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Abstract

In this paper, the theory of gearing and the proposed mechanism of spherical gear cutting are applied to develop the
mathematical model of spherical gears. Based on the developed mathematical model of spherical gears, computer graph of
the gear set is plotted, and tooth contact analysis (TCA) of spherical gear sets is also performed. The TCA results provide
useful information about the kinematic errors (KEs), contact ellipses and contact patterns of spherical gear sets.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Spherical gear is a new type of gear proposed by Mitome et al. [1]. Geometrically, the spherical gears have
two types of gear tooth profiles convex tooth and concave tooth. The convex tooth of spherical gear is similar
to a part of ball, and the concave tooth of spherical gear looks like a worm gear. The spherical gear sets have
three types of mating assemblies: convex tooth with concave tooth, convex tooth with convex tooth and con-
vex tooth with spur gear. Fig. 1 shows these three types of mating assemblies for the spherical gear set with
axial misalignments. Different from the conventional spur or helical gear sets, the spherical gear set allows var-
iable shaft angles and larger axial misalignments without gear interference in meshing. These are two major
advantages of spherical gears. Therefore, applying the spherical gear set to replace the gear-type coupling
[2] is a good application. Beside, the spherical gear set also can substitute some application occasions of
the bevel gear set. The concave tooth of spherical gear can be generated by hobbing with a negative continuous
shifting, from both sides of the tooth width to the middle section of gear tooth width, along the rotation axis
of the generated gear, whereas the convex tooth of spherical gear can be generated by hobbing with a positive
continuous shifting along the gear rotation axis. Moreover, the continuous shifting is in the second order, i.e.
an arc. Although the manufacturing method of spherical gears have already been developed, however, only a
few of researches on the spherical gears till now. Yang [3] and Yang et al. [4] proposed a ring-involute-teeth
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Nomenclature

a, b tool setting of rack cutter Ri

C0 operational center distance
‘i design parameter on rack cutter (i = F and P)
Mn normal module
rj radius of pitch circle (j = 1 and 2)
r radius of contact ellipse
Rj spherical radius (j = 1 and 2)
Sk (Xk, Yk, Zk) coordinate system k (k = 1,2, f, h, m, n, t and v) with three perpendicular axes Xk, Yk

and Zk

an normal pressure angle
hj spherical angle (j = 1 and 2), defined in Fig. 3
ht contact ellipse measurement angle, measured from Xt axis to the radius of searching point of con-

tact ellipse on tangent plane T, defined in Fig. 7
/j rotation angle of gear j (j = 1 and 2) when gear j is generated by rack cutter
/0j rotation angle of gear j (j = 1 and 2) when two gears mesh with each other
DC variation of center distance
Dch horizontal axial misaligned angle
Dcv vertical axial misaligned angle
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spherical gear with double degrees of freedom. Tsai and Jehng [5] applied rapid prototyping to form a spher-
ical gear with skew axes. Both spherical gears investigated by Yang and Tsai are different from the spherical
gear of this study in generated mechanism, teeth profiles, transmission characteristics and meshing model of
gear set.

In the past, many researches have been made for spur gears, helical gears and bevel gears including their
respective mathematical models, characteristic analyses, stress analyses and manufactures. Tsay [6] investi-
gated the geometry, computer simulation, tooth contact analysis and stress analysis of the involute helical
gear. The spur gear is a special case of helical gears with zero degree of helix angle. Liu and Tsay [7] studied
the contact characteristic of bevel gears. Tsai and Chin [8] discussed surface geometry of bevel gears. Litvin
et al. [9] probed into low-noise and high-endurance of bevel gears by design, manufacture, stress analysis
and experimental tests. The tooth contact analysis (TCA) method was proposed by Litvin [10,11] and Litvin
and Fuentes [12], and it had been applied to simulate the meshing of gear drives. The TCA results can provide
useful information on contact points, contact ratios and kinematic errors (KEs) of gear sets. The surface sep-
aration topology method was proposed by Janninck [13], and it can be applied to determine the contact ellip-
ses on tooth surface of gear sets.

The aim of this paper is to develop the mathematical models of spherical gears with convex teeth and con-
cave teeth. Based on these developed mathematical models, the computer graph of the gear set can be plotted
and the TCA is also performed. The instantaneous contact points and kinematic errors of the spherical gear
Fig. 1. Mating statuses of spherical gear set with axial misalignments.
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can be calculated. In addition, the contact ellipses and contact patterns of spherical sets can also be deter-
mined. Some numerical examples are given to illustrate the contact characteristics of the proposed spherical
gears.

2. Mathematical model of spherical gears

There are many manufacture methods for gear generation. Hobbing is a popular and efficient method to cut
gears. Hobbing method can be applied to cut spur gears, helical gears, bevel gears, etc. It also can be used to
cut the spur gear with continuous shifting such as spherical gears. In this study, an imaginary rack cutter is
considered to simulate the hobbing process. According to the theory of gearing [10–12] and the gear cutting
mechanism, the mathematical model of spherical gears can be developed.

2.1. Mathematical model of rack cutter

The meshing simulation of a spherical gear pair comprises a pinion and a gear. Assume that the rack cutter
surfaces RF and RP generate the pinion surface R1 and gear surface R2, respectively. As shown in Fig. 2, the
normal section of rack cutter consists mainly of two straight edges, and they can be represented in coordinate
system SðiÞa ðX ðiÞa ; Y

ðiÞ
a ; Z

ðiÞ
a Þ by
RðiÞa ¼

�aþ ‘i cos an

�ðbþ a tan anÞ � ‘i sin an

0

1

2
6664

3
7775 ði ¼ F and PÞ; ð1Þ
where the design parameter ‘i ¼ jM0M jði ¼ F and PÞ represents the distance measured from the initial point
M0 to the moving point M; the symbols Mn and an denote the normal module and normal pressure angle of
the spherical gear, respectively. The upper and lower signs of Eq. (1) represent the left side and right side sur-
face of rack cutter Riði ¼ F and PÞ, respectively. The symbols a and b are also the design parameters to define
the positions of initial point M0 and moving point M.

Consider that the coordinate system SðiÞc ðX ðiÞc ; Y
ðiÞ
c ;Z

ðiÞ
c Þ is the rack cutter coordinate system, and the profile

of rack cutter can be formed by its normal section moving along the hobbing locus of a spherical gear, as
shown in Fig. 3. The mathematical model of rack cutter can be determined by using the homogenous coor-
dinate transformation matrix equation transforming from coordinate system SðiÞa to SðiÞc . In other words, the
rack cutter surface is formed by the hobbing path of the normal section of rack cutter represented in coordi-
nate system SðiÞc . Therefore, the rack cutter surface can be represented in coordinate system SðiÞc as follows:
Fig. 2. The normal section of rack cutters Rf and RP.



Fig. 3. Relationship between coordinate systems SðiÞa and SðiÞc .
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RðiÞc ¼McaRðiÞa ¼

ð�aþ ‘i cos anÞ cos hj � Rjð1� cos hjÞ
�ðbþ a tan anÞ � ‘i sin an

�ð�aþ ‘i cos anÞ sin hj þ Rj sin hj

1

2
6664

3
7775 ði ¼ F;P and j ¼ 1; 2Þ; ð2Þ
where the symbol Rj (j = 1, 2) represents the spherical radii and the symbol hj (j = 1, 2) denotes the spherical
angle measured from the central section of spherical gear to the position of normal section of hob cutter at
every rotation instant in the gear hobbing process. The upper and lower signs of Eq. (2) represent the left
and right sides of the rack cutter surface, respectively.

The normal vector to the rack cutter surface can be attained by
NðiÞc ¼
oRðiÞc

o‘i
� oRðiÞc

ohj
ði ¼ F and P and j ¼ 1; 2Þ; ð3Þ
where the parameters ‘i and hj are the surface coordinates of the rack cutter. Eqs. (2) and (3) result in the cor-
responding normal vector to the rack cutter surface as follows:
NðiÞc ¼
�ða� ‘i cos an þ RjÞ cos hj sin an

�ða� ‘i cos an þ Rj cos 2hjÞ cos an

�ða� ‘i cos an � RjÞ sin hj sin an

2
64

3
75 ði ¼ F;P and j ¼ 1; 2Þ: ð4Þ
Again, the upper and lower signs of Eq. (4) represent the left and right sides of the rack cutter surface,
respectively.
2.2. Mathematical model of spherical pinion and gear

According to the theory of gearing [10–12], the mathematical model of the generated tooth surface can be
obtained by considering the locus equation of rack cutter surface, expressing in coordinate system of the gen-
erated gear, and the equation of meshing. Herein, the locus equation of rack cutter surface can be attained
using the homogenous coordinate transformation from the coordinate system of rack cutter to the coordinate
system of generated gear. In the gear generation process, gear and cutter surface are never embedded into each
other. Thus, the relative velocity of the gear with respect to the cutter, V(Rg), is perpendicular to their common
normal, N. Therefore, the equation of meshing of the gear and rack cutter can be expressed as follows:
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N � VðRgÞ ¼ 0; ð5Þ
where the superscripts R and g denote the rack cutter and generated gear, respectively.
Fig. 4 shows the schematic generation mechanism and the coordinate relationship among the rack cutter

and the generated pinion and gear. Herein, the coordinate systems SðiÞc ðX ðiÞc ; Y
ðiÞ
c ; Z

ðiÞ
c Þ; SfðX f ; Y f ; ZfÞ;

S1ðX 1; Y 1; Z1Þ and S2ðX 2; Y 2; Z2Þ are attached to the rack cutter, fixed, pinion and gear coordinate systems,
respectively. In the generation process, the rack cutter translates to the left with a velocity V while the pinion
rotates with an angular velocity x1 and the gear rotates with an angular velocity x2, respectively. Thus, both
relative velocities of RF with R1 and RP with R2 at the common contact point at every generating instant can
be expressed in the fixed coordinate system Sf as follows:
V
ðRijÞ
f ¼

�ðrj/j � Y ðiÞc Þxj

�X ðiÞc xj

0

2
64

3
75 ði ¼ F;P and j ¼ 1; 2Þ; ð6Þ
where the upper sign of Eq. (6) denotes the relative velocity of Rf and R1 while the lower sign denotes the rel-
ative velocity of RP and R2. Moreover, the symbols Riði ¼ FÞ corresponding to j = 1 and Riði ¼ PÞ corre-
sponding to j = 2. The symbol xj (j = 1, 2) denote the angular velocity of the generated pinion (j = 1) or
gear (j = 2). Beside, the terms X ðiÞc and Y ðiÞc express the X and Y components of position vector RðiÞc ,
respectively.

According to Eq. (5), the equation of meshing of spherical pinion and gear, expressing in the fixed coordi-
nate system Sf, can be determined and rewritten as follows:
/jð‘i; hjÞ ¼
Y ðiÞc N ðiÞx � X ðiÞc N ðiÞy

rjN ðiÞx

; ð7Þ
where symbols N ðiÞx and N ðiÞy express the X and Y components of normal vector NðiÞc , respectively. Again, the
symbol i = F corresponds to j = 1 while i = P corresponds to j = 2.

The locus equation of rack cutter surface, expressing in the coordinate system of generated pinion and gear,
can be determined using the homogenous coordinate transformation matrices equation as follows:
Fig. 4. Coordinate system relationship among rack cutter and generated gears.
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R1 ¼M1cR
ðFÞ
c ¼

cos /1 � sin /1 0 r1ðcos /1 þ /1 sin /1Þ
sin /1 cos /1 0 r1ðsin /1 � /1 cos /1Þ

0 0 1 0

0 0 0 1

2
6664

3
7775RðFÞc ; ð8Þ
and
R2 ¼M2cR
ðPÞ
c ¼

cos /2 sin /2 0 �r2ðcos /2 þ /2 sin /2Þ
� sin /2 cos /2 0 r2ðsin /2 � /2 cos /2Þ

0 0 1 0

0 0 0 1

2
6664

3
7775RðPÞc : ð9Þ
The mathematical models of spherical pinion and gear can be determined by considering Eq. (7) with Eqs.
(8) and (7) with (9), respectively. Moreover, the normal vectors of spherical pinion and gear, expressing in their
corresponding coordinate systems S1 and S2, can be determined as follows:
N1 ¼
N ðFÞx cos /1 � N ðFÞy sin /1

N ðFÞx sin /1 þ N ðFÞy cos /1

N ðFÞz

2
664

3
775; ð10Þ
and
N2 ¼
N ðPÞx cos /2 þ N ðPÞy sin /2

�N ðPÞx sin /2 þ N ðPÞy cos /2

N ðPÞz

2
664

3
775: ð11Þ
3. Meshing model and tooth contact analysis

Gear sets are important machine elements for power transmissions. The profile and assembly errors are
two main factors that effect the gear transmission performance. The profile errors include the errors of
pressure angle, lead angle, tooth profile, etc. These errors relate to the manufacture of gears. Therefore,
improving the precision of manufacture is an important issue to increase the gear transmission perfor-
mance. Another important factor that effects the transmission performance of the gear set is assembly
errors. Assembly errors include the errors of center distance, vertical axial misalignment and horizontal
axial misalignment. In this paper, the influence of assembly errors on transmission performance is
investigated.

3.1. Meshing model of spherical gear set

Fig. 5 shows the schematic diagram that the pinion and gear are meshed with assembly errors. The
assembly errors can be simulated by changing the setting of the reference coordinate systems Sh(Xh, Yh,
Zh) and Sv(Xv, Yv, Zv) with respect to the fixed coordinate system. Coordinate systems S1(X1, Y1, Z1)
and S2(X2, Y2, Z2) are attached to the pinion and gear, respectively. When the gear set is meshed with each
other, /01 and /02 are the actual rotation angles of the pinion and gear, respectively. To simulate the hori-
zontal axial misalignment of pinion, it can be performed by rotating the coordinate system Sh about axis Xh

with a misaligned angle Dch with respect to coordinate system Sf. Similarly, the simulation of vertical axial
misalignment of pinion can be achieved by rotating the coordinate system Sv about axis Xv through a mis-
aligned angle Dcv. In addition, the center distance error of spherical set can be performed by moving the
coordinate system S2 along axis Xf through a distance DC. Where the symbols Dch, Dcv and DC represent
the horizontal axial misaligned angle, vertical axial misaligned angle and center distance error of the gear
set, respectively.



Fig. 5. Spherical gear set of pinion and gear with assembly errors.
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3.2. Tooth contact analysis of spherical gear set

According to the tooth contact analysis method [10–12], the position vectors and the unit normal vectors of
both pinion and gear should be represented in the same coordinate system, say Sf. The instantaneous common
contact point of pinion and gear is the same point in coordinate system Sf. Moreover, the unit normal vectors
of the pinion and gear must be collinear to each other. Therefore, the following equations must hold at the
point of tangency of the mating gear pair:
R
ð1Þ
f � R

ð2Þ
f ¼ 0 ð12Þ
and
n
ð1Þ
f � n

ð2Þ
f ¼ 0: ð13Þ
In Eq. (12), R
ð1Þ
f and R

ð2Þ
f can be obtained by applying the following equations:
R
ð1Þ
f ¼MfhMhvMv1R1; ð14Þ
and
R
ð2Þ
f ¼Mðf2ÞR2; ð15Þ
where
Mfh ¼

1 0 0 0

0 cos Dch sin Dch 0

0 � sin Dch cos Dch 0

0 0 0 1

2
6664

3
7775;

Mhv ¼

cos Dcv 0 sin Dcv 0

0 1 0 0

� sin Dcv 0 cos Dcv 0

0 0 0 1

2
6664

3
7775;

Mv1 ¼

cos /01 sin /01 0 0

� sin /01 cos /0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775;
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and 0 0 02 3

Mðf2Þ ¼

cos /2 � sin /2 0 C

sin /02 cos /02 0 0

0 0 1 0

0 0 0 1

6664
7775:
R
ð1Þ
f and R

ð2Þ
f , respectively represent the position vectors of the pinion and gear, while n

ð1Þ
f and n

ð2Þ
f are the

unit normal vectors, represented in coordinate system Sf. Moreover, symbol C0 denotes the center distance of
spherical gear set with center distance error DC, i.e. C0 = r1 + r2 + DC. Since jnð1Þf j ¼ jn

ð2Þ
f j ¼ 1, Eqs. (12) and

(13) yield five independent nonlinear equations with six independent parameters /01;/
0
2; ‘f ; ‘P; h1 and h2. If the

input rotation angle /01 of the pinion is given, another five parameters can be solved by using a nonlinear sol-
ver. By substituting the solved five parameters and /01 into Eqs. (14) and (15), the contact point of the pinion
and gear can be obtained.

The kinematic error (KE) of the spherical gear set can be calculated by applying the following equation:
D/02ð/
0
1Þ ¼ /02ð/

0
1Þ �

T 1

T 2

/01; ð16Þ
where T1 and T2 denote the tooth number of pinion and gear, respectively.

4. Contact patterns

Due to the elasticity of gear tooth surfaces, the tooth surface contact point is spread over an elliptical area.
It is known that the instantaneous contact point of the mating gear pair can be determined from the TCA
results. When gear drives transmit a power or motion, a set of contact ellipses forms the contact patterns
on the tooth surfaces. The simulation methods for contact patterns analysis can be classified into the elastic
body method and the rigid body method. The finite element method belongs to the elastic body method for
analyzing the contact area with consideration of elastic deformation of tooth surfaces due to the contact stress,
thermal stress, and so on. On the other way, the rigid body method for contact patterns analysis includes the
curvature analysis method [10–12] and the surface separation topology method [13]. In this study, the contact
patterns of spherical gear set are obtained by using the surface separation topology method.

4.1. Contact pattern model

According to the surface separation method, the tooth surfaces of pinion and gear must be transformed
from the fixed coordinate system Sf of meshing model to the coordinate system St(Xt, Yt, Zt). Herein, the coor-
dinate system St is attached to the common tangent plane of two contact tooth surfaces at every contact
instant. Fig. 6 shows the relationship between the fixed coordinate system Sf and the common tangent plane
coordinate system St. The coordinate system Sm(Xm, Ym, Zm) and Sn(Xn, Yn, Zn) are the accessory coordinate
systems and they are rotated about the axes Xm and Yn through the angles d and e, respectively. Therefore, the
position vectors of pinion and gear tooth surfaces, represented in coordinate system St, can be expressed by
R
ðjÞ
t ¼MtnMnmMmf R

ðjÞ
f ðj ¼ 1; 2Þ; ð17Þ
where
Mmf ¼

1 0 0 �px

0 1 0 �py

0 0 1 �pz

0 0 0 1

2
6664

3
7775;

Mnm ¼

1 0 0 0

0 cos d � sin d 0

0 sin d cos d 0

0 0 0 1

2
6664

3
7775;



Fig. 6. Coordinate system relationship of contact point and tangent plane.
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Mtn ¼

cos e 0 � sin e 0

0 1 0 0

sin e 0 cos e 0

0 0 0 1

2
6664

3
7775;
and the angle formed by axes Zm and Zn is d ¼ tan�1
nðjÞ

fy

nðjÞ
fz

� �
, and angle formed by axes Zn and Zt is

e ¼ tan�1 nðjÞ
fxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðjÞ
fy

2
þnðjÞ

fz

2
q

0
@

1
A. The symbols nðjÞfx ; n

ðjÞ
fy and nðjÞfz are three components of unit normal vectors of spher-

ical pinion and gear surfaces expressed in the fixed coordinate system Sf, where the superscript ‘‘j” denotes the
spherical pinion (j = 1) and spherical gear (j = 2). Moreover, symbols px, py and pz are the three components of
the position vector of common contact point Ot represented in fixed coordinate system Sf.

4.2. Simulation of contact ellipses

Fig. 7a shows the contact tooth surfaces of pinion R1 and gear R2 which tangent to each other at their
instantaneous contact point Ot. It is noted that the instantaneous contact point Ot can be determined by
the TCA computation. In Fig. 7, the symbol n represents the unit normal vector of pinion R1 represented
in coordinate system St and coincides with the Zt axis. The calculation of contact ellipse is based on the
TCA results and polar coordinates concept. The geometric center of a contact ellipse is the instantaneous con-
tact point of two mating tooth surfaces, determined by the TCA results. The geometric center is considered as
the origin of the polar coordinate system. To determine a contour point on the contact ellipse, one should
search a pair of polar coordinates (r, ht), as shown in Fig. 7a, beginning from axis Xt with an increment angle
for ht, say 10�. The symbol r represents the position (polar coordinate) of the contact ellipse at the correspond-
ing polar coordinate ht, expressed in the coordinate system St, and is located on the common tangent plane.
The value of every position point r of contact ellipse must satisfy the separation distance
(d1 + d2) = 0.00632 mm. Since the coating paint on the pinion tooth surfaces for bearing contact test will
be scraped away and printed on the gear surfaces when the distance, measured along Zt axis, of two mating
tooth surfaces (R1 and R2) is less than the paint’s diameter, as shown in Fig. 7b. Since the diameter of coating
paint for bearing contact test is 0.00632 mm, therefore, the separation distance is set to equal the diameter of
the coating paint for simplicity. Herein, the symbol d1 is the distance, measured along Zt direction, of R1 and
common tangent plane T, whereas the symbol d2 is the distance between R2 and common tangent plane T.
Therefore, the contact ellipse can be determined by applying the following equations:
X ð1Þt ¼ r cos ht ¼ X ð2Þt ð�p 6 ht 6 pÞ; ð18Þ
Y ð1Þt ¼ r sin ht ¼ Y ð2Þt ð�p 6 ht 6 pÞ; ð19Þ



Fig. 7. (a) Common tangent plane and polar coordinates. (b) Separation distances between pinion and gear surfaces.
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and
Table
Major

Type o
Norma
Norma
Numb
Spheri
Face w
jZð1Þt � Zð2Þt j ¼ 0:00632 mm: ð20Þ

Thus, the position and size of contact ellipses of the spherical gear set can be determined by using Eqs. (18)–
(20).

5. Numerical examples

Based on the mathematical model and meshing model of the spherical gears, the gear tooth profiles can be
plotted and computer simulations of spherical gear sets can be performed.

Example 1. Computer graphs of the convex spherical pinion and concave spherical gear

The major spherical gear parameters are given in Table 1. Based on the developed mathematical model of
spherical gears, the three-dimensional mating model of spherical pinion and gear can be plotted. Fig. 8 illus-
trates the mating model of the convex spherical pinion and the concave spherical gear.

Example 2. Convex spherical pinion vs. concave spherical gear

The major spherical gear parameters are the same as given in Table 1. The gear pair is composed of convex
spherical pinion and concave spherical gear, and assembled with three conditions as follows:

Case 1. Dch = Dcv = 0� and DC = 0 mm (ideal assembly condition).

Case 2. Dch = Dcv = 0� and DC = 0.2 mm (0.25% center distance variation).

Case 3. Dch = � 0.05�, Dcv = 2.0� and DC = 0.2 mm (0.25% center distance variation).

Case 1 is the ideal assembly condition. Case 2 indicates that the gear set has the error of center distance.
Case 3 indicates that the gear set has both the axial misalignments and error of center distance. The simulated
kinematic errors (KEs) and bearing contacts of these cases are shown in Table 2 and Fig. 9, respectively. By
1
design parameters of spherical pinion and gear

Pinion Gear

f gears Spherical convex Spherical concave Spherical convex Spur
l module (mm/teeth) 2 2 2 2
l pressure angle (deg.) 20 20 20 20

er of teeth 33 47 47 47
cal angle hj (deg.) ±13.137 ±9.182 ±9.182 –
idth (mm) 15 15 15 15



Fig. 8. Computer graph of the convex spherical pinion and the concave spherical gear.

Table 2
Kinematic errors and bearing contacts for spherical gear set with convex pinion and concave gear

Case /01 ðdeg :Þ /02 ðdeg :Þ ‘f (mm) ‘P (mm) h1 (deg.) h2 (deg.) K.E. (arc-sec)

1 �6.0000 �4.2128 1.4837 1.4837 0.0000 0.0000 0.0000
�3.0000 �2.1064 2.0746 2.0746 0.0000 0.0000 0.0000

0.0000 0.0000 2.6656 2.6656 0.0000 0.0000 0.0000
3.0000 2.1064 3.2566 3.2566 0.0000 0.0000 0.0000
6.0000 4.2128 3.8475 3.8475 0.0000 0.0000 0.0000

2 �6.0000 �4.2128 1.5603 1.3494 0.0000 0.0000 0.0000
�3.0000 �2.1064 2.1513 1.9404 0.0000 0.0000 0.0000

0.0000 0.0000 2.7422 2.5314 0.0000 0.0000 0.0000
3.0000 2.1064 3.3332 3.1223 0.0000 0.0000 0.0000
6.0000 4.2128 3.9242 3.7133 0.0000 0.0000 0.0000

3 �6.0000 �4.2109 1.5724 1.3647 2.9219 0.6934 6.7400
�3.0000 �2.1056 2.1615 1.9498 2.5096 0.3537 2.9448

0.0000 0.0000 2.7509 2.5367 2.1275 0.0367 0.0000
3.0000 2.1058 3.3408 3.1253 1.7727 �0.2600 �2.1607
6.0000 4.2118 3.9312 3.7157 1.4426 �0.5384 �3.5930
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substituting the solved parameters /01; ‘f and h1 into Eq. (14), the contact point on the pinion tooth surface is
obtained. Similarly, substituting the solved parameters /02; ‘P and h2 into Eq. (15), the contact point on the
gear tooth surface is obtained.

In the ideal assembly condition (Case 1), the gear set has no KE and tooth surfaces contact to each other at
the middle section of the face width, i.e. h1 = h2 = 0�. In Case 2, the gear pair also has no KE and they contact
to each other at the middle section of the face width. Case 3 has a little higher level of KEs than other two
cases under the condition with axial misalignments and center distance error. Due to the profiles at the middle
section of spherical pinion and gear are the same as that of the spur gear with no shifting, therefore, the con-
tact characteristic at the middle section of spherical gear set is similar to that of the spur gear. The only dif-
ferent between spherical gear and spur gear is that the spherical gear set is in point contact and the spur gear is
in line contact. Fig. 9 illustrates the loci of contact points and their corresponding contact ellipses on the



Fig. 9. Contact patterns of spherical gear set with convex pinion and concave gear.
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pinion tooth surface for the above-mentioned three cases. The positions of contact points and contact ellipses
of spherical gear set for Cases 1 and 2 are almost the same and are located at the middle section of the face
width. However, the contact points and contact ellipses are slightly departed from the middle section of the
face width for Case 3.

Example 3. Convex spherical pinion vs. convex spherical gear

The major spherical gear parameters are also shown in Table 1. This example investigates the meshing sim-
ulations of the spherical gear set with convex pinion and convex gear under the following assembly conditions:

Case 4. Dch = Dcv = 0� and DC = 0 mm (ideal assembly condition).
Case 5. Dch = Dcv = 0� and DC = 0.2 mm (0.25% center distance variation).

Case 6. Dch = � 0.05�, Dcv = 2.0� and DC = 0.2 mm (0.25% center distance variation).

Table 3 summarizes the simulated results of the bearing contacts and KEs of Cases 4–6, and Fig. 10 illus-
trates the loci of contact points and their corresponding contact ellipses on the pinion tooth surface. In Cases 4
and 5, the KEs remain zero and the loci of contact points are also located at the middle section of the face
width which are the same as those of Cases 1 and 2. As to Case 6, there is a lower level of KEs induced,
Table 3
Kinematic errors and bearing contacts for spherical gear set with convex pinion and gear

Case /01 ðdeg :Þ /02 ðdeg :Þ ‘f (mm) ‘P (mm) h1 (deg.) h2 (deg.) K.E. (arc-sec)

4 �6.0000 �4.2128 1.4837 1.4837 0.0000 0.0000 0.0000
�3.0000 �2.1064 2.0746 2.0746 0.0000 0.0000 0.0000

0.0000 0.0000 2.6656 2.6656 0.0000 0.0000 0.0000
3.0000 2.1064 3.2566 3.2566 0.0000 0.0000 0.0000
6.0000 4.2128 3.8475 3.8475 0.0000 0.0000 0.0000

5 �6.0000 �4.2128 1.5603 1.3494 0.0000 0.0000 0.0000
�3.0000 �2.1064 2.1513 1.9404 0.0000 0.0000 0.0000

0.0000 0.0000 2.7422 2.5314 0.0000 0.0000 0.0000
3.0000 2.1064 3.3332 3.1223 0.0000 0.0000 0.0000
6.0000 4.2128 3.9242 3.7133 0.0000 0.0000 0.0000

6 �6.0000 �4.2114 1.5653 1.3568 2.1054 0.1243 4.7680
�3.0000 �2.1057 2.1579 1.9467 2.0970 0.0661 2.4149

0.0000 0.0000 2.7506 2.5365 2.0851 0.0071 0.0000
3.0000 2.1057 3.3432 3.1262 2.0697 �0.0525 �2.4673
6.0000 4.2114 3.9359 3.7158 2.0510 �0.1127 �4.9774



Fig. 10. Contact patterns of spherical gear set with convex pinion and convex gear.
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and the contact points and contact ellipses are also slightly departed from the middle section of the face width.
It is noted that the meshing models of spherical gear sets in Cases 4–6 are convex spherical pinion mating with
convex spherical gear, therefore, the sizes of contact ellipses are smaller than those of Cases 1–3.

Example 4. A gear set with convex spherical pinion and spur gear

The major gear parameters are given in Table 1. This example investigates the meshing simulations of the
gear set with convex spherical pinion and spur gear under the following assembly conditions:

Case 7. Dch = Dcv = 0� and DC = 0 mm (ideal assembly condition).

Case 8. Dch = Dcv = 0� and DC = 0.2 mm (0.25% center distance variation).

Case 9. Dch = � 0.05�, Dcv = 2.0� and DC = 0.2 mm (0.25% center distance variation).

Table 4 summarizes the simulated results of the bearing contacts and KEs of Cases 7–9, while Fig. 11 illus-
trates the loci of contact points and their corresponding contact ellipses on the pinion surface. For the cases of
ideal assembly condition (Case 7) and center distance error condition (Case 8), the contact positions are the
same as those of Cases 1 and 2 of Example 2 and Cases 4 and 5 of Example 3, since the tooth profiles at the
Table 4
Kinematic errors and bearing contacts for spherical gear set with convex pinion and spur gear

Case /01ðdeg :Þ /02ðdeg :Þ ‘f (mm) ‘P (mm) h1 (deg.) h2 (deg.) K.E. (arc-sec)

7 �6.0000 �4.2128 1.4837 1.4837 0.0000 0.0000 0.0000
�3.0000 �2.1064 2.0746 2.0746 0.0000 0.0000 0.0000

0.0000 0.0000 2.6656 2.6656 0.0000 0.0000 0.0000
3.0000 2.1064 3.2566 3.2566 0.0000 0.0000 0.0000
6.0000 4.2128 3.8475 3.8475 0.0000 0.0000 0.0000

8 �6.0000 �4.2128 1.5603 1.3494 0.0000 0.0000 0.0000
�3.0000 �2.1064 2.1513 1.9404 0.0000 0.0000 0.0000

0.0000 0.0000 2.7422 2.5314 0.0000 0.0000 0.0000
3.0000 2.1064 3.3332 3.1223 0.0000 0.0000 0.0000
6.0000 4.2128 3.9242 3.7133 0.0000 0.0000 0.0000

9 �6.0000 �4.2114 1.5661 1.3577 2.2364 0.1769 5.0831
�3.0000 �2.1057 2.1584 1.9471 2.1629 0.0919 2.4994

0.0000 0.0000 2.7506 2.5365 2.0918 0.0097 0.0000
3.0000 2.1057 3.3428 3.1260 2.0230 �0.0699 �2.4191
6.0000 4.2114 3.9349 3.7155 1.9564 �0.1470 �4.7617



Fig. 11. Contact patterns of a gear set with spherical convex pinion and spur gear.

Table 5
Average ratio a/b of major and minor axes of the contact ellipses of spherical sets with different tooth pressure angles

Pressure angle (deg.) 14.5 20.0 25.0

Convex pinion vs. concave gear
Case 10 9.339 6.705 5.377
Case 11 9.048 6.586 5.315

Convex pinion vs. convex gear
Case 10 4.029 2.901 2.334
Case 11 4.011 2.893 2.330

Convex pinion vs. spur gear
Case 10 5.194 3.731 2.994
Case 11 5.151 3.711 2.985
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middle section of the face width of convex tooth and concave tooth are the same as that of the spur gear. How-
ever, the size of contact ellipses of this example is smaller than those of Cases 1 and 2 of Example 2, but larger
than those of Cases 4 and 5 of Example 3.

Example 5. Average ratio a/b of major and minor axes of the contact ellipses

The major gear parameters are also the same as those given in Table 1. This example investigates the aver-
age ratio a/b of major and minor axes of contact patterns when gear pair with different tooth pressure angles
under the ideal assembly condition and axial misalignments without center distance variation.

Case 10. Dch = Dcv = 0� (ideal assembly condition).
Case 11. Dch = � 0.05�, Dcv = 2.0�.

Table 5 shows the ratio a/b of major and minor axes of the contact ellipses of the spherical gear sets with
different tooth pressure angles. It is found that convex pinion meshes with concave gear has a larger ratio of
a/b than other mating pairs. Besides, mating gear pairs with axial misalignments result in a smaller ratio of
a/b. The gear set with a smaller pressure angle (i.e. 14.5�) results in a larger ratio of a/b than other pressure
angle conditions. Moreover, the ratio a/b of assembly case with ideal condition is little larger than the assem-
bly cases with axial misalignments.

6. Conclusions

In this study, the continuous shifting gear cutting is proposed to generate the spherical gears. A continu-
ously positive shifting and then a negative shifting gear cutting can generate the convex spherical gear, and
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the reverse order can generate the concave spherical gear. Based on the developed mathematical model of
spherical gears, the computer graph of the gear set is plotted, and the TCA is also performed. The instanta-
neous contact points and kinematic errors of the spherical gear set are calculated. Besides, the contact ellipses
and contact patterns of spherical gear sets are also investigated by applying the TCA method, surface sepa-
ration topology method and the developed computer simulation programs. The simulated results can be con-
cluded by:

1. The meshing of spherical gear set is in point contact, and the contact points of the spherical gear set with
axial misalignments and center distance error are located near the center region of tooth surfaces. It means
that there is no edge contact for the spherical gear set with axial misalignments. Besides, the locations and
sizes of contact patterns of the spherical gear set can be determined. The results are useful to further inves-
tigations on the contact characteristic of spherical gear sets.

2. The spherical gear set with a convex tooth mating with a concave tooth has the largest size of contact ellip-
ses, and then the convex tooth mating with spur tooth. A convex tooth mating with a convex tooth has the
smallest size of contact ellipses.

3. A spherical gear having a smaller pressure angle (14.5�) results in a larger value of ratio a/b, whereas a lar-
ger pressure angle (25.0�) results in a smaller value of ratio a/b. The spherical gear pair with ideal assembly
condition has a slightly higher value of ratio a/b than that of the assembly case with axial misalignments.
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