
Available online at www.sciencedirect.com
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 1770–1783
An incremental analysis for resource conflicts to workflow specifications

Hwai-jung Hsu *, Feng-jian Wang

Institute of Computer Science and Engineering, College of Computer Science, National Chiao Tung University, Room 510,

EC Building, 1001 Ta-Hsueh Road, Hsinchu City, Taiwan, ROC

Received 2 May 2006; received in revised form 7 December 2007; accepted 27 December 2007
Available online 10 January 2008
Abstract

Workflow management technology helps modulizing and controlling complex business processes within an enterprise. Generally
speaking, a workflow management system (WfMS) is composed of two primary components, a design environment and a run-time sys-
tem. Structural, timing and resource verifications of a workflow specification are required to assure the correctness of the specified sys-
tem. In this paper, an incremental methodology is constructed to analyze resource consistency and temporal constraints after each edit
unit defined on a workflow specification. The methodology introduces several algorithms for general and temporal analyses. The output
returned right away can improve the judgment and thus the speed and quality on designing.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Workflow; Workflow specification; Resource consistency; Temporal constraints; Incremental methodology
1. Introduction

Electronic workflow integrates business rules and staffs
inside an enterprise into an automatic information system.
Inside a flow, the processes (activities) and information
flow between them are specified according to the business
rules which accomplish specific tasks (WfMC, 1993; Hol-
lingsworth, 1995). Furthermore, workflow specifications
which record tasks and schedules are enacted by the work-
flow management system (WfMS) to coordinate human
resources and information (Hollingsworth, 2004). In a
modern WfMS, the environment for workflow design and
enactment are usually supported at the same time.

To assure the correctness of executing a workflow spec-
ification, analyses on structural integrity, temporal correct-
ness, and resource conflicts are required. Aalst gives
effective Petri-net based techniques in structural analysis
(van der Aalst et al., 1999; van der Aalst and ter Hofstede,
0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.12.799

* Corresponding author. Tel.: +886 3 571 2121x54718; fax: +886 3
5724176.

E-mail addresses: hjhsu@cs.nctu.edu.tw, hjhsu@csie.nctu.edu.tw (H.-j.
Hsu), fjwang@cs.nctu.edu.tw (F.-j. Wang).
2000; van der Aalst, 1998). Eder focuses on temporal anal-
ysis in workflow models (Eder et al., 1999a,b). Reveliotis
constructs a Petri-based model with consideration of
resource allocation, and uses the model in structural and
deadlock analysis in workflow application (Reveliotis,
2003; Park and Reveliotis, 2001). There are still various
methodologies for structural and temporal analysis of
workflow system specifications which have been developed
and proved effective (Sadiq and Orlowska, 2000; Fleurke
et al., 2003; Adam et al., 1998; Onoda et al., 1999; Singh,
1997; Li et al., 2004b; Eder et al., 1999a,b; Had et al.,
2005).

In Li et al. (2004b), Reveliotis (2003), Park and Reveli-
otis (2001), Sun et al. (2006), Tang et al. (2004) and Russell
et al. (2004), the analysis of resource conflicts in workflow
is widely discussed. In Li et al. (2004a), Li and Yang (2005),
Hsu et al. (2005) and Zhong and Song (2005), the method-
ologies to analyze both resource and temporal constraints
are considered. In Li et al. (2004a), a model of analyzing
resource and temporal constraints in workflow specifica-
tion has been constructed. In Hsu et al. (2005) and Zhong
and Song (2005), the model is applied with Petri-net based
workflow and DAG (Directed Acyclic Graph). In Zhong

mailto:hjhsu@cs.nctu.edu.tw
mailto:hjhsu@csie.nctu.edu.tw
mailto:fjwang@cs.nctu.edu.tw

H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783 1771
and Song (2005), the model is extended for dynamic anal-
ysis. The analysis discussed in Zhong and Song (2005) is
used for workflow enactment systems and the analysis dis-
cussed in Li et al. (2004a), Li and Yang (2005) and Hsu
et al. (2005) is used for workflow design environments.

Among all the researches above, the relationships
between methodologies and edit operations are not clearly
defined and discussed. Some methodologies, e.g. the algo-
rithms in Hsu et al. (2005) are also required to be refined.
More discussions are necessary to clarify the information
required for workflow designer in editing or maintaining
a workflow.

In this paper, the incremental methodology for analysis
of resource constraints in well structuralized workflow
specifications mentioned in Hsu et al. (2005) is refined or
rebuilt. First, the edit operations made by workflow
designer are discussed. The workflow model for analyzing
resource conflicts with temporal considerations is then
defined completely. Finally, the analysis algorithms are
constructed; their correctness and time complexities are
carefully discussed.

This paper is organized as following: The workflow
model and its notations are defined in Section 2. In Section
3, the definition of resource conflicts for analysis is
depicted. The edit operations for workflow design are
described in Section 4. The incremental algorithms for ana-
lyzing the resource conflicts are represented in Section 5.
Proofs and time complexity discussions of the algorithms
are also included in this section. In Section 6, the relation-
ships between the operations and the algorithms are dis-
cussed. Several examples about how the algorithms work
are described in Section 7 and the conclusions are made
in Section 8.

2. Definitions and notations

In this paper, a workflow specification is a graph-based
model. The workflow specification is formally defined as
Definition 1.

Definition 1 (Workflow specification).
A workflow specification ws = (N,F,R,C,S,E).
N is the set of processes, F is the set of flows, R is the set
of resources, C is the set of control blocks, S is the start
process and E is the end process.
S, E 2 N, S.type = START, E.type = END, S.cb =
E.cb = ROOT.
The nodes represent processes in a workflow specifica-
tion, and the directed arcs for flows. The processes can
be classified as activity or control processes. Control pro-
cesses are further categorized as AND-SPLIT, AND-
JOIN, XOR-SPLIT, and XOR-JOIN WfMC (1999). A
control block records the processes quoted by a pair of split
and join processes. The start/end processes (Kim, 2003)
and the resources are externally modeled.
Definition 2 (Processes, flows and resources).

" process n 2 N, n = (type, ref,cb)

n.type = {ACT,AS, AJ, OS,OJ, START, END}
n.ref = {rjr 2 R and n 2 r.use}
n.cb = {ROOT, cj c 2 C and n 2 c.p_set}

" flow f 2 F

f = (ni,nj), ni,nj 2 N

f is an in-flowof nj and an out-flow of ni

ni is the source process of the f, and nj is the sinking
process of f

" resource r 2 R

r.use = {njn 2 N and r 2 n.ref}

Definition 2 describes the properties of processes, flows
and resources in more detail. An activity process is simply
denoted as type ‘‘ACT”, and-split as ‘‘AS”, and-join as
‘‘AJ”, xor-split as ‘‘OS”, xor-join as ‘‘OJ”, start as
‘‘START”, and end as ‘‘END”. The control block which
a process n belongs to is recorded as n.cb. A process must
belong to some control block or is on the path which is
never split or has been totally joined. n.cb is recorded as
‘‘ROOT” if process n belonging to no control blocks. Such
processes are said to be on the root path in this paper. The
resources referenced by some process n are recorded in set
n.ref and the processes accessing some resource r are also
recorded in property r.use.

Definition 3 (Control blocks).

" control block c 2 C, c = (start,end,p_set)

c.begin = ns,ns.type = {AS,OS}
c.end = ne,ne.type = AJ if and only if ns.type = AS,
ne.type = OJ if and only if ns.type = OS
c.p_set = {njn 2 N, Reachable (ns,n) = true, Reach-

able(n,ne) = true, n.cb = c and " c0 R C and " c0 2 c,
n R c0.p_set}
Reachable(c.start,c.end) = true

The properties of a control block are defined in Defini-
tion 3. A control block starts from a split process and ends
at a join process. The processes directly contained in some
block c are included in c.p_set(process set).

In this paper, not only constraints between resources
and workflow but also temporal factors are considered.
Designers/Maintainers of the workflow specification can
set the maximal/minimal working duration (Li et al.,
2003, 2004a,b; Marjanovic, 2000; Li and Yang, 2005;
Hsu et al., 2005; Zhong and Song, 2005; Ling and Schmidt,
2000; Zaidi, 1999) of each activity process for timing con-
trol. The notations and constraints of working durations
are defined in Definition 4.

Definition 4 (Working durations).

" process n 2 N
d(n) is the minimal working duration of n
D(n) is the maximal working duration of n

If n.type – {ACT}, d(n) = D(n) = 0

1772 H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783
Through the working durations, the earliest start time
(EST) and the latest end time (LET) (Li et al., 2004a; Li
and Yang, 2005; Hsu et al., 2005; Zhong and Song, 2005)
of a process can be calculated. The calculation of EST
and LET for each process is conceptually shown in Fig. 1
and is formally defined in Definitions 5 and 6.

Definition 5 (Earliest start time).

"process n 2 N
If n.type – {AJ, OJ,START}, there must exist a flow
(n0,n) such that

EST(n) = EST(n0) + d(n0)
If n.type = START, EST(n) = 0
If n.type = AJ, there must exist one or more flows
(n1,n), . . ., (nk,n) such that

EST(n) = MAX({EST(ni) + d(ni)ji = 1..k})
If n.type = OJ, there must exist one or more flows
(n1,n), . . ., (nk,n) such that

EST(n) = MIN({EST(ni) + d(ni)ji = 1..k})
MAX() is a function which will return the element with
the largest value among the input set; on the contrary, and
MIN() returns the minimal one.

Definition 6 (Latest end time).
" process n 2 N

If n.type – {AJ, OJ,START}, there must exist a flow
(n0,n) such that
LET(n) = LET(n0) + D(n0)
If n.type = START, LET(n) = 0
If n.type = {AJ, OJ} there must exist one or more
flows (n1,n), . . ., (nk,n)

such that
LET(n) = MAX({LET(ni) + D(n)ji = 1..k})
To some process n, the time interval between EST(n)
and LET(n) is the estimated active interval (EAI) of n (Li
Fig. 1. How to calculate EST and LET for processes.
et al., 2004a; Li and Yang, 2005; Hsu et al., 2005; Zhong
and Song, 2005). In Definitions 7 and 8, the definition of
time intervals and the notation of EAI are depicted.

Definition 7. (Time Intervals)
A time interval from ta to tb is denoted as [ta, tb], in
which tb 6 ta.
The operator � for two time intervals is defined as
follows:

[ta1, ta2]� [tb1, tb2] = MIN({ta2, tb2}) � MAX({ta1, tb1})
Relations between time intervals:
Fig. 2
(1) two time intervals are overlapped if and only if
[ta1, ta2] � [tb1, tb2] > 0;

(2) two time intervals are met if and only if
[ta1, ta2] � [tb1, tb2] = 0;

(3) two time intervals are exclusive if and only if
[ta1, ta2] � [tb1, tb2] < 0.
The relationships between time intervals are concluded
by Allen’s temporal reasoning relations (Allen, 1983) as
Fig. 2 shows. Allen’s temporal reasoning relations have
been applied for the analysis of temporal factors in many
researches (Li and Yang, 2005; Chen et al., 2004; Zhong
and Song, 2005; Chinn and Madey, 2000; Ling and
Schmidt, 2000; Zaidi, 1999).

In this paper, relation 1 in Allan’s chart is equal to rela-
tion (3) in Definition 7, relation 2 in Allan’s chart is equal
to relation (2), and relations 3 to 7 in Allan’s chart are
equal to relation (1).

With Definition 7, definition and notation of EAI is rep-
resented as following:

Definition 8 (Estimated active interval).
Estimated active interval of some process n, is the time
interval from EST(n) to LET(n), the statement is for-
mally described as follows:

" process n 2 N, EAI(n) = [EST(n),LET(n)]
. Allen’s temporal reasoning relations for intervals (Allen, 1983).

H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783 1773
To clear the description of our algorithm, paths, reach-
ability, distance, and ancestors (Li et al., 2004a; Li and
Yang, 2005; Hsu et al., 2005; Zhong and Song, 2005) are
defined in following definitions.

Definition 9 (Paths). A path p = (n1, . . .,nk) in which k P
2, i = 1..k, ni 2 N; j = 1..k � 1, (nj,nj+1) F,p can be denoted
as Path(n1,nk) in brief. The size of path p, denoted as
jpj = k � 1

Definition 10 (Reachability).

" processes ni, nj 2 N
Reachable(ni,nj) is a Boolean function. Reachable

(ni,nj) = true if and only if Path(ni,nj) exists
Reachable(n,n) = true
Definition 11 (Distance).

" processes n, n0 2 N
if Reachable(n,n0) = false, Dist(n,n0) =1
otherwise, Dist (n,n0) = MIN ({size of path pjp is a
path from n to n0})

Dist(n,n) = 0
Definition 12 (Ancestors and common ancestors).

" processes ni,nj 2 N
ni is an ancestor of nj if and only if Reachable(ni,nj) =
true

" processes n,n1, . . .,nk 2 N, k P 2
n is a common ancestor of n1,n2, . . .,nk if and only if
Reachable(n,ni) = true, for 1 6 i 6 k

Definition 13 (The nearest common ancestor).

" processes n, n0 2 N, n.type = ACT and n0.type = ACT

CA = {n1, . . .,nk} is the set of all the common ances-

tors of n and n0,
ni 2 CA is the nearest common ancestor of n and n0 if
and only if
"nj 2 CA, ni – nj,
MIN({Dist(ni,n),Dist(ni,n0)}) <
MIN({Dist(nj,n),Dist(nj,n0)})

The statement, ni is the nearest common ancestor of n

and n0, is briefly denoted as NCA(n,n0) = ni

To simplify our analysis, the workflow specifications
discussed contain no cycles; i.e. they are directed acyclic
graphs (DAG). DAG is widely adopted for the analysis
of control flows or data flows in a workflow schema (Li
et al., 2004a; Sadiq and Orlowska, 2000; Marjanovic,
2000; Reichert and Dadam, 1998; Sadiq et al., 2003).
Besides, the control blocks in our workflow specification
are totally contained or exclusive to each other. All the
workflow specifications discussed in this paper are well-
formed DAG. Axiom 1 gives a formal definition to the
constraints which keeps a workflow well-formed and
therefore the axiom is hold through all statements in this
paper.

Axiom 1 (Well-formed workflow specification). A work-
flow specification ws = (N,F,R,C,S,E) is a well-formed

DAG if and only if all the following rules hold:

(1) Reachable(S,E) = true
(2) S has no in-flows and E has no out-flows
(3) " process n 2 N
n has exactly one in-flow if and only if n.type –
{AJ,OJ}
n has exactly one out-flow if and only if n.type –
{AS,OS}

(4) " process n 2 N-{S,E}

Reachable(S,n) = true and Reachable(n,E) = true

(5) " processes ni, nj 2 N
if Reachable(ni,nj) = true, Reachable(nj,ni) = false
(6) " process n 2 N, n.type = {AS,OS} if and only if

there exists one and only one control block c 2 C

and c.start = n

(7) " process n 2 N, n.type = {AJ, OJ} if and only if
there exists one and only one control block c 2 C

and c.end = n

(8) " control blocks ci, cj 2 C
Reachable(ci.start,cj.start) = true if and only if
Reachable(cj.end,ci.end) = true or Reachable(ci.end,
cj.start) = true

Points (1)–(5) give basic constraints of a well-formed
workflow; among them, points (4), (5) keep the workflow
acyclic. Points (6)–(8) limit the construction of control
blocks and control processes. Point (8) keeps all control
blocks in a well-formed workflow totally contained or
exclusive to each other.

3. Resource conflicts in a WfMS

In this section, resource conflicts discussed in this paper
are described.

In a workflow, one resource might be referenced by two
or more processes. When a resource is referenced by a pro-
cess, it indicates that the process might depend on the
resource. Such a phenomenon is formally defined as
resource dependency in Definition 14.

Definition 14 (Resource dependency).

" process n 2 N, resource r 2 R
n and n0 have resource dependency on r if and only if
n 2 r.use and r 2 n.ref

In a workflow, the processes are possibly active sponta-
neously when they are in different paths split from an and-
split control process and have overlapped estimated active
interval. Such a condition is called potentially concurrent
execution in this paper, and it is formally defined in Defini-
tion 15.

1774 H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783
Definition 15 (Potentially concurrent execution).

" process n, n0 2 N
n and n0 have potentially concurrent execution if and
only if the following conditions hold:
(1) Reachable(n,n0) = false and Reachable(n0,n) = false
(2) NCA(n,n0).type = AS
(3) EAI(n) � EAI(n0) > 0
A resource conflict occurs when a pair of processes
might concurrently access the same resource. Therefore, a
resource conflict can be depicted formally in Definition 16.

Definition 16 (Resource conflict).

" process n, n0 2 N

n and n0 have resource conflict if and only if the fol-
lowing conditions all hold:
(1) n and n0 have resource dependency on a resource
(2) n and n0 have potentially concurrent execution
The resource conflict above can be denoted as (r,n,n0)
For algorithm usage, all resource conflicts in a workflow
specification are collected in set RCT defined below.

Definition 17 (Resource conflict table).

(r,n,n0) RCT if and only if n and n0 have resource conflict

on resource r.
From description of Definition 17, (r,n,n0) and (r,n0,n)
are equivalent. i.e. (r,n,n0) belongs to RCT if and only if
(r,n0,n) belongs to RCT. Any addition or removal of
resource conflicts in RCT should be warned to the work-
flow designer.

4. Edit operations for workflow specification

Our approach records the information about resources
and processes affected by each edit operation. The informa-
tion about resource conflicts is recorded in table RCT, and
reported to designers immediately. All the edit operations
are asked to follow constraints from axiom 1 for the integ-
rity of a well-formed workflow. It is a more popular facility
to provide the information, created or to be applied, after
user enters an edit operation in current editors of program-
ming languages. Similarly, our methodology calculates the
influences after each edit operation to improve the interac-
tion between designers and the environment. With the meth-
odology, the designers can obtain information after each
move they made, and respond to any conflicts immediately.

Generally speaking, insertion, modification and deletion
of the resources and processes are the operations made by
the designers. To simplify our discussion, the following lim-
itations to the edit operations are made. First, an activity
process can be directly inserted into/removed from a work-
flow. A pair of control processes is added/removed through
inserting/removing a control block into/from the workflow.
In modifying properties of a process, only adding/removing
resource references and altering minimal or maximal work-
ing durations are discussed, and only properties of activity
processes can be modified. Before the edit operations are
introduced in detail, the basic model for workflow specifica-
tions, processes, and control blocks are defined in Defini-
tion 18. Editing must be operated on a newly initialized
basic workflow specification or on an existent one.

Definition 18 (Basic models).

A basic workflow specification ws = ({S,E},{(S,E)}, {},
{}, S,E) in which
D(S) = d(S) = D (E) = d (E) = 0
A basic process n: n.type = {ACT, AS,OS, AJ,OJ},n.
ref = /, d(n) = D(n) = 0
A basic control block c: c.start = ns, c.end = ne, (ns,ne)2
F, c.p_set = /
In this paper, the following edit operations are discussed:

(1) Inserting a basic activity process n into an existent
flow (ni,nj):
Type of n is initialized as ACT. (ni,nj) is removed
from F; and (ni,n), (n,nj) are added into F. If ni is
not a split process, set n.cb to ni.cb, or set n.cb to
the control block which ni starts. If n.cb is not
‘‘ROOT”, add n to n.cb.p_set.

(2) Inserting a basic control block c into an existent flow
(ni,nj):
(ni,nj) is removed from F and (ni,c.start) and (n,c.end)
are added into F. If ni is not a split process, set both
c.start.cb and c.end.cb to ni.cb, or set them to the con-
trol block which ni starts. Let c0 be c.start. cb. Add
c.start and c.end to c0.p_set if c0 is not ‘‘ROOT”.

(3) Adding a split path to a control block:
For a control block c, if (c.start,c.end) R F, add
(c.start,c.end) to F.

(4) Removing a split path from a control block:
For a control block c, if (c.start,c.end) 2 F and
c.p_set – /, remove (c.start,c.end) from F.

(5) Adding/removing a resource r to a workflow:
Add/Remove some resource r into/from R, respec-
tively. The resource r may be a document, some
human resource, or external data, etc.

(6) Adding a resource reference r to an activity process n:
Add r to n.ref and add n to r.use.

(7) Removing a resource reference r from an activity pro-
cess n:
Remove r from n.ref and remove n from r.use.

(8) Setting minimal or maximal working durations of an
activity process n:
Set d(n)/D(n) to wish value.

(9) Removing an existing activity process n:
For any resource reference rin n.ref, remove n from
r.use, remove inflow (ni,n) and out-flow (n,nj) from

H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783 1775
F, and add (ni,nj) to F. Then, if n.cb is not ‘‘ROOT”,
remove n from n.cb.p_set. Finally, remove n from N.

(10) Removing a control block c from the workflow:
Remove all the control blocks and activity processes
in c, remove (ni,c.start), (c.end,nj), and (c.start,c.end)
from F, and add (ni,nj) to F. Then, remove c.start and
c.end from N

Among the operations above, operations (1), (2), (6)–
(10) may generate or eliminate resource conflicts. Opera-
tion (5) may eliminate resource conflicts. The designers
modify working duration with operation (8) and therefore,
operation (8) is also called duration modification operation
in this paper. Operation (6), (7), and (8) may cause a series
of changes in EAIs and therefore is called temporal related
operations. Combination between the operations and our
approaches is discussed in Section 5.5.
5. An incremental algorithm detecting resource conflicts in

workflow specifications

In this section, several algorithms for detecting different
properties of a resource conflict are introduced in Sections
5.1–5.4. For each algorithm, the correctness of output con-
ditions is proved and the time complexity is discussed. At
Section 5.5, the relations between our algorithm and edit
operations are discussed.
5.1. Algorithm for detecting resource dependency

With the target process n which has resource depen-
dency on resource r, Algorithm 1 simply collects all the
other processes which have resource dependency on r.
The algorithm is primarily used after a new resource refer-
ence is added to a process.

Algorithm 1 (Check resource dependency).

Input: r 2 R, n 2 N, n.type = ACT, r 2 n.ref

Output: A process set named CRDwhich contains all the
processes that have resource dependency on r. n R CRD

Algorithm:

Process set CRD {
1. CRD = r.use � {n}

}

By Definitions 2 and 14, the proof to the correctness of
the algorithm is intuitive and therefore omitted.

The time complexity of Algorithm 1 is constant, since
the data required are recorded during editing.

5.2. Algorithm for detecting potentially concurrent execution

In this section, the algorithm to detect potentially con-
current execution is constructed. Before the algorithm is
introduced, some lemmas and an additional definition
helping the discussion of the algorithm are presented.
To detect whether two mutually unreachable processes
have potentially concurrent execution, the type of their
nearest common ancestor is checked, and their active inter-
vals are compared.

First, the nearest common ancestor of any two mutually
unreachable activity processes is a split process. This fea-
ture is formally described in Lemma 1 and proved as
follows.

Lemma 1

"processes n,n0 2 N, n.type = n0.type = ACT
When Reachable(n, n0) = false and Reachable(n0, n) =

false, NCA(n, n0).type = {AS, OS}
Proof. Assume that n0 = NCA(n,n0) and n00.type R
{AS,OS}. With Axiom 1, it is known that n00 has only one
out-flow denoted as (n00, na). Since (n00,na) is the only out-
flow of n00, the path between n00 and n is (n00,na, . . . ,n). On
the other hand, the path between n00 and n0 is also
(n00,na, . . .,n0). Therefore, na has smaller distance to both n

and n0 than n00 does. n00 can not be NCA(n,n0). It is a
contradiction. h

With Lemma 1, the nearest common ancestor can be eas-
ily obtained from the split typed ancestors. Algorithm 2 is
designed to obtain the list of all split typed ances-
tors between an activity process and the root path. The near-
est common ancestor of the target processes can be located
by comparing the sets obtained by the algorithm.

Since our purpose is to find the nearest common
ancestor, the output set of Algorithm 2 is produced as path
ordered, i.e. the processes in the output set is ordered by dis-
tance from the target process. To clearly elaborate this con-
cept, a path ordered process set is defined as following.

Definition 19 (Path ordered process set).
A process set S is said to be path ordered if the following
conditions hold:
(1) if jSj = 0, S = /
(2) if jSj = 1, S = {njn 2 N}
(3) if jSj > 1, S = {n1, . . . ,nkjni 2 N}, "nj 2 S,

1 < j 6 k, Reachable(nj,nj�1) = true
In our algorithm, it is assumed that the order of ele-
ments in any subset of a path ordered set does not change,
and therefore the subset(s) are still kept path ordered. With
this assumption, intersection of two path ordered sets is also
path ordered.

Algorithm 2 tracks back from the target input activity
process n, and finds the split typed ancestors which start
the control block containing n. In other words, if n0 col-
lected by Algorithm 2 is the start process of a control block
c, Reachable(c.start,n) and Reachable(n,c.end) are both
true. The output set of Algorithm 2 is path ordered as
defined in Definition 19.

1776 H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783
Algorithm 2 (Find split ancestor(s) belonging to).
Input: n 2 N, n.type = ACT
Output: a path ordered process set named FANB

(1) " process ni 2 FANB ni is an ancestor of n

(2) " process ni 2 FANB ni.type = {AS,OS}
Algorithm:

Path ordered process set FANB {

1. c = n.cb

2. loop {
3. if(c = = ROOT) break the loop
4. tp = c.start

5. add tp into FANB

6. c = tp.cb

7. }
}

Proof. Let us assume that the result set FANB =
{p1,p2, . . . ,pk}. With the loop structure of the algorithm,
pi + 1 is the start process of the control block containing
pi, i.e. pi + 1 is pi .cb.start. Since the loop halts when the
process is on the root path, with Definition 3, Reach-

able(pi + 1, pi) = true holds. FANB is path ordered. p1 is
n.cb.start if n.cb is not ROOT. Reachable(p1,n) = true.
Therefore for any process pi in FANB, Reach-

able(pi,n) = true, pi is an ancestor of n. The output condi-
tion (1) holds.

All the processes collected into FANB are start process
of a control block. By Definition 3 again, the start process
of any control blocks is either AS or OS. The output
condition (2) also holds. h

The time complexity of Algorithm 2 is decided by the
loop part. The number of loops required is decided by the
number of nested control blocks containing the input pro-
cess, and the start processes of each of these control blocks
are collected by the algorithm. To simplify our discussion,
without loss of generality (W.L.O.G), it is assumed that
each split process is followed with at least two split paths.
With the definition about well-formed DAG in Axiom 1,
control blocks are totally contained or exclusive to each
other like what Fig. 3 shows. In real cases, the number of
split paths following each split processes may vary; how-
ever, it does not affect the upper-bound of the time complex-
ity of the algorithm. Due to the path growth of splitting, the
Fig. 3. Sample structure of control blocks.
time complexity of Algorithm 2 is O(logjNj). In Fig. 3, the
total number of processes is 10, and the number of split pro-
cesses from root path to any activity process is 2. This exam-
ple indicates the execution of Algorithm 2 needs 2 loops
only, much less than log210, i.e. log2jNj, loops.

Algorithm 2 is the core part to detect if two activity pro-
cesses are in different paths split from some process. With
the algorithm, Algorithm 3 is constructed to detect poten-
tially concurrent execution among input processes as
following:

Algorithm 3 (Check potentially concurrent execution).

Input: n 2 N, n.type = ACT, S = {nijni 2 N, ni.type =
ACT}
Output: a process set named CPCE
(1) CPCE # S

(2) " process ni 2 CPCE, ni and n have potentially

concurrent execution
Algorithm:
Process set CPCE {

1. " process ni 2 S

2. if(Reachable(n,ni) == true or Reachable(ni,n) == true)
remove ni from S

3. " process ni 2 S {

4. Let U = FANB(n) \ FANB (ni) = {na1, . . . ,nak}
5. if(U – / and na1.type == AS and EAI(n) � EAI(ni) >

0)
6. add ni to CPCE

7. }
}

To prove the correctness of output conditions of Algo-
rithm 3, the following lemma is shown.

Lemma 2.

"processes n, n0 2 N, n.type = ACT and n0.type = ACT

If Reachable(n,n0) and Reachable(n0, n) are both

false, NCA(n, n0) is the first element in FANB(n) \
FANB(n0).

Lemma 2 indicates that the nearest common ancestor of
any two mutually unreachable processes is in the intersec-
tion of sets obtained by Algorithm 2 for both processes.
To prove Lemmas 2–4 are introduced.

Based on Lemma 1 and Definition 3, the nearest com-
mon ancestor of any two mutually unreachable processes
is known as a split typed process. Lemma 3 shows that
two mutually unreachable processes are contained in the
control block started by their nearest common ancestor.

Lemma 3

"processes n, n0 2 N, n.type = ACT and n0.type = ACT

When Reachable(n,n0) = false and Reachable(n0, n) =

false and NCA(n, n0) is c.start for some control block c,

Reachable(n, c.end) = Reachable(n0, c.end) = true

H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783 1777
Proof. By way of contradiction (B.W.O.C), if one of
Reachable(n,c.end) and Reachable(n0,c.end) is false. W.L.
O.G, it is assumed that Reachable(n,c.end) = false and
Reachable(n0,c.end) = true. If Reachable(c.end,n) = true,
Reachable(n0,n) = true. It is a contradiction. On the other
hand, let’s discuss the condition about Reachable(c.end,
n) = false. With Definition 3, it is known that Reachable

(c.start,c.end) = true. Since Reachable(c.end,n), Reachable

(n,c.end) and Reachable(n,c.end) are all false, c.start can
not be an ancestor of n. It is a contradiction. h

Lemma 4 shows that for any activity process n,
Algorithm 2 collects the start process(es) of the control
block(s) containing n. In other words, there exist paths
from n to the corresponding join processes of these split
processes.

Lemma 4

"n 2 N, n.type = ACT and c 2 C, Reachable(c.start,n) =

true

c.start 2 FANB(n) if and only if Reachable(n, c.end) =

true
Proof

(1) If Reachable(n,c.end) = true, c.start 2 FANB(n)B.W.
O.C, it is assumed that n0 R FANB(n). Since Reach-

able(n,c.end) and Reachable(c.start,n) are both true,
n is contained in c. With the Algorithm 2 and the edit
operations defined, it is known that c.start is con-
tained in FANB(n). It is a contradiction.

(2) If c.start 2 FANB(n), Reachable(n,c.end) = true.

B.W.O.C, it is assumed that Reachable(n, c.end) = false.
Since Reachable(c.start,c.end) and Reachable(c.start,n)
are both true, Reachable(c.end,n) is true. With the
Algorithm 2 and the edit operations defined, it is known
that c.start can not be in FANB(n) if c.start,c.end and n

are on the same path in such a sequence. It is a
contradiction.

With all proofs above, Lemma 4 holds. h

With Lemmas 3 and 4, Lemma 2 is proved as follows.

Proof of Lemma 2. By Definition 13, NCA(n,n0) is an
ancestor of both n and n0. With Lemmas 1 and 3, NCA(n,n0)
is known as a split process and is the start process of some
control block c. Processes n and n0 are quoted by c.start and
c.end. With Lemma 4 and output conditions of Algorithm
2, NCA(n,n0) 2 FANB(n) \ FANB(n0). By definition, both
FANB(n) and FANB(n0) are path ordered so that
FANB(n) \ FANB(n0) is path ordered. Thus, the first
element in FANB(n) \ FANB(n0) is the nearest one to n

and n0 among all the processes in the set. In other words,
NCA(n,n0) is the first element in FANB(n) \ FANB(n0).
Lemma 2 holds. h

With Lemma 2, the correctness of the output conditions
of Algorithm 3 is now proved.
Proof of the output conditions of Algorithm 3. Output con-
dition (1) holds simply because of line 1, 3, and 6 of the
algorithm.

" process ni 2 CPCE, it is known that Reachable(n,ni)
and Reachable(ni,n) are both false due to line 2 of the
algorithm. With Lemma 2 it is known that NCA(n,ni) is
equal to na1 which is the first element of
FANB(n) \ FANB(ni). From line 5 of the algorithm,
NCA(n,ni).type = AS and EAI(n) � EAI(ni) > 0 holds.
Therefore, n and ni are potentially concurrently executed
and the output condition (2) holds. h

The time complexity of Algorithm 3 is decided by
function Reachable(). With Axiom 1, for p,q 2 P, whether
Reachable(p,q) = true can be decided by a simple process
tracking methodology started from p. The methodology
traces the process one by one in BFS (Breadth First Search)
by flows in F until the end process or the target process q is
reached. This methodology provides time complexity O(jNj)
to the function. There might exist some more talented idea
which make Reachable() faster; however to discuss how to
improve the efficiency of Reachable() is out of the scope of
this paper. With a normal and reasonable function Reach-
able() and the time complexity discussed about Algorithm 2,
the time complexity of Algorithm 3 is known as O(jNj2).
5.3. Algorithm to calculate estimated active intervals

In Definitions 5 and 6, the formula to calculate EAIs of
processes is defined. EAI change ripples to descendent pro-
cesses until a join processes or the end process is met. Algo-
rithm 4 works after any working duration is modified or an
activity process/control block is removed. All the affected
processes are touched by the algorithm and their estimated
active intervals are correctly updated. In the algorithm,
EST0(n) and LET0(n) are records to original EAI(n) before
the algorithm is invoked. In the following paragraphs,
EAI0(n) represents [EST0(n),LET0(n)]. EAI0(n) is used to
decide if the EAI(n) is updated in the calculation.

Algorithm 4 (Calculate EAI).

Input: n 2 N, n.type = ACT

Output: a process set CEAI containing all processes
which EAI is changed in this calculation
Algorithm:
Process set CEAI {

1. initialize a process queue Q
2. Q.enqueue(n)
3. " ni 2 N, (n,ni) 2 F

4. Q.enqueue(ni)
5. while(Q is not empty) {
6. p = Q.dequeue

7. EST0(p) = EST(p), LET0(p) = LET(p)
8. if(p.type == AJ) {
9. EST(p) = MAX ({EST(ni) + d(ni)j(ni,p) 2 F})

10. LET(n) = MAX({LET(ni)j(ni,p) 2 F})
11. }

1778 H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783
12. else if(p.type == OJ) {
13. EST(p) = MIN({EST(ni) + d(ni)j(ni,p) 2 F})
14. LET(p) = MAX({LET(ni)j(ni,p) 2 F})
15. else {
16. there exists (ni,p) 2 F such that
17. EST(p) = EST(ni) + d(ni);
18. LET(p) = LET(ni) + D(p);
19. }
20. if(EST0(p) R EST(p) or LET0(p) R LET(p)) {
21. add p to CEAI

22. ni 2 N, (p,ni) 2 F

23. if(ni R Q) Q.enqueue(ni)
24. }
25. }

}

Proof. To prove the correctness of the algorithm, first, it is
shown that after a duration modification operation, for
any process, its EAI is changed if and only if it is in CEAI.
Any EAI change is accomplished from line 8 to line 19 in
the algorithm only. Therefore when any EAI change
occurs, the process with altered EAI is found in line 20
and is put into CEAI at line 21. On the other hand, with
the algorithm, it is known that the process with no EAI
change is not put into CEAI. h

Second, it is shown that for processes whose EAI should
be altered, they are in CEAI. By Definitions 4–6, for a pro-
cess, its EAI is changed only when (1) its D value is mod-
ified, (2) the d value of its precedent process is modified,
or (3) EAI of its precedent process is changed. When d(n)
or D(n) is modified, n and its descendent process are enque-
ued into Q at line 2 and line 4. EAI change originated from
condition (1) or (2) is calculated from line 8 to line 19 and
the process with altered EAI is put into CEAI at line 21.
For any (q0,q) 2 F If EAI(q0) is changed, q is enqueued into
Q at line 23, and therefore EAI(q) is calculated from line 8
to line 19 and is put into CEAI at line 21 if EAI(q) is chan-
ged. The process with EAI change originated from condi-
tion (3) is also included in CEAI.

Last, according to line 20 to 24, a process is put into
CEAI if its EAI has been changed. Since the EAI is calcu-
lated according to the formula defined in Definitions 5 and
6, any process that should have no EAI change is not put in
CEAI.

With above statements, the correctness of Algorithm 4
holds. h

The time complexity of Algorithm 4 is simply O(jNj)
since the operation affect only reachable processes of n

which are at most all processes in the workflow.
5.4. Algorithm for checking resource conflicts after temporal

related operations

After a temporal related operation, the RCT set may need
update. The following lemma describes the influences
created by temporal related modification on a workflow
specification. Based on the lemma, Algorithm 5 which
updates RCT after temporal related operations is
constructed.

Lemma 5

"processes n 2 N

The shrink of EAI(n) can not create new resource

conflicts, and the expansion of EAI(n) cannot eliminate

any resource conflict either
Proof. The shrinks or expansions of EAI(n) do not affect
the structure or the resource references of the workflow.
Therefore, the creation or elimination of resource conflicts
by temporal related operations is only resulted from the
change(s) of EAI(s). h

The discussions are made as following.

(1) The shrink of EAI(n) can not create new resource
conflicts.
B.W.O.C, it is assumed that (r,n,n0) is a new resource
conflict created due to EAI(n) � EAI(n0) > 0 after the
shrink. This case indicates first, EAI0(n) � EAI(n0) <
0, i.e. MIN({LET0(n), LET(n0)}) �MAX({EST0(n),
EST(n0)}) < 0, and second, LET0(n) > LET(n) or
EST0(n) < EST(n). The above statement induces that
MIN({LET(n),
LET(n0)}) �MAX({EST(n),EST(n0)}) < 0, i.e.
EAI(n) � EAI(n0) < 0. It is a contradiction.

(2) The expansion of EAI(n) can not eliminate any
resource conflict.
B.W.O.C, it is assumed that (r,n,n0) is a resource con-
flict eliminated due to EAI(n) � EAI(n0) < 0 after the
expansion. This case indicates first, EAI0(n) �
EAI(n0) > 0, i.e. MIN({LET0(n),LET(n0)}) �MAX({
EST0(n),EST(n0)}) > 0, and second, LET0(n) <
LET(n) or EST0(n) > EST(n). The above statement
induces that MIN({LET(n),LET(n0)}) �MAX({EST

(n),EST(n0)}) > 0, i.e. EAI(n) � EAI(n0) > 0. It is a
contradiction.

By (1), (2), the lemma is proved. h

Algorithm 5 checks the affected processes calculated by
Algorithm 4 according to the properties in Lemma 5.

Algorithm 5 (Check resource conflict after duration
modification).

Input: process set S = {njn 2 N,n.type = ACT,
EAI0(n) – EAI(n)}
Output:
Algorithm:

CRCDM {

1. " n 2 S {
2. if(EST(n) > EST0(n) or LET(n) < LET0(n)) {
3. "r 2 n.ref

4. " (r,n,n0) 2 RCT

H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783 1779
5. if(EAI(n) � EAI(n0) < 0) remove (r,n,n0) from
RCT

6. }
7. if(EST(n) < EST0(n) or LET(n) > LET0(n)) {
8. " r 2 n.ref

9. " n0 2 CPCE(n,CRD(r,n))
10. add (r,n,n0) to RCT

11. }
12. }

}

In Algorithm 5, the activities from line 2 to line 6 check
the existent resource conflicts and the remove the resource
conflicts which does not exist further. The activities from
line 7 to line 12 check if there is any new resource conflict
created because of the edit operation. The resources refer-
enced by the target process are extracted at line 8. At line 9,
with Algorithms 1 and 3, the processes which have resource
conflicts to the input processes are picked.

The time complexity of the first part (line 2 to line 6) is
O(jRj*jNj) because there are at most jRj resources refer-
enced by a process and jNj � 1 other processes might have
resource conflict with n. The time complexity for the sec-
ond part (line 7 to line 11) of the algorithm is O(jRj*jNj2)
since the time complexity for function CPCE() (Algorithm
3) is O(jNj2). With the loop quotes from line 1 to line 12,
the time complexity for Algorithm 5 is O(jRj*jNj3).
5.5. Combining the algorithms with the operations

In Section 4, 10 edit operations for workflow specifica-
tions are introduced, and seven of them may result in
resource conflicts. The algorithms described in Section 5
can be used to detect resource conflicts caused by the seven
operations. In following paragraphs, the combinations
between the algorithms and each operation are described.

(1) Inserting a basic activity process n into an existent
flow f.
CEAI(n) is called to calculate EAI(n). According to
Definition 18, D(n) and d(n) are both initialized as
zero, and n.ref is empty. Therefore, no resource con-
flicts are created or eliminated, and it is not necessary
to call CRCDM() in this operation.
Fig. 4. The sample wor
(2) Inserting a basic control block c into an existent flow
f.
Similar to (1), CEAI(c.start) is called.

(3) Removing a resource r to a workflow:
For any process n 2 r.use, remove r from n.ref. For
any processes ni,nj 2 N, (r,ni,nj) 2 RCT, remove
(r,ni,nj) from RCT.

(4) Adding a resource reference r to an activity process n.
"n0 2 CPCE(n,CRD(r,n)). (r,n,n0) is put in RCT.

(5) Removing a resource reference r from an activity pro-
cess n.
RCT is checked to remove resource conflicts related
to both r and n. In other words, for any resource con-
flict (r,n,ni) 2 RCT where ni 2 N, (r,n,ni) is removed
from RCT.

(6) Setting minimal or maximal working duration of an
activity process nCRCDM(CEAI(n)) is called.

(7) Removing an existing activity process n.
Resource conflicts related to n are removed from
RCT. Before n is removed from the specification,
d(n) and D(n) is set to 0, and For (ni, n) and
(n,nj) 2 F, (ni,nj) is added to F after the removal. nj’s
precedent process is changed from n to ni, and there-
fore CRCDM(CEAI(nj)) is called to calculate the
effect of EAI change.

(8) Removing a control block c from the workflow.
The resource conflicts related to the activity processes
in c are removed from RCT. For (ni,c.start) and
(c.end,nj) 2 F, (ni,nj) is added to F after the removal.
nj’s precedent process is changed from c.end to ni,
and therefore CRCDM(CEAI(nj)) is called to calcu-
late the effect of EAI change.
6. Examples

To demonstrate our algorithms, three examples are con-
structed in this section. First, how to detect the resource
conflict generated by resource assignment is shown; second,
the affect by change of working durations is represented;
and the last example shows the influence when an activity
process is removed.

The first example is initialized with the workflow speci-
fication in Fig. 4 and the corresponding algorithms are
applied step by step in the following sections.
kflow specification.

1780 H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783
6.1. Example 1: adding a resource reference

With the sample example in Fig. 4, the designer adds
resource reference r1 to process n5. With discussions in
Section 3, n5.ref = {r1} and r1.use = {n5,n7,n11}.CPCE(n5,
CRD(r1,n5)) is called.

CRD(r1,n5) simply returns {n7,n11}. Now let’s trace how
CPCE(n5, {n7,n11}) works. Since Reachable(n5,n11) =
true,n11 is neglected. By following the definition of path
ordered set, FANB(n5) = {n3,n2} because Dist(n3,n5) = 1
and Dist(n2,n5) = 2. At the same time, FANB(n7) =
{n4,n2}, and FANB(n5) \ FANB(n7) = {n2}. Since n2 is
the first element of the intersection and n2.type = AS, n5

and n7 have a nearest common ancestor which is typed
and-split.
EAI(n5) � EAI(n7) = MIN({LET(n5),LET(n7)}) �MAX({
EST(n5),EST(n7)}) = MIN({17,9}) �MAX({3,3}) = 9 �
3 = 6 > 0. Therefore, CPCE(n5, {n7,n11}) = {n7}. Since
(r1,n5,n7) R RCT, it is a new generated resource conflict.
The designer is warned when it is put into RCT.

After the operation, the workflow specification is
updated as in Fig. 5. The changed parts are marked with
different colors and under-scopes.
6.2. Example 2: modifying working durations of a process

Now, the influences of the modification on working
durations are shown. Let the designer change d(n5) in
Fig. 5 from 7 to 4. CRCDM(CEAI(n5)) is called. With
Fig. 5. The sample workflow specification a

Fig. 6. The sample workflow specificati
Algorithm 4 it is known that CEAI(n5) returns
{n5,n9,n11,n12,n13,E}.

CRCDM({n5,n9,n11,n12,n13,E}) checks the processes in
the target set to validate if there is any change about
resource conflicts. To simplify the discussion, the example
only discusses how the algorithms dealing with n5 and n11

while the other processes in the input set have no resource
references. CPCE(n5,CRD(r1,n5)) returns {n7}. However
resource conflict (r1,n5,n7) has already be in RCT, and
therefore it makes no differences. CPCE(n11,CRD(r1,n11))
is also {n7}. Since (r1,n7,n11) R RCT, (r1,n7,n11) is put into
RCT. After the operation, RCT = {(r1,n5,n7), (r1,n7,n11)}
and the designer is warned of the new generated resource
conflict. The workflow specification after the operation is
as in Fig. 6, and the altering part is also marked in different
colors and under-scopes.
6.3. Example 3: removing an activity process from the
workflow

In this section, the influence of removal of an activity
process named n11 from the workflow specification repre-
sented in Fig. 6 is shown.

(n9,n11) and (n11,n12) are removed from F, and (n9,n12) is
added to F. Since r1 2 n11.ref, n11 is removed from r1.use.
Therefore, (r1,n7,n11) is removed from RCT, and the
removal of the resource conflict is immediately informed
to the designer. Than, CRCDM(CEAI(n12)) is called.
CEAI(n12) returns {n12,n13,E}. Since there is no resource
fter modification on resource references.

on after the duration modification.

Fig. 7. The sample workflow specification after the removal of an activity process.

H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783 1781
referenced by n12, n13, and E, no further change in RCT is
made. After the removal, the workflow specification is as in
Fig. 7, and the altering part is marked in different colors
and under-scopes.

7. Related work

The analysis of structural aspects of workflow specifica-
tion was widely discussed. Bajaj defined a well-formed
workflow model for structural analysis (Bajaj and Ram,
2002). Sadiq introduced directed graph (Sadiq and
Orlowska, 2000; Sadiq et al., 2003) to analyze process
model in structure correctness, such as deadlock or incon-
sistencies in synchronization. Effective algorithm was built
for analysis in Sadiq’s research. Aalst transformed work-
flow model onto Petri-nets (van der Aalst et al., 1999;
van der Aalst and ter Hofstede, 2000; van der Aalst,
1998). Petri-nets are suitable for the analysis of parallel
behavior in a workflow. The existent tools or methodolo-
gies for Petri-nets can be adopted to analyze workflows
through Aalst’s transformation. Adam constructed a work-
flow model with temporal consideration based on Petri-net
(Adam et al., 1998) for analysis, simulation and validation.

Combining timing constraints into the analysis of work-
flow models becomes popular after many researches about
structural aspects of a workflow are accomplished. Adam
et al. (1998) took timing constraints as external conditions
of a workflow to analyze structural correctness of a Petri-
net based workflow model. Li et al. (2004b) added timing
constraints into workflow nets (WF-net, Petri-net based
workflow model) to make a timing workflow net (TWF-
net) for performance analysis. Workload and some other
timing constraints are discussed in Li’s research. Eder dis-
cussed timing constraints in Eder et al. (1999a,b). Based on
a graph-based workflow model, Eder developed a timed
graph which shows the working duration with the earliest
and the latest finish time. Several time constraints such as
fixed-date, lower-bound, and upper-bound constraints are
discussed in addition. The algorithms to build the timed
graph and to detect violation of timing constraints are con-
structed in Eder et al. (1999b). Marjanovic verified a pro-
duction workflow model with temporal constraints in a
dynamic way (Marjanovic, 2000). In Marjanovic (2000),
the timing model is built based on duration and instantia-
tion space. Absolute and relative deadline constraints are
modeled and the dynamic methodologies verifying such
constraints are thus built. The time modeling raised in
Marjanovic (2000) can be also used for monitoring the exe-
cution of workflows, reasoning about the deadlines, and
managing the workloads of the tasks.

Resource allocation is another topic for analysis of
workflow models. Tang et al. (2004) extended a Petri-net
based workflow model for modeling compositions of
web-services and resources. Reveliotis (2003), Park and
Reveliotis (2001) integrated resource allocation systems
into a workflow model in order to analyze deadlock and
synchronization problems. Sun et al. (2006) extended Li’s
research (Li et al., 2004b) with additional resource con-
straints to analyze performance of workflows. Russel con-
cluded 43 resource allocation patterns in Russell et al.
(2004). Coordination among workflow, human resources
and external resources are discussed in detail and are well
categorized. However in Russel’s research, resources are
more like the participants of workflows, and is different
from the resources discussed in our work in definitions
and usages. Various representations and utilization of
resources in workflows are captured as patterns (Russell
et al., 2004).

Li et al. (2004a) modeled resources and temporal con-
straints into workflow specification for analysis. Li focused
on addition and removal of resource conflicts in a timed
workflow specification. In Li et al. (2004a), the notations
of features used in resource analysis in a timed workflow
are defined. Li’s work gave a solid foundation for further
work. Therefore, Zhong and Song (2005) applied it on a
Petri-net based workflow model and Hsu et al. (2005)
applied it on a DAG based model. In Zhong and Song
(2005), Zhong applied Li’s timing model to form Petri-
net based timed workflow conceptually similar to the
model described in Hsu et al. (2005). In Hsu et al. (2005),
a complete and detailed algorithm for the analysis of
resource conflicts in a workflow specification was raised.
Hsu focused on providing information to the workflow
designers about resource conflicts in a workflow specifica-
tion during design time. With an incremental algorithm,
the information created during designing a workflow is

Fig. 8. The super workflow concept model for analysis of multiple workflows.

1782 H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783
kept, and is used to calculate resource conflicts for each
designer’s edit operation. In order to support design pro-
cess of workflows, relationships between edit operations
and analysis methodologies need to be clarified; however,
none of above work provide such discussion. In this paper,
the works based on Hsu et al. (2005) are carefully rebuilt
and refined, and in order to support design environment,
the edit operations used in resource and temporal con-
straints are defined. The combination between edit opera-
tions and analyzing methodologies are described and
discussed. In this paper, more features for workflow design
are considered than in Li et al. (2004a), and more compact
algorithms are constructed than in Hsu et al. (2005).

Based on the former research of static timing manage-
ment of workflow specifications, H.C. Li continued his
own research by dynamically analyzing the resource and
temporal constraints between distinct workflow instances
(Li and Yang, 2005). In Li and Yang (2005), the concept
of reference points is introduced to show the relative timing
constraints between the activities in different workflow
instances. According to a pre-specified reference point in
each workflow, all the timing constraints and EAIs are cal-
culated. If any resource conflict exists, the EAIs of the pro-
cesses involving the conflict are adjusted.

8. Conclusion and future work

Workflow specification is a formal description of work-
flow applications. A proper environment for verification of
structural, resource, and timing constraints can help
designers produce workflow applications of high quality.
There’re various effective approaches for verification of
structural and temporal correctness. However there is little
discussion for the analysis during specification process.
This paper describes an incremental algorithm verifying
resource conflicts and temporal constraints in a workflow
specification after every edit operation. The relationship
between each operation and the handling method is pre-
sented in detail. These methods are clarified also.
For future work, our methodology might be extended
for multiple instances of the same resource type or multiple
workflow specifications. To extend for multiple instances of
the same resource type, a counter can be added to the
resource model to indicate the number of instances of each
resource type. For a resource type, when the number of ref-
erences exceeds that of its counter, a resource conflict
might happen.

Our methodology focuses on detecting resource con-
flicts in a workflow specification during design time. Some-
times, there are multiple workflow specifications involving
to one single design work, and the detection of potential
resource conflicts among the workflows is required. The
workflows can be conceptually integrated into a super
workflow to adopt our methodology for resource conflict
detection. For example, as Fig. 8 shows, an and-split pro-
cess follows the start process of the super workflow to sim-
ulate concurrent execution, and for each split path of the
and-split, an activity process follows the and-split process
for simulation of firing delay to the corresponding
participated workflow. Each participated workflow starts
after its firing delay, and is joined to an and-join process
after its end. With the concept of the super workflow, mul-
tiple workflows can be viewed as one single workflow spec-
ification, and our methodology can almost be directly used
for resource conflict detection among the participated
workflows.

References

Adam, N., Atluri, V., Huang, W., 1998. Modeling and analysis of
workflows using petri-nets. Journal of Intelligent Information System
10, 131–158.

Allen, J.F., 1983. Maintaining knowledge about temporal intervals.
Communication of the ACM 26 (11), 832–843.

Bajaj, A., Ram, S., 2002. SEAM: a state-entity-activity-model for a well
defined workflow development methodology. IEEE Transactions on
Knowledge and Data Engineering 14 (2), 415–432.

Chen, J., Yang, Y., Chen, T.Y., 2004. Dynamic Verification of temporal
constraints on-the-fly for workflow systems. In: Proceedings of the
11th Asia-Pacific Software Engineering Conference, pp. 30–37.

H.-j. Hsu, F.-j. Wang / The Journal of Systems and Software 81 (2008) 1770–1783 1783
Chinn, S.J., Madey, G.R., 2000. Temporal representation and reasoning
for workflow in engineering design change review. IEEE Transactions
on Engineering Management 47 (4), 485–493.

Eder, J., Panagos, E., Pozewaunig, H., Rabinovich, M., 1999a. Time
management in workflow systems. In: Proceedings of International
Conference Business Information Systems, pp. 266–280.

Eder, J., Panagos, E., Rabinovich, M., 1999b. Time constraints in
workflow systems. In: Proceedings of 11th International Conferenc on
Adv. Inf. Systems Engineering, Lecture Notes in Computer Science,
vol. 1626, pp. 286–300.

Fleurke, M., Purvis, Ehrler L., 2003. JBees – an adaptive and distributed
agent-based workflow system. In: Proceedings of the International
Workshop on Collaboration Agents: Autonomous Agents for Collab-
orative Environments (COLA 2003), Halifax, Canada.

Had, Y., Jiang, C., Luo, X., 2005. Resource scheduling model for grid
computing based on sharing synthesis of Petri-net, In: Proceedings of
the Ninth International Conference on Computer Supported Cooper-
ative Work in Design, pp. 367–372.

Hollingsworth, David, 1995. The Workflow Reference Model.
Hollingsworth, David, 2004. The Workflow Reference Model: 10 Years

On.
Hsu, H.J., Yang, D.L., Wang, F.J., 2005. An incremental analysis to

workflow specifications. In: Proceedings of the 12th Asia-Pacific
Software Engineering Conference, pp. 122–129.

Kim, K. 2003 Workflow dependency analysis and its implications on
distributed workflow systems, In: Proceedings of the 17th Interna-
tional Conference on Advanced Information Networking and Appli-
cations, pp. 677–683.

Li, H., Yang, Y., 2005. Dynamic checking of temporal constraints for
concurrent workflows. Electronic Commerce Research and Applica-
tions 4, 124–142.

Li, J., Fan, Y., Zhou, M., 2003. Timing constraints workflow nets for
workflow analysis. IEEE Transactions on Systems, Man, and Cyber-
netics – Part A: Systems and Humans 33 (2), 79–194.

Li, Hongchen, Yang, Yun, Chen, T.Y., 2004a. Resource constraints
analysis of workflow specifications. Journal of System and Software 73
(2), 271–285.

Li, J., Fan, Y., Zhou, M., 2004b. Performance modeling and analysis of
workflow. IEEE Transaction on Systems, Man, and Cybernetics – Part
A: Systems and Humans 34 (2), 229–242.

Ling, S., Schmidt, H., 2000. Time Petri nets for workflow modelling and
analysis. In: Proceedings of IEEE International Conference on
Systems, Man and Cybernetics, pp. 3039–3044.

Marjanovic, O., 2000. Dynamic verification of temporal constraints in
production workflows. In: Proceedings of the 11th Australian Data-
base Conference, Canberra, Austalia, pp. 74–81.

Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N., 1999. Definition of
deadlock patterns for business processes workflow models. In:
Proceedings of the 32nd Hawaii International Conference on System
Sciences, pp. 1–11.
Park, J., Reveliotis, S., 2001. Deadlock avoidance in sequential resource
allocation systems with multiple resource acquisitions and flexible
routings. IEEE Transaction on Automatic Control 46, 1572–1583.

Reichert, M., Dadam, P., 1998. ADEPT-supporting dynamic changes of
workflows without losing control. Journal of Intelligent Information
System 10 (2).

Reveliotis, S., 2003. Structural analysis of resource allocation systems with
synchronization constraints. In: Proceedings of the 2003 IEEE
International Conference on Robotics and Automation, pp. 1045–
1049.

Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.,
2004. Workflow resource patterns, BETA Working Paper Series, WP
127, Eindhoeven University of Technology, Eindhoven, 2004.

Sadiq, W., Orlowska, M.E., 2000. Analyzing process models using graph
reduction techniques. Information System 25 (2), 117–134.

Sadiq, S., Orlowska, M.E., Sadiq, W., Foulger, C., 2003. Data flow and
validation in workflow modeling. In: Proceedings of Conferences in
Research and Practice in Information Technology, vol. 27.

Singh, M.P., 1997. Formal aspects of workflow management, Part 1:
Semantics, Technical Report, Department of Computer Science, North
Carolina State University.

Sun, P., Wang, J., Li, X., Jiang, C., 2006. Performance analysis of
workflow model with resource constraints, In: Proceedings of the First
International Multi Symposiums on Computer and Computational
Sciences, vol. 1, pp. 397–401.

Tang, Y., Chen, L., He, K., Jing, N., 2004. SRN: an extended Petri-net-
based workflow model for Web service composition. In: Proceedings of
IEEE International Conference on Web Services, pp. 591–599.

van der Aalst, W.M.P., 1998. The application of Petri nets to workflow
management. Journal of Circuits, Systems, and Computers 8 (1), 21–
46.

van der Aalst, W.M.P., ter Hofstede, A.H.M., 2000. Verification of
workflow task structures: a petri-net-based approach. Information
System 25 (1), 43–69.

van der Aalst, W.M.P., van Hee, K.M., van der Toorn, R.A., 1999.
Adaptive workflow: an approach based on inheritance. In: Proceedings
of the IJCAI’99 Workshop on Intelligent Workflow and Process
Management: The New Frontier for AI in Business, Stockholm,
Sweden.

WfMC, 1999. Management Coalition Terminology and Glossary, Doc-
ument Number WFMC-TC-1011.

WfMC, 1993. Workflow Management Coalition, <http://www.wfmc.
org/>.

Zaidi, A.K., 1999. On temporal logic programming using Petri nets. IEEE
Transactions on Systems, Man, and Cybernetics – Part A: Systems and
Humans 29 (3), 245–254.

Zhong, J., Song, B., 2005. Verification of resource constraints for
concurrent workflows, In: Proceedings of the Seventh International
Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, pp. 253–261.

http://www.wfmc.org/
http://www.wfmc.org/

	An incremental analysis for resource conflicts to workflow specifications
	Introduction
	Definitions and notations
	Resource conflicts in a WfMS
	Edit operations for workflow specification
	An incremental algorithm detecting resource conflicts in workflow specifications
	Algorithm for detecting resource dependency
	Algorithm for detecting potentially concurrent execution
	Algorithm to calculate estimated active intervals
	Algorithm for checking resource conflicts after temporal related operations
	Combining the algorithms with the operations

	Examples
	Example 1: adding a resource reference
	Example 2: modifying working durations of a process
	Example 3: removing an activity process from the workflow

	Related work
	Conclusion and future work
	References

