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Abstract—Similar to the conventional orthogonal frequency-
division multiplexing (OFDM) system, an OFDM multiple ac-
cess (OFDMA) system will have a carrier frequency offset
(CFO) problem. Since CFOs of all users are different, CFO
compensation in the OFDMA uplink system is much more
involved. A simple, yet efficient, method is the zero-forcing (ZF)
compensation method. However, it involves an inverse of an
N × N CFO-induced ICI matrix, where N is the number of
subcarriers. Thus, the complexity can become very high when
N is large, a case commonly seen in OFDMA systems. In this
work, we propose a low-complexity ZF method to overcome the
problem. The main idea is to use Newton’s method to solve
matrix inversion iteratively. We explore the structure of the CFO-
induced ICI matrix and develop a method that can implement
Newton’s method with fast Fourier transforms (FFTs). As a
result, the required computational complexity is significantly
reduced from O(N3) to O(2N log2 N). Simulations show that,
with only three iterations, the proposed method can have similar
performance to the direct ZF method.

Index Terms—Orthogonal frequency-division multiple access
(OFDMA), carrier frequency offset (CFO), intercarrier interfer-
ence (ICI), fast Fourier transform (FFT), Newton’s method.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) has been shown to be a successful technique to

combat a fading channel effect in wireless communications.
Since all subcarrier signals overlap orthogonally in the
spectrum, it is considered a bandwidth-efficient scheme. An
ideal OFDM system has no intercarrier interference (ICI)
problem, and it can be easily developed as a frequency-
division multiple access (FDMA) scheme. An OFDM-based
FDMA system is generally referred to as an OFDMA system,
which was proposed in IEEE 802.16e-2005 for broadband
wireless access.

In the presence of CFO, the orthogonal property in an
OFDM system is destroyed, and ICI is induced, degrading
the system performance significantly [1]. Many works have
been reported for CFO estimation and compensation. Different
from that in OFDM systems, CFO in OFDMA uplink systems
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causes not only self-interference, but also multiuser interfer-
ence (MUI) [2], [3]. Various methods have been proposed to
solve the problem. One direct method is to estimate the CFO in
the base station, and transmit the information back to mobile
stations for CFO correction. Another approach is to transmit
redundant information in certain subcarriers such that ICI can
be cancelled in the receiver end; this approach is known as
self-ICI-cancellation [8]−[13].

Yet another viable approach eliminates the need for extra
transmission overhead by compensating for ICI in the receiver.
CFO compensation methods for OFDMA uplink systems
have been reported [14]−[18], [21]. The simplest one is to
compensate for ICI with a time-domain phase-rotation for
each user [14]. This approach can suppress self-ICI, but it
does not take MUI into account. A post-FFT method was
proposed [15] to improve the performance of the phase-
rotation approach. By combining the parallel interference
cancellation (PIC) technique with the method in [15], a more
sophisticated scheme was developed [16]. Other PIC-related
works can be found in [17], [18]. It can be observed that ICI
in a subcarrier mainly comes from neighboring subcarriers.
Given this, the ICI matrix is simplified into a banded matrix
[19], such that the computational complexity of the zero-
forcing (ZF) and minimum-mean-square-error (MMSE) CFO-
compensation methods can be reduced. Taking advantage of
an interleaved-OFDMA structure, [21] proposes a method that
divides the whole system into several smaller subsystems,
after which the MMSE method is applied to the subsystems.
This method has good performance, and it requires a low
computational complexity; however, it is only applicable to
an ideal interleaved structure (i.e., uniform subcarrier-spacing
for each user). The aforementioned methods were developed
for CFO-compensation. CFO estimation methods have also
been reported for OFDMA uplink systems [4]−[7].

The ZF method is simple, yet effective for CFO compen-
sation in OFDMA uplink systems. However, because it must
invert the ICI matrix, whose dimension equals the number of
subcarriers (N ), the complexity can become prohibitively high
when N is large, as is commonly found in OFDMA systems.
In this work, we propose a low-complexity ZF method to
cope with the problem [20]. Using Newton’s method for
iterative matrix inversion and exploring the structure of the
ICI matrix, we develop a method that is able to implement
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Newton’s method using fast Fourier transforms (FFTs). From
simulations, we find that the performance of the proposed
method is similar to that of the direct ZF method, while
the complexity is reduced from O(N3) to O(2N log2 N).
The rest of this work is organized as follows: Section 2
describes the signal model of an OFDMA uplink system,
Section 3 presents the proposed method in detail and analyzes
the required complexity, Section 4 presents the simulation
results, and finally, Section 5 presents our conclusions.

II. SIGNAL MODEL

In an OFDMA system, the available bandwidth is di-
vided into N equally spaced subbands. Each subband has
a bandwidth of 1/(NTs), where Ts is the symbol sampling
period. In such a system with Q users, we assume that each
user uses Ns = N/Q subcarriers. For user q, the transmit
frequency-domain signal at the kth subcarrier is denoted by
x̃q

k, where k ∈ Υq and Υq is the set of the subcarrier
indices for user q. It is assumed that Υi

⋂
Υj = ∅ for

i �= j and
⋃Q

q=1 Υq = {0, 1, . . . , N − 1}. OFDMA adopts
the interleaved subcarrier allocation scheme: in other words,
Υq = {q − 1, q − 1 + Q, . . . , q − 1 + (N

Q − 1)Q}. Since
the subcarriers assigned to the different users are interleaved
throughout the whole bandwidth, this scheme can achieve the
maximum frequency diversity. For each user, we assume that
the CP (cyclic prefix) length (Ng) is long enough to prevent
intersymbol interference and that the channel is time-invariant
in an OFDMA symbol period.

Consider a specific OFDMA symbol for user q. The channel
output signal after CP removal can be expressed as yq =
Hqxq , where yq is the qth user’s N × 1 receive time-domain
signal vector, and xq is the qth user’s N × 1 time-domain
symbol vector, i.e., xq = (1/

√
N)GH x̃q . Here x̃q is the

qth user’s N × 1 frequency-domain symbol vector, and G
is the N × N normalized DFT matrix with GGH = IN ,
where IN is an N × N identity matrix. Hq is an N × N
circulant channel matrix with the first N × 1 column vector
being hq , which is the channel response of xq . Zeros are
padded in hq since the channel length is assumed to be smaller
than Ng . Note that the elements of x̃q are nonzero only in
designated subcarrier positions and Hq can be decoupled as
GHH̃qG, where H̃q is an N×N matrix and H̃q = diag(h̃q).
The notation diag(g) indicates a diagonal matrix with a
diagonal vector g, and h̃q =

√
NGhq . The time-domain

OFDMA symbol received from Q users can be expressed as
r = (1/

√
N)

∑Q
q=1 EqHqGH x̃q + v, where Eq = diag(eq),

eq = [U0
q , . . . , UN−1

q ]T , Uk
q = exp{j2πεqk/N}, and εq is

the normalized CFO (with respect to the subcarrier spacing)
for user q. Also, v denotes the N × 1 noise vector. After the
FFT operation, we are left with a corresponding frequency-
domain signal of r̃ =

∑Q
q=1 Ẽqỹq +ṽ, where Ẽq = GEqGH ,

ỹq = H̃qx̃q , and ṽ =
√

NGv. Note that Ẽq is a circulant
matrix and its first column is ẽq = (1/

√
N)Geq. Let x̃ =

[x̃0, . . . , x̃N−1]T and h̃ = [h̃0, . . . , h̃N−1]T be the composite
transmit data and channel frequency-response for all users
and h̃q = [h̃q

0, . . . , h̃
q
N−1]

T . Then, x̃k = x̃q
k and h̃k = h̃q

k if
k ∈ Υq . Define a diagonal matrix Sq such that Sq(j, j) = 1,
if j ∈ Υq and Sq(j, j) = 0, otherwise. Thus, we express the

received frequency-domain signal as [19], [21]

r̃ = M̃ỹ + ṽ, (1)

where ỹ = H̃x̃, H̃ = diag(h̃), and M̃ =
∑Q

q=1 ẼqSq is the
CFO-induced ICI matrix.

III. PROPOSED CFO COMPENSATION METHOD

From (1), we see that a straightforward method to compen-
sate for ICI is the ZF method given by yZF = M̃−1r̃ [21].
Although the direct ZF method can completely suppress ICI,
it needs to invert an N × N matrix. When N is large, the
required complexity can become very high. Unfortunately, in
most real-world applications, N is large. For IEEE 802.16e, N
can be as large as 2048. Here, we propose a low-complexity
ZF method to solve the problem. The main idea is to use an
iterative procedure to avoid the direct matrix inversion. In this
work, specifically, we use Newton’s method.

Let Wk be the estimate of M̃−1 at the kth iteration. New-
ton’s iteration for matrix inversion [22], [23] can be described
as Wk+1 = (2IN − WkM̃)Wk for k = 0, 1, . . . ,∞. Let
Rk = IN −WkM̃ represent the estimation residual. Newton’s
iteration implies that ‖ IN − WkM̃ ‖≤‖ IN − W0M̃ ‖2k

for all k. If ‖ IN − W0M̃ ‖< 1, we then have quadratic
convergence [24]. From Newton’s iteration, we can also see
that matrix-to-matrix multiplications are required and that the
computational complexity of Newton’s iteration is even higher
than the direct matrix inversion. Thus, direct application of
Newton’s method is not feasible.

Now, we develop a method to solve the problem. Using
Newton’s iteration method, we obtain a sequence of matri-
ces {W0,W1, . . . ,Wk}. Exploring their structures, we can
express Wk as

Wk =
2k−1∑
m=0

ck
m(W0M̃)mW0, (2)

where ck
m is the coefficient of the mth summation term in (2).

Assign ck
m’s as coefficients of a polynomial function of z, i.e.,

gk(z) = ck
0z0 + ck

1z
1 + . . . + ck

2k−1z
2k−1. Then, gk+1(z) can

subsequently be derived from gk(z) as gk+1(z) = 2gk(z) −
z[gk(z)]2, where g0(z) = 1. Note that (2) is not in the original
form of Newton’s iteration.

Also note that our final objective is to obtain the CFO-
compensated result Wkr̃, not the matrix inverse Wk it-
self. Multiply (2) by r̃ and let yk = Wkr̃ and sm =
(W0M̃)mW0r̃, which gives us

yk =
2k−1∑
m=0

ck
msm. (3)

From the definition of sm, we obtain the following iterative
step: sm+1 = (W0M̃)sm, which allows sm to be calculated
recursively. With this approach, we have transformed the
matrix-to-matrix multiplications in (2) into the matrix-to-
vector multiplications in (3).

To complete our algorithm, we further let W0 be diagonal
and recall that M̃ =

∑Q
q=1 GEqGHSq . Thus, we can rewrite

sm+1 as sm+1 = W0G[
∑Q

q=1 Eq(GHSqsm)]. Note that
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TABLE I
COMPLEXITY COMPARISON OF THE PROPOSED METHOD, THE BANDED ZF METHOD, AND THE DIRECT ZF METHOD.

Complexity Proposed method Banded ZF method Direct ZF method

Real multiplications 2(2k−1+Q)N log2(N)+2(2k−
1)N log2(N/Q) + [8(2k − 1)Q +
2(2k + 1)]N + 4Q(2S + 1)

2QN log 2(N) + (4B2 + 14B +
6)N − 8

3
B3 − 9B2 − 19

3
B

4
3
N3 + 5N2 + 2QN log2(N) −

1
3
N

Real divisions 2Q (2B + 2)N − B2 − B N2 + N

Real additions 3(2k−1+Q)N log2(N)+3(2k−
1)N log2(N/Q) + [6(2k − 1)Q +
2]N + 2Q(3S + 1)

3QN log 2(N) + (4B2 + 11B +
3)N − 8

3
B3 − 15

2
B2 − 29

6
B

4
3
N3 + 7

2
N2 + 3QN log2(N) −

11
6

N

calculating sm+1 only involves vector multiplications, IDFTs,
and a DFT. It is well-known that DFT/IDFT can be im-
plemented with FFT/IFFT and the computational complexity
can be greatly reduced. Thus, the required computational
complexity is reduced from O(N3) to O((Q + 1)N log2 N).

Utilizing the interleaved-OFDMA structure, the
computational complexity can be further reduced. Let
sm = [sm,0, . . . , sm,N−1]T and uq

m = Sqsm =
[uq

m,0, . . . , u
q
m,N−1]

T . From the definition of Sq , uq
m,i = sm,i,

if i ∈ Υq and uq
m,i = 0, otherwise. This is to say that uq

m

corresponds to an upsampled sequence of the desired
elements in sm. The nonzero elements in uq

m, denoted by
dq

m = [sm,q−1, . . . , sm,q−1+(N/Q−1)×Q]T , can be obtained by
circularly shifting uq

m with q−1 elements and downsampling
the result with a factor of Q. Let d

q

m = (1/
√

Q)GH
Ns

dq
m,

where GNs is an Ns × Ns normalized DFT matrix, and
construct an N×1 vector by duplicating d

q

m Q times, shown as
aq

m = [(d
q

m)T , . . . , (d
q

m)T ]T . We can then express GHSqsm

as GHSqsm = Cqaq
m, where Cq = diag([Z0

q , . . . , ZN−1
q ]T ),

and Zk
q = exp{j2π(q − 1)k/N}. Note that Cq results

from circlurly shifting uq
m. As a result, we can implement

GHSqsm by an IDFT with dimension N/Q instead of N .
Using this approach, we can reduce the complexity further
with sm+1 = W0G

(∑Q
q=1 EqCqaq

m

)
. Note that aq

m is
a column vector and that both Cq and Eq are diagonal
matrices. As assumed, W0 is a diagonal matrix. As a
result, this approach only involves one FFT of size N , Q
IFFTs of size N/Q, and several vector operations. Thus, the
computational complexity of the ZF method can be reduced
from O(N3) to O(N log2(N

2/Q)).
The final task is to determine W0. A good initial value

can reduce the number of iterations significantly. Letting
W0 = diag([w0, w1, . . . , wN−1]T ), we propose a minimum-
Frobenius-norm criterion to obtain optimum initial values. The
criterion is shown as Wopt,0 = argmin

W0
‖IN − W0M̃‖2

F ,
where ‖R‖F denotes the Frobenius norm of R. The op-
timum initial values can be obtained by setting ∂{‖IN −
W0M̃‖2

F}/∂w∗
k = 0. Thus, we can express the optimal initial

value wopt,k as wopt,k = m̃∗
k,k/

∑N−1
j=0 |m̃k,j |2, where m̃i,j =

M̃(i, j). For further complexity reduction, we approximate
wopt,k as wopt,k ≈ m̃∗

k,k/
∑

j=<k−S:k+S,N> |m̃k,j |2, where
S is the number of ICI terms considered (0 ≤ S ≤ N/2− 1),
and < i : j, N > denotes a sequence of {i−N
i/N�, i+1−
N
(i + 1)/N�, . . . , j − N
j/N�} (i and j are integers and
i ≤ j). The approximation is based on the fact that the ICI in
a subcarrier mainly comes from neighboring subcarriers.

For the direct ZF method, we apply Gaussian elimination
[25] to implement the matrix inversion. Finally, for signal
detection, we apply a one-tap frequency domain channel
equalizer to each subcarrier. The result can be expressed as
x = H̃−1y, where x is the estimate of x̃ while y is the CFO-
compensated ỹ. The complexity comparison for the proposed
and existing methods is shown in Table I. For convenience,
the methods in [15] and [19] are referred to as the CLJL and
banded ZF methods, respectively. In Table I, B is the ICI
matrix bandwidth for the banded ZF method.

IV. SIMULATIONS

In this section, we present simulation results to evaluate
the performance of the proposed method. Here, we use an
interleaved-OFDMA uplink system with N = 2048, Q = 16,
and Ng = 128. The modulation scheme is 16-QAM. The
channel length, L, is set to 127 for all users, and the power
delay profile for the qth user is described by the exponential
function σ2

q,l = e−αql/
∑L−1

m=0 e−αqm, where l is the tap
index and αq is a parameter of the function. Here, we let
{α1, α2, . . . , αQ} = {0, 0.2, 0.4, . . . , 3}. Each channel tap
fades independently, and it has a Rayleigh distribution. The
averaged bit-error-rate (BER) is adopted as the performance
index, and CFOs for all users are set to {0.1, -0.2, -0.05, 0.2,
-0.3, 0, -0.1, 0.4, -0.3, 0.05, 0, -0.1, 0.05, -0.1, 0.3, 0.15}. It
is found that the performance of the proposed method with
S = 2 is almost the same as that with S = 1023. Thus, in the
following simulations, we only consider the condition S = 2.

The performances of five methods, namely, the conven-
tional, CLJL, direct ZF, banded ZF, and proposed methods, are
compared in our simulations. The conventional method is that
described in [14]. Figure 1 shows the simulation results. From
this figure, we find that the conventional and CLJL methods
both have a serious error floor phenomenon. This is because
compensation of the qth user’s CFO may cause other users’
CFOs to become enlarged, contributing to an increased MUI.
The performance of the proposed method with three iterations
can approach that of the direct ZF method. The complexity of
the banded ZF method depends greatly on its band dimension,
denoted as B. For a fair comparison, we let B be 16 for the
banded ZF method. In this case, the complexities of the banded
ZF method and the proposed method (k = 3) are roughly
equal. Figure 1 shows that the proposed method performs
much better than the banded ZF method (B = 16).

To see the impact of the CFO magnitude, we consider a
scenario in which the Qth user’s CFO is increased from 0 to
0.5. The CFOs of the other (Q− 1) users remain the same as



3660 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

BE
R

 

 

Without CFO
Direct ZF
Conventional
CLJL
Banded ZF (B=16)
Proposed (S=2, k=1)
Proposed (S=2, k=2)
Proposed (S=2, k=3)

Fig. 1. BER performance comparison for the conventional, CLJL, proposed,
and direct ZF methods (16-QAM modulation, and CFOs = {0.1, -0.2, -0.05,
0.2, -0.3, 0, -0.1, 0.4, -0.3, 0.05, 0, -0.1, 0.05, -0.1, 0.3, 0.15}).
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Fig. 2. BER performance comparison for the proposed and direct ZF methods
(16-QAM modulation, CFOs of the first (Q-1) users = {0.1, -0.2, -0.05, 0.2,
-0.3, 0, -0.1, 0.4, -0.3, 0.05, 0, -0.1, 0.05, -0.1, 0.3}, and the CFO of the Qth
user increases from 0 to 0.5).

those in Fig. 1. Fig. 2 shows the averaged BER of the first (Q−
1) users. From this figure, we can see that the proposed method
(k = 3) is largely unaffected by increasing the CFO of the Qth
user. Also, the proposed method has the same performance as
the direct ZF method. Since OFDMA is a multiuser system,
the near-far phenomenon may occur. To see the impact of
the phenomenon, we consider a scenario in which the powers
of the first (Q − 1) users are equal, while that of the Qth
user is varied. The power of the Qth user over that of one of
the remaining users is defined as the near-far power ratio κ,
which ranges from -15 dB to 15 dB. Here, CFOs are set as
shown in Fig. 1. Figure 3 shows the averaged BER of the first
(Q−1) users. From this figure, we see that the near-far effect
does affect BER, slightly. For κ ≤ 5 dB, there is almost no
performance degradation. We also find that the proposed and
direct ZF methods have similar performance regardless of the
value of κ.

−15 −10 −5 0 5 10 15
10

−4

10
−3

10
−2

10
−1

Near far power ratio (dB)

BE
R 

of
 th

e 
fir

st
 (Q

−
1)

 u
se

rs

 

 

Direct ZF (SNR=25 dB)
Proposed (S=2, k=3, SNR=25 dB)
Direct ZF (SNR=35 dB)
Proposed (S=2, k=3, SNR=35 dB)

Fig. 3. BER performance comparison for the proposed method (k = 3)
and the direct ZF method in the near-far scenario (16-QAM modulation, and
CFOs = {0.1, -0.2, -0.05, 0.2, -0.3, 0, -0.1, 0.4, -0.3, 0.05, 0, -0.1, 0.05, -0.1,
0.3, 0.15}).

TABLE II
COMPLEXITY COMPARISON OF THE DIRECT ZF METHOD, THE BANDED ZF

METHOD, AND THE PROPOSED METHOD WHEN N = 2048 AND Q = 16.

Methods Real
multiplications

Real divisions Real additions

Direct ZF 11474937856 4196352 11469003776

Banded ZF
(B = 16)

3275760 69360 3532168

Proposed 3109184 32 3236064
(S = 2,
k = 3)

(0.000271,
0.949150)

(0.000008,
0.000461)

(0.000282,
0.916170)

Table II shows the computational complexities of the di-
rect ZF, banded ZF, and proposed algorithms. In the ta-
ble, the two numbers inside each set of parentheses (in
the forth row) are the ratios of the number of operations
(indicated by each column) required for the proposed method
to those of the direct ZF and banded ZF methods, respec-
tively. From this table, we can see that the real multiplica-
tions/additions/divisions required for the proposed method are
0.000271/0.000282/0.000008 times those for the direct ZF
method. It is apparent that the proposed method requires a
much lower complexity. Although the banded ZF method can
have low complexity, its performance is not satisfactory. At
a similar complexity, the proposed method outperforms the
banded ZF method.

V. CONCLUSIONS

In this work, we propose a low-complexity CFO-
compensation method for an interleaved-OFDMA uplink sys-
tem. The proposed method is an efficient implementation of
the ZF method. Using Newton’s iteration for matrix inversion
and exploring the structure inherent in the CFO-induced
ICI matrix, we develop a method that can be implemented
with FFTs. As a result, the complexity can be reduced to
O(2N log2N). Since the FFT/IFFT module is already avail-
able in OFDMA transceivers, implementation of the proposed
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method only requires limited extra circuits, facilitating its real-
world application.
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