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We study hyperbolic dynamics and bifurcations for generalized Hénon maps in the form x =
y, y = γy(1 − y) − bx + αxy (with b, α small and γ > 4). Hyperbolic horseshoes with alter-
nating orientation, called half-orientable horseshoes, are proved to represent the nonwandering
set of the maps in certain parameter regions. We show that there are infinitely many classes of
such horseshoes with respect to the local topological conjugacy. We also study transitions from
the usual orientable and nonorientable horseshoes to half-orientable ones (and vice versa) as
parameters vary.
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1. Introduction

The classical Hénon map

x = y, y = 1 − bx + ay2, (1)

where (x, y) ∈ R
2 and a, b are real parameters, was

introduced in [Hénon, 1976] as a very simple pla-
nar map demonstrating chaotic dynamics. Map (1)
can be rewritten in an equivalent form (if a �= 0) as
follows

x = y, y = M − bx − y2, (2)

which is called the standard form of the Hénon map.
Since 1976, the time of publication [Hénon,

1976], the Hénon map has quickly become one of

the most popular chaotic model maps, and many
papers have been devoted to the study of its dynam-
ics. The main reason for such an interest is due
to the fact that the Hénon map can be consid-
ered as the simplest nonlinear mathematical model
having important properties of multidimensional
chaotic systems. We also remark that the Hénon
map cannot be regarded as a purely artificial one.
It may appear in applied dynamics: in particular,
systems with homoclinic tangencies can be consid-
ered as a natural source for Hénon-like maps (see
[Gavrilov & Shinikov, 1972, 1973; Tedeschini-Lalli
& Yorke, 1986; Gonchenko et al., 1993, 1996, 2005a,
2005b]).
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However, the Hénon map itself has, definitely,
rather restricted applications in the bifurcation
theory because this map can be regarded as an
infinitely degenerate one with respect to the follow-
ing two aspects:

(i) bifurcations of periodic points with multipliers
e±iϕ;

(ii) transitions from orientable maps (for b > 0) to
nonorientable ones (for b < 0).

Indeed, in the Hénon family, no closed invariant
curves appear via Andronov–Hopf bifurcations and,
moreover, no closed invariant curves exist, except
for the KAM-curves with b = ±1. As for the
second aspect, note that at the critical moment,
b = 0, the Hénon map becomes one-dimensional:
namely, all periodic points have zero multiplier and,
moreover, their unstable manifolds coincide totally
(which implies, certainly, the infinitely degenerate
situation in the two-dimensional setting).

Thus, it is reasonable to extend the Hénon fam-
ily to consider the mentioned problems for maps
close to the Hénon map, and there appears another
problem: what is a “natural” extension that one
should study? Fortunately, we can use the homo-
clinic approach, which leads to Generalized Hénon
Maps (GHM, for abbreviation). There are two main
forms for GHMs (see [Gonchenko & Gonchenko,
2000, 2004; Gonchenko et al., 2005a, 2005b]. The
first one is given by quadratic extension as follows:

x = y, y = M − b1x − y2 + ν1xy, (3)

and the second one is given by the cubic extension:

x = y, y = M − b1x − y2 + ν1xy + ν2y
3. (4)

where, in both formulas (3) and (4), ν1 and ν2 are
small enough.

It was shown in [Gonchenko & Gonchenko,
2000, 2004] that GHMs demonstrate nondegenerate
Andronov–Hopf bifurcations provided ν1 �= 0. The
case when ν1, ν2 are small and b1 is positive was con-
sidered in [Gonchenko & Gonchenko, 2000, 2004],
see also [Shilnikov et al., 2001]. In [Gonchenko et al.,
2005a, 2005b], bifurcations were studied for GHMs
with arbitrary ν1, ν2 and b1. Thus, one may say that
the mentioned aspect (i) concerning degeneracy of
the Hénon map, is resolved successfully whenever
one considers GHMs instead.

Aspect (ii) is concerned in the present paper.
Especially we will study hyperbolic dynamics of
GHMs. Our main attention will be paid to map (3)
that can be rewritten (for those parameter domains
where fixed points exist) in the following “parabola-
like form”

x = y, y = γy(1 − y) − bx + αxy, (5)

where b = b1 + ν1γ/2, α = ν1γ/2 and

γ =
b1 + 1 +

√
(b1 + 1)2 + 4M(1 + ν1)

1 − ν1
.

We suppose that b and α are sufficiently small.
We prefer the parabola-like form for GHM since
it is “well suited” for the study of the nonwander-
ing sets, which can be shown to be bounded even
for large scale of parameters involved (see [Li &
Malkin, 2004]). Besides, when b and α are small
enough, we may use the information on the orbit
structure of the (well-known) one-dimensional map
y = γy(1 − y) due to results on multidimensional
perturbations of low-dimensional maps (see [Mis-
iurewicz & Zgliczynski, 2001; Juang et al., 2005;
Li & Malkin, 2006]. Since the (standard) Hénon
map can be considered as a particular case of GHMs
for which α = 0 in (5), we will usually keep in
mind the form (5) with α = 0 when speaking of the
Hénon map.

It is well known that only two different types
of horseshoes1 can be observed for the Hénon map.
Namely, for b > 0, the horseshoes are orientable,
and for b < 0 they are nonorientable; see Fig. 1,
which illustrates the geometry of such horseshoes.
Here, the image of some square Q, containing the
unit square Q0 = [0, 1]×[0, 1], has a horseshoe shape
but its orientation is different for the cases b > 0
and b < 0.

However, hyperbolic dynamics of GHMs is
much richer, as we will show below. It turns out,
that in some regions of parameters, the nonwan-
dering (hyperbolic) set of GHM can be represented
by horseshoes of new types, called half-orientable,
though the usual orientable and nonorientable
horseshoes for certain values of parameters may
exist as well. The appearance of such horseshoes
for GHMs (5) is caused by the fact that the Jaco-
bian of map (5), which equals J = b − αy, is

1In the literature, and in the present paper as well, the term “horseshoe” is meant sometimes as the horseshoe map, or the
nonwandering (Cantor) set for this map, or just as the horseshoe shape for the first (pre)image of some square. We hope that
the precise meaning would be clear from the context.
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Fig. 1. Horseshoes in the standard Hénon map for small b:
(a) the orientable case (b > 0); (b) the nonorientable case
(b < 0). Routes a → b → c → d → a and a′ → b′ → c′ →
d′ → a′ have the same direction in case (a) and opposite
direction in case (b).

not a constant in R
2, unlike for the Hénon map.

Thus, if the line y = b/α (where the Jacobian
vanishes) intersects the square Q, then the map
transforms Q into a horseshoe which has different
orientations in two parts: y > b/α and y < b/α.
Besides, it is easily seen that the line y = b/α is
mapped into a single point P ∗ = α−1(b, γb(1 −
(b/α))). The point P ∗ will be referred to as the
collapse point. We will show that there are vari-
ous types of half-orientable horseshoes depending
on the position of the collapse point. Some of such
horseshoes are illustrated in Fig. 2. In a sense, horse-
shoes (a) and (b) in Fig. 2 can be considered as an
analog of the usual Smale horseshoe since the col-
lapse point is posed outside Q. Therefore, we will
call such horseshoes (i.e. ones with collapse point
outside Q) the half-orientable horseshoes of sim-
ple type. On the other hand, it turns out that the
horseshoes with the collapse point inside Q (like (c)
and (d) in Fig. 2) could be much more interesting
and multifarious, and we study them in the present
paper.

As we said before, for the Hénon map, the
moment b = 0 corresponds to the bifurcation when

the “instant” transition from orientable to nonori-
entable horseshoes (or vice versa) occurs. Though
GHMs may also have usual orientable and nonori-
entable horseshoes, the transition between horse-
shoes of different orientation is not as trivial as for
the Hénon map. We will show below that numerous
bifurcations occur while this transition takes place
for GHMs. More precisely, the parameter space
(α, b), for any fixed γ > 4, can be divided by bifur-
cation curves into (infinitely many) open regions in
each of which the corresponding map (5) is hyper-
bolic. Every such bifurcation corresponds to the
situation when infinitely many points of the horse-
shoe are mapped into the collapse point. Though all
the horseshoes remain mutually Ω-conjugate (since
any horseshoe, by definition, is conjugate to B2,
the two-sided Bernoulli shift with two symbols),
they need not be locally conjugate.2 We describe
this phenomenon by indicating those bifurcations
which change the type of border periodic points
(see Definition 1 below). It is known [Grines, 1975]
that periods of border periodic points are the same
for locally conjugate hyperbolic sets. We detect
infinitely many bifurcations that lead to the appear-
ance of border points of arbitrarily large periods,
which proves the existence of infinitely many classes
(with respect to local conjugacy) of half-orientable
horseshoes.

The presented results on dynamics and bifur-
cations of GHMs look very natural, but surpris-
ingly, we have found only few related results in
the literature. Border periodic points of basic
hyperbolic sets for diffeomorphisms on surfaces
were first introduced and applied to the classifi-
cation problems in [Grines, 1975]. The approach
to the study of geometrical structure of horse-
shoes based on border points (in somewhat dif-
ferent terms) goes back to [Afraimovich, 1984].
Some elements of chaotic dynamics for GHMs with
small b were described in [Gonchenko et al., 2005a,
2005b]. On the other hand, the topic of hyper-
bolic and chaotic dynamics for two-dimensional
noninvertible polynomial maps (endomorphisms) is
very popular, and there is a vast list of relevant
papers (we refer readers to books [Mira, 1987; Mira
et al., 1996] and references therein). Nevertheless,
most of the problems in those papers and books

2Two maps T, T ′ are called Ω-conjugate if there exists a homeomorphism h : Λ → Λ′ of their nonwandering sets Λ, Λ′ such
that h ◦ T (x) = T ′ ◦ h(x) for all x ∈ Λ. The maps T and T ′ are said to be locally conjugate if for any neighborhoods U and
U ′ of Λ and Λ′ respectively, there exist smaller neighborhoods Ũ ⊂ U , Ũ ′ ⊂ U ′ and a homeomorphism h̃ : Ũ → Ũ ′ such that
h̃(Λ) = Λ′ and h̃ ◦ T (x) = T ′ ◦ h̃(x) for all x ∈ Ũ ∩ T−1(Ũ); in this case the sets Λ, Λ′ are also called locally equivalent.
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Fig. 2. Half-orientable horseshoes in GHM: (a) for b/α = 1/2 and b > 0; (b) for b/α = 1/2 and b < 0; (c) for 0 < b/α < 1/2
and b > 0; (d) for 1/2 < b/α < 1 and b > 0.

are devoted to maps which look different from
Hénon-like maps and demonstrate another type of
hyperbolic behavior: they usually have limit sets
like snap-back repellers [Marotto, 1978; Gardini
et al., 1994]. Perhaps, this is caused by the fact that
dynamics of Smale horseshoes seemed to be “too
well-known”, and “no news” were expected here.
So this paper shows, in a sense, that bifurcations of
horseshoe structures from the geometrical point of
view still have interesting features. Let us summa-
rize these features for GHMs:

(i) The bifurcations of GHM horseshoes do not
lead off the class of hyperbolic systems, though

there might appear singular nonwandering
orbits (with zero multipliers or Lyapunov
exponents equal to −∞); at the bifurcation
moments the map on the nonwandering set is
not conjugate to the Bernoulli shift, so one
has such a degenerate hyperbolicity at these
moments.

(ii) The above bifurcations are “instant”: just away
from the bifurcation values one has (nondegen-
erate) Smale horseshoes again.

(iii) Though all these horseshoes are Ω-conjugate to
B2, they could be distinguished in the follow-
ing sense: the border points may have different
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periods and, moreover, the periods can be
arbitrarily large. As a consequence, we show
that there are infinitely many types of horse-
shoes with respect to the local equivalence
relation.

1.1. Main results

Our main results deal with hyperbolic dynamics of
GHMs (5) for b and α sufficiently small. We assume
also that γ > 4 is fixed. If α = b = 0 we have the
one-dimensional parabola map y = γy(1−y), and it
is well known that this map has hyperbolic dynam-
ics for γ > 4; notice that hyperbolicity is meant
here in the one-dimensional setting. When b and
α become nonzero but still sufficiently small, one
has hyperbolic structure (in two-dimensional set-
ting) for nonwandering orbits, and now the nonwan-
dering set is conjugate to the Smale horseshoe (see
Sec. 4 for more details; in fact, there are bifurcation
curves in the parameter space (α, β) where “degen-
erate” hyperbolicity takes place). However, from the
geometrical viewpoint, horseshoes here may differ
from the usual orientable and nonorientable horse-
shoes of the Hénon map. Our first result is con-
cerned with existence of half-orientable horseshoes
of simple type. For this, we consider the additional
assumption α = 2b, which guarantees that the col-
lapse point P ∗ lies above the unit square and so, P ∗
is wandering. More precisely, the following holds.
Let us denote map (5) by T̂ ≡ T̂ (γ, b, α).

Theorem 1. Let γ > 4 be fixed and assume that α
and b are sufficiently small and satisfy α = 2b. Then
there exists a square Qβ = [−β, 1 + β]× [−β, 1 + β]
in the (x, y)-plane with β → +0 as b, α → 0, and
the following properties hold.

1. The nonwandering set Λ of the map T̂ is the
horseshoe, i.e. Λ is a uniformly hyperbolic closed
set and T̂ |Λ is conjugate to the full shift B2.

2. The set Λ belongs to Qβ and is disjoint from
some neighborhoods of the lines x = 1/2 and
y = 1/2.

3. If b > 0 then the map T̂ is orientable for y < 1/2
and nonorientable for y > 1/2. If b < 0, then the
map T̂ is nonorientable for y < 1/2 and ori-
entable for y > 1/2.

The proof of Theorem 1 is given in Secs. 3.1
and 4, however, geometrically, it is rather trans-
parent and we can outline it now. When α, b are
small enough and α = 2b, the horseshoes look like

in Fig. 2 (a) for b > 0 and (b) for b < 0. Note that
the Jacobian of map (5) is equal to J ≡ b−αy and,
therefore, J vanishes on the line y = b/α = 1/2.
The line y = b/α is mapped under T̂ into the col-
lapse point P ∗. Since α = 2b and γ > 4, the point
P ∗ = (x∗, y∗) has coordinates (1/2, γ/4) and is away
from the square Q0 = [0, 1] × [0, 1], so P ∗ is wan-
dering. Take the square Qβ (from Theorem 1) with
some small positive β. Then T̂ acts on Qβ as a horse-
shoe map. But this map has a certain peculiarity.
The line y = 1/2 divides the square Qβ into two
rectangles D0 (with −β < y < 1/2) and D1 (with
1/2 < y < 1 + β), and the map T̂ has different
orientations on D0 and D1. Namely, if b > 0, it
is orientable on D0 and nonorientable on D1; and
if b < 0, it is orientable on D1 and nonorientable
on D0. So the cases b > 0 and b < 0 correspond
to two different types of half-orientable horseshoes,
see Figs. 2(a) and 2(b).

Remark 1. It is worth mentioning that half-
orientable horseshoes can also be realized in geo-
metrical models of Lorenz attractors, which can be
represented, essentially, as suspensions over special
discontinuous piecewise smooth maps of the two-
dimensional disk (see [Afraimovich et al., 1983] for
more details). In Fig. 3, possible shapes for such
maps are shown with different combinations of ori-
entation on the rectangles D1 and D2. Thus, one
may have here horseshoes of different types (ori-
entable, nonorientable and half-orientable of simple
type as well). We thank professor L. P. Shilnikov
for calling our attention to this fact.

Thus, these simple considerations give us four
different types of horseshoes: two of them are the
usual orientable and nonorientable horseshoes and
the other two represent half-orientable horseshoes.
Although all these horseshoes are Ω-equivalent to
each other (since the restriction of maps on them is
conjugate to B2), they may differ with respect to the
local equivalence relation, and moreover, as we will
show below, there are infinitely many classes of half-
orientable horseshoes of types different from those
described in Theorem 1 (some horseshoes of new
types are shown in Figs. 2(c) and 2(d)). Actually,
they may have border points of different dynamical
nature.

Definition 1. Let Λ be a closed invariant hyper-
bolic set of a transitive two-dimensional map T , and
let P ∈ Λ. A saddle periodic point P of T is said to
be s-border (resp. u-border), if any sufficiently small
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(a) (b) (c)

Fig. 3.

neighborhood of P is divided by W s
loc(P ) (resp.

W u
loc(P )), the arc of the stable (resp. unstable) man-

ifold of P , into two discs, one of which does not con-
tain points of Λ, while the other does contain. If P
is both s-border and u-border, the point P is said
to be (s, u)-border.

The following Theorem 2 describes border
points for orientable, nonorientable and half-
orientable horseshoes of simple type as well. We
will show that the set of border points has differ-
ent dynamical type for each of these cases. To state
Theorem 2, we need some notations. Let O1 (resp.
O2) be the saddle fixed point of the map T̂ with
unstable eigenvalue > 1 (resp. with unstable eigen-
value < −1). Note that any horseshoe Λ(T̂ ) con-
tains such points. Let P2 be a period-2 saddle cycle
from Λ (recall, that in any horseshoe there is such
a unique cycle).

Theorem 2. For orientable horseshoes, the set of
border points consists of a single point O1, which is
(s, u)-border. For nonorientable horseshoes, the set
of border points consists of two points O1 and O2,
in which case O1 is s-border and O2 is u-border.
For half-orientable horseshoes with b > 0 [as in
Fig. 2(a)] the set of border points consists of O1

and O2, and in this case O1 is (s, u)-border while
O2 is u-border. For half-orientable horseshoes with
b < 0 [as in Fig. 2(b)], the set of border points con-
sists of the point O1 and the 2-cycle P2, and in this
case O1 is s-border while the points of the cycle P2

are u-border.

Apart from the set of (finitely many) border
points, any horseshoe has the corresponding (count-
able) set of endpoints. Recall that for an interval
Cantor set, the endpoints are the boundary points
of its gaps. Accordingly, for a plane Cantor set

which is the direct product of two interval Cantor
sets, the endpoints are those points which are the
product of the endpoints of the interval Cantor sets.
Since horseshoes are homeomorphic to the direct
product of (interval) Cantor sets, the notion of their
endpoints is well defined. Moreover, horseshoes can
be considered as dynamically defined Cantor sets
[Palis & Takens, 1993]; this means that all endpoints
are, in fact, the points of intersection for stable and
unstable manifolds of s-border and u-border points.
Thus, the set of endpoints coincides with the set
of corresponding heteroclinic orbits (and/or homo-
clinic orbits whenever (s, u)-border points exist).
In these terms, Theorem 2 can be rewritten as
follows.

Corollary 1. For orientable horseshoes of GHMs,
the set of endpoints coincides with all homoclinic
points to O1. For nonorientable horseshoes, the set
of endpoints coincides with all heteroclinic points
from O2 to O1. For half-orientable horseshoes of
simple type with b > 0 [as in Fig. 2(a)], the set
of endpoints consists of all homoclinic points to O1

and all heteroclinic points from O2 to O1. For half-
orientable horseshoes of simple type with b < 0 [as
in Fig. 2(b)], the set of endpoints consists of all het-
eroclinic points from P2 to O1.

See Figs. 7–11 which illustrate Theorem 2 and
the corollary.

Now we state our results on more interesting
half-orientable horseshoes for GHM (5), i.e. on half-
orientable horseshoes other than the simple ones.
As we said before, the Jacobian J of (5) vanishes
on the line y = b/α. If this line does not inter-
sect Λ, then the collapse point lies in a Cantor gap
and Λ is still a horseshoe but it has different ori-
entation for y < b/α and y > b/α. The following
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result describes bifurcations related to the appear-
ance (resp. destruction) of such horseshoes.

Theorem 3. Let γ > 4 be fixed. Then in any suf-
ficiently small neighborhood V of the origin in the
(α, b)-plane, there exists a domain

D̂ ≡
{

(α, b) : 0 <
b

α
< 1 + ρ(α, b)

}
(6)

with ρ(α, b) → 0 as α, b → 0. This domain contains
the origin and the following holds:

1. If (α, b) ∈ V \D̂, the map T̂ (γ, b, α) has the Smale
horseshoe, which is orientable for b > 0 and
nonorientable for b < 0;

2. The domain D̂ contains infinitely many open
cone regions adjoined to the origin, and in each
of these regions the map T̂ has a half-orientable
horseshoe;

3. The boundary b = 0 of D̂ corresponds to the first
bifurcation, when the collapse point P ∗ coincides
with the fixed point O1 and, thus, O1 has zero
multiplier;

4. The boundary b = α(1 + ρ(α, b)) corresponds
to the last bifurcation, when the collapse point
becomes (at the last moment) homoclinic to O1.

Theorem 3 is illustrated in Fig. 4, where the
corresponding bifurcation moments are shown: for
the first bifurcation, at b = 0, see Figs. 4(d) and 4(h)
and for the last bifurcation, at b/α = 1 + ρ(α, b),
see Figs. 4(b) and 4(f). The proof of Theorem 3 and
related details are given in Sec. 5.

Note that in the case under consideration (i.e.
when α and b are small, γ > 4), the mentioned
bifurcations do not destroy essentially the hyper-
bolic structure. All these bifurcations are “instant”:
just before and just after such a bifurcation, the

Fig. 4.
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nonwandering set is still the horseshoe conjugate to
B2 and all unstable manifolds of the horseshoe inter-
sect at the collapse point. Before the bifurcation,
the collapse point P ∗ is wandering, but at the bifur-
cation moment, it becomes nonwandering and thus,
at this moment we have a “degenerate horseshoe”
with infinitely many points (which belong to the line
y = b/α) being mapped into P ∗. Thus, infinitely
many orbits which have been glued into the col-
lapse point, have the same forward semi-orbit. Of
course, such a situation is impossible for the usual
Smale horseshoe.

Our considerations will imply the following gen-
eral result on a variety of half-orientable horseshoes.

Proposition 1. There are infinitely many classes of
half-orientable horseshoes with respect to the local
equivalence relation.

Proposition 1 is a consequence of the following
theorem which states that by bifurcations near the
line b = 0 in the parameter plane, the border points
for GHMs may get unbounded periods, and thus,
there are infinitely many classes of half-orientable
horseshoes, because periods of border points are
invariants for the local conjugacy. For more defi-
niteness, let us consider a one-parameter family of
maps T̂ with α = α0 < 0 and γ > 4 fixed. We
take b as the parameter varying in a small interval
(−ε,+ε).

Theorem 4. For any ε > 0 there is a sequence
δn ⊂ (−ε, 0) of disjoint intervals accumulating to
0 as n → ∞, such that the map T̂ with parame-
ters α = α0, γ > 4 and b ∈ δn has a half-orientable
horseshoe Λ(α, b, γ) which possesses a u-border peri-
odic point of period qn. Moreover, qn → ∞ as
n → ∞.

Proof. The proof is based on the observation that
there are countably many values b = bn which cor-
respond to border points for T = Tbn of periods sn

with sn → ∞. See Fig. 5 which illustrates the men-
tioned observation. Indeed, note that in the case
when b > 0 we have the orientable Smale horseshoe,
and thus, in this case the manifold W u(O1) forms
the boundary of Λ; so, by Theorem 2, the fixed point
O1 is (s, u)-border one. However, when b < 0, the
point O1 fails to be u-border, since its stable multi-
plier becomes negative. Bifurcation at the moment
b = 0 leads to certain reconstructions in the set
of periodic orbits, and, as a result, some points of
these orbits are posed from both sides of W u

loc(O1)
(see points p1 and p2 in Fig. 5, here a period four

(a)

(b)

Fig. 5.

orbit is shown as u-border). Moreover, some of them
become u-border because their unstable manifolds
surround W u(O1) from the left and from the right.
Note that this reconstruction influences only those
periodic points which visit a sufficiently small neigh-
borhood of O1, and such a neighborhood vanishes
as the distance between the collapse point P ∗ and
O1 tends to zero (i.e. as b → −0). Periods of these
periodic points (except for O1), in any horseshoe,
tend to infinity as the diameter of the neighbor-
hood under consideration tend to zero. Thus, we
have that periods of u-boundary points tend to ∞
as b → −0. �

Theorem 4 gives us immediately the following.

Corollary 2. Analytical endomorphisms of the disk
can have (half-orientable) horseshoes of infinitely
many different topological types.
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Fig. 6.

Moreover, we can realize every such horse-
shoe for diffeomorphisms of nonorientable two-
dimensional manifolds. It can be easily created
using a quite simple surgical construction, like that
shown in Fig. 6 for the case of the Möbius band.
Here, we start from an initial endomorphism of the
disk which has a half-orientable horseshoe of the
given type and obtain, after the “surgery”, a diffeo-
morphism possessing the same horseshoe.

Corollary 3. C∞-diffeomorphisms on any two-
dimensional nonorientable manifold can have (half-
orientable) horseshoes of infinitely many different
topological types.

The paper is organized as follows. In Sec. 2, we
describe the construction of Smale horseshoes with
emphasis on their border points and end points;
this gives us the proof of Theorem 2 concerning
orientable and nonorientable horseshoes. In Sec. 3,
we study hyperbolic dynamics of GHMs and we
complete the proof of Theorem 2 on half-orientable
horseshoes. Theorem 1 is proved as Lemmas 1–3 of
Sec. 4. The existence part of Theorem 3 is proved as
Propositions 1 and 2 of Sec. 4, while the bifurcation
part is proved (among other reconstruction details)
in Sec. 5.

2. Smale Horseshoes in the
Hénon Family

In this section, which serves also as a background,
we give a brief description of well-known results

related to hyperbolic properties of the Hénon map
(see [Devaney & Nitecki, 1979] for instance). These
results represent, in fact, the first part of Theo-
rem 2, which concerns orientable and nonorientable
Smale horseshoes by paying attention to their bor-
der points.

We consider the Hénon map in the parabola-
like form

x = y, y = γy(1 − y) − bx (7)

(compare with (5)). If b = 0, the Hénon map degen-
erates into a quadratic map of the form

x = y, y = γy(1 − y). (8)

In fact, map (8) is one-dimensional. Indeed,
every point from R

2 after one iteration enters
the invariant curve y = γx(1 − x) and then it
always remains there governed by the low y =
γy(1− y). The latter map is well-known in the one-
dimensional dynamics as the logistic (or parabola)
map. The nonwandering set Λ̃(γ) of this map is con-
tained in the interval [0, 1] for all (positive) γ. If
γ > 4, then Λ̃(γ) is a Cantor set, and the restric-
tion of the map on Λ̃(γ) is conjugate to the one-
sided Bernoulli shift with two symbols, denoted by
B2+. Formally speaking, we may claim hyperbol-
icity here only within the one-dimensional setting
(see Sec. 2 of Chapter III in [de Melo & van Strien,
1993] for agreements in the definition of hyperbolic-
ity for one-dimensional maps). If b becomes nonzero
(again with γ > 4) then Λ̃(γ) becomes the regular
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hyperbolic set for (7), let us denote it by Λ(b, γ); so
Λ(b, γ) is the usual Smale horseshoe.

However, the horseshoes Λ = Λ(b, γ) with b > 0
and b < 0 have different geometrical structures.
Indeed, if b > 0 the horseshoe is orientable, and
if b < 0 it is nonorientable, see Fig. 1. More-
over, these horseshoes may serve as dynamically
defined Cantor sets [Palis & Takens, 1993], so there
are other dynamical characteristics distinguishing
horseshoes. One of them is the dynamical type of
border points.

In fact, the set Λ has a geometrical structure of
the planar Cantor set Kxy that is the direct prod-
uct of two interval Cantor sets Kx and Ky (hori-
zontal and vertical ones, respectively). The border
points of Λ are those periodic points whose cor-
responding invariant manifolds (stable and unsta-
ble ones for s-border and u-border points, respec-
tively) serve as one-dimensional boundaries for Λ.
Thus, these manifolds project to the endpoints of
the gaps for the interval Cantor sets (homeomor-
phic to Kx and Ky, respectively). So one can con-
struct the interval Cantor set homeomorphic to Ky

(resp. Kx) by the procedure of continuation of sta-
ble (resp. unstable) manifolds for s-border (resp. u-
border) points. Thus, the border points produce the
endpoints of Λ, and due to the described procedure,

these endpoints are homoclinic and/or heteroclinic
to the corresponding border periodic points.

We illustrate now the above procedure for the
Hénon family. In the orientable case the fixed point
O1 has positive multipliers, hence its stable and
unstable manifolds form the boundaries of Λ. In
Fig. 7 the first two steps of the Cantor procedure are
shown. First, the initial squareQ is created, its sides
are the corresponding pieces of the stable and unsta-
ble manifolds of point O1, see Fig. 7(a). The sides
[O1, h3] (or [h1, h2]) and [O1, h1] (or [h2, h3]) can
be regarded as the initial segments for the sets Kx

and Ky. Note that all endpoints of these segments,
{O1, h1, h2, h3}, are nonwandering and belong to Λ.

The second step is shown in Fig. 7(b), where
some middle gaps are removed from the segments
Kx and Ky by a simple continuation of the pieces of
W s(O1) and W u(O2). The rest set consists of four
squares Q00, Q01, Q10, Q11 belonging to Q and con-
taining Λ inside. Moreover, the 16 vertices of these
four squares are point O1 and 15 points homoclinic
to it. These 16 points are the result of the prod-
uct of four endpoints of Kx and four endpoints of
Ky. Next, iterations of the sides of Qij lead to new
boundaries for Λ inside Qij, etc. Note that the other
fixed point of the map, O2, has both multipliers
negative and is posed inside Q11. Thus, the fixed

Fig. 7. The beginning of the Cantor procedure for the orientable Smale horseshoe. (a) Some initial pieces of the stable and
unstable manifolds of O1 form a curvilinear square Q such that (i) there are no nonwandering points outside Q ; (ii) some
points of orbits from Λ belong to the boundary of Q (four such points are depicted in the figure: three of them are homoclinic
points, (h1, h2, h3), and one is the fixed point O1). (b) Continuation of the pieces of W s(O1) and W u(O1) forms four new
squares Q00, Q01, Q10 and Q11 such that there are no nonwandering points outside them and the vertexes of these squares
correspond to 16 nonwandering points (15 homoclinic ones and the fixed point O1).

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

8.
18

:3
02

9-
30

52
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



November 12, 2008 19:58 02223

Generalized Hénon Maps and Smale Horseshoes of New Types 3039

Fig. 8. The beginning of the Cantor procedure for the nonorientable Smale horseshoe.

point O1 is (s, u)-border, and this point together
with all its homoclinic points compose the set of
endpoints of the Cantor set Kxy := Λ.

In the nonorientable case the fixed point O1 has
positive unstable and negative stable multipliers;
the other fixed point O2 has negative unstable and
positive stable multipliers. Thus, the unstable man-
ifold of O1 cannot form the boundary, since points
of some orbits from Λ accumulate to it from both
sides. Nevertheless, the stable manifold W s(O1), as
before, forms the horizontal boundary for Λ. Other
boundaries, vertical, are created by the unstable
manifold of the fixed point O2. So in this case,
O1 is s-border and O2 is u-border, and thus, the
set of endpoints for Kxy is exactly the set of all
heteroclinic points between saddles O2 and O1. In
Fig. 8, the first two steps of this Cantor procedure
are shown. First, the initial square Q is created,
its sides are the corresponding pieces of W s(O1)
and W u(O2). The vertices of this square are spe-
cific points of the heteroclinic orbits between O2

and O1; points of such an orbit tend to O1 (resp.
O2) under forward (resp. backward) iterates of the
map. The second step is shown in Fig. 8(b), where
some middle gaps are removed from the segments
Kx and Ky by the procedure of continuation of the
pieces W s(O1) and W u(O2). The rest set consists of
four squares belonging to Q̃ with points of Λ inside

these squares (or on their sides). Moreover, the ver-
texes of these squares are 16 specific heteroclinic
points. Note that in this case, both O1 and O2 are
not the endpoints of Kxy, because their projections
are not border points of Kx and Ky, respectively.

It is well known that both types of Smale horse-
shoes are observed in the standard Hénon map: the
orientable ones occur for b > 0 and nonorientable
ones for b < 0. As b varies from positive to neg-
ative values, the type of corresponding horseshoes
is changed too. However, the transition is singu-
lar, because at b = 0 the Hénon map becomes one-
dimensional and has no inverse. At the transition
through b = 0 an immediate “switch” of the horse-
shoe geometry takes place. Indeed, the preimage
T−1(Q) has (for b �= 0) a horseshoe form. However,
the tops of horseshoes T−1(Q) will be posed differ-
ently for b > 0 and b < 0, see Fig. 1. Moreover, it is
easily seen that the x-coordinate of the tops tends
to ∞ as b → 0; namely, it tends to +∞ (resp. −∞)
as b → +0 (resp. b → −0).

3. Existence of Half-Orientable
Horseshoes for GHMs

In this section we study hyperbolic dynamics of
GHMs in form (5). We will consider α and b
as parameters varying near zero,3 they might be

3In fact, it is enough to assume that both b and α tend to 0 as γ → 4. However, for the “sample” value γ = 6 we may consider
b and α less than 1/2 in the absolute value, see Sec. 4.
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positive, negative and zero as well. Moreover, we
will suppose the coefficient γ to be fixed and besides,
γ > 4. As a result, we will complete the proof of
Theorem 2 for half-orientable horseshoes.

3.1. Half-orientable horseshoes of
simple type in GHM

In this subsection we consider the case when b and
α satisfy the condition α = 2b. Note that the Jaco-
bian of map (5) is

J ≡ b − αy, (9)

and, thus, J vanishes on the line y = 1/2. Also, the
inverse map to (5) can be written in the following
form

y = x, x =
γx(1 −x) − y

b − αx
. (10)

Thus, this map is well defined, except for the line
x = b/α = 1/2. Note that, if γ > 4, the lines y = 1/2
and x = 1/2 are away from (uniform) hyperbolic
dynamics demonstrated by map (5) for sufficiently
small b and α. It relates also to the Hénon map
(7) for γ > 4 and small b (see [Afraimovich & Hsu,
2002] and Sec. 4).

For the one-dimensional parabola map (8), its
nonwandering set is posed inside the unit square
Q0 = [0, 1]× [0, 1]. For map (5) and the correspond-
ing Hénon map (7), both with γ > 4, we consider a
slightly bigger square Qβ = [−β, 1+β]× [−β, 1+β],
where β → 0 as α and b tend to 0; for example,
β = (|α| + |b|)/2 is a sufficient quantity for us.
For the Hénon map (7), the shape of Qβ, T̂ (Qβ)
and T̂−1(Qβ) looks like in Fig. 1(a) for b > 0
and in Fig. 1(b) for b < 0, so map (7) remains,
geometrically, the usual horseshoe map.4 However,
for GHMs (5) we have rather different pictures,
see Figs. 9(a) and 9(b), where the new horseshoe
geometry is shown. We can see that the GHM map
T̂ : Q �→ T̂ (Q) changes the orientation at a singular
point P ∗, which is the image of the line y = 1/2
(recall that J(T̂ ) with α = 2b vanishes on this line).
So the image T̂ (Q) of the square Q forms a twisted
band. As a result, map T̂ has different orientations
on the half-planes y > 1/2 and y < 1/2. Also,
in these cases the inverse map T̂−1 is discontinu-
ous on Q: it is not defined on the line x = 1/2.
As a result, the set T̂−1(Q\{x = 1/2}) forms two

(infinitely long) strips that tend asymptotically to
the line y = 1/2, and the asymptotic directions
are opposite for the cases in Figs. 9(a) and 9(b).
Nevertheless, the action of map T̂ in both cases
looks geometrically like in the case of a horseshoe
map, and we will refer to such horseshoes (i.e. to
those which have the collapse point P ∗ above the
square Q) as of half-orientable horseshoes of simple
type (in contrast to half-orientable horseshoes like
in Figs. 2(c) and 2(d) mentioned also in Theorems 3
and 4).

3.2. Border points of half-orientable
horseshoes of simple type

We saw that Smale horseshoes in orientable and
nonorientable cases have different types of border
points. The same can be observed for half-orientable
horseshoes, as is shown in this subsection for horse-
shoes of simple types.

Consider first horseshoes like in Fig. 9(a). There
is a horizontal line s0 (for example, y = 1/2 as
in the previous section), which is mapped under T̂
into the collapse point P ∗ (posed in upper Q when
γ > 4 and relation α = 2b holds for sufficiently
small b and α). Denote its intersection points with
the vertical sides [a, b] and [c, d] by s1

0 and s2
0 respec-

tively. The square Q is divided by s0 into two parts
D0 and D1 lying, respectively, below and above s0.
Denote by a′, d′, b′, c′, the images under T̂ of the
corresponding vertices of Q. Note that T̂ (s0) = P ∗

and, thus, T̂ (s1
0) = T̂ (s2

0) = P ∗. Map T̂ is ori-
entable on D0 and nonorientable on D1. This means
that directions of the corresponding rounds for D0

(i.e. a → d → s02 → s01 → a) and T̂ (D0) (i.e.
a′ → d′ → P ∗ → a′) are the same, whereas, the
rounds for D1 (i.e. b → c → s02 → s01 → b) and
T̂ (D1) (i.e. b′ → c′ → P ∗ → b′) are opposite [see
Fig. 9(a)].

Now we indicate the border points. First, we
construct invariant boundaries for Λ composed from
some unstable manifolds of Λ. To attain this goal,
we look for the behavior of sides [a, b] and [c, d] of
Q under iterations of T̂ . We see that T̂ ([a, s1

0]) cov-
ers over the left part of Q along the y-coordinate,
the same is true for the curve T̂ ([a, s1

0]), etc. Since
map T̂ |Q is strongly expanding with respect to
the y-coordinate, it follows that iterations of [a, b]

4For γ = 6 it is straightforward to check that the map is hyperbolic if, for example, |b| < 1/2; anyway, one can examine
sufficient conditions of hyperbolicity, which are described in [Afraimovich et al., 1977, 1983] or in Lemma 2 below.
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(a)

(b)

Fig. 9. Half-orientable horseshoes of simple type for GHM (5) in the cases: (a) b > 0, and (b) b < 0. The orientable part of
the horseshoes is the left one (resp. the right one) for case (a) (resp. for case (b)).

accumulate (from the left) to some invariant curve
of Λ containing the fixed point O1. Thus, the left
invariant boundary for Λ is the connected compo-
nent of W u(O1) containing the point O1. It is shown
analogously that the right invariant boundary for Λ
is the connected component of W u(O2) containing
the point O2. So map T̂ acts on D0 (resp. on D1) in
the same manner as in the orientable (resp. nonori-
entable) case. However, due to the presence of the
collapse point P ∗ both outside pieces of manifolds
W u(O1) and W u(O2) become, automatically, inner

right and left, respectively, boundaries for Λ, see
Fig. 9(a). Also we can similarly construct upper,
lower, inner upper and inner lower boundaries con-
sisting of some pieces of stable manifolds.

Now we construct invariant boundaries of Λ
composed from some stable manifolds of Λ. In
Fig. 9(a), the action of map T̂−1 on Q is also
depicted. This map is discontinuous at x = 1/2.
Therefore, we take off some rectangle R1 with ver-
texes a1, b1, c1, d1 from Q (note that all points
from R1 are wandering). As a result, the image
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T̂−1(Q\R1) consists of two strips stretched in the
x-direction and intersecting regularly D0 and D1.
The image of the segment [a, a1] is the lower side of
the lower strip. It follows that iterations of [a, a1]
under T̂−1 will accumulate to the stable manifold
of the fixed point O1. Hence, the lower invariant
boundary of Λ is the connected (in Q) component
of W s(O1) containing the point O1. Its image under
T̂−1 is the upper boundary, since the segment [d1, d]
is mapped into the line [d′1, d′] that is the upper
boundary of T̂−1(Q\R1). Also, it is easily seen that
the upper and lower inner invariant boundaries for
Λ are the corresponding pieces of W s(O1). Thus, in
this case the set of endpoints of Λ consists exactly of
all homoclinic points to O1, all heteroclinic points
from O2 to O1 and the fixed point O1, see Fig. 10.
The point O2 is not the endpoint, since it is not such
a point for Ky, while O2 and O1 are, respectively,
u-border and (s, u)-border points for Λ.

Consider now half-orientable horseshoes like in
Fig. 9(b). Here the map T̂ is nonorientable on D0

and orientable on D1, thus, images of the vertex
points of Q, lying from below Q, are ordered as
d′, a′, c′, b′.

Now we indicate the border points. Note that
in this case both manifolds W u(O1) and W u(O2)
cannot play the role of boundaries, since points O1

and O2 have negative stable multipliers and, thus,
some points of Λ will accumulate to these mani-
folds from both sides. This can be seen by analyz-
ing the behavior of sides [a, b] and [c, d] of Q under
iterations of T̂ . Indeed, the image T̂ ([a, s1

0]) is not
now the left boundary of T̂ (Q), while the image
T̂ ([c, s2

0]) is not now the right boundary. However,
T̂ ([b, s1

0]) and T̂ ([d, s2
0]) are, respectively, the left and

the right boundaries of T̂ (Q). Moreover, T̂ ([b, s1
0])

Fig. 10.

Fig. 11.

(resp. T̂ ([d, s2
0])) covers the right part (resp. the

left one) of Q along the y-coordinate. Thus, the
second iteration of each of these segments covers
itself, hence there is a period-2 orbit, say P2. It fol-
lows that the left and right invariant boundaries
for Λ are the corresponding connected pieces of the
unstable manifold of the period-2 orbit P2. There is
such a unique orbit in any horseshoe. The inner left
and right invariant boundaries are again the cor-
responding connected pieces of W u(P2): it is suffi-
cient to continue the left and right parts of W u(P2)
ahead of point P ∗ and the corresponding pieces
will form (due to the switching near P ∗) the left
and right inner boundaries. Similarly, the upper and
lower boundaries (outside and inside) form the cor-
responding pieces of W s(O1), see Fig. 11. Thus, in
the case under consideration the set of border points
of Λ consists exactly of point O1 and the period-two
orbit P2, which are s-border, and u-border, respec-
tively. Accordingly, the set of endpoints of Λ con-
sists of all heteroclinic points from P2 to O1, while
the fixed points O1, O2 and the period-2 orbit P2

do not belong to the set of endpoints.

3.3. On half-orientable horseshoes
of other types

Now, let us consider a general case when the con-
dition α = 2b is given up. Then, since the Jaco-
bian J(T̂ ) vanishes on the line y = b/α, it follows
that if this line does not intersect the square Q, one
has a horseshoe map similar to the Hénon map, see
Figs. 4(a) and 4(e). However, as the value b/α varies
(say, from 0 to 1) new types of half-orientable horse-
shoes (with P ∗ inside Q) may appear. In Figs. 2(c)
and 2(d), two examples of such horseshoes are
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Fig. 12.
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Fig. 13.

shown for the cases (a) 0 < b/α < 1/2; and (b)
1/2 < b/α < 1, with b > 0, α > 0.

Note that when α and b vary (for fixed
γ > 4), the corresponding reconstructions in the
image T̂ (Q) can be followed up without prob-
lems (see Fig. 4 which illustrates possible geomet-
rical changes). However, the reconstructions in the
preimage T̂−1(Q) look rather nontrivial. The rea-
son is that the map T̂−1 is discontinuous (on the
line x = b/α) and dependence on the parameters
is singular in the sense that sharp reconstructions
of the preimage T̂−1(Q) occur as the parameters b
and α vary near zero. We will trace the main steps
of these reconstructions in Sec. 5, see Figs. 12 and
14 for an illustration. Note only that the pictures
for T̂−1(Q) in the case of half-orientable horseshoes
from Figs. 2(c) and 2(d) will look as in Figs. 12(b)
and 12(d), respectively.

4. Calculations for Half-Orientable
Horseshoes

In this section we examine map (5) for sufficiently
small values of the parameters b and α. If α = 0,
map (5) is the Hénon map of the form (7). It is well
known that the latter map is hyperbolic for γ > 4
and all sufficiently small b: it has a Smale horse-
shoe (if b = 0, the map becomes one-dimensional
and only conjugacy with B2+ takes place).5 We

need such results for the case GHM of the form
(5). However, as we will show below, the standard
horseshoes exist here not for all (sufficiently small)
b and α, even for large γ.

Our first results deal with the “sample” case
when the condition α = 2b holds and γ = 6. Then
map (5) takes the form

x = y, y = 6y(1 − y) − bx + 2bxy. (11)

In what follows, we will denote this map by T̃ or T̃b.
Consider a square Qβ = [−β, 1+β]× [−β, 1+β]

centered at the point (1/2; 1/2). Denote the ver-
texes of Qβ by a(−β;−β), b(−β; 1+β), c(1+β;−β)
and a(1+β;−β), and the sides of Qβ by [a, b], [b, c],
[c, d] and [a, d].

Lemma 1. For all sufficiently small b �= 0, β > 0
with β → 0 as b → 0 such that

(i) the set T̃b(Qβ) ∩ Qβ consists of two connected
components;

(ii) T̃b([a, d]) ∩ Qβ = ∅, T̃b([b, c]) ∩ Qβ = ∅;
(iii) there is a rectangle Dβ ⊂ Qβ such that

T̃b(Dβ)∩Qβ = ∅ and Dβ contains the segment
y = 1/2.

Proof. It follows from (11), the image T̃b([a, d]) is
the segment [a′, d′], where

a′ = (−β;−6β(1 + β) + bβ + 2bβ2),

d′ = (−β;−6β(1 + β) − b − 3bβ − 2bβ2).

5There are various results on the hyperbolic properties of the Hénon map. Thus, for the classical Hénon map x = y,
y = 1 − bx − ay2 a sufficient condition for hyperbolicity could be stated as a > 1/4(5 + 2

√
5)(1 + |b|)2 [Devaney & Nitecki,

1979; Afraimovich, 1984]. This gives the well-known hyperbolicity condition: γ > 2 +
√

5 for small b.
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Analogously, T̃b([b, c]) = [b′, c′], where

b′ = (1 + β;−6β(1 + β) + bβ − 2bβ(1 + β),

c′ = (1 + β;−6β(1 + β) + b + 3bβ + 2bβ2).

Thus, (ii) will be satisfied, if

−6β(1 + β) + |b| + 3|b|β + 2|b|β2 < −β.

For small B and β this inequality can be written as

β >
|b|
5

+ O(β2 + b2),

which proves (ii).
Next, the curves T̃b([a, b]) and T̃b([c, d]) are

defined by the equations

T̃b([a, b]) : y = 6x(1 − x) + bβ − 2bβx,

−β ≤ x ≤ 1 + β,

T̃b([c, d]) : y = 6x(1 − x) − b(1 + β) + 2b(1 + β)x,

−β ≤ x ≤ 1 + β.

(12)

They have an intersection point P ∗(x∗, y∗) with

x∗ =
1 + 2β

2(1 + 4β)
=

1
2

+β+O(β2), y∗ =
3
2

+O(β2).

Since y∗ > 1 + β for small β, (i) is proved.
It follows from (11) that the inequality y > 1+β

will be valid for all x ∈ [−β, 1 + β] if

6y(1 − y) − |b|(1 + β) − 2|b|(1 + β)y > 1 + β.

This allows to define the needed rectangle Dβ as
follows∣∣∣∣y − 1

2
+

|b|
6

∣∣∣∣ <
√

3
6

(1 − 2|b| − β) + O(b2 + β2),

−β ≤ x ≤ 1 + β. (13)

Note that for one-dimensional map y = 6y(1 − y)
(map (11) at b = 0) the corresponding interval is
defined as

1
2
−

√
3

6
< y <

1
2

+
√

3
6

that corresponds to our result for b = β = 0. �

Lemma 2. For all sufficiently small b �= 0, the map
T̃b : Qβ �→ R

2 is hyperbolic.

Proof. It is sufficient to check that the following
hyperbolicity conditions from [Afraimovich et al.,
1977, 1983] (see also [Shilnikov et al., 1998, 2001;

Afraimovich & Hsu, 2002]) are fulfilled

(a) ‖fx‖ < 1,
(b) ‖g−1

y ‖ < 1,

(c) 1 − ‖fx‖‖g−1
y ‖ > 2

√
‖fy × g−1

y ‖‖gx‖‖g−1
y ‖,

(d) (1 − ‖fx‖)(1 − ‖g−1
y ‖) > ‖fy × g−1

y ‖‖gx‖,
(14)

where the subscripts mean differentiation with
respect to the corresponding coordinates. Note that
by Lemma 1 we may consider the above inequalities
for points on Qβ\Dβ only since points from Dβ are
wandering. Then we have for map T̃b

fx ≡ 0, fy ≡ 1, gx = −b + 2by,

gy = 6(1 − 2y) + 2bx.

It follows from (13) that the following estimate

|1 − 2y| ≥
√

3
6

(1 − β) − |b|
3

(l +
√

3) + O(b2 + β2)

(15)

holds for points from Qβ\Dβ . Then we have that

|g−1
y | =

1
|6(1 − 2y) + 2bx|

≤ 1√
3(1 − β) − 2|b|(1 + 2

√
3 + β)

< 1

on Qβ\Dβ for all sufficiently small b and β. Thus,
condition (b) in (14) holds. Other conditions are
easily checked. �

Denote the connected components of the set
Qβ\Dβ by D0

β for the lower one and by D1
β for the

upper one.

Lemma 3. For b > 0, the map T̃b is orientable on
D0

β and nonorientable on D1
β . For b < 0, otherwise,

the map T̃b is nonorientable on D0
β and orientable

on D1
β.

Proof. It follows from (11) that J(T̃b) = b(1 − 2y),
where J is the Jacobian of the map T̃b. By virtue of
(15), −β < y < 1/2 for D0

β and 1/2 < y < 1 + β for
D1

β. Thus sign(J) = sign(b) for D0
β and sign(J) =

−sign(b) for D1
β. �

Lemmas 1 and 2 imply that the map T̃b has
a horseshoe for any b �= 0 sufficiently small. On
the other hand, Lemma 3 states that this horseshoe
is half-orientable, in contrast to the usual Smale
horseshoes for the Hénon map.
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Until now we had assumed mostly that for
GHMs, the condition α = 2b was satisfied. Now we
wish to give up this condition. So, we will examine
a GHM (5) with γ = 6, denoting it by T̃α,b. Note
that many obtained results (including Lemma 1 and
estimates (14) from Lemma 2) can be proved for
this more general case without any additional treat-
ments (just by replacing the coefficient 2b by α).
However, let us notice that, formally speaking, the
statement of Lemma 2 on hyperbolicity is valid only
in the case when the collapse point P ∗ is wandering
(i.e. when P ∗ /∈ Λ) : otherwise, we have to speak of
“singular hyperbolicity”.

However, application of Lemma 3 is now princi-
pally incorrect for some (sufficiently small) b and α.
The point is that since the Jacobian of Tα,b equals
J(T̃α,b) = b − αy, the map T̃α,b changes the ori-
entability on the line y = b/α, which depends on the
parameters (in contrast to the constant line y = 1/2
before). So the situation is somewhat different from
the previous one. Although geometrical properties
(like those in Lemma 1) and hyperbolic ones (like
estimates 14) take place here, we cannot claim now
the existence of the horseshoe. The reason is that
the map T̃α,b is not invertible, and in particular,
T̃α,b may have periodic orbits with zero multipliers;
furthermore, unstable manifolds of some periodic
points need not be disjoint, in which case the inter-
section point is nonwandering. Note that even for
‘sample’ map (11), all unstable manifolds of points
of the horseshoe intersect (at the collapse point P ∗).
However, in this case the intersection point does not
belong to Qβ and, thus, it is wandering. The image
of the line y = b/α is exactly one point

P ∗(b, α) =
β

α

(
1; 6

(
1 − β

α

))
.

Thus, all unstable manifolds of the invariant set
Λ(T̃α,b) intersect at this point. It is clear, that if
both the line y = b/α and the point P ∗ do not
belong to Qβ, then the set Λ is the usual Smale
horseshoe, which is orientable whenever b > 0 and
nonorientable whenever b < 0. This situation takes
place if b/α > 1+ β or b/α < −β which implies the
following result.

Proposition 2. If one has either b/α > 1 or
b/α < 0, then for all sufficiently small b and α, the
map T̃α,b possesses the Smale horseshoe, which is
orientable whenever b > 0, and nonorientable when-
ever b < 0.

We can generalize this result as follows. Let
Gi, i = 0, 1, . . . , be the gaps of the Cantor set gen-
erated by the parabola map y = 6y(1 − y).

Proposition 3. Let b/α ∈ Gi for some i. Then, for
all sufficiently small such b and α, the map T̃α,b

has a horseshoe in Qβ. If b > 0, this map is ori-
entable for y < b/α and nonorientable for y > b/α.
If b < 0, otherwise, this map is nonorientable for
y < b/α and orientable for y > b/α.

The proof is straightforward. We need only to
control that the line y = b/α does not intersect
points of Λ. But it follows evidently (for all suffi-
ciently small b and α) from the fact that this line
does not intersect points of the set Λ(0, 0) (i.e. the
invariant set on the curve y = 6x(1 − x) for the
parabola map x = y, y = 6y(1 − y)).

Proposition 3 can be extended to GHMs of the
form (5) with γ > 4. For every such γ, the corre-
sponding parabola map y = γy(1−y) has an invari-
ant Cantor set with gaps Gi(γ) that can play the
role of gaps Gi from Proposition 3 (though the proof
for the general case γ > 4 is technically more com-
plicated; the situation here is similar to the proof of
hyperbolicity for the parabola map y = γy(1 − y)
for γ > 4 (see [Robinson, 1999]), comparing with a
much simpler proof for γ > 2 +

√
5.)

Since gaps Gi(γ) are all posed in the segment
[0, 1], it implies that map (5) with γ > 4 can have
half-orientable horseshoes only for values of s = b/α
belonging to some intervals Ib,α = (ν1, 1+ν2), where
νi(b, α) → 0 as (b, α) → 0. Moreover, we can indi-
cate the exact bifurcation boundaries ν∗

1 and ν∗
2 of

Ib,α. Namely, ν∗
1 equals 0 exactly, and this value

corresponds to the “first bifurcation” when the col-
lapse point P ∗ coincides with the fixed point O1 [see
Figs. 4(d) and 4(h)). The value s = ν∗

2 corresponds
to the “last bifurcation” when the collapse point P ∗
becomes a homoclinic point to O1 [see Figs. 4(b)
and 4(f)]. This moment can be defined exactly too,
and it is not difficult to calculate the coordinates
of P ∗, namely, P ∗ = b/α(1; γ(1 − (b/α))) (here P ∗
is the image of the line y = b/α under map (5)).
The bifurcation value s = ν∗

2 corresponds to the
situation when the point P ∗ belongs to the lower
component of the manifold W s(O1). This compo-
nent can be calculated (e.g. numerically) and, thus,
one can find ν∗

2 . In this way, for small b and α (and
with γ > 4 as necessary condition), one gets s = ν∗

2

corresponds to the equation
b

α
= 1 − α

γ2
+ O(α2).
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Thus, we have defined the boundaries for the region
of existence of half-orientable horseshoes. For fixed
γ, this region on the (α, b)-plane has a form of a cone
adjoining to the origin, see Fig. 4. This completes
the proof of Theorem 3 and, in connection with
the existence problems of this section, in the next
section we will consider main reconstructions of
the horseshoe geometry leading from orientable to
nonorientable Smale horseshoes via half-orientable
ones.

Remark 2. All previous considerations can be
repeated with only mild corrections for the case of
GHMs of the form x = y,y = γy(1 − y) − bx +
αxy + νy3, with b, α and ν sufficiently small. The
term νy3 is conservative, it does not change the
Jacobian J , because J = b − αy is the same as
before. Moreover, the line y = b/α under action
of the map collapses again to the point P ∗ =
b/α(1; 6(1 − (b/α)) + ν((b/α))2).

5. On Geometry of Horseshoes
for GHM

In this section we study the geometry of GHMs
which correspond to diagrams in Fig. 4. Our main
attention, however, will be focused on the descrip-
tion of reconstructions in the preimages T−1(Q)
when the parameters α and b vary. Note that the
corresponding reconstructions in the images T (Q)
are much easier and can be observed in Fig. 4 (see
also Fig. 2 in addition). We consider the “sample”
case γ = 6 for more definiteness. Besides, we restrict
ourselves to one-parameter analysis using the quan-
tity s = b/α as the governing parameter. Then the
map T in form (5) can be rewritten as

x = y, y = 6y(1 − y) − αx(s − y), (16)

where α is sufficiently small and fixed. Thus, two
different cases appear here: α > 0 and α < 0. (We
exclude the case α = 0 because it corresponds to the
Hénon map, which has no interesting reconstruc-
tions for horseshoes).

As it was shown above, half-orientable horse-
shoes may exist in GHMs (5) only for values −β ≤
s < 1 + β of the parameter s. When s changes
within these bounds, it corresponds to the move-
ment of parameters α and b in Fig. 4, either along
the path (e) → (c) → (a) for positive α, or along
the path (a) → (g) → (e) for negative α. Thus, if
we consider both cases (fixed positive and negative
α), we “cover” all the cases in Fig. 4.

The following Figs. 12 and 14 summarize our
considerations for the cases α > 0 and α < 0,
respectively. First, let us comment on these figures
(mainly, Fig. 12), and, then, we will present the
proofs.

In Fig. 12, we start from the domain which cor-
responds to the case (e) in Fig. 4. Here, map (16)
has a nonorientable horseshoe as the nonwandering
set, and the preimage T−1(Q) has either a horse-
shoe form whenever s < −β (similar to that for the
Hénon map with b < 0, see Fig. 1(b)), or consists
of two disconnected horseshoe shape pieces when-
ever −β < s < s1 < 0 (like those in Fig. 12(a)).
The moment s = s1 < 0 corresponds to an immedi-
ate transformation of the disconnected pieces into
one connected piece. (Formally, it corresponds to
the change of asymptotic behavior of the preimage
T−1([a,A]), where [a,A] is a segment of the side
[a, d] of the square Q). As a result, we will have, for
s1 < s < s∗1, the situation shown in Fig. 12(b). Here,
the nonwandering set is a horseshoe that becomes
half-orientable just as s takes a positive value. It
is interesting that at the moment s = 0, we have
a singular horseshoe T (Q) from Fig. 4(d), and its
preimage T−1(Q) is shown in Fig. 13. Here, the
fixed point O1 has zero multiplier and its stable
manifold has two singular pieces (horizontal ones);
then, as s changes, these pieces are immediately
reconstructed. Note that the part of T−1(Q) below
the stable manifold of O1 is wandering for s = 0,
but as s becomes positive, it immediately captures
the point O1 and some nonwandering orbits. Thus,
the moment s = 0 corresponds to the birth of a
half-orientable horseshoe. When s is positive and
rather small, we have a horseshoe T (Q) like in
Fig. 2(c) [the preimage T−1(Q) has a form like in
Fig. 12(b)]. However, when s increases, the preim-
age becomes like in Fig. 12(c), and this corresponds
to a half-orientable horseshoe of the simple type.
Further change of s leads to the appearance of half-
orientable horseshoes like in Fig. 12(d) [or, which is
the same, as in Fig. 2(d)], and finally, to the appear-
ance of orientable horseshoes [Fig. 12(e)].

In Fig. 12, we show reconstructions which
occur to preimages of the sides of square Qβ.
The moments of such reconstructions can be calcu-
lated precisely, see below. However, they are caused
by some global bifurcations connected with sharp
reconstructions of (stable) invariant manifolds of
fixed points. In particular, one can detect such
moments as those when the collapse point P ∗ coin-
cides consequently with the fixed point O1 (for
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Fig. 14.
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s = 0, namely), with the homoclinic points [see
Fig. 7(a)] h1, h2 and h3 (the last bifurcation).

In Fig. 14, the corresponding reconstructions
are shown for the case α < 0 when s varies from
−β to 1 + β. This corresponds to the path (a) →
(g) → (e) in Fig. 4.

Now we provide the necessary calculations. The
Jacobian of map (16) is equal to J = α(s − y).
Thus, J = 0 at y = s. This implies that the map
T : Qβ → R

2 is a diffeomorphism when either
s > 1+β or s < −β. In the first case (i.e. s > 1+β)
the horseshoes are orientable if α > 0, b > 0 and
nonorientable if α < 0, b < 0. In the second case (i.e.
s < −β), the horseshoes are orientable if α < 0,
b > 0) and nonorientable if α > 0, b < 0; see
Figs. 4(a) and 4(e).

Now we suppose that −β ≤ s ≤ 1+β. Thus, the
lines y = s and x = s intersect the square Qβ. The
line y = s divides Qβ into two rectangles D0 and
D1 corresponding to y < s and y > s, respectively.
The map T has different types of orientability on
D0 and D1, and the geometry of T (Qβ) is rather
simple, see Fig. 4. The line y = s collapses into
one point P ∗ that lies on the line x = s, so the
images T (D0) and T (D1) (adjoining to P ∗) have
a triangle form. The construction of horseshoes for
forward iterates in this case is geometrically similar
to that in the case of the standard Smale horseshoe
except when involving the collapse point and its for-
ward images. However, the geometry of T−1(Qβ)
could be rather nontrivial and it could change
sharply as s varies. Below, we will study related
problems.

The line x = s (the line of discontinuity of
T−1) intersects the sides [a, d] and [b, c] at points A
and B, respectively. Let us find the images, under
the map T−1, of the following intervals [a, b], [b,B),
[c,B), [c, d], [d,A) and [a,A).

By (16), the map T−1 can be written in the
following form

x =
6x(1 − x) − y

α(s − x)
, y = x. (17)

Thus, the images of vertices of square Qβ under T−1

are as follows

T−1(a) =
(−5β − 6β2

α(s + β)
,−β

)
,

T−1(b) =
(−1 − 7β − 6β2

α(s + β)
,−β

)
,

T−1(c) =
(−1 − 7β − 6β2

α(s + β)
, 1 + β

)
,

T−1(d) =
(−5β − 6β2

α(s + β)
, 1 + β

)
.

(18)

Now we find the images under T−1 of the inter-
vals. We will do so in three steps.

1. The images of [a,A) and (A, d].
The image of [a,A) = {(x, y)|y = −β,−β ≤

x < s} under T−1 is a curve of the form

x =
6y(1 − y) + β

α(s − y)
, (19)

defined for −β ≤ y < s, thus, s− y is positive here.
Denote N1(y) ≡ 6y(1 − y) + β. Suppose that the
following inequality

N1(s) ≡ 6s(1 − s) + β > 0 (20)

is valid (for example, it holds if 0 < s < 1). Then,
the curve T−1([a,A)) has the following asymptotic
behavior as y → s − 0:

for α > 0 : x → +∞ as y → s − 0;
for α < 0 : x → −∞ as y → s − 0.

(see Figs. 12(b)–12(d) for α > 0 and 14(b)–14(d)
for α < 0). Moreover, curve (19) is monotone in
this case. Indeed,

∂x

∂y
=

6y2 − 12sy + 6s + β

α(s − y)2
(21)

and the numerator N2 ≡ 6y2−12sy+6s+β has the
discriminant ∆2 ≡ 6(6s2 − 6s − β) being negative
when (20) holds.

The image of (A, d] = {(x, y)|y = −β, s < x ≤
1 + β} under T−1 is a curve of the form (19) again,
defined only for s < y ≤ 1 + β. Thus, (s − y) is
negative in this case and if (20) holds, the curve
is monotone and the following asymptotic takes
place:

for α > 0 : x → −∞ as y → s + 0;
for α < 0 : x → +∞ as y → s + 0.

(see Figs. 12(b)–12(d) for α > 0 and 14(b)–14(d)
for α < 0).
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Suppose now that s is such that N1(s) =
6s(1 − s) + β < 0. This inequality implies that s
is away from the interval (s1, s2), where

s1,2 =
1
2

(
1 ±

√
1 +

2
3
β

)
(22)

are the roots of the equation N1(s) = 0. Note that
s1 < 0, s2 > 1 and

s1 = −1
6
β + O(β2), s2 = 1 +

1
6
β + O(β2) (23)

when β is small. If s < s1 or s > s2 the asymptotic
behavior of curves T−1([a,A)) and T−1((A, d]) is
cardinally changed:

T−1([a,A)) : x → −∞ (resp. + ∞) as y → s − 0
for α > 0 (resp. for α < 0),

T−1([d,A)) : x → +∞ (resp. −∞) as y → s − 0
for α > 0 (resp. for α < 0)

(see Figs. 12(a) and 12(e) for α > 0 and 14(a) and
14(e) for α < 0). Moreover, both curves are not
monotone here. Indeed, in this case the numerator
N2 ≡ 6y2−12sy+6s+β from (21) can vanish since
its discriminant ∆2 ≡ 6(6s2−6s−β) is positive. The
corresponding extremum points are y∗1 = s−

√
q(s)

for the curve T−1([a,A)) (since y < s for it) and
y∗2 = s +

√
q(s) for the curve T−1([d,A)) (since

y > s here), where q(s) = s2 − s − β/6 > 0.
Consider the case s < s1. Then the extremum

point, say x∗
1, of the curve T−1([a,A)) exists and

equals

x∗
1 =

6(s −√
q)(1 − s +

√
q) + β

α
√

q

=
6
α


s(1 − s) +

β

6√
q

− 1 + 2s −√
q


 .

Thus, sign x∗
1 = −sign(α) and |x∗

1| > 6|α|−1 (all
terms in [·] are negative). This implies that the
curve T−1([a,A)) is posed as whole outside Qβ. On
the other hand, the curve T−1((A, d]) intersects Qβ

in a regular way. Indeed, y = 1/2 is in the domain
of definition and, thus,

|x∗| ≥
3
2

+ β

|α|
(

1
2

+ β

)

and sign x∗
1 = −sign α.

In the case when s > s2, the situation becomes
opposite: the curve T−1((A, d]) is posed as whole
outside Qβ, while the curve T−1([a,A)) intersects
Qβ in a regular way (the proof is quite similar).
Note that the curves T−1([a,A)) and T−1((A, d])
always have the opposite asymptotic behavior at
infinity.

2. The image of [b,B) and (B, c].
The image of [b,B) = {(x, y) : y = 1 + β,−β ≤

x < s} under T−1 is a curve of the form

x =
6y(1 − y) − 1 − β

α(s − y)
, (24)

defined for −β ≤ y < s. Thus, (s − y) is positive
here. When y = s, the numerator N3 in (24) equals
N3 = 6s(1− s)−1−β. Thus, N3(s) = 0 at s = s∗1,2,
where

s∗1,2 =
1
2

(
1 ±

√
1
3
(1 − 2β)

)
. (25)

Accordingly, N3(s) is positive for s∗1 < s < s∗2. In
this case, the curve T−1([b,B)) behaves as follows:

for α > 0 : x → −∞ as y → s − 0;
for α < 0 : x → +∞ as y → s − 0.

(see Figs. 12(c) for α > 0 and 14(c) for α < 0).
Besides, curve (24) is monotone in the case when
s ∈ (s∗1, s

∗
2). Indeed, we have

∂x

∂y
=

6y2 − 12sy + 6s − 1 − β

α(s − y)2

and the discriminant D of the numerator, D ≡
6(6s2 − 6s + 1 + β), is negative if s∗1 < s < s∗2.

Consider now the case s < s∗1. Then, N3(s) <
0 and the asymptotic behavior of the curve
T−1([b,B)) is as follows:

for α > 0 : x → +∞ as y → s − 0;
for α < 0 : x → −∞ as y → s − 0.

(see Figs. 12(a)–12(e) for α > 0 and 14(a)–14(e) for
α < 0). Moreover, curve (24) is not monotone in this
case. Indeed, the equation 6y2−12sy+6s−1−β = 0
has the solution

y∗ = s −
√

s2 − s +
1 + β

6

(satisfying the condition y < s). In this case, the
curve (24) has the extremum x∗ = x(y∗) with
N3(y∗) < 0 since s < s∗1.
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In the case s > s∗2 we have again that N3(s)
is negative and, thus, the asymptotic behavior of
the curve T−1([b,B)) is the same as in the pre-
vious case. Besides, curve (24) is not monotone
again. However, the extremum x∗ = x(y∗) has
another sign, since the function N3(y) may now
have positive values. In particular, y = 1/2 belongs
to the domain of definition of N3, and N3(1/2) =
(1/2) − β > 0. Thus, using (24) we find that

|x∗| ≥
1
2
− β

|α|
(

1
2

+ β

)

and sign x∗ = sign α.
The case of the curve T−1((B, c]), where

(B, c] = {(x, y) : y = 1 + β, s < x ≤ 1 + β},
is considered rather analogously. Here the curve
T−1((B, c]) satisfies again Eq. (24), defined now
only for s < y ≤ 1 + β. Thus, s − y is negative.
Then, if s∗1 < s < s∗2, values of N3(s) are pos-
itive and, hence, the curve T−1((B, c]) is mono-
tone and behaves as follows (in the opposite way
to T−1([b,B))):

for α > 0 : x → +∞ as y → s + 0;
for α < 0 : x → −∞ as y → s + 0.

(see Figs. 12(c) for α > 0 and 14(c) for α < 0).
If s > s∗2, the asymptotic behavior of the curve
T−1((B, c]) becomes as follows:

for α > 0 : x → −∞ as y → s + 0;
for α < 0 : x → +∞ as y → s + 0.

(see Figs. 12(a)–12(e) for α > 0 and 14(a)–14(e)
for α < 0). As in the previous case, the curve
T−1((B, c]) is not monotone. Indeed, the equation
6y2 − 12sy + 6s − 1 − β = 0 has the solution

y∗ = s +

√
s2 − s +

1 + β

6

(satisfying the condition y > s). In this case, the
curve T−1((B, c]) has a maximum x∗ = x(y∗) at
which the value of N3(y∗) is negative since s > s∗2.

In the case s < s∗1 we have that N3(s) is nega-
tive again and, thus, the asymptotic behavior of the
curve T−1((B, c]) is the same as in the case s > s∗2.
Besides, curve T−1((B, c]) is not monotone again.
However, N3(y∗) is positive at the extremum point
x∗ = x(y∗). As in the previous case, using the fact

that y = 1/2 is from the domain of definition for
T−1((B, c]), we obtain the following estimate

|x∗| ≥
1
2
− β

|α|
(

1
2

+ β

)
and, besides, sign x∗ = −sign α, since in this case
(s − y) is always negative.

3. The images of the intervals of [a, b] and [c, d]
under T−1 are horizontal segments of the lines
y = −β and y = 1 + β, respectively, whose end-
points are given by (18).

These reconstructions are closely related to the
bifurcations which (without leading off the hyper-
bolicity) change drastically the behavior of stable
and unstable manifolds of the periodic points and
influence the horseshoes’ geometry. We do not study
these bifurcations in detail now (leaving it to the
forthcoming paper); we just note that infinitely
many instant bifurcations occur while transitioning
from orientable to nonorientable Smale horseshoes
(and vice versa).
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