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a b s t r a c t

Periodic review inventory models are widely used in practice, especially for inventory

systems in which many different items are purchased from the same supplier. However,

all periodic review models have assumed a fixed length of the review periods. In

practice, it is possible that the review periods are of a variable length. Such periodic

systems result mainly from supply uncertainties. For example, the supplier visits the

downstream retailers and replenishes inventories for them, but does not always come in

constant intervals. This may be because retailers are geographically dispersed in the

supply chain, the supplier is in a relatively more powerful position, or the supplier

simply does not have a reliable visit schedule. In such situations, the replenishment

cycle length is random in nature. In this paper, we use dynamic programming to model

such institutional contexts. We assume that the supplier’s visit intervals are

independently and identically distributed. With a suitable transformation, the back-

logged periodic review model derived becomes a standard discrete-time model. The

computation shows that ignoring the variability of the supplier’s visit intervals can incur

extremely large losses, especially if shortage is costly, demand variability is low, and/or

the replenishment lead-time is short.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Though the use of computer systems has made
continuous review models more attractive, periodic re-
view models are still applied in many situations (e.g.,
Prasad et al., 2005; Silver et al., 1998), especially for
inventory systems in which the coordination of ordering
and transportation for different items is important (which
is especially true if these items are purchased from
the same supplier). Also, as Porteus (1985) observes,
continuous review systems that keep inventory records
current, but order periodically, are equivalent to periodic
review systems. Often, periodic systems have the review
periods that are possibly longer than the supply lead-
times.
ll rights reserved.
One fundamental assumption about periodic systems
is that the review periods are of a fixed length. In practice,
however, the review periods may be of a variable length.
Such periodic systems result mainly from supply uncer-
tainties. For example, many supermarkets have suppliers
who come to visit regularly and replenish the inventory of
various items (and even sell) for them. However, the
supplier does not always come in constant (say, 10 days)
intervals. Depending on her visit plans or work schedules
and loads, she often arrives at a particular supermarket
one or few hours (or days) early or late. The elapsed time
between two consecutive visits varies basically. Ertogral
and Rahim (2005) also observed institutional settings or
constraints that are internal to the supply chain, in which
the supplier is strategically dominant, in a relatively more
powerful position, and/or the retailers are located in a
geographically disadvantageous remote location, so that
the supplier decides when to visit and replenish the
retailers’ inventories. In general, for such situations, the
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replenishment epochs are not under retailers’ control;
rather, they are under the supplier’s control. Hence, if the
supplier arrives at a particular retailer in irregular
intervals, the replenishment cycle length for that retailer
is random in nature.

To our knowledge, the possibility of stochastic review
periods or replenishment intervals has not been investi-
gated in the inventory literature, though there are some
works on inventory models with supply uncertainties
(e.g., Lee et al., 1997; Mohebbi, 2004; Ozekici and Parlar,
1999). It was studied only recently by Ertogral and Rahim
(2005) who derived the expected profit per replenishment
cycle by assuming independently and identically distrib-
uted (i.i.d.) replenishment intervals, constant demand and
zero replenishment lead-time.

In this paper, we use dynamic programming to model
the supply chain situations where the supplier’s visit
intervals (i.e., replenishment intervals) are random. We
will assume that the supplier’s visit intervals are i.i.d., as
in Ertogral and Rahim (2005). However, unlike Ertogral
and Rahim, we will assume stochastic demand which is
usually true in the real world; also, we will allow the
replenishment lead-time to be positive (i.e., it may take a
positive time to replenish inventories after the supplier
arrives at a retailer and reviews his inventories). We will
develop both the backlogged and lost-sales periodic
review inventory models. With a suitable transformation,
the backlogged model derived becomes a standard
discrete-time model. Thus, an order-up-to policy is known
to be optimal for the infinite horizon problem. This is also
true of the lost-sales problem with zero lead-time (due to
a result from the inventory literature). For the lost-sales
problem with positive lead-time, we suggest a simple
heuristic policy in Hadley and Whitin (1963).

The computation shows that ignoring the variability of
the supplier’s visit intervals can incur unnecessary large
costs, especially if shortage is costly, the replenishment
lead-time is short, and/or demand variability is not high. It
is thus important for a retailer to incorporate this
variability into inventory models when the supplier does
not visit in constant intervals. It would be better if the
retailer can have the supplier to visit in more regular
intervals (i.e., the visit interval has a smaller variability) so
that his cost can be reduced, as shown in the computation.
This may not be an easy task, since the institutional
constraints are perhaps difficult to change in the short run
(for example, the supplier is in a relatively more powerful
position as described above). For such institutional
contexts, we suggest that the retailer should somehow
persuade the supplier to visit more regularly. The retailer
should at least communicate with the supplier often so
that she understands the consequence of the irregular
visit intervals and hopefully, she will continue to improve
on her visit schedule in terms of the stability/reliability in
the future.

Of course, it is possible that the supplier completely
fixes the visit interval after the retailer’s persuasion. The
supplier and the retailer may even cooperate closely in the
supply chain, or form a strategic alliance in the long run.
Then the supplier will also visit the retailer and replenish
his inventories more often (not only more regularly) so as
to further reduce his costs, and in return, the retailer could
negotiate a long-term supply contract or purchase other
products from the supplier, for example. All of these are
certainly a significant change of status-quo, i.e., a break-
through of the supply chain. Note that we are not saying
that it is not good to have the replenishment epochs under
the supplier’s control; it may be one of the most efficient
ways of operating the supply chain (in terms of replenish-
ing the downstream retailers’ inventories), especially for
the institutional settings described above. We simply say
that cooperation between the supplier and the retailer
could result in a win–win situation. If indeed the supplier
no longer visits the retailer in irregular intervals, then the
ordinary periodic review models found in textbooks can
be used, i.e., the periodic review models derived in this
paper need not be used.
2. Backlogged periodic review inventory models

We first assume that all demand not filled immediately
is backlogged. Let c denote the unit item cost and L the
(deterministic) lead-time. Demand is stochastic with
mean rate m per unit time, and is assumed to be non-
negative and independently distributed in disjoint time
intervals. Let T be the period length, i.e., the supplier’s visit
interval. Successive T’s are assumed to be i.i.d. random
variables. Let f( � ) be the probability density function
(pdf) of T and D the demand during T. Also let g( � jt) be the
conditional pdf of demand during a time interval of length
t. Thus, g( � jT) is the conditional pdf of D.

Let a be the discount rate, y the inventory position (i.e.,
inventory on hand minus backorder plus inventory on
order) after an order is placed at a review epoch (i.e., upon
the supplier’s visit), and H the expected one-period
inventory holding and shortage cost (H is a function of y).
Given time 0 at a review epoch, H is charged for the time
interval [L, T+L). Denote Vn(x) as the expected discounted
cost with n periods remaining until the end of the planning
horizon when the starting inventory position is x and an
optimal ordering policy is used at every review epoch. Vn(x)
satisfies the functional equation:

VnðxÞ ¼ min
xpy
fe�aL½cyþ HðyÞ�

þ ET ½e
�aTEDjT ½Vn�1ðy� DÞ��g � e�aLcx, (1)

where the procurement cost c(y–x) is paid upon delivery.
The above dynamic program is an inventory problem
with discrete but random epochs. Let b ¼ ET[e�aT].
Using a standard approach in semi-Markov decision
processes (e.g., Puterman, 1994, p. 542) and defining
j( � )�ET[e�aTg( � jT)]/b, i.e., bj( � ) ¼ ET[e�aTg( � jT)] is the
discount density of D and j( � ) is the ‘‘normalized’’ pdf of D,
we can express ET[e�aTEDjT[Vn�1(y–D)]] by

ET e�aT EDjT ½Vn�1ðy� DÞ�
� �

¼

Z 1
0

e�aT

Z 1
0

Vn�1ðy� DÞgðDjTÞdD

� �
fðTÞdT

¼

Z 1
0

Vn�1ðy� DÞ

Z 1
0

e�aT gðDjTÞfðTÞdT

� �
dD



ARTICLE IN PRESS

C. Chiang / Int. J. Production Economics 115 (2008) 433–438 435
¼ b
Z 1

0
Vn�1ðy� DÞ

Z 1
0

e�aT gðDjTÞfðTÞdTÞ=b
� �

dD

¼ b
Z 1

0
Vn�1ðy� DÞjðDÞdD

¼ bED½Vn�1ðy� DÞ�, (2)

where the expectation ED is taken over the pdf j( � ). After
the above transformation, Vn(x) is written as

VnðxÞ ¼ min
xpy

e�aL½cyþ HðyÞ�
�

þbED½Vn�1ðy� DÞ�
	
� e�aLcx. (3)

The original problem in (1) is now a standard discrete-
time model.

Next, we give an expression for H(y). Let h be the
holding cost per unit held per unit time and p the shortage
cost per unit. Assume that an order when arriving is
almost always sufficient to meet any outstanding back-
orders (see Hadley and Whitin, 1963, p. 239, for a detailed
discussion). Thus, backorders that occur during the time
interval [L, L+T) can be computed for the interval [0, L+T)
and the expected on-hand inventory immediately after
the arrival of an order is y�Lm. If Dpy–Lm, as the expected
on-hand inventory just prior to the arrival of the next
order is y�Lm�D, the average holding cost over the
interval [L, L+T) is hT(y�Lm�0.5D). On the other hand, if
D4y�Lm, the expected on-hand inventory falls to zero at
some time during the interval [L, L+T). Assuming that the
expected inventory decreases linearly with time (e.g.,
Hadley and Whitin, 1963, p. 238), the expected on-hand
inventory falls to zero at time L+T(y�Lm)/D; since the
average on-hand inventory over the interval [L, L+T(y�Lm)/
D) is 0.5(y�Lm), the average holding cost over this interval,
which is also the average holding cost over the interval
[L, L+T), is 0.5hT(y�Lm)2/D. As D appears in the deno-
minator, this exact expression will complicate the
subsequent analysis. We thus use a lower bound
hT(y�Lm�0.5D) for this expression, i.e., the same one as
when Dpy�Lm (see Chiang (2003) for a similar approach
in the two-supply-mode setting). This approximation is
similar to the one in the ordinary periodic model where
the expected on-hand inventory approximately equals
the expected net inventory (Hadley and Whitin, 1963,
pp. 237–239). Hence, the average holding cost over the
interval [L, L+T), after taking the expectation of D, is
hT(y�Lm�0.5Tm). It follows that if T is constant,

HðyÞ ¼ hTðy� Lm� 0:5 TmÞ

þ

Z 1
y

pðz� yÞgðzjT þ LÞdz (4)

(Hadley and Whitin, 1963, p. 240). For the present model
in which T is a variable, H(y) is given by

HðyÞ ¼ ET ½hTðy� Lm� 0:5 TmÞ�

þ

Z 1
y

pðz� yÞg�ðzjLÞdz; (5)

where g*( � jL)�ET[g( � jT+L)]. Since H(y) is convex, Vn(x) in
(3) is a convex function (by induction and Proposition B-4
of Heyman and Sobel, 1984). Hence, a stationary order-up-
to policy (i.e., base-stock policy) is known to be optimal
for the infinite horizon problem. To obtain the optimal
order-up-to level y*, we minimize the following myopic
function:

JðyÞ ¼ cyð1� bÞ þ HðyÞ (6)

(e.g., Veinott and Wagner, 1965, p. 527). Thus, we set the
first derivative of J(y) to zero:

cð1� bÞ þ hE½T� �

Z 1
y

pg�ðzjLÞdz ¼ 0

or
Z 1

y
gnðzjLÞdz ¼ fcð1� bÞ þ hE½T�g=p (7)

and solving for the optimal y*. J is basically the expected
cost of the upcoming period. Notice that the constant
scaling factor e�aL (discounted to the present time) and
procurement cost e�aLcbED[D] are not included in (6) for
simplicity. As the ratio {c(1–b)+hE[T]}/p should be less
than 1 (since the average backorder level is assumed to be
small [Hadley and Whitin, 1963, p. 241]), y* is guaranteed
to be obtained. Let y0 be the optimal y found if T is fixed.

3. Lost-sales periodic review inventory models

Suppose now that demand not satisfied at once is lost.
Assume that L is less than the minimum T (i.e., there is at
most one order outstanding). Let D1 be the demand during
the lead-time L and D2 the demand during the time
interval [L, T) (thus D ¼ D1+D2). Also, let z be the order
quantity placed at a review epoch and redefine x as the
starting on-hand inventory. Let ( � )+

�max{ � , 0}. Then,
Vn(x) satisfies the recursive equation:

VnðxÞ ¼ min
zX0

e�aLðczþ ED1
½Hððx� D1Þ

þ
þ zÞ�Þ

�
þ ET e�aT ED1 ;D2 jT ½Vn�1ðððx� D1Þ

þ
þ z� D2Þ

þ
Þ�

� �	
(8)

Consider first the simplest case of L ¼ 0. Then (8)
reduces to

VnðxÞ ¼ min
zX0

czþ Hðxþ zÞ
�

þ ET e�aT EDjT ½Vn�1ððxþ z� DÞþÞ�
� �	

¼ min
xpy
fcyþ HðyÞ

þ ET e�aT EDjT ½Vn�1ððy� DÞþÞ�
� �	

� cx. (9)

If T is constant, (9) simplifies to

VnðxÞ ¼min
xpy

cyþ HðyÞ þ e�aT ED½Vn�1ððy� DÞþÞ�
� 	

� cx.

(10)

Veinott and Wagner (1965, p. 528) showed that the lost-
sales model in (10) could be viewed as a backlog model in
which a credit of e�aTc is given to each unit of demand
actually backlogged (an order-up-to policy is thus opti-
mal). For the model in (9) where T is stochastic, we can
transform (9) to (as in the backlogged model)

VnðxÞ ¼min
xpy
fcyþ HðyÞ þ bED½Vn�1ððy� DÞþÞ�g � cx, (11)

where the expectation ED is taken over the pdf j( � ).
Hence, an order-up-to policy is optimal for the infinite
horizon problem and the optimal order-up-to level y* is
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obtained by minimizing

JðyÞ ¼ cyð1� bÞ þ HðyÞ � bc

Z 1
y
ðD� yÞjðDÞdD; (12)

where the last term (i.e., the difference between (6) and
(12)) is the credit given to demand not satisfied and the
exact one-period holding and shortage cost is given by

HðyÞ ¼ ET 0:5hT yþ

Z y

0
ðy� DÞgðDjTÞdD

� �


þ

Z 1
y

pðD� yÞgðDjTÞdD

�
(13)

(which is convex in y). The holding cost of (13) is derived
based on the average of beginning and ending inventories
of a period. Also, the shortage penalty p has a different
meaning in the lost-sales model and it usually includes
the unit sales revenue. As J(y) is convex, y* is found by
solving its first-order condition, i.e.,

cð1� bÞ þ ET 0:5hT 1þ

Z y

o
gðDjTÞdD

� �


�

Z 1
y

pgðDjTÞdD

�
þ cET e�aT

Z 1
y

gðDjTÞdD


 �
¼ 0

(noting that bj( � ) ¼ ET[e�aTg( � jT)]), or

cð1� bÞ þ ET 0:5hTð1þ 1�

Z 1
y

gðDjTÞdDÞ




�

Z 1
y

pgðDjTÞdD

�
þ cET e�aT

Z 1
y

gðDjTÞdD


 �
¼ 0,

i.e.,

ET ð0:5hT þ p� e�aT cÞ

Z 1
y

gðDjTÞdD


 �

¼ cð1� bÞ þ hE½T�. (14)

If L is positive (deterministic), the lost-sales model given
by (8) is difficult to solve. If T is fixed, see, e.g., Hadley and
Whitin (1963, p. 285), Morton (1971), and Zipkin (2000,
pp. 411–413) (note that Chiang (2006) recently develops
optimal ordering policies for the case of LpT). For the
present model in (8) where T is variable, heuristic
approaches need to be used. We suggest that one uses
the order-up-to policy in Hadley and Whitin (1963,
pp. 240–242). Using our notation, the expected undis-
counted cost of the upcoming time interval [L, T+L), if T is
fixed, is expressed by

HðyÞ ¼ hTðy� mL� 0:5TmÞ

þ ð0:5hT þ p� cÞ

Z 1
y
ðz� yÞgðzjT þ LÞdz. (15)

As a note, there is an error in expressions (5–11) of Hadley
and Whitin. The integral should be multiplied by a factor
of 0.5. Since the base-stock policy orders filled demands
just as it does in a backlogged model (except that now lost
sales are not counted), the average cycle stock (i.e., order
quantity) over the interval [L, T+L) is given by

0:5 Tm�
Z 1

y
ðz� yÞgðzjT þ LÞdz

� �
(16)

instead of 0.5Tm. Note that (16) is an approximation, since
it ignores the effects of lost sales that can occur between
the time an order is placed and the time it arrives. Adding
(16) to the safety stock, given by (5–10) of Hadley and
Whitin, would yield the holding cost component of (15).
For the present model in which T is a variable, the
expected undiscounted cost of the upcoming time interval
[L, T+L) is written by

HðyÞ ¼ ET ½hTðy� mL� 0:5TmÞ�

þ ET ð0:5hT þ p� cÞ

Z 1
y
ðz� yÞgðzjT þ LÞdz


 �
. (17)

The optimal order-up-to level y* is then obtained by
minimizing (17), i.e., setting the first derivative of (17) to
zero:

hE½T� � ET ð0:5hT þ p� cÞ

Z 1
y

gðzjT þ LÞdz

 �

¼ 0,

or

ET ð0:5hT þ p� cÞ

Z 1
y

gðzjT þ LÞdz

 �

¼ hE½T� (18)

and solving for the optimal y*. Let y0 be the optimal level
found from (14) or (18) when T is fixed.
4. Computational results

We investigate the effect of a variable T on the expected
cost, if a retailer fails to incorporate it when developing
inventory policies. In the following experiments, we
assume that demand is normal with mean mt and
variance s2t for a time interval of length t. The common
data used are m ¼ 10/day (unit time is one day), h ¼ $0.1,
a ¼ 0, and E[T] ¼ 10 days. Also, T is either triangularly or
uniformly (discretely) distributed. In the former case,
Pr(T ¼ 8) ¼ Pr(T ¼ 12) ¼ 1/9, Pr(T ¼ 9) ¼ Pr(T ¼ 11) ¼ 2/9,
and Pr(T ¼ 10) ¼ 1/3; in the latter case, Pr(T ¼ 8)
¼ Pr(T ¼ 9) ¼ Pr(T ¼ 10) ¼ Pr(T ¼ 11) ¼ Pr(T ¼ 12) ¼ 1/5.

Thus, T has a larger variability if it is uniformly
distributed.

First consider the backlogged model with L ¼ 0. Table 1
reports computational results as p and s2 are varied. Three
observations can be made from Table 1. First, ignoring T’s
variability, i.e., using y0 of the ordinary periodic model
when in fact T is stochastic, can incur unnecessary large
costs, especially if T is uniformly distributed (i.e., has a
larger variability). Second, it appears that as the unit
shortage cost p is higher, a firm incurs larger losses. This
result can be seen by comparing (5) to (4). T’s variability
affects J(y) only through its shortage cost component. As p

is higher, T’s variability has a larger effect on J(y). Third
(and probably most importantly), as s is smaller, T’s
variability has a larger impact on J(y). In the extreme case
where s ¼ 0 (i.e., deterministic demand), ignoring T’s
variability can increase the cost by more than 300
percent! This is possibly because the variability of
demand during T plus L includes T’s variability and
demand variability; the introduction of T’s variability into
an inventory model increases the overall variability of
demand during T plus L more significantly when demand
variability is smaller.
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Table 1
Effect of variable T on the expected cost (backlogged model with L ¼ 0)

s p y0 (A) T is triangularly distributed (B) T is uniformly distributed

y* J(y*) J(y0) % Off y* J(y*) J(y0) % Off

0 10 100 120 69.3 93.8 35.4 120 69.0 109.0 56.0

20 100 120 69.3 138.2 99.4 120 69.0 169.0 144.9

40 100 120 69.3 227.1 227.7 120 69.0 289.0 318.8

2 10 109 118 72.5 78.5 8.3 121 74.8 87.1 16.4

20 111 122 75.9 91.4 20.4 125 77.9 106.4 36.6

40 113 128 79.3 109.1 37.6 128 80.5 134.2 66.7

4 10 117 123 80.1 81.7 2.0 125 82.7 86.5 4.6

20 121 129 85.5 90.1 5.4 132 88.1 97.3 10.4

40 125 134 90.2 98.5 9.2 137 92.8 108.8 17.2

8 10 133 136 99.4 99.7 0.3 138 101.6 102.3 0.7

20 142 147 108.5 109.5 0.9 149 111.0 113.1 1.9

40 150 156 116.7 118.4 1.5 159 119.5 123.2 3.1

Table 2
Effect of variable T on expected cost (backlogged model with L ¼ 6)

s p y0 (A) T is triangularly distributed (B) T is uniformly distributed

y* J(y*) J(y0) % Off y* J(y*) J(y0) % Off

0 10 160 180 69.3 93.8 35.4 180 69.0 109.0 56.0

20 160 180 69.3 138.2 99.4 180 69.0 169.0 144.9

40 160 180 69.3 227.1 227.7 180 69.0 289.0 318.8

2 10 171 179 74.0 78.3 5.8 182 76.5 85.5 11.8

20 174 183 77.9 87.6 12.5 186 80.1 99.0 23.5

40 176 187 81.2 101.8 25.4 190 83.1 120.6 45.1

4 10 181 186 84.5 85.5 1.2 188 86.9 89.3 2.8

20 187 193 90.7 93.0 2.5 196 93.2 98.0 5.2

40 192 199 96.2 100.2 4.2 202 98.7 107.0 8.4

8 10 202 204 109.9 110.0 0.1 205 111.6 111.8 0.2

20 213 217 120.8 121.1 0.3 219 122.8 123.7 0.7

40 223 228 130.5 131.3 0.6 230 132.8 134.6 1.4

Table 3
Effect of variable T on expected cost (lost-sales model with L ¼ 0)

s p y0 (A) T is triangularly distributed (B) T is uniformly distributed

y* J(y*) J(y0) % Off y* J(y*) J(y0) % Off

0 110 100 120 69.3 96.3 39.0 120 69.0 112.5 63.0

120 100 120 69.3 140.8 103.2 120 69.0 172.5 150.0

140 100 120 69.3 239.7 245.9 120 69.0 292.5 323.9

2 110 109 118 72.8 79.7 9.5 122 75.2 88.8 18.1

120 111 122 76.1 92.3 21.3 125 78.0 107.8 38.2

140 113 128 79.3 109.8 38.4 128 80.5 135.3 68.1

4 110 117 124 80.6 82.6 2.5 126 83.2 88.8 6.7

120 121 129 85.7 90.6 5.7 133 88.3 98.1 11.1

140 125 135 90.3 98.9 9.5 138 92.8 109.3 17.8

8 110 133 137 100.1 100.4 0.3 139 102.4 103.1 0.7

120 142 147 108.8 110.0 1.1 149 111.4 113.7 2.1

140 150 157 116.9 118.7 1.5 159 119.6 123.5 3.3

Table 4
Effect of variable T on expected cost (lost-sales model with L ¼ 6)

s p y0 (A) T is triangularly distributed (B) T is uniformly distributed

y* J(y*) J(y0) % Off y* J(y*) J(y0) % Off

0 110 160 180 69.3 96.3 39.0 180 69.0 112.5 63.0

120 160 180 69.3 140.8 103.2 180 69.0 172.5 150.0

140 160 180 69.3 239.7 245.9 180 69.0 292.5 323.9

2 110 171 179 74.4 79.4 6.7 182 76.8 87.0 13.3

120 174 184 78.1 88.3 13.1 187 80.3 100.1 24.7

140 176 188 81.3 102.4 26.0 190 83.2 121.4 45.9

4 110 181 186 85.0 86.4 1.6 189 87.5 90.4 3.3

120 187 193 90.9 93.4 2.8 196 93.5 98.7 5.6

140 192 199 96.3 100.4 4.3 202 98.8 107.4 8.7

8 110 202 204 110.8 111.0 0.2 206 112.5 113.0 0.4

120 213 217 121.1 121.6 0.4 219 123.2 124.3 0.9

140 223 228 130.7 131.6 0.7 230 133.0 134.9 1.4
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Next, consider the backlogged model with a positive L

(which equals, for example, 6 days). Comparing Table 2 to 1,
we see that except for the case of deterministic demand, a
positive L dilutes the effect of a variable T on J(y). In fact, as
L is larger (other things being equal), ignoring T’s variability
incurs smaller losses (more experiments are available from
the author). This result can be explained by the same
reason above: as the demand during T plus L becomes more
volatile, the introduction of T’s variability into an inventory
model has a less significant effect on the cost.

In Tables 3 and 4, we consider the lost-sales models
with zero and positive lead-times, respectively. The unit
cost c is assumed to be $100 and p is varied such that (p–c)
is the same as p in the backlogged models. As we see from
these two tables, similar results to those in Tables 1 and 2
are observed, though the percentage loss of ignoring T ’s
variability seems to be a little higher in general.
Notice that if T is fixed (equal to 10 days) rather than
stochastic, the cost per period is significantly reduced (by
using the ordinary periodic review models found in text-
books). For example, if s ¼ 0, the optimal order-up-to level
is 100 and the cost per period is only $50, as compared to
$69.3 in the above tables. This illustrates the importance of a
fixed visit schedule on the part of the supplier. As a note, the
cost per period is only $12.5 if T is fixed and cut down to 5
days (and s ¼ 0). This certainly signals a message: the
retailer should somehow have the supplier to come more
often and regularly, as mentioned in Section 1.
5. Conclusions

In this paper, we considered periodic inventory models
with stochastic supplier’s visit intervals. We assumed that
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the supplier’s visit intervals were independently and
identically distributed. With a suitable transformation,
the backlogged dynamic programming model derived
became a standard discrete-time model. In addition, we
suggested a simple order-up-to policy for the lost-sales
periodic problem with positive lead-time. The periodic
review policies developed in this paper were thus easy to
implement.

The computation showed that ignoring the variability
of the supplier’s visit intervals could incur large losses if
shortage was costly. It also showed that a retailer was
more vulnerable to this variability if the replenishment
lead-time was short and/or demand variability was small.
This was because the introduction of T’s variability into an
inventory model increased the overall variability of
demand during T plus L more significantly when lead-
time was shorter and/or demand variability was smaller.
In the extreme case where demand was deterministic,
ignoring T’s variability could increase the retailer’s cost by
more than 300 percent!

Moreover, the computation showed that a retailer
could avoid some losses by reducing the variability of the
supplier’s visit intervals (e.g., from a uniform to triangular
distribution). This might not be an easy task, because the
replenishment epochs were under the supplier’s control
and such institutional constraints were perhaps difficult
to change in the short run. However, the retailer could
discuss this issue and explain its effect on his cost with
the suppler. The retailer should at least communicate with
the supplier often so that she would come to visit and
replenish inventories more punctually (or even in con-
stant intervals) in the future.
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