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Abstract
This investigation aims at developing a methodology to establish convergence
of dynamics for delayed neural network systems with multiple stable equilibria.
The present approach is general and can be applied to several network models.
We take the Hopfield-type neural networks with both instantaneous and delayed
feedbacks to illustrate the idea. We shall construct the complete dynamical
scenario which comprises exactly 2n stable equilibria and exactly (3n − 2n)

unstable equilibria for the n-neuron network. In addition, it is shown that
every solution of the system converges to one of the equilibria as time tends
to infinity. The approach is based on employing the geometrical structure of
the network system. Positively invariant sets and componentwise dynamical
properties are derived under the geometrical configuration. An iteration scheme
is subsequently designed to confirm the convergence of dynamics for the system.
Two examples with numerical simulations are arranged to illustrate the present
theory.

Mathematics Subject Classification: 34K20, 92B20

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Delay, as occurring in the propagation of action potentials along the axon, the transmission
of signal across the synapse and the implementation of artificial neural networks, has been
an important concern in the study of neural systems [1–4]. On the other hand, the global
dynamics and the effect of time lags upon the dynamics have been interesting subjects in
delayed systems [5]. In a delayed system with multiple equilibria, it is appealing to investigate
how the basins of attraction for the stable equilibria are affected by delays, and to compare the
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dynamics of the system with those of the corresponding ODEs obtained from setting delays
to zero [6]. However, mathematical analysis for the studies in these directions remains to be
explored.

In this presentation, we develop a methodology to investigate convergence of dynamics
for delayed neural network systems. In particular, we consider the following neural network
with time-varying delays:

ẋi (t) = −µixi(t) +
n∑

j=1

αijgj (xj (t)) +
n∑

j=1

βijgj (xj (t − τij (t))) + Ji, (1.1)

where i = 1, 2, . . . , n, µi > 0; αij , βij ∈ R denote the instantaneous feedback and delayed
feedback connection strength from the ith to the j th unit; the time-dependent lags τij (t) � 0
are bounded continuous functions defined on [t0, +∞), for some t0 ∈ R; Ji ∈ R correspond to
the external bias; gj are single-variable functions to be defined below. System (1.1) reduces
to the classical and delayed Hopfield neural networks [7, 8], as βij = 0 and αij = 0 for all
i, j , respectively. It also represents the cellular neural networks without delays [9] and with
delays [3].

There is a large amount of neural network theory in the literatures of applied mathematics,
engineering, information science and applied physics, etc. Most of these studies focus on
the existence of a unique equilibrium and the global convergence to the equilibrium, see
[4, 10–15] and the references therein. On the other hand, ‘multistability’, a notion to describe
coexistence of multiple stable equilibria or cycles, is essential in several applications of neural
networks, including pattern recognition and associative memory storage [7, 16–18]. Recently,
a systematic methodology on existence of multiple stationary solutions for the Hopfield neural
network with or without delays has been reported in [19]. More precisely, the structure of
single-neuron equation is employed to construct the existence of 3n equilibria, 2n positively
invariant sets and basins of attraction for 2n, among these 3n, stable equilibria. However, there
was no theoretical methodology to capture behaviour for solutions lying outside or crossing
these basins, hence the global dynamical picture.

In the classical neural networks without delays and other ODEs, the typical treatment
for studying the convergence of dynamics is to construct a Lyapunov function and apply
LaSalle’s invariant principle. There does not exist a global Lyapunov function or functional
for system (1.1) with multiple equilibria, to the best of our knowledge. There does exist a
global Lyapunov functional for the delayed Hopfield network with single equilibria and a local
Lyapunov functional for the same system with multiple stable equilibria; for example,

V (xt ) =
n∑

i=1

gi(xi(t))
2 +

n∑
i=1

n∑
j=1

|βij |
∫ t

t−τij

[gj (xj (s)) − gj (xj )]
2 ds,

where x = (x1, x2, . . . , xn) is the equilibrium or one of the equilibria, cf [19]. There also
exists a Lyapunov function W(y) = 1

2‖y‖2, for the delayed Hopfield network with a single
equilibrium [15].

In this investigation, we develop a new treatment to conclude the convergence of dynamics
for (1.1). Under this formulation, certain componentwise dynamical properties are derived and
a subsequent iteration scheme is designed to confirm that every solution of the system converges
to one of the equilibria as time tends to infinity. With this formulation, we justify that there exist
exactly 2n stable equilibria and exactly (3n − 2n) unstable equilibria for (1.1). The conclusion
for this existence of exact number of stable and unstable equilibria is new due to distinct
treatment. Our results also improve the multistability theory in the cellular neural networks,
for example, the one in [21]. The arguments presented for confirming stability of equilibria
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are nonstandard in delayed equations, as compared with the linearization with computation of
the characteristic roots, and the Lyapunov function approach, employed in [22–25].

The present approach can also be applied to other additive networks, including the
generalized Cohen–Grossberg’s model [26,27], bi-directional associative memory model [28],
Lotka–Volterra system [29] and the networks with distributed delay [27, 30]. While the main
idea of this work is developed to treat the systems with multiple stable equilibria, it can be
applied to study monostability as well.

We shall present our main results for (1.1) with typical activation functions gi : R → R

in the following class:

Class A :

{
gi ∈ C2, limt→+∞ gi(ξ) = vi ∈ R, limt→−∞ gi(ξ) = ui ∈ R

∃ σi ∈ R, g′
i (σi) > g′

i (ξ ) > 0, for ξ �= σi and g′′
i (ξ ) · ξ < 0, for ξ �= σi.

These are bounded smooth sigmoidal functions and the commonly adopted ones are gi(ξ) =
tanh ξ and gi(ξ) = 1/[1 + e−ξ/εi ] with εi > 0. Without loss of generality, we set σi = 0,
for all i, throughout the presentation. Extension of the theory to other activation functions,
including the piecewise linear ones, will be addressed in section 4. We denote the bounds for
the activation functions, the slopes of the activation functions and the time lags by

ρi := max{|ui |, |vi |}, Li := g′
i (0) � g′

i (ξ ), for all ξ ∈ R (1.2)

τ := max
1�i,j�n

{τij }, τij (t) � τij , for all t ∈ [t0, +∞). (1.3)

We start our formulation from the single-neuron equation in section 2. The propositions
derived for the single-neuron equation will be used to develop componentwise dynamical
properties for the coupled equations (1.1) in section 3. The main theorems of convergence of
dynamics and stability of equilibria for the multidimensional system are presented in section 3.
Extension of the theorems to other activation functions is arranged in section 4. We demonstrate
this theory by two numerical examples in section 5.

2. Scalar equation with time-dependent input

In this section, as a preparation for the main theory in section 3, we consider the following
scalar equation with time-dependent external input w(t):

ẋ(t) = −µx(t) + αg(x(t)) + βg(x(t − τ1(t)) + w(t), (2.1)

where µ > 0, α > 0 and β ∈ R; τ1(t) is a continuous function with 0 � τ1(t) � τ ∈ R,
for all t � t0; w(t) is a bounded continuous function defined for t � t0; g is an activation
function of class A with u < g(ξ) < v, g′(ξ) � L := g′(0) = max{g′(η) : η ∈ R}, for all
ξ ∈ R, cf figure 1(a). Let ρ = max{|u|, |v|}. We present the basic formations and propositions
in section 2.1. The propositions derived herein lead to componentwise dynamical properties,
and subsequently, the dynamical scenario in the whole phase space, for multidimensional
system (1.1), in section 3. The proofs for these lemma and propositions are given in section 2.2.

2.1. Formulations and properties

The main result (theorem 2.4) in this section asserts that there exist three disjoint, bounded and
closed intervals to which every solution of (2.1) converges, under certain parameter conditions.
The assertions are derived by formulating successive sequences of upper and lower bounds for
the motions at each advanced time step. The sequences of upper and lower bounds are then
shown to contract to their limits, as time evolves.
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Figure 1. (a) The graph of activation function g of class A. (b) The configurations for functions
f̃ , f with their critical points p, q, and the points p̃, q̃ at which g has designated slopes.

The first two conditions we impose on activation function g and parameters are

Condition (A1): L > 2µ/α > 0,
Condition (A2): L < µ/|β|.
Let us define f (ξ) := −µξ + αg(ξ), where g is the same as in (2.1). Then, f̃ ′(ξ) =

−µ + αg′(ξ), for any vertical shift f̃ of f . If condition (A1) holds, there exist exactly two
points p, q with p < 0 < q such that f̃ ′(p) = f̃ ′(q) = 0; f̃ ′(ξ) > 0 for ξ ∈ (p, q); and
f̃ ′(ξ) < 0 for ξ ∈ R − [p, q]. Restated, if g′(0) > µ/α, then p and q are the only two critical
points of f̃ , and g′(p) = g′(q) = µ/α, cf figure 1(b). In addition, conditions (A1) and (A2)
imply 0 < (µ − L|β|)/(α + |β|) < µ/α. Thus, there always exist two points p̃ and q̃, where
p̃ < p < q < q̃ such that

g′(p̃) = g′(q̃) = µ − L|β|
α + |β| .

We shall formulate the desired configuration and properties for equation (2.1) through the
following quantities and functions. For T � t0, let

wmin(T ) := inf{w(t) | t � T }, wmax(T ) := sup{w(t) | t � T },
f̂ (0)(ξ, T ) := −µξ + αg(ξ) + |β|ρ + wmax(T ),

f̌ (0)(ξ, T ) := −µξ + αg(ξ) − |β|ρ + wmin(T ).
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Figure 2. Configurations of functions f̂ , f̂ (0), f̌ (0) and f̌ , for fixed T � t0.

For convenience of later use, we denote

f̂ (ξ) := f̂ (0)(ξ, t0), f̌ (ξ) := f̌ (0)(ξ, t0). (2.2)

Notably, f̂ and f̌ are also vertical shifts of f . Let us introduce the third condition.

Condition (A3): f̌ (q̃) > 0, f̂ (p̃) < 0.

Under conditions (A1)–(A3), there exist three solutions l̂, m̂ and r̂ (respectively, ľ, m̌ and ř) of
f̂ (ξ) = 0 (respectively, f̌ (ξ) = 0). Moreover, ľ < l̂ < p̃ < p < m̂ < m̌ < q < q̃ < ř < r̂ .
We further impose a slope condition on the middle part of the activation function. This
condition actually covers (A1).

Condition (A4): g′(ξ) > 2µ/α, for all ξ ∈ [m̂, m̌].

Let ǎ(0)(T ) (respectively, b̌(0)(T ), č(0)(T )) be the unique solution of f̌ (0)(·, T ) = 0 lying
in interval [ľ, l̂] (respectively, [m̂, m̌], [ř , r̂]), and â(0)(T ) (respectively, b̂(0)(T ), ĉ(0)(T )) be
the unique solution of f̂ (0)(·, T ) = 0 lying in [ľ, l̂] (respectively, [m̂, m̌], [ř , r̂]), cf figure 2.
The following functions can be defined iteratively for each fixed T � t0: for k ∈ N,

f̂
(k)

l (ξ, T ) :=
{

−µξ + αg(ξ) + βg(â(k−1)(T )) + wmax(T ), for β � 0,

−µξ + αg(ξ) + βg(ǎ(k−1)(T )) + wmax(T ), for β < 0,

f̌
(k)

l (ξ, T ) :=
{

−µξ + αg(ξ) + βg(ǎ(k−1)(T )) + wmin(T ), for β � 0,

−µξ + αg(ξ) + βg(â(k−1)(T )) + wmin(T ), for β < 0,

f̂ (k)
m (ξ, T ) :=

{
−µξ + αg(ξ) + βg(b̌(k−1)(T )) + wmax(T ), for β � 0,

−µξ + αg(ξ) + βg(b̂(k−1)(T )) + wmax(T ), for β < 0,

f̌ (k)
m (ξ, T ) :=

{
−µξ + αg(ξ) + βg(b̂(k−1)(T )) + wmin(T ), for β � 0,

−µξ + αg(ξ) + βg(b̌(k−1)(T )) + wmin(T ), for β < 0,

f̂ (k)
r (ξ, T ) :=

{
−µξ + αg(ξ) + βg(ĉ(k−1)(T )) + wmax(T ), for β � 0,

−µξ + αg(ξ) + βg(č(k−1)(T )) + wmax(T ), for β < 0,

f̌ (k)
r (ξ, T ) :=

{
−µξ + αg(ξ) + βg(č(k−1)(T )) + wmin(T ), for β � 0,

−µξ + αg(ξ) + βg(ĉ(k−1)(T )) + wmin(T ), for β < 0.
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These functions are all vertical shifts of f for each fixed T . Herein, ǎ(k)(T ) (respectively,
b̌(k)(T ), č(k)(T )) is the unique solution of f̌

(k)

l (·, T ) = 0 (respectively, f̌
(k)
m (·, T ) = 0,

f̌
(k)
r (·, T ) = 0) lying in interval [ľ, l̂] (respectively, [m̂, m̌], [ř , r̂]), and â(k)(T ) (respectively,

b̂(k)(T ), ĉ(k)(T )) is the unique solution of f̂
(k)

l (·, T ) = 0 (respectively, f̂
(k)
m (·, T ) = 0,

f̂
(k)
r (ξ, T ) = 0) lying in [ľ, l̂] (respectively, [m̂, m̌], [ř , r̂]). We also define wmin(∞) :=

limT →∞ wmin(T ), wmax(∞) := limT →∞ wmax(T ).
The following lemma summarizes the properties for zeros of the above-defined sequences

of single-variable functions.

Lemma 2.1. Assume that conditions (A2)–(A4) hold. Then, for each T � t0, the sequences
{b̌(k)(T )}k�0, {b̂(k)(T )}k�0 {ǎ(k)(T )}k�0, {â(k)(T )}k�0, {č(k)(T )}k�0, {ĉ(k)(T )}k�0 can be
defined iteratively. Moreover,

(i) for any fixed k ∈ N ∪ {0}, each of b̂(k)(T ), ǎ(k)(T ) and č(k)(T ) is increasing, and each of
b̌(k)(T ), â(k)(T ), and ĉ(k)(T ) is decreasing with respect to T � t0;

(ii) for any T � t0, there exist b(T ), b(T ), a(T ), a(T ), c(T ), c(T ) ∈ R such that b̂(k)(T ) →
b(T ), ǎ(k)(T ) → a(T ), and č(k)(T ) → c(T ) increasingly, and b̌(k)(T ) → b(T ),
â(k)(T ) → a(T ), and ĉ(k)(T ) → c(T ) decreasingly, as k → ∞;

(iii) there exist b, b, a, a, c, c ∈ R, such that b(T ) → b, a(T ) → a, c(T ) → c increasingly
and b(T ) → b, a(T ) → a, c(T ) → c decreasingly, as T → ∞;

(iv) ∩T �t0 [b(T ), b(T )] = [b, b], ∩T �t0 [a(T ), a(T )] = [a, a], ∩T �t0 [c(T ), c(T )] = [c, c];
(v) 0 � b(T )−b(T ) � [wmax(T )−wmin(T )]/(µ−|β|L), 0 � a(T )−a(T ), c(T )−c(T ) �

[wmax(T ) − wmin(T )]/(|β|L), for any T � t0, moreover

0 � db := b − b � wmax(∞) − wmin(∞)

µ − |β|L ,

0 � da := a − a, dc := c − c � wmax(∞) − wmin(∞)

|β|L .

In the following discussions, for an initial value φ ∈ C([−τ, 0], R), we denote by
x(t) = x(t; t0; φ) the solution of (2.1) with x(t0 + θ; t0; φ) = φ(θ), for θ ∈ [−τ, 0].

Definition 2.1. A solution x(t) of (2.1) is said to satisfy property M, L, R, if, respectively,

for each k ∈ N ∪ {0}, T � t0, x(t) ∈ [b̂k(T ), b̌k(T )], for all t � T + kτ ,
there exists s � t0 such that x(s) ∈ [ľ, l̂],
there exists s � t0 such that x(s) ∈ [ř , r̂].

Proposition 2.2. Assume that conditions (A2)–(A4) hold.

(i) If x(t) is a solution of (2.1) and for any fixed T � t0, k ∈ N, x(t) ∈ [b̂k−1(T ), b̌k−1(T )]
for all t � T + (k − 1)τ , then x(t) ∈ [b̂k(T ), b̌k(T )], for all t � T + kτ ;

(ii) If x(t) is a solution of (2.1) and x(s) > b̌(0)(T ) (respectively, x(s) < b̂(0)(T )), for some
s � T � t0, then x(t) satisfies property R (respectively, L);

(iii) If the solution x(t) of (2.1) satisfies property M, then x(t) → [b(T ), b(T )] as t → ∞,
for any T � t0; subsequently, x(t) → [b, b] as t → ∞.

(iv) Each of [ľ, l̂] and [ř , r̂] is a positively invariant interval for (2.1). Moreover, if x(t)

is a solution of (2.1), which satisfies property R (respectively, L), then x(t) → [c, c]
(respectively, [a, a]), as t → ∞.

Proposition 2.3. Assume that conditions (A2)–(A4) hold. Every solution x(t) of (2.1) satisfies
one of properties M, L, R.
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Proof. Let x(t) be a solution of (2.1) which does not satisfy property M. Then there exist
k ∈ N ∪ {0}, T � t0, such that

x(t) ∈ R − [b̂k(T ), b̌k(T )], for some t � T + kτ. (2.3)

Set K := {(k, T ) : k ∈ N ∪ {0}, T � t0, and (2.3) holds}, k0 := min{k : there exists T � t0
such that (k, T ) ∈ K}. There are two possibilities: k0 � 1 and k0 = 0.

Case (i): If k0 � 1, then for any T � t0,

x(t) ∈ [b̂k0−1(T ), b̌k0−1(T )], for all t � T + (k0 − 1)τ.

It follows from proposition 2.2(i) that x(t) ∈ [b̂k0(T ), b̌k0(T )], for all t � T + k0τ , which is a
contradiction to the definition of k0.

Case (ii): If k0 = 0, then there exist T � t0 and t � T such that x(t) ∈ R− [b̂(0)(T ), b̌(0)(T )].
x(t) then satisfies property L or R, according to proposition 2.2(ii). �

Combining proposition 2.2(iii) and (iv) and proposition 2.3, we conclude the main result
in this section.

Theorem 2.4. Assume that conditions (A2)–(A4) hold. Let x(t) be a solution of (2.1). Then
x(t) → [a, a], or [b, b], or [c, c], as t → ∞.

2.2. Proofs of lemma and propositions

We only prove the case of β > 0, as the arguments for β � 0 are similar.

Proof of lemma 2.1. The labelling in the proof corresponds to the one in the statement of
lemma 2.1.

(i) Let us show that for any T � t0, b̌(k)(T ) and b̂(k)(T ) are well-defined for all k ∈ N ∪ {0}.
Assume that b̂(j−1)(T ), b̌(j−1)(T ) have been defined, for a fixed T � t0. Notably,

f̂ (j)
m (ξ, T ) = −µξ + αg(ξ) + βg(b̌(j−1)(T )) + wmax(T )

� −µξ + αg(ξ) + βρ + wmax(t0) = f̂ (ξ),

f̌ (j)
m (ξ, T ) = −µξ + αg(ξ) − βg(b̂(j−1)(T )) + wmin(T )

� −µξ + βg(ξ) − βρ + wmin(t0) = f̌ (ξ).

It follows that f̌ (ξ) � f̌
(j)
m (ξ, T ) � f̂

(j)
m (ξ, T ) � f̂ (ξ), for all ξ ∈ R. In addition, p and

q are two critical points of f̌ (·), f̂ (·), f̂
(j)
m (·, T ), and f̌

(j)
m (·, T ), and g′(p) = g′(q) = µ/α,

due to condition (A1). There exists exactly one solution for each of f̂
(j)
m (·, T ) = 0 and

f̌
(j)
m (·, T ) = 0 in interval (m̂, m̌). Accordingly, both b̌(j)(T ) and b̂(j)(T ) are well defined.

Moreover, it is straightforward to observe that b̂(j)(T1) � b̂(j)(T2) and b̌(j)(T1) � b̌(j)(T2),
due to f̂

(j)
m (·, T1) � f̂

(j)
m (·, T2) and f̌

(j)
m (·, T1) � f̌

(j)
m (·, T2), for any T1 � T2 � t0. Thus, for

each k ∈ N ∪ {0}, b̂(k)(T ) increases and b̌(k)(T ) decreases, with respect to T . The arguments
for ǎ(k)(T ), â(k)(T ), č(k)(T ), ĉ(k)(T ) are similar.

(ii) Let us show that for each T � t0,

b̂(k+1)(T ) � b̂(k)(T ); b̌(k+1)(T ) � b̌(k)(T ), for all k � 0. (2.4)

Assume that (2.4) holds for some k = j − 1. Notably, b̂(j+1)(T ) and b̂(j)(T ) satisfy
f̂

(j+1)
m (·, T ) = 0 and f̂

(j)
m (·, T ) = 0 respectively; i.e.

− µb̂(j+1)(T ) + αg(b̂(j+1)(T )) + βg(b̌(j)(T )) + wmax(T ) = 0, (2.5)

−µb̂(j)(T ) + αg(b̂(j)(T )) + βg(b̌(j−1)(T )) + wmax(T ) = 0. (2.6)
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The difference of (2.5) and (2.6) is

µ[b̂(j+1)(T ) − b̂(j)(T )] − αg′(ξ)[b̂(j+1)(T ) − b̂(j)(T )] = βg′(ζ )[b̌(j)(T ) − b̌(j−1)(T )],

(2.7)

where ξ (respectively, ζ ) is a number between b̂(j+1)(T ) and b̂(j)(T ) (respectively, b̂(j)(T ) and
b̂(j−1)(T )). (2.7) then yields

b̂(j+1)(T ) − b̂(j)(T ) = βg′(ζ )[b̌(j)(T ) − b̌(j−1)(T )]

µ − αg′(ξ)
� 0,

due to that g′(ξ) > µ/α for ξ between b̂(j+1)(T ) and b̂(j)(T ). Thus, the first part of (2.4)
holds for k = j . The second part can be proved similarly. It follows that for any T � t0,
limk→∞ b̂(k)(T ) = b(T ) ∈ R, and limk→∞ b̌(k)(T ) = b(T ) ∈ R, respectively, since both of
b̌(k)(T ) and b̂(k)(T ) are bounded monotone sequences. The situations for ǎ(k)(T ), â(k)(T ), and
č(k)(T ), ĉ(k)(T ) are similar.

(iii) For each k ∈ N ∪ {0}, it has been shown in (i) that b̂(k)(T2) � b̂(k)(T1), if T1 > T2 � t0.
Thus, limk→∞ b̂(k)(T2) � limk→∞ b̂(k)(T1), i.e. b(T2) � b(T1). Therefore, b(T ) → b ∈ R

increasingly as T → ∞, since b(T ) is bounded above for all T � t0. Similarly, b(T ) → b ∈ R

decreasingly as T → ∞. Similar proofs apply to a(T ) → a, a(T ) → a, c(T ) → c and
c(T ) → c.

(iv) It is straightforward to see that ∩T �t0 [b(T ), b(T )] = [b, b], ∩T �t0 [a(T ), a(T )] = [a, a],
∩T �t0 [c(T ), c(T )] = [c, c].

(v) It is obvious that b(T ) − b(T ) � 0, since b̌(k)(T ) > b̂(k)(T ) for any k ∈ N ∪ {0}, and
any T � t0. Next, we justify that b(T ) − b(T ) � [wmax(T ) − wmax(T )]/(µ − |β|L), for
any T � t0. For such an assertion, we shall construct a mapping �T : HT → HT , for each
T � t0, where HT := [b̂(0)(T ), b̌(0)(T )] × [b̂(0)(T ), b̌(0)(T )] ∩ {(y1, y2)|y1 � y2} ⊂ R

2 and
such a mapping is a contraction, mainly due to g′ > 2µ/α, on [b̂(0)(T ), b̌(0)(T )]. The map �T

thus admits a unique fixed point (b(T ), b(T )). The difference of b(T ) and b(T ) can then be
estimated to yield the assertion. Let us elaborate. For each T � t0, we define the following
functions:

hmax
T (ξ, γ ) := −µξ + αg(ξ) + βg(γ ) + wmax(T ),

hmin
T (ξ, γ ) := −µξ + αg(ξ) + βg(γ ) + wmin(T ).

Notably, f̌
(1)
m (ξ, T ) � hmin

T (ξ, γ1) � hmax
T (ξ, γ2) � f̂

(1)
m (ξ, T ), if b̂(0)(T ) � γ1 � γ2 �

b̌(0)(T ). For (ξ, γ ) ∈ HT , we define �T (ξ, γ ) = (ξs, γs), where ξs (respectively, γs)
is the unique point lying in [b̂(0)(T ), b̌(0)(T )] satisfying hmax

T (ξs, γ ) = 0 (respectively,
hmin

T (γs, ξ) = 0). Suppose hmax
T (ξs, γ ) = 0, hmax

T (ξ ′
s , γ

′) = 0, then we derive

µ(ξ ′
s − ξs) − αg′(η)(ξ ′

s − ξs) + β[g(γ ) − g(γ ′)] = 0,

where η is between ξ ′
s and ξs . Subsequently, |ξ ′

s − ξs | � |β|L|γ ′ − γ |/[α(2µ/α) − µ] =
|β|L|γ ′ − γ |/µ, thanks to g′(η) > 2µ/α, for η ∈ [b̂(0)(T ), b̌(0)(T )] ⊂ [b̂(0)(t0), b̌

(0)(t0)] =
[m̂, m̌]. Similarly, we can prove that |γ ′

s − γs | � |β|L|ξ − ξ ′|/µ, if hmin
T (γs, ξ) = 0,

hmin
T (γ ′

s , ξ
′) = 0. We thus establish

‖�T (ξ, γ ) − �T (ξ ′, γ ′)‖∞ = ‖(ξs, γs) − (ξ ′
s , γ

′
s )‖∞ � |β|L

µ
‖(ξ, γ ) − (ξ ′, γ ′)‖∞.

�T is thus a contracting mapping under our condition (A2): L < µ/|β|. Thus, there exists
a unique fixed point of �T in HT . Observe that �k

T (b̂(0)(T ), b̌(0)(T )) = (b̂(k)(T ), b̌(k)(T )),
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which converges to (b(T ), b(T )) as k → ∞. Thus (b(T ), b(T )) ∈ HT is the fixed point of
�T and

−µb(T ) + αg(b(T )) + βg(b(T )) + wmax(T ) = 0,

−µb(T ) + αg(b(T )) + βg(b(T )) + wmin(T ) = 0.

Therefore,

b(T ) − b(T ) = [wmax(T ) − wmin(T )]/[αg′(ξ) − |β|g′(ξ) − µ]

� [wmax(T ) − wmin(T )]/[µ − |β|g′(ξ)]

� [wmax(T ) − wmin(T )]/[µ − |β|L],

due to condition (A4): g′(ξ) � 2µ/α for ξ ∈ [b(T ), b(T )] ⊂ [b̂(0)(T ), b̌(0)(T )] ⊂ [m̂, m̌],
condition (A2): µ − |β|L > 0, and g′(ξ) � L, for all ξ . Moreover, b − b � b(T ) − b(T ) �
[wmax(T ) − wmin(T )]/[µ − |β|L], for any T � t0. We thus establish

0 � db := b − b � [wmax(∞) − wmin(∞)]/[µ − |β|L].

The estimate for c(T ) − c(T ) follows from

µ[c(T ) − c(T )] − αg′(ξ)[c(T ) − c(T )] − βg′(ξ)[c(T ) − c(T )] + wmax(T ) − wmin(T ) = 0,

for some ξ ∈ [č(0)(T ), ĉ(0)(T )], and

c(T ) − c(T ) � wmax(T ) − wmin(T )

µ − (α + |β|)g′(q̃)
= wmax(T ) − wmin(T )

|β|L .

The estimate for a(T ) − a(T ) is similar. The bounds for a − a, and c − c can then be derived.

Proof of proposition 2.2.

(i) Assume that x(t) ∈ [b̂(k−1)(T ), b̌(k−1)(T )], for all t � T + (k − 1)τ . Then it is not difficult
to derive that f̌

(k)
m (x(t), T ) � ẋ(t) � f̂

(k)
m (x(t), T ) for t � T + kτ . Therefore, if the assertion

does not hold, x(t) eventually leaves [b̂(k−1)(T ), b̌(k−1)(T )] after t = T + kτ , and yields a
contradiction, cf figure 3. For a detailed proof, let us suppose the assertion does not hold, then
there exists some s � T + kτ such that x(s) ∈ [b̂(k−1)(T ), b̌(k−1)(T )] − [b̂(k)(T ), b̌(k)(T )].
Suppose that x(s) ∈ (b̌(k)(T ), b̌(k−1)(T )] �= ∅ (the case x(s) ∈ (b̂(k−1)(T ), b̂(k)(T )] �= ∅ can
be similarly discussed). Notably, f̌

(k)
m (ξ, T ) := −µξ + αg(ξ) + βg(b̂(k−1)(T )) + wmin(T ) �

f̌
(k)
m (x(s), T ) =: h1 > 0, for all ξ ∈ [x(s), b̌(k−1)(T )], with respect to the definition of

f̌
(k)
m (ξ, T ), cf figure 3. In addition,

ẋ(s) = −µx(s) + αg(x(s)) + βg(x(s − τ1(s))) + w(s)

� −µx(s) + αg(x(s)) + βg(b̂(k−1)(T )) + wmin(T )

= f̌ (k)
m (x(s), T ) = h1 > 0,

due to s − τ1(s) � T + (k − 1)τ . Therefore, x(t) enters (x(s), b̌k−1(T )] after t = s, and
will never go back into (−∞, x(s)] again. Indeed, if there exists a time s1 > s, such that
x(t) ∈ (x(s), b̌(k−1)(T )) for all t ∈ (s, s1), and x(s1) = x(s), then,

x(s1) − x(s) = ẋ(s̃)(s1 − s)

= [−µx(s̃) + αg(x(s̃)) + βg(x(s̃ − τ1(s̃))) + w(s̃)](s1 − s)

� [−µx(s̃) + αg(x(s̃)) + βg(b̂(k−1)(T )) + wmin(T )](s1 − s)

= [f̌ (k)
m (x(s̃), T )](s1 − s) � h1 · (s1 − s) > 0,
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Figure 3. Configuration for the proof of proposition 2.2(i), for some T � t0.

Figure 4. Configuration for the proof of proposition 2.2(ii), for some s � T .

for some s̃ ∈ (s, s1), which is a contradiction. Thus, x(t) stays in [x(s), b̌k−1(T )] for all t � s

with ẋ(t) � h1 > 0. This is impossible and we conclude that x(t) ∈ [b̂(k)(T ), b̌(k)(T )] for all
t � T + kτ .

(ii) We only prove the R case. This property holds mainly due to f̌ (0)(x(t), T ) � ẋ(t) �
f̂ (0)(x(t), T ), for t � T . Therefore, if x(s) ∈ (b̌(0)(T ), ∞) (respectively, (−∞, b̂(0)(T ))) for
some s � T , then x(t) eventually enters [ř , r̂] (respectively, [ľ, l̂]), cf figure 2. Let us give
detailed arguments. If x(s) ∈ (b̌(0)(T ), ř), then h0 := min{f̌ (0)(x(s), s), f̌ (0)(ř, s)} > 0, and
f̌ (0)(ξ, s) � h0, for ξ ∈ [x(s), ř], as observed from the graph of f̌ (0)(·, s) in figure 4. In
addition,

ẋ(s) = −µx(s) + αg(x(s)) + βg(x(s − τ1(s))) + w(s),

� −µx(s) + αg(x(s)) − βρ + wmin(s),

= f̌ (0)(x(s), s) � h0.

Thus, x(t) is increasing with a positive rate should it remain in (b̌(0)(T ), ř). On the other hand,
if x(s) > r̂ (figure 4),

ẋ(s) = −µx(s) + αg(x(s)) + βg(x(s − τ1(s))) + w(s)

� −µx(s) + αg(x(s)) + βρ + wmax(s)

= f̂ (0)(x(s), s) < 0.

Thus, x(t) eventually enters [ř , r̂].
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(iii) Let us show thatx(t) → [b(T ), b(T )], for anyT � t0. Assume otherwise thatx(t)does not
converge to [b(T ), b(T )] as t → ∞, for some T � t0. Then, there exist ε > 0 and an increasing
time sequence {tn} tending to +∞, such that x(tn) does not belong to [b(T )−ε, b(T )+ε] for all
n. This contradicts that for each k ∈ N∪{0}, T > t0, x(t) ∈ [b̂k(T ), b̌k(T )] for all t � T +kτ ,
by the assumption of property M, and that b̂k(T ) converges to b(T ) increasingly, b̌k(T )

converges to b(T ) decreasingly, as k → ∞. Moreover, since b(T ) tends to b increasingly and
b(T ) tends to b decreasingly, as T → ∞, we conclude that x(t) → [b, b], as t → ∞.

(iv) First, both [ľ, l̂] and [ř , r̂] are positively invariant sets for system (2.1) mainly because
f̌ (x(t)) � ẋ(t) � f̂ (x(t)) for all t � t0, cf figure 2. More precisely, assume that there exists
s � t0 such that x(t) ∈ [ř , r̂] for t0 � t � s and x(t1) /∈ [ř , r̂] for some t1 > s. Let s1 be
the first time after time s such that x(s1) = ř , and x(t) leaves [ř , r̂] after time s1 and enters
(−∞, ř), without loss of generality. Then there exists s2 > s1 such that m̌ < x(t) < ř for
t ∈ (s1, s2). A contradiction then arises as

x(s2) − x(s1) = ẋ(s3)(s2 − s1)

= [−µx(s3) + αg(x(s3)) + βg(x(s3 − τ1(s3))) + w(s3)](s2 − s1)

� f̌ (x(s3))(s2 − s1) > 0,

for some s3 ∈ (s1, s2). A similar contradiction occurs if we consider x(s1) = r̂ and x(t) enters
(r̂, ∞). The proof for positive invariance of [ľ, l̂] is similar.

Next, we assume that x(t) satisfies property R, namely, there exists s � t0 such that
x(s) ∈ [ř , r̂]. We assert that for each T � t0,

x(t) → [č(k)(T ), ĉ(k)(T )], as t → ∞, for all k � 0. (2.8)

We justify (2.8) by induction. Let sT := max{s, T }. It can be concluded that if x(t1) ∈
[č(0)(T ), ĉ(0)(T )] for some t1 � sT , then x(t) ∈ [č(0)(T ), ĉ(0)(T )] for all t � t1, by arguments
similar to the previous ones for proving that [ř , r̂] is positively invariant. If x(t) ∈ [ř , č(0)(T )),
for all t � sT , then

ẋ(t) = −µx(t) + αg(x(t)) + βg(x(t − τ1(t))) + w(t)

� −µx(t) + αg(x(t)) − βρ + wmin(T )

= f̌ (0)(x(t), T ) > 0,

and yields a contradiction. Similarly, it cannot hold that x(t) ∈ (ĉ(k)(T ), r̂], for all t � sT .
Hence, (2.8) holds for k = 0. Now, we assume that (2.8) holds for k = j − 1, i.e.
x(t) → [č(j−1)(T ), ĉ(j−1)(T )], as t → ∞. Let us illustrate that it also holds for k = j .
Consider a point xU arbitrarily close to [č(j)(T ), ĉ(j)(T )], and assume xU � č(j)(T ); there
exists a function, say fU , which is a vertical shift of f̂

(0)
r (·, T ) and fU has a unique zero at xU ,

cf figure 5. It can be derived that ẋ(t) � fU(x(t)), as t is large enough. Subsequently, it follows
that x(t) must become closer to [č(j)(T ), ĉ(j)(T )] than to xU , as t → ∞. Equation (2.8) thus
holds for k = j . The arguments for xU � ĉ(j)(T ) and ẋ(t) � fU(x(t)) are similar. Let us give
detailed arguments. Assume that x(t) does not converge to [č(j)(T ), ĉ(j)(T )]. Then, without
loss of generality, there exist an ε > 0 and a time sequence {tn} with tn � sT and tn → ∞, as
n → ∞, such that

x(tn) ∈ [ř , č(j)(T ) − ε); (2.9)

moreover, č(j)(T ) > č(j−1)(T ). Notably, č(j)(T ) is the unique solution of the equation
−µξ + αg(ξ) + βg(č(j−1)(T )) + wmin(T ) = 0, which lies in [ř , r̂]. Thus, there exist
δε > 0 and xU ∈ [č(j)(T ) − ε

2 , č(j)(T ) + ε
2 ] such that xU is the unique solution of
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Figure 5. Configuration for the proof of proposition 2.2(iv), with fixed T .

fU(ξ) := −µξ + αg(ξ) + βg(cU) + wmin(T ) = 0, where cU := min{ξ : ξ ∈ U},
U := [č(j−1)(T ) − δε, č

(j−1)(T ) + δε] ∩ [ř , r̂], by continuity, cf figure 5. On the other
hand, there exists t̃ large enough such that x(t) � cU , for all t � t̃ , since x(t) converges
to [č(j−1)(T ), ĉ(j−1)(T )]. It follows that

ẋ(tN ) = −µx(tN) + αg(x(tN)) + βg(x(tN − τ1(tN ))) + w(tN)

� −µx(tN) + αg(x(tN)) + βg(cU) + wmin(T ) > 0,

for some tN � t̃ + τ , since x(tN) < č(j)(T ) − ε < xU . Moreover,

ẋ(t) = −µx(t) + αg(x(t)) + βg(x(t − τ1(t))) + w(t)

� −µx(t) + αg(x(t)) + βg(cU) + wmin(T ) = fU(x(t)) > 0,

if t � tN and x(t) ∈ (x(tN), xU ). Therefore, x(t) is increasing until it reaches xU and
never goes back into [ř , č(j)(T ) − ε). This yields a contradiction to (2.9). We have therefore
justified that (2.8) holds. Consequently, x(t) converges to [c(T ), c(T )] for all T � t0, and
thus converges to [c, c], as t → ∞. The proof for x(t) satisfying property L and converging
to [a, a] is similar.

3. Multi-dimensional system

In this section, we shall derive the convergence of dynamics and stability of equilibria for
the mainly considered system (1.1), by applying the propositions and theorem in section 2
and further analysis. Notably, system (1.1) is dissipative, as observed from the equation
that the summation terms in the right-hand side of (1.1) are bounded. Such a property
was formally justified in [31]. Thereafter, the solution x(t; t0; φ) of (1.1), starting from any
φ ∈ C([−τ, 0], R

n), at t = t0 exists on [t0, ∞).

3.1. Main results

Let us introduce the following upper and lower bounds for each component of system (1.1):

F̂i(ξ) := −µiξ + αiigi(ξ) +
∑
j �=i

|αij |ρj +
n∑

j=1

|βij |ρj + Ji,

F̌i(ξ) := −µiξ + αiigi(ξ) −
∑
j �=i

|αij |ρj −
n∑

j=1

|βij |ρj + Ji,
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where ρi are the bounds for activation functions gi , defined in (1.2). Note that such a setting
for the upper and lower bounds is different from the one in [20].

Recall that Li is the largest slope of activation function gi at its inflection point, as defined
in (1.2). We consider the following conditions which are the multi-dimensional versions of
conditions (A1) and (A2).

Condition (H1): Li > 2µi/αii > 0, for i = 1, 2, · · · , n,
Condition (H2): µi > µi − Li |βii | >

∑
j �=i Lj |αij | +

∑
j �=i Lj |βij |, for i = 1, 2, . . . , n.

Notably, condition (H1) implies αii > 0, and the first inequality in condition (H2) is
equivalent to βii �= 0, for all i. The discussions on critical points of f , f̂ and f̌ and their
vertical shifts in section 2.1 are valid for F̂i , F̌i , i = 1, 2, . . . , n, as well as their vertical shifts.
Accordingly, under condition (H1), there exist critical points pi and qi of F̂i , F̌i , which satisfy
g′

i (pi) = g′
i (qi) = µi/αii . In addition, F̂i and F̌i are strictly increasing in (−∞, pi), (qi, ∞),

and strictly decreasing in (pi, qi), for i = 1, 2, . . . , n. On the other hand,

0 <

[
µi −

( ∑
j �=i

Lj |αij | +
n∑

j=1

Lj |βij |
)]

/(αii + |βii |) < µi/(αii + |βii |), (3.1)

under conditions (H2). Hence, there always exist exactly two points p̃i and q̃i with
p̃i < pi < qi < q̃i such that

g′
i (p̃i) = g′

i (q̃i) =
[
µi −

( ∑
j �=i

Lj |αij | +
n∑

j=1

Lj |βij |
)]

/(αii + |βii |), (3.2)

for i = 1, 2, . . . , n. Next, we introduce

Condition (H3): F̌i(q̃i) > 0 and F̂i(p̃i) < 0, for all i = 1, 2, . . . , n.

Under condition (H3), there exist three solutions l̂Fi , m̂F
i , and r̂F

i (respectively, ľFi , m̌F
i

and řF
i ) to F̂i(·) = 0 (respectively, F̌i(·) = 0), for each i = 1, 2, . . . , n. Moreover,

ľFi < l̂Fi < p̃i < m̂F
i < m̌F

i < q̃i < řF
i < r̂F

i . The following condition is the multi-
dimensional version of condition (A4).

Condition (H4): g′
i (ξ ) > 2µi/αii for all ξ ∈ [m̂F

i , m̌F
i ], i = 1, 2, . . . , n.

Let us introduce the following sets in R
n

�λ1λ2···λn
= �

λ1
1 × �

λ2
2 × · · · × �λn

n , λi ∈ {l, m, r}, i = 1, 2, . . . , n,

�̃λ1λ2···λn
= �̃

λ1
1 × �̃

λ2
2 × · · · × �̃λn

n , λi ∈ {l, m, r}, i = 1, 2, . . . , n,

which are defined through the following intervals

�l
i = [ľFi , l̂Fi ], �m

i = [m̂F
i , m̌F

i ], �r
i = [řF

i , r̂F
i ],

�̃l
i = (−∞, m̂F

i ), �̃m
i = �m

i , �̃r
i = (m̌F

i , ∞).

Herein, ‘l’, ‘m’, ‘r’ represent, respectively, left, middle and right. By applying the contraction
mapping principle, we derive the existence of 3n equilibria for system (1.1).

Theorem 3.1. There exist exactly 3n equilibria for system (1.1) under conditions (H2)–(H4).
Each region �λ1λ2···λn

contains exactly one of these 3n equilibria.
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Proof. We will show that there exists exactly one equilibrium point in each �λ1λ2···λn
. Consider

a fixed � = �λ1λ2···λn
. Set fi(ξ) := −µiξ + αiigi(ξ). For a given y = (y1, y2, . . . , yn) ∈ �,

we define

hi(ξ) := −µiξ + αiigi(ξ) +
n∑

j=1,j �=i

αij gj (yj ) +
n∑

j=1

βijgj (yj ) + Ji,

for ξ ∈ R, i = 1, 2, . . . , n. Note that F̌i(ξ) � hi(ξ) � F̂i(ξ), and all functions F̌i , hi , F̂i are
vertical shifts of fi . Thus, there exists a unique solution y∗

i to equation hi(·) = 0, lying in
�

λi

i . We define a mapping G� : � → � by G�(y) = y∗, where y∗ = (y∗
1 , y∗

2 , . . . , y∗
n). Then

G� is continuous and we shall illustrate that it is a contraction map. Assume that G�(y) = y∗,
G�(x) = x∗, i.e. for each i = 1, 2, . . . , n

−µiy
∗
i + αiigi(y

∗
i ) +

n∑
j=1,j �=i

αij gj (yj ) +
n∑

j=1

βijgj (yj ) + Ji = 0,

−µix
∗
i + αiigi(x

∗
i ) +

n∑
j=1,j �=i

αij gj (xj ) +
n∑

j=1

βijgj (xj ) + Ji = 0.

Then

(x∗
i − y∗

i )[µi − αiig
′
i (ξ

∗
i )] −

n∑
j=1,j �=i

αij g
′
j (η

∗
j )[xj − yj ] −

n∑
j=1

βijg
′
j (η

∗
j )[xj − yj ] = 0,

(3.3)

where ξ ∗
i is some number between x∗

i and y∗
i ; η∗

j is some number between xj and yj .

(i) If λi =‘m’, then x∗
i , y∗

i , ξ ∗
i ∈ [m̂F

i , m̌F
i ] and g′

i (ξ
∗
i ) > 2µi/αii , by condition (H4). Hence

|x∗
i − y∗

i | =
∣∣∣∣

n∑
j=1,j �=i

αij g
′
j (η

∗
j )(xj − yj ) +

n∑
j=1

βijg
′
j (η

∗
j )(xj − yj )|/|αiig

′
i (ξ

∗
i ) − µi

∣∣∣∣
�

{[ n∑
j=1,j �=i

Lj |αij | +
n∑

j=1

Lj |βij |
]
/µi

}
‖x − y‖∞

=: γ̃i‖x − y‖∞,

and 0 < γ̃i < 1, owing to condition (H2).

(ii) If λi =‘r’, then x∗
i , y∗

i ∈ [řF
i , r̂F

i ] and ξ ∗
i > q̃i (for q̃i < řF

i ). Thus, 0 � g′
i (ξ

∗
i ) <

[µi − (
∑

j �=i Lj |αij | +
∑n

j=1 Lj |βij |)]/[αii + |βii |] < µi/αii , as mentioned in (3.1). It
follows that

|αiig
′
i (ξ

∗
i ) − µi | = µi − αiig

′
i (ξ

∗
i )

> µi − αii

[
µi −

( n∑
j=1,j �=i

Lj |αij | +
n∑

j=1

Lj |βij |
)]

/(αii + |βii |)

�
n∑

j=1,j �=i

Lj |αij | +
n∑

j=1

Lj |βij |.
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Subsequently, from (3.3)

|x∗
i − y∗

i | �
{[ n∑

j=1,j �=i

Lj |αij | +
n∑

j=1

Lj |βij |
]
/|αiig

′
i (ξ

∗
i ) − µi |

}
‖x − y‖∞

=: γi‖x − y‖∞,

and γi < 1. The situation for λi = ‘l’ is similar. Therefore, G� is a contraction map and
there exists a unique fixed point x = (x1, x2, . . . , xn) of G�, lying in �. Restated, for each
i = 1, 2, . . . n,

− µixi + αiigi(xi) +
n∑

j=1,j �=i

αij gj (xj ) +
n∑

j=1

βijgj (xj ) + Ji = 0. (3.4)

Thus, x is a unique equilibrium point of (1.1) lying in �.
On the other hand, if x = (x1, x2, · · · , xn) is an equilibrium of (1.1), then (3.4) holds.

Hence, xi lies in one of �l
i , �

m
i , �r

i , for each i, and thus x coincides with the unique equilibrium
lying in �λ1λ2···λn

, λi ∈ {l, m, r}. System (1.1) therefore admits exactly 3n equilibria. �
We note that the construction of 3n equilibria in [19,20] employed Brouwer’s fixed point

theorem. Therefore, the exactness for the number of equilibria was not concluded therein.
Let us denote by xλ1λ2···λn

the equilibrium lying in �λ1λ2···λn
, λi ∈ {l, m, r}. In the

following discussions, we consider a fixed initial value φ ∈ C([−τ, 0], R
n), and the solution

x(t) = x(t; t0; φ) = (x1(t; t0; φ), x2(t; t0; φ), . . . , xn(t; t0; φ)) to system (1.1), which is
evolved from φ at t = t0. For each i = 1, 2, . . . , n, we write the ith component of system (1.1)
in the following form:

ξ̇ (t) = −µiξ(t) + αiigi(ξ(t)) + βiigi(ξ(t − τii(t))) + wi(t), (3.5)

where wi(t) = wi(t; t0; φ) := ∑n
j=1,j �=i[αijgj (xj (t)) + βijgj (xj (t − τij (t)))] + Ji is regarded

as a bounded function of t . The notation, lemma 2.1, propositions 2.2, 2.3 and theorem 2.4
can all be adapted to (3.5). In particular, for i = 1, 2, . . . , n, we define

f̂i(ξ) = −µiξ + αiigi(ξ) + |βii |ρi + wmax
i (t0),

f̌i(ξ) = −µiξ + αiigi(ξ) − |βii |ρi + wmin
i (t0).

Under conditions (H1) and (H2), f̂i , f̌i admit similar properties as f̂ , f̌ in section 2.1. In
particular, there exist l̂

f

i , m̂
f

i , r̂
f

i , ľ
f

i , m̌
f

i , ř
f

i which are the zeros of f̂i , f̌i , respectively, and
pi , qi which are both critical points of f̂i and f̌i . Notice that F̂i , F̌i , and f̂i , f̌i share the same
critical points pi , qi . According to our setting,

F̌i(ξ) � f̌i(ξ) � f̂i(ξ) � F̂i(ξ), for all ξ ∈ R.

Therefore, condition (H3) implies that f̌i(q̃i) � F̌i(q̃i) > 0 and f̂i(p̃i) � F̂i(p̃i) < 0;
in addition, pi < m̂F

i < m̂
f

i < m̌
f

i < m̌F
i < qi , ľFi < ľ

f

i < l̂
f

i < l̂Fi < p̃i , and
q̃i < řF

i < ř
f

i < r̂
f

i < r̂F
i , where p̃i , q̃i are defined in (3.2), cf figure 6. Moreover, we

note that condition (H4): g′
i (ξ ) > 2µi/αii on [m̂F

i , m̌F
i ] yields g′

i (ξ ) > 2µi/αii on [m̂f

i , m̌
f

i ]
since [m̂f

i , m̌
f

i ] ⊂ [m̂F
i , m̌F

i ].
According to theorem 2.4, for each i = 1, 2, . . . , n, there exist three disjoint, closed and

bounded intervals [ai, ai], [bi, bi] and [ci, ci] and the ith component xi(t) of the solution
converges to one of them. Moreover, by lemma 2.1, we can estimate the lengths of
these intervals. Restated, xi(t) = xi(t; t0; φ), the ith component of solution starting from
φ ∈ C([−τ, 0], R

n), converges to an interval Ii of length di , and

di � [wmax
i (∞) − wmin

i (∞)]/ηi, (3.6)
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Figure 6. Configurations for functions F̂i , f̂i , f̌i , F̌i (with gi of class A).

where ηi := min{µi − Li |βii |, Li |βii |}, wmax
i (∞) = limT →∞ wmax

i (T ), wmin
i (∞) =

limT →∞ wmin
i (T ), wmax

i (T ) := sup{wi(t) | t � T }, and wmin
i (T ) := inf{wi(t) | t � T }.

Notably, in (3.6), the magnitude of di depends on the difference between wmax
i (∞) and

wmin
i (∞) which are terms involving non-i components of the solution and cannot be measured

without further elaboration. In the following, we employ an upper bound for wmax
i (∞) and

a lower bound for wmin
i (∞), which are definite terms, and derive a rough estimate on di .

From this estimate, we compute more precise upper (respectively, lower) bounds for wmax
i (∞)

(respectively, wmin
i (∞)) through an iterative process. This idea for estimating the magnitude

of di is illustrated and implemented in the following proposition.

Proposition 3.2. Assume that conditions (H2)–(H4) hold. For each i = 1, 2, . . . , n, there
exists a sequence of intervals {I (k)

i }∞k=0 such that for each k, the ith component xi(t) of every
solution x(t) to system (1.1) converges to I

(k)
i as t → ∞, and the length d

(k)
i of I

(k)
i satisfies

d
(k)
i �

{ i−1∑
j=1

(|αij | + |βij |)Ljd
(k)
j +

n∑
j=i+1

(|αij | + |βij |)Ljd
(k−1)
j

}
/ηi. (3.7)

Proof. We prove the case of βii > 0. Let us define d
(0)
i :=2ρi/Li , for i = 1, 2, . . . , n. First,

we illustrate that the assertion holds for k = 1 and i = 1. Set

W̌
(1)
1 (∞) := −

n∑
j=2

(|α1j | + |β1j |)ρj + J1, Ŵ
(1)
1 (∞) :=

n∑
j=2

(|α1j | + |β1j |)ρj + J1.

Notably, W̌
(1)
1 (∞) � wmin

1 (∞) � wmax
1 (∞) � Ŵ

(1)
1 (∞). Recall ηi := min{µi −

Li |βii |, Li |βii |}. We have shown that x1(t) converges to interval I1 of length d1, and

d1 � [wmax
1 (∞) − wmin

1 (∞)]/η1

� [Ŵ (1)
1 (∞) − W̌

(1)
1 (∞)]/η1

=
[ n∑

j=2

|α1j | +
n∑

j=2

|β1j |
]
Ljd

(0)
j /η1.

We may say that x1(t) converges to a closed and bounded interval I
(1)
1 ⊃ I1, whose length

d
(1)
1 satisfies d

(1)
1 � [

∑n
j=2 |α1j | +

∑n
j=2 |β1j |]Ljd

(0)
j /η1. Assume that the assertion holds for

k = 1, i = 1, 2, . . . , � − 1, 1 < � � n and xi(t) converges to a closed and bounded interval
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I
(1)
i ⊃ Ii of length d

(1)
i �

{ ∑i−1
j=1(|αij | + |βij |)Ljd

(1)
j +

∑n
j=i+1(|αij | + |βij |)Ljd

(0)
j

}
/ηi . Let

us justify that the assertion also holds for k = 1 and i = � as follows. Set

W̌
(1)
� (∞) :=

�−1∑
j=1

min
ξ,η∈I

(1)
j

{α�jgj (ξ) + β�jgj (η)} −
n∑

j=�+1

(|α�j | + |β�j |)ρj + J�,

Ŵ
(1)
� (∞) :=

�−1∑
j=1

max
ξ,η∈I

(1)
j

{α�jgj (ξ) + β�jgj (η)} +
n∑

j=�+1

(|α�j | + |β�j |)ρj + J�.

It follows that x�(t) converges to an interval I
(1)
� whose length d

(1)
� satisfies

d
(1)
� � [wmax

� (∞) − wmin
� (∞)]/η�

� [Ŵ (1)
� (∞) − W̌

(1)
� (∞)]/η�

=
{

�−1∑
j=1

(|α�j | + |β�j |)Ljd
(1)
j +

n∑
j=�+1

(|α�j | + |β�j |)Ljd
(0)
j

}
/η�.

Next, assume that the assertion holds for some (k − 1) and all i = 1, 2, . . . , n. Namely,
xi(t) converges to a closed and bounded interval I

(k−1)
i , whose length satisfies d

(k−1)
i �{ ∑i−1

j=1(|αij | + |βij |)Ljd
(k−1)
j +

∑n
j=i+1(|αij | + |βij |)Ljd

(k−2)
j

}
/ηi . Now, let us verify that

the assertion holds for k and i = 1 as well. Set

W̌
(k)
1 (∞) :=

n∑
j=2

min
ξ,η∈I

(k−1)
j

{α1j gj (ξ) + β1j gj (η)} + J1,

Ŵ
(k)
1 (∞) :=

n∑
j=2

max
ξ,η∈I

(k−1)
j

{α1j gj (ξ) + β1j gj (η)} + J1.

Thus, x1(t) converges to an interval I
(k)
1 whose length d

(k)
1 satisfies

d
(k)
1 � [wmax

1 (∞) − wmin
1 (∞)]/η1

� [Ŵ (k)
1 (∞) − W̌

(k)
1 (∞)]/η1

=
[

n∑
j=2

|α1j | +
n∑

j=2

|β1j |
]
Ljd

(k−1)
j /η1.

By continuing the above process, we can prove that for each i = 2, . . . , n, xi(t) converges
to an interval I

(k)
i whose length is d

(k)
i �

{ ∑i−1
j=1(|αij | + |βij |)Ljd

(k)
j +

∑n
j=i+1(|αij | +

|βij |)Ljd
(k−1)
j

}
/ηi . �

To establish further dynamical properties for system (1.1), we need the following condition
which is stronger than condition (H2).

Condition (H2)∗: ηi := min{µi − Li |βii |, Li |βii |} >
∑

j �=i Lj |αij | +
∑

j �=i Lj |βij |, for
i = 1, 2, . . . , n.

So far, we have considered a single solution to system (1.1), which is evolved from a
given φ at t = t0. From our previous derivations, it can be shown that every component of
the solution converges to a sequence of closed intervals whose lengths d

(k)
i , i = 1, 2, . . . , n,

can be controlled by iterative formula (3.7). Next, it will be examined that for each i, d
(k)
i

converges to zero, as k → ∞, via the Gauss–Seidal iteration approach. Thus, the intervals
to which each component of the solution converges degenerate into a single point. Hence the
solution converges to a singleton.
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Theorem 3.3. Assume that conditions (H2)∗, (H3) and (H4) hold. Then the solution x(t) :=
x(t; t0; φ) of (1.1) evolved from any initial value φ ∈ C([−τ, 0], R

n) converges to one of the
3n equilibria of the system.

Proof. By proposition 3.2, for each i = 1, 2, . . . , n, we can find an interval sequence {I (k)
i }∞k=0

so that xi(t) converges to I
(k)
i whose length satisfies (3.7), for each k. Below, we shall show

that for all i = 1, 2, . . . , n, d
(k)
i converges to zero as k tends to infinity. Set z

(0)
i := d

(0)
i , and

for i = 1, 2, . . . , n,

z
(k)
i :=

{
i−1∑
j=1

(|αij | + |βij |)Ljz
(k)
j +

n∑
j=i+1

(|αij | + |βij |)Ljz
(k−1)
j

}
/ηi, k ∈ N,

z(k) := (z
(k)
1 , z

(k)
2 , . . . , z(k)

n ), k ∈ N ∪ {0}.
We observe that {z(k)

i | i = 1, 2, . . . , n} are just the Gauss–Seidal iterations for solving the
linear system

(ML + E)y = 0, (3.8)

M := [mij ]1�i,j�n, mii = 0, mij = −|αij | − |βij |, for i �= j,

L := diag(L1, L2, . . . , Ln), E := diag(η1, η2, . . . , ηn).

Notably, ML+E is strictly diagonal-dominant [32,33]; indeed, ηi −
∑

j �=i (|αij |+ |βij |)Lj > 0,
for all i = 1, 2, · · · , n, by condition (H2)∗. Accordingly, z(k) converges to the unique solution
of (3.8), which is zero, as k → ∞.

Below, let us justify the following inequality:

0 � d
(k)
i � z

(k)
i , for i = 1, 2, . . . , n, k ∈ N ∪ {0}. (3.9)

It is obvious that for i = 1, 2, . . . , n, 0 � d
(k)
i , for k ∈ N ∪ {0} and (3.9) holds for

k = 0. In addition, (3.9) holds for i = 1 and k = 1 since d
(1)
1 �

{ ∑n
j=2(|α1j | +

|β1j |)Ljd
(0)
j

}
/η1 �

{ ∑n
j=2(|α1j | + |β1j |)Ljz

(0)
j

}
/η1 = z

(1)
1 . We can continue to prove that

(3.9) holds for i = 2, 3 . . . , n and k = 1. Assume that (3.9) holds for all i = 1, 2, . . . , n

and k = �, for some � � 1, then (3.9) also holds for i = 1, k = � + 1 due to
d

(�+1)
1 �

{ ∑n
j=2(|α�j |+|β�j |)Ljd

(�)
j

}
/η1 �

{ ∑n
j=2(|α�j |+|β�j |)Ljz

(�)
j

}
/η1 = z

(�+1)
1 . Assume

that (3.9) holds for 0 � k0 − 1 and all i = 1, 2, . . . , n, and k = k0, i = 1, . . . , (� − 1), then

d
(k0)
� �

{
�−1∑
j=1

(|α�j | + |β�j |)Ljd
(k0)
j +

n∑
j=�+1

(|α�j | + |β�j |)Ljd
(k0−1)
j

}
/η�

�
{

�−1∑
j=1

(|α�j | + |β�j |)Ljz
(k0)
j +

n∑
j=�+1

(|α�j | + |β�j |)Ljz
(k0−1)
j

}
/η�

= z
(k0)
� .

Hence, for each i = 1, 2, . . . , n, d
(k)
i converges to zero as k tends to infinity. Therefore, each

xi(t) converges to a single point and x(t) converges to a constant which is an equilibrium, as
time tends to infinity. �

The stability of all 3n equilibria of (1.1) can be concluded in the following theorem.

Theorem 3.4. Assume that conditions (H2)∗, (H3) and (H4) hold. Then, (i) every equilibrium
xλ1λ2···λn

with λi = ‘l’, ‘r’, for all i = 1, 2, . . . , n, is asymptotically stable; (ii) the equilibrium
xm···m is unstable; (iii) every equilibrium xλ1λ2···λn

with λi = ‘m’ for some i and λj = ‘l’, ‘r’
for some j , is unstable.



Convergent dynamics for multistable delayed neural networks 2379

Figure 7. Configuration for the proof of theorem 3.4.

Proof. We prove the case with all βii > 0, cf figure 7.

(i) Consider an exterior region �λ1λ2···λn
, λi = ‘l’ or ‘r’, i = 1, 2, . . . , n. We show that

the equilibrium x := (x1, x2, . . . , xn) in �λ1λ2···λn
is stable. Note that for each i, either

xi ∈ [řF
i , r̂F

i ] or xi ∈ [ľFi , l̂Fi ]. There exists εi > 0 such that řF
i − εi > q̃i and ľFi + εi < p̃i ,

due to řF
i > q̃i and ľFi < p̃i . We shall illustrate that for any ε > 0, there exists δ > 0 such that

‖xt − x‖ � ε for all t � t0, for any φ ∈ C([−τ, 0], R
n) with ‖φ − x‖ � δ. For ε > 0, we set

δ := min{ε, ε1, ε2, . . . , εn}. For an initial condition φ ∈ C([−τ, 0], R
n) with ‖φ − x‖ � δ,

the solution satisfies xi(s) > q̃i if λi = ‘r’, and xi(s) < p̃i , if λi = ‘l’, for all s ∈ [t0 − τ, t0].
It follows from a similar argument as in the proof of proposition 2.2(ii) that xi(t) > q̃i for all
t ∈ [t0 − τ, ∞) or xi(t) < p̃i , for all t ∈ [t0 − τ, ∞). We define zi(t) := xi(t) − xi , for
i = 1, 2, . . . , n. It follows from (1.1) that

żi (t) = −µizi(t) +
n∑

j=1

αijg
′
j (ξj (t))zj (t) +

n∑
j=1

βijg
′
j (ηij (t))zj (t − τij (t))

where ξj (t) is between xj (t) and xj , ηij (t) is between xj (t −τij (t)) and xj , i, j = 1, 2, . . . , n.
It can be computed that

Dr |zi(t)| � −µi |zi(t)| +
n∑

j=1

|αij |g′
j (ξj (t))|zj (t)| +

n∑
j=1

|βij |g′
j (ηij (t))|zj (t − τij (t))|,

for t � t0, where Dr denotes the right-hand derivative. Define N(t) := ‖zt‖ =
max1�i�n{maxs∈[t−τ,t] |zi(s)|}. We shall show below that

DrN(t) := lim
h→0+

N(t + h) − N(t)

h
� 0, for all t � t0. (3.10)
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For t � t0, let Ĩ (t) := {i : |zi(t)| � |zj (t)|, for all j = 1, 2, . . . , n}, and i(t) := min{i ∈
Ĩ (t) : Dr |zi(t)| � Dr |zj (t)|, for all j ∈ Ĩ (t)}. Consider a fixed t > t0, and denote i(t) by k.
If N(t) = |zk(t)| > |zj (t − τ)| for all j = 1, 2, . . . , n, then either N(t) > |zj (s)| for all
j = 1, 2, . . . , n and all s ∈ [t − τ, t) or N(t) = |zi(s)(s)| for some s ∈ (t − τ, t). For the
former case, it can be derived that

Dr |zk(t)| � −µk|zk(t)| +
n∑

j=1

|αkj |g′
j (ξj (t))|zj (t)| +

n∑
j=1

|βkj |g′
j (ηkj (t))|zj (t − τkj (t))|

�
[

− µk + αkkg
′
k(ξk(t)) +

∑
j �=k

|αkj |g′
j (ξj (t)) +

n∑
j=1

|βkj |g′
j (ηkj (t))

]
N(t)

<

[
− µk + αkkg

′
k(γk) +

∑
j �=k

|αkj |Lj +
n∑

j=1

|βkj |Lj

]
N(t)

� 0,

for all t � t0, where γk = p̃k or q̃k , recalling that

g′
k(p̃k) = g′

k(q̃k) =
[
µk −

( ∑
j �=i

Lj |αkj | +
n∑

j=1

Lj |βkj |
)]

/(αkk + |βkk|).

Thus,

DrN(t) = lim
h→0+

N(t + h) − N(t)

h

= lim
h→0+

|zk(t + h)| − |zk(t)|
h

= Dr |zk(t)| � 0.

For the latter case,

DrN(t) = lim
h→0+

N(t + h) − N(t)

h

= lim
h→0+

N(t) − N(t)

h
= 0.

For the other cases: N(t) = |zi(t − τ)| for some i ∈ {1, 2, . . . , n}; N(t) = |zi(s)| for some
i ∈ {1, 2, . . . , n} and some s ∈ (t − τ, t) with N(t) > |zj (t − τ)| and N(t) > |zj (t)| for all
j = 1, 2, . . . , n, (3.10) can also be justified. Hence, N(t) = ‖zt‖ = ‖xt − x‖ � N(t0) =
‖zt0‖ = ‖xt0 −x‖ = ‖φ−x‖ for all t � t0. Therefore, x is stable, hence asymptotically stable,
in respecting theorem 3.3.

(ii) We shall show that x := xmm···m is unstable. We choose an initial value which is close to the
equilibrium x. Then the solution must move away from x = (x1, . . . , xn). Such an assertion
holds mainly because if the ith component xi(t) of the solution remains close to xi for all
i = 1, 2, . . . , n, then the magnitude of g′

i (xi(t)) will remain large and yield a contradiction.
Notably, for i = 1, 2, . . . , n, g′

i (ξ ) > 2µi/αii , for all ξ ∈ [m̂F
i , m̌F

i ], thus there exist κ̂i and
κ̌i such that g′(κ̌i) = g′(κ̂i) = 2µi/αii , where κ̌i < m̂F

i < m̌F
i < κ̂i , for all i = 1, 2, . . . , n.

Set εi := min{κ̂
i
− m̌F

i , m̂F
i − κ̌i}, ε := min1�i�n{εi}/2. For any δ ∈ (0, ε), we choose the

initial condition φ = (φ1, φ2, . . . , φn) with ‖φ − x‖ < δ, φ(s) ∈ �̃mm···m, for all s ∈ [−τ, 0],
‖φ − x‖ = |φi(0) − xi | for some i ∈ {1, 2, · · · , n} and ‖φ − x‖ > |φj (s) − xj |, for all
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j = 1, 2, . . . , n, s ∈ [−τ, 0). Now, let us show that there exist j ∈ {1, 2, . . . , n}, and t1 > t0
such that xj (t1) > κ̂j or xj (t1) < κ̌j . Assume otherwise that

κ̌i � xi(t) � κ̂i , for all t � t0 − τ, i = 1, 2, . . . , n. (3.11)

Notice that, under the assumption above, g′
i (xi(t)) � 2µi/αii for all t � t0 − τ and all

i = 1, 2, . . . , n. Let zi(t) = xi(t) − xi , and

B(t) := max
1�i�n

{ max
t0−τ�s�t

|zi(s)|}. (3.12)

Then B(t0) = max1�i�n{|zi(t0)|} > 0 and B(t) > 0 for all t � t0. Let us show that

B(t) = max
1�i�n

{|zi(t)|}, for all t � t0, (3.13)

i.e. at least one component of (|z1(s)|, |z2(s)|, . . . , |zn(s)|) will reach the value of B(t) at time
t . If otherwise, there is a t > t0 so that B(t) = |zk(t2)|, for some k ∈ {1, 2, · · · , n} and some
t2 ∈ [t0, t), then either B(t) = zk(t2) or B(t) = −zk(t2). For the former case,

żk(t2) = −µkzk(t2) +
n∑

j=1

αkjg
′
j (ξj (t2))zj (t2) +

n∑
j=1

βkjg
′
j (ηkj (t2))zj (t2 − τkj (t2))

� −µkzk(t2) + αkk[2µk/αkk]zk(t2) −
∑
j �=k

|αkj |g′
j (ξj (t2))|zj (t2)|

−
n∑

j=1

|βkj |g′
j (ηkj (t2))|zj (t2 − τkj (t2))|

�
[
µk −

∑
j �=k

|αkj |Lj −
n∑

j=1

|βkj |Lj

]
B(t) > 0,

owing to condition (H2). For the latter case, we can also show that d(−zk)

dt
(t2) �

[
µk −∑

j �=k |αkj |Lj − ∑n
j=1 |βkj |Lj

]
B(t) > 0. A contradiction to B(t) = |zk(t2)| with t2 ∈ [t0, t)

then arises. Thus, (3.13) holds. For any t � t0, we define k(t) := min{j : |zj (t)| = B(t)}, then

DrB(t) � Dr |zk(t)(t)|

�
[
µk(t) −

∑
j �=k(t)

|αk(t)j |Lj +
n∑

j=1

|βk(t)j |Lj

]
B(t)

� min
1�i�n

{
µi −

∑
j �=i

|αij |Lj +
n∑

j=1

|βij |Lj

}
B(t).

It follows that B(t) grows unboundedly as t tends to infinity, which yields a contradiction to
(3.11). We thus conclude that xmm···m is unstable.

(iii) Consider a mixed region �λ1λ2···λn
, where I := {i : λi = ‘m’} �= ∅ and E := {i : λi =

‘l’ or ‘r’} �= ∅. It will be shown that the equilibrium x := (x1, x2, . . . , xn) in �λ1λ2···λn
is

unstable. We shall choose an initial value which is close to equilibrium x, then the evolved
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solution must move away from x. This is because if the ith component remains close to xi for
all i ∈ I, then the magnitude of g′

i (xi(t)) will remain large for all i ∈ I. Moreover, it can be
seen that the magnitude of g′

j (xj (t)) remains small for all j ∈ E . In such a situation, there
exists some k ∈ I such that xk(t) will move away from xk; subsequently a contradiction arises.
To be more precise, let us define εi := min{κ̂i − m̌F

i , m̂F
i − κ̌i}, for i ∈ I, and εj := xj − q̃j

if λj = ‘r’, εj := p̃j − xj if λj = ‘l’, for j ∈ E , and set ε := min1�i�n{εi}/2. For δ ∈ (0, ε),
we choose an initial condition φ satisfying: ‖φ − x‖ < δ, and φj (s) �= xj , for some j ∈ I
and some s ∈ [−τ, 0], ‖φ − x‖ = |φk(0) − xk|, for some k ∈ I and ‖φ − x‖ > |φi(s) − xi |,
for all i ∈ E and all s ∈ [−τ, 0]. Below, let us claim that there exist j ∈ I, and some
t > t0 such that xj (t) > κ̂j or xj (t) < κ̌j . Assume otherwise that κ̌i � xi(t) � κ̂i , for
all i ∈ I and t � t0 − τ . Note that then g′

i (xi(t)) � 2µi/αii , for all t � t0 − τ and
all i ∈ I. Define B(t) as (3.12) and J (t) := {j ∈ I : |zj (t)| � |zi(t)|, for all i ∈ I},
j (t) := min{� ∈ J (t) : Dr |z�(t)| � Dr |zj (t)|, for all j ∈ J (t)}. There are two possibilities:
|zj (t)(t)| � |zi(t)|, for all t � t0, for all i ∈ E , and |zk(t3)| > |zj (t3)(t3)|, for some t3 > t0, and
some k ∈ E . For the first one, B(t) := maxi∈I{maxt0−τ�s�t |zi(s)|}, for all t � t0. Similarly
to the previous discussion in (ii), we can also show that B(t) = maxi∈I{|zi(t)|}. Subsequently,
B(t) will blow up and yield a contradiction. For the latter situation, there exists s1 ∈ (t0, t3)

such that |zj (s)(s)| � |zj (s)| for all j ∈ E and all s ∈ [t0, s1), and there exists k ∈ E such
that |zk(s1)| = |zj (s1)(s1)| and Dr |zk(s1)| � Dr |zj (s1)(s1)|. Thereafter, it can be shown that
B(s) := maxi∈I{|zi(s)|}, for all s ∈ [t0, s1] as before. Let us fix s1 and denote j (s1) by �.
There are four possible subcases: subcase (a): B(s1) = z�(s1) = zk(s1) > 0; subcase (b):
B(s1) = zk(s1) = −z�(s1) > 0; subcase (c): B(s1) = −z�(s1) = −zk(s1) > 0; subcase (d):
B(s1) = z�(s1) = −zk(s1) > 0. Let us consider subcase (a). Note that x�(t) ∈ [κ̌�, κ̂�], for all
t � t0 − τ , and either xk(t) > q̃k or xk(t) < p̃k , for all t � t0 − τ . We compute that

Dr |z�(s1)| − Dr |zk(s1)|

� (µk − µ�)B(s1) + [α��g
′
�(ξ�(s1)) − αkkg

′
k(ξk(s1))]B(s1) −

∑
j �=�

|α�j |LjB(s1)

−
∑
j �=k

|αkj |LjB(s1) −
n∑

j=1

[|β�j |LjB(s1) + |βkj |LjB(s1)]

� {(µk − µ�) + α��

2µ�

α��

− αkk

µk − (
∑

j �=k |αkj |Lj +
∑n

j=1 |βkj |Lj)

αkk + |βkk|

−
[ ∑

j �=�

|α�j |Lj +
∑
j �=k

|αkj |Lj)

]
−

n∑
j=1

[|β�j |Lj + |βkj |Lj ]}B(s1)

�
[
µ� −

∑
j �=�

|α�j |Lj −
∑
j=1

|β�j |Lj

]
B(s1) > 0,

which yields a contradiction. Other subcases can be similarly discussed. Hence, there
exist k ∈ I, and t3 > t0 such that xk(t3) > κ̂i or xk(t3) < κ̌i and |xk(t3) − xk| �
min{κ̂i − m̌F

i , m̂F
i − κ̌i} > ε. Therefore, there exists ε > 0 such that for any δ ∈ (0, ε),

there is an φ ∈ C([−τ, 0], R
n) with ‖φ − x‖ < δ and ‖xt3 − x‖ > ε, for some t3 > t0.

Thereafter, x is unstable. �
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Figure 8. The graph of activation function gi in (a) class B, (b) class C.

4. Extensions to other activation functions

All the results in sections 2 and 3 can be extended to the following activation functions which
are also commonly employed in the literature:

Class B :

{
gi ∈ C2, ∃ pi < qi, gi(ξ) = vi ∈ R, for ξ � qi, gi(ξ) = ui ∈ R, for ξ � pi,

∃ pi < σi < qi, g
′
i (σi) > g′

i (ξ ) > 0 and g′′
i (ξ ) · ξ < 0, for ξ ∈ [pi, qi];

Class C :

{
gi ∈ C, ∃ pi < qi, gi(ξ) = vi ∈ R, for ξ � qi, gi(ξ) = ui ∈ R, for ξ � pi,

gi(ξ) = ui + (ξ − pi)[vi − ui]/[qi − pi], for pi � ξ � qi.

Class B are non-decreasing functions with flat parts on two sides. The functions in class C are
piecewise linear; they include the standard output function in cellular neural networks [9,16]:

g(ξ) = (|ξ + 1| − |ξ − 1|)/2. (4.1)

The graphs for these functions are depicted in figure 8. All the propositions and theorems in
section 3 are valid for activation functions gi of classes B and C, if we set pi := pi , qi := qi ,
p̃i := pi and q̃i := qi , as class C is considered.

If only class C is considered, simpler conditions yield the same conclusion.

Condition (H1)C : Li > [µi +
∑

j �=i (Lj |αij | + Lj |βij |)]/(αii − |βii |) > 0, i = 1, 2, . . . , n.

Condition (H3)C : F̌i(qi) > 0 and F̂i(pi) < 0, i = 1, 2, . . . , n.

Theorem 4.1. All the assertions of theorems 3.1, 3.3 and 3.4 hold for (1.1) with activations of
class C under conditions (H1)C and (H3)C .
Proof. Under conditions (H1)C and (H3)C , the existence of 3n equilibria for (1.1) can be
justified by similar arguments as in [21], where only the standard activation function (4.1) is
considered. The stability of equilibria can be verified by similar arguments as in the proof of
theorem 3.4. Herein, we only sketch the proof for the convergence of dynamics. The structure
of piecewise linearity of the activation function leads to a different approach.

Similarly to lemma 2.1, for each i = 1, 2, . . . , n, we can construct bounded and closed
intervals [bi, bi]. Moreover,

dbi
:= bi − bi � [wmax

i (∞) − wmin
i (∞)]/[αiiLi − µi − |βii |Li].

It can be proved that [qi, ∞) and (−∞, pi] are positively invariant for every ith component
equation (3.5), for each i = 1, 2, . . . , n. Thus, xi(t) either converges to [bi, bi] as t tends to
infinity or enters [qi, ∞) or (−∞, pi], for each i = 1, 2, . . . , n. Define

P := {i ∈ {1, 2, . . . , n}, and xi(t) → [bi, bi]}
D := {i ∈ {1, 2, . . . , n}, and xi(t) enters [qi, ∞) or (−∞, pi]}.
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We consider the case D �= ∅, as the situation of D = ∅ is more straightforward. As in
proposition 3.2 and theorem 3.3, it can be proved that the bounded and closed interval [bi, bi]
to which xi(t) converges is indeed a singleton, for every i ∈ P , under conditions (H1)C
and (H3)C . Subsequently, gi(xi(t)) converges to some y�

i ∈ R as t tends to infinity, for all
i = 1, 2, . . . , n. Below, let us justify that xi(t) also converges as t tends to infinity, for all
i = 1, 2, . . . , n. Indeed, for each i = 1, 2, . . . , n

lim
t→∞

{
n∑

j=1

[αijgj (xj (t)) + βijgj (xj (t − τij (t)))] + Ji

}

=
n∑

j=1

[αijy
�
j + βij y

�
j ] + Ji =: hi

Consider a fixed i ∈ {1, 2, . . . , n}. If hi > 0, then there exists Ti > t0 such that∑n
j=1[αijgj (xj (t)) + βijgj (xj (t − τij (t)))] + Ji � hi/2, for all t � Ti . Therefore,∫ t

Ti
eµis

{ ∑n
j=1[αijgj (xj (s)) + βijgj (xj (s − τij (s)))] + Ji

}
ds increases unboundedly as t

increases to ∞. Thus,

lim
t→∞

∫ t

Ti
eµis

{ ∑n
j=1[αijgj (xj (s)) + βijgj (xj (s − τij (s)))] + Ji

}
ds

eµi t

= lim
t→∞

eµi t
{ ∑n

j=1[αijgj (xj (t)) + βijgj (xj (t − τij (t)))] + Ji

}
µieµi t

= hi/µi.

Applying the variation of constant formula to (1.1), we derive that for t > Ti ,

xi(t) = xi(t0)e
−µi(t−t0) + e−µi t

∫ Ti

t0

eµis

{
n∑

j=1

[αijgj (xj (s)) + βijgj (xj (s − τij (s)))] + Ji

}
ds

+ e−µi t

∫ t

Ti

eµis

{
n∑

j=1

[αijgj (xj (s)) + βijgj (xj (s − τij (s)))] + Ji

}
ds.

It follows that limt→∞ xi(t) = hi/µi , due to

lim
t→∞ xi(t0)e

−µi(t−t0)

= lim
t→∞ e−µi t

∫ Ti

t0

eµis

{
n∑

j=1

[αijgj (xj (s)) + βijgj (xj (s − τij (s)))] + Ji

}
ds = 0.

If hi < 0, similar arguments yield limt→∞ xi(t) = hi/µi . For the case hi = 0, from (4.2), for
any ε > 0, there exists some T ε

i > t0 such that∣∣∣∣
n∑

j=1

[αijgj (xj (t)) + βijgj (xj (t − τij (t)))] + Ji

∣∣∣∣ � ε

2
, for all t � T ε

i .

Therefore there exists Qi > 0 such that∣∣∣∣
n∑

j=1

[αijgj (xj (t))βij gj (xj (t − τij (t)))] + Ji

∣∣∣∣ � Qi, for all t � t0.

Since limt→∞ e−µi t {eµi t0 |xi(t0)| + Qi

µi
(eµiT

ε
i − eµi t0)} = 0, there exists T̃ ε

i > t0 such that

e−µi t

{
eµi t0 |xi(t0)| +

Qi

µi

(eµiT
ε
i − eµi t0)

}
< ε/2, for all t � T̃ ε

i .
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For t � max{T ε
i , T̃ ε

i },

|xi(t)| � e−µi t

{
eµi t0 |xi(t0)| +

∫ T ε
i

t0

eµis

∣∣∣∣
n∑

j=1

[αijgj (xj (s)) + βijgj (xj (s − τij (s)))] + Ji

∣∣∣∣ ds

+
∫ t

T ε
i

eµis

∣∣∣∣
n∑

j=1

[αijgj (xj (s)) + βijgj (xj (s − τij (s)))] + Ji

∣∣∣∣ ds

}

� e−µi t

{
eµi t0 |xi(t0)| +

∫ T ε
i

t0

eµisQi ds +
∫ t

T ε
i

eµis
ε

2
ds

}

� e−µi t

{
eµi t0 |xi(t0)| +

Qi

µi

(eµiT
ε
i − eµi t0)

}
+

ε

2
e−µi t

∫ t

T ε
i

eµis ds

� ε

2
+

ε

2µi

e−µi t {eµi t − eµiT
ε
i }

<

(
1

2
+

1

2µi

)
ε.

It follows that limt→∞ xi(t) = 0, for all i = 1, 2, . . . , n. �

Remark 4.1. System (1.1) with µi = 1, i = 1, 2, . . . , n, and the standard output function
(4.1) is the cellular neural network which has been intensively studied in the community of
electrical engineering and information science. If such a network is considered, conditions
(H1)C and (H3)C reduce to

αii − 1 >
∑
j �=i

|αij | +
n∑

j=1

|βij | + |Ji |, i = 1, 2, . . . , n. (4.2)

For this network, it was proved in [21] that under condition (4.2), there exist exactly 3n

equilibria; in addition, 2n among them are locally exponential stable and the others are unstable.
With the same condition (4.2), our theorem 4.1 not only assures these results, but also further
concludes the convergence of dynamics for the system.

5. Numerical illustrations

We give two numerical examples to illustrate the present theory. The activation function in
Example 5.1 belongs to class A. Example 5.2 demonstrates the convergence of dynamics for
the delayed cellular neural networks with standard activation function which belongs to class
C, under condition (4.2).

Example 5.1. Consider the following two-dimensional system with activation functions
g1(ξ) = g2(ξ) = tanh(ξ).

dx1(t)

dt
= −x1(t) + 7g1(x1(t)) + 0.1g2(x2(t)) − 0.5g1(x1(t − 1)) + 0.1g2(x2(t − 1)) − 0.1

dx2(t)

dt
= −x2(t) − 0.2g1(x1(t)) + 8g2(x2(t)) + 0.1g1(x1(t − 1)) + 0.6g2(x2(t − 1)).

Then F̂1(ξ) = −ξ +7g(ξ)+0.6, F̌1(ξ) = −ξ +7g(ξ)−0.8, F̂2(ξ) = −ξ +8g(ξ)+0.9, F̌2(ξ) =
−ξ + 8g(ξ) − 0.9; p̃1 = −2.292 431 670, q̃1 = 2.292 431 670, p̃2 = −2.917 401 094, q̃2 =
2.917 401 094; m̌F

1 = −0.100 0391 8992, m̌F
1 = 0.134 267 9254, m̂F

2 = −0.129 391 1878,
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Figure 9. Numerical simulation for example 5.1, with solutions evolved from initial functions at
various locations.

m̂F
2 = 0.129 391 1878; κ̌1 = −1.238 944 365, κ̂1 = 1.238 944 365, κ̌2 = −1.316 957 897,

κ̂2 = 1.316 957 897. Herein, κ̌1 and κ̂1 are solutions of g′
1(·) = 2µ1/α11 = 2/7; κ̌2 and

κ̂2 are solutions of g′
2(·) = 2µ2/α22 = 2/8. It can be justified that conditions (H2)∗, (H3)

and (H4) hold as follows: condition (H2)∗ holds since min{µ1 − L1|β11|, L1|β11|} = 0.5 >

L2|α12| + L2|β12| = 0.2 and min{µ2 − L2|β22|, L2|β22|} = 0.4 > L1|α21| + L1|β21| = 0.3;
condition (H3) holds since F̌1(q̃1) = 3.766 139 610 > 0, F̂1(p̃1) = −3.966 139 610 < 0,
F̌2(q̃2) = 4.135 951 278 > 0 and F̂2(p̃2) = −4.135 951 278 < 0; condition (H4) holds
since [m̂F

1 , m̌F
1 ] ⊂ [κ̌1, κ̂1] and [m̂F

2 , m̌F
2 ] ⊂ [κ̌2, κ̂2]; subsequently g′

1(ξ) > 2µ1/α11 for
ξ ∈ [m̂F

1 , m̌F
1 ] and g′

2(ξ) > 2µ2/α22 for ξ ∈ [m̂F
2 , m̌F

2 ]. Numerical simulations depicted in
figures 9 and 10 demonstrate the convergence to four stable equilibria for solutions evolved
from various initial conditions at different locations.

Example 5.2. The following system satisfies condition (4.2).

dx1(t)

dt
= −x1(t) + 7g1(x1(t)) + g2(x2(t)) + 2g1(x1(t − 1)) − g2(x2(t − 1))

dx2(t)

dt
= −x2(t) − g1(x1(t)) + 6g2(x2(t)) − g1(x1(t − 1)) + g2(x2(t − 1)) + 1,

where gi(ξ) = g(ξ), i = 1, 2, are the standard output functions for the cellular neural network,
defined in (4.1). This system satisfies condition (4.2) and admits the convergence of dynamics,
according to theorem 4.1 and remark 4.1, as demonstrated numerically in figure 11.

6. Conclusions

We have presented a methodology which combines a geometric formulation and an iteration
scheme to establish convergence of dynamics and confirm stability of equilibria for a
multistable neural network with time-varying delays. Our approach does not employ
Lyapunov-function arguments nor require the symmetry of connection weights. It is valid
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Figure 10. Numerical simulation for example 5.1, with solutions evolved from initial functions
crossing the phase space.
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Figure 11. Numerical simulation for example 5.2.

for the commonly used activation functions. Modifications of the formulation can be further
developed to derive delay-dependent criteria for the dynamics and to investigate the effect of
delay magnitude upon basins of attraction for the stable equilibria.

Indeed, the following delay-dependent criteria for parallel conclusions in this presentation
have been derived in [34]:

Condition (H1):

{
αii � 0, ei < µi/[(αii + βii)Li] < 1,

λiνi + (1 − λi)(µi − νi) >
∑n

j=1,j �=i (|αij | + |βij |)Lj > 0,
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Condition (H2): F̌i(qi) > 0 and F̂i(pi) < 0, for i = 1, 2, . . . , n.

Condition (H3): g′
i (ξ ) > [λiνi + (1 − λi)(µi − νi) + µi]/(αii + βii), ξ ∈ [m̂F

i , m̌F
i ],

for i = 1, 2, . . . , n, where

ei := 2|βii |Liτ, νi := ei(αii + βii)Li = 2|βii |τ(αii + βii)L
2
i , λi ∈ [0, 1].

The convergence of dynamics for the system holds under these conditions which favour smaller
delays. Numerical simulations demonstrate that the dynamics change as the delays become
large, for the system with the same parameters.

The study has extended the exploration on how single-neuron structures contribute towards
the coherent behaviour of a collection of neurons. The approach is general and can be applied
to some ODE systems, delayed equations and other additive neural networks in investigating
stability, monostability, multistability, basins of attraction and convergence of dynamics.
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