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Spontaneous emission of quantum dot excitons into
surface plasmons in a nanowire
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The spontaneous emission (SE) of quantum dot (QD) excitons into surface plasmons in a cylindrical nano-
wire is investigated theoretically. Maxwell’s equations with appropriate boundary conditions are solved nu-
merically to obtain the dispersion relations of surface plasmons. The SE rate of QD excitons is found to be
greatly enhanced at certain values of the exciton bandgap. Application in generation of remote entangled
states via superradiance is also pointed out and may be observable with current technology. © 2008 Optical
Society of America
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When a light wave strikes a metal surface, a surface
plasmon polariton can be excited [1,2]. Investigations
of the dispersion relations of surface plasmons for dif-
ferent geometries have been reported [3] since the
1970s. Recently, great attention has been focused on
the so-called plasmonics since surface plasmons re-
veal strong analogies to light propagation in conven-
tional dielectric components [4–6]. Plasmon-induced
modification of the spontaneous emission (SE) rate is
naturally an extended issue [7–9]. Recently, strong
and coherent coupling between individual optical
emitters and guided plasmon excitations in conduct-
ing nanowires at optical frequencies was also pointed
out [10] and may be used as a novel single-photon
transistor [11].

In this Letter, we investigate the SE rate of a II–VI
colloidal quantum dot (QD) (nanocrystals) exciton
coupled to surface plasmons in a silver nanowire. SE
of a QD exciton into different modes of surface plas-
mons is considered separately. The emission rate is
found to be greatly enhanced with a discontinuous
feature if one varies the energy bandgap of the QD
exciton. Application of such a system in generating
remote entangled states via collective decay (super-
radiance) is also pointed out and may be useful in fu-
ture quantum information processing.

Consider now a colloidal CdSe–ZnS QD near a cy-
lindrical silver nanowire with radius a. The QD and
nanowire are assumed to be separated by a GaN
layer as shown in Fig. 1(a). The nth surface plasmon
mode’s components of the electromagnetic field at the
surface can be obtained by solving Maxwell’s equa-
tions in a cylindrical geometry (� and � denote the ra-
dial and azimuthal coordinates, respectively) with
the appropriate boundary conditions [3]. The disper-
sion relations of the surface plasmons are thus ob-
tained by solving the following transcendental equa-

tion numerically:
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Bessel and Hankel functions, respectively. I �O�
stands for the component inside (outside) the wire.
The dielectric function is assumed as �I���=�
�1
−�p

2 /���+ i /���, where �
=9.6 (for Ag), �
=5.3 (for
GaN), and � is the relaxation time due to ohmic metal
loss [9]. The magnetic permeabilities �I,O are unity
everywhere since we consider nonmagnetic materials
here.

Figure 1(b) shows the dispersion relations of the
n=0 mode for different radii. Here, one unit of the ef-
fective radii R ���pa /c� is roughly equal to 53.8 nm.
As can be seen, the behavior of these curves is very
similar to the two-dimensional case [12]. This is be-
cause the fields for the n=0 mode are independent of
the azimuthal angle �. However, the behaviors for
the n�0 modes are quite different as shown in Figs.
1(c) and 1(d). The first interesting point are the dis-
continuities around � /c�kz. Further analysis shows
that the solutions of � are “almost real” [13] as kz
�Re��� /c. In this case, the first kind Hankel function

�1�
of order n, Hn �K���, decays exponentially. This
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means that the surface plasmons in this regime are
confined on the surface (bound modes). For kz
Re��� /c, however, the solutions of � are complex.
The form of Hn

�1��K��� in this case is like a traveling
wave with finite lifetime (nonbound modes).

Once the electromagnetic fields are determined,
the SE rate, �sp, of the QD excitons into bound sur-
face plasmons can be obtained via Fermi’s golden
rule and is given by

�sp =
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where d is the dipole moment of the QD exciton, E� is
the electric field in � direction, kzi

stands for the val-
ues of kz that make the argument in the � function
vanish, and �0 is the exciton bandgap of the colloidal
CdSe–ZnS QD. Note that in deriving Eq. (2), we have
assumed that the dipole moment d is along the � di-
rection for convenience.

The SE rates of the first few modes �n=0,1,2,3�
are shown in Fig. 2 for R=0.1 and 0.5, respectively. In
plotting the figures, the distance between the dot and
the wire surface is fixed at 10.76 nm. The first novel
feature is that the SE rate approaches infinity at cer-
tain values of the exciton bandgap �0. The reason is

Fig. 1. (Color online) (a) Schematic view of the model; a
silver nanowire is embedded inside GaN material and a
colloidal QD is put on top of it. (b)–(d) Dispersion relations
of surface plasmons for the modes n=0, 1, and 2, respec-
tively. The solid (dashed) curves represent the bound (non-
bound) modes. The units for vertical and horizontal lines
are �=� /�p and K=kzc /�p.
that at these values the corresponding slope of the
dispersion relation is zero, such that the rate �sp in
Eq. (2) is greatly enhanced. One might think that, in
Fig. 1(b), the slope seems to approach zero in the
limit of large K. Therefore, there should also be the
enhanced feature there. However, one should note
that the SE rate also depends on the strength of the
electric field, i.e., the contribution from the numera-
tor in Eq. (2). For the case of n=0, the overall effects
do not give the enhanced phenomenon. The main dif-
ference between this Letter and [10] should be re-
minded here. In [10], only the fundamental guided
mode �n=0� is considered. All other modes have cut-
off in the limit of vanishing nanowire radius �R→0�.
It was found that large decay rate enhancement can
be obtained over broad wavelength regions by en-
hanced mode confinement. However, this Letter con-
sidered the enhancement owing to large density of
states at resonant conditions.

Let us now put another QD close to the wire; the
interaction between the wire and QDs can now be
written as H�=	n,kz

Dn,kz
��1++�2+eikzz0�an,kz

+h .c.,
where an,kz

is the surface plasmon operator, �j+ is the
creation operator of the jth QD, and Dn,kz

��d ·E� is
the coupling strength. Note that we have assumed
the two dots have the same separation from the
metal wire. Since the propagating modes are along
the z direction only, the phase difference acquired by
the second dot is ikzz0, where z0 is the separation be-
tween the two dots. If one further assumes that only
QD-1 is initially excited, the state vector of the sys-
tem can be written as


��t�� = b1�t�
↑↓;0� + b2�t�
↓↑;0� + 	
n,kz

bn,kz
�t�
↓↓;1n,kz

�,
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with b1�0�=1 and b2�0�=bn,kz
�0�=0. Here, 
↑↓;0�

(
↓↑;0�) means that QD-1(-2) is excited, while

↓ ↓ ;1n,kz

� represents that both the QDs are de-
excited with the presence of a single surface plasmon;
b1�t� and b2�t� can be obtained easily by solving the
time-dependent Schrödinger equation.

Fig. 2. (Color online) SE rates ��sp� into n=0–3 modes for
(a) R=0.1 and (b) R=0.5. The unit of �sp is normalized to

free-space decay rate ��0�.
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Figure 3 shows the time variations of Re�b2�t��,
Im�b2�t��, and 
b2�t�
2 for different values of the exci-
ton bandgap. For �0=0.748�p, the population of the
second dot vanishes quickly as seen from the dashed–
dotted curves. For �0=0.602�p, however, it ap-
proaches the (quasi-)stationary limit [14] as shown
by the solid curves. This is because, for the latter
case, only n=0 mode contributes to the decay rate
�sp. In this case, the system is just like a one-
dimensional superradiant one with the populations
written as

 b1�t� = e−2�spt�1 + e2�spt�/2,

b2�t� = e−ik0z0−2�spt�− 1 + e2�spt�/2. � �4�

From Eq. (4), one realizes that there is always a 50%
chance for the two dots to evolve into the state 
↑ ↓ �
+e−ik0z0
↓ ↑ �. It means that, for example, the singlet
[triplet] entangled state can be created if k0z= �2m
+1�� �2m�� with m being an integer [15]. One might
argue that the QD excitons can also have other decay
channels (free-space radiation and nonradiative de-

Fig. 3. Variations of Re�b2�t��, Im�b2�t��, and 
b2�t�
2 [inset
of (a)] as functions of time for �0=0.602�p (solid curves)
and 0.748�p (dashed–dotted curves). In plotting the fig-
ures, the interdot distance z0 is set equal to 0.35��pa /c�
with radius R=0.1. The dashed curves in (a) and (b) are the
results for �0=0.602�p with the inclusion of the contribu-
tions from other channels: the free-space decay rate �f�=�0�
and nonradiative decay rate � ��� �.
non 0
cay due to metal loss), such that the generation of the
entanglement might be invalid. We thus plot in Fig. 3
the dashed curves for �0=0.602�p with the contribu-
tions from the free-space decay rate �f�=�0� and non-
radiative decay rate �non, which is assumed to be
roughly equal to �0. As seen, the (quasi-)stationary
state is not greatly degraded in the short time regime
t�1/ ��f+�non�. In other words, as long as the SE rate
into surface plasmons is large enough, the generated
entanglement is still observable.

In summary, we have shown that SE of colloidal
QD excitons into surface plasmons can be enhanced
even more strongly at certain values of the exciton
bandgap. The enhancement is due to zero slope in
dispersion relation. Applications of such a phenom-
enon in cavity quantum electrodynamics and en-
tanglement generation are also pointed out and de-
serve to be tested with current technology [16].
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