漸變式光纖元件之模擬

研究生: 潘世凱

指導教授:賴暎杰 博士

國立交通大學光電工程研究所

摘要

在本論文中我們想要瞭解漸變式光纖元件的特性並利用 3D Full-Vectorial Beam Propagation Method 來模擬光在元件中傳播 情形。漸變式光纖元件是一種新型、可應用在光纖通訊中作為 WDM 的 OADM 元件,優點是全光纖、低損耗、結構簡單、不需額外光學元件、 花費低、驅動功率小。

Simulation of Adiabatic Fiber Devices

Student : Pan Shih-Kai

Advisor : Dr. Y. C. Lai

Institute of Electro-optical Engineering College of Electrical Engineering and Computer Science National Chiao-Tung University

ABSTRACT

In the thesis we want to know the characteristics of an adiabatic fiber device. 3D full-vectorial beam propagation method is used to simulate lights propagating in the device. Adiabatic fiber device is a new kind of devices which can be applied as an optial add-drop multiplexer (OADM) of wavelength division multiplexing (WDM) in fiber communications. The advantages of the device are all-fiber, low loss, simple structure without extra components, low cost, low driving power.

誌 謝

在光電所的這段時間裡,我成長了許多。感謝賴暎杰教授的耐心 指導,提供我許多論文研究上的建議。感謝謝文峰教授、陳智弘教授 與黃凱風教授撥冗擔任口試委員與指教。很高興有幸能與學長姐、同 學和學弟妹在課業上的討論與生活上的相伴,尤其感謝鍾承知、田名 峰和劉亞琪諸多的幫忙。

中文摘要	i
英文摘要	·····ii
誌謝	·····iii
目錄	·····iv
圖表目錄	·····vi
第一章 简介	1
1.1 研究動機	1
1.2 研究背景	1
第二章 有限差分光束傳播法之理論研究	6
2.1 Scalar Paraxial BPM	6
2.2 Simple BPM	7
2.3 Full-Vectorial BPM	9
2.4 Semi-Vectorial BPM	12
2.5 Finite Difference Scheme	13
2.6 ADI Method	16
2.7 Initial Condition	18
2.8 Transparent Boundary Condition	19
2.9 Perfectly Matched Layer Boundary Condition	21
2.10 Wide-Angle BPM	23
2.11 Bidirectional BPM	25
2.12 Adaptive Window	27
第三章 模擬結果	28
3.1 2D simple BPM	28
3.2 3D SV-BPM	33
3.3 3D FV-BPM	38

第四章	結論與展望	43
第五章	參考文獻	47

圖表目錄

表 3.1	2D simple BPM Parameter	
表 3.2	3D SV-BPM Parameter	33
表 3.3	3D FV-BPM Parameter	

3.0 T	Taper Structure ($sqz = 0.5$, $overlap = 1$)28
3.1(a)	Nz = 10000, overlap = 0, $sqz = 0$, ratio = 029
(b)	Nz = 10000, overlap = 0, sqz = 0.3, ratio = 029
(c)	Nz = 10000, overlap = 0, sqz = 0.6, ratio = 029
(d)	Nz = 10000, overlap = 0, $sqz = 0.8$, ratio = 029
(e)	Nz = 10000, overlap = 0, $sqz = 0.9$, ratio = 029
(f)	Nz = 20000, overlap = 0, $sqz = 0.8$, ratio = 029
(g)	Nz = 17750, overlap = 0, $sqz = 0.9$, ratio = 030
(h)	Nz = 18000, overlap = 0, $sqz = 0.9$, ratio = 030
(i)	Nz = 18100, overlap = 0, $sqz = 0.9$, ratio = 030
(j)	Nz = 18500, overlap = 0, $sqz = 0.9$, ratio = 031
(k)	Nz = 19000, overlap = 0, $sqz = 0.9$, ratio = 031
(1)	Nz = 19500, overlap = 0, $sqz = 0.9$, ratio = 031
(m)	Nz = 20000, overlap = 0, $sqz = 0.9$, ratio = 031
(n)	Nz = 21000, overlap = 0, sqz = 0.9, ratio = 031
(0)	Nz = 20000, overlap = 0.5, $sqz = 0.9$, ratio = 031
(p)	Nz = 18100, overlap = 0, $sqz = 0.9$, ratio = 0.5 32
(q)	Nz = 18100, overlap = 0, sqz = 0.9, ratio = 0.5232
	 3.0 T 3.1(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q)

圖 3.2(a)	sqz = 0, $overlap = 0$, $Nz = 10000$	·34
(b)	sqz = 0.5, overlap = 0, Nz = 10000	•34

(c)	sqz = 0.5, overlap = 2.5, Nz = 10000	·35
(d)	sqz = 0.5, overlap = 2.5, Nz = 19500	·35
(e)	sqz = 0.5, overlap = 2.5, Nz = 20000	·36
(f)	sqz = 0.5, overlap = 2.5, Nz = 22000	•36
(g)	sqz = 0.9, overlap = 5, Nz = 20000	•37
(h)	sqz = 0.9, overlap = 5, Nz = 40000	·37

圖 3.3(a)	sqz = 0, $overlap = 0$, $Nz = 5000$
(b)	sqz = 0, $overlap = 5$, $Nz = 5000$ 40
(c)	sqz = 0.5, $overlap = 0$, $Nz = 5000$ 41
(d)	sqz = 0.6, $overlap = 0$, $Nz = 5000$ 42

