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Chapter 5  

 

Seam Effect of Wire-Grid Polarizer  

 

To promote the efficiency of the polarizer in liquid crystal displays (LCDs), the 

other example of the extended planar optics, the wire-grid polarizer (WGP), will be 

discussed in this chapter with the focus on the seam effect between the WGP patches.  

WGP is well known as a high efficient polarization beam splitter (PBS). Along 

with proper optical components, the WGP can perform high efficient polarization 

conversion.
[1], [2]

 Compared with the conventional selective absorption polarizer in 

LCDs, a subwavelength grating module based on the WGP has demonstrated a factor 

of 1.7 enhancement in the polarization efficiency.
 [3],[4] 

However, to be operated in the 

visible spectrum, a WGP should possess a grating period of less than 150 nm to 

maintain the high transmission and reflection extinction ratios in the blue wavelength 

region.
[ 5 ]

 Then, the WGP requires high-resolution techniques such as E-beam 

lithography to fabricate the sub-150-nm structures, and the mass production of such 

WGP becomes costly and time consuming. Although the cost-effective nano-imprint 

technique was exploited to fabricate a 5.5 x 5.5 cm
2
 WGP with the period of 100 nm 

and a 4-in-diameter WGP with the period of 200 nm,
[5], [6]

 for the large size display 

such as monitors, the reported sizes of WGPs remain insufficient and the “patching” 

technique becomes necessary.   

As an efficient PBS, an ideal WGP device shall well separate the p-ray and s-ray. 

However, when a seam between the WGP patches exists, it allows both p-ray and 

s-ray to transmit with large portion, thus decreasing the polarization efficiency. By 

means of conventional techniques, the patched WGP can be realized using the 

step-and-repeat machine with a seam width around hundreds of micron. Since the 
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seams are inevitable for the patched WGP, it is essential to model the effect of seam 

before the WGP fabrication. 

Various methods based on different theories, such as effective media theory and 

rigorous diffraction grating theory,789 have been applied to model the ideal one-patch 

WGP.
[2],[7]-[10]

 Among these methods, the rigorous coupled-wave analysis method 

(RCWA) has been developed as a commercial software GSOLVER by which the 

simulations have shown good agreements with the experiments.
[2],[3]

 Therefore, the 

RCWA method and GSOLVER are utilized herein to analyze the effects of the seams 

resulting from WGP patches, called the seam effect herein. Although the RCWA is an 

exact solution of Maxwell’s equations and is widely used to analyze the 

electromagnetic diffraction,
[ 11 ]-[ 12 ]

 the issues, such as poor convergence, were 

challenged in the previous literature.
[7]

 In order to apply the RCWA effectively and 

numerically to the seam effect study, the critical issues are first discussed in this 

chapter, followed by the proposed strategy. Finally, the seam effect of a 

100-nm-period WGP is analyzed as an example to obtain the design rules of WGP 

patching.  

 

5.1  Investigation of seam effect by using RCWA 

5.1.1 Review of literature 

Moharam et al. have proposed efficient approaches to implement the RCWA of 

conventional one-patch gratings stably and mentioned that the two criteria for the 

numerical RCWA of conventional gratings were the energy conservation (diffraction 

efficiency DE ≤ 1) and the convergence with an increasing number of field harmonics 

(calculated diffraction orders).
[11]

 To meliorate the numerical stability, they presented 

a method comprising formulation and normalization to preempt the numerical 

overflows and underflows. However, when boundary conditions were substituted into 
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the characteristic matrix, numerical truncations occurred. Along with the inversion 

calculation during the process of solving matrixes, such truncations might incur 

numerical errors and violate the rule of energy conservation. 

 

5.1.2 Energy conservation 

When the RCWA is applied to simulate the seam effect of WGP, the energy 

conservation becomes a serious issue. The reason can be interpreted as follows, and 

formulas derived from Moharam’s research are referred to herein in order to simplify 

and clarify the explanation.
[11]

 Consider that a plane wave with the wavelength λ0 is 

obliquely incident from the medium I (refractive index = nI) to a WGP with an angle 

of θ, as shown in Fig. 5-1. The period and thickness of grating are assumed as Λ and d, 

respectively. 

 

 

 

 

 

 

Fig. 5-1 Side view of wire-grid polarizer. 

 

The permittivity of the grating can be expressed as a Fourier expansion: 

∑ Λ=
h

h hjx )/2exp()( πεε .                 (5-1) 

Here, εh is the hth Fourier coefficient of the relative permittivity and can be derived 

from the grating structure. Then, when the incident light interacts with the WGP, the 

incident electric field E0, also analyzed as Fourier harmonics, will be modulated by 

the grating. For simplicity, the transmission of WGP is considered herein instead of 
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both the transmission and the reflection. The transmitted coefficient of the ith 

harmonic, ti, is defined as the ith harmonic of transmitted electric field Eti over the 

incident electric field E0. Assume that the permittivity and the electric field are both 

interpreted as Fourier harmonics with r orders for the numerical calculation. Through 

a series of matrix calculation to solve Maxwell’s equation,[11] the coupled-wave 

phenomena then can be represented as a characteristic matrix [A]: 

[A] = [N
2
]-[E],                         (5-2) 

where [N] is a diagonal matrix determined from the Floquet equation with the i, i 

element given by: 

Λ
−= 0

, sin
λ

θ inn Iii ,       i = 1, 2, 3…r   (5-3) 

and [E] is the permittivity matrix with the i, p element given by ε(i-p). As a result, the 

ith transmitted coefficient ti can be derived: [11] 

−

=

+ −−= ∑ mim

r

m

mii adqkat ,0

1

, )exp( ,                (5-4) 

where k0 = 2π/λ0 and qm are the positive square roots of the eigen-values of [A]. 

+

mia , and −

mia , are the coefficients for the forward and the backward waves, 

respectively, derived from the boundary conditions and the coupled-wave matrix [A]. 

It is noted that since the assumed number of orders is r, [A], [N] and [E] are all r × r 

square matrices. 

To solve ti via numerical methods, the inversion of exp(-k0 qmd) is inevitable. If 

qmd is a large positive value, then the computational truncation may cause the exp(-k0 

qmd) to approach zero. Consequently, the inversion of exponent will be  

( ) 11

0 )0(~)exp( −−
− dqk m ,                  (5-5) 
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which results in the truncation error. Therefore, those parameters incurring large qmd 

are the key factors that result in the energy conservation invalidated. Among the key 

factors, the number of orders (r) is investigated herein owing to its close relationship 

with the numerical accuracy, which will be discussed in next section. According to eq. 

(5-3), the upper limit of i and the maximum amplitude of ni,i will increase with r . 

Since qm is derived from eq. (5-2), the probability of large positive qm will also raise 

with the increasing r. Then, based on eq. (5-5), more truncation errors occur and the 

probability of the invalidation of energy conservation will increase. In other words, as 

the number of orders increases, the probability of the invalidation of energy 

conservation will also raise. 

 

5.1.3 Numerical Accuracy 

Although decreasing the number of calculated diffraction orders can reduce the 

probability of the invalidation of energy conservation, insufficient orders will cause 

poor convergence and inaccurate results in the analyses.[12] Therefore, we investigate 

the relationship between the number of orders and the accuracy in order to determine 

an adequate number of orders. Assume the width of each WGP patch (patch period), 

the period of gratings, the width of seam and the number of gratings per patch are 

denoted as Pp, Pg, Ws and g, respectively. As illustrated in Fig. 5-2, the patch period 

can be represented as: 

sgp WPgP +⋅= .                      (5-6) 

 

 

Fig. 5-2 Illustration of WGP patches. 
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Then the differential efficiencies (DEs) can be obtained by the substitution of Pp 

for the grating period in the conventional RCWA tool. It is noted that the simulated 

DE is regarded as converged and accurate only when the number of orders (r) exceeds 

a certain amount so that the resultant DE is a constant value. In the preliminary 

analysis, Ws is set to be zero and Pg is a constant. Then, since there is no seam 

between gratings in this analysis, different settings of g (the number of gratings per 

patch) represent an identical structure and the simulated results shall be the same. 

However, the modeling results in Fig. 5-3 show that the curve of efficiency versus r is 

horizontally expanded as g increases. Such horizontal-scaled curves result from the 

definition of “period”. For the conventional RCWA tool which concerns gratings 

without seams, only one period (Pg) exists in the grating structure; the diffraction 

characteristics, such as diffraction angles and diffraction orders, are counted based on 

Pg. However, when patched gratings with seams are considered, there are two periods, 

Pg and Pp, in one device. In order to apply the tool to the patched gratings, the period 

parameter in the tool shall be set as the larger period which is Pp. As a result, the 

resultant diffraction characteristics are counted from Pp, which is a function of g. 

Thus, although the WGPs have the identical structure (due to the constant Pg and the 

zero Ws), the DE curves differ with the various g. Meanwhile, eq. (5-6) reveals that Pp 

in this preliminary analysis is in proportion to g and Pg, also explaining the effect of 

curve-scaling.  

According to the mentioned curve-scaling effect, when the RCWA tool is utilized 

to analyze seam effect, the required number of orders shall be at the level in 

proportion to g for reasonable DE results. Therefore, if one patch comprises only one 

grating period, and its sufficient number of orders for accurate analyses is r1, then for 

the case of one patch with g grating periods, the required number of orders rg will be: 
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1rgrg ⋅= .                         (5-7) 

As for the cases of Ws ≥ 0, the number of orders shall be at least at the level of rg to 

maintain the numerical accuracy. 

 

 

 

 

 

 

 

 

Fig. 5-3 Relationship between diffraction efficiency and number of calculated 

diffraction orders (r) for different numbers of gratings per patch (g=1, 2, 5). 

Since energy conservation and numerical accuracy are closely related to the 

number of orders (r), a feasible strategy to determine r is proposed as follows. First, 

assume Ws and g to be zero and unity, respectively. Then, compute DE by increasing 

r1 till the convergence occurs. Once r1 is found sufficient for the convergence, the 

required level of rg can be determined using eq. (5-7); then, the numerical accuracy is 

kept. Next, calculate the real case of WGP with the real Ws and g. If the resultant DE 

contradicts the rule of energy conservation (DE ≥ 1), adjust rg by several increments 

till the rule of energy conservation is satisfied. Finally, the acquired DE can attain the 

accuracy requirement and be consistent with the energy conservation rule. 
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5.2  Analyses of WGP patches 

5.2.1 Wide-seam WGP 

In accordance with the above discussions, the proposed strategy is adopted for the 

following analyses of WGP patches. In the cases of a wide seam-width (that is, one 

more than 10 times of the wavelength), a large memory capacity is required for the 

RCWA of the whole WGP. On the contrary, geometric optics approximation can 

analyze such a wide seam efficiently. Therefore, for the WGP with a wide seam width, 

we propose a hybrid method which counts the diffraction efficiency in the 

sub-wavelength gratings region using the RCWA and that in the seam region using 

the geometric optics analysis.  

Consider that a WGP has periodic patches with a constant seam width. Assume 

that the transmittance of p-ray and s-ray of the whole WGP are Tp and Ts, respectively, 

whereas those in the grating and seam regions are labeled as Tpg, Tsg, Tps, and Tss, 

respectively. Due to the wide-seam assumption, the seam width (Ws) and the width of 

grating region (Pp- Ws), as shown in Fig. 5-4, belong to the range where the geometric 

optics is effective.  

 

Fig. 5-4 Illustration of seam and grating regions. 

 Then the contribution of each region to the total transmission shall relate to their 

geometric portions, equivalent to the ratio of each width to the patch period: 

Ws Pp - Ws 

Grating Seam 
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As a result, an evaluated factor of transmission extinction ratio EXT, defined as Tp / 

Ts, is: 
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In the grating region, regarded as ideal gratings without seam, Tpg and Tsg can be 

calculated using the numerical RCWA method with the setting of Ws = 0. Assume that 

a WGP consisting of a glass substrate and aluminum gratings is operated at the 

wavelength of 450 nm. The grating period, the grating height and the duty ratio are 

assigned as 100 nm, 140 nm and 0.5, respectively. The calculated Tpg and Tsg are 0.97 

and 3 x 10
-5
, respectively. In the seam region, due to the reflections between glass-air 

interfaces (3% for each interface), the transmission is assumed as 94% for both p-ray 

and s-ray. The relationship between EXT and Ws / Pp is then obtained, as solid line 

shown in Fig. 5-5. The results show that the lower ratio of seam width to patch period 

brings the higher extinction ratio. This curve also indicates that if the extinction ratio 

of 10 is required, the seam width should be of less than one-tenth of the patch period. 

 

5.2.2 Narrow-seam WGP 

On the other hand, for a WGP with a subwavelength seam width (that is, one 

ranging from <<λ to ~λ) the RCWA method alone is able to estimate the efficiency 

of WGP. Recently, using the commercial embossing machine with a state-of-art 

step-and-repeat machine, a WGP with nano-scale seam width of 100 nm has been 
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realized.[13] That is, the seam width of a WGP can be as narrow as 100 nm and, thus, 

can be analyzed by the RCWA method. Assume the condition is the same as the case 

of wide seam except for Ws = 100 nm. As the line with squares plotted in Fig. 5-5, the 

calculated results predict that Ws / Pp < 0.1 can lead to an EXT of more than 50. 

Compared with the wide seam case, the nano-seam WGP results in more 

enhancement of EXT. It is noticed that as Ws / Pp in the nano-seam case decreases, 

equivalent to an increase of the grating number per patch (due to the fixed Pg and Ws), 

the required computational memory will increase. Since the capacity of available 

memory is restricted by the computation system, the computable Ws / Pp is confronted 

with a lower limit which is 0.01 in our demonstration. To estimate a nano-seam WGP 

with further lower Ws / Pp, curve fitting is recommended to predict the tendency of 

EXT. According to the fitting results of this example, the EXT can exceed 1000 when 

Ws / Pp is lower than 0.001. 

 

 

 

 

 

 

 

 

Fig. 5-5 Relationship between extinction ratio Ws/Pp for a wide-seam WGP (Ws >> λ) 

and a narrow-seam WGP (Ws = 100 nm).  
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5.2.3 Discussion 

Although a finite-difference time-domain (FDTD) based method was used to 

model WGP, [14] the RCWA exhibits better simulation performance than the FDTD, as 

our numerical analysis shown in Table 5.1. Since the FDTD algorism implements the 

structure of device as spatial grids and the electromagnetic waves as temporal grids, 

its numerical accuracy dependents on the sufficiently small grids. Then, the larger 

simulated area requires the large memory capacity and the long simulation time. Thus, 

for the analyses of patched WGPs (with seams), the required simulation area shall be 

extensive, and the demand on memory capacity in the FDTD algorism becomes more 

serious. In contrast, the RCWA, using Fourier expansion to describe the structure of 

device, is adequate to model the periodic structure, such as the ideal one-patch WGP. 

As for analyzing WGP patches, the proposed strategies can allow the RCWA to 

model the seam effect with good modeling accuracy and efficient simulation speed. 

Therefore, the RCWA with the proposed strategies is preferable for modeling the 

WGP patches. 

 

Table 5.1 Comparison of RCWA and FDTD for ideal WGP 

  

Algorism Software Settings 
Required 
memory 

Execution time 
(s) 

FDTD 
Limerical 
FDTD 

Solutions 

Simulation distance:100λ 
Grid: 5 nm x 5 nm 
Area: 10λ x 10λ 

32Mbyte 255 

RCWA 
GSOLVER 

4.20C 
51 orders 23Mbyte 10 

Common 
conditions 

Wavelength: 450nm 
WGP: Glass substrate and Aluminum gratings with 100nm period, 140nm 

thickness and 50% duty cycle. 
Computer: Pentium 4 3.2GHz CPU and 504MB RAM 
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Besides DE, the diffraction angle of the patched WGPs is another consideration of 

the seam effect. Assume that the patch size is fixed for every patch (patch period = Pp). 

According to the diffraction formula, ideal WGPs (with sub-wavelength gratings but 

without seam) allow only the zero-order diffraction to exist (the diffraction angleθd = 

0° for the normal incident light). However, for a patched WGP, the periodic patches 

cause high-order diffractions to exist and the diffraction angle deviation becomes 

serious as Pp is reduced, as shown in Fig. 5-6 which considers the 1
st
 order diffraction 

and normal incident light. The results reveal that for a WGP with a patch period of 

10
5
 times larger than the wavelength,

[5],[6]
 the diffraction angle is controlled within 

5.7x10
-4 °, inferring insignificant deviation from the ideal case. Therefore, using 

currently available fabrication processes, the deviation of diffraction angle caused by 

the patched WGP shall be accepted. 
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Fig. 5-6 Relationship between the 1
st
 order diffraction angle and Pp/ λ. 
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5.3 Summary 

The RCWA method was used to analyze the effects of the seams resulting from 

WGP patches. Within this framework, the modeling criteria of energy conservation 

and numerical accuracy were investigated and proved to be closely related to the 

number of calculated diffraction orders. With the strategies demonstrated in this 

research, the diffraction efficiencies satisfied the two criteria simultaneously, and then 

the widely used RCWA software, GSOLVER, was enabled to efficiently analyze the 

seam effect of the WGP patches. According to the numerical analyses, for a 

100-nm-period WGP operated at a wavelength of 450 nm with the seam width of less 

than one-thousandth of the patch period, an extinction ratio of more than 1000 can be 

expected. In addition, the RCWA with proposed strategies was shown to be preferable 

for modeling the WGP patches due to its superior simulation speed. Consequently, 

this study presented a useful model for optimizing the nano-structured WGP design. 
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