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1. INTRODUCTION

A Steiner triple system (or simply triple system) of order n is a pair (S, T ), where T is an
edge-disjoint collection of triangles (triples) that partition the edge set of Kn (the complete
undirected graph on n vertices) with vertex set S. It has been known forever (= since 1847
[5]) that the spectrum for triple systems (= the set of all n such that a triple system of order
n exists) is precisely the set of all n ≡ 1 or 3 (mod 6). In this case |T | = n(n− 1)/6.

The triple system (P, T1) is said to be embedded in the triple system (S, T2) provided
that P ⊆ S and T1 ⊆ T2. We also say that (P, T1) is a subsystem of (S, T2). It is trivial
to show that if (P, T1) is a proper subsystem of (S, T2) then 2|P | + 1 ≤ |S|. Now, a quite
natural question to ask is: given integers m ≡ 1 or 3 (mod 6) and n ≡ 1 or 3 (mod 6) with
2m + 1 ≤ n, does there exist a triple system of order n containing a subsystem of order
m? In 1973, the celebrated work of Jean Doyen and Richard Wilson [2] showed that this
is, in fact, the case.

Doyen and Wilson Theorem [2]. Let 2m+ 1 ≤ n, m ≡ 1 or 3 (mod 6), and n ≡ 1 or
3 (mod 6). Then there exists a triple system of order n containing a subsystem of order m.
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Over the years, any problem involving trying to prove a similar result for a given combi-
natorial structure has come to be called a Doyen–Wilson problem, and (not too surprisingly)
any solution a Doyen–Wilson theorem. The Doyen–Wilson Theorem has spawned a cot-
tage industry with respect to just about any combinatorial design that you can think of. The
history of work along these lines is much too extensive to go into here. But it doesn't take
a lot of imagination to think of two Doyen–Wilson type problems that are natural gener-
alizations of the original result: maximum packings and minimum coverings of Kn with
triples. Without going into details, the first of these problems has been partially settled by
the combined work in [4] and [6]. The object of this article is the complete solution of the
Doyen–Wilson problem for the other side of this coin, i.e., minimum coverings of Kn with
triples.

2. STATEMENT OF THE PROBLEM

Let λKn denote the multigraph on n vertices in which each pair of vertices is joined by
exactly λ edges. Let E(G) denote the collection of edges in the multigraph G. If E and
P are collections of edges, then let E + P denote the union of the two collections (so if e
occurs x times in E and y times in P , then it occurs x + y times in E + P ).

A covering of Kn with triples is a triple (S,C, P ), where S is the vertex set of Kn,
P ⊆ E(λKn) called the padding, and C is a collection of triples that partition E(Kn)+P .
The number n is called the order of the covering. So that there is no confusion: an edge
{a, b} belongs to exactly x+ 1 triples of C, where x is the number of times {a, b} belongs
to the padding P . If |P | is as small as possible, then (S,C, P ) is called a minimum covering
of Kn with triples (MCT). So, a Steiner triple system is a MCT with padding P = ∅.

Example 2.1 (MCT (S1, C1, P1) of order 6). S1 = {1, 2, 3, 4, 5, 6}, C1 = {{1, 2, 3},
{1, 2, 4}, {3, 4, 5}, {3, 4, 6}, {2, 5, 6}, {1, 5, 6}}, and P1 = {{1, 2}, {3, 4}, {5, 6}}.

Example 2.2 (MCT (S2, C2, P2) of order 14). S2 = {1, 2, . . . , 14}, C2 = C1∪ {{7, 8,
9}, {7, 14, 12}, {10, 11, 13}, {1, 7, 14}, {1, 8, 13}, {1, 9, 11}, {1, 10, 12}, {2, 13, 14},
{2, 7, 12}, {2, 8, 11}, {2, 9, 10}, {3, 8, 14}, {3, 7, 10}, {3, 9, 13}, {3, 11, 12}, {4, 7, 9},
{4, 8, 12}, {4, 10, 14}, {4, 11, 13}, {5, 9, 12}, {5, 8, 10}, {5, 11, 14}, {5, 7, 13}, {6, 7,
8}, {6, 9, 14}, {6, 10, 13}, {6, 11, 12}}, and P2 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {7, 9},
{7, 14}, {10, 13}, {11, 12}}.

It should come as no surprise that the padding of a MCT is determined by its order (up to
a permutation on S). Fort and Hedlund [3] showed that minimum coverings exist for all n,
and that if (S,C, P ) is a MCT of order n then the padding P is (i) a 1-factor if n ≡ 0 (mod
6), (ii) a tripole = a spanning graph with each vertex having odd degree and containing
(n+2)/2 edges if n ≡ 2 or 4 (mod 6), (iii) a double edge = {{a, b}, {a, b}} if n ≡ 5 (mod
6), and, of course, (iv) the empty set if n ≡ 1 or 3 (mod 6). Table I shows the minimum
paddings.
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In Example 2.1 the padding P1 is a 1-factor, and in Example 2.2 the padding P2 is a
tripole.

The MCT (S1, C1, P1) is said to be embedded in the MCT (S2, C2, P2) if and only if
S1 ⊆ S2, C1 ⊆ C2, P1 ⊆ P2, and if {a, b} ∈ P2 \ P1 then {a, b} /⊆ S1.

Example 2.3. The MCT (S1, C1, P1) of order 6 in Example 2.1 is embedded in the MCT
(S2, C2, P2) of order 14 in Example 2.2.

We list the possible embeddings of MCTs in Table II, abbreviating the paddings by: T =
tripole, F = 1-factor, and D = double edge. The table should be read as follows: An ‘‘X’’
in cell (i, j) means it is impossible to embed a MCT of order i (mod 6) in a MCT of order
j (mod 6). Otherwise, such an embedding is possible. In this case, the cell is filled in with
the padding of the embedded MCT in the lower half and the padding of the containing MCT
in the upper half.

In the remainder of this article, we will show that if (i, j) is possible, then the necessary
conditions for embedding a MCT of order m ≡ i (mod 6) in a MCT of order n ≡ j (mod
6) are also sufficient. Of course, in order to do this it is a good idea to first determine just
what the necessary conditions are. This is quite easy to do.

A simple calculation shows that, in every case where (i, j) is possible, we must have
n ≥ 2m. It is immediate that n = 2m is possible for the cases (0, 0), (2, 4), and (4, 2) only.
So, we have the following necessary conditions.

Necessary Conditions. If (i, j) is possible, then n ≥ 2m. Except for the cases (0, 0), (2,
4), and (4, 2) we must have the strict inequality n > 2m.

TABLE II. Possible embeddings.

m \ n 0 1 2 3 4 5

0 F \ F X F \ T X F \ T X
1 ∅ \ F ∅ \ ∅ ∅ \ T ∅ \ ∅ ∅ \ T ∅ \D
2 X X T \ T X T \ T X
3 ∅ \ F ∅ \ ∅ ∅ \ T ∅ \ ∅ ∅ \ T ∅ \D
4 X X T \ T X T \ T X
5 X X X X X D \D
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Not too surprisingly, since there are 20 cases, we will break the constructions up into
several sections. However, the four cases (1, 1), (1, 3), (3, 1), and (3, 3) are covered by the
Doyen–Wilson Theorem, so this reduces our work to just 16 cases.

Before describing these 16 cases, we first need to say something about maximum pack-
ings of Kn with triples, because we use maximum packings extensively in some of the
proofs.

A packing of Kn with triangles is a triple (S, T, L), where S is the vertex set of Kn,
T is a collection of edge-disjoint triangles (triples) of Kn, and L is the set of edges not
belonging to a triple of T . The number n is called the order of the packing (S, T, L), and
the set of unused edges L is called the leave. If |T | is as large as possible = if |L| is as small
as possible, then (S, T, L) is called a maximum packing. Just as with minimum coverings,
the leave of a maximum packing is determined by the order. It is a very well known Folk
Theorem that maximum packings exist for all n and that the leave is (i) a 1-factor if n ≡ 0
or 2 (mod 6), (ii) a tripole if n ≡ 4 (mod 6), (iii) a 4-cycle if n ≡ 5 (mod 6), and (iv) the
empty set if n ≡ 1 or 3 (mod 6) (Steiner triple system).

3. CASES (2, 2), (4, 4), (2, 4), AND (4, 2)

The proofs for (2, 2) and (4, 4) are similar; so are the proofs for (2, 4) and (4, 2). So we
will need just two lemmas here.

Lemma 3.1. Let n > 2m, n ≡ m ≡ 2 or 4 (mod 6). Then there exists a MCT of order
n containing a MCT of order m.

Proof. In each of the cases (2, 2) and (4, 4) both the containing and embedded MCTs have
padding a tripole. We must also have n > 2m. We will do the construction for the case (2,
2), the case (4, 4) being similar.

Write m = 6k + 2 and n = 6h + 2. Since n > 2m, we must have h ≥ 2k + 1 and,
therefore, 6h+ 1 ≥ 2(6k + 1) + 1. By the Doyen–Wilson Theorem we can embed a triple
system of order 6k+1 in a triple system of order 6h+1. This gives a partition of K6(h−k)

based on X into a collection of triples T and 6k + 1 1-factors F = {f1, f2, . . . , f6k+1},
which we will denote by (X,F, T ). Let S1 = {1, 2, 3, . . . , 6k + 2} and let (S1, C1, P1)
be a MCT of order m = 6k + 2 with padding a tripole P1. Let α be a mapping from S1

onto {1, 2, 3, . . . , 6k + 1} such that (6k + 1)α = (6k + 2)α = 6k + 1, set S2 = S1 ∪X
(S1 ∩X = ∅), and define a collection of triples C2 as follows:

1. C1 ⊆ C2,
2. T ⊆ C2, and
3. {a, b, i} ∈ C2 if and only if {a, b} ∈ fiα.

Then (S2, C2, P2) is a MCT of order n with padding the tripole P2 = P1 ∪ f6k+1 and, of
course, containing the MCT (S1, C1, P1) of order m.

Lemma 3.2. Let n ≥ 2m, and either m ≡ 2 (mod 6) and n ≡ 4 (mod 6) or m ≡ 4
(mod 6) and n ≡ 2 (mod 6). Then there exists a MCT of order n containing a MCT of
order m.

Proof. We use the same technique for the cases (2, 4) and (4, 2) as in cases (2, 2) and (4,
4). We will do case (2, 4), the case (4, 2) being similar. Now it is possible in the (2, 4) case
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to have n = 2m. Simply use (2, 2) Construction with (X,F, T ), where T = ∅. If n > 2m,
use the Doyen–Wilson Construction to obtain a triple system of order n − 1 containing a
subsystem of order m− 1 and proceed exactly as in the case (2, 2).

4. CASES (1, 2), (1, 4), (3, 2), AND (3, 4)

Lemma 4.1. Let n > 2m, m ≡ 1 or 3 (mod 6), and n ≡ 2 or 4 (mod 6). Then there
exists a MCT of order n containing a MCT of order n.

Proof. In all of these cases, the best possible embedding requires that n > 2m. We will
give a construction for the (1, 2) case, the other cases being obvious modifications. Let
m = 6k + 1 and n = 6h + 2. By the Doyen–Wilson Theorem we can embed a triple
system of order 6k + 1 in a triple system of order 6h + 1. If we delete a point from the
triple system of order 6h+ 1, which does not belong to the subsystem of order 6k + 1, we
obtain a maximum packing of K6h with triples with leave a 1-factor. Let (S1, C1, L) be
this maximum packing, where S1 is the vertex set of K6h, C1 is the collection of triples,
and L is the leave. Of course (S1, C1, L) contains a triple system (X,C∗

1 ) of order 6k + 1.
Now set S2 = {∞1,∞2} ∪ S1 and define a collection of triples C2 as follows:

1. C1 ⊆ C2,
2. write L = L∗ ∪ {x, y} and for each edge {a, b} ∈ L∗ place the two triples {a, b,

∞1}, {a, b,∞2} in C2 and
3. place the 3 triples {∞1,∞2, x}, {∞1,∞2, y}, and {∞2, x, y} in C2.

Then (S2, C2, P ) is a MCT of order n = 6h + 2 with padding the tripole P = {{∞2,
∞1}, {∞2, x}, {∞2, y}} ∪L∗, and, of course, containing the subsystem (X,C∗

1 ) of order
m = 6k + 1.

The other 3 cases are handled in a similar fashion.

5. CASES (0, 0) AND (5, 5)

Before moving on to the next two cases, we will need the following construction of PBDs,
which may or may not be well known.

The 6h + 5 Construction.. Let (Q, ◦)be an idempotent commutative quasi-group of order
2h+1 containing a subquasi-group (P, ◦) of order 2k+1. Let α be a cyclic permutation on
Q\P , set S = {∞1,∞2}∪ (Q×{1, 2, 3}), and define a collection of blocks B consisting
of one block of size 6k + 5 and the remaining blocks of size 3 as follows:

1. {∞1,∞2} ∪ (P × {1, 2, 3}) ∈ B;
2. denote by c∗ the cycle

c∗ = ((a, 1), (a, 2), (a, 3), (aα, 1), (aα, 2), (aα, 3), (aα2, 1), (aα2, 2), (aα2, 3), . . . ,

(aαx−1, 1), (aαx−1, 2), (aαx−1, 3)),

where a ∈ Q \ P and x = 2h− 2k, and use alternate edges in c∗ with ∞1 and ∞2,
respectively, to form 6(h− k) triples, and place these triples in B; and

3. if {a, b} /⊆ P , place the 3 triples {(a, 1), (b, 1), (a ◦ b, 2)}, {(a, 2), (b, 2), (a ◦ b, 3)},
{(a, 3), (b, 3), ((a ◦ b)α, 1)} in B.
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Then (S,B) is a PBD of order 6h + 5 containing exactly one block of size 6k + 5 and the
remaining blocks all of size 3.

Lemma 5.1. Let n > 2m, n ≡ m ≡ 5 (mod 6). Then there exists a MCT of order n
containing a MCT of order m.

Proof. Write m = 6k + 5 and n = 6h + 5. Since n > 2m, 2h + 1 ≥ 2(2k +
1) + 1. Hence by Allan Cruse's Theorem [1] there exists an idempotent commutative
quasi-group of order 2h + 1 containing a subquasi-group of order 2k + 1. Use the 6h + 5
Construction and replace the block of size 6k+5 with a MCT of order 6k+5 with padding a
double edge.

Lemma 5.2. Let n ≥ 2m, and n ≡ m ≡ 0 (mod 6). Then there exists a MCT of order
n containing a MCT of order m.

Proof. Again we must have n ≥ 2m. Write m = 6k and n = 6h. By the 6h + 5
Construction, there exists a PBD (S,B) of order 6h − 1 containing exactly one block of
size 6k − 1 and the remaining blocks of size 3. This gives a partition of K6(h−k) based on
X into a collection of triples T and 6k − 1 1-factors F , denoted by (X,T, F ). If we now
copy the argument in Case (2, 2) taking (S1, C1, P1) to be a MCT of order 6k with padding
a 1-factor, the result is a MCT of order n with padding a 1-factor and containing a MCT of
order m.

6. MAXIMUM PACKINGS

Two of the unsettled cases for the Doyen–Wilson Theorem for maximum packings are (0,
4) and (2, 4) [6]. Both cases are crucial for four of the remaining cases. In order to obtain
these packings we will need some preliminary results.

As far as we are concerned, a difference triple is a 3-element subset {x, y, z} of distinct
positive integers such that x + y = z. The following lemma can be found in [7].

Lemma 6.1 (G. Stern and H. Lenz [7]). The sets {1, 2, 3, . . . , 6k− 1} \ {4k, 5k} and
{1, 2, 3, . . . , 6k + 2} \ {3k + 1, 4k + 2}, k ≥ 2, can be partitioned into difference triples,
where 1, 2, and 3 are in different difference triples.

Let G(n) be a subgraph of Kn with vertex set Zn. Then G(n) is said to be cyclic,
provided that the edge {x, y} ∈ E(G(n)) if and only if {x+1, y+1} (mod n) ∈ E(G(n)).
The edge {0, x} ∈ E(G(n)) is said to have order m, provided that x generates a subgroup
of (Zn,+) of order m. The edge {x, y} in G(n) is said to have length `(x, y) = min{y−x
(mod n); x− y (mod n)}; so 1 ≤ `(x, y) ≤ n/2. The following important theorem is also
due to Stern and Lenz.

Theorem 6.2 (G. Stern and H. Lenz [7]). LetG(n) be a cyclic graph. IfG(n) contains
an edge of even order, then G(n) can be 1-factorized.

The following two lemmas are extremely important. The first part of each will be used
for maximum packings, while the second part of each will be used for minimum coverings.
Because of the technicalities in the proof, it is best to ‘‘mix’’ the statements and the proofs.
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Lemma 6.3. Let n ≡ 4(mod 6). Then the edges E(1, 2, 3) of Kn of length 1, 2, and 3
can be partitioned into a tripole, 3 1-factors F1, F2, F3, and triples. Additionally, there
exists a tripole P such that P ∩E(F1∪F2∪F3) = ∅ and (E(1, 2, 3)\{F1∪F2∪F3})∪P
can be partitioned into triples.

Proof. Let n = 6k + 4 and let the vertex set of K6k+4 be Z6k+4. Let T = {{3i+ 1, 3i+
2, 3i+3}|0 ≤ i ≤ 2k} be a set of 2k+1 triples. LetP ′ be the tripole consisting of the edges
in {{0, 1}, {0, 2}, {0, 3}} ∪ {{6i− 2, 6i + 1}, {6i− 1, 6i + 2}, {6i, 6i + 3}|1 ≤ i ≤ k}.
Finally, we define 3 1-factors as follows:

F1 = {{0, 6k + 1}, {2, 6k + 3}}
∪ {{6i− 2, 6i− 5}, {6i− 1, 6i− 3}, {6i, 6i + 2}|1 ≤ i ≤ k},

F2 = {{0, 6k + 3}, {1, 6k + 2}}
∪ {{6i− 2, 6i− 4}, {6i− 1, 6i + 1}, {6i, 6i− 3}|1 ≤ i ≤ k},

and

F3 = {{0, 6k + 2}, {1, 6k + 3}}
∪ {{6i− 2, 6i− 3}, {6i− 1, 6i− 4}, {6i, 6i + 1}|1 ≤ i ≤ k}.

Then P ′, F1, F2, F3, and T give the required decomposition of E(1, 2, 3).
Let P be the tripole consisting of the edges in {{0, 1}, {0, 2}, {0, 3}} ∪ {{6i− 2, 6i +

2}, {6i − 1, 6i + 3}, {6i, 6i + 1}|1 ≤ i ≤ k}, and let T ′ = (T \ {1, 2, 3})∪
{{0, 1, 2}, {0, 1, 3}, {0, 2, 3}} ∪ {{6i − 2, 6i − 1, 6i + 2}, {6i − 1, 6i, 6i + 3},
{6i − 2, 6i, 6i + 1}, {6i + 1, 6i + 2, 6i + 3}|1 ≤ i ≤ k}. Then T ′ is the
required decomposition of (E(1, 2, 3) \ {F1 ∪ F2 ∪ F3}) ∪ P .

Lemma 6.4. Let n ≡ 2(mod 6). Then the edges E(1, 2, 3) of Kn of length 1, 2, and 3
can be partitioned into a tripole, one 1-factor, and triples.

Proof. Let n = 6k + 2 and let the vertex set of K6k+2 be Z6k+2. For each i ∈ Zk, let
Ti = {{6i + 1, 6i + 2, 6i + 3}, {6i + 2, 6i + 4, 6i + 5}, {6i + 3, 6i + 4, 6i + 6}, {6i +
5, 6i + 6, 6i + 7}}, and let T = {{6k + 1, 0, 1}} ∪ (∪i∈Zk

Ti). The edges of length 1,
2, and 3 that are not in triples in T form a graph G on the vertex set Z6k+2 in which
vertex 0 has degree 4, and all other vertices have degree 2; so G has 6k + 3 edges
altogether. In fact, the edges of G can be partitioned into two cycles: a cycle c1 of
length 2k + 4, namely (1, 4, 7, 10, . . . , 6k − 2, 6k + 1, 2, 0, 6k); and a cycle c2 of length
4k − 1, namely (v1, v2, . . . , v4k−1), where for 0 ≤ i < k, v4i+1 = 6i, v4i+2 = 6i + 3,
v4i+3 = 6i + 5 and v4i+4 = 6i + 8. So since c1 has even length, its edges can be
partitioned into two sets of k+2 independent edges F1 and F2, and since c2 has odd length,
its edges can be partitioned into two sets of edges H1 and H2, where H1 is a set of 2k − 1
independent edges and H2 is a set of 2k edges that are independent, except that vertex
v1 = 0 is incident with two edges in H2. So F1 ∪H1 is a 1-factor of K6k+2 and F2 ∪H2

is a tripole of K6k+2, the vertex of degree 3 being vertex 0. So the result is proved.

Lemma 6.5. Let n = 6h + 4. If 4 ≤ t ≤ h, or if 1 ≤ t ≤ 3 and t ≤ h ≤ 13, then there
exists a partition of Kn into a tripole, 6t 1-factors, and triples.
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Proof. We will handle the cases 4 ≤ t ≤ h first. Write 6h + 4 = 12k + 4 or
12k + 10. Then by Lemma 6.1, {1, 2, . . . , 3h − 1} \ {a, b} can be partitioned into a
collection of difference triples D1, where {a, b} = {4k, 5k} or {3k + 1, 4k + 2} as the
case may be. Let {1, x1, y1}, {2, x2, y2}, and {3, x3, y3} be the 3 difference triples con-
taining 1, 2, and 3 (1, 2, and 3 belong to distinct difference triples in [7]). Let D2 =
D1 \ {{1, x1, y1}, {2, x2, y2}, {3, x3, y3}} and L = {x1, y1, x2, y2, x3, y3, a, b, 3h, 3h +
1, 3h + 2}. By Lemma 6.3 the edges of K6h+4 of lengths 1, 2, and 3 can be partitioned
into a tripole H , 3 1-factors F (3), and a collection of triples T1. Let 4 ≤ t ≤ h and choose
s = t − 4 triples D3 = {{u1, v1, w1}, {u2, v2, w2}, . . . , {us, vs, ws}} from D2. Now
the edges with lengths belonging to L ∪ {x|x is in a triple of D3} form a cyclic graph,
and since L contains the edge {0, 3h+ 2} of even order, by Theorem 6.2 this graph can be
partitioned into 6t−3 1-factorsF . LetD4 = {{i, x+i, x+y+i}|{x, y, x+y} ∈ D2\D3,
i ∈ Z6h+4}. Then K6h+4 is partitioned into the tripole H , 6t 1-factors F ∪ F (3), and
triples T1 ∪D4. This takes care of the cases where 4 ≤ t ≤ h.

To handle the remaining 8 cases, we will need the following partitions of {1, 2, 3,
. . . , 3h + 2} for h = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

3h+ 2 Partition of {1, 2, 3, . . ., 3h+ 2}
5 {1, 2, 3}, {4, 5}
8 {1, 2, 3}, {4, 5, 7}, {6, 8}

11 {1, 2, 3}, {4, 8, 10}, {6, 7, 9}, {5, 11}
14 {1, 2, 3}, {4, 7, 11}, {5, 8, 13}, {6, 10, 12}, {9, 14}
17 {1, 2, 3}, {4, 12, 16}, {5, 10, 15}, {6, 7, 13}, {9, 11, 14}, {8, 17}
20 {1, 2, 3}, {4, 15, 19}, {5, 9, 14}, {6, 7, 13}, {8, 11, 18}, {11, 12, 17}, {16, 20}
23 {1, 2, 3}, {4, 17, 21}, {5, 10, 15}, {6, 7, 13}, {8, 14, 22}, {9, 11, 20}, {12, 16, 18}, {19, 23}
26 {1, 2, 3}, {4, 20, 24}, {5, 14, 19}, {6, 11, 17}, {7, 16, 23}, {8, 10, 18}, {9, 13, 22}, {12, 15, 25},

{21, 26}
29 {1, 2, 3}, {4, 22, 26}, {5, 19, 24}, {6, 12, 18}, {7, 20, 27}, {8, 13, 21}, {9, 14, 23},

{10, 15, 25}, {11, 17, 28}, {16, 29}
32 {1, 2, 3}, {4, 25, 29}, {5, 18, 23}, {6, 21, 27}, {7, 13, 20}, {8, 14, 22}, {9, 15, 24},

{10, 16, 26}, {11, 17, 28}, {12, 19, 31}, {30, 32}
35 {1, 2, 3}, {4, 20, 24}, {5, 28, 33}, {6, 26, 32}, {7, 23, 30}, {8, 14, 22}, {9, 16, 25},

{10, 17, 27}, {11, 18, 29}, {12, 19, 31}, {13, 21, 34}, {15, 35}
38 {1, 2, 3}, {4, 25, 29}, {5, 31, 36}, {6, 27, 33}, {7, 15, 22}, {8, 16, 24}, {9, 17, 26},

{10, 18, 28}, {11, 19, 30}, {12, 20, 32}, {13, 21, 34}, {14, 23, 37}, {35, 38}
41 {1, 2, 3}, {4, 36, 40}, {5, 32, 37}, {6, 22, 28}, {7, 23, 30}, {8, 26, 34}, {9, 16, 25},

{10, 17, 27}, {11, 18, 29}, {12, 19, 31}, {13, 20, 33}, {14, 21, 35}, {15, 24, 39}, {38, 41}

By Lemma 6.3, the edges of K6h+4 of length 1, 2, and 3 can be partitioned into a
tripole, 3 1-factors, and triples. The edges of length belonging to the 2-element subset
{x, 3h+ 2} can be partitioned into 3 1-factors as well, since the edge {0, 3h+ 2} has even
order. Combining these 1-factors gives 6 1-factors. If {a, b, c} /= {1, 2, 3}, we can either
cyclically develop the triple {0, x, x + y} (giving 6h + 4 triples) or use this triple along
with the edges of lengths in {x, 3h+2} to obtain an additional 6 1-factors. Since there are
t− 1 triples other than {1, 2, 3}, for each h we can obtain up to 6t 1-factors.

Combining all of the above results completes the proof.

Lemma 6.6. Let m ≡ 0 (mod 6) and n ≡ 4 (mod 6), and n > 2m. There exists a
maximum packing of order n containing a maximum packing of order m.

Proof. Let n−m = 6h+ 4 and m = 6t. We will first handle the cases where 4 ≤ t ≤ h
or 1 ≤ t ≤ 3 and 6h + 4 ≤ 82. By Lemma 6.5, Kn−m can be partitioned into a tripole,
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m = 6t 1-factors, and triples. Let (S1, T1, L1) be a maximum packing of Km with vertex
set S1 and (X,H,F, T ) a decomposition of Kn−m into a tripole H , 6t 1-factors F , and
triples T ; where Kn−m has vertex set X , and X ∩ S1 = ∅. Let α be a 1 − 1 mapping
of S1 onto the collection of 1-factors F = {f1, f2, . . . , f6t}. Define a maximum packing
(S2, T2, L2) of Kn with vertex set S2 = S1 ∪X as follows:

1. T1 ⊆ T2,
2. {a, b, x} ∈ T2 if {a, b} ∈ fxα,
3. T ⊆ T2, and
4. L2 = L1 ∪H .

Then the maximum packing (S2, T2, L2) of order n contains the maximum packing
(S1, T1, L1) of order m.

We now handle the cases where m = 6t = 6, 12, or 18 and n = 6h + 4 ≥ 88. So,
let (S∗, T ∗, L∗) be a maximum packing of Km, where m = 6t = 6, 12, or 18 and embed
this maximum packing into a maximum packing (S1, T1, L1) of order 42 (this is just an
application of the Doyen–Wilson Theorem). Since n = 6h + 4 ≥ 88, n − m ≥ 46.
By Lemma 6.5, Kn−m can be partitioned into a tripole, 42 1-factors, and triples. So
the maximum packing (S1, T1, L1) and, therefore, (S∗, T ∗, L∗) can be embedded in a
maximum packing of order n = 6h + 4.

Lemma 6.7. Let n = 6h + 2. If 4 ≤ t < h, or if 1 ≤ t ≤ 3 and t < h ≤ 13, then there
exists a partition of Kn into a tripole, 6t + 2 1-factors, and triples.

Proof. Not too surprisingly, the proof is almost identical to the proof of Lemma 6.5. If
4 ≤ t < h, the proof is the same as the proof of Lemma 6.5 with the following modifications.
L is replaced with {x1, y1, x2, y2, x3, y3, a, b, 3h, 3h+ 1} and Lemma 6.3 is replaced with
Lemma 6.4. (Note that the edge {0, 3h + 1} now has even order.)

As with the proof of Lemma 6.5, we will need the following partitions of {1, 2,
3, . . . , 3h + 1} for 1 ≤ h ≤ 13.

3h + 1 Partition of {1, 2, 3, . . ., 3h+ 1}
7 {1, 2, 3}, {4, 5, 6, 7}

10 {1, 2, 3}, {4, 5, 9}, {6, 7, 8, 10}
13 {1, 2, 3}, {4, 8, 12}, {5, 6, 11}, {7, 9, 10, 13}
16 {1, 2, 3}, {4, 7, 11}, {5, 8, 13}, {6, 9, 15}, {10, 12, 14, 16}
19 {1, 2, 3}, {4, 8, 12}, {5, 9, 14}, {6, 10, 16}, {7, 11, 18}, {13, 15, 17, 19}
22 {1, 2, 3}, {4, 9, 13}, {5, 10, 15}, {6, 11, 17}, {7, 14, 21}, {8, 12, 20}, {16, 18, 19, 22}
25 {1, 2, 3}, {4, 10, 14}, {5, 11, 16}, {6, 12, 18}, {7, 17, 24}, {8, 15, 23}, {9, 13, 22}, {19, 20, 21, 25}
28 {1, 2, 3}, {4, 11, 15}, {5, 12, 17}, {6, 13, 19}, {7, 14, 21}, {8, 19, 27}, {9, 16, 25}, {10, 22, 24},

{20, 23, 27, 28}
31 {1, 2, 3}, {4, 12, 16}, {5, 13, 18}, {6, 14, 20}, {7, 15, 22}, {8, 21, 29}, {9, 19, 28}, {10, 17, 27},

{11, 25, 26}, {23, 24, 30, 31}
34 {1, 2, 3}, {4, 13, 17}, {5, 14, 19}, {6, 15, 21}, {7, 16, 23}, {8, 18, 26}, {9, 20, 29}, {10, 22, 32},

{11, 27, 30}, {12, 25, 31}, {24, 28, 33, 34}
37 {1, 2, 3}, {4, 14, 18}, {5, 15, 20}, {6, 16, 22}, {7, 17, 24}, {8, 28, 36}, {9, 26, 35}, {10, 23, 33},

{11, 21, 32}, {12, 19, 31}, {13, 27, 34}, {25, 29, 30, 37}
40 {1, 2, 3}, {4, 15, 19}, {5, 16, 21}, {6, 17, 23}, {7, 18, 25}, {8, 31, 39}, {9, 29, 38}, {10, 27, 37},

{11, 24, 35}, {12, 22, 34}, {13, 20, 33}, {14, 30, 36}, {26, 28, 32, 40}

By Lemma 6.4, the edges of K6h+2 of length 1, 2, and 3 can be partitioned into a
tripole, one 1-factor, and triples. The edges of length belonging to the 4-element subset
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{x, y, z, 3h+ 1} can be partitioned into 7 1-factors as well, since the edge {0, 3h+ 1} has
even order. Combining these 1-factors gives 8 1-factors. The remainder of the proof is the
same as the corresponding part in Lemma 6.5 with obvious modifications.

This completes the proof.

Lemma 6.8. Let m ≡ 2 (mod 6) and n ≡ 4 (mod 6), and n > 2m. There exists a
maximum packing of order n containing a maximum packing of order m.

Proof. Let n − m = 6h + 2 and m = 6t + 2. We will begin with the cases where
4 ≤ t < h or where 1 ≤ t ≤ 3 and 6h+2 ≤ 80. By Lemma 6.7, Kn−m can be partitioned
into a tripole, 6t + 2 1-factors, and triples. The remainder of the proof is identical to the
corresponding proof in Lemma 6.6.

If m = 8, 14, or 20, we can embed a maximum packing of order m in a maximum
packing of order 42. Since n − m ≥ 80, n ≥ 88 and so by Lemma 6.6 this maximum
packing of order 42 can be embedded in a maximum packing of order n.

7. THE REMAINING CASES: (1, 5), (3, 5), (1, 0), (3, 0), (0, 4), AND (2, 4)

The cases (1, 5) and (3, 5) follow easily from Lemma 6.7.

Lemma 7.1. Let n ≥ 2m, m ≡ 1 or 3 (mod 6), and n ≡ 5 (mod 6). Then there exists a
MCT of order n containing a MCT of order m.

Proof. Let m ≡ 0 or 2 (mod 6), n ≡ 4 (mod 6), and n ≥ 2m. By Lemma 6.7, there exists
a maximum packing (S1, T1, L1) of order n containing a maximum packing (S2, T2, L2) of
order m. In this case, L2 is a 1-factor and L1 is a tripole with L2 ⊆ L1. Let S3 = {∞}∪S2

and define a collection of triples T3 as follows:

1. Let ({∞}∪ S2, T
∗) be a Steiner triple system of order m+ 1 ≡ 1 or 3 (mod 6) and

place the triples of T ∗ in T3.
2. Write L2 \ L1 = {t1, `1, `2, · · · `x}, where t1 = {{a, b}, {a, c}, {a, d}}. Place the

3 triples {∞, a, c}, {∞, a, b}, {∞, a, d} in T3; and for each `i = {u, v} ∈ L2 \ L1

place the triple {∞, u, v} in T3.
3. Place the triples in T1 \ T2 in T3.

Then (S3, T3, P ) is a MCT of order n + 1 ≡ 5 (mod 6) with padding the double edge
P = {{∞, a}, {∞, a}} and containing a Steiner triple system of order m + 1 ≡ 1 or 3
(mod 6).

We can now use Lemma 7.1 to easily obtain the cases (1, 0) and (3, 0).

Lemma 7.2. Let n > 2m, m ≡ 1 or 3 (mod 6), and n ≡ 0 (mod 6). Then there exists a
MCT of order n containing a MCT of order m.

Proof. By Lemma 7.1 there exists a MCT (S1, T1, P1) of order n− 1 containing a triple
system of order m. Now P1 is a double edge, say {∞, a} and {∞, a}. Let S2 = S1 \ {∞}
and let (S2, T2, L2) be the maximum packing of order n− 2 obtained by deleting ∞ from
(S1, T1, P1). Then L2 is a tripole and (S2, T2, L2) contains the same triple system of order
m as the MCT (S1, T1, P1). As a consequence, none of the edges in L2 have both vertices
in the triple system of orderm. Now setS3 = {∞1,∞2}∪S2 andL2 = {`1, `2, . . . , `x, t},
where t = {{a, b}, {a, c}, {a, d}}. Define a collection of triples T3 as follows:
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1. T2 ⊆ T3,
2. for each `i = {u, v} ∈ L2 place the 2 triples {∞1, u, v}, {∞2, u, v} in T3, and
3. place the 5 triples {∞1, c, d}, {∞1, a, b}, {∞2, a, d}, {∞2, a, c}, and {∞1,∞2, b}

in T3.

Then (S3, T3, P ) is a MCT of order n, contains a Steiner triple system of order m, and has
padding the 1-factor P = (L \ t) ∪ {{c, d}, {a,∞2}, {b,∞1}}.

The following lemmas are modifications of Lemmas 6.5 and 6.6.

Lemma 7.3. Let n = 6h+4. Then for any 1 ≤ t ≤ h, there exists a tripole P such that
Kn ∪P can be partitioned into 6t 1-factors and triples. Furthermore, none of the edges in
the 1-factors belong to the padding P .

Proof. In the proof of Lemma 6.5 substitute the second half of Lemma 6.3.

Lemma 7.4. Let n = 6h + 2. Then for any 1 ≤ t ≤ h, there exists a partition of Kn

into 6t + 1 1-factors and triples.

Proof. By Lemma 6.1, {1, 2, 3, . . . , 3h − 1} \ {a, b} can be partitioned into a collection
of difference triples D, where {a, b} ⊆ {1, 2, 3, . . . , 3h− 1}. Choose any t− 1 triples D∗

from D. Now the edges with lengths belonging to the set {a, b, 3h, 3h + 1} ∪ {x|x is in a
triple of D∗} form a cyclic graph, and since {0, 3h + 1} has even order, by Theorem 6.2
this graph can be partitioned into 7 + 6(t − 1) = 6t + 1 1-factors. This gives a partition
of K6h+2 into 6t + 1 1-factors and triples {{i, x + i, y + i}|{x, y, x + y} ∈ D \ D∗,
i ∈ Z6h+2}.

We can now take care of the two remaining cases (0, 4) and (2, 4).

Lemma 7.5. Let n ≥ 2m,m ≡ 0 or 2 (mod 6), and n ≡ 4 (mod 6). Then there exists a
MCT of order n containing a MCT of order m.

Proof. We will handle the case m ≡ 0 (mod 6) first. So let m = 6t and n−m = 6h+ 4.
Then, of course, 1 ≤ t ≤ h. By Lemma 7.3 there exists a tripole P such that Kn−m ∪ P
can be partitioned into 6t 1-factors F and triples T and none of the edges in the 1-factors
in F belong to the padding P . Let F = {f1, f2, . . . , t6t} and (S1, T1, P1) a MCT of order
m (P1 is a 1-factor). Let X be the vertex set of Kn−m, where X ∩ S1 = ∅, and define a
collection of triples T2 on S2 = X ∪ S1 as follows:

1. T1 ⊆ T2,
2. let α be a 1 − 1 mapping from S1 onto {1, 2, . . . , 6t} and place {a, b, xα} in T2 if

{a, b} ∈ fxα, and
3. T ⊆ T2.

Then (S2, T2, P2) is a MCT of order n containing the MCT (S1, T1, P1) of order m. The
padding P2 = P ∪ P1 is a tripole.

If m ≡ 2 (mod 6), let m = 6t + 2 and n−m = 6h + 2. Then 1 ≤ t ≤ h. By Lemma
7.4, there exists a partition of Kn−m into 6t + 1 1-factors F = {f1, f2, . . . , f6t+1} and
triples T . Let (S1, T1, P1) be a MCT of order m (P1 is a tripole). Let X be the vertex set
of Kn−m, where X ∩ S1 = ∅, and define a collection of triples T2 on S2 = X ∪ S1 as
follows:
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1. T1 ⊆ T2,
2. let α be a mapping from S1 onto {1, 2, 3, . . . , 6t + 1}, where xα = yα = 6t + 1,

x /= y, and place {a, b, uα} in T2 if and only if {a, b} ∈ fuα, and
3. T ⊆ T2.

Then (S2, T2, P2) is a MCT of order n containing the MCT (S1, T1, P1) of order m. The
padding is P2 = P1 ∪ f6k+1.

Combining both cases completes the proof.

8. MAIN THEOREM

If we combine the Doyen–Wilson Theorem [2] along with Lemmas 3.1, 3.2, 4.1, 5.1, 5.2,
7.1, 7.2, and 7.5, we have the following complete solution of the Doyen–Wilson Problem
for minimum coverings of Kn with triples.

Theorem 8.1. Let n ≥ 2m. Then the necessary conditions in Section 2 to embed a MCT
of order m in a MCT of order n are suff icient.
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