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Many successful technology forecasting models have been developed but few researchers have explored
a model that can best predict short product lifecycles. This research studies the forecast accuracy of long
and short product lifecycle datasets using simple logistic, Gompertz, and the time-varying extended
logistic models. The performance of the models was evaluated using the mean absolute deviation and
the root mean square error. Time series datasets for 22 electronic products were used to evaluate and
compare the performance of the three models. The results show that the time-varying extended logistic
model fits short product lifecycle datasets 70% better than the simple logistic and the Gompertz models.
The findings also show that the time-varying extended logistic model is better suited to predict market
capacity with limited historical data as is typically the case for short lifecycle products.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid introduction of new technologies and fast design
to satisfy consumer demand, electronic products and services are
often replaced within a few years. The product lifecycle for elec-
tronic goods, which used to be about 10 years in the 1960s, fell
to about 5 years in the 1980s and is now less than two years for
consumer electronic products such as cell phones and computers.
As product lifecycles become shorter, less data are available for
market analysis and technology forecasting. Given the current
market situation, smaller datasets must be used to forecast future
trends of new electronic products and services. Hasted and Ehlers
[1] define a small dataset as the dataset which covers only short
time intervals with fewer than 30 data points.

A product lifecycle is typically divided into four stages that in-
clude introduction, growth, maturity and decline [2]. During the
introduction stage, the product is new to the market with little
awareness and as a result there is slow sales growth. The growth
stage, on the other hand, is characterized by a period of rapid sales
growth resulting from the product being widely accepted by the
marketplace. As sales growth declines, the product enters the ma-
ture stage, and finally, when the marketplace is saturated with the
product or a substitute product is introduced, product sales de-
cline. The product lifecycle is often modeled using growth curves
or sigmoidal curves which have an inflection point and approaches
a fixed limit [3–9].
ll rights reserved.
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Growth curves (the first derivative of the product lifecycle
curve) are widely used in technology forecasting [10–16] since
technology product growth is often very slow during the introduc-
tion stage (e.g., a new product replacing a mature product) which is
then followed by rapid exponential growth when barriers to prod-
uct adoption fall. The growth then approaches a market share limit.
The limit reflects the saturation of the marketplace with the prod-
uct or the replacement of the product with another. The curve also
models an inflection or break point where growth ends and decline
begins.

Many growth curve models have been developed to forecast the
penetration rate of technology based products with the simple lo-
gistic curve and the Gompertz curve the most frequently refer-
enced [5,6,9,12]. However, when using these two models to
forecast market share, care must be taken to set the upper limit
of the curve correctly or the prediction will become inaccurate
[9]. The upper limit is the maximum possible value and represents
the maximum penetration rate or sales volume. Setting the upper
limit to growth can be difficult and ambiguous. If the product will
likely be popular and used for decades, then the upper limit is set
to 100% of the penetration rate. This means that the product will be
completely replaced only after everyone in the market has pur-
chased the product. However, when marketers consider new tech-
nology products such as computer games or new model cell
phones, the value for the upper limit to market share growth can
be difficult to estimate. That is, a computer game can be quickly re-
placed by another game after only reaching 10% market share.

In order to avoid the problem of estimating the market share
capacity for the simple logistic and the Gompertz models, Meyer
and Ausubel [14] proposed the extended logistic model. Under this
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model, the capacity (or upper limit) of the curve is not constant but
is dynamic over time. Meyer and Ausubel [14] also proposed that
technology innovations do not occur evenly through time but in-
stead appear in clusters or ‘‘innovation waves”. Thus, they formu-
lated an extended logistics model which is a simple logistics model
with a carrying capacity k(t) that is itself a logistics function of
time. Therefore, the researchers extend the constant capacity (k)
of the simple logistic model by embedding the carrying capacity
in the constant. This study applies the embedded carrying capacity
concept to the study of electronics products using a time-varying
extended logistic model.

The emergence of short product lifecycles has been addressed in
the supply chain and inventory management literature [7,8,17]
and there is general agreement that improved prediction of these
lifecycles will benefit the management of supply chains, invento-
ries, and product design. However, these new technology lifecycles
are a modern phenomenon and the datasets (which characteristi-
cally have fewer data points and shorter time periods) challenge
the assumptions and applications of traditional forecasting
methods.

Traditional forecasting models, like the simple logistic and
Gompertz models, require that the upper limit of the curve be
estimated prior to the forecast. Since it is difficult to estimate
the demand of a new product or the arrival of a substitute prod-
uct with limited data, traditional approaches are considered
unreliable and inaccurate. Therefore, a time-varying extended lo-
gistic model with flexible capacity is proposed where the capac-
ity (or upper limit) of the curve is not constant but is dynamic
over time.

The proposition of this research is that the time-varying ex-
tended logistic model is better than the simple logistic and the
Gompertz models when forecasting both long and short product
lifecycles. Six time-series datasets describing market penetration
rates and 16 datasets describing cumulative sales volumes were
used to evaluate model performance. The electronic consumer
goods datasets consist of six sets representing long product lifecy-
cles and 16 sets representing short product lifecycles.

Section 1 of this paper provides an introduction and Section 2
discusses the challenges of forecasting short product lifecycles.
Section 3 describes traditional and newly developed technology
forecasting models including the simple logistic model, the Gom-
pertz model, and the time-varying extended logistic model. Section
4 describes the analytical process of this study and Section 5 pro-
vides an empirical case that compares the performance of the mod-
els. The last section provides a summary and conclusion as well as
the limitations of the study.

2. Forecasting short product lifecycles

Short product lifecycles have become more common in high
technology and fashion-based industries which need to continu-
ously introduce new consumer products to remain competitive
[7,17]. New electronic products with more functions, faster speed,
and finer quality are continuously being introduced and quickly re-
place models which may only be one year old. Quell et al. [18] ana-
lyzed 37 types of home appliance from 1922 to 1979 and
demonstrated that the shortening of product lifecycles is an impor-
tant issue for product designers and planners. Given the reality of
this market condition, the development of new forecasting tech-
niques will improve the competitive response and manufacturing
strategy of companies.

In 1969, Bass proposed a diffusion model to forecast the sales
volume of new products [3] that used the adoption rates of innova-
tors and imitators. Innovators are buyers that are not influenced by
the previous buyers when making purchase decisions while imita-
tors are those who are influenced by earlier buyers. The Bass model
has been widely applied by practitioners and modified by research-
ers to forecast short product lifecycles.

Kurawarwala and Matsuo [7] proposed a growth model that
forecasts the seasonal sales volume demand of short product life-
cycles based on the Bass diffusion model. Thirty-eight monthly
data points for five different personal computer products were
used to estimate seasonal demand and to compare the fit and
forecast performance for three models. The measures used for
model comparison were the sum of squared error (SSE), the root
mean squared error (RMSE), and the mean absolute deviation
(MAD). Zhu and Thonemann [17] used the discrete version of
the Bass diffusion model and improved on Kurawarwala and Mat-
suo [8] model to develop an adaptive forecasting algorithm. The
demand data for a PC manufacturer was used to test the forecast-
ing performance of the algorithm. Chen [19] proposed an ex-
tended logistic model, which is called the time-varying extended
logistic model. This research uses the model from Chen’s study
of seven home appliance datasets to demonstrate that the ex-
tended logistic model improved the forecast of both long and
short lifecycle datasets.

Lackman [20] reported that the simple logistic and the Gom-
pertz models are suitable for forecasting high technology products.
Morrison [6] also showed that the simple logistic and the Gom-
pertz models can be used to forecast the growth of new products.
However, when the author applied the models, the upper limit was
set subjectively. Bengisu and Nekhili [9] used the simple logistic
and the Gompertz models to predict emerging technologies using
publications and patents from science and technology databases
and Boretos [21] used the simple logistic model to show that the
diffusion of mobile phone technology follows an S-curve.

Meade and Islam [12] compared 17 growth models based on 25
time series datasets describing the telecommunications market.
Their literature review shows that the simple logistic model is
the most widely used. The authors conclude that basic forecasting
models using two or three parameters, such as the simple logistic
and Gompertz model, offer the best forecasting performance. Their
research used datasets for traditional land-line telephones to com-
pare forecasting models. However, the classic telephone intro-
duced in the 1960s and which remained in use through the
1980s has a long product lifecycle that lasted over 30 years. When
there are sufficient data points, the trajectory of the product
growth curve is clear and the point of inflection can be calculated.
If the point of inflection can be estimated, then the upper limit of
the simple logistic and the Gompertz models can also be esti-
mated. The simple logistic model is symmetric about the point
of inflection. So if the inflection point is defined, the upper limit
is twice the market share that occurs at the inflection point. For
the Gompertz model, the point of inflection occurs at 37.79% of
the upper limit and the upper limit can also be calculated when
the inflection point is found. Bengisu and Nekhili [9] showed that
the simple logistic and the Gompertz models are quite valid if the
upper limit is correctly identified. However, the data points may
not be sufficient (too few) to see the point of inflection and to
set the correct upper limit when forecasting short lifecycle prod-
ucts. Therefore, a model with more parameters, for example, the
time-varying extended logistic model, is needed to project the tra-
jectory of the growth curve. The time-varying extended logistic
model uses a dynamic upper limit that can be estimated from
the data.

There is little published research which compares the perfor-
mance of forecasting models used on short product lifecycle data-
sets. Thus, this study compares the fit and forecast performance of
the simple logistic, the Gompertz, and the time-varying extended
logistic models.
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3. Technological forecasting models

Many models have been used in forecasting. This section intro-
duces the models which are used in this study and derives the
underlying formulas for each.

3.1. Simple logistic curve model

Most biological growth follows an S-shape curve or logistic
curve which best models growth and decline over time [14]. Since
the adoption of technology and technology-based products is sim-
ilar to biological growth, the simple logistic model is widely used
for technology forecasting. Many new forecasting models were
proposed based on the simple logistic model and include innova-
tions such as the Bass diffusion model and extended logistic model
[12]. The most important characteristic of simple logistic model is
that it is symmetric about the point of inflection. This feature indi-
cates that the process which will happen after the point of inflec-
tion is the mirror image of the process that happened before the
point.

The model for the simple logistic curve is controlled by three
coefficients, a, b, and L is expressed as

yt ¼
L

1þ ae�bt
ð1Þ

where yt is the value of interest, L is the maximum value of yt, a de-
scribes the location of the curve, and b controls the shape of the
curve. To estimate the parameters for a and b, the equation of the
simple logistic model is transformed into a linear function using
natural logarithms. The linear model is expressed as

Yt ¼ lnðyt=L� ytÞ ¼ � lnðaÞ þ bt ð2Þ

where the parameter a and b are then estimated using a simple lin-
ear regression. The simple logistic model (Eq. (1)) and the linear
model (Eq. (2)) are quoted from Martino’s book [22] and the deriva-
tions are shown in Appendix 1.

3.2. Gompertz model

The Gompertz model was first used to calculate mortality rates
in 1825 and has been widely applied to technology forecasting
[22]. Although the Gompertz curve is similar to the simple logistic
curve, it is not symmetric about the inflection point which occurs
at t = (ln(b)/k). The Gompertz model reaches the point of inflection
early in the growth trend and is expressed as

yt ¼ Le�ae�bt ð3Þ

where L is the upper bound which should be set before estimating
the parameters a and b. Similar to the methodology of estimating
the parameters of the simple logistic model, natural logarithms
are used to transform the original Gompertz model to linear
equation:

Yt ¼ lnðlnðL=ytÞÞ ¼ lnðaÞ � bt ð4Þ

and then the parameters are estimated [22]. Eqs. (3) and (4) are
quoted from Martino’s book [22] and the derivations are shown in
Appendix 2.

Although the predictive performance of the simple logistic
model and the Gompertz model has been validated by many
researchers [13], the models have definite limitations when used
to forecast short product lifecycles. The reason is that it is almost
impossible to estimate the correct upper limit for a new product
when it is first introduced to market place.

Fig. 1 depicts the importance of setting the correct upper limit
in the simple logistic and the Gompertz models. As can been seen
in Fig. 1, curves A and B start at the same point but have different
upper limits, L1 and L2. Since the upper limits are set at different
level, the two curves are different, and the prediction results will
also be different.

3.3. Time-varying extended logistic model

The simple logistic model and the Gompertz model assume that
the capacity of technology adoption is fixed and there is an upper
bound to growth for these models. However, the adoption of new
technology is seldom constant and changes over time. Therefore,
researchers have proposed a dynamic carrying capacity and the
carrying capacity can be any function [14,23]. As shown by Meyer
and Ausubel [14], the original form of simple logistic model is writ-
ten as

dyt

dt
¼ b� L� yt 1� yt

L

� �
ð5Þ

Let a = b � L and replace the constant L in Eq. (5) with a function
k(t), and then Eq. (5) is extended to

dyt

dt
¼ a� yt 1� yt

kðtÞ

� �
ð6Þ

where L is the upper limit of the logistic curve and k(t) is the time-
varying capacity function similar to the logistic curve.

In Meyer and Ausubel’s study, a special k(t) was set to represent
a technology which has a bio-logistic growth rate. The setting of
k(t) in our research comes from Chen’s study [19] with

kðtÞ ¼ 1� d� e�ct ð7Þ

and c and d are parameters that are estimated. The value of d can be
any number and the value of c larger than zero. Our research as-
sumes that the penetration rate capacity will fluctuate with time
and may reach 100% but may also be as low as 30% or 50%. The rea-
son for this assumption is that some new products may be intro-
duced to the market and substitute older products. Thus, a
product may not always achieve 100% market penetration and
may be replaced earlier than expected.

Finally, the time-varying extended logistic model is expressed
as

yt ¼
kðtÞ

1þ a� e�bt
¼ 1� d� e�ct

1þ a� e�bt
ð8Þ

where k(t) is the capacity that fluctuates with time, and a, b, c, and d
are the parameters computed using a nonlinear least squared esti-
mation method provided by a statistic software package like SY-
STAT. When this model is tested using sales volume data, the
equation is changed to

Nt ¼ m � yt ¼ m � 1� d� e�ct

1þ a� e�bt
ð9Þ



Table 1
Estimated and predicted sample period and sample size

Proxy Product Estimated
sample period

Predicted
sample period

Sample
size

From To From To

Penetration
rate

Color TV 1974 1999 2000 2004 31
Telephone 1970 1999 2000 2004 35
Washing
Machine

1974 1999 2000 2004 31

ADSL 2000Q2 2005Q2 2005Q3 2006Q3 26
Mobile
Internet

2001Q4 2005Q2 2005Q3 2006Q3 20

Broadband
network

2000Q2 2005Q2 2005Q3 2006Q3 26

Cumulative
sales
volume

LCD-TV 2003Q1 2006Q1 2006Q2 2007Q2 18
19 in. LCD
monitor

2003Q1 2006Q1 2006Q2 2007Q2 18

CCD DC 2003Q1 2006Q1 2006Q2 2007Q2 18
DC > 5 million 2003Q1 2006Q1 2006Q2 2007Q2 18
WLAN
(802.11g)

2003Q1 2006Q1 2006Q2 2007Q2 18

Cable modem 2003Q1 2006Q1 2006Q2 2007Q2 18
Combo ODD 2003Q1 2006Q1 2006Q2 2007Q2 18
Barebones 2003Q1 2006Q1 2006Q2 2007Q2 18
China PAS 2003Q1 2006Q1 2006Q2 2007Q2 18
LCD panel for
TV

2003Q1 2006Q1 2006Q2 2007Q2 18

LCD panel for
notebook

2003Q1 2006Q1 2006Q2 2007Q2 18

Color-65k
mobile phone

2003Q1 2006Q1 2006Q2 2007Q2 18

Server 2003Q1 2006Q1 2006Q2 2007Q2 18
LCD-
TV > 30 in.

2004Q1 2006Q2 2006Q3 2007Q2 14

VoIP IAD 2004Q1 2006Q2 2006Q3 2007Q2 14
VoIP router 2004Q1 2006Q2 2006Q3 2007Q2 14

Source: Directorate General of Budget and Directorate General of Telecommunica-
tions and Chunghwa Telecom Co. 25,26, and Market Intelligence Center Taiwan 27.
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where Nt is cumulative volume by time t, and the coefficient m rep-
resents the total market sales which is estimated using nonlinear
least squares method.

The time-varying extended logistic model is similar to the Bass
diffusion model and can be viewed as a special case of this model.
The Bass model was developed for predicting sales volume,
whereas the time-varying extended logistic model can be modified
to predict sales volume as well as other proxies including market
penetration rates. Therefore, the time-varying extended logistic
model was selected for evaluation over the Bass model.

4. Analytical process

In order to test the forecast accuracy of the simple logistic,
Gompertz, and the time-varying extended logistic models, the ana-
lytical process is divided into two steps.

Step 1: Model estimation
The first step is used to estimate the models. After reserving the

last five data points to test forecast accuracy of the simple logistic,
Gompertz, and the time-varying extended logistic models, the
remaining data points were used to fit the three models. For the
simple logistic and the Gompertz model, Eqs. (2) and (4) are used
to estimate coefficients using a simple linear regression. For the
time-varying extended logistic model, the coefficients of the mod-
els are estimated using nonlinear least squares with SYSTAT statis-
tical software. After the coefficients were computed and the
models fitted, the estimated values were calculated.

Step 2: Fit and forecast performance
After the models are constructed, the fit and forecast perfor-

mance between the three models is conducted. The test consists
of checking residuals between actual values and estimated values
to measure model performance [7,13]. Two measurements, mean
absolute deviation (MAD) and root mean square error (RMSE) are
used to calculate residuals.

For the simple logistic and the Gompertz models, the upper lim-
it must be set to obtain accurate results. Setting different upper
limit levels of these two models will achieve different prediction
results and the fit and predict performance will also be influenced.
Thus, several upper limits of the simple and the Gompertz models
were set to determine which upper limit would yield the best fit
performance.

For forecast performance, the derived models are used to fore-
cast the last five data points of the datasets. In this study, the mean
absolute deviation (MAD) and root mean square error (RMSE) are
used to measure performance as recommended in the literature
[7,13,24]. The mathematical representations are shown below:

MAD ¼
PT

t¼1jyt � ŷt j
n

ð10Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1ðyt � ŷtÞ2

n

s
ð11Þ

where yt is the actual value at time t, ŷt is the estimate at time t, and
n is the number of observations. These measurements are based on
the residuals, which represent the distance between real data and
predictive data. Consequently, if the values of these measures are
small, then the fit and prediction performance is acceptable.

5. Empirical results

Twenty-two time-series datasets describing Taiwan penetration
rate and cumulative sales volume of electronic products were col-
lected to test the forecast accuracy of the simple logistic model, the
Gompertz model and the time-varying extended logistic model.
The datasets for market penetration rates were providing by the
Directorate General of Telecommunications and Chunghwa Tele-
com Co. and the Directorate General of Budget [25,26]. The market
penetration rate datasets cover six products including color TVs,
telephones, washing machines, asymmetric digital subscriber lines
(ADSL), mobile Internet subscribers, and broadband networks. The
cumulative sales volume datasets were provided by the Taiwan
Market Intelligence Center [27]. These datasets cover 16 products
including LCD-TV, 19 in. LCD monitors, digital cameras with charge
coupled device image sensors (CCD DC), digital cameras with
more than five million pixels (DC > 5 million), 802.11g wireless
local area networks devices (WLAN 802.11g), cable modems, com-
bo optical disk drives (combo ODD), Barebone computers (Bare-
bone), China personal wireless access systems (China PAS), LCD
panels for TV, LCD panels for notebooks, color mobile phones with
65K pixels (color-65k mobile phone), servers, over 30-in. wide
LCD-TVs (LCD-TV > 30 in.), Voice over Internet Protocol Integrated
Access Devices (VoIP IAD), and Voice over Internet protocol (VoIP)
routers.

As shown in Table 1, the estimated sample period, predicted
sample period, and sample sizes are presented. The data for color
TVs, telephones and washing machines are yearly data points.
Since the sample period for these data is greater than 30 years,
these products depict a complete product lifecycle (Fig. 2). This re-
search classifies the data for color TVs, telephones and washing
machines as long product lifecycles with large datasets for fore-
casting. The other datasets (ADSL, mobile Internet subscribers,
etc.) represent products rapidly brought to market and are catego-
rized as short lifecycle products with limited or small (less than 30
data points) datasets for forecasting.

Fig. 2 shows the penetration rate for the six products and
Fig. 3 shows the cumulative sales volume for the 16 short lifecycle
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products. Fig. 2 shows that color TVs, telephones, and washing ma-
chines have entered the mature stage of the product lifecycle.
Therefore, a clear upper limit for these products can be set. On
the other hand, the curves for ADSL, mobile Internet subscribers,
and other short lifecycle products are still evolving, making it dif-
ficult to define the stage of product lifecycle or to predict when
these products will stop growing.

For the long product lifecycle datasets, the upper limit is set at
100%. For the short product lifecycle datasets, different upper limits
are set to achieve the best estimates. The possible upper limit for the
short lifecycle is set at three different levels to include optimistic, a
conservative, and a pessimistic settings. An optimistic upper limit
means that the product is new to the market and has potential to
grow. A pessimistic setting means that the product almost reached
the upper limit to market growth. Between the optimistic and pes-
simistic limits is the conservative setting. The conservative setting
models a product that has been in the market for a while and has
reached about one-third or one-half of the upper limits to growth.
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The penetration rate datasets use upper limits of 100%, 50%, and
30%. However, since the current penetration rate of the mobile
Internet is 40%, the pessimistic setting is change to 50% and conser-
vative upper limit is changed to 60%. For the cumulative sales vol-
ume datasets, the upper limit is set based on the multiple of the
most recent observation as recommended by Meade and Islam
[13]. The optimistic, conservative, and pessimistic upper limits
are 5 times, 3 times, and 1.5 times the most recent observation
which is based on the cumulative sales volume of the second quar-
ter in 2007. In fact, 5 times the most recent observation means that
the proportion of the current cumulative sales volume to
maximum sales volume (upper limit) is 20%. Thus, the current
Table 2
Fitting performance measures for the time-varying extended logistic, Gompertz, and the s

Model Index Color TV Phone Washing machine ADSL

L = 100% L =

Extended logistic MAD 0.0053 0.0063 0.0098 0.
RMSE 0.0071 0.0083 0.0118 0.

Gompertz MAD 0.0297 0.0290 0.0192 0.0154 0.
RMSE 0.0502 0.0440 0.0290 0.0228 0.

Simple logistic MAD 0.0361 0.0323 0.0276 0.0329 0.
RMSE 0.0551 0.0453 0.0384 0.0483 0.

Note: L – upper limit.
Boldface number means the best performance among three models.

a The current saturation rate of mobile Internet is over 30%.

Table 3
Forecasting performance measures for the time-varying extended logistic, Gompertz, and

Models Index Color TV Phone Washing machine ADSL

L = 100%

Extended logistic MAD 0.0025 0.0049 0.0021 0.0140
RMSE 0.0026 0.0057 0.0034 0.0147

Gompertz model MAD 0.0042 0.0125 0.0095 0.1037
RMSE 0.0043 0.0130 0.0100 0.1060

Simple logistic model MAD 0.0045 0.0171 0.0140 0.2846
RMSE 0.0046 0.0174 0.0143 0.2933

Note: L – upper limit.
Boldface number means the best performance among three models.

a The current saturation rate of mobile Internet is over 30%.

Table 4
Fitting performance measures for the time-varying extended logistic, Gompertz, and the s

Model Saturation
specification

Index LCD-
TV

19 in. LCD
monitor

CCD
DC

DC > 5 million WL
802

Extended
logistic

MAD 51 167 451 161 58
RMSE 58 212 593 188 77

Gompertz 5*2007Q2
volume

MAD 192 364 1314 205 321
RMSE 268 434 1542 274 463

3*2007Q2
volume

MAD 141 412 998 297 202
RMSE 174 495 1120 440 263

1.5*2007Q2
volume

MAD 134 13,488 989 582 202
RMSE 172 15,179 1226 954 251

Simple
logistic

5*2007Q2
volume

MAD 900 1958 3853 2461 1
RMSE 1767 3925 5931 5439 2

3*2007Q2
volume

MAD 823 1803 3487 2238 1
RMSE 1569 3521 5160 4842 2

1.5*2007Q2
volume

MAD 656 1456 2615 1744 941
RMSE 1148 2635 3440 3562 1

Note: Boldface number means the best performance among three models.
cumulative sales volume only reaches 20% of the upper limit and
there is still 80% of the maximum sales volume remaining to sell.
So the setting of 5 times the most recent observation is an optimis-
tic setting. A pessimistic setting of the cumulative sales volume
dataset is set at 1.5 times the most recent observation. Using the
cable modem dataset as an example, the most recent cumulative
sales volume is 70,106,900 units and the pessimistic upper limit
is 105,160,350 units. This means that the current cumulative sales
volume has already reached two-third of the upper limit and has
entered the mature stage of the product lifecycle.

Tables 2 and 3 provide the fit and forecast performance for the
penetration dataset. The evaluation rule is that the smaller the va-
imple logistic models – penetration rate datasets

Mobile Internet Broadband network

50% L = 30% L = 100% L = 60% L = 50%a L = 100% L = 50% L = 30%

0036 0.0057 0.0027
0043 0.0073 0.0032

0140 0.0102 0.0134 0.0077 0.0059 0.0146 0.0114 0.0075
0170 0.0119 0.0156 0.0094 0.0076 0.0176 0.0132 0.0084

0274 0.0212 0.0337 0.0256 0.0217 0.0243 0.0075 0.0153
0372 0.0264 0.0439 0.0304 0.0248 0.0328 0.0084 0.0180

the simple logistic models – penetration rate datasets

Mobile Internet Broadband network

L = 50% L = 30% L = 100% L = 60% L = 50%a L = 100% L = 50% L = 30%

0.0117 0.0036
0.0152 0.0041

0.0671 0.0345 0.0627 0.0132 0.0146 0.0842 0.0531 0.0237
0.0688 0.0352 0.0699 0.0154 0.0166 0.0867 0.0545 0.0243

0.1688 0.0833 0.2397 0.0991 0.0503 0.1895 0.1185 0.0556
0.1716 0.0839 0.2503 0.1021 0.0518 0.1958 0.1210 0.0562

imple logistic models – cumulative shipment volume data

AN
.11g

Cable
modem

Combo
ODD

Barebones China
PAS

Panel
for TV

LCD-
TV > 30 in.

VoIP
IAD

6 207 435 165 398 147 11 82
2 282 538 184 483 182 15 100

9 1022 2204 1412 12,717 430 54 199
4 1293 2802 1740 14,616 579 82 222
6 770 1696 1036 12,298 305 70 198
7 927 2095 1208 14,041 412 104 224
6 354 678 553 2762 401 99 314
0 443 740 655 3357 575 143 386

4,679 2484 4570 3543 14,105 2445 65 660
7,124 3656 6438 5080 16,670 4943 119 1021
3,007 2259 4076 3170 9084 2231 54 588
3,147 3213 5542 4390 11,961 4371 98 875
4 1705 2820 2270 6280 1773 29 423
4,974 2187 3478 2817 7605 3182 49 551



Table 6
Fitting and Forecasting performance ranks of the extended logistic, Gompertz, and the
simple logistic models

Product Fitting Forecasting

Extended
logistic

Gompertz Simple
logistic

Extended
logistic

Gompertz Simple
logistic

Color TV 1 2 3 1 2 3
Phone 1 2 3 1 2 3
Washing

machine
1 2 3 1 2 3

ADSL 1 2 3 1 2 3
Mobile

Internet
1 2 3 1 2 3

Broadband
network

1 3 2 1 2 3

LCD-TV 1 2 3 1 2 3
19 in. LCD

monitor
1 2 3 2 1 3

CCD DC 1 2 3 1 2 3
DC > 5 million 1 2 3 2 1 3
WLAN

(802.11g)
1 2 3 1 2 3

Cable modem 1 2 3 1 2 3
Combo ODD 1 2 3 1 2 3
Barebones 1 2 3 1 2 3
China PAS 1 2 3 1 2 3
LCD panel for

TV
1 2 3 2 1 3

LCD-
TV > 30 in.

1 3 2 3 2 1

VoIP IAD 1 2 3 2 1 3

Note: 1 means the model with the lowest RMSE and best performance. For the
Gompertz and the simple logistic models, the capacity with the lowest RMSE is
compared.
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lue for MAD and RMSE, the better the fit and prediction perfor-
mance. As shown in Tables 2 and 3, the time-varying extended lo-
gistic model has the best fit and prediction for both long and short
lifecycle products. Tables 4 and 5 provide the fit and forecast per-
formance for the cumulative sales volume dataset. Table 4 shows
that time-varying extended logistic model has the best fit perfor-
mance for all products. Table 5 shows that the time-varying ex-
tended logistic model has the best forecast performance for the
majority of the products.

Table 6 summarizes the comparative results of the time-varying
extended logistic model, the simple logistic and the Gompertz
models. The fit and forecast performance are compared and ranked
using the root mean square error (RMSE) which is widely used for
measuring the performance [7,13,23]. As can be seen in Table 6, the
time-varying extended logistic model has the best predictive per-
formance for 13 products among the 18 products for which the
model converged. The model has the second best predictive
performance for 4 products, and the worst predictive performance
for LCD-TV > 30 in. data. The Gompertz model predicts best for 4
product datasets and has the second best forecast performance
for three models. The simple logistic model only predicts well for
the LCD-TV > 30 in. data. In summary, the time-varying
extended logistic model is 70% better in prediction than the other
models.

In order to test whether the root mean square error of the time-
varying extended logistic (RMSEei) is smaller than error of the sim-
ple logistic (RMSEsi) and Gompertz (RMSEgi) models, we first calcu-
late the statistics RMSEei � RMSEsi and RMSEei � RMSEgi. Then
these statistics are used to test the null hypotheses that RMSEei =
RMSEsi (H0a) and RMSEei = RMSEgi (H0b) using one-tail sign test.
The reason why the one-tail sign test is chosen is because the dis-
tribution of RMSE is unknown and the sample size is small, so a
nonparametric test is used. A sign test only needs a count of the
number of sample value exceeding a defined constant which is
equal to zero in this case [28].

Table 7 presents the P-values for the fit and forecast perfor-
mance between the time-varying extended logistic model, the sim-
ple logistic model and the Gompertz model. As shown in Table 7,
all P-values of sign test are smaller than 0.05, which means there
are statistically significant differences among the three models at
the 95% level. Further, the time-varying extended logistic model
outperforms than the simple logistic and Gompertz models in both
fit and forecast performance.
Table 5
Forecasting performance measures for the time-varying extended logistic, Gompertz, and

Model Saturation
specification

Index LCD-
TV

19 in. LCD
monitor

CCD
DC

DC > 5 million W
8

Extended
logistic

MAD 265 6072 923 10,068
RMSE 301 7758 1157 12,434

Gompertz 5*2007Q2
volume

MAD 1820 2372 11,176 1813
RMSE 1913 2706 12,062 2303

3*2007Q2
volume

MAD 280 6805 3223 5194
RMSE 360 7814 3452 5582

1.5*2007Q2
volume

MAD 2707 13,488 9608 14,066
RMSE 3116 15,179 10,662 15,342

Simple
logistic

5*2007Q2
volume

MAD 26,450 64,846 70,320 104,201 3
RMSE 29,106 72,596 76,969 116,523 3

3*2007Q2
volume

MAD 17,740 44,268 50,134 68,273 2
RMSE 18,836 47,682 53,567 73,370 2

1.5*2007Q2
volume

MAD 6734 16,090 16,953 25,192
RMSE 6786 16,182 17,113 25,473

Note: Boldface number means the best performance among three models.
The simple logistic and the Gompertz models are limited by the
shape of the growth curve. For example, the simple logistic curve is
symmetric about the point of inflection, so when the datasets do
not have these characteristics, the simple logistic does not predict
well. The Gompertz curve is an asymmetric S-curve and the Gom-
pertz model reaches the inflection point before the market pene-
tration has reached half the upper limit [13]. Thus, the Gompertz
model may be more suitable for certain types of short lifecycle
products than the simple logistic model. As shown in Tables 3
and 5, the wrong capacity will lead to an error in prediction. If
industrial policy or enterprise decisions are made based on a model
the simple logistic models – cumulative shipment volume data

LAN
02.11g

Cable
modem

Combo
ODD

Barebones China
PAS

Panel
for TV

LCD-
TV > 30 in.

VoIP
IAD

12,030 2253 1878 2040 3115 5217 497 1342
12,505 2911 2029 2153 3305 5846 734 1740

63,530 7910 23,077 14,504 16,194 5076 583 1548
69,259 8238 24,689 15,519 20,024 5433 697 2034
32,902 3396 15,549 7971 11,017 604 887 302
35,553 3419 16,541 8421 13,492 703 1077 403
11,484 4205 2651 3031 14,329 6885 1364 2069
12,692 5052 2764 3530 14,703 7865 1668 2426

65,213 36,609 61,892 53,560 43,670 78,644 2433 11,727
96,302 39,564 66,579 58,014 51,122 86,272 3142 14,568
41,342 26,680 44,945 38,728 78,007 51,581 1643 8250
54,235 28,212 47,516 41,109 81,173 54,536 2060 10,020
86,925 9222 16,668 13,437 29,775 19,611 295 2516
87,717 9271 17,002 13,582 30,183 19,761 356 2881



Table 7
The P-value of sign test

Fitting performance Forecasting performance

H0a: RMSEei = RMSEsi 0*** 0.0001***

H1a: RMSEei < RMSEsi

H0b: RMSEei = RMSEgi 0*** 0.0482***

H1b: RMSEei < RMSEgi

Note: The equation for P-value of one-tail sign test can be expressed as

P-valueofsigntest ¼
Psþ

k¼0
n0

k

� �
ð0:5Þn , where S+ = the number of RMSEei > RMSEsi

(or RMSEgi); n0 = the number of (n � S0); n = sample size; S0 = the number of
RMSEei = RMSEsi (or RMSEgi); RMSEei = the RMSE value of time-varying extended
logistic model; RMSEsi = the RMSE value of the simple logistic model; RMSEgi = the
RMSE value of the Gompertz model.
*** 95% Significant level.
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using the wrong upper limit, a serious forecast error can be made.
Since the time-varying extended logistic model uses more param-
eters to capture the trend of products, the fit and forecast perfor-
mance are improved.

This research used 22 product datasets to test the performance
of the simple logistic, the Gompertz and the time-varying extended
logistic model. However, the datasets for LCD panel for notebooks,
color-65k mobile phones, servers, and VoIP routers, would not con-
verge when using the time-varying extended logistic model to esti-
mate the coefficients. A similar situation was reported by Meade
and Islam [13]. Their research used 25 telecommunications market
datasets to compare the performance of 17 growth curve models.
For their study, half of the datasets would not converge when esti-
mating the coefficients of models. Our study showed four products
would not converge among 22 products yielding a proportion less
than 20%. Therefore, our convergence results are consistent with
earlier research.

When using the simple logistic and Gompertz models, the
upper limit (L) must be set and then a linear transformation
method is applied to calculate parameters using Eqs. (2) and
(4). Since only two parameters are estimated, it is easy for the
models to converge. However, since the upper limit of the time-
varying extended logistic model is dynamic with time, more
parameters are needed to capture the trace. Therefore, the linear
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Fig. 4. Market growth for LCD panel for notebooks, co
transformation method used in the simple logistic and Gompertz
models cannot be used to estimate the parameters and a nonlin-
ear estimation method must be used. For the cumulative sales
volume dataset, five parameters are estimated using 14–18 data
points which causes an increase in nonconvergence for the ex-
tended logistics model.

The four products with data that would not converge provide
some insight. These datasets are linear and the curve for the col-
or-65k mobile phone has an obvious jump (Fig. 4). Meade and
Islam’s research [12] used telephone data from Sweden to com-
pare the simple logistic, extended logistic, and the local logistic
models. They concluded that the extended logistic model had
the worst performance. Although the setting of the extended lo-
gistic model is different with this research, Meade and Islam’s
study serves as a useful example. The growth curve of the Swed-
ish telephone dataset is linear. Therefore, the time-varying ex-
tended logistic model should not have been used. If forecasters
wish to apply the time-varying extended logistic model, then
they should confirm that the data has an S-shape prior to the
forecast.
6. Discussion and conclusion

This study compares the fit and prediction performance of the
simple logistic, Gompertz, and the time-varying extended logistic
models for 22 electronic products. Since the simple logistic and
Gompertz curves require the correct upper limit settings for accu-
rate market growth rate predictions, these two models may not be
suitable for short product lifecycles with limited data. Therefore, to
solve this problem, the time-varying extended logistic model was
tested. Since the time-varying extended logistic model estimates
the time-varying capacity from the data, it tends to perform better
for both long and short lifecycle products if the data are not linear.
The results show that the time-varying extended logistic model
outperforms the simple logistic and the Gompertz models in most
of product datasets where the data has the beginnings of an S-
shape.

When forecasting the future growth and market for products,
forecasters need to study the shape and the characteristics of
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Appendix 3

Cumulative sales volume dataset

Sample
period

Products

LCD-TV 19 in. LCD
monitor

CCD DC DC > 5 million WLAN
(802.11g)

Ca
m

2003Q1 26.900 49.921 1540.638 33.759 56.588 1
2003Q2 63.100 389.660 3706.334 132.559 215.973 3
2003Q3 164.100 763.660 6537.814 302.049 500.027 5
2003Q4 407.500 1245.868 9196.234 602.352 958.930 7
2004Q1 787.500 2173.868 12021.892 1159.524 1572.550 9
2004Q2 1194.500 3273.868 15788.372 1905.414 2244.595 12
2004Q3 1603.900 4025.868 20911.238 3480.309 3154.315 15
2004Q4 2178.600 5417.368 25733.319 5189.401 4499.246 19
2005Q1 2993.600 7735.268 30158.223 7221.865 5928.487 22
2005Q2 4059.600 10957.768 36820.687 10907.315 7716.311 26
2005Q3 5432.200 15307.768 45611.350 15795.081 9722.111 31
2005Q4 7101.652 20404.988 55382.907 22373.650 12482.311 35
2006Q1 8883.652 26032.988 63007.848 28958.121 14918.811 40
2006Q2 10896.652 32548.245 71902.554 37172.826 17202.311 45
2006Q3 13379.652 41731.245 83420.201 48149.297 19519.511 51
2006Q4 16097.652 52201.245 94502.554 59281.062 21876.301 56
2007Q1 18563.652 61755.245 102643.731 67488.821 24246.615 63
2007Q2 21794.652 71821.525 114524.165 79399.864 26800.515 70

Unit: thousand.
Source: Market Intelligence Center Taiwan 27.
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