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a b s t r a c t

This study aims to investigate the fiber array effect on modal damping behaviors of fiber composites.
Three different fiber arrays, i.e., square edge packing (SEP), square diagonal packing (SDP), and hexagonal
packing (HP), were considered to represent the microstructures of the unidirectional composites. Repeat-
ing unit cells (RUCs) suitable for describing the characteristics of the microstructure were adopted in the
generalized method of cell (GMC) micromechanical analysis. The energy dissipation concept was then
employed to calculate the specific damping capacities of composites in the material principal directions.
The specific damping capacities obtained from micromechanical analysis were regarded as the equivalent
damping properties homogenizing in the composites. In conjunction with the modal shapes of the com-
posite structures determined from the finite element analysis, the specific damping capacity was
extended to characterize the corresponding modal damping of the composite rods and plates. Both
free–free and clamped-free boundary conditions were taken into account in the composite structures.
Results indicated that the structures constructed from the composites with SDP fibers exhibit better
damping behaviors than the other two cases.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber composites are basically constructed with fiber and ma-
trix phases. The mechanical behaviors of the fiber composites are
always influenced by the fiber and matrix properties and their
microstructures such as fiber array, fiber shape, and fiber volume
fraction. In order to design composite materials with desired prop-
erties, it is required to understand the relation of their microstruc-
ture to the overall mechanical responses. The constitutive
behaviors of the composites with different fiber architectures have
been characterized by many researchers using micromechanical
analysis. Zhu and Sun [1] investigated the nonlinear behaviors of
AS4/PEEK composites with three different fiber arrays under off-
axis loading using finite element approach. It was found that the
nonlinear behaviors of the composites were quite sensitive to the
fiber packing arrangement. Orozco and Pindera [2] conducted a
micromechanical analysis using the GMC model on the two-phase
composites with randomly distributed fibers, indicating that, as
the number of the refined subcells in the unit cell is increased,
the behaviors of the composites tend to be that of a transversely
isotropic solid. The influences of fiber shape and fiber distribution
on the elastic/inelastic behavior of metal matrix composites were
examined by Pindera and Bednarcyk [3] using the GMC microme-
chanical model. It was revealed that the fiber packing exhibits a
substantially greater effect on the responses of the composite
ll rights reserved.
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materials than does the fiber shape. Tsai and Chi [4] investigated
the thermal stress effect on the mechanical behaviors of compos-
ites, suggesting that the composites with square edge packing
are affected appreciably by the thermal residual stress. A compre-
hensive review regarding the effect of fiber arrangement on the
elastic and inelastic responses of fiber composites was provided
by Arnold et al. [5].

Damping is an important parameter in the design of composite
materials for engineering applications where dynamic response is
concerned and vibration control is required. In order to character-
ize the damping behaviors of composites, numerous analytical
models based on the macromechanical and micromechanical ap-
proaches were developed. At macromechanical level, the effect of
fiber lay-up sequences on the damping responses were of concern
[6,7]. On the other hand, at micromechanical level, most efforts
were made on the damping performances associated with the
microstructures of fiber composites, such as the fiber volume frac-
tion and the interfacial properties [8–12]. Chandra et al. [8] inves-
tigated the shape of fiber cross-section and fiber volume fraction
on the damping coefficients of unidirectional composites through
the application of viscoelastic correspondence principle. The inter-
facial properties between the fiber and the surrounding matrix on
the damping responses were examined by He and Liu [9] by using
the micromechanical model of composite cylinders assembly. In
addition, Hwang and Gibson [10] also utilized the finite element
approach together with the micromechanical strain energy to pre-
dict the fiber–matrix interphase effects on composite damping
property. Finegan and Gibson [11] characterized the damping
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behavior of polymer composites with coated fibers, suggesting that
the use of a viscoelastic polymer coating on the fiber is an effective
way to improve the damping properties. Kaliske and Rothert [12]
utilized the damping properties of fiber composites calculated
based on the GMC model to derive the structural level damping.
Maheri and Adams [13] characterized the modal responses of
damped layered composite panels using finite element approach
and exhibited good agreements with experimental results. How-
ever, in their studies, the microstructure effect of fiber composites
on the modal damping responses was not discussed.

In light of the aforementioned investigations, most studies con-
cerned only the fundamental damping behaviors of composite
lamina correlated with the fiber and matrix properties. Neverthe-
less, few investigations focusing on the damping behaviors of the
material corresponding to different microstructures were reported.
In this study, the effect of fiber arrangement on the basic damping
properties of fiber composites was characterized using GMC micro-
mechanical model in conjunction with energy dissipation concept.
Subsequently, the fundamental material properties were utilized
to construct the overall composites structure. The modal damping
responses of the composite structures were then calculated using
finite element analysis. The results for the composites structures
built based on different fiber array microstructures were compared
with each other.
2. Micromechanical approach

2.1. Selection of unit cell

In modeling the mechanical responses of fiber composites using
a micromechanical approach, a unit cell needs to be properly se-
lected to represent the microstructures of the materials, and thus,
the overall composites responses can be predicted directly from
the unit cell. In this study, three different fiber arrays, i.e., square
edge packing, square diagonal packing, and hexagonal packing,
were considered and illustrated, respectively, in Fig. 1. Based on
the periodicity boundary conditions in the uniformly distributed fi-
bers, the repeating unit cells (RUCs) enclosed with dashed lines in
Fig. 1 were chosen and utilized to characterize the mechanical
properties of the fiber composites associated with different fiber
arrangements [14].

2.2. Generalized method of cells

With the ingredient properties and the properly selected RUC,
the mechanical behavior of fiber composites can be simulated
using the generalized method of cells (GMC) micromechanical
model proposed originally by Paley and Aboudi [15]. It is noted
Square edge packing Square diagona

Fig. 1. Three different fiber packing ar
that in the GMC analysis, the RUC is usually divided into Nb � Nc

subcells as shown in Fig. 2. Based on the displacement continuity
on the interface of the adjacent subcells in conjunction with the
periodicity condition of the RUC, the relation between overall
strain rates and the subcell strain rates is expressed as

AGgs ¼ J�g; ð1Þ

where gs ¼ f�gð11Þ; �gð12Þ; . . . ; �gðNbNcÞg represents the collection of the
engineering strain increments for all subcells and �g ¼ f�g11; �g22; �g33;

2�g23;2�g13;2�g12g indicates the overall strain increments of the RUC.
In addition, AG and J contain geometry parameters of the subcells
and the RUC, the dimensions of which are 2(Nb + Nc) + NbNc + 1 by
6NbNc and 2(Nb + Nc) + NbNc + 1 by 6, respectively.

In addition, from the traction continuity of the subcells, the
relation of subcell strain increment is established as

AMgs ¼ 0; ð2Þ

where AM involves material properties of the subcells. Combining
Eqs. (1) and (2) leads to the following expression as

gs ¼ A�g: ð3Þ

It is noted that A is a 6NbNc � 6 matrix, containing the geometry
parameters of the RUC and the material properties of the associated
subcells. The A matrix can be further partitioned into the NbNc en-
tries and each entry represents a 6 � 6 square matrix as

A ¼

Að11Þ

Að12Þ

..

.

AðNbNcÞ

2
66664

3
77775: ð4Þ

Therefore, the components of the strain increment in the subcells
can be expressed explicitly in terms of the overall strain increments
as

�gðbcÞ ¼ AðbcÞ�g; ð5Þ

where b = 1, . . . ,Nb and c = 1, . . . ,Nc.
The constitutive equation of each subcell (bc) is written as

�sðbcÞ
ij ¼ CðbcÞ

ijkl �gðbcÞ
kl ; ð6Þ

where CðbcÞ
ijkl denotes the elastic stiffness matrix of the subcell (bc). It

is noted that when the subcells are represented as matrix material,
C(bc) indicates the stiffness matrix of matrix materials. Whereas, the
subcells are denoted as fiber, C(bc) becomes the elastic stiffness ma-
trix of the fibers. By substituting Eq. (5) into the subcell constitutive
relation given in Eq. (6), the subcell stress components are deduced
in terms of the overall strain �g as

�sðbcÞ ¼ CðbcÞAðbcÞ�g: ð7Þ
l packing Hexagonal packing

rangements for fiber composites.
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Fig. 2. A typical RUC portioned into Nb � Nc subcells in GMC analysis [15].

Fig. 4. RUC with square diagonal packing partitioned into 39 � 39 subcells.

Fig. 5. RUC with hexagonal packing partitioned into 31 � 49 subcells.
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Based on the average concept, the overall stress rate of the RUC is
written as

�s ¼ 1
hl

XNb

b¼1

XNc

c¼1

hblc�sðbcÞ: ð8Þ

With Eqs. (7) and (8), the overall stress rate and strain rate relation
of the RUC are established as

�s ¼ B��g; ð9Þ

where

B� ¼ 1
hl

XNb

b¼1

XNc

c¼1

hblcC
ðbcÞAðbcÞ: ð10Þ

With ingredient properties as well as RUC geometry, Eq. (10) can be
utilized to describe the constitutive behaviors of the composites.
When the RUC is applied with a loading �s, the corresponding overall
strain �g can be calculated from Eq. (9). Afterward, with the assis-
tance of Eqs. (5) and (7), the strain and stress components at each
subcell within the RUC can be evaluated.

In the GMC micromechanical analysis, the RUC is divided into
the numbers of the subcells representing either fiber or matrix
phases. The number of the subcells is dependent on the micro-
structure of the RUC, including fiber geometry and packing
arrangement. In this study, RUC with square edge packing, contain-
ing 39 � 39 subcells as shown in Fig. 3, were employed in the anal-
Fig. 3. RUC with square edge packing portioned into 39 � 39 subcells.
ysis. In addition, the RUCs with square diagonal packing and
hexagonal packing were also partitioned into different subcells as
shown in Figs. 4 and 5, respectively. It was verified that the present
discretizations of RUCs have attained converged results and are
suitable for characterizing the mechanical properties of the com-
posites [4].

2.3. Calculation of damping capacity of fiber composites

Based on the energy dissipation concept [16], the specific
damping capacity of material in vibration was defined as the ratio
of the dissipated energy and the stored energy for per circle of
vibration

w ¼ D
U
; ð11Þ

where D is the energy dissipation per cyclic vibration, and U is the
strain energy stored in the material systems when the deformation
is maximum. For the fiber composites with fiber and matrix phases,
the specific damping capacity given in Eq. (11) can be expressed
explicitly in terms of the fiber and matrix parts as

w ¼ wf Uf þ wmUm

Uf þ Um
; ð12Þ

where wf is specific damping capacity of the fiber; wm is specific
damping capacity of the matrix; Uf indicates strain energy stored
in the fiber; and Um denotes strain energy stored in the matrix. It



Table 2
Damping property of fiber composites with SEP packing obtained by using the GMC
and FEM analysis

SEP GMC FEM Error (%)

w11 0.00123 0.00123 0
w22 0.01311 0.01256 4.3
w12 0.02124 0.02164 1.8
w23 0.01793 0.01688 6.2

Table 3
Damping property of fiber composites with SDP packing obtained by using the GMC
and FEM analysis

SDP GMC FEM Error (%)

w11 0.00123 0.00123 0
w22 0.01742 0.01658 5
w12 0.02254 0.02175 3.6
w23 0.01793 0.01137 57.6

Table 4
Damping property of fiber composites with HP packing obtained by using the GMC
and FEM analysis

HP GMC FEM Error (%)

w11 0.00123 0.00123 0
w22 0.01621 0.01477 9.7
w12 0.02236 0.02164 3.3
w23 0.01793 0.01444 24.1

Fig. 6. Finite element mesh of the RUC with square diagonal packing (gray region:
fiber, white region: matrix).
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is noted that in the above expression, the energy dissipation in the
fiber composites assumes to be equal to the summation of the en-
ergy dissipations in fiber and matrix phases. In an attempt to eval-
uate the fundamental damping capacities of fiber composites, the
RUC was subjected to an applied loading in material principal direc-
tions, and then the stress and strain distributions within the RUC
were calculated through the GMC micromechanical analysis. More
specifically, a simple loading, such as simple tension, or simple
shear in the material principal directions was introduced to the
RUC at the beginning. The overall strain �g components can be calcu-
lated from the constitutive relation of RUC given in Eq. (9). Subse-
quently, the corresponding strain and stress components in each
subcell were evaluated, respectively, from Eqs. (5) and (7). With
the physical quantities, the strain energy in each subcell was calcu-
lated as

Usubcell ¼
1
2

Z
V
½r11e11 þ r22e22 þ r33e33 þ r23c23 þ r13c13

þ r12c12�dV : ð13Þ

The strain energy in the fiber and matrix phases was determined by
summating the energy in the subcells associated with the fiber and
matrix domains accordingly. By means of Eq. (12), the damping
capacity of the composites can be evaluated from the strain energy
of the fiber and matrix as well as their respective damping proper-
ties. The isotropic damping properties were assumed in the fiber
and matrix phases and the corresponding values are listed in Table 1
[17]. It is noted that for unidirectional composites, because of the
attribute of equal properties in the x2 and x3 directions (assuming
fiber in the x1-direction), only four independent damping properties
(w11, w22, w12, w23) are required to be calculated.

The damping property of the unidirectional composites with
three different fiber arrangements, i.e., square edge packing, square
diagonal packing, and hexagonal packing, obtained from GMC in
conjunction with energy dissipation concept are summarized in
Tables 2–4, respectively. In the calculation, the fiber volume frac-
tion of composites was assumed to be equal to 60%. For compari-
son purpose, the finite element analysis was also performed on
the RUCs given in Fig. 1. The finite element mesh utilized for the
RUC with square diagonal packing is illustrated in Fig. 6. According
to the suggestions in the literature [14], the proper boundary
conditions for describing the mechanical behavior of the fiber com-
posites were imposed in the RUCs. The damping properties of the
RUCs with different fiber arrays evaluated based on the strain en-
ergy calculated from FEM analysis were included in the tables. It
can be seen that the specific damping capacity obtained from the
GMC analysis are quite close to those derived from FEM analysis,
except for w23 properties. The discrepancy could be attributed to
the strict constrain conditions, i.e., the interface traction rate con-
tinuity, are imposed on the subcell interfacial regions in the GMC
model. Such constraint condition causes the stress component
r23 calculated in all subcells to be the same when the composites
are subjected to a pure shearing [18], and thus, the damping prop-
erty w23 calculated based on the GMC model is not relied on the
Table 1
Mechanical properties and damping capacities of fiber and matrix used in GMC
analysis [17]

Fiber Matrix

E1 (GPa) 225 3.197
E2 (GPa) 15.64
G12 (GPa) 38.03
G23 (GPa) 52.48
m12 0.229 0.347
m23 0.49
W 0.00101 0.06537
fiber array. However, from the FEM analysis, it was shown the va-
lue of w23 are varied depending on the fiber arrays. As a result, in
theory, the w23 obtained from GMC analysis may not be valid.

3. Determination of modal damping of composite structures

From the GMC analysis together with the energy dissipation
concept, we have derived the damping properties of unidirectional
composites in the material principal directions. However, when the
composite structures are adopted for engineering applications, the
vibration in bending and torsional modes generally takes place,
and the damping properties associated with these vibration modes
have to be characterized accordingly. Here we adopted the two-
step simulation procedure to predict the damping behaviors of
the composite structures when they are in vibration motions. First,



Repeating unit cell (RUC) Equivalent element

E, 

Composite structures

E, E, E, 

Fig. 7. Modeling procedure for characterizing the damping properties of composite structures.
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the basic material properties of the unidirectional composites, such
as E1, w11, E2, w22, G12, w12, G23, and w23, were evaluated using the
GMC micromechanical model. Afterwards, the material properties
were considered as macromechanical properties of the equivalent
volume element, which would be the fundamental building block
of composites structures. The detail analytical procedure was illus-
trated in Fig. 7.

The modal damping capacities of composite structures in bend-
ing and torsion vibration modes were derived from the finite ele-
ment (FEM) analysis together with the strain energy dissipation
concept. For a linear elastic material, the strain energy stored in
a volume element is expressed as

UðelementÞ ¼ 1
2

Z
V

r11e11 þ r22e22 þ r33e33 þ r23c23 þ r13c13

þ r12c12dV ¼ 1
2

Z
V
frgTfegdV : ð14Þ

Substituting the constitutive relation {r} = [C]{e} into Eq. (14)
yields

UðelementÞ ¼ 1
2

Z
V
fegT½C�fegdV ; ð15Þ

where [C] is a 6 � 6 symmetric stiffness matrix of composites. The
corresponding dissipated strain energy of the volume element can
be written in terms of the specific damping capacity as

DðelementÞ ¼ 1
2

Z
V

w11r11e11 þ w22r22e22 þ � � � þ w12r12c12dV

¼ 1
2

Z
V
frgT½w�fegdV ¼ 1

2

Z
V
fegT½C�½w�fegdV ; ð16Þ

where [w] indicates the matrix form of damping properties of equiv-
alent elements as

w ¼

w11 0 0 0 0 0

0 w22 0 0 0 0

0 0 w22 0 0 0

0 0 0 w23 0 0

0 0 0 0 w12 0

0 0 0 0 0 w12

2
6666666664

3
7777777775
: ð17Þ

Therefore, with the strain energy and the strain energy dissipation
given in Eqs. (15) and (16), respectively, the specific damping capac-
ity of a volume element can be written as follows:

wðelementÞ ¼ DðelementÞ

UðelementÞ ¼
1
2

R
Vfeg

T½C�½w�fegdV
1
2

R
Vfeg

T½C�fegdV
: ð18Þ
In the finite element method, the displacement field {u} and
strain field {e} in the element can be represented by the nodal dis-
placement as well as the shape function as

fug ¼ ½N�fdg; ð19Þ
feg ¼ ½B�fdg; ð20Þ

where [N] is the shape function; {d} is nodal displacement; and [B]
is the differentiation of shape function [N].

A combination of Eqs. (18) and (20) leads to

wðelementÞ ¼
1
2

R
fdgT½B�½w�½C�½B�fdgdV

1
2

R
fdgT½B�½C�½B�fdgdV

: ð21Þ

It is noted that in Eq. (21), {d} indicates the nodal displacement of a
volume element. For a structure vibrating in a certain natural fre-
quency, {d} can be regarded as the mode shape of structure, repre-
senting the relative nodal displacement of the element.

The mode shape of the composite structure will be evaluated
from structural dynamics analysis using finite element approach
[19] as shown in the following. The equation of motion for a vol-
ume element is written as

½m�ðeÞf€dg þ ½k�ðeÞfdg ¼ 0; ð22Þ

where the element mass matrix [m](e), and element stiffness matrix
[k](e) is defined as

½m�ðeÞ ¼
Z ðeÞ

V
q½N�T½N�dV ð23Þ

½k�ðeÞ ¼
Z ðeÞ

V
½B�T½C�½B�dV ; ð24Þ

where q is the density of the material. Substituting Eq. (24) into Eq.
(21), the specific damping capacity for a volume element is yielded
as

wðelementÞ ¼
1
2 fdg

T½k�ðeÞw fdg
1
2 fdg

T½k�ðeÞfdg
; ð25Þ

where ½k�ðeÞw representing the ‘‘energy dissipation stiffness matrix” is
written as

½k�ðeÞw ¼
Z ðeÞ

V
½B�T½C�½w�½B�dV : ð26Þ

For the global structure responses, the structure mass matrix
[M] and the structure stiffness matrix [K] can be derived through
the superposition of the element mass matrix [m](e) and stiffness
matrix [k](e) given in Eqs. (23) and (24), respectively, by properly
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assigning each element matrix in the structure matrix depending
on the structure node numbering. As a result, the equation of mo-
tion for the structure can be written as

½M�f€dg þ ½K�fdg ¼ 0: ð27Þ

The natural frequency and mode shape of the composites structures
associated with each vibration mode can be evaluated by solving
the eigenvalue problem of Eq. (27). The eigenvalue and eigenvector
{U} of Eq. (27), representing the natural frequency and modal shape
of the structure, respectively, were calculated by Matlab commer-
cial code with the ‘‘eig” command. It is worthy to mention that in
the calculation of the mode shape of the composite structures, the
effect of material damping was neglected, and only the mass matrix
and stiffness matrix were taken into account.

From the definition of specific damping capacity, the modal
damping capacity of the structure associated to each modal shape
can be expressed in terms of the global stiffness matrix [K], the glo-
bal energy dissipation stiffness matrix [K]w, and the corresponding
modal eigenvector {U} as

wi ¼
1
2 fUigT½K�wfUig
1
2 fUigT½K�fUig

; ð28Þ

where the index i indicates the ith modal shape. It is noted that the
global energy dissipation stiffness matrix [K]w is obtained from the
superposition of the energy dissipation stiffness matrix given in Eq.
(26).

4. Results and discussion

In order to investigate the fiber arrangement effect on the mod-
al damping capacity of composite structures, both rod type and
plate type structures were taken as examples. Moreover, two dif-
ferent boundary conditions, i.e., free–free and free-clamped bound-
ary conditions, were also considered in this study.
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4.1. Vibration with free–free boundary condition

The dimensions of the composite structures used in the simula-
tion were illustrated in Fig. 8 where the fiber was extended in the
x-direction. Because of the free–free boundary condition, the first
six modal shapes were the rigid body motion and eliminated in
the following modal analysis. The first three modal shapes of the
composite rod are shown in Fig. 9. It is indicated that for the struc-
ture configuration, the first mode is torsional mode which is fol-
lowed by the two bending modes. Table 5 shows the modal
Fig. 9. The first three modal shapes of composite rod under free–free boundary
conditions: (a) first mode; (b) second mode; (c) third mode.



Fig. 10. The first three modal shapes of composite plate under free–free boundary
conditions: (a) first mode; (b) second mode; (c) third mode.

Table 6
Fiber array effect on the first three modal damping capacities of composite plate
under free–free boundary condition

SEP SDP HP

First mode 0.02097 0.02220 0.02150
Second mode 0.01378 0.01749 0.01543
Third mode 0.01821 0.02012 0.01911

Table 5
Fiber array effect on the first three modal damping capacities of composite rod under
free–free boundary condition

SEP SDP HP

First mode 0.02125 0.02245 0.02178
Second mode 0.01096 0.01330 0.01187
Third mode 0.02111 0.02228 0.02163

Fig. 11. The first three modal shapes of composite rod under clamp-free boundary
condition: (a) first mode; (b) second mode; (c) third mode.
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damping capacities of the composite rod structures constructed
based on three different fiber arrangements. Results reveal that
the composites with SDP packing always exhibit a higher damping
capacity than those with SEP and HP packings. Thus, it is suggested
that during vibration, the composites with SDP microstructure
were easier to dissipate strain energy.

The first three modal shapes for the composite plate with free–
free boundary condition are shown in Fig. 10. Twisting in the x-
direction is the first modal shape; the second one is the bending
in the x-direction (fiber direction); and the third mode is the twist-



Table 7
Fiber array effect on the first three modal damping capacities of composite rod under
clamp-free boundary condition

SEP SDP HP

First mode 0.00699 0.00884 0.00767
Second mode 0.02115 0.02233 0.02167
Third mode 0.01433 0.01591 0.01499

Table 8
Fiber array effect on the first three modal damping capacities of composite plate
under one side clamp boundary condition

SEP SDP HP

First mode 0.00834 0.01046 0.00913
Second mode 0.01360 0.01478 0.01405
Third mode 0.01952 0.02099 0.02015
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ing in the z-direction (transverse direction). The corresponding
damping capacity for the modal shapes is shown in Table 6. Appar-
Fig. 12. The first three modal shapes of composite plate under one side clamped
boundary condition: (a) first mode; (b) second mode; (c) third mode.
ently, the composite plate constructed from SDP microstructure
also possesses the highest damping capacity as compared to the
other two cases. As a result, for the composite rod and plate in free
vibration condition, the SDP fiber packing can provide the superior
damping responses than the SEP and HP fiber arrays.

4.2. Vibration with clamped-free boundary condition

In addition to the free vibration, the cantilever type vibration,
i.e., free-clamped boundary condition, was regarded in the study.
The clamped end was always fixed in the x-direction. Fig. 11 illus-
trates the first three modal shapes of the composite rod. The first
one and two modes are bending and torsion modes, respectively,
and the third one is bending mode again. It is interesting to men-
tion that the modal shapes of the unidirectional composites with
clamped-free boundary condition are different from those in the
free–free boundary condition. The corresponding damping capaci-
ties of the composite rods are listed in Table 7. Results show that
SDP packing also demonstrates better damping capacity for the
first three modes under cantilever type vibration.

Again, the plate type structure with one side clamp imple-
mented in the x-direction was examined. The associated modal
shapes were shown in Fig. 12. Moreover, the damping capacities
for the composite plates were summarized in Table 8. Similar to
the rod structure, the plate structure made of unidirectional com-
posites with SDP fiber packing exhibits greater damping properties
than the plates established based on the other two fiber arrays. In
view of the forgoing investigations, it is suggested that the unidi-
rectional composites created based on square diagonal fiber pack-
ing may be a better damping material as compared to the other
composite materials.

5. Conclusions

The GMC micromechanical model was successfully extended to
calculate the strain energy of the fiber composites with different fi-
ber arrays, i.e., square edge packing, square diagonal packing, and
hexagonal packing. Based on the energy dissipation concept, the
damping capacity of the fiber composites in the material principal
directions was determined. With the fundamental material proper-
ties, the modal damping capacity of the composites structures, i.e.,
composite rod and plate, constructed based on the three different
fiber arrangements was calculated from the FEM analysis. Both
free–free and free-clamp boundary conditions were considered in
the analysis. Results indicate that the composite structures con-
structed based on square diagonal packing demonstrate superior
vibration damping properties than the other two cases. From the
investigation, it can be referenced by the composites material
manufactures that with an appropriate design of the microstruc-
tures, the mechanical properties of fiber composites can be signif-
icantly modified.
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