
Knowl Inf Syst (2008) 17:79–97
DOI 10.1007/s10115-007-0112-4

REGULAR PAPER

DSM-FI: an efficient algorithm for mining frequent
itemsets in data streams

Hua-Fu Li · Man-Kwan Shan · Suh-Yin Lee

Received: 9 November 2005 / Revised: 7 October 2006 / Accepted: 1 September 2007 /
Published online: 9 January 2008
© Springer-Verlag London Limited 2007

Abstract Online mining of data streams is an important data mining problem with broad
applications. However, it is also a difficult problem since the streaming data possess some
inherent characteristics. In this paper, we propose a new single-pass algorithm, called DSM-
FI (data stream mining for frequent itemsets), for online incremental mining of frequent
itemsets over a continuous stream of online transactions. According to the proposed algo-
rithm, each transaction of the stream is projected into a set of sub-transactions, and these
sub-transactions are inserted into a new in-memory summary data structure, called SFI-forest
(summary frequent itemset forest) for maintaining the set of all frequent itemsets embedded
in the transaction data stream generated so far. Finally, the set of all frequent itemsets is
determined from the current SFI-forest. Theoretical analysis and experimental studies show
that the proposed DSM-FI algorithm uses stable memory, makes only one pass over an on-
line transactional data stream, and outperforms the existing algorithms of one-pass mining
of frequent itemsets.

Keywords Data mining · Data streams · Frequent itemsets · Single-pass algorithm ·
Landmark window

1 Introduction

In recent years, database and knowledge discovery communities have focused on a new data
model, in which data arrive in the form of continuous streams. It is often referred to as data

H.-F. Li (B)
Department of Computer Science, Kainan University, Taoyuan, Taiwan
e-mail: hfli@mail.knu.edu.tw

M.-K. Shan
Department of Computer Science, National Chengchi University, Taipei, Taiwan
e-mail: mkshan@cs.nccu.edu.tw

S.-Y. Lee
Department of Computer Science, National Chiao-Tung University, Hsinchu, Taiwan
e-mail: sylee@csie.nctu.edu.tw

123

80 H. F. Li et al.

streams or streaming data. Data streams possess some computational characteristics, such
as unknown or unbounded length, possibly very fast arrival rate, inability to backtrack over
previously arrived data elements (only one sequential pass over the data is permitted), and
a lack of system control over the order in which that data arrive [3,10]. Many applications
generate data streams in real time, such as sensor data generated from sensor networks,
transaction flows in retail chains, Web record and click-streams in Web applications, per-
formance measurement in network monitoring and traffic management, and call records in
telecommunications.

Online mining of data streams differs from traditional mining of static datasets in the
following aspects [10]. First, each data element in streaming data should be examined at
most once. Second, the memory usage for mining data streams should be bounded even
though new data elements are continuously generated from the stream. Third, each data
element in the stream should be processed as fast as possible. Fourth, the analytical results
generated by the online mining algorithms should be instantly available when requested by
the users. Finally, the frequency errors of outputs generated by the online algorithms should
be as small as possible. The online processing model of data streams is shown in Fig. 1.

As described earlier, the continuous nature of streaming data makes it essential to use the
online algorithms which require only one scan over the data streams for knowledge discovery.
The unbounded characteristic makes it impossible to store all the data into the main memory
or even in secondary storage. This motivates the design of summary data structure with
small footprints that can support both one-time and continuous queries of streaming data. In
other words, one-pass algorithms for mining data streams have to sacrifice the exactness of its
analytical results by allowing some tolerable counting errors. Hence, traditional multiple-pass
techniques studied for mining static datasets are not feasible to mine patterns over streaming
data.

1.1 Related work

Frequent itemsets mining is one of the most important research issues in data mining. The pro-
blem of frequent itemsets mining of static datasets (not streaming data) was first introduced

Fig. 1 Processing model of data streams

123

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 81

by Agrawal et al. [1] described as follows. Let � = {i1, i2, . . . , in} be a set of literals,
called items. Let database DB be a set of transactions, where each transaction T contains
a set of items, such that T ⊆ � . The size of database DB is the total number of transac-
tions in DB and is denoted by |DB|. A set of items is referred to as an itemset. An itemset
X with l items is denoted by X = (x1x2, . . . , xl), such that X ⊆ � . The support of an
itemset X is the number of transactions in DB containing the itemset X as a subset, and
denoted by sup(X). An itemset X is frequent if sup(X) ≥ minsup · |DB|, where minsup
is a user-specified minimum support threshold in the range of [0, 1]. Consequently, given a
database DB and a user-defined minimum support threshold minsup, the problem of mining
frequent itemsets in static datasets is to find the set of all itemsets whose support is no less than
minsup ·|DB|. In this paper, we will focus on the problem of mining frequent itemsets in data
streams.

Many previous studies contributed to the efficient mining of frequent itemsets in streaming
data [4–9,12–17]. According to the stream processing model [18], the research of mining
frequent itemsets in data streams can be divided into three categories: landmark windows
[14], sliding windows [5,7,13,15,16], and damped windows [4,9]. In the landmark windows
model, knowledge discovery is performed based on the values between a specific times-
tamp called landmark and the present. In the sliding windows model, knowledge discovery
is performed over a fixed number of recently generated data elements which is the target
of data mining. In the damped windows model, recent sliding windows are more impor-
tant than previous ones. In other words, older transactions contribute less toward itemset
frequencies.

In [14], Manku and Motwani developed two single-pass algorithms, sticky-sampling
and lossy counting, to mine frequent items over landmark windows. Moreover, Manku
and Motwani proposed a lossy-counting based three module method, called BTS (Buffer-
Trie-SetGen), for mining the set of frequent itemsets (FI) from streaming data. Chang and
Lee [5] proposed a BTS-based algorithm for mining frequent itemsets in sliding windows
model. Moreover, Chang and Lee [4] also developed another algorithm, called estDec, for
mining frequent itemsets in streaming data in which each transaction has a weight decrea-
sing with age. Teng et al. [15] proposed a regression-based algorithm, called FTP-DS, to find
frequent itemsets across multiple data streams in a sliding window. Lin et al. [13] proposed
an incremental mining algorithm to find the set of frequent itemsets in a time-sensitive sliding
window. Giannella et al. [8] proposed a frequent pattern tree (abbreviated as FP-tree [11])
based algorithm, called FP-stream, to mine frequent itemsets at multiple time granularities
by a novel titled-time windows technique. Yu et al. [17] discussed the issues of false negative
or false positive in mining frequent itemsets from high speed transactional data streams.
Wong and Fu [16] proposed an efficient algorithm to mine top-k frequent itemset in a stream
sliding window without a user-defined minimum support constraint. Jin and Agrawal [12]
proposed an algorithm, called StreamMining, for in-core frequent itemset mining over data
streams. StreamMining is based on the BTS algorithm. Chi et al. [7] proposed an algorithm,
called MOMENT, which might be the first to find closed frequent itemsets from data streams.
A lattice-based summary data structure, called CET, is used in the MOMENT algorithm to
maintain the information of closed frequent itemsets.

1.2 Our contributions

Because the focus of the paper is on frequent itemsets mining over data streams with a
landmark window, we mainly address it by comparison with the algorithms BTS [14] and
StreamMining [12].

123

82 H. F. Li et al.

In the BTS algorithm, two estimated parameters: minimum support threshold s, and maxi-
mum support error threshold ε, are used, where 0 < ε ≤ s < 1. The incoming data stream
is conceptually divided into buckets of width w = �1/ε� transactions each, and the current
length of the stream is denoted by N transactions. The BTS algorithm is composed of three
steps. In the first step, BTS repeatedly reads a batch of buckets into main memory. In the
second step, it decomposes each transaction within the current bucket into a set of itemsets,
and stores these itemsets into a summary data structure D which contains a set of entries of
the form (e, e. f req, e.�), where e is an itemset, e. freq is an approximate frequency of the
itemset e, and e.� is the maximum possible error in e. freq. For each itemset e extracted
from the incoming transaction T , BTS performs two operations to maintain the summary
data structure D. First, it counts the occurrences of e in the current batch, and updates the
value e. freq if the itemset e already exists in the structure D. Second, BTS creates a new
entry (e, e. f req, e.�) in D, if the itemset e does not occur in D, but its estimated frequency
e.freq in the batch is greater than or equal to |batch| · ε, where the value of maximal possible
error e.� is set to �|batch| · ε�, and |batch| denotes the total number of transactions in
the current batch. To bound the space requirement of D, BTS algorithm deletes the updated
entry e if e. f req + e.� ≤ |batch| · ε. Finally, BTS outputs those entries ei in D, where
ei . f req ≥ (s − ε) · N , when a user requests a list of itemsets with the minimum support
threshold s and the support error threshold ε.

StreamMining algorithm [12] is an in-core frequent itemset mining algorithm based on the
BTS algorithm. StreamMining uses a new approach (derived from the problem of finding a
majority element) to reduce the memory requirements for determining the frequent itemsets.
Then, StreamMining uses such a reduced set of frequent 2-itemsets and the a priori property
to reduce the number of i-itemsets, for i > 2, and establishes a bound on false positives.

The motivation of the study is to develop a method that utilizes some space-effective
summary data structures (such as FP-tree [11] developed for frequent itemsets mining of
a static dataset) to reduce the cost in mining frequent itemsets over data streams. In this
paper, an efficient single-pass algorithm, referred to as Data Stream Mining for Frequent
Itemsets (abbreviated as DSM-FI), is proposed to improve the efficiency of frequent itemset
mining in data streams. A new summary data structure called summary frequent itemset forest
(abbreviated as SFI-forest) is developed for online incremental maintenance of the essential
information about the set of all frequent itemsets of data streams generated so far. The
proposed algorithm has three important features: a single pass of streaming data for counting
the support of itemsets; an extended prefix tree-based, compact pattern representation of
summary data structure; and an effective and efficient search and determination mechanism of
frequent itemsets. Moreover, the frequency error guarantees provided by DSM-FI algorithm
is the same as that of BTS algorithm. The error guarantees are stated as follows. First, all
itemsets whose true support exceeds s · N are output. Second, no itemsets whose true support
is less than (s − ε) · N is output. Finally, estimated supports of itemsets are less than the
true support by at most ε · N [12]. The comprehensive experiments show that our algorithm
is efficient on both sparse and dense datasets. Furthermore, DSM-FI algorithm outperforms
the algorithms BTS and StreamMining, by one order of magnitude for discovering the set of
all frequent itemsets over the entire history of the data streams.

1.3 Roadmap

The remainder of the paper is organized as follows. Section 2 defines the problem of single-
pass mining frequent itemsets in landmark windows over data streams. The proposed DSM-FI
algorithm is described in Sect. 3. The extended prefix tree-based summary data structure

123

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 83

SFI-forest is introduced to maintain the essential information about the set of all frequent
itemsets of the stream generated so far. Theoretical analysis and experiments are presented
in Sect. 4. Section. 5 remarks on future work, and concludes the work.

2 Problem definition

Based on the estimation mechanism of the BTS algorithm, we propose a new, single-pass
algorithm to improve the efficiency of mining frequent itemsets over the entire history of
data streams when a user-specified minimum support threshold s ∈ (0, 1), and a maximum
support error threshold ε ∈ (0, s) are given.

Let � = {i1, i2, . . . , im} be a set of literals, called items. An itemset is a nonempty set
of items. A l-itemset, denoted by (x1x2, . . . , xl), is an itemset with l items. A transaction
T consists of a unique transaction identifier (tid) and a set of items, and denoted by <

tid, (x1x2, . . . , xq) >, where xi ∈ �,∀i = 1, 2, . . . , q . A basic window W consists of k
transactions. The basic windows are labeled with window identifier wid, starting from 1.

Definition 1 A data stream, DS= [W1, W2, . . . , WN), is an infinite sequence of basic win-
dows, where N is the window identifier of the “ latest” basic window. The current length of
DS, written as DS.CL, is k · N , i.e., |W1| + |W2| + · · · + |WN |. The windows arrive in some
order (implicitly by arrival time or explicitly by timestamp), and may be seen only once.

Online mining of frequent itemsets in a landmark window of data streams is to mine the
set of all frequent itemsets from the transactions between a specified window identifier, called
landmark, and the current window identifier N . Note that the value of landmark is set to 1 in
this paper.

To ensure the completeness of frequent itemsets for data streams, it is necessary to store
not only the information related to frequent itemsets, but also that related to infrequent ones.
If the information about the currently infrequent itemsets were not stored, such information
would be lost. If these itemsets become frequent later on, it would be impossible to figure out
their correct support and their relationship with other itemsets [9]. The data stream mining
algorithms have to sacrifice the exactness of the analytical results by allowing some tolerable
support errors since it is unrealistic to store all the streaming data into the limited main
memory. Hence, we define two types of support (or occurrence frequency) of an itemset,
and divide the itemsets embedded in the stream into three categories: frequent itemsets,
semi-frequent itemsets, and infrequent itemsets.

Definition 2 The true support of an itemset X , denoted by X .tsup, is the number of tran-
sactions in the data stream containing the itemset X as a subset. The estimated support of an
itemset X , denoted by X.esup, is the estimated true support of X stored in the summary data
structure, where 0 < X.esup ≤ X.tsup.

Definition 3 The current length (CL) of data stream with respect to an itemset X stored in the
summary data structure, denoted by X.CL, is (N − j +1) · k, i.e., |W j |+|W j+1|+· · ·+|WN |,
where W j is the first basic window stored in the current summary data structure containing
the itemset X .

Definition 4 An itemset X is frequent if X.tsup ≥ s · X.C L . An itemset X is semi-frequent
if s · X.C L > X.tsup ≥ ε · X.C L . An itemset X is infrequent if ε · X.C L > X.tsup.

Definition 5 A frequent itemset is maximal if it is not a subset of any other frequent itemsets
generated so far.

123

84 H. F. Li et al.

Therefore, given a continuous data stream DS = [W1, W2, . . . , WN), a user-defined
minimum support threshold s in the range of [0, 1], and a user-specified maximum sup-
port error threshold ε in the range of [0, s], the problem of online mining of frequent itemsets
in a landmark window over data streams is to find the set of all frequent itemsets by one scan
of the streaming data.

3 The proposed DSM-FI algorithm

In this section, we describe the proposed algorithm DSM-FI (data stream mining for frequent
itemsets) for online mining of frequent itemsets in a landmark window of a continuous data
stream. The DSM-FI algorithm consists of four steps.

(a) Step 1: the proposed DSM-FI algorithm reads a basic window of transactions from the
buffer in main memory, and sorts the items of transaction in lexicographical order.

(b) Step 2: DSM-FI algorithm constructs and maintains an in-memory prefix-tree based
summary data structure, called SFI-forest (summary frequent itemset forest).

(c) Step 3: DSM-FI algorithm prunes the infrequent information from the current SFI-forest.
(d) Step 4: DSM-FI finds the frequent itemsets from the current SFI-forest.

Steps 1 and 2 are performed in sequence for a new incoming basic window. Step 3 is performed
after every basic window has been processed. Finally, step 4 is usually performed periodically
or when it is needed. Since the reading of a basic window of transactions from the buffer in
main-memory is straightforward, we shall henceforth focus on Steps 2 (discussed in Sect. 3.1),
3 (discussed in Sect. 3.2), and 4 (discussed in Sect. 3.3), and devise new methods for effective
construction and maintenance of summary data structure, and efficient determination of
frequent itemsets.

Before discussing the proposed DSM-FI algorithm, we use an example to illustrate the
construction of the summary data structure SFI-forest.

Example 1 Assume that the current basic window W j contains six transactions: <acd f >,

<abe>,<d f >,<ce f >,<acde f > and <ce f >, where a, b, c, d, e and f are items in the
data stream. The SFI-forest with respect to the first two transactions, <acd f> and <abe>,
constructed by DSM-FI algorithm is described as follows. Note that each node of the form
(id: id. esup: id. wid) consists of three fields: item-id, estimated support, and window-id.
For example, (a : 2 : j) indicates that, from basic window W j to current basic window
WN (1 ≤ j ≤ N), item a appeared twice.

(a) First transaction <acd f >: First of all, the proposed DSM-FI algorithm reads the
first transaction and performs the transaction projection (TP) on the first transaction
<acd f >, namely, TP(<acd f>). After performing TP(<acdf>), DSM-FI generates a
set of sub-transactions, <acd f >,<cd f >,<d f >, and < f >, to record the essential
information about the set of potential frequent itemsets of the first transaction. These
sub-transactions are also called itemset-suffix transactions of item a. Then, DSM-FI
inserts these itemset-suffix transactions: <acd f >,<cd f >,<d f >, and < f > of item
a into the proposed summary data structure SFI-forest. The SFI-forest consists of three
parts: a list of frequent items (FI-list), a list of summary frequent trees of frequent items
(SFI-trees), and a list of opposite frequent items (OFI-list). Hence, DSM-FI inserts these
itemset-suffix transactions into FI-list, [a.SFI-tree, a.OFI-list], [c.SFI-tree, c.OFI-list],
[d .SFI-tree, d .OFI-list], and [f .SFI-tree, f .OFI-list], respectively. The result is shown
in Fig. 2. Each item in the FI-list has a SFI-tree and an OFI-list. The head-links of items

123

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 85

Fig. 2 SFI-forest construction after processing the first transaction <acd f > of window W j

in each OFI-list is used to record the occurrence order in each transaction. But, in the
following steps, the head-links of each OFI-list are omitted for concise presentation.

(b) Second transaction <abe>: DSM-FI reads the second transaction and calls the TP
(<abe>). Next, DSM-FI inserts three item-suffix transactions: <abe>,<be>, and
<e> into the FI-list, [a.SFI-tree, a.OFI-list], [b.SFI-tree, b.OFI-list], and [e.SFI-tree,
e.OFI-list], respectively. The result is shown in Fig. 3. After processing all the transac-
tions of window W j , the SFI-forest generated so far is shown in Fig. 4.

3.1 Effective construction and maintenance of summary data structure

In this section, we describe the method which constructs and maintains the proposed in-
memory prefix-tree based summary data structure.

Definition 6 A summary frequent itemset forest (SFI-forest) is an extended prefix-tree based
summary data structure defined below.

1. SFI-forest consists of a FI-list (a list of Frequent Items) with k items (e1, e2, . . . , ei , . . . ,

ek, k ≥ 1), and a set of ei .SFI-trees (summary frequent itemset trees of items).
2. Each entry e in the FI-list consists of four fields: e, e.esup,e.window-id , and

e.head-link. The field e registers which item identifier the entry represents, e.esup
records the number of transactions in the stream so far containing the item e, the value
of e.window-id assigned to a new entry is the window identifier of current window, and
e.head-link points to the root node of the e.SFI-tree. Note that each entry in the FI-list is
a root node of the e.SFI-tree .

3. Each node in the e.SFI-tree consists of four fields: e′,e′.esup, e′.window-id,

ande′.node-link. The first field e′ is the item identifier of the item being inserted.
The second field e’.esup registers the number of transactions represented by a portion of
the path reaching the node with the item-id e′. The value of the third field e’.window-id

123

86 H. F. Li et al.

Fig. 3 SFI-forest construction after processing the second transaction <abe> of window W j

Fig. 4 SFI-forest construction after processing the window W j

123

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 87

assigned to a new node is the window identifier of the current window. The fourth field
e’.node-link links up a node with the next node with the same item-id e′ in the same
SFI-tree or null if there is none.

4. Each e.SFI-tree has a specific OFI-list (a list of Opposite Frequent Items) with k′
items, denoted by e.OFI − list . Each item x in the e.OFI-list consists of four fields:
x, x.esup, x.window-id , and x.head-link. The e.OFI-list is similar to the FI-list ex-
cept that the field head-link links to the first node with the item-id in the e.SFI-tree. Note
that |e.O F I − list | = |F I -list | in the worst case, where |F I -list | denotes the total
number of entries in the FI-list.

The construction process of SFI-forest is described as follows. First, DSM-FI algorithm
reads a transaction T with m items (m ≥ 1) from the current window WN for SFI-forest
construction. At this time, DSM-FI projects the transaction T into m sub-transactions, and
inserts the m sub-transactions into the SFI-forest. The detail of the effective projection is
described as follows. A transaction T with m items, i.e., (e1e2, . . . , em), should be projected
into m sub-transactions; that is, (e1e2, . . . , em), (e2e3, . . . , em), . . . , (em−1em), and (em).
These m sub-transactions are called itemset-suffix transactions, since the first item of each
sub-transaction is an itemset-suffix of the original transaction T . This step, called transaction
projection(TP), is denoted by TP(T) = {e1|T, e2|T, . . . , ei |T, . . . , em |T }, where ei |T =
(ei ei+1, . . . , em),∀i = 1, 2, . . . , m. The projecting cost of a transaction T with m items for
constructing the SFI-forest is O(m2).

After performing the transaction projection of transaction T , two operations of DSM-
FI are executed. First, DSM-FI inserts the items e1, e2, . . . , em of T into the FI-list, and
then removes T from the current window WN . Second, the items of these itemset-suffix
transactions are inserted into the ei . SFI-trees (∀i, i = 1, 2, . . . , m) as branches, and the
estimated support of the corresponding ei . OFI-lists are updated. If an itemset share a prefix
with an itemset already in the SFI-tree, the new itemset will share a prefix of the branch
representing that itemset. In addition, an estimated support counter is associated with each
node in the tree. The counter is updated when an itemset-suffix transaction causes the insertion
of a new branch. Figure. 5 outlines the algorithms of SFI-forest construction in the DSM-FI
algorithm and Fig. 6 shows the subroutines of SFI-forest construction and maintenance.

In the next section, we describe the steps of pruning infrequent information of DSM-FI
algorithm.

3.2 Pruning infrequent information from the current SFI-forest

According to the a priori property, only the frequent 1-itemsets are used to construct candi-
date k-itemsets, where k ≥ 2. Thus, the set of candidate itemsets containing the infrequent
1-itemsets stored in the summary data structure SFI-forest is pruned. The pruning is usually
performed periodically or when it is needed.

Let the maximum support error threshold be ε in the range of [0, s], where s is a user-
defined minimum support threshold in the range of [0, 1]. The summary data structure pruning
mechanism of DSM-FI algorithm is that the item x and its supersets are deleted from SFI-
forest if x .esup<ε · x .C L . For each entry (x , x.esup, x.window-id, x.head-link) in the FI-list,
if its x.esup is less than ε · x .C L , it can be regarded as an infrequent item. At this time, three
operations are performed in sequence. First, the proposed DSM-FI algorithm deletes the
x .OFI-list, x .SFI-tree, and the infrequent entry x from the FI-list. Second, DSM-FI removes
the infrequent item x of other OFI-lists by traversing the FI-list. Third, DSM-FI deletes the
infrequent item x from other SFI-trees, and reconstructs these SFI-trees.

123

88 H. F. Li et al.

Fig. 5 Algorithm of SFI-forest construction

After pruning all infrequent items from SFI-forest, SFI-forest contains the set of all
frequent itemsets and semi-frequent itemsets of the data stream generated so far. Now, we
use an example to illustrate the pruning operation of DSM-FI algorithm.

Example 2 Let the maximum support error threshold ε be 0.2. Hence, an itemset X is
infrequent in Fig. 6 if X .esup < ε · X .CL. Note that ε · X.CL = 0.2 · 6 = 1.2. After
computing the current window W j , the next step of DSM-FI is to prune all the infrequent
items from the current SFI-forest. At this time, DSM-FI deletes the b.SFI-tree, b.OFI-list,
and item b itself from the FI-list, since item b is an infrequent item; that is, b.esup = 1 < 1.2.
Then, DSM-FI reconstructs the a.OFI-list and a.SFI-tree, because a.OFI-list and a.SFI-tree
contains the infrequent item b. The result is shown in Fig. 7.

The next step of DSM-FI is to determine the set of all frequent itemsets from SFI-forest
constructed so far. The step is performed only when the analytical results of the data stream
is requested. Note that the number of candidate 2-itemsets is a performance bottleneck in
the a priori-based frequent itemset mining algorithms [11]. The proposed DSM-FI algorithm
can avoid the performance problem, because DSM-FI can generate the set of all frequent
2-itemsets immediately by combining the frequent items in the FI-list with the frequent items
in their corresponding OFI-lists.

3.3 Determining frequent itemsets from the summary data structure

Once the SFI-forest is constructed and maintained, we can derive the set of all frequent
itemsets by traversing the SFI-forest according to the a priori principle. We propose an

123

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 89

Fig. 6 Subroutines of SFI-forest construction algorithm

123

90 H. F. Li et al.

Fig. 7 SFI-forest after pruning all infrequent items

efficient mechanism called top-down Frequent Itemset Selection (todoFIS), as shown in
Fig. 8, for mining frequent itemsets. It is especially useful in mining long frequent itemsets.
The method is described as follows.

Assume that there are k frequent items, namely e1, e2, . . . , ek , in the current FI-list, and
each item ei ,∀i = 1, 2, . . . , k, has its ei .OFI-list, where the size of ei .OFI-list is denoted by
|ei .OFI-list|. Note that the items, namely, o1, o2, . . . , o j , within the ei .OFI-list are denoted
by ei .o1, ei .o2, . . . , ei .o j , respectively, where the value j equals to |ei .OFI-list|. For each
entry ei ,∀i = 1, 2, . . . , k, in the current FI-list, DSM-FI first generates a maximal candidate
itemset with (j + 1) items, i.e., (ei ei .o1ei .o2…ei .o j) by combining the frequent item ei with
the set of all frequent items in the ei .OFI-list. Then, DSM-FI uses the following scheme to
count the estimated support of the (j + 1)-maximal candidate itemset.

First, DSM-FI starts with a specific frequent item ei .ol(1 ≤ l ≤ j), whose estimated
support is smallest, and traverses the paths containing ei .ol via node-links of ei .SFI-tree to
count the estimated support of the candidate (ei ei .o1ei .o2 . . . ei .o j). If the estimated support
of the candidate is greater than or equal to (s − ε) · ei .C L , then it is a frequent item-
set. All subsets of this frequent itemset are also frequent itemsets according to the a priori
property.1 Hence, the complete set of the frequent itemsets stored in the ei .SFI-tree can be
generated by enumeration of all the combinations of the subsets of frequent (j + 1)-itemset,
(ei ei .o1ei .o2, . . . , ei .o j).

On the other hand, if the estimated support of the candidate (j +1)-itemset is less than the
threshold (s−ε)·ei .C L , it is not a frequent itemset. Now, we need to use the same mechanism
to test all the subsets of the (j + 1)-itemset until the candidate 3-itemsets. This is because
all frequent 2-itemsets can be generated by combining the item ei and the frequent items of
the ei .OFI-list. Note that a (j + 1)-itemset can be decomposed into C(j + 1, j) j-itemsets.
We decompose one candidate j-itemset from the (j + 1)-itemset at a time, and use the same
scheme described above to count the estimated support of this candidate j-itemset. Finally,

1 It is a downward closure property, i.e., if a pattern is frequent, all of its sub-patterns will also be frequent.

123

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 91

Fig. 8 Algorithm description of todoFIS

all the maximal frequent itemsets are maintained in a temporal MFI-list, called MFItemp-list,
for efficient generation of the set of all frequent itemsets. If such the MFItemp-list is obtained,
all the frequent itemsets can be generated efficiently by enumerating the set of all maximal
frequent itemsets in the current MFItemp-list without any candidate generation and support
counting. Note that if the user request is just to find the set of all maximal frequent itemsets
generated so far, DSM-FI outputs all maximal frequent itemsets efficiently by scanning the
MFItemp-list.

Example 3 Let the minimum support threshold s be 0.5. Therefore, an itemset X is frequent
in Fig. 7 if X.esup ≥ s · X .CL. Note that s · X.CL = 0.5 · 6 = 3 in this example. The online
mining steps of frequent itemsets of DSM-FI are described as follows.

1. First of all, DSM-FI starts the frequent itemset mining scheme from the first frequent
item a (from left to right). At this moment, only item a is a frequent itemset, since
the estimated support of items c, d, e, and f in the a.OFI-list are less than s · a.CL,
where s · a.CL = 3. Now, DSM-FI stores the maximal frequent 1-itemset (a) into the
MFItemp-list.

2. Next, DSM-FI starts on the second entry c for frequent itemset mining. DSM-FI generates
a candidate maximal 3-itemset (cef), and traverses the c.SFI-tree to count its estimated
support. As a result, the candidate (cef) is a maximal frequent itemset, since its estimated
support is 3 and it is not a subset of any other frequent itemsets in the MFItemp-list. Now,
DSM-FI stores the maximal frequent itemset (cef) into the MFItemp-list.

3. Next, DSM-FI starts on the third entry d and generates a candidate maximal 2-itemset
(df). DSM-FI stores the itemset (df) into the MFItemp-list without traversing d .SFI-tree
because (df) is a frequent 2-itemset and is not a subset of any other maximal frequent
itemsets stored in the MFItemp-list.

123

92 H. F. Li et al.

4. On the fourth entry f , DSM-FI algorithm generates one frequent 1-itemset (f) directly,
since the f .OFI-list is empty. DSM-FI does not store it into the MFItemp-list, because
(f) is a subset of a generated maximal frequent itemset (cef).

5. Finally, on the fifth entry e, DSM-FI generates a frequent 2-itemset (ef) directly. However,
the frequent 2-itemset (ef) is a subset of a maximal frequent itemset (cef) stored in the
MFItemp-list. DSM-FI algorithm does not store it into the MFItemp-list.

After processing all the entries in the FI-list, the MFItemp-list generated by DSM-FI algo-
rithm contains the set of current maximal frequent iemsets: {(a), (ce f), (d f)}. Therefore, the
set of all frequent itemsets can be generated by enumerating the set: {(a), (ce f), (d f)}. Conse-
quently, the set of all frequent itemsets in Fig. 7 are {(a), (ce f), (ce), (c f), (e f), (c), (e), (f),

(d f), (d)}.
3.4 Theoretical analysis

In this section, we discuss the maximal estimated support error of frequent itemsets generated
by DSM-FI algorithm, the space upper bound of the prefix-tree-based summary data structure,
and the differences between the proposed SFI-forest and the FP-tree.

3.4.1 Maximal estimated support error analysis

In this section, we discuss the maximal estimated support error of all frequent itemsets
generated by DSM-FI algorithm. Let X . wid is the window-id of itemset X stored in the
current SFI-forest. Let the window contains k transactions. Let the maximum support error
threshold be ε. Let the current window-id of the incoming stream be wid(N). Now, we have
the following theorem of maximal estimated support error guarantee of frequent itemsets
generated by the proposed algorithm.

Theorem 1 X.tsup − X.esup ≤ ε · (X.wid − 1) · k.

Proof We prove by induction. Base case (X.wid = 1): X.tsup = X.esup. Thus, X.tsup −
X.esup ≤ ε · (X.wid − 1) · k.

Induction step: Consider an itemset of a form (X, X.esup, X.wid) that get deleted for some
wid(N) > 1. The itemset is inserted in the SFI-forest when wid(N+1) is being processed. The
itemset X whose window-id is wid(N + 1) in the FI-list could possibly have been deleted as
late as the time when X.esup ≤ ε ·(wid(N +1)−X.wid+1)·k. Therefore, X.tsup of X when
that deletion occurred is no more than ε · (wid(N +1)− X.wid +1) ·k. Furthermore, X.esup
is the estimated true support of the itemset X since it is inserted. It follows that X.tsup which
is the true support of X in the first window containing X though the current window, is at most
X.esup + ε · (wid(N)− 1) · k. As a result, we have X.tsup − X.esup ≤ ε · (X.wid − 1) · k.
��

Because our algorithm is a false-positive algorithm, the answers produced by DSM-FI
will have the following guarantees as same as that of BTS algorithm [14]:

(a) All itemsets whose true frequency exceeds s · N are output. There are no false negatives.
(b) No itemsets whose true frequency is less than (s − ε) · N is output.
(c) Estimated frequencies are less than the true frequencies by at most ε · N .

If we want that the error dose not increase linearly with the value of window id, we can modify
the line 5 of algorithm todoFIS from “if E .esup ≥ (s − ε) · N then” to “if E .esup ≥ s · N
then”. After that DSM-FI algorithm becomes a false-negative algorithm.

123

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 93

Note that a false-positive approach returns a set of itemsets that includes all frequent
itemsets but also some infrequent itemsets. A false-negative algorithm returns a set of itemsets
that does not include any infrequent itemsets but misses some frequent itemsets.

3.4.2 Space upper bound of prefix tree-based summary data structures

In this section, we discuss the space upper bound of any single-pass algorithm for constructing
a prefix tree-based summary data structure.

Theorem 2 A prefix tree-based summary data structure has at most 2m′
nodes for storing

the set of all frequent itemsets of data streams, when m′ frequent items are given.

Proof Let m′ be the number of frequent items, i.e., 1-itemsets, in the data stream generated
so far. Hence, the number of potential frequent itemsets is C(m′, 1) regarding one item,
C(m′, 2) regarding two items,. . . , C(m′, i) regarding i items,. . ., and C(m′, m′) regarding m′
items according to the a priori property. In such a prefix tree-based summary data structure,
an itemset is represented by a path and its appearance support is maintained in the last node
of the path. Thus, there are C(m′, 1) nodes in the first level, C(m′, 2) nodes in the second
level, . . . , C(m′, i) nodes in the i th level, . . ., and C(m′, m′) nodes in the m′-th level. There
are totally C(m′, 1) + C(m′, 2) + · · · + C(m′, i) + · · · + C(m′, m′) nodes in the prefix tree-
based summary data structure. Consequently, the space upper bound of a prefix-tree based
summary data structure is O(2m′

). ��
The construction cost of summary data structure of DSM-FI algorithm is extremely less than
that of BTS algorithm although theoretically, their worst case space complexities are same,
i.e., O(2m′

), when m′ frequent items are given.

3.4.3 Differences between SFI-forest and FP-tree

The SFI-forest can be regarded as an enhanced version of FP-tree [11], but there are some
differences between SFI-forest and FP-tree. First, the construction step of both prefix tree-
based structures is different. SFI-forest adopts an online incremental maintaining manner,
but FP-tree is not. Second, the method used to construct a FP-tree needs two dataset scans,
but DSM-FI scans the data only once. Third, SFI-forest uses the OFI-list to overcome the
bottleneck (to generate a huge number of candidate 2-itemsets) of the a priori-based frequent
itemset mining algorithms, but FP-growth uses a recursive method.

4 Performance evaluation

All the experiments are performed on a 1 GHz IBM X24 with 384 MB, and the program is
written in Microsoft Visual C++ 6.0. To evaluate the performance of algorithm DSM-FI,
we conduct the empirical studies based on the synthetic datasets. In Sect. 4.1, we report the
scalability study of algorithm DSM-FI. In Sect. 4.2, we compare the memory and execution
time requested by DSM-FI with algorithms BTS [14] and StreamMining [12]. The parameters
of synthetic data generated by IBM synthetic data generator [2] are described as follows.
IBM synthetic dataset T 10.I 5.D1M and T 30.I 20.D1M. The first synthetic dataset T 10.I 5
has average transaction size T of 10 items and the average size of maximal frequent itemset
I is 5-items. It is a sparse dataset. In the second dataset T 30.I 20, the average transaction

123

94 H. F. Li et al.

0

300

600

900

1200

1500

1800

2000K 4000K 6000K 8000K 10000K

Number of Incoming Transactions

E
xe

cu
tio

n
T

im
e

(S
ec

.)

T10.I5

T1015

T30120

T30.I20

(a) Linear scalability of DSM-FI algorithm (s=0.01%, ε=0.001%)

(b) Space requirements of DSM-FI algorithm (s=0.01%, ε=0.001%, window size=50K)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Incoming Basic Windows

0

10

20

30

40

50

60

M
em

or
y

U
sa

ge
 (

M
B

)

Fig. 9 Resource requirements of DSM-FI algorithm for IBM synthetic datasets: a Linear scalability of DSM-
FI algorithm (s=0.01%, ε = 0.001%), b Space requirements of DSM-FI algorithm (s = 0.01%, ε = 0.001%,
window size = 50 K)

size T and average size of maximal frequent itemset I are set to 30 and 20, respectively. It
is a dense dataset. Both synthetic datasets have 1,000,000 transactions. Items were drawn
from a universe of 10 K distinct items. In the experiments, the synthetic data stream is broken
into data windows with size 50 K (i.e., 50,000 transactions) for simulating the continuous
characteristic of streaming data. Hence, there are total 20 windows in these experiments.

4.1 Scalability study of DSM-FI

In this experiment, we examine the two primary factors, execution time and memory usage,
for mining frequent itemsets in a data stream environment, since both should be bounded
online as time advances. Therefore, in Fig. 9a, the execution time grows smoothly as the
dataset size increases from 2, 000 K to 10, 000 K. The default value of minimum support
threshold s is 0.01%. The memory usage in Fig. 9b for both synthetic datasets is stable as
time progresses, indicating the scalability and feasibility of algorithm DSM-FI. Notice that,
the synthetic data stream used in Fig. 9b is broke into 20 basic windows each of 50 K, i.e.,
50,000 transactions.

4.2 Comparisons with algorithms BTS and stream mining

In this experiment, we examine the execution time and memory usage among DSM-FI, BTS
and StreamMining using dataset T 30.I 20.D1M. In Fig. 10a, we can see that the execution

123

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 95

(a) Execution time compared with DSM-FI, BTS,

(b) Space requirements compared with DSM-FI, BTS

and StreamMining (s=0.01%, ε=0.001%)

and StreamMining (s=0.01%, ε=0.001% , window size=50K)

Fig. 10 Comparisons of DSM-FI, BTS and StreamMining: a Execution time compared with DSM-FI, BTS,
and StreamMining (s=0.01%, ε = 0.001%), b Space requirements compared with DSM-FI, BTS and Stream-
Mining (s = 0.01%, ε = 0.001%, window size = 50 K)

time incurred by DSM-FI is quite steady and is less than that of BTS. The execution time of
StreamMining is less than our proposed algorithm in small datasets (2,000 K and 4,000 K),
but is greater than DSM-FI in large datasets (8,000 K and 10,000 K). It shows that DSM-FI
performs more efficiently than BTS. In Fig. 10b, the memory usage of DSM-FI is more stable
and extremely less than that of BTS and StreamMining. It also shows that DSM-FI algorithm
is more suitable for mining frequent itemsets in large-scale data streams.

5 Conclusions and future work

In this paper, we proposed a new, single-pass algorithm, called DSM-FI (data stream mining
for frequent itemsets), which mines the set of all frequent itemsets in the landmark model
of data streams. In the DSM-FI algorithm, a new in-memory summary data structure, called
SFI-forest (summary frequent itemset forest), is constructed for storing the frequent and
significant itemsets of the streaming data generated so far. An efficient frequent itemset search
mechanism, called todoFIS (top-down Frequent Itemset Selection), is developed to find the
set of all frequent itemsets from the current SFI-forest. Experiments with synthetic data
streams show that DSM-FI is efficient on both sparse and dense datasets, and demonstrates
linear scalability to vary long data streams. Moreover, DSM-FI outperforms the well-known,

123

96 H. F. Li et al.

single-pass algorithms BTS and StreamMining for mining frequent itemsets over the entire
history of the streaming data.

There are still many interesting research issues related to the extensions of DSM-FI
algorithm, such as mining dynamic data streams, mining top-k frequent itemsets in streaming
data, and mining constraint-based frequent itemsets in a landmark window over continuous
data streams.

References

1. Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large data-
bases. In: Buneman P, Jajodia S (eds) Proceedings of the 1993 international conference on management
of data, Washington, D.C., pp 207–216

2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Bocca J, Jarke M, Zaniolo
C (eds) Proceedings of the 20th international conference on lery large data bases, Chile, pp 487–499

3. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream systems.
In: Popa L (eds) Proceedings of the 21th ACM SIGACT-SIGMOD-SIGART symposium on principles of
database systems, Wisconsin, USA, pp 1–16

4. Chang J, Lee W (2004) Decaying obsolete information in finding recent frequent itemsets over data
stream. In:IEICE transactions on information and systems, vol E87-D, no. 6, pp 1588–1592

5. Chang J, Lee W (2004) A sliding window method for finding recently frequent itemsets over online data
streams. J Inf Sci Eng 20(4):753–762

6. Cheng J, Ke Y, Ng W (2006) A survey on algorithms for mining frequent itemsets over data streams.
Knowl Inf Syst Doi:10.1007/s10115-007-0092-4

7. Chi Y, Wang H, Yu P, Muntz R (2006) Catch the moment: maintaining closed frequent itemsets over a
data stream sliding window. Knowl Inf Syst 10(3):265–294

8. Dang X, Ng W, Ong K (2007) Online mining of frequent sets in data streams with error guarantee. Knowl
Inf Syst, Doi:10.1007/s10115-007-0106-2

9. Giannella C, Han J, Pei J, Yan X, Yu P (2003) Mining frequent patterns in data streams at multiple time
granularities. In:Data mining: next generation challenges and future directions, AAAI/MIT, Kargupta H,
Joshi A, Sivakumar K, Yesha Y (eds), pp 191–212

10. Golab L, Özsu M (2003) Issues in data stream management. ACM SIGMOD Rec 32(2):5–14
11. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-

pattern tree approach. Data Min Knowl Dis 8(1):53–87
12. Jin R, Agrawal G (2005) An algorithm for in-core frequent itemset mining on streaming data. In: Procee-

dings of the 5th IEEE international conference on data mining, Houston, TX, USA, pp 210–217
13. Lin C, Chiu D, Wu Y, Chen A (2005) Mining frequent itemsets from data streams with a time-sensitive

sliding window. In: Proceedings of 2005 SIAM international conference on data mining, Newport Beach,
CA, USA

14. Manku G, Motwani R (2002) Approximate frequency counts over data streams. In: Proceedings of the
28th international conference on very large data bases, Hong Kong, China, pp 346–357

15. Teng W, Chen M, Yu P (2003) A regression-based temporal pattern mining scheme for data streams.
In: Freytag J, Lockemann P, Abiteboul S, Carey M, Selinger P, Heuer A (eds) Proceedings of the 29th
international conference on very large data bases, Berlin, Germany, pp 93–104

16. Wong R, Fu A (2006) Mining top-k frequent itemset from data streams. J Data Min Knowl Dis 13(2):193–
217

17. Yu J, Chong Z, Lu H, Zhou A (2004) False positive or false negative: mining frequent itemsets from high
speed transactional data streams. In: Nascimento M, Özsu M, Kossmann D, Miller R, Blakeley J, Schiefer
K (eds) Proceedings of the 30th international conference on very large data bases, Toronto, Canada,
pp 204–215

18. Zhu Y, Shasha D (2002) StatStream: statistical monitoring of thousands of data streams in real time.
In: Proceedings of the 28th international conference on very large data bases, Hong Kong, China,
pp 358–369

123

http://dx.doi.org/10.1007/s10115-007-0092-4
http://dx.doi.org/10.1007/s10115-007-0106-2

DSM-FI: an efficient algorithm for mining frequent itemsets in data streams 97

Author Biographies

Hua-Fu Li received the Ph.D. degree in Computer Science from Natio-
nal Chiao-Tung University, Taiwan, in 2006, under Prof. Suh-Yin Lee’s
supervision. He also received the B.S. and the M.S. degrees in Computer
Science and Engineering from Tatung Institute of Technology, Taiwan,
and in Computer Science from National Chengchi University, Taiwan,
in 1999 and 2001, respectively. He is currently an Assistant Professor of
Computer Science at Kainan University, Taiwan. His research interests
include stream data mining, web data mining, multimedia data mining,
and multimedia systems. He has published more than 20 papers in his
research areas. He is the recipient of the International Computer Sym-
posium 2004 Best Paper Award.

Man-Kwan Shan received the B.S. degree in Computer Engineering
and the M.S. degree in Computer and Information Science both from
National Chiao-Tung University, Taiwan, in 1986 and 1988, respectively.
From 1988 to 1990, he served as a lecture in the Army Communications
and Electronics School. Then, he worked as a lecture at the Compu-
ter Center of National Chiao-Tung University, where he supervised the
Research and Development Division. He received the Ph.D. degree in
Computer Science and Information Engineering from National Chiao-
Tung University in 1998. Then he joined the Department of Computer
Science at National Chengchi University as an assistant professor. He
became an associated professor in 2003. His current research interests
include data mining, multimedia systems, and multimedia mining. He
has supervised students who were the winner of 2003 National Science
Council Excellent M.S. Thesis Award, the winner of 2003 Acer Long

Term Award for Excellent Thesis, the winner of 2000, 2003 National Science Council Excellent Undergraduate
Research Award.

Suh-Yin Lee received the B.S. degree in electrical engineering from
National Chiao-Tung University, Taiwan, in 1972, and the M.S. degree
in computer science from University of Washington, U.S.A., in 1975,
and the Ph.D. degree in computer science form Institute of Electro-
nics, National Chiao-Tung University. She has been a professor in the
Department of Computer Science and Information Engineering at
National Chiao-Tung University since 1991, and was the chair of
that department in 1991–1993. Her research interests include content-
based indexing and retrieval, distributed multimedia information system,
mobile computing, and data mining.

123

	DSM-FI: an efficient algorithm for mining frequent itemsets in data streams
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contributions
	1.3 Roadmap

	2 Problem definition
	3 The proposed DSM-FI algorithm
	3.1 Effective construction and maintenance of summary data structure
	3.2 Pruning infrequent information from the current SFI-forest
	3.3 Determining frequent itemsets from the summary data structure
	3.4 Theoretical analysis

	4 Performance evaluation
	4.1 Scalability study of DSM-FI
	4.2 Comparisons with algorithms BTS and stream mining

	5 Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

