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a b s t r a c t

The conventional fault-tolerant sensor systems would fail when outputs from incorporated sensors are
either noisy or drifting. This paper presents a novel real-time fault compensation method, which uses
state estimation and compensation techniques, that the sensor system can perform robust measurements
even when outputs from every incorporated sensor are noisy and drifting. In a simulation example, the
proposed design can detect and correct the sensor errors (dc bias and drift) in real time. For the dc bias, the
minimum detectable offset value is 0.1, which is the same as the standard deviation of the sensor noise.
The compensated sensor output is biased at values smaller than 0.02. For the sensor drifts, the proposed
Real-time fault identification
Real-time fault compensation
Parity equations
C

method can compensate drifts for the change rate of drifts up to four times faster than that of the signal
to be measured. The highest change rate of drifts, that can be compensated by this method, is determined
by the standard deviation of the sensor noise.
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. Introduction

Sensor drifts can be found in lots of sensor applications
nd they may constitute a significant source of sensor unre-
iability. Currently, two main approaches are used to suppress
he sensor drift. One approach identifies the source of the
rift and then compensate for it [1,2]. Because many differ-
nt underlying mechanisms can be responsible for generating
he drift, this approach often requires the detail knowledge of
ensor physics. The other approach assumes that the behavior of
he drift can be characterized by several patterns. These patterns

ay be unknown beforehand but can be obtained by off-line learn-
ng. When these drifting sensors work online, their measurements
re differentiated between correct signals and drifts by comparing
hem to the previously defined patterns [3–5]. Since this approach
ighly replies on the statistics of the sensor behavior, there exists a
hance of false alarms.

A fault-tolerant sensor system is to maintain system output
ccuracy when some of its incorporated sensing elements are erro-
eous. This is achieved by finding the erroneous ones in a sensor

rray (“fault identification”) and using the correct ones for the
utput of the sensor system. Many fault-tolerant sensor systems
re constructed based on the “geometric redundancy” and “par-
ty space approach,” [6–8] which involve having identical sensors
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eployed at various locations so as to establish algebraic equations
or each sensor output. These equations are referred to as either
parity equations” or “voting equations.” The erroneous sensor unit
an be identified by these equations and excluded from the sensor
rray.

For the parity space approach, the fault identification is often
hrough the use of voting equations [6,7]. If the outputs from the
ncorporated sensor elements are contaminated by noise, with
his approach, one must set up threshold values and an observa-
ion period. When outputs from the voting equations exceed the
hreshold value at the end of an observation period, a faulty sen-
or recognition is declared. The need for an observation period
ndicates that this approach cannot be done in real time [3]. As
consequence, the real-time “fault correction” method, which can
e utilized for the sensor “self-repairing,” is not attainable.

The fault-tolerant sensor system, achieved by the sensor redun-
ancy design, can not be used when its incorporated sensors
xperience sensor drifts. This is because, due to the nature of the
rift, every sensor in an sensor array can be drifting from time to
ime. And, after the first few drifting sensors are identified and
xcluded from the sensor array, the remaining sensor system would
ose its redundancy to identify other drifting sensors. Therefore, in
he case of sensor drifts, the fault-tolerant sensor system need to
ave the capability of self-repairing to maintain its redundancy and

hus output accuracy.

This paper proposes a novel real-time fault compensation
ethod for fault-tolerant sensor systems. Due to its capability of

he real-time fault correction, this method can be applied to com-
ensate sensor drifts. Different from other solutions to the sensor

http://www.sciencedirect.com/science/journal/09244247
mailto:tsunglin@mail.nctu.edu.tw
mailto:witnessyo930@msn.com
dx.doi.org/10.1016/j.sna.2008.05.026
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rift, this method does not require the detail knowledge of sen-
or physics nor rely on the statistics of sensor behaviors. Thus, it
an be useful to lots of sensor applications. This paper is organized
s follows: the basics of the fault-tolerant theory are introduced
n Section 2. The proposed real-time fault compensation method
s shown in Section 3. The development of this algorithm starts
rom the real-time compensation for the dc offsets existed in sen-
or outputs, and then to tackle on the sensor drifts. The stability
nalysis and compensation accuracy of the proposed method are
hown in Section 4. A case study and several simulation results are
hown in Section 5. Section 6 discusses several unique features of
his method. Section 7 concludes this paper.

. Fault-tolerant theory

“Geometric redundancy” design is one of the most important
esigns for fault-tolerant systems. It starts with the following equa-
ion:

= Hx + e (1)

here, m is a vector of sensor measurements from a sensor array,
is the state vector to be measured by sensors, and e is the sensor
oise with zero mean. Let H∗ be the transpose conjugate of H and
be the null space of H∗, then

∗H = 0 (2)

The “parity equations,” which are widely applied to fault-
olerant systems, are defined as follows:

arity Equations�V∗m (3)

herefore, if all the sensors function properly, the outputs of par-
ty equations are expected to be zero mean. As shown in previous
esearches [6–8], a system with n states normally needs n + 1 sen-
ors to form one parity equation, n + 2 sensors to form two parity
quations, and so forth. Furthermore, by assuming that only one
aulty sensor exists in a sensor array, the system needs at least two
arity equations to locate it.

These two parity equations are often converted into n + 2 equa-
ions, each involving n + 1 sensor outputs. That is to say, one can
orm a (n + 2) × (n + 2) matrix with its diagonal terms equal to
eros but non-zero elsewhere. The newly formed equations are
eferred to as “voting equations” with an associated “voting matrix”
o distinguish them from the “parity equations.” Furthermore, since
he voting matrix is derived from two parity equations, its rank is
wo.

Voting Equations�Cvotingm = Cvoting

⎡
⎣ m1

...
mn+2

⎤
⎦

Cvoting =

⎡
⎢⎢⎣

0 c12 · · · c1,n+2
c21 0 · · · c2,n+2

...
...

cn+2,1 · · · cn+2,n+1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Cvot 1
Cvot 2

...
Cvot n+2

⎤
⎥⎥⎦

(4)

here, m1, . . . , mn+2 represent measurements from the n + 2 sen-
or, Cvot 1, . . . , Cvot n+2 are the row vectors of Cvoting. A faulty sensor
an be more easily identified from voting equations than from par-
ty equations. For example, if the output of the first voting equation

s zero but the rest are non-zeros, one can determine that sensor

1 is faulty.
When sensor measurements are contaminated by noise, the

bove fault-finding method can not be done in real time because,
t any time instant, none of the voting equation outputs is zero.

t
c
m
l
o
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esides, the above method can not be used in the system when
ncorporated sensors experience sensor drifts. It is because every
ensor in a sensor array can be drifting and thus the assumption of
nly one faulty sensor in a sensor array can hardly be satisfied.

. A novel real-time fault compensation method

Here, a novel real-time fault compensation method is proposed
or the case when outputs of incorporated sensors are contami-
ated by noise and signal drifts. This is done by formulating the
onventional fault-identification method into a real-time state esti-
ation and state compensation problem. The developments of this
ethod are proceeded by three steps: real-time dc offset identifica-

ion, real-time dc offset compensation, and real-time sensor drifts
ompensation.

.1. Real-time dc offset identification

To identify dc offsets in sensor outputs using state estimation
echniques, the dc offset of sensor j, dj in Eq. (5), is separated from
ensor measurements and modelled as a system state.

dc j = mj + dj , j = 1, . . . , n + 2 (5)

here, mdc j is the sensor output with dc offset and white noise
hile mj is the sensor output with white noise. When these offsets

re treated as system states, their “governing equations” can be
ritten as:

˙
j = 0, j = 1, . . . , n + 2 (6)

ince the above system is static, from a system observability view-
oint [9], it needs n + 2“output equations” to observe n + 2states.
he two parity equations, which were used to describe the relations
etween outputs of n + 2 sensors, can be processed to obtain two
utput equations for the estimation. These two equations can be
rbitrary chosen from two row vectors in the voting matrix, such
s Zp shown in Eq. (7).

Zp �
[

Cvot 1
Cvot 2

]⎡
⎣ d1

...
dn+2

⎤
⎦ =

[
Cvot 1
Cvot 2

]⎡
⎣ mdc 1 − m1

...
mdc n+2 − mn+2

⎤
⎦

=
[

Cvot 1
Cvot 2

]⎡
⎣ mdc 1

...
mdc n+2

⎤
⎦

Zaux �Cvotingdeidi =

⎡
⎣ Cvot 1d 0 0

0
. . . 0

0 0 Cvot n+2d

⎤
⎦d

=

⎡
⎣ v1

...
vn+2

⎤
⎦d = [ d1, . . . , dn+2 ]T

he remaining output equations should come from the assumption
hat only one faulty sensor existed in the sensor array; this leads to
he Zaux equations shown in Eq. (7). In that equation, ei is the unitary
ector, and vi is the fictitious noise required for the subsequent
xtended-Kalman-filter (EKF) signal processing.

With the system governing equations Eq. (6) and output equa-

ions Eq. (7), one can estimate these dc offsets in real time by
onstructing a state observer. Since the sensor noise is one of the
ajor concerns, plus the associated output equations Zaux are non-

inear, the EKF [10] is chosen to be the algorithm for the state
bserver.
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The EKF algorithms were developed for discrete-time systems.
hen adopting EKF for this estimation system, the estimation algo-

ithms are listed below:

P−(k + 1) = P(k)
L(k + 1) = P−(k + 1)HT(k + 1)(H(k + 1)P−(k + 1)HT(k + 1) + R(k + 1))−1

P(k + 1) = (I − L(k + 1)H(k + 1))P−(k + 1)
d̂(k + 1) = d̂(k) + L(k + 1)(z(k + 1) − h(d̂(k)))

z(k) = [ Zp(k) Zaux(k) ]
T
, H(k + 1) = ∂

∂d
h(d)

∣∣∣
d=d̂(k)

(8)

here, d̂ is the estimated value of d; L(k) is the observer gain at the

th sampling time; P(k) ≡ E[(d̂(k) − d(k))(d̂(k) − d(k))
T
] is the state

ovariance matrix at the k th sampling time; R is the noise covari-
nce matrix associated with output equations; h(·) is the output
quations (Eq. (7)) for sensor measurements.

Note that there are other sets of output equations that can imple-
ent the constraint of only one faulty sensor in a sensor array,

or example: the multiplication of any two offsets equals to zero
di × dj = 0, i �= j). Different set of output equations leads to differ-
nt convergence properties for state estimation. Our experiences
ndicate that, with other set of output equations, the resulting esti-

ation system is likely to be “locally observable” [11]. Besides, those
pproaches require an excess amount of output equations and that
ncreases numbers of local minimums in the state estimation. Thus,
he estimated state values are likely to be wrong. The formulation
f the Zaux equations is the key of the proposed real-time fault
ompensation method.

.2. Real-time dc offset compensation

Once the dc offset in each sensor output can be identified in
eal time, the offset compensation can be done by using various
eedback control techniques. In this paper, the “state feedback”
echnique [9] is chosen for simplicity.

˙
j = u, u = −�d̂j (9)

here � is the feedback gain.
Since the offset value is changed by the estimated offset values

n the compensation system, the output equation Eq. (7), which
s used in the fault-identification system, is no longer valid. And
ecause there is no way to directly “measure” the compensated
ystem in real time, the output values of output equations for the
ompensated system are obtained by the following two steps. (1)
he compensated offset values are processed to obtain compen-
ated sensor outputs, as the mcomp j shown in Eq. (10). And, the

comp j would replace mdc j in Eq. (7) to obtain new Zp equations.
2) The new Zaux equations remain the same as the ones shown in
q. (7) although they maybe incorrect in the compensation system.

comp j(t) = mj(t) + dj(t) = mj(t) + dj(o) − �

∫ t

0

d̂j(�) d�

= mdc j(t) − �

∫ t

0

d̂j(�) d� (10)

here, dj(o) is the offset value at initial time.
Since Zaux equations are incorrect in the compensation system,

he compensation system is no longer restricted to the constraint
f only one faulty sensor in a sensor array. In turn, the proposed
ompensation algorithm can process multiple erroneous sensors
roducing faulty outputs simultaneously.
.3. Real-time sensor drifts compensation

When the sensor errors are drifting, the previous proposed dc
ffset identification method would fail because the associated gov-
ators A 147 (2008) 623–632 625

rning equations Eq. (6) is incapable of describing time-varying
ignals. In that case, the estimation failure can be attributed to the
ystem modelling error. Since “fading memory” techniques and/or
daptive Kalman filter techniques [13,14] were developed to ensure
he state convergence in the presence of model error, these meth-
ds can be used to work with the previously proposed estimation
ethods and to correctly estimate/compensate sensor drifts. This

s done by adding the following algorithms into the standard EKF
lgorithms as shown in Eq. (8).

P−(k + 1) = �f(k)P(k)
...
M = H(k + 1)P(k)HT(k + 1)

N = E[(z(k + 1) − h(d̂(k)))(z(k + 1) − h(d̂(k)))
T
] − R

�f(k + 1) = max{1,trace[N]/trace[M]}
...

(11)

here, �f is the forgetting factor. Because these methods ensure the
tate convergence by eliminating the effect of older data from cur-
ent state estimation when they are no longer valid, the estimation
ccuracy of drifts is less than that of dc offsets.

. Stability analysis of the real-time fault compensation
ethod

The proposed real-time compensation method is essentially a
ask of stabilizing a nonlinear system using estimated state values.
ue to a slightly difference between output equations of the estima-

ion system and of compensation system, the “separation theorem”
15] can not be applied. Therefore, in this case, the stability analysis
s proceeded for the observability of the system, the stability of the
eal-time fault identification, and the stability of the real-time fault
ompensation.

.1. Observability of the system

In a dynamic system, the rank of the observability matrix and
ts associated singular values are indicators of a feasible observer
esign. Since the dc offset system is static, the observability matrix

s solely composed of the Jacobian matrix of output equations [11]
nd can be processed as follows:

rank(∇[ Zp Zaux1 ]T)

= rank

⎡
⎢⎢⎢⎢⎣

Cvot 1
Cvot 2

d1Cvot 1 + [ Cvot 1d 0 · · · 0 ]
...

dn+2Cvot n+2 + [ 0 · · · 0 Cvot n+2d ]

⎤
⎥⎥⎥⎥⎦

= rank

⎡
⎢⎢⎢⎢⎣

[
Cvot 1
Cvot 2

]
⎡
⎣ Cvot 1d 0 0

0
. . . 0

0 0 Cvot n+2d

⎤
⎦

⎤
⎥⎥⎥⎥⎦
= rank

⎢⎢⎢⎢⎣
Cvot 2⎡

⎣ Cvot 1m 0 0

0
. . . 0

0 0 Cvot n+2m

⎤
⎦

⎥⎥⎥⎥⎦ (12)
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he rank of the above matrix can be determined by examining the
atrix [Cvot 1Cvot 2]T in the upper half, and the diagonal matrix in the

ower half. The diagonal matrix is exactly the outcome of the voting
quations. Therefore, exactly one element along the diagonal terms
s zero. In turn, the diagonal matrix provides n + 1 independent row
ectors for the overall matrix. Furthermore, since Cvot 1 and Cvot 2 are
wo row vectors in a voting matrix, zero should not appear in the
ame column of these two vectors, and thus it provides one more
ndependent row vector for the overall matrix. As a consequence,
he rank of the observability matrix is n + 2. Besides, the rank of
he observability matrix does not depend on the system states, the
ystem is “globally observable” [11].

.2. Stability of the real-time fault identification

Although the EKF and the fading memory techniques are utilized
o estimate state values, for simplicity of the stability check, the
bserver algorithm can be simplified as follows:

˙̂d = 0 + L

([
Zp

Zaux

]
−

[
C1d̂

h2(d̂)

])
= [ L1 L2 ]

[
C1(d − d̂)

h2(d) − h2(d̂)

]
,

L = [ L1 L2 ], C1 = [ Cvot 1 Cvot 2 ]T (13)

here, L is the observer gain with proper dimensions and h2(·) is the
onlinear function of Zaux equations. The success of the real-time

ault-identification is dictated by whether the estimation error,
�d − d̂, would converge to zero. This can be shown by using the
yapunov direct method [16].

ė = −L1C1e − L2[h2(d) − h2(d̂)]
V = eTPe, P : positive definite
V̇ = eT(−CT

1LT
1P − PL1C1)e − 2eTPL2(h2(d) − h2(d̂))

(14)

here, V is the Lyapunov function. The C1 matrix has the dimen-
ion of (n + 2) × 2 and L1C1 has the dimension of (n + 2) × (n + 2).
herefore, there exists a proper L1 that can arbitrarily assign two
igenvalues of the L1C1 matrix [12]. Consequently, all the eigenval-
es of L1C1 can be smaller than or equal to zero. In that case, there
xists a matrix Q, which is Hermitian and positive semi-definite
see Appendix A), such that:

Q = −CT
1LT

1P − PL1C1
Null(Q ) = Null(L1C1) = Null(C1) = Null(Cvoting)

(15)

herefore, Eq. (14) can be further processed as follows:

˙ = −eTQe − 2eTPL2

⎛
⎝

⎡
⎣ Cvot 1d 0 0

0
. . . 0

0 0 Cvot n+2d

⎤
⎦d

−

⎡
⎢⎣

Cvot 1d̂ 0 0

0
. . . 0

0 0 Cvot n+2d̂

⎤
⎥⎦ d̂

⎞
⎟⎠

= −eTQe − 2eTPL2

⎛
⎝

⎡
⎣ Cvot 1e 0 0

0
. . . 0

0 0 Cvot n+2e

⎤
⎦d

+

⎡
⎢⎣

Cvot 1d̂ 0 0

0
. . . 0

⎤
⎥⎦ e

⎞
⎟⎠ (16)
0 0 Cvot n+2d̂

he first term in the right hand side of Eq. (16) is the quadratic term
f the estimation error, while the second term is on the order of
hree. Therefore, there exists a region where the state values are

S

ators A 147 (2008) 623–632

lose to zeros and thus the quadratic term in Eq. (16) dominates. As
consequence, the magnitude of the estimation error is decreasing
verywhere except in the null space of Q.

Let enu be the estimation error in the null space of Q, the
erivative of the Lyapunov function along the enu direction can be
rocessed as follows:

˙ |e=es = −2eT
nuPL2

⎡
⎢⎣

Cvot 1d̂ 0 0

0
. . . 0

0 0 Cvot n+2d̂

⎤
⎥⎦ enu (17)

ince P is positive definite and the values of d̂ are known, there exists
proper L2 such that the derivative of Lyapunov function is nega-

ive when the estimation error is in the null space of Q. Combining
onclusions from the last paragraph, the Lyapunov function in Eq.
14) is decreasing when the state values are close to zeros, and thus
he real-time fault identification system is locally asymptotically
table.

.3. Stability of the real-time fault compensation

As discussed before, in the compensation system, the offset val-
es are changing and thus the values of Zaux are unknown and
eplaced by zeros. The overall compensation system can be written
s follows:

ḋ = Bu

y = [ Zp Zaux ]T = [ (C1d)T 0 · · · 0 ]
T

˙̂d = Bu + L

(
y −

[
C1d̂

h2(d̂)

])
= Bu + [ L1 L2 ]

[
C1(d − d̂)
0 − h2(d̂)

]
u = −Kd̂

(18)

here, B is chosen to be the identity matrix with proper dimensions
nd the matrix K is for the feedback gain. The above system can be
rocessed into a vector form:[
ḋ
˙̂d

]
= Ac

[
d

d̂

]
+

[
0

−L2h2(d̂)

]

Ac =
[

0 −BK
L1C1 −BK − L1C1

] (19)

he eigenvalues of Ac are determined by the eigenvalues of −BK and
L1C1. Therefore, by choosing proper K and L1, all the eigenvalues
f Ac can be smaller than or equal to zero. Again, using a Lyapunov
unction, the stability of the compensated system can be shown.

V = [ dT d̂T ]P

[
d

d̂

]
, P : positive definite

V̇ = −[ dT d̂T ]Q

[
d

d̂

]
+ 2[ 0 −hT

2(d̂)LT
2

]P

[
d

d̂

]
−Q = AT

c P + PAc

(20)

ccording to Appendix A, the Q matrix is positive semi-definite and
ts null space is the same as that of the Ac . The null space of Ac can
e found by the following:[

0 −BK
L1C1 −BK − L1C1

][
dnu

d̂nu

]
= 0

⇒
{

−BKd̂nu = 0
L1C1(dnu − d̂nu) = 0

(21)
ince BK is full rank, this leads to the following:

d̂nu = 0, C1dnu = 0
⇒ V̇ |

d=dnu,d̂=d̂nu
= 0

(22)
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Fig. 1. Sensor outputs along a trajectory. The output of sensor m1 is dc biased. When processed with the real-time fault identification algorithm, the values of the dc offsets
can be correctly estimated. The estimation accuracy is less than 3.6 × 10−3.

Fig. 2. The outputs of the voting equations along a trajectory. The first plot is zero mean, but the rest are all non-zero means.
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Fig. 3. Compensated sensor outputs converge to their respective correct values. Three compensated sensor outputs are biased at [0.004, 0.008, 0.02] with the standard
deviations of [0.09, 0.08, 0.09].

Fig. 4. Sensor outputs along a trajectory. The output of sensor m1 is dc biased and drifting. When processed with the real-time fault identification algorithm, those drifts can
be correctly estimated. The estimation accuracy is smaller than 0.026.
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Fig. 5. Three sensor outputs are all erroneous. The m1 and m3 sensors are dc biased and drifting while the m2 sensor is drifting. Compensated sensor outputs converge to
their respective correct values.

Fig. 6. The convergence of the sensor outputs varies depending on the feedback gain used in the compensation algorithm. The cases with the large feedback gain and small
feedback gain both fail to decrease the sensor errors.



630 T.L. Chen, R.Z. You / Sensors and Actuators A 147 (2008) 623–632

agnit

T
t
i
n
i
s

5

t
B
a
e

w
s
b
i
o
i
l

l

n
o
t
v
a
s

t
r
o
A
i
n
t
v
s

w
p
t
f
b
t
d
t
p
w
b

Fig. 7. The fault-identification method can estimate different m

herefore, when states are close to the origin, the derivative of
he associated Lyapunov function is negative semi-definite. This
mplies that the error signal of each sensor can be reduced but may
ot decrease to zero. The sensor error would stop decreasing when

t is in the null space of the C1 matrix, which is the same as the null
pace of the Cvoting matrix (Eq. (15)).

. Simulation results

This section presents simulation results for an example design:
he sensor m1 is utilized to measure the behavior of the state x.
y doing the sensor-redundancy design, the m2 and m3 sensors
re deployed to measure the same state and to obtain two parity
quations for the fault identification.[
m1
m2
m3

]
=

[
1
2
5

]
x +

[
n1
n2
n3

]

Parity equations :

{
m1 − 0.5m2
m1 − 0.2m3

Voting equations :

{
m2 − 0.4m3
m1 − 0.2m3
m1 − 0.5m2

(23)

here, n1−3 is the sensor noise associated with each sensor. The
tate behavior to be measured is sin(0.5t). To demonstrate the capa-
ility of proposed compensation algorithm, one of the sensors, m1

n this case, is arbitrary chosen to be dc biased at 0.5. Without loss

f generality, the noise associated with each sensor measurement
s assumed to be white with the same standard deviation of 0.1; this
eads to a signal-to-noise ratio of five for the error signal estimation.

Three sensor measurements along a trajectory are shown in the
eft column of Fig. 1; all sensor measurements are contaminated by

i

s
s
o

udes of the dc offsets. The minimum detectable dc offset is 0.1.

oise, and the outputs of the m1 sensor is dc biased. The estimation
f error signals is shown in the right column. According to the plots,
he proposed estimation algorithm can correctly estimate the bias
alue for each sensor in real time. Thanks to EKF, the standard devi-
tions of estimated bias values decrease to 3.6 × 10−3 for the last 5
, which is only 1/30 of the sensor noise.

Fig. 2 shows the noise contaminated outputs of the voting equa-
ions of the sensor array. Only the first plot has zero mean and the
emainder have non-zero means. The first plot is the case where the
utputs of m1 sensor is absent from the respective voting equation.
t any time instant, none of the outputs of the voting equations

s zero and thus the conventional fault identification method can
ot be used to identify the faulty sensor in real time. However, for
he non-real-time approach, one can observe the outcomes of the
oting equations over a period of time and determine that the m1
ensor is dc biased.

Fig. 3 shows the sensor outputs after having been processed
ith the compensation algorithm. The feedback gain in the com-
ensation algorithm is five. Although three sensor outputs seem
o converge to their respective correct values after 0.6 s, a care-
ul examination shows that three compensated sensor outputs are
iased at the values of [0.004, 0.008, 0.02] with the standard devia-
ions of [0.09, 0.08, 0.09]. Those bias values are 1/5 of the standard
eviation of the sensor noise, and those standard deviations are
he same as that of the sensor noise. Therefore, the proposed com-
ensation algorithm reduce the bias values of incorporated sensors
ithout deteriorating their sensing accuracy. Furthermore, those

ias values converges to the null space of the voting matrix, which

s [1, 2, 5]T in this example.

Fig. 4 shows sensor outputs for the case where one of the sen-
ors experiences sensor drift. The error signals existed in the m1
ensor is 1.5 − 0.3 sin(t) − 0.2 cos(2t). In this case, the change rate
f the drift is four times faster than that of the correct signal to
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e measured. The estimation of error signal is shown in the right
olumn. As shown in plot, the proposed algorithm can correctly
stimate the drift for each sensor in real time. This estimation is
ot biased with the standard deviations of [0.026, 0.003, 0.003]

or three sensors. Although these standard deviations are 1/4 of
he standard deviation of the sensor noise, they are about 10 times
arger than that in the dc offset estimation. These results can be
nderstood by the fact that the fading memory technique is in-
ffect to discard old measurements and to track a time-varying
ignal.

Fig. 5 shows the sensor outputs for the case where multiple
aulty sensors are drifting. As shown in the plot, three sensor
utputs are all drifting and these drifts are initiated at differ-
nt time instant. The drifting signal with the m1 sensor is 1.5 −
.3 sin(0.5t) − 0.2 cos(t) starting at the time zero, the drifting sig-
al with the m2 sensor is 2(1 − e−0.1t) starting at the 5th second, and
he drifting signal with the m3 sensor is 3(1 − e−t) + 0.1 sin(0.25t)
tarting at the 12th second. The feedback gain in the compensation
lgorithm is 8. According to this simulation result, the proposed
ompensation algorithm can correct all these drifting sensors. Note
hat, even to the compensated sensor outputs, this is the case of

ultiple erroneous sensors producing faulty outputs simultane-
usly.

Fig. 6 shows the convergence of the sensor outputs for various
eedback gains, ranging from 1 to 20, used in the compensation
lgorithm. The sensor drift in this simulation is the same as in
he previous simulation. As shown in the plots, the cases with
eedback gain of 1 and 20 both fail to compensate for the sensor
rifts. These results will be discussed in details in the next sec-
ion.

Fig. 7 shows the case with the different dc offset values to be
stimated. As evident from the plots, the proposed identification
ethod fails when the bias value is smaller than 0.1, which happens

o be the standard deviation of the sensor noise.

. Discussion

In the case of only one faulty sensor existed in a sensor array,
he proposed real-time fault-identification method can accurately
stimate the error signal while the proposed real-time fault com-
ensation method can reduce the error signals but the error may
ot decrease to zero. Therefore, in this particular case, there may
xist an off-line compensation method that can correct the error
ignal accurately. The details of this off-line compensation method
re under investigation.

The stability analysis (Section 4.3) indicates that the compensa-
ion system is a “local” stable system, meaning that the proposed
ompensation algorithm can reduce multiple sensor errors only
hen these errors are small. Intuitively, a large feedback gain

n this compensation algorithm is preferred for two reasons: (1)
t can compensate for the fast changing drift signals; (2) it can
uickly decrease the magnitudes of current errors so that the con-
traint of local stability can be satisfied for the incoming sensor
rrors. According to the simulation results shown in Fig. 6, the
eedback gain of 1 is too small to decrease sensor errors quickly.
onsequently, the compensation system violate the local stability
onstraint at the 5th second, when the error of m2 is initiated. On
he other hand, from the experience with the LQG control method
12], the large feedback gain may lead to the oscillation of the sys-

em due to the noisy signals at the early stage of the control. This
scillation may just exceed the stability region and violate the local
tability constraint. This is the case of feedback gain 20 shown in
ig. 6. Therefore, the highest change rate of the drifts, that can
e compensated by the proposed method, is determined by the

P
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tandard deviation of the sensor noise. The quantitative relation
etween the sensor noise and the change rate of the drifting signal

s yet to be determined.
When lowering the magnitude of the dc offset in the sensor out-

uts, the proposed fault-identification method fails to identify the
ffset value at around 0.1, which happens to be the standard devi-
tion of the sensor noise. Ideally, for a linear system, the Kalman
lter algorithm can correctly estimate states for the state values

ess than the standard deviation of the sensor noise. Therefore, it
ould be the linearization error, introduced by the EKF algorithm,
hat limits the detection accuracy of the proposed fault identifi-
ation design. However, more research is necessary to investigate
his.

. Conclusion

This paper presents design procedures and stability analy-
is in details for a fault-tolerant sensor system. This design
ses redundant sensor components together with state estima-
ion techniques (EKF) to estimate the values of error signals. It
hen uses state feedback techniques to decrease the error sig-
als in real time and to satisfy the local stability constraint. In
uch, the fault-tolerant system can perform robust measurements
ven when all of its incorporated sensors are noisy and drift-
ng.

The analysis indicates that the proposed identification method
an estimate a time-varying error signal accurately when there is
nly one faulty sensor in a sensor array. But, it would fail when
ultiple sensors are erroneous. One the other hand, when the local

tability constraint is satisfied, the proposed real-time compensa-
ion method can decrease the error signals for multiple erroneous
ensors but those errors may not converge to zero. The errors stop
ecreasing when they are in the null space of the associated vot-

ng matrix. Furthermore, the highest change rate of the drifts, that
an be compensated by this method, is determined by the standard
eviation of the sensor noise.

The simulation results of a design example indicate that the
inimum detectable dc offset value is equal to the standard

eviation of the sensor noise. Once the offsets are detected, the
stimation accuracy becomes 3.6 × 10−3. After processed with real-
ime compensation, three compensated sensor outputs are biased
t [0.004, 0.008, 0.02] with the corresponding standard devia-
ion of [0.09, 0.08, 0.09]. The proposed compensation method can
ompensate sensor drifts without deteriorating the sensing accu-
acy.

ppendix A. Lyapunov functions for ISL stable systems

This proof is listed here as a appendix because a similar theo-
em, shown in may textbooks [17], was for the asymptotically stable
ystem but not for the stable in-the-sense-of-Lyapunov (ISL) system
9].

heorem. For a linear, ISL stable system: ẋ = Ax,eig(A) ≤ 0. Given
positive semi-definite matrix Q and Q has the same null space as A,

here exists a unique positive definite matrix P such that ATP + PA =
Q .
roof.

∀x0 = x(t)|t=0 = xa0 + xnu

Axnu = Qxnu = xT
nuQ T = xT

nuQ = 0
x(t) = eAtx0 = eAtxa0 + xnu
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here, xnu is the linear combinations of the eigenvectors of the A
atrix, with their corresponding eigenvalues being zeros.

xT
0Px0 − xT∞Px∞ = −

∫ ∞

0

d(xTPx)

= −
∫ ∞

0

d(xTPx)
dt

dt(xa0 + xnu)TP(xa0 + xnu)

−xT
nuPxnu = −

∫ ∞

0

xT(ATP + PA)x dt

xT
a0Pxa0 + 2xT

a0Pxnu =
∫ ∞

0

xTQx dt =
∫ ∞

0

(eAtxa0 + xnu)
T

×Q (eAtxa0 + xnu) dt =
∫ ∞

0

(eAtxa0)
T
Q (eAtx0) dt

et P =
∫ ∞

0
eATtQ eAt dt,

2xT
a0Pxnu = 2

∫ ∞

0

(eAtxa0)
T
Q eAtxnu dt

= 2

∫ ∞

0

(eAtxa0)
T
Qxnu dt = 0

herefore, P =
∫ ∞

0
eATtQ eAt dt is one of the solutions for the equa-

ion ATP + PA = −Q . Furthermore, since Q is positive semi-definite,
can be written as Q = HTH.

xT
a0Pxa0 =

∫ ∞

0

(eAtxa0)
T
Q (eAtxa0) dt =

∫ ∞

0

‖H eAtxa0‖2
2 dt > 0

⇒ P is a positive definite matrix.

he above proof shows the positive definiteness of the P matrix. The
uniqueness” property can be proved with a little bit twist. Since it
s not the main interest here, this part of the proof is ignored. � �
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