
2398
IEICE TRANS. INF. & SYST., VOL.E91-D , NO.10 OCTOBER 2008

PAPER

kP2PADM: An In-Kernel Architecture of P2P Management

Gateway*

Ying-Dar LIN•õa), Member, Po-Ching LINE•õ•õ, Meng-Fu TSAI•õ•õ, Tsao-Jiang CHANG•õ•õ
,

and Yuan-Cheng LAI•õ•õ•õ, Nonmembers

SUMMARY Managing increasing traffic from Instant Messengers and

P2P applications is becoming more important nowadays. We present an in-
kernel architecture of management gateway, namely kP2PADM, built upon
open-source packages with several modifications and design techniques.
First, the in-kernel design streamlines the data path through the gateway.
Second, the dual-queue buffer eliminates head-of-line blocking for multi-
ple connections. Third, a connection cache reduces useless reconnection
attempts from the peers. Fourth, a fast-pass mechanism avoids slowing
down the TCP transmission. The in-kernel design approximately doubles
the throughput of the design in the user space. The internal benchmarks
also analyze the impact of each function on performance.
key words: P2P/IM management, gateway, in-kernel implementation

1. Introduction

The traffic of peer-to-peer (P2P) applications has dominated
the Internet traffic lately [1], [2]. Properly managing P2P
traffic is therefore important. For example, Internet service

providers can restrict P2P traffic to avoid excessive occupa-
tion of bandwidth. Restricting the use of instant messengers

(IM) can increase employee productivity and prevent confi-
dential information from leakage. Like firewalls, which con-
trol accesses from and to the intranet, a transparent gateway
that centrally manages P2P traffic is a promising approach.

Managing P2P traffic** is more complicated than man-
aging other traffic. Conventional approaches that identify
applications according to fixed port numbers no longer work
because most P2P applications run on dynamic ports and
tend to hide themselves by encrypting the messages [3]. The
authors in [4], [5] indicate the insufficiency of detecting P2P
traffic with port numbers. They analyze the P2P traffic and
extract signatures from it for high detection accuracy. Some

methods do not rely on signatures, but on characteristics of
P2P traffic such as connection patterns [2], [6] because the
messages may be encrypted. These designs focus on in-

creasing the accuracy, but P2P gateway design has practi-

cal issues other than accuracy. For example, packets should

be queued and reassembled in the gateway, and wait the re-

sult of deep content inspection for virus signatures or cer-

tain sensitive keywords before further processing. Efficient

queue management and streamlined packet flow are there-

fore essential to a scalable design. Besides filtering P2P

traffic, a fair amount of research work studies how to accel-

erate analyzing and filtering on network stream information,

we refer the readers to [7] on the issues. This work relates

the acceleration from the system architecture, which is not

addressed in that research work.

This work designs an in-kernel architecture on Linux,

namely kP2PADM, to manage P2P traffic on a transpar-

ent gateway, where •ek•f emphasizes the in-kernel design and

ADM stands for administration. Several management func-

tions are implemented: (1) classifying and filtering P2P

traffic, (2) scanning shared files for viruses, (3) auditing

chatting messages and transferred files and (4) bandwidth

control. The design streamlines the data path through the

gateway and reduces the overheads of passing packets be-

tween the kernel space and the user space. The L7-filter

(17-filter. sourceforge.net) acts as the connection

classifier to identify P2P signatures in the application-layer

messages. If the packets belong to P2P connections, they are

redirected to a kernel module for further processing such as

packet reassembly and content filtering; otherwise, they are

simply passed through the gateway. The kernel module can

ban undesirable applications or perform bandwidth control

according to the management policy.

The module implements TCP reassembly to handle raw

packets that may be out-of-order, lost or duplicated. After

reassembly, the packet content is ready for content filter-

ing or virus scanning. The time-consuming processing may

cause head-of-line blocking in the kernel queue, in which the

packets in the other connections are blocked behind those

under processing. We propose a dual-queue mechanism for

this situation, and modify a queue handler ip queue in the

Linux source to manage the packets in the dual queues of

the kernel. The kernel module is multi-threaded. A main

thread handles packet arrival, and the others handle individ-

ual application protocols and perform the desired filtering.

This work also addresses two negative factors that

Manuscript received December 10, 2007.
Manuscript revised April 12, 2008.
The authors is with the Department of Computer Science, Na-

tional Chiao Tung University, Taiwan.
The authors are with High-speed Lab, Department of Com-

puter Science, National Chiao Tung University, Taiwan.
The author is with the Department of Information Manage-

ment, National Taiwan University of Science and Technology, Tai-
wan.

*This work was supported in part by the Taiwan National Sci-

ence Council's Program of Excellence in Research, and in part by
grants from Cisco and Intel.

a) E-mail: ydlin@cis.nctu.edu.tw
DOI: 10.1093/ietisy/e91-d.10.2398

**Because IM applications operate in a P2P mode , we use the
term P2P when referring to P2P/IM for simplicity.

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

LIN et al.: KP2PADM: AN IN-KERN ARCHITECTURE OF P2P MANAGEMENT GATEWAY

2399

could reduce the performance: useless reconnection re-

quests from P2P applications and out-of-order packets.
Some users or P2P applications persistently attempt to re-
connect to their peers within a short period of time when
the gateway blocks the connection establishment. Handling
these attempts is wasteful, and they should be blocked again
soon. This architecture deploys a connection cache to block
reconnection requests as soon as possible. Out-of-order

packets result in unnecessary packet retransmission because
the gateway must queue them to maintain the order. The
sender may consider the queueing as a sign of packet loss if
its TCP retransmission timer expires or it receives three du-

plicated TCP ACKs from the peer. We use a mechanism
called fast pass that passes out-of-order packets immedi-
ately, and duplicates a copy of each packet in the kernel for
ordering and reassembly.

This work proposes several strategies to resolve prac-
tical design issues of an efficient P2P management gate-
way. The rest of this work is organized as follows. Sec-
tion 2 overviews typical P2P applications and surveys re-
lated packages and products. Section 3 presents the key
ideas of the system architecture and details the implemen-
tation. Section 4 presents the performance evaluation of
this system and analyzes the result. Section 5 concludes the
study and indicates future work.

2. Survey of Related Works

2.1 Overview of P2P Applications

Table 1 summarizes the characteristics of popular P2P and
IM applications: Kazaa (www.kazaa.com), eMule (www.
emule-project.net), BitTorrent (www.bittorrent.
com), Gnutella (www.gnutella.com), MSN Messen-

ger (messenger.msn.com) and Skype (www.skype.com).
Most P2P applications set the default port numbers upon in-
stallation, but the actual port numbers in use may be either
changed by the users later or determined by the applications.
P2P applications tend to circumvent the filtering of firewalls
by running on dynamic ports or hiding themselves on well-
known ports. An example is Skype, which can choose the

ports of HTTP and HTTPS in case of connection failure [8].
Kazaa can hop to another port if it is blocked in a port. Gen-
erally, it is impossible to tell the application from only the

port number. Therefore, common solutions to identify P2P
applications are based on signatures or heuristics on the con-
nection patterns.

P2P applications may sequentially transfer a file from
another peer, or in out-of-order segments. If a file is ei-
ther encrypted or transferred out-of-order, performing virus
scanning and auditing becomes intractable. For example, a
user may download a file with a laptop in two different loca-
tions. The management gateway in either location sees only
random fragments that are available. Only the laptop itself
can reassemble and restore the original content. Therefore,
we do not support both functions for applications that en-
crypt data or transfer data in an out-of-order manner. If the

Table 1 The characteristics of P2P and IM applications . ST=sequential
transfer, EN=with encryption, DP=dynamic port, FV=filename visibility ,
DFP=default ports.

Table 2 Feasibility of management functions for each P2P proto-

col. CF=classification, FT=filtering, VS=virus scanning, AU=auditing ,
BC=bandwidth control.

file name is visible, filtering can refer to the file name that
contains specific keywords and block the file transfer. More-
over, enterprises may not want employees to leak out con-
fidential information via chatting messages. Filtering sen-
sitive keywords or recording the message is also needed.
The kP2PADM architecture is designed to implement fea-
sible management functions summarized in Table 2.

2.2 Related Products and Implementations

P2P and IM traffic management has attracted much attention
recently. We are aware of several commercial machines for
the demand, such as Facetime (www.facetime.com) and
Akonix (www.akonix.com), to name a few, as well as soft-
ware tools such as p2pwatchdog (www.p2pwatchdog.com)
and Terminator X (www.plevna.f9.co.uk). These prod-
ucts can manage P2P/IM traffic by filtering and auditing
messages on IM, block P2P traffic, detect malware, and so
on. However, these products reveal little about the design
due to their black-box nature, let alone evaluation of the in-
ternal functions.

This work prefers to integrate open-source packages
into the kP2PADM management gateway. Packages such
as L7-filter and IPP2P (www.ipp2p.org) are classifiers that
identify P2P traffic by inspecting the packet payload in
the Linux Netfilter subsystem (www.netfilter,org). The
L7-filter uses Netfilter's connection-tracking module and
checks only the content in the first eight packets of the ap-

plication data after a connection is established. If the ap-
plication data contain the signatures, the module marks the
entire connection as identified. IPP2P checks every packet
in a connection. It embeds the signatures in the source code,
while the L7-filter loads signatures from the files. Because
the L7-filter inspects fewer packets and dynamically loads
signatures, it has higher performance and better flexibility

2400
MICE TRANS. INF. & SYST., VOL.E91-D, NO.10 OCTOBER 2008

than IPP2P. This work therefore integrates the L7-filter as
the classifier. Note that although it is possible to use Netfil-
ter alone to perform basic shaping, classifying and filtering,
the kP2PADM gateway can do more beyond that.

Implementation in the kernel space can reduce moving
data between the kernel/user space and increase the system

performance. The authors in [9] presented the connection-
splicing technique to speed up data forwarding in the ker-
nel level. The idea of in-kernel implementation is also
applied to a Web proxy and a Web switch to improve
the efficiency [10], [11]. A Web Server named kHTTPd

(www.fenrus.demon.nl) running as a Linux module also
shows higher performance than user-space Web servers of
Apache and Zeus. Their success tantalized us to imple-
ment an in-kernel design of the management gateway. In
Sect. 4.2, we will compare the performance of the in-kernel
design and the in-daemon design that runs in the user space.

3. Design of System Architecture

P2P connection classification involves examining applica-
tion messages, which are available only after a TCP connec-
tion between two peers is established. Because the gateway
transparently monitors the traffic, a peer does not have to
establish a connection with the gateway. When the gate-
way monitors and discovers a new connection, it redirects
the connection from the kernel to the kernel module for the
following processing.

3.1 Main Ideas of the Design

3.1.1 Connection Classification and Marking

The L7-filter collects at most the first eight packets to re-
assemble application messages for signature matching. A

predefined protocol number that indicates the traffic type is
assigned to a connection identified as P2P traffic. The ker-
nel then filters undesirable traffic and controls the available
bandwidth according to this number. Note that the packets
containing important information such as the file name or
size might have been already passed to the peer before the
traffic type is identified. Because the kernel module may still
need such information to take the actions, the collected ap-

plication data are packed into a special packet created inside
the kernel for each connection. This packet is only internally

passed to the kernel module for extracting the application
data and further processing.

3.1.2 Packet Queueing and Redirecting

Two packet queues Q1 and Q2 are created in the kernel to
manage P2P traffic. All packets identified by the L7-filter
are queued in Q1, while the unidentified packets are just

passed through the gateway. The queued packets (actually,
only the pointers to the packets for efficiency) are passed to
the kernel module, which processes these packets and se-

quentially sets the verdict on them. The verdict includes

Fig. 1 Packet queueing and redirecting mechanism.

ACCEPT, DROP or QUEUE. ACCEPT means passing a packet to

the peer, while DROP means dropping a packet. If a packet

cannot be decided to be passed or dropped at the present

time (e.g., waiting for virus scanning), the verdict will be

QUEUE, and the packet will be moved from Q1 to Q2 to wait

temporarily•õ. Figure 1 illustrates the operation.

3.1.3 Packet Preprocessing

When the kernel module gets a packet from Q1, it performs

three steps before handling the P2P protocol: (1) The packet

checksum (IP/TCP/UDP checksum, if applicable) is exam-

ined. The module simply drops the packet with an incorrect

checksum. (2) Packet classification identifies which connec-

tion the packet belongs to. (3) The correct sequence of the

packet is handled before reassembly.

Packets in the marked connections are further classi-

fied based on the five tuples: source IP address, source port,

destination IP address, destination port and protocol identi-

fier. The packets may be out-of-order because the redirected

packets do not pass through the TCP stack, which can re-

order the packets in the correct sequence. The kernel mod-

ule therefore compares the sequence number of the handled

packet with the correct one. If the number is smaller, the

packet is a duplicated one and should be dropped. If the

number is larger, the packet should wait for the presence

of missing packets. The kernel will temporarily move this

packet from Q1 to Q2 for the waiting. If the sequence num-

ber is correct, the out-of-order packets in Q2, if any, will

be moved back to Q1. The kernel module then reassembles

these packets. To prevent a denial-of-service attack, the out-

of-order packets in Q2 should be cleared out after a timeout

of not being reassembled.

3.1.4 P2P Protocol Processing

The P2P protocol is recognized according to the assigned

protocol number, and handled after packet reassembly. A

connection may be in one of the three states when the data

are being transferred: (1) initial state: waiting for the re-

quest and response of data transfer, (2) receiving state: re-

ceiving the transferred data, and (3) processing state: per-

forming virus scanning or content filtering on the received

The other situation to move packets from Q1 to Q2 is when
the packet sequence is incorrect and the connection is in the pro-
cessing state. See Fig. 3 for the flow chart.

LIN et al.: KP2PADM: AN IN-KERNEL ARCHITECTURE OF P2P MANAGEMENT GATEWAY

2401

data.
The packets are checked based on the application pro-

tocol to examine whether a chatting message or a file request
contains specific keywords. If a keyword is found, the kernel
module instructs the kernel to drop the packet as well as the
subsequent packets in the same connection, and then sends
an RST packet to the source peer to tear down the connec-
tion; otherwise the kernel will pass the packet and record the
chatting message or file name in an external storage if audit-
ing is enabled. Bandwidth control is in this stage by limit-
ing the bandwidth occupied by a connection. If the packet
should not be blocked, the connection is marked to be in
the receiving state. The subsequent data segments are then
reassembled, and virus scanning is performed if needed.

3.1.5 Virus Scanning for Shared File

A buffer is allocated for receiving a connection to be
scanned for viruses. When the kernel module receives a
packet, it first checks whether the buffer is full or whether
the packet is the last one in the transferred file. If either
happens, a virus scanning program (We use the code from
ClamAV (www.clamav.net) in the user space performs
virus scanning on the buffer. If a virus is found, the pro-

gram tells the kernel to drop the packets to destroy the file,
and sends an RST packet to the peer to tear down the con-
nection; otherwise, the packets are passed.

The above method may have two problems: head-of-
line blocking and segmentation of virus signatures. First,
head-of-line blocking occurs due to the time-consuming
virus scanning. The subsequent packets queued in Q1 can-
not be handled until virus scanning on the buffer is finished.
Because this will constrain the throughput of the entire sys-
tem, the connection to be scanned is marked as in the pro-
cessing state, and another thread is called to perform virus
scanning. The subsequent packets of the same connection
will be moved from Q1 to Q2, so the packets in other con-
nections can be immediately handled. If a virus is found,
the packets in Q2 associated with this connection will be
dropped; otherwise, they are moved back from Q2 to Q1.
Figure 2 compares packet processing with and without han-
dling the head-of-line blocking. Without head-of-line block-
ing, processing the packets in other connections can be inter-
leaved with virus scanning. Second, a virus signature may
span two consecutive buffers, so it will not be found in ei-
ther buffer. To avoid missing a match, after a buffer has been
scanned, the buffer tail of s-1 characters will be moved to
the prefix of the next buffer, where s is the maximum length
of virus signatures. The signature therefore can be found in
the next buffer.

3.1.6 Reconnection Problems

A connection cache can keep the information of a blocked
connection and recognize its reconnection. Initially, the

packets in all connections can pass through the connection
cache and be processed by kP2PADM because no connec-

(a) With head-of-line blocking

(b) Without head-of-line blocking

Fig. 2 Comparison of packet processing with and without handling the

head-of-line blocking. The latter can concurrently scan viruses and process

the packets in other connections.

tions have been marked as denied ones. If a connection is
blocked, its four tuples of source IP address, destination IP
address, destination port number and protocol identifier will
be recorded in the connection cache. The subsequent pack-
ets having the same four tuples are viewed as in the recon-
nection, even though their source port numbers are different .
The source port number is not counted because P2P appli-
cations, say BitTorrent, may switch to different source port
numbers when their connections are blocked. The connec-
tion cache will immediately drop a reconnection to increase
the performance.

3.1.7 Fast Pass for Out-of-Order Packets

If an packet is queued in the gateway for packet reordering,
a sender may view the out-of-order packet as being lost, and
retransmit it or enter the slow-start process. However, the
retransmission is redundant or the slow-start is unnecessary
because it is not due to packet loss, but due to the queue-
ing of out-of-order packets in the gateway. The redundant
retransmission will decrease the throughput. This design

prefers to immediately pass out-of-order packets, so that the
receiver can soon respond with ACKs to reduce the redun-
dant retransmission and avoid slow-start as usual. A copy of
each out-of-order packet is kept in the gateway for reassem-
bly and examination. This mechanism is called fast pass in
the design.

3.2 System Implementation

The system is multi-threaded. The main thread in the ker-
nel module gets packets from Q1 in the kernel and performs
the pre-processing tasks. Because Q1 contains packets from
various connections, the kernel module uses the application
number to identify the P2P protocol, and the main thread
invokes an application thread to handle each connection re-
lated to that protocol. Figure 3 illustrates the entire flow of
the main thread. After performing the pre-processing tasks,
the main thread checks the connection state. If the connec-

2402
MICE TRANS. INF. & SYST., VOL.E91-D, NO.10 OCTOBER 2008

tion is in the processing state, the main thread handles the

head-of-line blocking problem; otherwise, it signals a spe-

cific application thread to handle the packets.

Figure 4 illustrates the entire flow of an application

thread, which handles a specific application protocol and

decides to pass or drop the packets. When the application
thread performs time-consuming content filtering or virus

scanning, it marks the connection to be in the processing

state and sets the verdict to QUEUE. The main thread can

start to process subsequent packets. This approach resolves

head-of-line blocking.
Figure 5 illustrates and summarizes the operation of

the kP2PADM architecture. kP2PADM must occasionally

call the schedule function in the Linux kernel to surrender
the CPU control to other processes to avoid starvation. The

CPU control will come back to kP2PADM if no other pro-

Fig. 3 The flow chart of the main thread.

cesses demand the CPU.

4. Performance Evaluation

4.1 Benchmarking Environment

We perform various benchmarks on kP2PADM installed on
a PC with Pentium III 1GHz CPU and 512MB SDRAM.

Figure 6 presents the topology of the testing environment.

Two HTTP clients and three Web servers are in the test bed.
Each client creates 100 threads for each server, and each

thread downloads a 2MB file from the three Web servers.

Although the file size is small compared with some shared

Fig. 4 The flow chart of an application thread.

Fig. 5 The operation of the kP2PADM architecture.

LIN et al.: KP2PADM: AN IN-KERNEL ARCHITECTURE OF P2P MANAGEMENT GATEWAY

2403

Fig. 6 The topology of the testing environment.

files, say movie files in real P2P applications, this size is

large enough to make file data dominate the traffic, just

like the practical case. We also implement a variant of this

design in which the kernel module in kP2PADM is imple-

mented as a user-space daemon, namely P2PADM, to com-

pare the performance of the in-kernel and the in-daemon de-

sign.

We use HTTP traffic instead of real P2P traffic to

benchmark kP2PADM for two reasons. (1) No appropriate

benchmark tools to date as we know generate P2P traffic for

stress testing, so it is difficult to emulate a large amount of

P2P traffic in a test bed. (2) Many P2P protocols, such as

FastTrack and Gnutella, use HTTP-like protocol to transfer

files. Although using HTTP traffic instead of P2P traffic is

not the best choice, it is acceptable in terms of performance

evaluation without appropriate stress-testing tools. The em-

ulation is similar to file sharing because both contain mostly

long packets, but it is deviated from the cases of instant mes-

sages or queries for the location of files. The latter cases

deserves further study in the future.

4.2 Comparison with a User-Space Daemon Solution

4.2.1 Throughput and CPU Utilization of kP2PADM

We use the following configurations to compare the im-

pact of each function on the throughput and CPU utiliza-

tion. •eP2P proxy•f denotes a generic term for the daemon in

P2PADM and the kernel module in kP2PADM.

1. Pure NAT: the pure NAT function only translates be-
tween private and public IP addresses.

2. NAT+packet queueing: Besides NAT, every packet
is queued in the kernel. kP2PADM just instructs the
kernel to pass the packets without any further process-
ing.

3. NAT+packet queueing+L7: Besides the above two,
the L7-filter is enabled with 20 rules. This configura-
tion assesses the performance impact from the L7-filter.

4. P2P proxy+filtering: All functions of P2P man-
agement are enabled except virus scanning and audit-
ing. This configuration enables filtering transferred
files according to the file name.

5. P2P proxy+auditing: The P2P proxy plus the audit-
ing function on transferred files, and records the files
into the file system.

6. P2P proxy+virus scanning: The P2P proxy plus

Fig. 7 Throughput of P2PADM and kP2PADM.

Fig. 8 CPU utilization of P2PADM and kP2PADM.

virus scanning on the transferred files.

7. P2P proxy+filtering+auditing+virus

scanning: The P2P proxy with all the above functions

enabled.

Figures 7 and 8 present the throughput and CPU utiliza-

tion of both P2PADM and kP2PADM in each of the con-

figurations•õ. Figure 8 presents not only the total CPU uti-

lization but also the CPU utilization for the kernel. Pure

NAT can reach the throughput about 266.13Mbps on both

P2PADM and kP2PADM. NAT+packet queueing reduces

the throughput of P2PADM to 155.24Mbps, but it reduces

the throughput only slightly to 223.71Mbps on kP2PADM.

The latter is fast because the packets do not enter into the

user space.

If the L7-filter is enabled, the throughput decreases sig-

nificantly to 89.25Mbps on P2PADM and to 178.1Mbps

on kP2PADM. The degradation primarily comes from sig-

nature matching in the L7-filter. Another major degra-

dation comes from virus scanning, which involves string

matching against a large signature set. The observation

that string matching is a bottleneck is consistent with that

•õ We encountered a bug of programming virus scanning in the

kernel, and the results related to virus scanning are estimated based

on the amount of performance degradation in P2PADM.

2404
MICE TRANS. INF. & SYST., VOL.E91-D, NO.10 OCTOBER 2008

Fig. 9 Throughput of kP2PADM plus the connection cache.

in other fields, such as intrusion detection. The influ-

ence of the auditing functions is light. The throughput

of P2P proxy+auditing on P2PADM is 69.98Mbps and

133.17Mbps on kP2PADM. Note that kP2PADM always

dominates nearly 100% of CPU utilization beyond the pure

NAT function because kP2PADM is implemented in the ker-

nel space and kP2PADM always occupies the CPU. If there

are other processes to run, this architecture should pay atten-

tion to surrendering the CPU to them in time, or kP2PADM

will block the kernel for a long time.

4.3 Evaluation of the Connection Cache and Fast Pass

Figure 9 presents the throughput on kP2PADM as the con-

nection cache is turned on. In the experiment, we set a pol-

icy on kP2PADM to block all packets from one of the two

clients. This policy forces the blocked client to keep sending

reconnection requests. The connection cache can increase

the throughput by around 21•`34Mbps in the latter three

configurations.

To emulate packet loss and out-of-order packets, we

install a WAN emulator called NIST Net from National In-

stitute of Standards and Technology (NIST) [12] on Linux.

NIST Net allows a single Linux PC to act as a gateway

to emulate a wide variety of network conditions, such as

packet loss, out-of-order packets, transmission delay and so

on. The traffic between peers passes through the NIST em-

ulator besides the kP2PADM gateway to experience the em-

ulated packet loss and delay. A 300MB file is transmitted

from one peer to the other in this benchmark.

Figure 10 presents the transfer time with and without

fast pass for different packet loss rates. The packet loss rates

range from 0% to 5% to emulate the cases in a real environ-

ment [13]. Fast pass can shorten the transfer time between

two peers. Two observations are in the experimental results:

(1) the higher the packet loss rate is, the more fast pass can

shorten the transfer time, and (2) the longer the delay is,

the more the transfer time can be shortened. Both can be

justified because the queueing time in the gateway is much

longer with higher packet loss rate and longer delay. Note

Fig. 10 Transfer time with and without fast pass for different packet loss

rates.

Table 3 Execution time of each stage in the internal benchmark.

that the shortening is not obvious with short delay and low

packet loss rate in Fig. 10, and the lines with and without

fast pass almost overlap with each other.

4.4 Internal Benchmarking

To further identify the improvement and the bottleneck

of kP2PADM, we examine the execution time of each

stage in the entire packet processing flow with all the

functions turned on. The execution time is measured by

calculating the difference of timestamps taken from the

do-gettimeofday () kernel function, which supports res-

olution up to ƒÊs, in the beginning and the end of a code

segment. Table 3 presents the internal benchmarking results

of P2PADM and kP2PADM. Moving the code from the user

space to the kernel space can reduce the execution time in

most of the stages, especially those of getting packets for

processing, handling TCP sequence and auditing. The im-

provement of these three stages are the most significant be-

cause they heavily depend on moving the packets between

the kernel space and the user space. Handling the applica-

tion protocol should have shown significant improvement,

but it does not because application protocol processing (e.g.,

content filtering) is itself time-consuming and in-kernel pro-

cessing helps little in this respect.

5. Conclusions and Future Work

This work presents an in-kernel gateway design from open-

source packages for P2P management. Despite the existence

of some commercial products, they are black-boxes without

detailed accounts of how to build a P2P management gate-

way. This paper relates experiences in building such a sys-

tem, and contributes detailed descriptions of several practi-

LIN et al.: KP2PADM: AN IN-KERNEL ARCHITECTURE OF P2P MANAGEMENT GATEWAY

2405

cal techniques to enhance the performance. The dual-queue

architecture can effectively eliminate head-of-line block-

ing. Moreover, kP2PADM also resolves the possible per-

formance degradation from useless reconnection requests

and out-of-order packets with the connection cache and fast

pass, respectively. The external benchmark indicates that

in-kernel management improves the performance of the dae-

mon version of P2PADM. The throughput is nearly doubled

with respect to the functions of proxy and content filtering,

from 85Mbps in P2PADM to 164.68Mbps. The connec-

tion cache can further increase the throughput by around

21•`34Mbps. Fast pass can reduce more transfer time

when the delay time is longer or the packet loss rate is

higher.

Some applications such as Skype encrypt transmitted

messages. Because the gateway acts as an intermediary, it is

intractable to tap the messages without the breaking the key.

It is a fundamental issue in cryptography. Therefore, dealing

with information leakage is intractable except blindly block-

ing all message transmission. We believe a general solution

to this problem deserves further study in future research.

References

[1] A. Parker, P2P in 2005. http://www.eachelogic.com/home/pages/

studies/2005_01.php

[2] S. Sen and J. Wang, •gAnalyzing peer-to-peer traffic across large net-

works,•h IEEE/ACM Trans. Netw., vol.12, no.2, pp. 219-232, April

2004.

[3] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M.

Faloutsos, •gIs P2P dying or just hiding?,•h Proc. Globecom, Nov.

2004.

[4] S. Sen, O. Spatscheck, and D. Wang, •gAccurate, scalable in-network

identification of P2P traffic using application signatures,•h Proc. In-

ternational WWW Conference, May 2004.

[5] A. Spognardi, A. Lucarelli, and R.D. Pietro, •gA methodology for

P2P file-sharing traffic detection,•h Proc. International Workshop on

Hot Topics in Peer-to-Peer Systems, 2005.

[6] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, •gTransport

layer identification of P2P traffic,•h ACM SIGCOMM/USENIX In-

ternet Measurement Conference (IMC), Oct. 2004.

[7] P.C. Lin, Y.D. Lin, Y.C. Lai, and T.H. Lee, •gUsing string matching

for deep packet inspection,•h Computer, vol.41, no.4, pp. 23-28, April

2008.

[8] S.A. Baser and H. Schulzrinne, •gAn analysis of the Skype peer-

to-peer internet telephony protocol,•h Proc. IEEE INFOCOM, April

2006.

[9] O. Spatscheck, J.S. Hansen, J.H. Hartman, and L.L. Peterson, •gOp-

timizing TCP forwarder performance,•h IEEE/ACM Trans. Netw.,

vol.8, no.2, pp. 146-157, April 2000.

[10] J.L. Zhou, J.F. Yu, and H.T. Xia, •gData stream splicing for Web

proxy cache optimization,•h Frontier of Computer Science and Tech-

nology (FCST), Nov. 2006.

[11] Y.K. Chang, W.H. Cheng, and C.P. Young, •gFully pre-splicing TCP

for Web switches,•h Proc. Innovative Computing, Information and

Control (ICICIC), Aug. 2006.

[12] M. Carson and D. Santay, NIST Net-A Linux-based network em-

ulation tool, 2003.

[13] M. Uajnik, S. Moon, J. Kurose, and D. Towsley, •gMeasurement and

modeling of the temporal dependence in packet loss,•h Tech. Rep.

UMASS CMPSCI 98-78, 1998.

Ying-Dar Lin received the bachelor's de-

gree in Computer Science and Information En-
gineering from National Taiwan University in
1988, and the M.S. and Ph.D. degrees in Com-

puter Science from the University of California,
Los Angeles in 1990 and 1993. He joined the
faculty of the Department of Computer and In-
formation Science since 1993. From 2005, he is
the director of the graduate Institute of Network
Engineering. He is also the founder and direc-
tor of Network Benchmarking Lab since 2002.

His research interests include design, analysis, implementation and bench-
marking of network protocols and algorithms, wire-speed switching and
routing, quality of services, network security, content networking, network

processors and SoCs, and embedded hardware software co-design.

Po-Ching Lin received the bachelor's

degree in Computer and Information Educa-

tion from National Taiwan Normal University,

Taipei, Taiwan in 1995, and the M.S. degree in

Computer Science from National Chiao Tung

University, Hsinchu, Taiwan in 2001. He is

a Ph.D. candidate of Computer Science in Na-

tional Chiao Tung University. His research in-

terests include content networking, algorithm

designing and embedded hardware software co-

design.

Meng-Fu Tsai received the bachelor's de-

gree and the M.S. degree in Computer Science
from National Chiao Tung University, Hsinchu,

Taiwan in 2003 and 2005. He is a software en-

gineer in ZyXEL since 2005. His research inter-
ests include network security and content net-

working.

Tsao-Jiang Chang received the bachelor's

degree and the M.S. degree in Computer Science

from National Chiao Tung University, Hsinchu,

Taiwan in 2004 and 2006. His research interests

include P2P Gateway and performance evalua-
tion.

Yuan-Cheng Lai received the bachelor's
degree and the M.S. degree in Computer Science
and Information Engineering from National Tai-
wan University in 1988 and 1990, and the Ph.D.
degree from Computer and Information Sci-
ence, National Chiao Tung University in 1997.
He joined the faculty of National Cheng-Kung
University, Tainan, Taiwan in 1998. He is an
associate professor in Department of Informa-
tion Management, National Taiwan University
of Science and Technology, Taipei, Taiwan. His

research interests include high-speed networking, wireless network and

network performance evaluation, Internet applications.

