shall prove

that Qn − F contains cycles of all even lengths from 4 to 2n − 2 with |F | ≤ 2n− 3. Note
that we only need to consider the case |F | = 2n − 3. There is only one vertex, say a

which is incident with at least n − 1 faulty edges. Since (2n − 3) − n = n − 3 ≥ 1 for

n ≥ 4, there is a faulty edge which is not incident to a. Without loss of generality, we

may assume that it is an (n − 1)-dimensional edge. Then, we divide Qn into Q0
n−1 and

Q0
n−1 along dimension n−1. Without loss of generality, assume that a ∈ V (Q0

n−1). Then,

|F 1| ≤ (2n− 3)− (n− 1)− 1 = n− 3. By Theorem 16, Q1
n−1 is (n− 3) fault-hamiltonian

laceable, so Q1
n−1 − F 1 is still hamiltonian laceable. We discuss the existence of cycles of

all even lengths from 4 to 2n − 2 as follows.

Case 1. Cycles of even lengths from 4 to 2n−1. By Theorem 17, Q1
n−1 is (2n − 7)

conditional fault-bipancyclic, Since |F 1| ≤ n − 3, we have cycles of all even lengths from
4 to 2n−1 in Q1 − F 1.
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Case 2. Cycles of even lengths from 2n−1 + 2 to 2n − 2. The proof is similar to

the one in Case 2.2 of Theorem 17. First, if |F 0| ≤ 2n − 5, by induction hypothesis,

Q0
n−1 − F 0 contains a cycle of length 2n−1 − 2. Second, if |F 0| = 2n − 4, there is only

one (n − 1)-dimensional faulty edge, and the (n − 1)-dimensional edge incident to a is

nonfaulty. Hence, all the n− 1 edges incident to a in Q0
n−1 is faulty. Let e′ be one of this

n − 1 faulty edges. Let F ′ = F 0 − e′. Then, |F ′| = 2n − 5. By induction hypothesis,

Q0
n−1 −F ′ contains a cycle of length 2n−1 − 2. Since a is not on this cycle, Q0

n−1 −F 0 also

contains this cycle. Let l be an even integer for 2 ≤ l ≤ 2n−1−2. Repeating the argument
in the proof of Case 2.2 of Theorem 17, if (n − 1)-dimensional faulty edges are less than
2n−1−2

2
= 2n−2−1, we have a cycle of length 2n−1+l in Qn−F . 2n−2−1 ≥ (2n−3)−(n−2)

(a is incident with at least n − 2 faulty edges in Q0
n−1) for n ≥ 4, and the equality holds

only when n = 4, i.e., Q4 contains three (n−1)-dimensional faulty edges. In this situation,
there are three faulty edges incident to a, and the other two faulty edges, say e1 and e2,

are (n−1)-dimensional. We can divide Q4 into Q0
3 and Q1

3 along a dimension k, 0 ≤ k ≤ 3,

such that e1 and e2 are in different (n − 1)-dimensional subcubes. Hence, |F 1| = 1, and

there are at most 2 k-dimensional faulty edges. And either |F 0| ≤ 3, or a is incident with

3 faulty edges in Q0
3. Hence, this theorem is proved. ✷

Let x, y ∈ V (Qn) be two vertices in the same partite set. Suppose that there are n−1
faulty edges incident to x and y, respectively. There cannot be a cycle of length 2n − 2 in
Qn − F . Therefore, the number of faulty edges, 2n− 3, provided in the above theorem is

maximum.

In fact, we have found cycles of all possible lengths in Qn −F with |F | ≤ 2n−5 under
all possible fault distributions. By Theorem 17 and Theorem 19 , the following theorem

follows.

Theorem 20 Suppose that |F | ≤ 2n− 5 and n ≥ 4. If the condition that every vertex in

Qn has at least two nonfaulty edges is satisfied, Qn −F contains cycles of all even lengths

from 4 to 2n. Otherwise, Qn − F contains cycles of all even lengths from 4 to 2n − 2.
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Chapter 7

Conclusion, Discussion, and Future
Work

In Chapter 2, we show how to find a hamiltonian cycle and a hamiltonian path joining

two arbitrary vertices in a wounded k-ary n-cube. When k is an odd integer, we have

proved that Qk
n is (2n−2)-hamiltonian and (2n−3)-hamiltonian connected. Furthermore,

our results are optimal. For even integer k, Qk
n is a bipartite graph, and it is easy to

check that Qk
n contains a hamiltonian cycle. However, with one single vertex fault, the

remaining network does not contain any hamiltonian cycle. Therefore, for the fault-

tolerant hamiltonian and hamiltonian connected properties of Qk
n, we can only consider

edge faults. Let Fe ⊆ E(Qk
n) be the set of faulty edges inQk

n with |Fe| ≤ 2n−2 (not 2n−3).
For even integer k, we propose to show that Qk

n − Fe has a hamiltonian path connecting

two arbitrary vertices belonging to different partite sets and a path of maximum length,

kn − 2, connecting two arbitrary vertices in the same partite set for every n ≥ 2 and even

k ≥ 4. This problem has not yet been resolved.

The fault-tolerant hamiltonian and hamiltonian connected properties are fundamental

tools for exploring further properties concerning cycle or path embedding problems. For

example, we have studied the fault-tolerant pancyclicity of Möbius cubes by using the

fault-tolerant hamiltonian and hamiltonian connected properties of Möbius cubes. In

addition, by employing hamiltonian cycles and paths in faulty hypercubes, linear array

and cycle embeddings in conditional faulty hypercubes were resolved [50].

The crossed cube CQn, the Möbius cube MQn, and the twisted cube TQn are al-
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ternatives to the hypercube architecture in the parallel computing area. From Chapter

3 to Chapter 5, we provide a superior property of the above three networks to the hy-

percube, the fault-tolerant pancyclicity. With fe faulty links and fv faulty nodes, where

fe+ fv ≤ n−2, we can find cycles of all lengths except 3 in these networks. However, the
hypercube, as a bipartite graph, does not contain any odd cycles even if it is fault-free.

Furthermore, if there exist n−1 faulty elements around a single vertex, then they cannot
have a hamiltonian cycle. Hence, the number of n−2 faults is the most that CQn, MQn,

and TQn can be tolerant with respect to pancyclic property. The above results show that

all of them have a very good fault-tolerant property.

In chapter 6, we extend the result of [40] by restricting fault distributions to increase

the degree of fault tolerance, and we prove that the hypercube is 2n − 5 conditional

fault-bipancyclic. Then, we show that with up to 2n − 3 faulty edges if a certain vertex

is incident with less than two nonfaulty edges, an injured Qn has a cycle of length l for

every even l, 4 ≤ l ≤ 2n − 2. Therefore, the degree of fault tolerance doubles that of [40].

We propose some interesting problems that can be studied further:

1. We have studied the fault-tolerant pancyclic property on some cube networks.

Accordingly, we have a question here. Given an arbitrary vertex (or edge), do all lengths

of cycles containing the vertex (or edge) exist? That is, the fault-tolerant vertex (or edge)

pancyclicity is a problem to be considered.

2. Conditional bipancyclicity have been studied on hypercube in this dissertation. What

about conditional pancyclicity on nonbipartite networks?

3. Other conditional properties can be addressed, for example, conditional connectivity.

4. When considering the bipancyclic problem on hypercube, we observed that the degree

of fault-tolerance is limited by the worst case. Furthermore, we have broken the limitation

by restricting the fault distribution or obtaining a weaker result, in this case, abandoning

the hamiltonian cycle. It is interesting to observe other limitations about other properties.

5. By restricting that each vertex is incident with at least two healthy edges, the degree

of fault-tolerance is almost doubled with respect to bipancyclicity. We derive a question
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here. Are there other reasonable conditions?
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Appendix A

In the following, we construct cycles of lengths from 2n−1 − f 1
v + 2 to 2

n − fv for the case

f 0 = f 1 = n − 3. Since f 0 + f 1 = 2n − 6 ≤ n − 2, n ≤ 4. Thus, we need only to discuss

the case f 0 = f 1 = 1 for n = 4 here. We shall use some symmetric properties of CQ3 to

reduce the cases.

For convenience of discussion, (See Figure 7.1(a).) we call (000, 010), (001, 011),

(111, 101), (110, 100) as inner edges of CQ3 and (000, 001), (001, 111), (111, 110), (110, 010),

(010, 011), (011, 101), (101, 100), (100, 000) as outer edges of CQ3 , respectively. Let x be

a vertex of CQ3. An inner edge e is said to be an N-edge of x if x connects to one of

the endpoints of e. Hence CQ3 has two N -edges of x. An inner edge e is said to be an

H-edge of x if x is not incident to e, and e is not an N -edge of x. Therefore, CQ3 has one

H-edge of x.

To explore the pancyclicity of CQ4 − F , we need an observation, and it is stated in

the following lemma.

Lemma 11 Let x be a faulty vertex in CQ3. Then the two N-edges of x, e1 and e2, are

on cycles of lengths from 4 to 7 in CQ3 − x. And the H-edge of x is on cycles of lengths

4, 5, and 7 in CQ3 − x.

Proof. Without loss of generality, we may assume that x = 000. Then the two

N -edges of x are (001, 011) and (110, 100), and the H-edge of x is (111, 101). We

list all the cycles as follows: 〈001, 111, 101, 011, 001〉, 〈111, 110, 100, 101, 111〉, 〈001, 111,
110, 010, 011, 001〉, 〈111, 110, 010, 011, 101, 111〉, 〈110, 010, 011, 101, 100, 110〉 , 〈001, 111,
110, 100, 101, 011, 001〉, and 〈001, 111, 101, 100, 110, 010, 011, 001〉. ✷

We continue to discuss cycles in CQ4 − F , and consider two situations: (1) cycles of

lengths from 8 to 14 and (2) cycles of lengths 15 and 16.
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Case 1. Cycles of lengths from 8 to 14. Suppose that there is a faulty vertex

x in CQ0
3 or a faulty edge e1 which is incident to x. Let (u1, u2) and (u3, u4) be the

two N -edges of x. By Lemma 11, (u1, u2) and (u3, u4) are on cycles of lengths from 4

to 7 in CQ0
3 − F 0. Let v1, v2, v3, and v4 be the neighbors of u1, u2, u3, and u4 in CQ1

3,

respectively. It is not difficult to check that both (v1, v2) and (v3, v4) are inner edges of

CQ1
3. (See Figure 7.1(b).) And (v1, v2) can not reach (v3, v4) via exactly one edge of

CQ1
3. Suppose that the other fault is a faulty vertex y in CQ1

3, or a faulty edge e2 which

is incident to y. Then (v1, v2) or (v3, v4), say (v1, v2) is an N -edge or H-edge of y in

CQ1
3 −F 1. By Lemma 11, (v1, v2) is on cycles of lengths 4, 5, and 7 in CQ1

3 −F 1. We use

Ci to denote a cycle of length i. Let Ci and Cj be cycles containing (u1, u2) and (v1, v2),

respectively, 4 ≤ i ≤ 7, j = 4, 5, or 7. Then we can construct a cycle Cl from Ci and

Cj by adding (u1, v1) and (u2, v2), and deleting (u1, u2) and (v1, v2) for 8 ≤ l ≤ 14. For

example, Figure 7.1(b) shows a cycle of length 12 in CQ4 with one faulty vertex 0000 and

one faulty edge (1100, 1110).
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1011

1101

1100

CQ4

x

u
1

u2 u4
v1

v2

v4

v3

(b)

101 CQ3

(a)

111

000

001

110

010

011

100 x

H-edge of    x
N-edge of    x

Figure 7.1: (a) N -edge and H-edge of x and (b) a cycle of length 12 with one faulty vertex
0000 and one faulty edge (1100, 1110).

Case 2. Cycles of lengths from 15 to 16. If fv = 2, we need only to find cycles

of lengths from 4 to 14 which we did in the previous cases. If fv = 1 and fe = 1, we have

to find a cycle of length 15. By Theorem 8, CQ4 is 2-hamiltonian, so there is a cycle of

length 15 in CQ4−F . If fe = 2, since CQ4 is 2-hamiltonian, there is also a cycle of length

16. Suppose that F = {(x1, y1), (x2, y2)}. Let F ′ = {(x1, y1), x2}. Then there is a cycle
of length 15 in CQ4 − F ′. This cycle is also fault-free in CQ4 − F .
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Appendix B

In this appendix, we show that MQ3 is 1-pancyclic, and MQ4 is 2-pancyclic.

Theorem 21 MQ3 is 1-pancyclic.

Proof. 0-MQ3 and 1-MQ3 are displayed in Figure 7.2. We remark that these two

are isomorphic, and both are vertex symmetric. Therefore, we may consider only 0-MQ3.

We discuss two cases: (1) one vertex fault and (2) one edge fault as follows.

Case 1. One vertex fault.

Since MQ3 is vertex symmetric, we may assume that vertex x = 000 is faulty , and

x is in 0-MQ3. We list cycles of lengths from 4 to 7 as follows: 〈100, 101, 110, 111, 100〉,
〈100, 101, 001, 011, 111, 100〉, 〈100, 101, 110, 010, 011, 111, 100〉, and 〈100, 101, 001, 011, 010,
110, 111, 100〉.

Case 2. One edge fault.

Without loss of generality, we assume that the faulty edge e is incident to x = 000. In

Case 1, we have cycles of lengths from 4 to 7. For a cycle of length 8, if e = (000, 001),

then 〈000, 100, 111, 011, 001, 101, 110, 010, 000〉 is the desired one. If e = (000, 010), then

〈000, 100, 111, 011, 010, 110, 101, 001, 000〉 is a cycle of length 8. For e = (000, 100), the

case is symmetric to the case e = (000, 010). ✷

We say that an edge (u, v) is a k-dimensional edge in MQn if v is the kth neighbor of

u in MQn. To show that MQ4 is 2-pancyclic, we need one observation.
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Lemma 12 Let x be a faulty vertex in MQ3. Let u1 and u2 be the first and 2nd neighbors

of x, respectively. Then the two 3-dimensional edges (u1, u3) and (u2, u4) are on cycles of

lengths from 4 to 7 in MQ3 − x.

Proof. Without loss of generality, we may assume that x = 000, which is in 0-

MQ3. Then u1 = 100, u2 = 010, u3 = 101, and u4 = 011. We list all the cycles as

follows: 〈100, 101, 110, 111, 100〉, 〈010, 011, 111, 110, 010〉, 〈100, 101, 001, 011, 111, 100〉,
〈010, 011, 001, 101, 110, 010〉, 〈100, 101, 110, 010, 011, 111, 100〉, and 〈100, 101, 001, 011,
010, 110, 111, 100〉. ✷

101

000

100

111

011

001

101

110

010

0-MQ3

000

010

110

001

011

100

111

1-MQ3

Figure 7.2: MQ3.

Theorem 22 MQ4 is 2-pancyclic.

Proof. We consider two situations: (1) There is a subcube containing 2 faults, and

(2) both f 0 and f 1 are at most 1.

Case 1. There is a subcube containing 2 faults.

Without loss of generality, we assume that f 0 = 2. Thus, f 1 = f c
e = 0. We discuss

the existence of cycles of every length from 4 to 16− fv according to the following cases.

Case 1.1. Cycles of lengths from 4 to 8.
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By Theorem 21, MQ3 is 1-pancyclic. Thus MQ1
3 contains cycles of lengths from 4 to

8. Clearly, MQn − F also contains cycles of these lengths.

Case 1.2. Cycles of lengths from 10 to 16− fv.

By the same method used in Case 1.2 of Theorem 9, we have cycles of lengths from

10 to 16− fv.

Case 1.3. A cycle of length 9.

We claim that, for any two vertices x and y in 0-MQ3, there exists a path containing

7 vertices connecting x and y in 0-MQ3. Due to the symmetry of 0-MQ3, it is sufficient

to consider the following four cases, x = 000, and y = 100, 111, 011, or 001 in 0-MQ3.

For each case, we list the path as follows: 〈000, 001, 011, 010, 110, 101, 100〉, 〈000, 010, 110,
101, 001, 011, 111〉, 〈000, 010, 110, 101, 100, 111, 011〉, and 〈000, 100, 111, 110, 010, 011, 001〉.
Then we consider MQ4. Since both MQ0

3 and MQ1
3 are isomorphic to 0-MQ3, the above

claim holds in MQ0
3 and MQ1

3. Suppose that MQ0
3 contains 2 faults. Then, we can find

a fault-free edge (u1, u2) in the injured MQ0
3. Let v1 and v2 be the first neighbors of u1

and u2, respectively. We have a path Q containing 7 vertices in MQ1
3 between v1 and v2.

Then 〈u1, v1, Q, v2, u2, u1〉 forms a cycle of length 9.
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Figure 7.3: An equivalent form of MQ4.

Case 2. Both f 0 and f 1 are at most 1.
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We discuss the existence of cycles of every length from 4 to 16− fv according to the

following cases.

Case 2.1. Cycles of lengths from 4 to 7.

By Theorem 21, MQ0
3 is 1-pancyclic. Thus MQ0

3 −F 1 contains cycles of lengths from

4 to 7.

Case 2.2. Cycles of lengths from 8 to 14.

Suppose that there is a vertex fault x in MQ0
3 or an edge fault e1 which is incident to

x. Let u1 and u2 be the 2nd and 3rd neighbors of x, respectively. By Lemma 12, the two

4-dimensional edges (u1, u3) and (u2, u4) are on cycles of lengths from 4 to 7 in MQ0
3−F 0.

We note that these two 4-dimensional edges are in fact 3-dimensional edges in MQ3. Let

v1, v2, v3, and v4 be the first neighbors of u1, u2, u3, and u4, respectively. It is not difficult

to check that both (v1, v3) and (v2, v4) are 4-dimensional edges, and v1 is a neighbor of v2

or v4. (See Figure 7.3 and Figure 7.4.) Suppose that the other fault is a vertex fault y in

MQ1
3, or an edge fault e2 which is incident to y. Then y is either the 2nd or 3rd neighbor

of one of {v1, v2, v3, v4}, say, v1. By Lemma 12, (v1, v3) is on cycles of lengths from 4 to 7

in MQ1
3 −F 1. We use Ci to denote a cycle of length i. Let Ci and Cj be cycles containing

(u1, u3) and (v1, v3), respectively, 4 ≤ i, j ≤ 7. Then we can construct a cycle Cl from Ci

and Cj by adding (u1, v1) and (u3, v3), and deleting (u1, u3) and (v1, v3) for 8 ≤ l ≤ 14.

For example, Figure 7.4 shows a cycle of length 11 in 0-MQ4 with one vertex fault 1101

and one edge fault (0000, 1000).
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Figure 7.4: Illustration of C11 in MQ4 − F .
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Case 2.3. Cycles of lengths from 15 to 16.

Suppose that there are one edge fault and one vertex fault in MQ4. Then we need to

find cycles of lengths from 4 to 15. By Theorem 8, MQ4 is 2-hamiltonian. Thus MQ4−F

contains a cycle of length 15. Suppose that there are two edge faults e1 and e2. Since

MQ4 is 2-hamiltonian, MQ4 − F has a cycle of length 16. For a cycle of length 15, we

may virtually suppose that one vertex x, which is incident to e1, is faulty. Taking vertex

x and edge e2 as faults, and using the fact that MQ4 is 2-hamiltonian, MQ4 − F has a

cycle of length 15. Suppose that there are two vertex faults. We only need to find cycles

of lengths from 4 to 14, and we have shown them in the previous cases.
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Appendix C

In the following, we construct cycles of lengths from 2n − f 1
v +2 to 2

n+1 − fv in TQn ×K2

for the case f 0 = f 1 = n− 2. Since f 0+ f 1 = 2n− 4 ≤ n− 1, n ≤ 3. Thus, we need only

to discuss the case f 0 = f 1 = 1 for n = 3 here.

First, we show the case f 0
v = f 1

v = 1, and thus find cycles of lengths from 9 to 14 in

TQ3 × K2 − F . Let F = {u, v} for u ∈ V (TQ0
3) and v ∈ V (TQ1

3). We need only discuss

five cases due to the symmetry of TQ3 ×K2 (see Figure 7.5): (1) u = 0000, v = 1000, (2)

u = 0000, v = 1110, (3) u = 0000, v = 1111, (4) u = 0000, v = 1101, and (5) u = 0000,

v = 1100. They are listed one by one in Table 7.1.
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1100

1101

1111

1110

Figure 7.5: TQ3 × K2

Secondly, consider that fv = 1 and fe = 1. We find cycles of lengths from 8 to 14

as follows. Let F = {u1, (u2, v2)} and F ′ = {u1, u2}. From the above discussion, there

are cycles of lengths from 9 to 14 in TQ3 × K2 − F ′, which are also in TQ3 × K2 − F .

Furthermore, since TQ3×K2 is 2-hamiltonian, there is a cycle of length 15 in TQ3×K2−F .

66



Length u = 0000, v = 1000
9 〈0001, 0011, 0010, 0100, 1100, 1101, 1111, 1011, 1001, 0001〉

10 〈0001, 0011, 0010, 0100, 0101, 1101, 1100, 1010, 1011, 1001, 0001〉
11 〈0001, 0011, 0010, 0100, 0101, 1101, 1111, 1110, 1010, 1011, 1001, 0001〉
12 〈0001, 0011, 0010, 0110, 0111, 0101, 1101, 1111, 1110, 1010, 1011, 1001, 0001〉
13 〈0001, 0011, 0010, 0110, 0111, 0101, 1101, 1100, 1010, 1110, 1111, 1011, 1001, 0001〉
14 〈0001, 0011, 0010, 0100, 0101, 0111, 0110, 1110, 1111, 1101, 1100, 1010, 1011, 1001, 0001〉

Length u = 0000, v = 1110
9 〈0111, 0110, 0010, 0011, 1011, 1010, 1100, 1101, 1111, 0111〉

10 〈0111, 0101, 0100, 0010, 0011, 1011, 1010, 1100, 1101, 1111, 0111〉
11 〈0111, 0101, 0100, 0010, 0011, 1011, 1001, 1000, 1100, 1101, 1111, 0111〉
12 〈0111, 0101, 0100, 0010, 0011, 0001, 1001, 1011, 1010, 1100, 1101, 1111, 0111〉
13 〈0101, 0111, 0110, 0010, 0011, 0001, 1001, 1000, 1100, 1010, 1011, 1111, 1101, 0101〉
14 〈0111, 0110, 0010, 0100, 0101, 0001, 0011, 1011, 1010, 1100, 1000, 1001, 1101, 1111, 0111〉

Length u = 0000, v = 1111
9 〈0110, 0111, 0101, 0100, 0010, 1010, 1100, 1000, 1110, 0110〉

10 〈0110, 0111, 0101, 0100, 0010, 0011, 0001, 1001, 1000, 1110, 0110〉
11 〈0110, 0111, 0101, 0100, 0010, 0011, 0001, 1001, 1011, 1010, 1110, 0110〉
12 〈0110, 0111, 0101, 0100, 0010, 0011, 0001, 1001, 1101, 1100, 1010, 1110, 0110〉
13 〈0110, 0111, 0101, 0100, 0010, 0011, 0001, 1001, 1011, 1010, 1100, 1000, 1110, 0110〉
14 〈0010, 0100, 0101, 0001, 0011, 0111, 0110, 1110, 1000, 1100, 1101, 1001, 1011, 1010, 0010〉

Length u = 0000, v = 1101
9 〈0001, 0011, 0010, 0100, 0101, 1101, 1111, 1011, 1001, 0001〉

10 〈0001, 0011, 0010, 0110, 0111, 1111, 1110, 1010, 1011, 1001, 0001〉
11 〈0001, 0011, 0010, 0110, 0111, 1111, 1011, 1010, 1100, 1000, 1001, 0001〉
12 〈0001, 0011, 0010, 0110, 0111, 1111, 1110, 1000, 1100, 1010, 1011, 1001, 0001〉
13 〈0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1000, 1110, 1111, 1011, 1001, 0001〉
14 〈0010, 0100, 0101, 0001, 0011, 0111, 0110, 1110, 1111, 1011, 1001, 1000, 1100, 1010, 0010〉

Length u = 0000, v = 1100
9 〈0101, 0001, 0011, 0111, 1111, 1110, 1000, 1001, 1101, 0101〉

10 〈0001, 0011, 0111, 0101, 1101, 1111, 1110, 1010, 1011, 1001, 0001〉
11 〈0001, 0011, 0010, 0110, 0111, 0101, 1101, 1111, 1110, 1000, 1001, 0001〉
12 〈0001, 0011, 0010, 0100, 0101, 1101, 1111, 1011, 1010, 1110, 1000, 1001, 0001〉
13 〈0110, 0010, 0100, 0101, 0001, 0011, 0111, 1111, 1101, 1001, 1011, 1010, 1110, 0110〉
14 〈0011, 0001, 0101, 0100, 0010, 0110, 0111, 1111, 1101, 1001, 1000, 1110, 1010, 1011, 0011〉

Table 7.1: Fault-free cycles of lengths from 9 to 14 in TQ3 ×K2 with two faulty vertices.
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Finally, in the same way, we can deal with the case fe = 2. In this case, cycles of

lengths from 10 to 16 have to be found. Assume that F = {(u1, v1), (u2, v2)}. Then let
F ′ = {u1, (u2, v2)}. From the above discussion, there are cycles of lengths from 9 to 15

in TQ3 × K2 − F ′, which are also in TQ3 × K2 − F . In addition, since TQ3 × K2 is

2-hamiltonian, there is a cycle of length 16. This completes our proof.
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