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Abstract

Photonic crystals (PCs) are artificial materials having the periodical modulation
of dielectric structures in space and there exhibit photonic band gaps (PBGs) in
which the propagation of electromagnetic (EM) waves in any propagating direction
and polarization state is inhibited. This feature leads to various peculiar physical
phenomena and provides potential applications. Most proposed applications of PCs
rely on large PBGs of PCs, therefore, the design-and construction of PCs with large
PBGs are a major goal insthe PC field. Much attention has been devoted two-
dimensional (2D) photonic crystals (i:e.; structures with periodic dielectric patterns
on a plane and translational symmetry in-the perpendicular direction), since they
are easier to fabricate (particularly in"the optical region) and may be employed in
waveguide configuations. In this thesis, we developed several procedures to system-
atically engineer the 2D PCs with large PBGs, which were scribed into the crystal
structure by removing partial composited materials or introducing additional scat-
terers into unit cell of the prototype lattices.

For the first time, we have fabricated a PC with tunable PBGs. The proposed
2D tunable PC structure is realized by inserting a movable circular dielectric rod
into a square lattice of square dielectric cylinders in air. The PBGs can be tunable
by shifting the position of the circular dielectric rod. In the present work, we mainly
concentrate on the subject of sensitivity of the PBGs to the variations of structural
parameters of system, especially paying the attention on the effects of the shift
s of the position of the circular dielectric rod. We find that there is a region of
parameters in which the ratio of the gap width to the midgap is insensitive to the
shift of the position of the circular dielectric rod. This property provides the large
benefit of relaxing the fabrication tolerance of the tunable PCs. Then, we propose
2D square lattices of square cross-section dielectric rods in air, designed with an
air hole drilled into each square rod. By adjusting the shift of the hole position in
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the square rod in each unit cell, the dielectric distribution of the square rod will be
modified. The PC structure proposed here has a sizable complete PBG and exhibits
very gently sloped bands near such gap edge, which resulting in a sharp peak of
density of state. In addition, the zero or small group velocities are observed in a
broad region of k-space. This structure can be fabricated with materials widely used
today and opens a facinating area for applications in optoelectric devices. Finally,
we have investigated in detail the photonic band structures of 2D square lattices
of a square dielectric rod connected with another dielectric veins on the middle of
each side of dielectric square rod. Properly adjusting the length, width, position
and dielectric constant of veins in the unit cell enables the tunable complete PBG
generated from the composite structure to be opened and closed. Moreover, it is
not necessary for veins to be fully connected to yield the greatest improvement in
complete gap size depending on a relative dielectric constant of veins in comparison
with those of square rods. These meéchanismsmiay open up a new way for designing

photonic band gaps in 2D photoni¢ crystals.
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Chapter 1

Introduction

1.1 Photonic crystals

Photonic crystals, which are-also known as photonic bandgap (PBG) materials, can
be designed with a periodic-variation‘in the dielectric constant in either one, two,
or all three spatial directions [1].” Due to the periodical modulation of dielectric
structures in space, there may be ranges of frequencies at which no allowed modes
exist for electromagnetic (EM) waves in any propagating direction and polarization
state. These ranges of frequencies are termed photonic band gaps. The dispersion
relation (i.e., the frequency—wavevector relation) for EM wave propagation in PBG
materials is referred to as the photonic band structure. Therefore, the dispersion
relations of light in a photonic crystal can be expressed as photonic band structures
in a Brillouin zone. The photonic band structure of PBG material depends on lattice
type, refractive index constrast, filling factor, and atom configurations, etc. As we
know that the first use of the idea of a photonic band structure was probably made
by Ohtaka in 1979 [2]. It was, however, that really aroused a widespread interest in
this area was in 1987 by Yablonovitch [3]. and John [4]. Then, many groups became
attracted to PBG material research as a result of advances in fabrication techniques

and the increasing awareness of the potential importance of PBG systems [5-29].
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The idea of PCs with band gap is analogous to the electronic band gap due to the
spatial periodic potential in natural crystals. Insight into the nature of PBGs can
be gained by comparing the equations, that govern propagation of EM waves and

electrons. Propagation of EM waves is described by the set of Maxwell’s equations:

VXxE= _68_]753. (1.1)
VXH:JE+80—]?. (1.2)
VD = p. (1.3)

VB =10: (1.4)

D = cpe(r)E. (1.5)
B= popH (1.6)

. Here E and D are the electric field and displacemént vectors, respectively, H the
magnetic field intensity, B the magnetic flux density, ug the permeability, and g
is the permittivity of vacuum. It can be shown that Maxwell’s equations can be

transformed into the following expression for harmonic magnetic modes:

1 2
{V X %V] x H,(r) = w“H(r). (1.7)

Electron propagation is described by the Schrodinger equation as follows:

{_j_mw ¥ V(r)] b(x) = Bu(). (L8)

where V(r) is the potential, m the mass, and ¢ (r) is the wave function of the
particle. Egs. (1.7) and (1.8) look mathematically similar. This allows one to ex-
pect significant similarities in the phenomena that they describe. However, because
photons are particles without mass or charge, therefore, photon movement does

not require additional power and photons do not interact with each other. These
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properties seem to be perfectly prepared for problems facing electronic systems and
products. In addition, photons propagate in PCs in a manner very similar to elec-
tron propagation in semiconductor materials. Thus, by introducing defects into PCs
one can create localized photon modes in PBGs just as electron states occur around

dopants introduced in semiconductor crystals.

1.2 Photonic crystals as devices and applications

There are both numerous and diverse applications for PBG materials that have been
proposed. They are all, however, based on the idea of the modification of the free-
space photon dispersion relation from w = ck, where k is the wavevector, to the more
general form w = w(k). These applications'employ either a perfectly periodic PBG
material (crystal) or consider a PBG material containing “defects”. In this section
I look at photonic crystals asdevices and applications in detail. Joannopoulos, et
al. [30] first proposed the idea of using PCs with PBG(s) as waveguides for optical
interconnection by introducing a line defect (perturbing the crystal along one line).
They also indicated that this type of waveguide is useful for compact, low-loss bends
because there is no limitation on the bend radius forced by the radiation loss as
occurred in dielectric waveguides. Subsequently, waveguiding in a photonic crystal
and near 100 percent transmission of electromagnetic waves around sharp 90 degree
corners were observed experimentally [31, 32]. Since these studies show that highly
efficient transmission of light can be achieved around sharp corners in 2D PBG
waveguides. One major limitation to these studies is that the 2D structure used was
assumed to be infinite in the dimension perpendicular to the plane of periodicity. Ho,
et al. [33] therefore expected leakage of waves in the practical situation of a finite
structure. They proposed using high-index slab structures periodically patterned

with air cylinders and sandwiched by low-index material for light guiding. It is



reported that the experimental demonstration of highly efficient transmission at a
wavelength of around 1.5 pm in a high-index-contrast 2D PC slab [34].

Notably, it was also found [33] that there exist significant losses due to the
coupling of the guided mode with radiation modes and with the backward guided
mode. It is very important that propagation loss be eliminated or at least reduced
to an acceptable level, which is practical application rely. So far, many groups have
made effort to quantify [35-41] and minimize [42-48] the propagation loss in PC slab
waveguides. Several early experiments [49, 50, 51, 52] indicated that low-loss bending
is possible to achieve in PC slab waveguides. However, some significant efforts have
been made to improve the performance of PC bends in practical applications [53—
59]. Researchers also consider photonic ihtegrated circuits using PCs as platforms.

Most passive and active devices required by-photonic integrated circuits [60-115].

1.3 Dissertation outline

In this dissertation an alternative thesis format is followed, which allows the in-
clusion of papers published (or submitted/to be submitted) in scholarly journals.
Each subsequent chapter consists of a single paper presented exactly the way it was
published or submitted. In Chapter 1 we presented an introduction for a brief theo-
retical background and an extensive review of theoretical and experimental literature
in the area of photonic band gap materials. We outlined the different proposed de-
vices and applications that motivated many studies. The goal of this dissertation
is to engineer PC dispersion properties for novel applications. This goal will be
achieved mainly through target-oriented implementations of the PWE method. To
this end, this dissertation is organized as follows. Chapter 2 will introduce numeri-
cal techniques, mainly about the PWE method, used in pursuing this dissertation.

While general information about this method is briefly introduced for completeness,
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most attention will be given as to how to actually implement them to achieve the
specific goal in this dissertation. Chapter 3 the PWE method is used to analyze
2D tunable photonic crystals (TPC) with movable components, which consist of a
circular dielectric rod inserting into a square lattice of square dielectric cylinders in
air. The effect of structural parameters on the band gap is studied first, and then the
band gap structures of TPCs can be tuned by adjusting the shift of the position of
the circular rod in each unit cell. The convergence and accuracy are also discussed.
Chapter 4 two-dimensional square lattices of square cross-section dielectric rods in
air, designed with an air hole drilled into each square rod, are studied theoretically.
The zero or small group velocities near PBG edge in a broad region of k-space are
studied and discussed. Chapter 5 studies a.dotble-hybrid-rods structure system of
2D PCs of a square lattice-with a square dieleetric rod connected with dielectric
veins on the middle of each=side.of dielectric'square rod. The effect of structural
parameters— the length, width; positien-and dielectric constant of the veins — on
the band gap, is studied theoretically. The results are analyzed with the use of the

point of view of the band structure. Chapter 6 gives some concluding remarks.
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Chapter 2

Numerical method for photonic
crystals

Several numerical methods have been proposed for the research of photonic band
gap materials, for example,-the transfer matrix method [1, 2, 3, 4], scattering ma-
trix method [5], plane waveZexpamnsionmethod [23, 7, 25, 9, 10, 11, 12], and finite
difference time domain (FDTD)/method [13,°14, 15], etc. Generally, the plane wave
expansion method is a frequency domain method, and it can be used for photonic
bandgap analysis of infinite and uniform crystals. Analysis of defect modes can also
be achieved using the plane wave expansion method under the so-called “super-cell
approximation”. The FDTD method is a very powerful tool to study the dynamics
of PBG devices, though it usually needs a large amount of computer resources and a
long computation time. The transfer matrix method and scattering matrix method
can be used to obtain the transmission or reflection spectrum for finite photonic

crystals.

2.1 Two-dimensional plane wave expansion method

The plane wave expansion method is a very useful technique to solve periodic elec-

tromagnetic problems such as 1D, 2D and 3D periodic problems. It can yield the
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band structure, equifrequency contours, the spatial field profile, the energy veloc-
ity of a propagating wave etc. However, for 3D problems, a significant number of
plane waves (which require impractical computational costs) are demanded to ensure
numerical accuracy.

This method relies on the solution of Maxwell’s equations, under periodic (Bloch)
boundary conditions. In the following we develop the details of plane wave expansion
method for the E- and H-polarization cases. In a periodic and dielectric medium
where the dielectric constant e(r) is position dependent, Maxwell’s equations (in

Gaussian units) [23, 19] for EM waves can be written as

VX E = z%H (2.1)
VxH= —i%D (2.2)
VOH L0 (2.3)
V. D=0 (2.4)

The electric displacement vector D is related to the electric field E as
D(r) = ¢(r)E(r). (2.5)

We adopt the method of Ho, Chan, and Soukoulis [23] to solve photonic band
structures of such a periodic structure. In this way, Maxwell’s equations can be

further simplified to an equation satisfied by the magnetic field H as

2
_ w
[Vxel(r)V] xH = §H (2.6)
where e71(r) is the inverse of £(r). Since £(r) is periodic, we can use Bloch’s theorem
to expand the H field in terms of plane waves,
2
H(r) = ) ) Haéne'® 9™, (2.7)
G =1
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where k is a wave vector in the Brillouin zone of the lattice, G is a reciprocal-lattice
vector, and €1, &, are orthogonal unit vectors that are both perpendicular to wave
vector k+ G because of the transverse character of magnetic field H (i.e., V-H = 0)
and Hg ) is the Fourier expansion component of the magnetic fields. The dielectric

constant can also be expanded into its Fourier form as
“(r) = 3 c(g)ee, (2.8)
G

where the Fourier transform coefficient €(G) can be obtained either analytically or

numerically. The Fourier coefficient £(G) is given by

1

«(G) = / é(x)e "¢ dr, (2.9)
Acell cell

where the integration is performed over the unit ¢ell. The analysis of Eq. 2.6 can be
reduced to solving two standard eigenvalue equations, each describing a particular

wave polarization. They are given-as follows:
> Ak+ G k+G)H(G) = - H(G) (2.10)
G/

with

K||K'|e'(K — K’) for the E-polarization state,
AK,K') = (2.11)
K -Ke'(K—-K’) for the H-polarization state,

where K =k + G, K =k +G. e }(K-K') = ¢ !(G — G’) can be computed

from solving the following equation

Y G- G")e(G" - G) = e (2.12)
G//

To numerically solve eigenvalue Eq. 2.10 the matrix A (K, K’) needs to be truncated.

Convergence issues apply related to the truncation of this matrix. Ho et al. [18],
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proposed to use for e (G — G'), the inverse of the matrix that corresponds to
the expansion of the dielectric function e(r) instead. This method, known as Ho’s
method, was shown to have faster convergence [18, 19]. In our band structure
calculations in Chapters 2-6 we used Ho’s method. Note that the matrix elements
e (G — G’) depend on the shape of the scatterers under consideration. ¢(G) is

evaluated by
fea+ (1 — fley for G =0,
e(G) = (2.13)
(ea —&p)S(G) for G #0,

Here, the filling factor f is the ratio of the areas A,.,; of dielectric scatterers over
the area of the unit cell A.j;. €, is the.dielectric.constant of the scatterers that are
embedded in a material with diele¢trie-constant g,. In fact, for the cases of circular

and square scatterers, the structural factor S(G) is tlien given by

< e ) Sinc (G“’l) Sine (Gyl) for square scatterers,

Accll 2 T
(@) = (2.14)
27 R2 J1(GR) .
Aot R for circular scatterers,

where Sinc(x) = sinx/x and Ji(x) is the Bessel function of the first kind, and
G = |G|. We denote [ for the side-length of square scatterers, R for the radius of

circular scatterers.

2.2 Numerical results

The patterns of 2D structures under consideration are depicted in Figure 2.1, as
follows: (a) basic triangular lattice of circular dielectric rods in air, (b) the first
Brillouin zone for the triangular structures, (c) basic square lattice of square di-
electric rods in air and (d) the first Brillouin zone for the square structures. The
bands for both H- and E-polatization modes were calculated. When the triangular

lattices were considered, the I'; J, and X points in the Brillouin zone were included

20



@) (b)

X
XXX J
90
‘7a. % .
() (d) M
H B =
EE N - Ly

|
E N N
|

Figure 2.1: Patterns of the structumes mnder consideration: (a) triangular-circles
(lattice-scatterers); (b) first Brillouin zone for.the triangular structures; (c) square-
squares (lattice-scatterers); and (d) first Brillowin zone for the square structures

in calculated and the photori‘ic Vban'"ds were tr;iééd along the I'-J-X-T" path. For the
square lattices of square rods, the' caldtlations were performed along the I'-X-M-T"

path.

We design elements for a particular wavelength of light: A = 1.5um, the wave-
length of light which is often used in telecommunication [20]. It is known that the
gallium arsenide (GaAs) has been widely used in optoelectronics. For light with a
wavelength between A = 1.0um and A = 10.0um, GaAs has a dielectric constant
of 11.4. 361 plane waves in the Fourier expansion are used to calculate PBGs for
the F(H)—polarization. We discuss 2D PBG structures fabricated from isotropic
material. We firrst examine 2D PBG structures consisting of dielectric cylinders in
air. The circular rods are arranged in triangular lattice. The photonic properties
have been studied and shown to exhibit band gaps for each of the two polarization
modes [21]. However, there is some discrepancy about whether an complete band

gap is present. Our simulations demonstrate that band gaps in the two polarization
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Figure 2.2: Calculated photonic band strugture for (a) triangular lattice of circular
dielectric rods (b) square lattice of square dieleetric rods in air for E-polarization
(solid lines) and H-polarization (dotted lines) modes. The rods have a dielectric
constant of ¢ = 11.4 and a filling fraction of f =0.42.

modes do not overlap with each other, resulting in the absence of the complete band
gap. This can be clearly seen from Figure 2.2"(a), which displays the band struc-
tures of two polarization modes for a triangular lattice of circular dielectric rods
in air. The rods have a dielectric constant of ¢ = 11.4 and a filling fraction of f
=0.42. Three band gaps open for the E-polarization mode (plotted in solid lines),
i.e. the 1-2 band gap, 3-4 band gap and 6-7 band gap. For the H-polarization mode
(plotted in dotted lines) a band gap is opened between 1-2 bands. However, the H
1-2 band gap lies between the E 1-2 and 3-4 band gaps, thus no complete band gap
is present. Simulations at other filling fractions also show that no complete band
gap is opened as the higher edge of the H 1-2 band gap always coincides with the
lower edge of the E' 3-4 band gap at high dielectric constant. This can be attributed
to the degeneracy between the H 2 band and F 3, 4 bands, as shown in Figure 2.2
(a).

Figure 2.2 (b) depicts the photonic band structure for a square lattice of square
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Figure 2.3: The gap map forpa square-lattice of square dielectric rods with the
dielectric constant of € = 11.4 as a function of the filling fraction.

dielectric rods in air. The filling fraction of the dielectric rods f = (I/a)?* = 0.42,
where [ is the width of the square dielectric rods and a the lattice constant. An
complete PBG occurs where E 8-9 and H 6-7 gaps overlap.

Figure 2.3 shows the gap map for a square lattice of square dielectric rods with
the dielectric constant 11.4 as a function of the filling fraction of the square dielectric
rods. The complete PBG is represented in black region. We only consider the bands
below the tenth band for both E- and H-polarizations. The complete PBG starts
near f is about 0.25 (I/a = 0.5) and ends at about 0.66 (I/a = 0.8124). The gap
size reaches it maximum value at f = 0.42, which corresponds to [/a = 0.648. We
should note here that H 6-7 gap is the only band gap appearing below the tenth
band of H-polarization. Therefore, the only one complete PBG exists due to the

overlap of E' 8-9 and H 6-7 gaps in this frequency region.
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Chapter 3

Sensitivity of complete bandgaps
to the shift of movable dielectric
rod in two-dimensional photonic
crystals with'complex lattices

A paper published in the Journal of Physics: Condensed Matter!
Wen-Long Liu, Tzong-Jer Yang and Ben-Yuan Gu

Two-dimensional tunable photonic crystals (TPC) with movable components are
proposed, which consist of a circular dielectric rod inserting into a square lattice of
square dielectric cylinders in air. The band gap structures of TPCs can be tuned
by adjusting the shift of the position of the circular rod in each unit cell. Band gap
structures are calculated with the use of plane-wave expansion method for various
structural parameters, such as different filling fractions, ratio of the radius of the
circular rod to the side-length of the square cylinder, different shifts or shifting
orientations of the circular rod, etc. We find that there is a region of parameters
in which the ratio of the gap width to the midgap is insensitive to the shift of

the position of the circular dielectric rod. It is anticipated that the proposed TPC

1J. Phys.: Condens. Matter. 16, 4557 (2004).
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may become a favorable candidate of the PCs owing to the benefit of facilitating

fabrication, allowing a large tolerance.

3.1 Introduction

During the past decade, novel properties and means of fabricating periodically mod-
ulated dielectric structures have attracted much attention. One of the important
characteristics of such materials —- the so-called photonic crystals (PCs) — is that
they exhibit photonic band gaps (PBGs) in which the propagation of electromag-
netic (EM) waves in any propagating direction and polarization state is inhibited
[1, 2, 3, 4, 5, 6]. This feature leads fo various peeuliar physical phenomena [3] and
provides potential applications [6,75, 4, 11}:

Most proposed applications of PCs rely on large PBGs of PCs, therefore, the
design and construction of PCs with large PBGs"are a major goal in the PC
field[6, 5, 4, 11]. Various methods have been proposed and implemented, for instance,
introducing additional scatterers into unit cell of the prototype lattices to lift the de-
generacy of the photonic bands at high symmetric points in the first Brillouin zone
(FBZ)[12], rotating the lattices [7], employing anisotropic dielectric materials [8],
rotating the non-circular rods [9, 10, 17, 18], modifying the distribution of permit-
tivity in the unit cell [12, 17, 13], etc. Other design schemes with the use of various
materials and mechanisms have also been developed[22, 23, 24, 25, 26, 27, 28].

In view of practical applications, a PC with tunable PBGs (TPBGs) is favorable
because of tunability of the operation frequency in optical or microwave devices,
thus, recently, TPCs have received much attention. Various materials have been
suggested to the realization of the TPCs, including liquid crystals [29, 30, 31], metals
and semiconductors [32, 33, 34, 35], ferrites [36], piezoelectric materials [37] and

other optical materials[38, 39], etc.
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Motivated by these works, in this article we propose alternative scheme of the
construction of TPCs. The proposed two-dimensional TPC structure is realized by
inserting a movable circular dielectric rod into a square lattice of square dielectric
cylinders in air. The PBGs can be tunable by shifting the position of the circular
dielectric rod. Indeed, several similar researches have been reported[7, 9, 10, 17, 18].
Their studies dominantly focused on the studies of the effects of rotating the 2D
lattices or scatterers on PBGs. However, in the present work, we mainly concentrate
on the subject of sensitivity of the ratio Aw/w,( where Aw is the width of the
complete band gap and w, is the midgap) to the variations of structural parameters
of system, especially paying the attention 6n.the effects of the shift s of the position
of the circular dielectric rod.The band-structuxes of the TPCs are calculated with
the use of the plane-wave expansion. method. -Numerical simulations show that
there is a range of parameters in which the variations of Aw/w, is insensitive to the
changes of s. Thus, it concludes/that.the proposed TPCs may become a favorable
candidate of the PCs owing to the facilitated fabrication with an allowance of large
tolerance.

The rest of this paper is organized as follows. Section II briefly describes the
model structures and the fundamental formulas used in calculations. Section III
presents the numerical results and the analysis. Finally, Section IV discusses and

summarizes the main findings.

3.2 Structural model and fundamental formulas

The schematic diagram of the proposed TPC structure is displayed in Figure 2.1.
The square dielectric cylinders with a side-length of [ and dielectric €, are placed in
air with ¢, = 1.0 at the four corners of a 2D square lattice with a lattice constant,

a, in the zy—plane. Another circular dielectric rod with ¢ = ¢, and diameter d
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is inserted into each unit cell, forming composite lattices. We denote § = d/I for
convenience.
The electromagnetic (EM) fields with the E/H—polarization ( in-pane mag-

netic/electric fields ) in the 2D PC are governed by the Maxwell’s equations

{v x %w} H(r) = ‘g—jﬂ(r), (3.1)

where H(r) denotes the magnetic fields; w the angular frequency; ¢ the speed of light

in vacuum, and €(r) the periodically modulated dielectric function. The magnetic

fields and the dielectric function can be expanded in terms of Fourier series as

2
H(r) =3 _> hesend® @, (3.2)

G A=l

e(r)= Y el@)ec (3.3)

G

where k is the Bloch wave vector in the FBZ, and G the 2D reciprocal lattice vector.
The polarization unit vectors € with A = 1,2 are perpendicular to (k+G) and hg»
is the Fourier expansion component of the magnetic fields. The Fourier coefficient

£(G) is given by

1

«(G) = / e(r)e "G T dr, (3.4)
ACS” cell

where the integration is performed over the unit cell. Here, the filling fraction f,
which is the ratio of the areas A, of dielectric scatterers in a unit cell to the area

Ao of a unit cell of square lattice, is as

12 732
f:—2<1+7). (3.5)

a

For the proposed TPC, ¢(G) is evaluated by
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fea+ (11— fle for G =0,
((G) = (3.6)
(€a — €)S(G) for G #0,

We assume that there is a shift s of the inserted circular rod with respect to the
center of the unit cell, that is s = s(Xxsiny + y cos~y), where v is the span angle of
the displacement vector with respect to the y—axis. The structural factor S(G) is

then given by [40]

S(G) = e 'CEHNU2G (G) + e7G38,(G), (3.7)

S1(G) = (i-i) S <%> Sine <G;L > (3.9)

with Sinc(z) = sinz/z and

SHG) £ <2—2) %ﬁz% (3.9)

where

where J;(x) is the Bessel function of the first kind, and G = |G].

The band structures are then determined from solving the following equation
Y Ak +G,k+G)H(G') =w*H(G) (3.10)
G/
with
IK||K'|e (K — K’) for the E-polarization state,

AK,K') = (3.11)
K -Ke!(K—-K') forthe H-polarization state,

where K =k+G, K =k+G’. ¢ (K —-K’) =¢'(G — G’) can be computed from

solving the following equation

Eil(G - G”)E(G” — G/) = deq’. (3.12)
>

G//
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3.3 Numerical results and analysis

The following parameters are used in the calculations: €, = ¢ = 11.4 appropri-
ate for gallium arsenide (GaAs) at wavelength A ~ 1.5um and ¢, = 1.0 in air.
1521 plane waves in the Fourier expansion are used to calculate PBGs for the
E(H)—polarization. First, the PBG structures of the prototype square lattices just
with square cylinders are calculated, as shown in Figure 2.2(a), fixed the filling frac-
tion f = 0.217. The solid (dashed ) curves correspond to the E(H )—polarization.Hereafter,
we always adopt these line styles in the same manner to plot the photonic band struc-
tures except for the special statement.made. It is¢learly seen that there are two large
PBGs (solid curves ) for the E-poldrization = w, =.0:3(27¢/a) and wyo = 0.5(27¢/a);
however, no PBG is survival for the H-polarization. Thus, the complete PBG is now
absent in the prototype PC. In contrast, when'a-circular GaAs rod is introduced into
each unit cell, the calculated band struetures are demonstrated in Figure 2.2(b). It
is evident that a complete PBG now is generated, as indicated by the gray region.
The parameters are f = 0.3, § = 0.7, and s = 0. This PBG becomes a complete
one when Eg and Hg are overlapped with each other, where E; ( H;) denotes the
band gap appearing between the ith and (i+ 1)th bands for the E(H)—polarization.
Notably, introducing an extra circular rod into each unit cell substantially lowers
the band frequencies and generates new bands for the E—polarization. These re-
sults can be interpreted by considering the effects of scattering and interference of
light waves to be significantly modified and enhanced when introducing the extra
scatterer into each unit cell[12, 17, 13]. For the H-polarization bands, the introduc-
tion of the extra scatterer should lead to the lowering of the frequency of the higher

index bands but small modification of the profile of the lower index bands.
The effects of the filling fraction f on the dispersion spectrum are revealed by
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the plot of the dependence of the Aw/w, as a function of f for different §’s :
6 = 0.7,0.75 and 0.8, fixed s = 0, as depictedd in Figure 2.3. ¢, = ¢ = 11.4
and €, = 1.0 are chosen. From f = (1 + 73?/4)(l/a)? and given f as well as /3, one
can easily evaluate [/a. Notably, the Aw/w, is taken the largest of all the complete
PBGs at a given f and specified (5. In the calculations, only the first ten-bands are
considered for both £F— and H— polarizations. Apparently, all of the curves exhibit
a Gaussian-like broad bump with a right-wing; the nonzero Aw/w, spans only a
finite range, f = [0.2,0.6]. As 3 is increased, the peak position in curve is shifted
toward larger f regime, while the right-wing falls rapidly. The largest peak value
of Aw/w, is 0.0649, corresponding to f=10.29 and § = 0.7 (solid curve). As [ is
altered, this peak value and the profile of Aw/wg.are changed gradually; for instance,
(Aw/wy)mas are 0.0649, 0.063 and 0.0589, at 1= 0.29,0.33,0.32 and 3 = 0.7,0.75,
0.8, respectively. The dependence of (Ak/wy) on f is also calculated at other values
of (: the corresponding curves exhibit-significantly deformation. The decline trend
of the right-wing is quite fast and its extension is remarkably shortened as [ is
increased. This broad bump profile manifests the large freedom in the choice of the
structural parameters, which provide the benefit of the facilitated construction of

the TPCs with a large allowance of tolerance.

The influences of the shift s of the dielectric circular rod on the PBGs is now
investigated. The sample is the same as that in Figure 2.2(b), except that s is
changed. Figure 2.4 depicts the calculated band structures for two values of s
— (a) s = 0.1a, (b) s = 0.25a. The other parameters are f = 0.3, § = 0.7,
€, = € = 11.4 and ¢, = 1.0, at fixed v = 0°. The shift of the inserted circular
rod leads to lower the symmetry of structures and lift the degeneracy at the high
symmetric points in the FBZ, therefore, the complete PBG can be produced. Figure

2.4 demonstrates the existence of a complete PBG with w, = 0.77805(27¢/a) and
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Aw = 0.0509(27c/a), which covers the overlapping region of the Ey and H; bands.
When s is increased to 0.25a, the complete gap remains, but the midgap is slightly
changed: w, = 0.78795(27¢/a); however, the gap width is reduced substantially to
Aw = 0.0311(27¢/a), as shown in Figure 4(b). The increase of s significantly shifts
the top of the Ey band upwards, but the bottom of the H; band almost remains

unchanged, consequently, the gap is narrowed remarkably.

We now study the influences of the the direction of the displacement of the
inserted dielectric circular rod on Aw/w,. The following parameters are chosen:
f =0.3, 3 =0.7; the other parameters are as those in Figure 2.4. The variations
of Aw/w, with s are shown in Figure 2.5 for three different shifting directions of
v = 0°,25° and 45°. Notably, for a given 7, the varying region of s is limited, i.e.,
only from zero to a certain value at which the outermost edge of the internal dielectric
circular rod just touches the outermost edge-of-the square dielectric cylinder at the
lattice or the boundary of the unit cell of the lattice. All the curves in Figure 2.5
exhibit a plateau profile at around Aw/w, = 0.07 at the beginning of curves, and
then decline monotonically to zero at a certain s, depending on 7. Subsequently,
the curves, except for the solid one with v = 0°, oscillate with s, as shown in Figure
2.5. Importantly, these plateaus in curves have only a small positive slope near the
beginning. This plateau spans a finite region of about s = [0,0.1]a, thus, it can

greatly relax the tolerance in the fabrication of TPCs.

The convergence of the calculated results with the increase of the number of
plane-waves in the expansion must be confirmed with the robustness and reliability

of the obtained results.

The variations of Aw/w, of the complete band gap as a function of the number
N of the plane-waves in the expansion are depicted in Figure 2.6. The following

parameters are used: f = 0.3, § = 0.7, s = 0.1a and v = 0°. Clearly, the curve
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tends a saturation value of about 0.068 as N increases. The relative error de-
fined by [(Aw/w,)(at N=2500) — (Aw/w,)(at N=1521)]/0.5[(Aw/w,)(at N=2500) +
(Aw/w,) ((at N=1521)]is 0.016. In the calculation herein, N = 1521 is used. There-
fore, these results are reliable.

To confirm the existence of the plateau, we study the (Aw/w,) — s depen-
dence for several NN, are displayed in Figure 2.7. The relative errors defined by
[(Aw/wy)(at N=3249)—(Aw/w,)(at N=1521)]/0.5[(Aw/w,)(at N=3249)+(Aw/w,)(at N=1521)]
are 0.023, 0.0221, 0.0217, 0.0219, 0.0239 and 0.0243 for s = 0.0, 0.02, 0.04, 0.06, 0.08
and 0.1, respectively. This implies that the existence of the plateau is believable.

An additional plot in Figure 2.8 provides more information on the TPCs. The
PBG map as the relative shift s of the inserted rod is presented. The parameters
are chosen as : f = 0.3, § = 07 and 7= 0°. Only the first ten-bands are involved
in this map for both F— and H-polarizations. Notably, all the gap widths for
the E—polarization gradually shrink-as-s increases. The E; and E; band gaps are
in the range s = [0,0.5]a, while the gap width of the E; band is quite small and
almost unobservable. The gaps of the Fy and Ey bands span a short region of s
less than 0.4a. For the H—polarization modes, the gap region for the Hy and Hg
bands covers only a narrow range of s and the gap width is narrower than that in
the E—polarization case. Only one complete PBG appears between H; and Fy, and
is marked by the black area in Figure 2.8. It starts with near s=0 and ends at about
0.31a. The complete PBG is centered near wa/2mc=0.775 with Aw/w, = 0.0646

when s = 0.

3.4 Discussions and summary

The tunable PCs containing a movable dielectric circular rod in each unit cell are

proposed. Such TPCs can be fabricated by separately building two 2D PCs, one
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PC consists of dielectric circular rods located at internal of a square lattice, and the
other PC consists of dielectric square cylinders located at four corners of a square
lattice with the identical lattice constant, a. They are then combined into a final
interpenetrating structure. Properly adjusting the position of the dielectric circular
rod in the unit cell enables the tunable complete PBG generated from the composite
structure to be opened and closed. Additionally, when the relative shift s of the
circular rod is under 0.1a, the ratio of the gap-width to the midgap almost remains
unchanged or varies a little. This property provides the large benefit of relaxing the
fabrication tolerance of the TPCs. The TPCs can be easily fabricated and operated
in the micro-wave region because a_dis‘in the érder of microwave wavelengths —
several mm or cm.

In summary, the properties of the proposed TPCs are systematically investigated.
When the filling fraction f and the ratio of the diameter of the dielectric circular
rod to the side-length of the dielectric square-eylinder, 5 = d/I, are suitably chosen,
a range of relative shift of the circular rod, exists in which the gapwidth-midgap
ratio Aw/w, is insensitive to changes of s, regardless of the direction of s. Such
insensitivity provides large advantage for practical fabrication of TPC, allowing
large tolerance. The proposed TPCs is anticipated to be encouraged in applications
to new microwave devices. Its acoustic counterpart [10] can also be created and used
as tunable acoustic crystals.
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Figure 3.1: Schematic diagram of proposed tunable photonic crystals. The square
dielectric cylinders with a side-length of [ and dielectric ¢, are placed in air with
€, = 1.0 at the four corners of a 2D square lattice with a lattice constant, a, in the
xy—plane. Another circular dielectric rod with € = ¢, and diameter d is inserted into
each unit cell, forming composite lattices. We denote 3 = d/I for convenience. This
dielectric circular rod is movable. We assume that there is a shift s of the inserted
circular rod with respect to the center of the unit cell, that is s = s(xsiny+y cos~y),
where 7 is the span angle of the displacement vector with respect to the y—axis.
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Frequency(wa/2mc)

Figure 3.2: Photonic band structures for two structures : (a) the prototype structure
without the inserted circular rod and (b) a TPC with a movable dielectric circular
rod in internal of the unit cell. The relevant parameters are chosen as: ¢, = ¢ = 11.4,
appropriate for GaAs material; ¢, = 1.0 in air. (a) f = 0.217, d/l = 0 and (b)
f=03,d/l =0.7, s = 0. The solid and dashed curves correspond to the F— and
H —polarizations, respectively. The shadow area marks the complete gap region.
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Figure 3.3: Variations of Aw/w, with the filling fraction f for different values of 5
0.7(solid line), 0.75(dashed line) and 0.8(dotted line). The other parameters are the
same as those in Figure 2.2(b).
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Figure 3.4: Same as Figure 2.2(b) except for different values of s: (a) s = 0.1a and
(b) s = 0.25a. The other parameters are f = 0.3, § = 0.7, and v = 0°.
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Figure 3.5: Variations of Aw/w, with the relative shift s for several shifting direc-

tions: v = 0° ( solid line); v = 25° ( dotted line), and v = 0.45° ( dashed line). The
other parameters are the same as those in Figure 2.2(b).
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Figure 3.6: Variations of Aw/w, of the complete band gap versus the number N of
the plane-waves in the expansion. The parameters are f = 0.3, § = 0.7, s = 0.1a
and vy = 0°.

45



0.08
| —=g===:2% .
esssogezzzzgzzzzEIIIEIIIIIIC
0.06 B
s e |
3 I |
X 0.04 - |
3
< [ -
[ (] N=3249 i
[ ° N=2401 i
0.02 |- o N=1521 |
i A N=841 |
r o N=225 |
[ * N=121 i
0.00

0.00 0.05 0.10
s(a)

Figure 3.7: Variations of Aw/w, of the complete band gap with s as the number
N of the plane-waves in the expansion increases for v = 0° with f = 0.3, § = 0.7.
The numbers of plane-waves in the expansions for the H-polarization and the E-
polarization are the same.
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Figure 3.8: Gap map of the proposed TPC, as the relative shift svaries for both £—
and H —polarizations. The parameters are f = 0.3, = 0.7, and v = 0°. The black
area marks the regions of the complete band gaps.
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Chapter 4

Variation of group velocity and
complete bandgaps in
two-dimensional photonic crystals
with drilling:-holes into the
dielectric rods

A paper published in the Physica B!
Wen-Long Liu and Tzong-Jer Yang

Two-dimensional square lattices of square cross-section dielectric rods in air, de-
signed with an air hole drilled into each square rod, are studied theoretically. By
adjusting the shift of the hole position in the square rod in each unit cell, the dielec-
tric distribution of the square rod will be modified. A sizable complete band gap
occurs for certain structural parameters and exhibits very flat photonic bands near
such gap edge, which resulting in a sharp peak of density of states. In addition,
the zero or small group velocities are observed in a broad region of k-space. This

structure can be fabricated with materials widely used today and opens a facinating

1Physica B 368, 151 (2005).
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area for applications in optoelectric devices.
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4.1 Introduction

First introduced by Yablonovitch [1] and John [2] in 1987, photonic crystals (PCs)
are now a facinating issue of research. PCs are of artificial materials having the pe-
riodical modulation of dielectric structures in space and there exist photonic band
gaps (PBGs) in which the propagation of electromagnetic (EM) waves in any prop-
agating direction and polarization state is inhibited. In the PBG the spontaneous
emission from the atoms or molecules can be rigorously forbidden [1]. The absence
of normal modes of EM waves along certain directions provides the potential for
application to various optical devices, suehtas resonant antennas [3], microscopic

lasers [4], and optical switches[5]; eta:

The wider a PBG is, the-greater.the forbidden region of the frequency spectrum.
Thus, the search for photonicerystals that possess wider band gaps is an important
issue. Various methods for creating large PBGs or in increasing an existing PBG by
altering the dielectric constant e(r) within a unit cell, have been proposed. These
methods include rotating the lattices [7], using anisotropic dielectric materials [8],
rotating the noncircular rods [9, 10, 11], and modifying the permittivity distribution
in a unit cell [12, 17, 13]. In such cases, an EM wave can be decomposed into the E-
and H-polarization modes for two-dimensional (2D) photonic crystal. A complete
PBG exists for two-dimensional PBG crystal only when band gaps in both E- and
H-polarization modes are present and they overlap each other. That is a PBG
independent of the polarization of the EM waves. Many crystals generating band
gaps for some light polarizations, but these may not overlap to produce a complete
PBG [14]. It was reported that the symmetry reduction of atom configuration
by introducing a two-point basis set in simple 2D lattice can remarkably increase

complete PBG [15], quite similar to the 3D case for diamond structure [16]. In
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contrast, symmetry breaking in a square lattice by changing the shape of square air
rods to rectangular [17] or cylinder [18] reduces the width of complete PBGs.

In this work we study a type of square photonic lattice in two dimensions, which
is formed by an air hole drilled into each square dielectric rod in air. We shift the air
hole to modify dielectric distribution without changing the shape and orientation of
dielectric scatterers. A sizable complete PBG occurs for certain structural parame-
ters and exhibits very flat photonic bands near such gap edge, which resulting in a
sharp peak of density of states. In addition, the zero or small group velocities are
observed in a broad region of k-space. These small group velocities of the eigen-
mode cause a long optical path in this'struetute,[19]. It brings about the optical

gain enhancement or low-threshold lasing (20, 21].

4.2 Theory

Figure 3.1 displays the schematic diagram of our proposed 2D photonic band struc-
ture. The square dielectric rods with a side-length of | and dielectric ¢, are placed
in air background with ¢, = 1.0 at the center of a 2D square lattice with a lattice
constant, a, in the xy—plane. Another circular rod with ¢, = 1.0 and diameter d is
drilled into square rod in each unit cell. We denote 3 = d/I for convenience.

The electromagnetic (EM) fields with the F/H-polarization ( in-pane mag-

netic/electric fields ) in the 2D PC are governed by the Maxwell’s equations:

{v « Tlr)w} H(r) i—;H(r), (4.1)

where H(r) denotes the magnetic fields; w the angular frequency; ¢ the speed of light
in vacuum, and €(r) the periodically modulated dielectric function. The magnetic
fields and the dielectric function can be expanded in terms of Fourier series as
2
H(I‘) = Z Z hG’)\é)\ei(k+G).r, (42)
G A=l
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e(r) =) €(G)e'ST, (4.3)

G
where k is the Bloch wave vector within the first Brillouin zone, and G the 2D recip-

rocal lattice vector. The polarization unit vectors €, with A = 1,2 are perpendicular
to (k+G), and hg ) is the Fourier expansion component of the magnetic fields.
The Fourier coefficient ¢(G) is given by

«(G) = ! / e(r)e ¢ T dr, (4.4)
Acell cell

where the integration is performed over the unit cell. Here, the filling factor f,
which is the ratio of the areas A, of dielectric scatterers in a unit cell to the area

Aeen of a unit cell of square lattice, 1S

= ) .

o
For the proposed PC, €(G) is.evaluated by

fea (= e, for G =0,
€((G) = (4.6)
(s —)S(G) for G #0,

We assume that there is a shift s of the drilled circular rod with respect to the center
of the unit cell, that is s = s(xsiny + y cos+y), where v is the span angle of the
displacement vector with respect to the y—axis. The structural factor S(G) is then

given by

where




where Ji(x) is the Bessel function of the first kind, and G = |G].

The band structures are then determined from solving the following equation
> Ak+G.k+G)H(G) =w’H(G) (4.10)
Gl

with

IK||K'|e }(K — K’) for the E-polarization state,
AK,K') = (4.11)
K K¢ }(K-K') forthe H-polarization state,
where K =k+G, K =k+G’. ¢ (K 1K) = ¢ (G — G') can be computed from

solving the following equation:

Y e H(G= GG =6") = dcc- (4.12)
G/l

4.3 Results and discussion

All our calculations have been performed for ¢, = ¢ = 13.6 appropriate for gallium
arsenide (GaAs), and ¢, = 1.0 in air. GaAs has been used because this material
exhibits facinating optical properties in the infrared region and is representative of
many semiconductors. The design of this structure has many degrees of freedom
which can be used to optimize the size of the gap, depending on the materials used
in the fabrication. Although GaAs is used in this example, they can be replaced
by other material with a different index contrast. 1521 plane waves in the Fourier
expansion are used to calculate PBGs for the E(H)-polarization. First, the PBG
structures and the corresponding density of states (DOS) of an air hole drilled
into the center of each square dielectric rod in each unit cell are calculated, as

shown in Figure 3.2(a). The parameters in this figure are chosen as a/l=1.63,
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$=0.35 (corresponding to filling factor f = 0.34017) and s = 0. The solid (dotted )
curves correspond to the F(H)-polarization. It is shown that there are four PBGs
for the E-polarization and two PBGs for the H-polarization. However, overlap of
PBG for E- and H-polarization does not exist. Along the left-hand and right-hand
margin of this figure the density of photonic states in arbitrary units were plotted.
The eigenfrequencies for 6400 uniformly spaced values of k vectors inside the first
Brillouin zone were calulated. In Figure 3.2(b), the calculated result for s = 0.11a
and v = 45° is illustrated. The other parameters are the same as those quoted
in Figure 3.2(a). A complete PBG with a gapwidth of Aw = 0.0415(27¢/a), and
a central value, w, = 0.66335(2mé/a), which is in the region of overlap of Eg and
Hg band gaps, is found. FE;.and| H} denotes the gaps that appear between the ith
and (i + 1)th bands, for the corresponding polarization. In the spectral range of
this complete bandgap neither. E-polarized nor H-polarized photonic states exist
(DOS=0). Notably, modifying the pesition-of circular hole in the square dielectric
rod in air seems to lower the frequency of the ninth E-polarization band and the
fifth and sixth H-polarization bands at the M (M) point of the Brillouin zone that
depicted in Figure 3.2(a), then the overlap of Eg and Hg band gaps occurs. This
result can be understood to be due to the fact that reducing the symmetry of the
dielectric distribution in the square rod. Apparently, the band structure in Figure
3.2(b) also exhibits very gently sloped bands near the complete PBG’s edge. Thus,
a sharp peak of density of states can be observed due to the flat band. Since the
group velocity v, of the modes given by the slope of the dispersion curves, dw/0k, is
expected to be zero or very small and correspondingly, the optical path is expected
to be long. Comparison between Figure 3.2(a) and 3.2(b) shows that the zero or
small group velocities are observed in a broad region of k-space as the increase of

s. The fifth, sixth H-polarization bands and the ninth E-polarization band become
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more restricted to a narow spectral region, thus, light waves become more localized
as s increased. There are k points between the M—U direction at which the sixth
H-polarization and the eighth E-polarization bands are almost flat. That is to say,
group velocities of both mode approach to zero. Generally, the zero group velocity
appears near photonic band edge only for E- or H-polarization. In this case, the

zero group velocity is allowed for both F- and H-polarization simultaneously.

An additional plot in Figure 3.3 provides more information on PCs. The PBG
map as the relative shift s of the drilled rod for three different directions of (a)
v = 0° (b) v = 22.5° and (c) v = 45°. _The other parameters are as those in
Figure 3.2(a). Only the first ten-hands are involved in this map for both E- and
H-polarizations. Notably, for a given 7, the varying region of s is limited, i.e., only
from zero to a certain value at which the eutermost edge of the internal air circular
rod just touches the outermost edge of the squaredielectric rod at the lattice. The
gap map for E-polarization shown in Figure 3:3(a) exhibits six large gaps. We note
that Ey and E3 gaps occur over the range of the shift s within [0,0.199]a. Moreover,
a remarkable gaps Hg occur in the same range for H-polarization. Some other
gaps only lie in the intermediate range of s. There are three complete PBG’s in
this configuration due to the overlap of Eg with Hs; E; with Hs, and Eg with Hg
gaps. Comparison among Figure 3.3(a), 3.3(b) and 3.3(c) shows that gap widths
strongly depend on the shift of the air hole position. The most important result is
the appearance of the overlap of Fg with Hg gap, which occurs for s in the region
[0.015,0.18]a for v = 0°, [0.016, 0.215]a for v = 22.5° and [0.014, 0.253]a for v = 45°,
in turn. One would see this complete PBG to get larger width as the 7 is increased.
This complete PBG is always bounded at the top by the upper boundary of the Fg
gap. The lower boundary switches from Hg to Eg gap both in Figure 3.3(a) and
3.3(b). Furthermore, its bottom side shown in Figure 3.3(c) is wholly bounded by
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the lower boundary of the Eg gap. In fact, since £ and H polarized modes are
decoupled and are governed by different equations for a right choice of s and ~.

We have also examined the case of an air hole drilled at the center of each square
dielectric rod in air. Figure 3.4 shows the PBG map as a function of the parameter
0 for filling factor f=0.34017. Several gaps in both E- and H-polarization appear
and disappear as ( is varied. We should note here that one H-polarization and four
E-polarization gaps exhibit near § = 0 when air hole is absent. One large complete
PBG occurs due to the overlap of Hg and Eg gaps. This complete PBG starts
near § = 0 and ends at about 0.34. The gap size Aw reaches the maximum value
0.0427(27c/a) at about § = 0.19awhen the'same total filling factor f = 0.34017 and
a/l =1.69.

4.4 Conclusion

This study proposes two-dimensional square lattices of square cross-section dielectric
rods in air, designed with an air hole drilled into each square rod. By adjusting the
shift of the hole position in the square rod in each unit cell, the dielectric distribution
of the square rod will be modified. The calculations show that the photonic crystal
structure proposed here has a sizable complete band gap and exhibits very gently
sloped bands near such gap edge, which resulting in a sharp peak of density of state.
In addition, the zero or small group velocities are observed in a broad region of k-
space. This property can be utilized for optical gain enhancement or low-threshold

lasing.
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Figure 4.1: (a) Schematic diagram of proposed photonic crystals. The square di-
electric rods with a side-length of [ and dielectric ¢, are placed in air background
with €, = 1.0 at the center of a 2D square lattice with a lattice constant, a, in the
xy—plane. Another circular rod with ¢, = 1.0 and diameter d is drilled into square
rod in each unit cell. We denote 5 = d/I for convenience. We assume that there is
a shift s of the drilled circular rod with respect to the center of the unit cell, that is
s = s(xsiny + y cosy), where v is the span angle of the displacement vector with
respect to the y—axis. (b) the Brillouin zone with symmetry points, I', X, M, U,
M’ and X'
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Figure 4.2: Photonic band structures and the corresponding density of states (DOS)
for two structures. The parameters in this figure are chosen as a/l=1.63, $=0.35
(corresponding to filling factor f = 0.34017). The solid and dotted curves correspond
to the E- and H-polarizations, respectively. The shadow area marks the complete
gap region.
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Figure 4.3: The PBG map as the the relative shift s of the drilled rod for three
different directions(y = 0°,22.5°, and 45°). The other parameters are as those
quoted in Figure 4.2(a). The black area denotes the complete band gaps.

64



Frequency(wa/27¢)

o H—polarization

7“.‘B‘ot‘h”‘ B <b>

0.0 L1
0.00 0.05 0.10

s(a)

(b) v = 22.5°

0.15

0.20

Figure 4.3: (con’t)

65



Frequency(wa/27¢)

0.2 1 E—polarization
| H—polarization < >
C
- Esotn
0.0 1 1 1 \O‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘

0.00 0.05 0.10 0.15 0.20 0.25

s(a)

(b) v =45°

Figure 4.3: (con’t)

66




Frequency(wa/27mc)

| i..i E—polarization
"R H—polarization
" M Both ]

0.0 02 04 06 0.8
6

Figure 4.4: The PBG map as a function of the parameter 3 for filling factor
f=0.34017, s = 0.

67



68



Chapter 5

Photonic band gaps in a
two-dimensional photonic crystal
with veins

This study proposes the double-hybrid-rods structure of two-dimensional (2D) pho-
tonic crystals of a square ldttice: A square. dielectric rod connected with slender
rectangular dielectric veins on the middle of each side of dielectric square rod. Some
specific modes are found to be sensitive to certain structural parameters, such as the
length, width the dielectric constant and the shift of the position of the veins, etc.,
and giving rise to a new complete PBG at lower index bands. These results could
be understood by the use of band structure point of view. In particular, by carefully
adjusting the structural parameters, the band structure of the photonic crystal can

be substantially engineered to achieve large bandgaps.

5.1 Introduction

Since the pioneering works of Yablonovitch and John in 1987 [1, 2], photonic crystals
(PCs) are now a fascinating issue of research. PCs are of artificial materials having

the periodical modulation of dielectric structures in space and there exist photonic
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band gaps (PBGs) in which the propagation of electromagnetic (EM) waves in any
propagating direction and polarization state is inhibited. A PBG can lead to various
peculiar physical phenomena [3] and providing potential applications [4, 5, 6]. The
wider a PBG is, the greater the forbidden region of the frequency spectrum. Thus,
the search for photonic crystals that possess wider band gaps is an important issue.
Various methods for creating large PBGs or in increasing an existing PBG by altering
the dielectric constant e(r) within a unit cell, have been proposed. These methods
include rotating the lattices [7], using anisotropic dielectric materials [8], rotating
the noncircular rods [9, 10, 11], and modifying the permittivity distribution in a unit
cell [12, 13]. Some research groups haye sucecessfully fabricated PCs by holographic
lithography [14] that can yield two= and three-dimensional (3D) complete PBGs [15,
16]. Several PC structures consisting of rods; spheres-or cubes linked by dielectric
veins as a completely closed 2D or. 3D structures would give a large complete band
gap [17, 18, 19]. In addition, the search for.3D.PBG structures based on a non-close-
packed face-centered cubic lattice of spherical shells connected by thin cylindrical

tubes was proposed [20].

This study proposes the double-hybrid-rods structure of 2D PCs by placing slen-
der rectangular dielectric veins on the middle of each side of square rod in each unit
cell. There exists one complete photonic band gap (PBG) in higher frequency band
of the prototype square lattices with only square rods [21]. When extending the
dielectric veins, some specific modes are found to be sensitive to certain structural
parameters, such as the length, the dielectric constant and the shift of the position
of the veins, etc. Then, this PBG disappears and for a proper value of vein length
another complete PBG at lower index bands opens. The variation of bands near
the PBG’s boundaries can be interpreted by considering the effects of Mie scatter-

ing and interference of EM waves to be significantly modified and enhanced when
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introducing the extra dielectric veins into each unit cell. In this study, we want to
understand these effects by the use of band structure point of view. When the length
of veins increases, the wavelength of resonance mode would increase too. That is
the resonance frequency would decrease. Generally, the EM-field distributions bear
strong resemblances to electronic orbitals and, like their electronic counterparts,
could lead to bonding and anti-bonding interactions between neighboring rods [22].
The relevance (the strength) of the interactions among scattering rods is attributed
to the field distribution characteristics. In terms of band structure terminology, the
band center of the band reflects the resonance frequency and the band width reflects
the relevance (the strength) of thé interactions or the EM-field distribution charac-
teristics among scattering rods. [In this-PC, the structural parameters (the length,
width, dielectric constant and the shift-of the position of the veins) are properly
chosen so that the photonic*band structure can be optimized. Thus, it will prove

useful in designing PBGs of a variety.of photonic crystals.

5.2 Theory

Figure 5.1 displays the schematic diagram of the proposed PC structure. The square
dielectric rod with a side-length of [ and dielectric ¢, is placed in air background
with ¢, = 1.0 at the center of a 2D square lattice with a lattice constant, a, in
the xy—plane. Another dielectric vein with € = €,, length h and width d is placed
in each unit cell on the middle of each side of the dielectric square rod, forming
composite lattices. The term § is the crevice between the edges of square rod and
vein. The shift length s is thus given by s = § + h.

In our calculations, the band structures of the PCs were calculated using the
plane-wave expansion method, described in detail in the literature [23, 24, 25]. The

electromagnetic (EM) fields with the F'/H —polarization ( in-pane magnetic/electric
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fields ) in the 2D PC are governed by Maxwell’s equations

u)2

{v X )VX}H( ) = SH(), (5.1)

where H(r) denotes the magnetic fields; w the angular frequency; ¢ the speed of light
in vacuum, and €(r) the periodically modulated dielectric function. The magnetic

fields and the dielectric function can be expanded in terms of Fourier series as

2
= Z Z hGAé)\ei(kJ’_G)'r, (52)

G =1

e(r) = Ze(G)eiG'r, (5.3)

G
where k is the Bloch wave vectorfin thefirst Brillotin zone (FBZ), and G is the

2D reciprocal lattice vector. The-polarization unit vectors €, with A = 1,2 are per-
pendicular to (k+G) and hg_, is the Hourier expansion component of the magnetic

fields. The Fourier coefficient £(G) is*given by

«(G) = ! / e(r)e "G T dr, (5.4)
ACS” cell

where the integration is performed over the unit cell. For structures with a unit cell

including veins centered at u;, the corresponding dielectric constant is expressed as

)=+ (e =) Zpsq o) ZZP( (r—u;,—R), (5.5)

where P, and P, describe the probability of the square rod and veins, respectively,

and R denotes the translation vector of the Bravais lattice, and
1 forr € Ry,
Py, (r) = (5.6)
0 forr ¢ Ry,
1 forr—u; € Rq(f),
0 forr—u; ¢ R,
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where R, and Rq(f) are the region in the zy-plane defined by the cross-section of
the square rod and the ith vein, respectively. The Fourier transforms of e~!(r) are

given by

HG) = ¢ a0+ (" — ¢ )S1G) + (6 — 1) D SSUG) e Cm (5.8)

The structural factor S;(G) and Séi)(G) are then given by

510~ (1) sine (%) e (%) o9

with Sinc(z) = sinz/z, and

. (@)y(2) (i) (i)
SP(G) = (lwaiy > Sine (szlm ) Sinc (%) : (5.10)

where I} and l@(f) are the side-lengths 6f the ith vein in the z— and y—axes respec-

tively.
The band structures are then determined from solving the following equation
> Ak+ G k+G)H(G) =w’H(G) (5.11)
Gl

with

|K||K'|e '(K — K’) for the E-polarization state,
AK,K') = (5.12)
K -Ke'(K—-K') for the H-polarization state,

where K=k + G, K' =k + G'. ¢ (K—-K') =¢!(G — G’) can be computed by

solving the following equation

Eil(G — G”)E(G” — G/) = deqg’. (513)
>

G//
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5.3 Results and discussion

The following parameters were used in the calculations: ¢, = 11.4 appropriate
for gallium arsenide (GaAs) at wavelength A ~ 1.5um and ¢ = 1.0 in air. The
Fourier expansion with 625 plane waves was used to calculate the PBGs for the
E/H-polarization (in-pane magnetic/electric fields) and the convergence accuracy
for the several lowest photonic bands was better than 1%. This study explored the
influence of the slender dielectric veins on the 2D complete PBG. As an example,
three cases of the dielectric constant of veins €, were considered, with €, = 6, 11.4
and 16. First, the PBG structures of, the prototype square lattices with only square
rods were calculated, as shown i Fig. 5.2(a), the side-length of square rod fixed
at [ = 0.57a. The solid (dotted )eurves correspond to the E(H)-polarization. The
diagram clearly shows that a completéPBGexists ‘at higher index bands resulting
from the superposition of the E8 — 9'and H6'— 7 gaps. If the square rods are
linked with dielectric veins at each middle side of the square rods, the influences of
the length h of the dielectric vein on the PBGs is now investigated. The calculated
band structures for three choices of the dielectric constant of veins are demonstrated
in Fig. 5.2(b) as ¢, = 6, (¢) ¢, = 11.4 and (d) €, = 16, respectively. The dielectric
vein has a width of d = 0.08a, and a crevice of =0 between the edges of vein and

square rod.

We find that the higher complete PBG shown in Fig. 5.2(a) disappears in Figs.
5.2(b)—(d) and another complete PBG at lower index bands opens while the length
of veins continues to increase. For €,=6 the overlap of the H2 — 3 band gap and the
far wider £3—4 band gaps creates a complete PBG, with the band edges lying at the
M symmetry point. On increasing the vein length substantially lowers the frequency

of M symmetry point of H2 band. The same happens when ¢, increases from 6 to
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16. Consequently, the M point is lower than the I' point somewhere for the case of
€, = 11.4 and ¢, = 16, and then this complete PBG is bounded on the lower side by
the T' point of H2 band . On the other hand, the top edge of this complete PBG
remains unchanged and lies at M point of H3 band. When it reaches ¢,=16 and
h = 0.19a, the I" point of £4 band is below than the M point of H3 band; thus the
complete PBG is bounded on the upper side by the I point of £4 band. Comparison
with the variation of complete PBG boundaries of Figs. 5.2 (b)—(d) shows that the
lower boundary first shifts downwards, then remains unmodified. While the upper
boundary first remains unchanged, then moves downwards. It is clearly seen that the
largest complete PBG occurs at#i-="0.215a, namely, the veins are fully connected
at the lattice unit cell boundary for the case € = 6. However the complete PBG
reaches its maximum width with midgap frequency w, = 0.42385(27¢/a) and the
gap size Aw = 0.0557(27c/a) at. the intérmediate value of h = 0.19a for the case
€,=11.4, and then remains unchanged.where i = 0.215a. Here c is the light speed
in vacuum. In particular, for €, = 16 increasing h from 0.155a to 0.19a, we find
that both the lower and upper boundaries shift towards lower frequencies. The
lower boundary of this complete PBG (i.e., the lower band edge of the H-polarized
gap) moves a bit faster than the upper boundary (i.e., the upper band edge of the
E-polarized gap); therefore, this complete PBG becomes wider. If h continues to

increase and reaches 0.215a, the complete PBG shrinks again.

What is the the key factor that leads to lower band edges at certain symme-
try points and hence create a gap when the square dielectric rod is connected with
slender dielectric veins? In order to clarify this issue, we calculate the spatial en-
ergy distribution for the corresponding states. Figures 5.3 (a)—(c) plot the spatial
distributions of the electric field intensity |E?| within a unit cell of the PC at the
M point of (a) H2 band (or denoted by H*M)) for h=0, (b) H4 band (H*M))
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for h = 0, and (c¢) H2 band (H*M) for ¢, = 6 and h = 0.215a. Here we mark
the states in accordance with their ordering in frequency for the prophase, namely,
the initial mode H™M) denotes the nth band for the H-polarization mode at M
point. When h = 0 it is apparent that the spatial |E?| distributions of the H (M)
mode always concentrates inside the square rod, exhibiting a single parallelogram-
like spot; on the contrary, the high index mode (H®)) possesses four spots close
to the edges of square rod. While the square dielectric rod is connected with slender
dielectric veins, the |E?| distribution of H**) mode in the unit cell will spread out
from square rod and concentrate inside the dielectric veins, then leads to the shift
of frequencies of H*M) mode; consequently, the H*) mode is below the H®M)
and HGM) modes. Figure 5.3(c) plots the spatial [E?| distribution of H**) mode
(corresponding to the M point of-H 2 band shown in the right panel of Fig. 5.2(b)).
The energy distributions for othersmodes of certain symmetry points at band edges
are also investigated, and the same pheénemenon is observed. It is worth pointing
out that field is more spreading out from the square rod owing to extending the vein

length.

Figures 5.3(d) and 5.3(e) plot the band center (BC) and band width (BW) versus
vein length for H2 band with €,=6, 11.4, 16 and E4 band with €,=6; the other
parameters are as those in Fig. 5.2. The curves of BC for H2 band in Fig. 5.3(d)
exhibit a plateau profile with slightly sloping at the beginning of curves, and then
decline rapidly to their minimum values with 0.372, 0.356 and 0.354(27c/a) in turn
at a certain h, depending on €,. The BC of H2 band falls off and so the complete
PBG occurs (owing to H*M) < HEM) (or H3M))) Tt can be understood here
that the resonance frequency would decrease. Clearly, it is also seen that the curves
exhibit another plateau profile at the end of curves (owing to H*M) < HED)

except for the solid one with €, = 6. In the same figure, the BC curves of F4 band

76



for €, = 16 is shown. Notably, the BC curve of £4 band decline monotonically to
its minimum value around 0.456(27¢/a) when dielectric veins are fully connected
(h = 0.215a). The curves of BW for H2 band of ¢,=6, 11.4 and 16 versus h are
shown in Fig. 5.3(e). Apparently, all of the BW curves of H2 band exhibit a similar
profile to the corresponding BC curves. However, they have same value of BW in
the flat region at around 0.135(27wc/a) and 0.08(27c/a),respectively. Its existence
shows that the BW is insensitive to the extension of dielectric veins. However, the
curves of BW with a sharp slant because the H®**) mode (i.e., the mode of top
band edge of H2 band lying at M point) is sensitive to the extension of dielectric
veins. Besides, this means that field energy,is more spreading out from the square
rod. The BW curves of E4.band (€, = 16) is‘also shown in this figure. Here, we
have mostly paid attention-to ‘the curve of F4 band for which the complete PBG
is bounded when A > 0.155a. It is clearly seen that the BW curve mount up soon
from 0.046 to 0.076(27c/a) in thiswegion (A > 0.155a) because the £ mode (i.e.,
the mode of bottom band edge of F4 band lying at I' point) downshifts to the lower

frequency, and thus the field energy is more spreading out from the square rod.

The complete PBG is interesting issue for the extra veins formed on rods. An
additional plot in Fig. 5.4 presents the PBG map as a function of length of veins, h.
The parameters were chosen as: ¢, = 11.4, [ = 0.57a, d = 0.08a, 6=0. Three cases of
the dielectric constant of veins were demonstrated in (a) €, = 6.0, (b) €, = 11.4 and
(c) €, = 16.0, respectively. The gap map for E-polarization showing in Fig. 5.4(a)
exhibits four large gaps. Significantly, the higher gap gradually shrinks as h increase;
nevertheless, three other gaps remain almost unchanged. For H-polarization, two
remarkable gaps in this structure. The first gap varies significantly as the vein length
h increases toward 0.19a, while the higher frequency gap width remains almost

unchanged. As ¢, increases, in Fig. 5.4(b) and (c) the higher frequency gaps for E-
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and H-polarized mode shrink. Figures 5.4(a), (b) and (c) each shows two complete
PBGs. The complete PBGs for three different dielectric constants of veins found in
the higer index bands are in the range h = [0, 0.155]a for €¢,=6; h = [0,0.079]a for
€,=11.4, and h = [0,0.059]a for €¢,=16. Notably, the complete PBG spans a wider
range of h for €,=6, while the lower complete PBG results from the overlap between
the first gap for H-polarized mode and the second gap for E-polarized mode. The
figure shows that the lower complete PBGs are opened near: h > 0.19qa for €,=6.0;
h > 0.155a for €,=11.4, and h > 0.145a for €,=16.0. In these cases the complete
PBG spans a wider range of h for €,=16 than for ¢, = 6, while the larger size of the
complete PBG occurs for €,=11.4 as shown in Fig, 5.4(b). When the vein lengthens
up to about h = 0.155a, the bottem edge band of gap drops dramatically, but the
top edge band remains almost unmodified, and consequently overlaps with the gap
formed by E-polarization. Hence; the.complete PBG increases in size rapidly and
reaches its maximum value at h = 0.19a;-and then remains almost unaltered until
the vein is completely closed. Notably, for extending the length of veins substantially
shrinks the complete PBG located at higher index bands, and for an appropriate
vein length generates the new complete PBG at lower index bands. These results
were dominated at higher index bands by E-polarization and at lower index bands

by H-polarization through extending veins.

To get better insight into superior features of the hybrid structure, we investigate
in detail the edge states of the complete PBGs. Here we will address the lower
complete PBG that form the structure described above. In our case slender dielectric
veins play a crucial role in opening the lower complete PBG, therefore we have
performed two kind of evolutions. First, we have calculated the positions of edge
states of the lower complete PBG for a fixed value of dielectric constant of veins. We

examined the PBG structures with only square rods (i.e., h=0) to start with and

78



then varied the value of vein length, h. Second, we have investigated the positions
of edge states of the lower complete PBG for three different h values as functions
of the index of refraction of the slender dielectric veins. Figure 5.5(a) plots the
evolution of edge states of the lower complete PBG as functions of the vein length,
h, for €, = €, = 11.4. The other parameters are as those quoted in Fig. 5.2(c) (i.e.,
0 =0,1 =057, d =0.08a). According to the calculation of the photonic band
structures, the edge states of the lower complete PBG are HZM) fFGM) - py(4M)
and H®D) modes. While, the H®M and H®M) modes are degenerate in the region
given by h = [0,0.215]a. The frequencies of these two modes and H*') remain
almost unmodified at around 0.452 and 0.396(27c/a) in turn. The frequencies of
H®M) decrease significantly-for increasingh. As the H*M) mode is below H M)
and H®M) modes for h > 0:155a, the lower complete PBG is opened, and its width
increases quite sharply. In the region'h > 0.155a, the complete PBG is bounded
on the lower side by the H*M" houndary, and on its upper side by the HZM or
HGM) houndary. Furthermore, the vein length increases up to about h = 0.19a, the
H®M) mode is again lower than H®) mode. The complete PBG is thus bounded
on the lower side by the H®T) boundary, and on its upper side by the H&M)
(HGM) boundary in the region h = [0.19,0.215]a. Notably, this complete PBG
tends to increase in size dramatically in the region h = [0.155,0.19]a, and reaches
its maximum value at h = 0.19a. Then, the width of this complete PBG remain

unmodified.

Figure 5.5(b) shows the positions of edge states of the complete PBGs as func-
tions of the vein refractive index (in the range of 2.0 < n < 4.5) for three different
length of veins (h = 0.155a, 0.19a, and 0.215a). Apparently, the appearance of the
complete PBGs exhibits a triangle-like outline for A = 0.155a (indicated by the dark

gray region) and two parallelogram-like outlines for A = 0.19a (shaded by vertical
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solid lines) and h = 0.215a (indicated by light gray region). It is seen that the curves
of HZM (or H3M) and H?) modes are flat in the region given by n = [2.0,4.5].
However, The H*M  EAD) and B modes decrease monotonously for increasing
n. For h = 0.155a the bottom edge state is always H*™M) as n = [3.43,4.4], while
the top edge states of this complete PBG are HZM) (or HGM) and E®) modes as
n = [3.43,4.03] and n = [4.03,4.4] in turn. The maximum width of this gap occurs
at n = 4.03. For h = 0.19a the complete PBG opens for n = 2.4 and closes above
n = 4.5. When n is increased from 2.4, the top edge states are HZM) (or HGM)
modes, while the bottom edge state is H*™) mode. As n > 3.33 the H*M) mode
is below the H®) mode, thus the complete PBG is bounded on the lower side by
the H?1) mode. Meanwhile, theiE ¢ mode is below the HZM (HGM) mode
for n > 3.65, and hence the complete PBGis bounded on the upper side by the
E©) mode. For h = 0.215a, thevedge statés aré the same as those for h = 0.19a.
However, both left- and right-hand ends of the parallelogram-like outline are shifted
toward lower n regime. In this case the complete PBG starts near n = 2.13 and
ends at about n = 4.29. Notably, in the range of n = [3.33,3.65] for h = 0.19a and
n = [2.78,3.43] for h = 0.215a the complete PBGs remain unchanged or vary a little.
Moreover, there exists the equal maximum size of the complete PBG in the overlap
region of n = [3.33, 3.43] for h = 0.19a and 0.215a. This broad profile with large gap
size manifests the large freedom in the choice of the structural parameters, which
provide the benefit of the facilitated construction of the PCs with a large allowance

of tolerance.

The effect of the veins width while veins are completely connected (i.e., h =
hmaz = 0.215a) is presented here. Figure 5.6 shows the PBG map as a function
of the vein width, d, for (a) ¢, = 6.0, (b) ¢, = 11.4 and (c¢) ¢, = 16.0. The

other parameters are: ¢, = 11.4, [ = 0.57a, 6 = 0 and d = 0.08a. In these cases,
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the 2D photonic structure exhibits two complete PBGs, the first at higher index
bands around d = 0 and the second in the intermediate range of d. Comparing
Fig. 5.6 (a), (b) and (c), both complete PBGs appear to span a shorter region
of d as ¢, increases. Furthermore, in each case, the complete PBG closing at the
higher index bands and opening again at lower index bands are almost at the same
time. The complete PBGs exist when the vein width is in the region d = [0, 0.04]a
and [0.01,0.4]a for ¢, = 6.0; d = [0,0.02]a and [0.01,0.155]a for €, = 11.4, and
d =[0,0.015]a and [0.02,0.098]a for €, = 16. In each case, the complete PBGs reach
their maximum value at d = 0.11a for €, = 6.0; 0.08a for €, = 11.4, and 0.05a for
€, = 16.0, respectively. As ¢, inereases, the position of the largest gap, (Aw)maz,

shifts towards the smaller d region.

The influence of the shift s outward.of the veins on dispersion spectrum is
demonstrated by the plot of the dependence of Aw/w, (the gap width to midgap
frequency ratio) as a function of s for different h values (0.17a, 0.18a and 0.2a)
as shown in Fig. 5.7 for (a) ¢, = 6.0, (b) ¢, = 11.4 and (c) ¢, = 16.0, respec-
tively. The other parameters were also chosen as ¢, = 114, ¢, = 1, [ = 0.57a
and d = 0.08a. The shift length s, is given as the sum of § and h. The varying
region of s is limited, i.e., only from s = h to s = (a — 1)/2. All Aw/w, versus s
curves appear to exhibit an asymmetric profile in a finite s range. Moreover, the
right-hand end of the curve in a larger ¢, extends to a wider region of s. For each
value of s, (Aw/wg)n=0.20> (Aw/wy)h=018a>>(Aw/wy)n=0.17 When €,=6; by contrast,
(Aw/wg)n=017a> (Aw/wg)n=0.180>(Aw/wy)p=0.2, When €,=16. In the lower-¢,, the
vein length of h = 0.2a widens the PBG while shifting the vein towards the lattice
unit cell boundary (see Fig. 5.7(a)). All the curves in Fig. 5.7(b) exhibit a plateau
profile at the right-hand end of the curves spanning a finite region of s in which

Aw/wy is insensitive to changes of s. However, the right-hand end of the curves in
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Fig. 5.7(c) declines gradually. These results can be understood to be related to the
effective dielectric constant of veins in the region of s. In fact, the complete PBGs
can be optimized for a right choice of A and s for a given ¢,, since the complete

PBGs are always governed by the vein dielectric constant and the vein length.

5.4 Conclusion

We have investigated in detail the photonic band structures of 2D square lattices
of a square dielectric rod connected with slender rectangular dielectric veins on the
middle of each side of dielectric square rod. Properly adjusting the length, width,
dielectric constant and the shift of#he position ef veins in the unit cell enables
the large complete PBG generated from thel composite structure to be achieved.
Additionally, the large freedom i the cheice of the-structural parameters which
provide the benefit of the facilitated construction of the PCs with a large allowance
of tolerance. The PCs can be easily fabricated and operated in the micro-wave
region because a is in the order of microwave wavelengths — several mm or cm, and

hence it is anticipated to be encouraged in applications to new microwave devices.
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Figure 5.1: Schematic diagram of the proposed photonic crystals. The square di-
electric rod with a side-length [ and dielectric ¢, is placed in air with ¢, = 1.0 at the
center of a 2D square lattice with a lattice constant, a, in the zy—plane. Another
dielectric veins with € = ¢, and length h and width d is inserted in each unit cell
on the middle of each side of dielectric square rod, forming composite lattices. The
shift length s of the inserted vein is defined with respect to the edge of the square
rod, where 9 is the crevice between the edges of the square rod and the vein, thus s
is denoted by s = & + h.
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0.0 0.0

Figure 5.2: Photonic band structures for two structures: the prototype structure
without the inserted veins for fixing the side-length of square rod at [ = 0.57a,
€, = 11.4, appropriate for GaAs material; ¢, = 1.0 in air as shown in (a) and three
choices of the dielectric constant of veins are demonstrated in (b) €, = 6.0, (c)
€, = 11.4, (d) €, = 16.0. The other parameters are the same as those in (a) except
for parameters of veins: §=0, d = 0.08a and h: 0.155a (left panel), 0.19a (middle
panel), 0.215a (right panel). The solid and dotted curves correspond to the E- and
H-polarizations, respectively. The gray area marks the complete gap region.
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Figure 5.3: The spatial distributions of the electric field intensity |E?| at the M
point of (a) H2 band (or denoted by H*M)) for h=0, (b) H4 band (H®*M) for
h =0, and (c) H2 band (H*M)) for ¢, = 6 and h = 0.215a. Here we mark the
states in accordance with their ordering in frequency for the prophase, namely, the
initial mode H™M denotes the nth band for the H-polarization mode at M point.
The band center (d) and the band width (e) as functions of h for H2 band with
€,=6 (solid line), 11.4 (dotted lisle), 16 (daghed line) and £4 band with €,=16.
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Figure 5.4: Gap map of the proposed PC, as the vein length h varies for both F- and
H-polarizations for (a) ¢, = 6.0, (b) ¢, = 11.4 and (c) €, = 16.0, respectively. The
parameters are €, = 11.4, [ = 0.57a, =0 and d = 0.08a. The black area denotes
the complete band gaps.
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Figure 5.5: The positions of the edge states of the lower complete PBG (CPBG):
(a) the evolution of the edge states of the lower complete PBG as a function of vein
length, h, for €, = ¢, = 11.4. The other parameters are: ¢, = 11.4, [ = 0.57a, 6=0
and d = 0.08a. The dark region indicates the complete PBG. H™) (E™) denote
the nth band for the H(F)-polarization modes at I' point. (b) the evolution of the
edge states of the lower complete PBG as functions of the vein refractive index for
three different vein lengths (h = 0.155a, 0.19a, and 0.215a). The vein refractive
index of n=2.45, 3.376 and 4.0 (i.e., €,=6.0, 11.4 and 16.0) are indicated by the
vertical dotted lines. The dashed-dotted lines represent the curves of H>M (H3)
or E*!' modes for different h values
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Figure 5.6: Gap map of the proposed PC, as the vein width d varies for both E—
and H —polarizations for (a) €, = 6.0, (b) ¢, = 11.4 and (c) €, = 16.0, respectively.
The parameters are €, = 11.4, [ = 0.57a, 6 = 0 and h = A4, = 0.215a.
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Figure 5.7: Variations of Aw/w, with the shift length s for different vein lengths h:
0.17a, 0.18a and 0.2a for (a) €, = 6.0, (b) €, = 11.4 and (c) ¢, = 16.0. The other
parameters are ¢, = 11.4, [ = 0.57a and d = 0.08a.
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Chapter 6

Conclusion

Photonic crystals are now a fascinating issue of research, due to their potential for
applications in optics technology. In_this work, we have engineering the band gap
of a 2D PC with some hybrid-rods structures.| Band gap structures are calculated
with the use of plane-wave expansionmethod.

In Chapter 3 we studied the. PC system.in'the presence of a movable dielectric
circular rod in each unit cell. Such TPCs can be fabricated by separately building
two 2D PCs, one PC consists of dielectric circular rods located at internal of a
square lattice, and the other PC consists of dielectric square cylinders located at
four corners of a square lattice with the identical lattice constant, a. They are then
combined into a final interpenetrating structure. Properly adjusting the position
of the dielectric circular rod in the unit cell enables the tunable complete PBG
generated from the composite structure to be opened and closed. Additionally,
when the relative shift s of the circular rod is under 0.1a, the ratio of the gap-width
to the midgap almost remains unchanged or varies a little. This property provides
the large benefit of relaxing the fabrication tolerance of the TPCs. The TPCs can
be easily fabricated and operated in the micro-wave region because a is in the order
of microwave wavelengths — several mm or cm.

In Chapter 4 we propose two-dimensional square lattices of square cross-section
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dielectric rods in air, designed with an air hole drilled into each square rod. By
adjusting the shift of the hole position in the square rod in each unit cell, the
dielectric distribution of the square rod will be modified. The calculations show
that the photonic crystal structure proposed here has a sizable complete band gap
and exhibits very gently sloped bands near such gap edge, which resulting in a
sharp peak of density of state. In addition, the zero or small group velocities are
observed in a broad region of k-space. This property can be utilized for optical gain
enhancement or low-threshold lasing.

In Chapter 5 we have investigated in detail the photonic band structures of
2D square lattices of a square dielegtric rod c¢onnected with slender rectangular
dielectric veins on the middle of each side éf clielectrie square rod. Properly adjusting
the length, width, position and dieleetric constant of veins in the unit cell enables
the tunable complete PBG generated from ' the composite structure to be opened
and closed. Moreover, it is not necessary.forweins to be fully connected to yield
the greatest improvement in complete gap size depending on a relative dielectric
constant of veins in comparison with those of square rods. These mechanisms may

open up a new way for designing photonic band gaps in 2D photonic crystals.
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