Contents

Acknowledgements	I
Chinese Abstract	II
English Abstract	III
Contents	IV
List of Figures	VII
List of Tables	XI
List of Acronyms	XII

Chapter 1

Introduction

Chapter 1	
Introduction	
1.1 Review of Wavelength Tunable Laser using FPLD	1
1.2 Review of Fiber Bragg Grating Sensor Network	2
1.2.1 Multiplexing techniques	3
1.2.1 Fiber laser scheme.	4
1.3 Organization of the Dissertation	6
References	7

Chapter 2

Wavelength Tunable Laser using FPLD

2.1 Linear-Cavity Fiber Laser Scheme	
2.1.1 Experimental Setup	12
2.1.2 Results and Discussion	13
2.2 Fiber Ring Laser Scheme	15
2.2.1 Experimental Setup	15
2.2.2 Results and Discussion	16

2.3 External-Injection Scheme	18
2.3.1 Experimental Setup	
2.3.2 Results and Discussion	20
References	22

Chapter 3

Fiber-laser-based Sensor Network with Self-Healing Function

3.1 Self-Healing Ring Architecture	36
3.1.1 Architecture Description	36
3.1.2 Experimental Results and Discussion	
3.2 Hybrid Star-Ring Architecture	41
3.2.1 Architecture Description	42
3.2.2 Experimental Results and Discussion	43
3.3 Star-Bus-Ring Architecture	46
3.3.1 Architecture Description	47
3.3.2 Experimental Results and Discussion	48
References	50
Comment.	

Chapter 4

Large-Scale Sensor Network using Fiber laser Scheme

4.1	Intensity and Wavelength Division Multiplexing Sensor System	66
	4.1.1 Principles	67
	4.1.2 Experimental Results and Discussion	.67
4.2	Linear-Cavity Fiber Raman Laser	70
	4.2.1 Experimental Setup	.71
	4.2.2 Experimental Results and Discussion	.72
4.3	Fiber Ring Laser with EDWA and SOA	74
	4.3.1 Experimental Setup	.75
	4.3.2 Experimental Results and Discussion	.76

References	

Chapter 5

Conclusions

5.1 Summary for the Dissertation	89
5.1.1 Wavelength Tunable Laser using FPLD	89
5.1.2 Fiber-laser-based Sensor Network with Self-Healing Function	90
5.1.3 Large-Scale Sensor Network using Fiber laser Scheme	92
5.2 Suggestions for Future Work	93

List of Figures

Fig. 2.1 Experimental setup of the wavelength-tunable mode-locked linear-cavity fiber laser.

Fig. 2.2 Output spectrum of the gain-switched FPLD.

Fig. 2.3 Output spectra and pulse waveforms of the fiber laser when the central wavelength of the tunable bandpass filter is at different FPLD lasing modes. (a) Output spectra. (b) Pulse waveforms.

Fig. 2.4 The SMSR and pulsewidth as a function of wavelengths.

Fig. 2.5 Experimental setup of the wavelength-tunable mode-locked fiber ring laser.

Fig. 2.6 Schematic diagram of the EDWA.

Fig. 2.7 Fiber laser (a) without VODL and (b) with VODL.

Fig. 2.8 Output spectrum of gain-switched FPLD.

Fig. 2.9 (a) Output spectra and (b) pulse waveforms of the fiber ring laser when the central wavelength of the tunable filter coincides with one of the wavelength of the FPLD lasing modes.

Fig. 2.10 The SMSR and pulsewidth as a function of wavelengths.

Fig. 2.11 Schematic diagram of the proposed system for the generation of wavelength-tunable optical pulses.

Fig. 2.12 Output spectra of the backward ASE and the ASE through the tunable filter.

Fig. 2.13 Output spectra obtain at different points in Fig.1, (a) at point "A", (b) at point "B", (c) at point "C".

Fig. 2.14 Output spectrum of the system when the FPLD is without ASE injection.

Fig. 2.15 (a) Output spectra and (b) pulse waveforms of the system when the central wavelength of the tunable filter is tuned to one of the wavelength of the FPLD lasing modes.

Fig. 2.16 The SMSR and pulsewidth as a function of wavelengths.

Fig. 3.1 Schematic diagram of the proposed self-healing sensor network based on a linear-cavity fiber laser scheme.

Fig. 3.2 Schematic situation (indicated by the dashed line) when Sensing Region 2 is selected by using a TDM signal.

Fig. 3.3 Schematic situation when a breakpoint occurs and the fiber link fails in Sensing Region N-1.

Fig. 3.4 Experimental setup for the proposed FBG sensor network. We examine three sub-networks in the self-healing ring architecture. Each sub-network includes ten sensing FBGs $_{1}$ (i=1, 2, ...,10).

Fig. 3.5 Output spectra of the linear-cavity fiber laser at different lasing wavelengths.

Fig. 3.6 When the link fails in Region 2, the FBGs $_{m}$ (m=6, 7, 8, 9, 10) loses their sensing information whenever Sensing Region 2 is selected by using a TDM signal.

Fig. 3.7 State (b) of the 1x2 switch can be modified to reconfigure the fiber link for FBGs $_{m}$ (m=6, 7, 8, 9, 10) that lost the sensing information. The self-healing ring architecture can regenerate the sensing signals from FBGs $_{m}$ (m=6, 7, 8, 9, 10).

Fig. 3.8 Schematic diagram of a hybrid star-ring architecture for FBG sensor system.

Fig. 3.9 Schematic diagram of a remove node.

Fig. 3.10 Schematic diagram (indicated by the dashed line) when the optical switches states are normally set.

Fig. 3.11 Schematic diagram when three breakpoints occur.

(a) When the SW in the Bar state.

(b) When the SW in the cross state.

Fig. 3.12 Experimental setup for the proposed FBG sensor network. We examine the case of two breakpoints occur.

Fig. 3.13 When the link fails, the FBGs Sm (m=4, 5, 8, 9, 10) loses their sensing information.

Fig. 3.14 The OS can be modified to reconfigure the fiber link for FBGs Sm (m=4, 5, 8, 9, 10) that lost the sensing information.

Fig. 3.15 Schematic diagram of star-bus-ring architecture for FBG sensors.

Fig. 3.16 Schematic diagram of remote node.

Fig. 3.17 Schematic situation (indicated by dashed line)

(a) when Sensing Region 1 is selected using TDM signal.

(b) when Sensing Region 2 is selected using TDM signal.

Fig. 3.18 Schematic diagram when breakpoints occur in bus subnet.

Fig. 3.19 Schematic diagram when breakpoints occur in star subnet.

Fig. 3.20 Experimental setup for proposed FBG sensor network.

Fig. 3.21 Schematic diagram when Sensing Region 7 is selected.

Fig. 3.22 Output spectra of linear-cavity fiber laser at different lasing wavelengths.

Fig. 3.23 Schematic diagram when Sensing Region 8 is selected.

Fig. 3.24 When link fails, sensing information FBG m (m=6, 7, 8, 9, and 10) is lost.

Fig. 3.25 The RN7 is modified to reconfigure the fiber link for FBG m (m=6, 7, 8, 9, and 10) that lost sensing information.

Fig. 4.1 Schematic diagram of the tunable multiport fiber laser for IWDM sensor systems.

Fig. 4.2 Output spectra at 30% lasing port within the working range from 1528nm to 1572nm.

Fig. 4.3 Laser stability regarding output power variation and wavelength drift at 1533.19 nm.

Fig. 4.4 Output powers of the 30%, 20% and 10% lasing ports at different lasing wavelengths.

Fig. 4.5 Output spectra of the 30%, 20% and 10% lasing ports at different lasing wavelengths.

Fig. 4.6 Output signals from the PD under the scanning Fabry-Perot filter operation.

Fig. 4.7 Schematic diagram of the long-distance FBG sensor system.

Fig. 4.8 (a) Schematic diagram of the Raman gain measurement. (b) Raman gain at different signal wavelength.

Fig. 4.9 Output spectra of the linear-cavity fiber laser with 330-mW pump power (a) when no strain was applied (b) when strain was applied to FBG2.

Fig. 4.10 The strain measurement of the FBG2.

Fig. 4.11 Variation of peak power as a function time for each lasing line.

Fig. 4.12 The relationship between the peak power and the Raman pump

power.

Fig. 4.13 Schematic diagram of the long-distance FBG sensor system.

Fig. 4.14 Optical gain spectra of the EDWA, SOA, and hybrid amplifier when the input power is set at -25 dBm.

Fig. 4.15 ASE spectra of the EDWA and hybrid amplifier.

Fig. 4.16 Output spectra of the fiber ring laser with (a) hybrid amplifier and (b) SOA.

Fig. 4.17 Wavelength shifts of FBG3 when different strains were imposed on it.

Fig. 4.18 Variation of peak power as a function time for each lasing wavelength.

Table 3.1 Brief comparisons of the proposed sensor networks.

List of Acronyms

ASE	Amplified spontaneous emission
С	Coupler
СО	Center office
EDFA	Erbium doped fiber amplifier
EDWA	Erbium doped waveguide amplifier
FBG	Fiber Bragg grating
FPLD	Fabry-Perot laser diode
MVS	Minimum variance shift
NZDSF	Non-zero dispersion shifted fiber
IWDM	Intensity and wavelength division multiplexing
OCDMA	Optical code-division multiple access
OS	1x2 optical switch
OSA	Optical spectrum analyzer
OTDM	Optical time division multiplexed
PC	Polarization controller
PBC	Polarization beam combiner
SNR	Signal-to-noise ratio
SMF	Single mode fiber
SOA	Semiconductor optical amplifier
SW	2x2 optical switch
TF	Tunable filter
WDM	Wavelength division multiplexed
VODL	Variable optical delay line