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Effects of low in-plane magnetic field on bulk spin densities and edge spin accumulations of a diffusive
two-dimensional semiconductor stripe are studied. Focusing upon the Dresselhaus-type intrinsic spin-orbit
interaction �SOI�, we look for the symmetry, or asymmetry, characteristics in two magnetic-field orientations:
along and transverse to the stripe. For longitudinal field, the out-of-plane spin density Sz exhibits odd parity
across the stripe and even parity in the magnetic field and is an edge accumulation. For transverse field, the
out-of-plane Sz becomes asymmetric in both spatial and field dependencies and has finite bulk values for finite
magnetic fields. Our results support utilizing low in-plane magnetic fields for the probing of the underlying
SOI.
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I. INTRODUCTION

Generation and manipulation of spin densities by electri-
cal means are major goals of semiconductor spintronics that
are made possible by spin-orbit interactions �SOI�.1–8 SOIs
being considered are either intrinsiclike: the Rashba2,5,7,9–11

and the Dresselhaus SOIs4,8,12,13 or extrinsiclike: the
impurity-induced SOI.1,3,6,10,14 These SOIs contribute, in an
external electric field, to either spin densities in the bulk or
spin accumulations at lateral edges, or both.

Out-of-plane spin polarization is of particular interest be-
cause it permits efficient optical probe by Kerr rotation. The
edge spin accumulation, according to the spin-Hall effect
�SHE�, has an out-of-plane component and is resulted from a
transverse spin current induced by the electric field.1,4–6

However, for the case of intrinsic SOI, it is understood that
the SHE is quenched by background scatterers, be they iso-
tropic or anisotropic,15 as long as the intrinsic SOIs consist
of only linear-momentum dependence term. Meanwhile, no
out-of-plane bulk spin densities are expected in an electric
field.2,10,16 When applying an in-plane magnetic field to a
two-dimensional �2D� system, one might be led by the in-
plane nature of the effective spin-orbit magnetic field heff
= �hk��0, obtained by averaging the spin-orbit effective
field over the distribution of the electron momentum �k, to
expect that there were no out-of-plane spin densities. This is
shown not to be the case by Engel et al.11 for a Rashba-type
2D system, where out-of-plane spin densities are found when
the external in-plane magnetic field is longitudinal: a con-
figuration studied by recent experiments.17,18 However, either
the scatterer has to be anisotropic or the electron dispersion
has to be nonparabolic for the effect to hold.11 Here, longi-
tudinal denotes the direction parallel to the electric field and
its orthogonal counterpart in the 2D plane is denoted trans-
verse.

In this paper, we have shown that out-of-plane bulk spin
density can be generated in another system configuration
with less restrictive assumptions. The configuration is a
Dresselhaus-type 2D system and the external in-plane mag-
netic field is in a transverse orientation. More importantly,

the effect holds for isotropic background scatterers and for
parabolic dispersion for electrons. Our calculation has in-
cluded the cubic Dresselhaus SOI.

This paper also addresses the symmetrical properties of
the spin densities and spin accumulations in a weak in-plane
magnetic field. We believe that this is important for distin-
guishing the dominant type of SOI in a particular sample.
Out-of-plane spin accumulations at the lateral edges of an
extrinsic SOI two-dimensional electron gas �2DEG� are sym-
metric with respect to a transverse magnetic field.6 The sup-
pression that it exerts on the spin accumulations is exhibited
in the position-dependent Hanle profiles.19 Study on the
same field configuration, but in an extrinsic SOI normal
metal, has found similar field suppression in another physical
quantity: the out-of-plane spin-Hall potential.20 For the in-
trinsic SOI, studies on the in-plane magnetic-field effects
have focused on the spin-Hall conductivity21,22 and the bulk
spin densities11,23 but not on the symmetry properties. Thus it
is legitimate to perform a thorough and systematic investiga-
tion on both the spatial as well as the field-dependent sym-
metry characteristics of the spin distributions for the case of
intrinsic SOI.

Our results show, for the case of a Dresselhaus-type
2DEG stripe, strong anisotropy in the symmetry characteris-
tics with respect to the field orientations. For longitudinal
field, the out-of-plane spin density Sz exhibits odd parity
across the stripe and even parity in the magnetic field and is
an edge accumulation. For transverse field, Sz becomes
asymmetric in both spatial and field dependencies and has
finite bulk values for finite magnetic fields. As the Rashba
and the extrinsic SOIs do not depend on the crystal orienta-
tions, while the Dresselhaus SOI does, the strong anisotropy
in the symmetry characteristics obtained in this work is dis-
tinct for the Dresselhaus SOI. Our work thus serves to com-
mence the notion of utilizing low in-plane magnetic fields as
a characterizing tool for the probing of the underlying SOI in
a particular sample.

In this paper, we consider a diffusive Dresselhaus-type
2DEG stripe in a weak in-plane magnetic field as shown in
Fig. 1. The diffusive regime has lso� le, where lso and le are,
respectively, the spin-relaxation length due to the SOI and
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momentum relaxation length. Spin distributions across the
entire width of the stripe are investigated for all three spin
directions including out-of-plane and in-plane components.
In Sec. II we present the spin-diffusion equation and the
associated boundary conditions. In Sec. III, we present our
numerical results. Finally, in Sec. IV, we will present a sum-
mary and discussion of our results.

II. SPIN-DIFFUSION EQUATION

Following on the procedure of deriving the spin-diffusion
equation for B=0 from the Keldysh nonequilibrium Green’s
function technique,16 we extend the derivation to include an
in-plane magnetic field. The spin-dependent term in the

Hamiltonian is given by HB ·�= �hk+ B̃� ·�, where � is the
Pauli-matrix vector, hk=−h−k is the SOI effective field and a

function of the 2D wave vector k, and B̃=g��BB /2 is the
Zeeman term. Here g� is the effective g factor and �B is the
Bohr magneton. We consider the weak magnetic-field regime

where EF�hk� B̃.
A brief outline of the derivation is presented below. Start-

ing with the perturbation from a four potential given by H�
=�i�i�r , t��i, where the 2�2 matrices �0=1 and �x,y,z

=�x,y,z and the four densities Di�r , t�=−i Tr��iG−+�r ,r , t , t��
are expressed in terms of the full Green’s function. Within
the linear-response regime, and for 	
EF, it becomes

Di�r,	� =� d2r��
j

�ij�r,r�,	�� j�r�,	� + Di
0�r,	� . �1�

With 2N0, the electron density of states Di
0�q ,	�

=−2N0�i�q ,	� are easily understood as the local equilib-
rium densities.16 This term turns out to be the driving term
for the spin-Hall effect; and within the linear response, it
suffices to neglect the correction due to HB ·� in Di

0.
The response function in the k representation is

�ij�q,	� = i	 �
p1k1

� d	�

2�

� fFD�	��
�	�

�Tr�Ga�k1,p1 − q,	�

��iGr�p1,k1 + q,	 + 	��� j�� , �2�

where fFD�	�� is the Fermi-Dirac distribution function at en-

ergy 	� and the angular brackets denote averaging over the
random impurity configurations. The averaged Green’s func-
tion is given by Gr�0��p ,	�=1 / �	−Ep−HB ·�+ i�, where
EF is the Fermi energy and =1 /2�. In the following, we
consider the regime EF��hk. Evaluating Eq. �2� within
the ladder series24 leads to the summation, up to all orders,
of a basic diagram ���

���	 ,	� ,q�=
ci

V 	Vsc	2�pG��
r �p ,	

+	��G��
a �p−q ,	��. The response function becomes

�ij�q,	� =
i	

2�
�

j
� d	�

� fFD

�	�

�N0


����

i ���
j ���

���	,	�,q�

���1 − ��	,	�,q��−1��
��, �3�

where 1��
��������� and  / ��N0�=ci	Vsc	2 /V. Here, V is total

area of the sample and ci and Vsc are, respectively, the impu-
rity density and the Fourier transform of a short-range impu-
rity potential at q=0. Making use of the transformation

����
���= �1 /2��ij���

i �ij�����
j , Eqs. �1� and �3� together gives

�1 − ��il�Dl − Dl
0� = i	��ilDl

0, �4�

where

�il =


2�N0
�
p�

Tr��iGr�0��p�,	 + 	���lGa�0��p� − q,	��� .

�5�

The charge neutrality is maintained by the condition D0=0,
since EF��1 and 	=0.

The spin-diffusion equation can be obtained by expanding
�il in lower orders of q and then by obtaining the Fourier
transform of Eq. �4� to the position representation. Expand-

ing �il up to lower orders in hk and to first order in B̃ results
in a total of five terms given by

�il = �
�=1

5

��
il, �6�

where q and 	 dependences are not shown.
The term �1

il= �1+ i	�−D�q2��il with D=vF
2� /2 produces

the regular diffusion equation. The second term �2
i�l

= iqm�Ri�lm, where Rilm=4��n�ilnhk
nvF

m and �iln as the Levi-
Civita symbol, causes the spin densities to precess about its
local variations. The overline denotes the angular average
over the Fermi surface and m ,n are the component indices.

The third term �3
il=−�il, where il=4�hk

2��il−nk
i nk

l � for
i , l�0, and for unit vector nk=hk /hk, describes the
Dyakonov-Perel’ spin relaxation.1 The last two terms contain
new contributions from the in-plane magnetic fields. In the

fourth term, we have �4
il=�RB

ilm, where RB
ilm=−�m2�ilmB̃m

and m is the field component index. This gives rise to pre-
cession of the spin densities about the magnetic field. In
the fifth term we have the spin-charge coupling

�5
i�0= �−iq��MB

i�0−Mi�0�. Here Mi0=4�3hk
3 �nk

i

�k and MB
i0

=2�2�B̃x
�hk

y

�k − B̃y
�hk

x

�k ��iz. The latter contains the effect of the
in-plane magnetic field. Up to this point we have kept a

FIG. 1. Top-view schematic illustration of the 2D stripe. The 2D
stripe has a width d. In the system, electric field E and in-plane
magnetic field B are applied. The direction along the stripe, or x̂, is
denoted longitudinal and that along ŷ, transverse.
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generic form of the SOI. Applying to the case of Rashba
SOI, when hk=�k� ẑ, we find no out-of-plane bulk spin
densities and no edge spin accumulations, which is consis-
tent with previous findings.11 A more interesting case is the

Dresselhaus SOI, where hk=��kx�ky
2−�2� ,ky��2−kx

2��.25 Here
�2= �kz

2� is the average over the thickness of the 2DEG and
�hk

z�=0. From Eqs. �4� and �6� and the form of hk, we obtain
the static spin-diffusion equations

�
D

�2

�y2Sx +
Rxzy

�

�

�y
Sz −

xx

�2 Sx +
2

�
B̃ySz −

C1

�2 = 0,

D
�2

�y2Sy −
yy

�2 Sy −
2

�
B̃xSz = 0,

D
�2

�y2Sz +
Rzxy

�

�

�y
Sx −

zz

�2 Sz −
2

�
B̃ySx +

2

�
B̃xSy −

B̃y

�
C2 = 0,

� �7�

where Si=Di /2 and the homogeneity along x is assumed.
Effects of the in-plane magnetic field enter Eqs. �7� in two
places. The first is the precession effect given exactly by

d� /dt= �2 /��B̃��. The second is through the coefficient
C2, which is originated from the spin-charge coupling term

MB
i0. Its expression is given by C2=���hk

x /�kx���D0
0 /�x�,

where D0
0=−2N0eEx for e�0 represents the effects of the

driving electric field.
Expressions for other coefficients in Eqs. �7� are the

Dyakonov-Perel’ spin relaxation rates xx=yy =zz /2
=�2�kF

6�1 /4−C2+2C4�, where C=� /kF. Precessions about
local variation in spin densities are given by the coefficients

Rzxy =−Rxzy =
��kF

4

m� �2C2−1 /2�=2D / lso. Finally, the spin-
charge coupling that originates from Mi0 is the coefficient
C1=Mx0D0

0 /2.
The bulk spin densities obtained from Eqs. �7� are

�Sz
b = �y
−

1

2
C2 +

C1

xx�� �1 + 2�x
2 + 2�y

2� ,

Sy
b = − 2�xSz

b,

Sx
b = 2�ySz

b −
C1

xx , � �8�

where �, the dimensionless B̃, is given by �i= B̃i /xx. Sb is
checked to reproduce the correct B=0 limit.16 Except for the
�yC2 term in Sz

b, which is originated from the spin-charge
coupling, all other terms in Sb that are proportional to �i are

related to spin precessions about B̃.
The boundary condition for the spin-diffusion equation is

established in the following by connecting the spin current to
the spin densities and their spatial gradients and then requires
the transverse flow of the spin current to be zero at the lateral
edges.16 This is appropriate for hard wall boundary.26,27 We
start from the conventional form of the spin current operator
Jl

i��1 /2��Vl�i+�iVl�, where spin unit of � /2 is implied. The
velocity operator is given by

Vl �
kl

m�
+

�hk · �

�kl
, �9�

where vl= �kl /m��. The expression for the spin current is16

Il
i�q,	� = i	� d	�

2�

dNF

d	�
�
k,k�
�
vl�i +

�hk
i

�kl �
�Gr
k +

q

2
,k� +

q

2
,	 + 	��� j

�Ga
k� −
q

2
,k −

q

2
,	���� j�q,	� , �10�

where the summation convention for repeated indices is
adopted. In the dc limit �	=0� and at zero temperature
�	�=EF�, the spin current is related to the four densities in
the form

Il
i =

1

m�
�Xl

ij�Dj� − Xl
i0D0

0 + Yl
ij�Dj� − Yl

i0D0
0� , �11�

where j� denotes the spin indices. The operators to the spin
densities are

Xl
ij � 
 

2�N0
��

k
kl

�Tr��iGr�0�
k +
q

2
,	 + EF�� jGa�0�
k −

q

2
,EF�� ,

�12�

and
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Yl
ij � 
 

2�N0
��

k

�hk
i

�kl

�Tr�Gr�0�
k +
q

2
,	 + EF�� jGa�0�
k −

q

2
,EF�� .

�13�

Specifying to the flow of spin along y, we calculate Xy
ij and

Yy
ij to give

Xy
ij = − m�
iqyD�ij +

1

2
Rijy��iz + � jz��

− 2iqxm
��2vF

y
hk �
�hk

�kx
�

z

�iz� j0 −
�hk

i

�ky
� j0, �14�

and

Yy
ij =

�hk
i

�ky
� j0, �15�

with the latter being exactly canceled by a term in Eq. �14�.
Finally, substituting Eqs. �13� and �14� into Eq. �10�, we
arrive at the spin current expression that provides us the
boundary condition Iy

i =0 at the lateral edges for the spin-
diffusion equation with

Iy
i �r� = − 2D

�Si

�y
−

Rijy

�
�Sj − Sj

b� +
IsH

�
�iz. �16�

The first term of Iy
i describes the spin diffusion due to

spatial variation in Si, the second term is the spin precession
prompted by the SOI, and IsH�iz is the bulk spin current with

IsH = − RzjySj
b + 4�2eEN0vF

y
 �hk

�kx
� hk�

z

. �17�

Equations �16� and �17� appear to be the same as their coun-
terparts for the B=0 case;16 but the magnetic field contrib-
utes, in its lowest order, via the spin density Sj

b in Eq. �8�. It
is worth pointing out here that the primary purpose of deriv-
ing Eq. �17� is to apply it to a region within a distance much
less than lso from the sample boundary. As such, the effect of
spin torque28,29 on the boundary condition should be of sec-
ondary importance, and the results in this work should also
remain intact. An eventual exploration on this issue, how-
ever, is left for future study.

III. NUMERICAL RESULTS: IN-PLANE B FIELD
IN A DRESSELHAUS 2D STRIPE

In this section, we present the electric-field-induced bulk
spin densities and edge spin accumulations in a Dresselhaus-
type 2DEG stripe acted upon by an in-plane magnetic field.
Symmetries, or asymmetries, of the spin distributions with
respect to spatial coordinates and the magnetic field are pre-
sented in two field orientations: longitudinal and transverse.

For definiteness, we use material parameters consistent
with GaAs: effective mass m�=0.067m0, with m0 the elec-
tron mass; effective g factor g�=0.44 �Ref. 30�; and the

Dresselhaus SOI �=27.5 eV Å3.25 Other typical parameters
are electron density n=2.4�1015 m−2, quantum well thick-
ness w=300 Å, le=1 �m, and lso=2.9 �m. The electrons
occupy only the lowest subband in the quantum well. An
electric field E=25 mV /�m is applied along x to set up the
spin-Hall phenomenon.

Longitudinal field orientation case is presented in Figs.
2�a�–2�c�. Shown here are the spatial variations in all spin
components of Si across the stripe. Sx has both finite bulk
spin density and edge spin accumulation. It exhibits even
parity in its spatial variation and remains so for finite field
Bx. The magnetic field causes only a minor change to the Sx
profile while it has an even parity in its Bx dependence. Sy is
zero at Bx=0 and has an edge spin accumulation in finite Bx.
It is of odd parity in both its spatial and field dependencies.
Sz has an edge spin accumulation. It is of odd and even
parities in its spatial and field dependencies, respectively.
Overall, except for Sy, the effects of Bx for the chosen range
of field strengths is weak. That the spatial profile of Sy for
finite fields mirrors that of Sz corroborates a spin precession
picture as suggested by Eqs. �7�. Following the d� /dt
= �2 /��B̃�� time evolution, the precession of Sz contributes
to Sy.

Transverse field orientation case is presented in Figs. 3�a�
and 3�b�. The field effects on the spin distributions and on
the parity of the Si profiles are much more dramatic. In short,
the Sx and Sz profiles become asymmetric in both their spatial
and field dependencies. Sy, however, remains zero in all these
cases. Qualitative understanding of these changes can be ob-
tained again from the spin precession picture. We take, for
instance, the Bx=−300 mT curve for Sz in Fig. 3�b�. The

FIG. 2. �Color online� Spin densities Si versus y, in units of lso,
for the case of a longitudinal in-plane magnetic field. Spin densities
Sx, Sy, and Sz in units of �m−2 are shown in �a�, �b�, and �c�,
respectively, for magnetic fields Bx=−300 mT �black/ triangles�,
Bx=0 mT �blue/solid curve� and Bx=300 mT �red/dashed curve�.
The edges of the stripe are at y= �5lso.
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out-of-plane spin density Sz�1.5 �m−2 in the bulk is re-
sulted from the precession of the zero-field Sx and also from
a spin-charge coupling term in Eq. �8�. On the other hand,
the Sz edge spin accumulation is resulted from two spin pre-
cession processes, if we treat Si as individual entities. First,
the magnitude of Sz edge accumulation is reduced due to its
own precession. However, it may be increased due to the
precession of Sx. As the zero-field Sx is even and the zero-
field Sz is odd in their spatial parity, it is inevitable that the
magnitude of Sz will receive enhancement at one edge and
suffer suppression at another. This leads to the breaking of
the spatial parity of the Sz profile as is confirmed in Fig. 3.
The zero-field Si thus play a pivotal role in the shaping of the
low in-plane magnetic-field Si profile.

Figure 4 presents the edge spin accumulations of Si
� and

their parity in their field dependencies. Si
� denote edge spin

densities at y= �d /2. For the longitudinal field orientation
depicted in Figs. 4�a� and 4�b�, Sx

� and Sz
� are of even parity

in Bx, whereas Sy
� is of odd parity in Bx. The magnitude of

the variation is comparable for Sy
� and Sz

�, a feature consis-
tent with our spin precession picture. More detailed symme-
tries can be read off from Eq. �7� and is given in the follow-
ing: Sy�z�

+ =−Sy�z�
− , Sx

+=Sx
−, Sx�z�

� �Bx�=Sx�z�
� �−Bx�, and

Sy
��Bx�=−Sy

��−Bx�. For the transverse field orientation de-
picted in Figs. 4�c� and 4�d�, Sx

� and Sz
� become asymmetric

in their field dependencies, whereas Sy
�=0. The extremum

points in Sz
� at By =50 and −50 mT in Figs. 4�c� and 4�d�,

respectively, demonstrate the competition between the two
spin precession processes: decreasing in magnitude due to its
own precession and increasing in magnitude due to spin pre-
cession in Sx

�. Finally, if we include both the spatial and the

field reversals, we obtain symmetries Sz
+�By�=−Sz

−�−By� and
Sx

+�By�=Sx
−�−By�.

The entire spatial and field symmetries of the out-of-plane
spin densities are presented in the contour plots in Fig. 5. In
Fig. 5�a�, the longitudinal field case exhibits even parity in
Bx and odd parity in y. In contrast, the transverse field case,
depicted in Fig. 5�b�, exhibits much richer features. Even
though the asymmetry of Sz with respect to By and y, indi-
vidually, is evident, the symmetry Sz�By ,y�=−Sz�−By ,−y� is
also clearly shown. At the lateral edges, the highest spin
densities are shifted from By =0. It is resulted from the two
competing spin precession processes. Near the center of the
sample, Sz is odd in By and its magnitude increases with the
field as indicated in Eq. �8� already.

FIG. 3. �Color online� Spin densities Si versus y for the case of
a transverse in-plane magnetic field. Spin densities Sx and Sz in
units of �m−2 are shown in �a� and �b�, respectively, for magnetic
fields By =−300 mT �black/triangles�, By =0 mT �blue/solid curve�,
and By =300 mT �red/dashed curve�. Sy remains zero in all these
cases.

FIG. 4. �Color online� Edge spin densities Si
� versus magnetic

field for both field orientations: longitudinal Bx cases in �a� and �b�
and transverse By cases in �c� and �d�. Si

� denotes spin densities at
the edges y= �d /2. Sx is labeled by the dashed curve, Sy by the
dashed-dotted curve, and Sz by the solid curve.
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FIG. 5. �Color online� Contour plot of Sz on the Bi-y plane for
�a� the longitudinal and �b� the transverse field orientations.
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The strong in-plane magnetic-field anisotropy in the sym-
metry characteristics of the Si profiles shown here is distinct
for the Dresselhaus SOI. For the edge spin accumulation Sz

in a transverse magnetic field, the Dresselhaus SOI leads to
an asymmetric field dependence, whereas extrinsic SOI leads
to a symmetric field dependence.6 This symmetry character-
istic for the extrinsic SOI is clearly seen in the experiment of
Kato et al.6 �Fig. 1�c� in Ref. 6�, and also in their demonstra-
tion the Sz profile fits well to a Lorentzian function
A0 / ��	L�s�2+1� which depends on even power of B through
the square of the electron Larmor precession frequency 	L.
The factor A0 is a proportionality constant and �s is the
electron-spin lifetime. As for the Rashba SOI, symmetry
governs that we turn to longitudinal magnetic field. We find
no Sz both in the bulk and at edges, which is consistent with
previous finding.11 In contrast, we find that the Dresselhaus
SOI leads to an even-parity field dependence. Nonvanishing
bulk spin density Sz due to Rashba SOI, but for the case of
either anisotropic scatterers or nonparabolic electron disper-
sion, has been obtained by Engel et al.11 and the field depen-
dence is of odd parity.11,17 Thus we commence the notion of
utilizing low in-plane magnetic field for the determination of
the underlying SOI in a particular sample, without the need

to prepare controlling samples of different crystal orienta-
tions.

IV. CONCLUSION

In conclusion, we have performed a systematic and com-
prehensive study on the effects of a weak in-plane magnetic
field on the bulk spin densities and edge spin accumulations
in a diffusive Dresselhaus-type 2D stripe. Our results show
that out-of-plane spin density can be generated in the case of
transverse field orientation without assuming anisotropic
scatterers or nonparabolic electron dispersion relations. The
breaking of the parity of the spin distributions with respect to
their spatial and field dependencies provide a unique signa-
ture for the Dresselhaus SOI. This work thus points to the
possibility of invoking weak in-plane magnetic fields for the
determination of the SOI in a particular sample.
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