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Abstract—This paper addresses the development and hardware
implementation of an efficient hierarchical motion estimation algo-
rithm, HMEA, using multiresolution frames to reduce the compu-
tational complexity. Excellent estimation performance is ensured
using an averaging filter to downsample the original image. At the
smallest resolution, the least two motion vector candidates are se-
lected using a full-search block matching algorithm. At the middle
level, these two candidate motion vectors are employed as the center
points for small range local searches. Then, at the original reso-
lution, the final motion vector is obtained by performing a local
search around the single candidate from the middle level. HMEA
exhibits regular data flow and is suitable for hardware implementa-
tion. An efficient VLSI architecture that includes an averaging filter
to downsample the image and two 2-D semisystolic processing ele-
ment arrays to determine the sum of absolute difference in pipeline
is also presented. Simulation results indicate that HMEA is more
area-efficient and faster than many full-search and multiresolution
architectures while maintaining high video quality. This architec-
ture with 59K gates and 1393 bytes of RAM is implemented for a
search range of [ 16.0, +15.5].

Index Terms—Hierarchical, motion estimation, multiresolution,
VLSI.

I. INTRODUCTION

T HE MOST complex part of popular video compression
standards, including MPEG-4, MPEG-2, and MPEG-1, is

motion estimation. The goal of motion estimation is to remove
the temporal redundancies existing in adjacent frames, and the
block-matching algorithm is used as a method for most of the
video coding systems. It is used to find a block which is most
similar to a current block within a predefined search area in a
reference frame, and it dominates the encoded image quality,
the compression ratio, and the computation time. The reference
frame is a previously encoded frame from the sequence and
is before the current frame in the display order. The straight
forward method to perform the operation is full-search block
matching algorithm (FSBMA), but it requires lots of manipula-
tions due to its high complexity. Usually, FSBMA spends about
70% of the total encoding time, and this heavy computational
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load limits the performance of the encoder in terms of encoding
speed and power consumption. Therefore, many VLSI architec-
tures for FSBMA have been proposed for fast hardware imple-
mentation [1]–[9]. In these architectures, a result is observed
that although FSMBA is easy to be implemented and can pro-
vide better compression quality, it has either large chip area or
low speed. Traditionally, frameworks of FSBMA are block-level
pipelined, where one reference block is considered at a time and
the parameters are reset before starting another reference block.
Compared with them, the frame-level pipelined FSBMA imple-
mentations can achieve nearly 100% fully pipelined computa-
tion by exploiting the explicit frame-level parallelism [10]. He
et al. proposed a new two-level nested Do-loop FSBMA and a
novel 2-D array motion estimation architecture [11]. However,
its processing element (PE) array size is fixed to , and will
limit the capability. Therefore, they extend their design [12], and
develop a scalable improved frame-level pipelined architecture,
which reduce the internal FIFOs and increase the speed of [11].
It contains 1024 PEs and can manipulate a motion vector (MV)
in 256 cycles within a search range of [ 16, 15].

To reduce the number of search steps of FSBMA in order
to increase the overall speed is essential. The fast FSBMA, in-
cluding the successive elimination algorithm (SEA) [13]–[15],
partial distortion elimination (PDE) [16], the winner-update
algorithm [17], and the advanced diamond search algorithm
(DSA) [18] are proposed to reduce the computational heavy
load of FSBMA while maintaining its quality. However, the
irregular data flow makes these algorithms suitable only for
software implementation owing to their inability to determine
exactly how many of the sum of absolute differences (SADs)
operations are required to calculate a single MV. Huang et al.
proposed a new block matching algorithm called the global
elimination algorithm (GEA), which is modified from SEA
[19], [20]. GEA has a more regular data flow than SEA. More-
over, the processing cycles are fixed, no initial guess is needed,
and the conditional branch that applies when a candidate block
cannot satisfy the criterion for early termination is removed.
Although GEA is easily implemented and capable of providing
good quality, it requires an operating frequency of 19.42 MHz
to manipulate the MVs of CIF image in real-time.

Besides, in order to refine the accuracy of DSA, several new
algorithms, such as motion vector field adaptive search technique
(MVFAST) [21], predictive MVFAST (PMVFAST) [22], and
enhanced predictive zonal search (EPZS) are proposed [23].
MVFAST improve DSA in both terms of visual quality and speed
up by initially considering a small set of predictors. Unlike DSA
where only a large moving diamond pattern was considered, MV-
FAST also introduced a smaller moving diamond. PMVFAST
uses basically the same architecture and patterns as MVFAST
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does, but a significant difference of PMVFAST compared to
MVFAST is the way the small versus the large diamond is se-
lected. Dissimilar to MVFAST where motion was characterized
as low, medium, or high by considering the largest motion vector
candidate, in PMVFAST a different selection strategy, which
can improve the overall speed of the algorithm by using the large
diamond less often, is used. Furthermore, EPZS that improves
upon PMVFAST by considering several other additional predic-
tors in the generalized predictor selection phase of PMVFAST.
EPZS also selects a more robust and efficient adaptive threshold
calculation where as, due to the high efficiency of prediction
stage, the pattern of the search can be considerably simplified.
However, the disorderly early termination of the search proce-
dure still leads to the poor performance. An architecture, which
combines PMVFAST and EPZS, is developed, and it can be
configured to support different search patterns, and independent
SAD computations [24]. The implementation results show that it
requires 1042 cycles to manipulate an MV, and it does not entirely
complete the PMVFAST and EPZS due to their high complexity.

Another motion estimation algorithm that can significantly
reduce the computational complexity by decreasing the number
of computations is the hierarchical motion vector search algo-
rithms (HMVSA), including three-step search (3SS) [25], new
three-step search [26], and four-step search [27], which sepa-
rate the estimation process into several levels, and the numbers
of levels is fixed. HMVSA has regular data flow, and the total
execution time is constant, so HMVSA is suitable for hardware
implementation. However, HMVSA suffers from a considerably
lower peak signal-to-noise ratio (PSNR) than FSBMA, espe-
cially when the motion field is large and complex.

A particular HMVSA is developed to solve this problem,
called the multiresolution motion estimation algorithm
(MMEA), whose basic idea of MMEA is to make an ini-
tial coarse estimate and then refine it. Conventional MMEAs
are usually implemented in two ways. One is to use a variable
search area at each level [28]–[31], and the other is to apply a
constant search area [32]–[34]. In the former, an MV candidate
is obtained from a large search area at the coarse level and the
candidate becomes the search center of the next level, which
has a smaller search area. A larger search area corresponds to a
more accurate MV, but the extent of motion may increase with
the search area. Therefore, the first MV candidate may not be
a good estimate, and will yield an incorrect result at the next
levels. Although the latter approach can partially solve this
problem since the search area is constant at all levels, the MVs
may be less robust against noise.

The above MMEAs that choose only one MV candidate fall
easily into the local minimum, so numerous algorithms that
combine the scheme with a multiple MV candidate search have
been proposed [35]–[39]. However, these methods have a high
computational cost to get the prediction performance close to
that of FSBMA, because multiple MV candidates are required
for local searches at each level. In these algorithms, the method
for downsampling the image is to select one of four pixels in
a block. This method may be inappropriate if the block is the
edge of a video object, and will influence the image quality, in
terms of PSNR of the image. Accordingly, more MV candidates
are required to yield an encoded image quality close to that

of FSBMA. If the MV candidates are not only chosen by the
basis of minimum SAD, such as by the neighborhood relaxation
scheme in [38] or the four candidates, which correspond to four
differently superblocks [31], the complexity will be increased.

Many hardware architectures for MMEA have been imple-
mented [29], [40]–[43]. In [29], the framework is at the ex-
pense of a chip area because the on-chip memory is large. Each
multiresolution level in [40] and [41] has its own specific sys-
tolic array, which cannot commonly be applied among different
levels, reducing the performance in terms of logic gate usage.
[42] has a small chip area, but the reuse of data and the SAD
computations are inefficient. Therefore, the overall speed is re-
duced, and it will limit its applications that require low oper-
ating frequency to save the power consumption such as mobile
phones and portable multimedia recorders. In [43], although the
reuse of data is efficient, a large on-chip memory is required.

In this paper, an efficient hierarchical motion estimation al-
gorithm (HMEA) and its VLSI architecture are proposed. The
main contributions of this paper are to analyze several down-
sampling methods, discuss which method is suitable for hard-
ware implementation, and derive a high speed pipeline VLSI ar-
chitecture. HMEA adopts an averaging filter to downsample the
original image, which is the first step of the estimation progress.
In these hardware frameworks for MMEA [29], [40]–[43], the
downsampling methods are not addressed due to the hardware
cost. However, when superior quality is obtained in the ante-
rior part of the motion estimation, the refining procedures can
be significantly shorter and the complexity can be reduced ac-
cordingly. HMEA can achieve almost the same coding perfor-
mance as FSBMA in terms of PSNR, but HMEA is faster. The
MV will be more credible and the search speed is higher as the
search area increases. Furthermore, the proposed HMEA limits
the number of MV candidates to two at the coarse level, and
sets the total number of levels to three to solve the significant
problem of the local minimum. An averaging filter is employed,
so a single candidate at the final level suffices to provide the de-
sired performance.

A high-speed pipeline VLSI architecture with a reasonable
chip area for HMEA is also addressed. It utilizes an efficient
2-D PE array to compute the SADs, and the search range can be
doubled without adding any hardware. The architecture is suit-
able for VLSI implementation because the number of the com-
putations for each macro block (MB) is fixed. HMEA is faster
and more area-efficient than numerous existing full-search and
multiresolution architectures.

The rest of this paper is organized as follows. Section II shows
HMEA and the simulation results. Section III presents the VLSI
architecture. Section IV depicts the results of implementation,
and Section V draws conclusions.

II. HIERARCHICAL MOTION ESTIMATION ALGORITHM

HMEA can be divided into two parts. One is the averaging
filter for downsampling, and the other is the MV search proce-
dure. The complete algorithm is described as below.

A. Downsampling Methods

HMEA comprises three resolution levels, from zero to two.
Level 0 is the top level, and level 2 is the lowest. The number
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Fig. 1. The hierarchical frame structure.

of pixels at the next lower level is reduced to one-quarter the
number at the upper level. Fig. 1 shows the hierarchical frame
structure, and the W and H are the width and the height of the
image, respectively. The MB size changes from 16 16, through
8 8, to 4 4 at levels 2, 1, and 0, respectively.

In block matching algorithm, SAD is an important procedure,
and its value at level l can be defined as

SAD

(1)

where is the th input image, and is the level number and
.

In (1), the computational complexity of the matching process
can be seriously reduced. At level 1, the computational com-
plexity is only one-quarter than that at level 2, and that at level
0 is one-quarter than that at level 1.

Numerous approaches are available to reduce an image.
In this paper, three different methods, left-top, 2-D discrete
wavelet transform (2D-DWT), and averaging filter are adopted.
The comparison of these methods in computational complexity,
performance and hardware implementation are discussed. The
bicubic interpolation that can provide better performance is not
in consideration since its complexity is much more than the
other methods. Besides, when it comes to reducing the image
with 50% in both width and height, the quality is not as better
as it of enlarging the frame.

Left-Top Method: The left-top method is one of the simplest
approaches for subsampling an image. For the th input frame,

, the upper level images are computed by executing the
following downsampling:

for (2)

where represents the gray level value at the position
of the th frame at level .

In the hardware implementation, the arithmetic operations are
not necessary, and the output image can be generated by in-
putting the original one by specific order directly. The only cy-
cles required are for moving data, and no extra hardware design
is essential.

2D-DWT: In image processing, most of the power associated
with natural image signals tends to be in the low frequency band.
Accordingly, the analysis of the low frequency band must be
more extensive than that of the high frequency band. In prac-
tical applications, the low frequency band, decomposed from
DWT, is further analyzed through second level DWT processing

Fig. 2. Examples of 2D-DWT downsampling. (a) Frequency bands after two-
level DWT decomposition. (b) Original Akiyo image. (c) Reduction of Akiyo
image 50% in both width and height. (d) Reduction of Akiyo image 25% in both
width and height.

Fig. 3. The relationship between the 2D-DWT and the downsampled images.

to yield more detail of the analysis signal at the lower frequency
band. Such analysis is referred to as multiresolution. Haar’s and
Antonini 9/7 Wavelet Transform is used to increase the speed
of execution of the wavelet transform [44]. The 2D-DWT is ap-
plied as a one-dimensional DWT in the horizontal direction and
then another in the vertical direction.

Fig. 2(a) plots the corresponding locations of the images of
the frequency bands decomposed by 2D-DWT. Fig. 2(c) and
Fig. 2(d) shows the subsampled results obtained using the Akiyo
image, displayed in Fig. 2(b), after two levels of DWT pro-
cessing. Fig. 2(c) and Fig. 2(d) truncate the values that are above
255 and below 0 for demonstration, but the value are retained in
the evaluation progress. As shown in Fig. 3, for the th frame,

and are the LL band of the first and the
second order decomposition, respectively.

There are some problems existing in this downsampling
method. Firstly, the computational complexity is heavy because
it requires more additions and more multiplications for sub-
samping one pixel. Secondly, in the normal hardware design, 8
bits are required to store the gray level value of the pixel from
0 to 255. However, the range of the downsamping pixel by
2D-DWT goes beyond 0 to 255, and more bits are necessary.
Therefore, the memory bandwidth of the hardware architecture
and the chip area will be increased. Although the range of the
pixels can be normalized into 0 to 255 to reduce the bandwidth,
the extra hardware for normalization is essential. The compu-
tational complexity and the die size will be also increased.

Averaging Filter: This method is the same as the bilinear in-
terpolation that rescale the image with 50% in both width and
height. Therefore, the quality of the reduced image can be en-
sured. For the th input frame, , the upper level images
are computed by executing the following downsampling:

for (3)
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Fig. 4. The correlations between the adjacent images for averaging filter,
left_top method, Haar DWT, and Antonini 9/7 DWT in: (a) Flower garden;
(b) Stefan; and (c) Mobile.

where represents the value at position of the
th frame at level .
The hardware implementation for the averaging filter is

simple, and only three additions and one bit shift operations are
required for subsampling one pixel.

Comparison: The main purpose of the motion estimation
is to eliminate the temporal redundancies existing in adjacent
frames. Therefore, the quality will be increased when higher
correlation exists between the successive images. The correla-
tion is defined as

(4)
where and are the means of and ,
respectively.

Fig. 4 shows that the correlations between the downsampled
images. It is observed that the correlations of the Haar DWT and
the averaging filter are almost the same, and are much greater
than the left-top and the Antonini 9/7 DWT methods, especially
in the video sequences that their backgrounds are more com-
plex. In Table I, the estimation results are depicted, and it shows
that the average PSNR of Haar DWT and the averaging filter

TABLE I
THE COMPARISON OF THE VIDEO QUALITY BETWEEN VARIOUS

DOWNSAMPLING METHODS FOR LEFT-TOP, HAAR’S DWT, ATONINI’S 9/7
DWT, AND THE AVERAGING FILTER IN dB

are similar. Moreover, the image quality of the left-top method
is bad, and Antonini 9/7 DWT even gets worse quality than it
in some cases. The results indicate that downsampling method
plays a very important role in MMEA. The estimation perfor-
mance of adopting averaging filter significantly exceeds that of
the method that considers only the left-top pixel, and can be used
to design an efficient downsampling hardware architecture.

The fact that the performance of the Antonini 9/7 DWT is
worse than that of the Haar DWT is unexpected. Theoretically
speaking, the Antonini 9/7 DWT can reserve more informa-
tion in low frequency band since it adopts higher order filters.
However, the statement stands only when the inverse transform,
which is not executed in the downsampling procedures, is per-
formed. Therefore, Antonini 9/7 DWT requires higher compu-
tational power, but it provides poor quality in the downsampling
stage of HMEA. Moreover, if the scaling factor of Haar DWT
is replaced by 1/2, the results are exactly the same as the aver-
aging filter, and can get rid of the dynamic range problem. The
reason of the averaging filter outperforms the Haar DWT is that

is chosen as its scaling factor, and this will cause the inac-
curacy of the values of downsampled pixels. Considering both
the coding performance and the hardware design, the averaging
filter is chosen to downsample the image in HMEA.

B. Framework of HMEA

The overall searching process can be separated into three
levels. As presented in Fig. 1, when level 2 receives an input
image , the image will be downsampled to and

, where the resolutions of and are one-
quarter and one-sixteenth of that of , respectively. Let the
entire search range at level 2, or , be . After the
original image has been downsampled, the search pro-
cedure, illustrated in Fig. 5, begins. Let Cur , Pre ,
and MV denote the current MB, the previous frame search
area, the th search area and the th MV candidate at level l, re-
spectively. The detailed process at each level will be described
below.

Search at Level 0: Two MV candidates, MV and MV ,
are manipulated at this level. MV is defined as the least MV
that obtained by a full search within a given search area, i.e.,

MV SAD (5)

and MV is the second least MV, i.e. MV MV over the
area .
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Fig. 5. The hierarchical search procedure.

TABLE II
THE PSNR PERFORMANCE AND THE COMPLEXITY, C, ANALYSIS IN DIFFERENT

NUMBER OF THE MV CANDIDATES AT THE COARSEST LEVEL

According to Fig. 5, Cur is a 4 4 block, and Pre is a
12 12 previous frame search area. In level 0, the search range
is only one-quarter that at level 2, and the number of operations
is much lower. The experimental results presented in Table II
clearly reveal that if three least minimum MV candidates are
selected, the performance only increases slightly. Hence, only
2 MV candidates are chosen. Accordingly, the computational
complexity can be reduced, and the performance maintained.

Search at Level 1: Local searches are performed around these
two MV candidates from level 0. The local search range (LSR)
is also an important issue for HMEA, and it is smaller than that
at level 0 to reduce the number of operations. If LSR is too
small, the estimation results may be incorrect when the move-
ment of the MB is big. On the other hand, if LSR is too large,
the computational complexity will be increased greatly. Further-
more, the hardware design must be considerate. If LSR in the
different levels are not the same, two hardware blocks are re-
quired, and the chip area will be increased. Thus, LSRs are the

TABLE III
THE PSNR PERFORMANCE AND THE COMPLEXITY, C, ANALYSIS IN DIFFERENT

LSRS IN THE MIDDLE AND THE FINEST LEVEL

same in level 1 and level 2 of HMEA. Table III shows that the re-
lationship between the LSR and the estimation performance. Al-
though the PSNR increases when LSR extends, the complexity
is also raised. The improvement of the PSNR for LSR from 2
to 3 is not as great as it from 1 to 2. Based on these test results,
LSR equal to 2 is chosen.

In Fig. 5, Cur is an 8 8 block, and Pre is a 12 12 pre-
vious frame search area. Cur performs two full local searches,
whose LSR equals 2, over two search areas , , to
refine the search results from level 0, and , denote the
corresponding MV candidate from level 0. Following the local
searches, an MV candidate MV can be determined

MV SAD (6)

where , and

.
Search at Level 2: MV is found by a local search around

the MV candidates from level 1

MV SAD (7)

where
MV

As illustrated in Fig. 5, Cur is a 16 16 block, and Pre is
a 20 20 previous frame search area. The MV searching process
is completed when MV , defined in (8), has been determined

MV MV MV MV (8)

Half-Pel Search: After MV is manipulated, the half-pel
search is started. Therefore, the neighboring half accuracy pixels
of the MV have to be calculated, and a total of 833 pixels and
eight SADs are necessary. The complexity of the half-pel search

is defined as (9), and it is combined with the pixels and the
SAD operations

(9)

where , , and are the number of operations required
to compute a half accuracy pixel, the SAD operation, and the
frame rate, respectively. Fortunately, the downsampling stage
of HMEA has already calculated 144 pixels for half-pel search
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so the complexity of half-pel search for HMEA, ,
can be reduced as (10)

(10)

Complexity Analysis: The overall search procedure includes
the downsamping stage , the integer-pel search,
and the half-pel search, and is defined as (11). The
half accuracy pixels only need one addition to manipulate where
the preprocessed pixels for HMEA requires three of them, and
the shift operation can be reduced by reading the higher bits of the
pixel. Therefore, the cycles for downsampling a pixel are three
times to them for the half accuracy pixels. During the overall
search procedure, the search complexity is described as (12)

(11)

(12)

where represents the search complexity in level . In the
case of FSBMA, computational complexity is given by (13)

(13)
The SAD operation for a pixel, which is described in (1),

needs 256 additions, and 256 subtractions, and the manipulation
for a half accuracy pixel only requires one addition. Therefore,
the relationship between and can be illustrated as (14)

(14)

Equations (9) to (13) demonstrate that the computational
complexity of HMEA will be only 3.9% and 1.3% of that of it
of FSBMA for of 16 and 32, respectively.

C. Experimental Results

The MPEG test video sequences News, Foreman, Flower
garden, Table tennis, Stefan, and Mobile are used to evaluate
the performance of HMEA.

All the sequences consist of 300 frames; the frame rate is 30
frames/s, and the image size is CIF. The search range is defined
as where . The mean square error (MSE),
and PSNR is used for the measurement of performance. MSE is
defined as (15)

MSE (15)

where is the th motion compensated image, respectively.
PSNR is an engineering term for the ratio between the maximum
possible power of a signal and the power of corrupting noise that
affects the fidelity of its representation. PSNR is defined as (16)

PSNR MAX MSE (16)

TABLE IV
THE COMPARISON OF THE COMPLEXITY, INCLUDING HALF-PEL SEARCH,
BETWEEN FSBMA, NSS, MRMC-4, MRMCS AND HMEA IN DIFFERENT

SEARCH RANGES

TABLE V
THE PSNR COMPARISONS OF VARIOUS FAST-SEARCH ALGORITHMS IN dB

where MAX is the maximum pixel value of the image. Since
the pixel in the evaluation is from 0 to 255, the PSNR can be
modified as (17)

PSNR MSE (17)

The performance of HMEA is compared to that of two well-
known algorithms: FSBMA and n-step search (nSS) [45], and
two MMEA algorithms, MRMC-m [39] and MRMCS [42]. nSS
is a general version of the 3SS to cover the increased search
ranges ( for respectively). MRMC-m
is a MMEA based on multiple candidates, and it has m-candi-
dates at each resolution. MRMCS uses three MV candidates at
level 1, and two of the MV candidates that are obtained on the
basis of minimum matching error at level 0, and the other one
is based on the spatial MV correlation. MRMC-m and MRMCS
are both using left-top method for downsampling the images,
and they also keep multiple winners at the top level. All al-
gorithms are implemented by the standard C language to esti-
mate the PSNR performance, and the input sequences are all the
same, which can avoid the distinct quality due to the different
fragment in the same test patterns. Since the software model
cannot represent the hardware architecture, the estimation speed
and the memory usage will be discussed in Section IV.

Tables IV and V present the results. Table IV describes the
complexity of these four algorithms in the various search area,
and Table V shows the performance in terms of PSNR. In order
to truly reflect the MV accuracy, the estimation results are
made by the MB and the corresponding MV without the in-
flation of the error residuals. According to these tables, HMEA
provides a prospective PSNR performance that is close to that
of FSBMA, and a greater search range corresponds to a lower
complexity. Although the averaging filter has higher compu-
tational complexity than the left-top method which MRMCS
and MRMC-m adopted, the number of the MV candidates in
level 1 of HMEA is less than these two MMEAs. Moreover,
HMEA has not only lower SAD operations in the integer pixel
search, but also a smaller number of pixel interpolations for the
half-pel one. The reduced arithmetic can compensate the extra
manipulations of the averaging filter. Therefore, the overall
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Fig. 6. The hierarchical search procedure.

complexity of HMEA is smaller than MRMCS and MRMC-m.
In Table IV, nSS exhibits the lowest computational complexity
with consistency that is proper for hardware implementation.
However, it can be observed that nSS provides the lower PSNR
especially for the sequences that have fast motion. Besides,
although MRMC-m also needs a consistent computational
complexity, it contributes the worse PSNR than MRMCS and
HMEA for similar computational complexity. Meanwhile, the
PSNR of HMEA is slightly less than MRMCS in the video
sequences that contain high motions since MRMCS applies
an MV candidate based on spatial correlation in an MV field.
However, MRMCS needs many more cycles to manipulate
the MV candidates. Based on the computational complexity
resultes determined by the tests, HMEA is the most suitable
algorithm for VLSI implementation.

HMEA can reduce more SAD operations when the image
resolution is larger from (12) and (13), and in SD and HD
resolution, the reduced complexity is 3.4 and 9.1 times of
that in CIF. Furthermore, the use of averaging filter improves
the estimation accuracy of HMEA. This can be examined in
Table V by comparing the performance between MRMC-m and
HMEA. By changing the downsampling method, HMEA can
reduce the number of the MV candidates at level 1 and even
obtain the better PSNR than MRMC-m. For video sequences
having large motion, the effect becomes more noticeable. As a
result, in HMEA, only one local search is performed at level 2,
and two MV candidates are enough for maintaining the good
quality. Therefore, the overall computational cost and data
bandwidth burden of HMEA decrease.

III. PROPOSED VLSI ARCHITECTURE

HMEA, described in Section II, is mainly for low bit-rate
video coding in MPEG-4. Therefore, a search range of [ 16.0,

15.5] is adopted. In this VLSI architecture, a 2-D difference
accumulation unit (DAU) is proposed for the VLSI architecture.
Based on this 2-D architecture, the image data can be input to
the DAUs in pipeline, and the encoding speed can be greatly in-
creased while maintaining a negligible degradation in the coding
performance.

A. Overall Architecture

As stated in Section II, HMEA comprises three levels, and
the computation proceeds at each level with different MB sizes
and search ranges. A basic computational component performs
a 4 4 block FSBMA within the search range of [ 2, 2] at all
levels. Therefore, a DAU that executes a 2 FSBMA for a 4 4
subblock is introduced. Each DAU is divided into five-stage
pipelines, each of which has five PEs, to compute the SADs.
Two DAUs are adopted to complete the process. Accordingly,
the efficiency of data reuse can be markedly improved, and the
encoding speed can be increased. Fig. 6 shows the overall archi-
tecture. HMEA consists of two DAUs, an address generator, two
comparators, 14 registers, and memory banks. As stated above,
the block size and the search range are different at each level,
and one DAU can compute an SAD of a 4 4 block. There-
fore, when the computational proceeds to level 1 and level 2,
SAD should be accumulated twice and eight times, respectively.
Block 1 in Fig. 6 is the accumulator for level 1 and level 2. The
advanced prediction mode should compare SADs of four 8 8
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Fig. 7. The hierarchical search procedure.

subblocks in a 16 16 MB, to predict an MV, and Block 2 is
employed in this mode (8 8 prediction mode). The memory
banks and the address generator provide a scheduled data flow to
DAUs to calculate SAD . The registers are used to delay the
data input to fit the timing designed in Fig. 7, which is the timing
diagram of level 0. The search window of the previous frame is
divided into two parts, which are input to different DAUs. Thus,
the image data can be reused more effectively, and selecting an
MV takes only 56 cycles.

B. Downsampling

Downsampling is the preprocessing part of this motion esti-
mation architecture. A simple way to downsample an image is to
input all of the image data to RAM, and then average four pixels
as a single pixel. After numerous manipulations, an image that
has one-quarter of the original resolution is generated. This ap-
proach requires a large part of the available memory to store the
original image, and this large amount of memory substantially
increases the die size. A pipelined hardware is derived to down-
sample the images to fit the limitations on the memory and the
die size. Fig. 8 shows an example of downsampling four rows of
level 2, where is the th pixel of the th row, row , at level l,
and Figs. 9 and 10 illustrate the pipelined downsampling hard-
ware for levels 2 and 1, respectively. DP , RAM , and Sum
are the data path of row , the on-chip memory of each DP, and

Fig. 8. Downsampling four rows of level 2.

Fig. 9. The downsampling hardware block diagram for level 2.

Fig. 10. The downsampling hardware block diagram for level 1.

the temporal summation registers. In Fig. 8, four rows of level 2
are subsampled to get two rows of level 1 and one row of level
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Fig. 11. The architecture of a 2-D DAU.

0 each loop, and a total of 72 loops are required for one CIF
image. The procedure is described step by step as follows.

1) As shown in Fig. 9, row is input to DP . After row has
been processed, the results of and
are stored in RAM .

2) row is input to DP , and the result of row is stored in
RAM . At the same time, the data output by the second
stage of the pipeline register in DP , , , , and

, are input to DP , and the results of and
are stored in RAM .

3) row is input to DP , and the results of and
are stored in RAM .

4) row is input to DP . As in step 2, the result of row is
stored in RAM , and , , , and are input to
DP . Then, the result of row will be stored in RAM .

5) Finally, RAM , RAM , and RAM contain the results of
levels 1 and 0, respectively.

6) Repeat steps 1 to 5 a total of 71 times to complete the
downsampling procedure of a CIF image.

A row of CIF images has 352 pixels, and four bytes are input
per cycle. Thus, 88 cycles are required to fetch a row of level
2, and 22 cycles to get a row of level 1. The pixels are down-
sampled in pipeline, so the addition operation and the data input
are generally performed simultaneously to significantly increase
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the overall speed. Nevertheless, 22 extra cycles are required for
storing one row of level 0 into RAM5. In this architecture, four
rows of level 2 and two rows of level 1 are input and one row
of level 0 is stored in one turn. Hence,

cycles are needed for a CIF image.
Therefore, 76 cycles are required for an MB.

C. DAU

HMEA works after the downsmapling process. The number
of PEs in DAU is decided by the operating frequency, the reso-
lution of the images, and the search area. More PEs will increase
the estimation speed but enlarge the chip area. Since the basic
search range is 2, five PEs will be a stage, and five-stage 2-D
semisystolic architecture is adopted as a DAU which is shown
in Fig. 11. The basic search unit (BSU) is a one-dimensional
systolic PE array [42]. The reuse of data is not good enough, so
the current block and previous block data must be loaded again
in each loop. The architecture requires 40 mega clock cycles
to complete the motion estimation of 30 CIF images. If other
system overhead, such as bus arbitration or software overhead,
must be considered, real-time encoding will be difficult. Ac-
cordingly, an enhanced 2-D semisystolic DAU architecture with
improved data reuse capability uses two DAUs to improve the
processing speed. HMEA reduces the bandwidth requirement
by 80% and only 5.88 mega clock cycles are required to accom-
plish the motion estimation of 30 CIF images.

Fig. 11 depicts the architecture of DAU, for a 4 4 current
block FSBMA whose search range equals 2, and it consists of 25
PEs, flip flops (DFFs), multiplexers (MUXs), and simple logic
for flow control of the input data. The basic data flow is shown in
Fig. 12. The current MB is a 4 4 block and the search window
is a 12 12 block; the search window is partitioned into two
parts, Pl and Pr. The data are input to DAU from C, Pl, and Pr
ports, as illustrated in Fig. 11. Starting from cycle 0, C and Pl
are sequentially read through each port, and after four cycles,
the data is input into Pr. The current MB and the search window
are input into five-stage pipeline PEs with the corresponding
timing, and 25 SADs in a search range of 2 can be calculated.
The PE00 and PE10 will accumulate the SADs associated with
the search positions ( 2, 2) and ( 1, 2), respectively. Sim-
ilarly, the other PEs will compute the SADs of the other search
positions. The main advantage of DAU is that the current MB
and the search area only have to input once. Therefore, only 36
clock cycles are required to generate 25 SADs, where BSU in
[42] needs 80 cycles.

D. DAU Processing at Each Level

Based on DAU architecture and the basic data flow, a mo-
tion estimation architecture, shown in Fig. 6, where Ci, Pli, and
Pri are the input ports of DAUi ( , 1), is developed. Two
DAUs are employed to accelerate the motion estimation and
improve the reusability of data. This architecture is commonly
used among different levels and can extend the search range
without adding additional hardware. The data flow at level 0,
1, and 2 are shown in Figs. 7, 13, and 14, respectively. The de-
tails of the processing at each level are as follows.

1) Level 0: The current MB is a 4 4 block and the search
window is a 12 12 block. The search window is parti-

Fig. 12. The basic data flow of DAU.

Fig. 13. The timing diagram of HMEA for level 1.

tioned into two parts; one part is input to DAU and the
other is for DAU . Fig. 7 shows the data partition and the
data flow. C is fed twice by the current MB and C re-
ceives the same data four cycles thereafter. The left part,
the middle part, and the right part of the search window
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Fig. 14. The timing diagram of HMEA for level 2.

which is illustrated in Fig. 7 are put into Pl , Pr , Pl , and
Pr with the corresponding timing, respectively. After 17
cycles, the 1st SAD will be generated with the relative MV
from DAU and the other SADs and the MVs will also be
available continuously from DAU and DAU . The output
of SADs from DAU and DAU are input to the com-
parator. The minimum SAD and its corresponding MV are
retained in the comparator until the search of level 0 is com-
pleted. After 56 cycles, two MV candidates are obtained.

2) Level 1: The two MV candidates which are found in level
0 are used as the starting point of level 1. Then, FSBMA
with a search range of 2 is used to refine MV. At level 1,
the current MB is an 8 8 block and the search window is
a 12 12 block. The current block is partitioned into four
parts: left-upper, left-bottom, right-upper and right-bottom
(LU, LB, RU, RB), and the search window is partitioned
into three parts, as shown in Fig. 13. C is fed by LU and
LB of the current MB, and C receives RU and RB four cy-
cles later. In the search window, the condition is the same
as that of the search at level 0. The left part, the middle part,
and the right part of the search window, depicted in Fig. 13,
are put into Pl , Pr , Pl , and Pr with the corresponding
timing, respectively. After 17 cycles, the 25 SADs of LU
and RU parts begin to be output from DAU and DAU se-
quentially, and these SADs are sent to block 1 in Fig. 6, to

accumulate with the SADs of LB and RB later. Following
56 cycles, the first SAD of level 1 with the relative MV
are output from 25-stage shift register in Fig. 6, and the
remaining 24 SADs with the MVs are also output sequen-
tially. SADs of level 1 are sent into the comparator and the
minimum SAD with the corresponding MV is retained in
the comparator. After cycles, the first search
of level 1 is finished. Level 0 has two MV candidates, so the
search of level 1 must be performed twice, once for each
of these two MV candidates, to determine which MV is the
proper one. Therefore, searching for level 1 takes a total of
162 cycles per MB.

3) Level 2: The most suitable MV obtained in level 1 is the
start point of the local search in level 2. FSBMA whose
search range equals 2 is performed to refine MV found in
level 1. At level 2, the current MB is a 16 16 block and
the search window is a 20 20 block. The current block is
partitioned into 4 portions (LL, LR, RL, and RR) and the
search window is sparated into five fragments, part 1 to 5,
as shown in Fig. 14. The overall search procedure contains
two rounds.
3.1) The first round: LL is input to C , and LR is fetched

by C four cycles later. Part 1, part 2, and part 3 are
put into Pl , Pr , Pl , and Pr with the corresponding
timing. At the 17th cycle, the first SAD with the
relative MV is input to 25-stage shift register, as
shown in Fig. 6, to be accumulated later with the
other SADs of the remaining parts. Following 88
cycles, these 25 SADs of LL and LR are stored in
the 25-stage shift register.

3.2) The second round: The second round is begun at the
89th cycle; RL begins to be input into the C , and
RR is fetched by C four cycles later. In the search
window, part 3, part 4, and part 5 are put into Pl ,
Pr , Pl , and Pr with the corresponding timing. The
25 SADs are input to block 1 in Fig. 6 and accu-
mulated with the 25 SADs, which were determined
in the first round. At the 152th cycle, the first SAD
of level 0 with the related MV is output from the
25-word circular buffer and input to the comparator.
The minimum SAD and its corresponding MV are
retained in the comparator. At the 176th cycle, the
first MV is output from the 25 word circular buffer,
and the search process in level 2 requires a total of

cycles.

E. Half-Pel Search

After the final integer-pel MV is computed in Section III-D,
a half-pel search is to be performed around it. The search
procedure is similar to it in level 2, and the current block is
also partitioned into 4 partitions for DAUs processing. The
main advantage of HMEA in half-pel search is that the aver-
aging hardware and the on-chip memory for the half accuracy
pixels are already existed. Moreover, some of the pixels are
preprocessed during the downsampling stage described in Sec-
tion III-B. Since the downsampling images and
are no longer necessary, the on-chip memory can be reused to
store the interpolated image. As shown in Fig. 15, denotes
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Fig. 15. Interpolation for half-pel search.

the four-pixel average, and and represent the vertical and
the horizontal two-pixel average, respectively. and are
the pixels which can be directly read from RAM1 to RAM5,
which is shown in Figs. 9 and 10, respectively, and other pixels
can be generated from the downsampling hardware directly.
First, with 17 16 pixels are manipulated and be stored into
the memory for the search area. Since 17 4 pixels of are
already existed in the downsampling stage, the number of the
computations can be reduced. Then, the search steps which is
analogous to them in the level 2 are started, and downsampling
hardware begins to generate with 17 17 pixels by the value
of in pipeline. When is sent to estimate the MV, the values
of can be calculated. A total of 8 SADs of the interpolated
image are computed, and 404 cycles are needed in a half-pel
search.

IV. IMPLEMENTATION RESULTS

The hardware architecture, as described in Section III, is
successfully implemented. Additionally, the estimation per-
formance is the same as the software model addressed in
Section II-C. If the ME module constantly accesses the external
memory of the video coding system, then the system bus will
become too busy. Accordingly, the on-chip SRAM is applied
to store the current block data and the search area data. Data
are reused in the overlapped search area between horizontally
adjacent MBs to reduce the loading cycles. With the high video

quality and the fast speed, HMEA requires 1393-byte on-chip
single port SRAM which are used to store the downsampled
images, the current MB, and the search area for estimation. Al-
though the size of the current MB and the search area vary with
level, the maximum values at level 2 are adopted. The number
of cycles required computing an MV is the sum of the opera-
tions in downsampling stage and different levels, as described
in Section III, which is cycles,
so an operating frequency of only 5.88 MHz is sufficient for
real-time application for CIF images. As for the half-pel search,
no more on-chip memory and logics are added, and a total of

cycles are required for manipulating an MV.
The averaging filter, which is applied by HMEA, can increase

the quality and speed, and it is suitable for half-pel search. In
MMEA, the design of the hardware and the number of mem-
ories needed for downsampling are not mentioned in [42] and
[43]. The VLSI circuits for HMEA were described in VHDL and
synthesized by SYNOPSYS Design Analyzer using UMC 0.18
um CMOS standard cell library. In Table VI, HMEA is com-
pared with three kinds of the hardwareMMEA, FSBMA, and
PMVFAST. Most ME architectures will not work alone, and
they will be integrated into the video encoders. Consequently,
the cycles for calculating an MV of a block and the required op-
erating frequency for the real-time application for CIF images
are estimated. The operating frequency of 30 MHz, which is
quite enough for the video encoders with HMEA to compress
the sequences in CIF format at real-time, is assumed. The com-
parison is illustrated in Table VI. It demonstrates that HMEA
is the fastest architecture in MMEA, and has a reasonable chip
area. The number of PEs dominates the size, so HMEA is a little
larger size with ten times and three times as many PEs as in [42]
and [43] respectively. In [43], the cycles and the area outperform
that of HMEA, but it uses much more memory than HMEA.
The memory will occupy a large die size and greatly increases
the cost. Moreover, it can only support integer-pel search. In
[42], the on-chip memory is lower than HMEA, so the reuse
of data is inefficient. Hence, the required operating frequency
for the real-time application for CIF images is too high. Mean-
while, the comparison of HMEA with FSBMA and PMVFAST
indicates that the area-speed performance of HMEA is better.
In Table VI, three architectures, HMEA, [42], and [8], support
half-pel search, and HMEA is the fastest among them. Due to
the design of the averaging filter, the equivalent gate counts
and the on-chip memory can remain the same in the integer-pel
search. With the low bandwidth requirement of the system bus,
the fixed processing cycles, and the high video quality, HMEA
can be easily integrated in video coding systems.

V. CONCLUSION

This paper has addressed the design and implementation
of HMEA, which efficiently uses an averaging filter for
downsampling and multiple MV candidates for fast search.
HMEA exhibits its advantages by providing not only a PSNR
performance close to that of FSBMA, but also a simple hard-
ware architecture that is appropriate for VLSI implementation.
The developed VLSI architecture includes an averaging filter
to downsample the images and 2-D semisystolic PE arrays
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TABLE VI
THE COMPARISON BETWEEN HMEA WITH OTHER ARCHITECTURES FOR MMEA, FSBMA, AND PMVFAST. THE SEARCH RANGE AMONG EACH FRAMEWORK

IS DIFFERENT, THE EQUIVALENT GATE COUNTS INCLUDES CONTROL AND ADDRESS GENERATION OVERHEADS AS WELL AS THE COMPUTATIONAL CORE

(PES), AND THE MB SIZE IS 16 � 16

to compute the SAD in pipeline. It is implemented with rea-
sonable area, 59K with 1393 bytes of on-chip RAM, and a
low required operating frequency, 5.88 MHz for the search
area of [ 16, 15], and 10.68 MHz for [ 16.0, 15.5], in
the real-time application for CIF images. Furthermore, the
area-speed performance of HMEA is better than many existing
architectures based on FSBMA or MMEA.
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