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Transform for Arbitrarily Shaped Segments 

in Image Compression
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SUMMARY In this paper, a new lifting-based shape-direction-adapti
discrete wavelet transform (SDA-DWT) which can be used for arbitraril
shaped segments is proposed. The SDA-DWT contains three major tech-
niques: the lifting-based DWT, the adaptive directional technique, and the 
concept of object-based compression in MPEG-4. With SDA-DWT, the 
number of transformed coefficients is equal to the number of pixels in the 
arbitrarily shaped segment image, and the spatial correlation across sub-
bands is well preserved. SDA-DWT also can locally adapt its filtering 
directions according to the texture orientations to improve energy com-
paction for images containing non-horizontal or non-vertical edge textures. 
SDA-DWT can be applied to any application that is wavelet based and the 
lifting technique provides much flexibility for hardware implementation
Experimental results show that, for still object images with rich orienta-
tion textures, SDA-DWT outperforms SA-DWT up to 5.88dB in PSNR 
under 2.15-bpp (bit/object pixel) condition, and reduces the bit-budget 
up to 28.5% for lossless compression. SDA-DWT also outperforms DA-
DWT up to 5.44dB in PSNR under 3.28-bpp condition, and reduces the 
bit-budget up to 14.0%.
key words: compression, textures, set-partitioning embedded block 
codex (SPECK), object-based video coding, shape-direction-adaptive DWT 
(SDA-DWT)

1. Introduction

The conventional separable 2-D DWT can be implemented 
by consecutively applying the 1-D DWT in horizontal and 
vertical directions, or vice versa. Hence, only these two 
directions of the high-pass filters have vanishing moments. 
For images containing large amount of edges which are not 
vertical or horizontal, the conventional DWT cannot provide 
efficient representations, since there are many large ampli-
tude coefficients in the high frequency subbands of the trans-
formed images. In order to solve this problem, we need to 
design a DWT whose directions are not fixed to vertical or 
horizontal. On the contrary, the new separable 2-D DWT 
will be capable of choosing the best directions for executing 
two 1-D DWTs. Such DWTs that can choose the optimal 
transform directions are usually called direction-adaptive 
DWTs. Recently, Ding et al. proposed the adaptive direc-
tional lifting-based wavelet transform (ADL-DWT) [1] for 

image compression, and they claimed that ADL-DWT can 
improve the compression performance of a texture-rich im-
age up to 2.0dB. In [1], they used the lifting scheme [3], [4] 
and the sinc-interpolation [5] to design ADL-DWT. About 
the same time, Chang et al. also proposed a direction-
adaptive discrete wavelet transform (DA-DWT) [6] for im-
age compression which was based on the lifting scheme, 
too. DA-DWT does not involve the sub-pixel interpolation 
of ADL-DWT, but they use the existing input samples for 

prediction and update. DA-DWT can attain a gain up to 
2.5dB in PSNR over the traditional DWT for typical testing 
images. From [1] and [6], we clearly know that DWT with 
direction-adaptive capability can improve the performance 
of the conventional DWT to a new level, but the extra cost is 
complicated computation and the side information process-
ing, which contains the direction information, to be stored, 
coded, and transmitted. Besides the complexity and side in-
formation, ADL-DWT and DA-DWT are designed for com-

pressing a rectangular image, and they cannot be used to 
object-based or arbitrary-shape image compression directly.

Both ADL-DWT and DA-DWT are based on the 
lifting-based DWT, since the lifting-based DWT is con-
venient for direction-adaptive functionality realization and 
hardware implementation. The convolution-based DWT 
or FIR (finite impulse response) bank structure DWT pro-

posed by Mallat [7] is the traditional method to imple-
ment DWT. The convolution-based DWT suffers from the 

problems that it is complex and difficult for hardware im-
plementation. Therefore, Daubechies and Sweldom pro-
posed the lifting-based DWT [3] which is less complicated 
than the convolution-based DWT. The main concept of the 
lifting-based DWT is to break-up the low-pass and high-pass 
wavelet filters into a sequence of lower-triangular and upper-
triangular matrices, and implement the filter by banded ma-
trix multiplications. Because of low complexity, ease for 
hardware implementation, and the capability of lossless re-
construction, the lifting-based DWT was recommended by 
JPEG2000.

An important feature of MPEG-4 is the functionality 
that the compressed forms of visual objects are available, 
and this feature provides great flexibility for manipulating 
visual objects in multimedia applications. For this function-
ality of MPEG-4, many coding techniques for coding arbi-
trarily shaped visual object were developed, and the shape-
adaptiVe discrete cosine transform (SA-DCT) [8] is the most
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popular one to code the texture of the intra frame of a visual 
object in video coding. Since SA-DCT divides the object 
to be compressed into many 8-by-8 blocks, the non-vertical 
and non-horizontal boundaries of objects can not be repre-
sented perfectly, i.e. some positions of the 8-by-8 bound-
ary block are not in the object. In order to overcome the 

problems of SA-DCT, Li et al. proposed the shape-adaptive 
discrete wavelet transform (SA-DWT) [9] for coding the 
texture of an arbitrarily shaped visual object. SA-DWT 
uses DWT to replace DCT, and it can handle arbitrarily 
shaped 2-D objects and gets better performance by using the 
more complicated algorithm. Lu and Pearlman combined 
the shape-adaptive DWT and the set-partitioning embed-
ded block coder (SPECK) [10] to propose the object-based 
SPECK algorithm [11] for coding the arbitrarily shaped ob-

jects of the intra frames in MPEG-4.
In this paper, we propose a shape-direction-adaptive 

lifting-based DWT (SDA-DWT). By using SDA-DWT, we 
can perform directional adaptive DWT on an arbitrarily 
shaped and partitioned visual object while the shape mask 
and partition of the object image are given. SDA-DWT can 
be directly applied to still image compression and object-
based visual compression in MPEG-4 with high efficiency. 
Experimental results show that SDA-DWT outperforms SA-
DWT (a conventional-separable-2D-DWT based method) 
by 5.76dB in PSNR for the test image under 1-bpp condi-
tion, and reduces 28.5% bit-budget of the coded bit-stream. 
For our test image, SDA-DWT also outperforms DA-DWT 

(a lifting-based method) by 4.88dB under 1-bpp condition, 
and reduces the bit-budget of the coded bit-stream 14.0%. 
The remainder of this paper proceeds as follows. In Sect. 2, 
the proposed SDA-DWT is described in detail. The lifting-
based DWT, the adaptive directional DWT, and the shape-
adaptive DWT are also included in this section. Experimen-
tal results are given in Sect. 3, followed by the conclusions 
in Sect. 4.

2. Shape-Direction-Adaptive Discrete Wavelet Trans-
form (SDA-DWT)

In this section, we present a new discrete wavelet trans-
form, which is both shape-adaptive and direction-adaptive 
and named shape-direction-adaptive discrete wavelet trans-
form (SDA-DWT). Besides the direction-adaptive capabil-
ity like ADL-DWT or DA-DWT, SDA-DWT is capable of 
handling arbitrarily shaped segments. Some related topics 
such as the lifting structure of DWT, the direction-adaptive 
DWT, and the shape-adaptive DWT are introduced in this 
section, too.

2.1 Lifting-Based Structure

Wavelet transform is well known as a multi-resolution anal-

ysis that provides many advantages: joint space-spatial fre-
quency localization, clustered wavelet coefficients of signif-
icance with strong correlations between subbands, and exact 
reconstruction, which are truly beneficial to image compres-

Fig. 1 The block diagrams of the 1-level 1-D convolution-based DWT 
and IDWT.

sion. Discrete wavelet transform (DWT) decomposes a sig-
nal: Sl(n) at resolution l into two components:

(1)

(2)

where Sl(n) is its approximation at the next coarser res-

olution l+1, Dl(n) is the detail information between the 

two successive resolutions: l and l+1, h(n)=<ƒÓ,ƒÓ-1
,-n>, 

g(n)=<ƒÕ,ƒÓ-1,-n>, <•E,•E> is an inner product operator, ƒÕ 

is a valid (mother) wavelet, ƒÓ is the scaling function, and 

ƒÓ-1,-n(x)=2-1/2ƒÓ(x/2-n). The original signal can be ex-

actly reconstructed from Sl+1(n) and Dl+1(n) by using the 

following inverse DWT (IDWT):

(3)

where h(n)=h(-n) and g(n)=g(-n). The DWT whose 
transform is based on Eqs. (1) and (2) and inverse trans-
form on Eq. (3), is called the convolution-based DWT. Fig-
ure 1 shows the block diagrams of the convolution-based 
one-level DWT and IDWT, where s and d are equivalent to 
Sl+1 and Dl+1, respectively, and x is equivalent to Sl. The 
convolution-based DWT was widely used for researching 
and implementing DWT for a long time, so most researchers 
are familiar to it. The disadvantages of convolution-based 
DWT are its complexity, large storage space requirement, 
and difficulty of hardware implementation. Daubechies and 
Swelden had proposed a new approach, called lifting-based 
DWT, for implementing DWT. The lifting-based scheme is 
to decompose a discrete wavelet transform into a finite se-

quence of simple filtering steps, which are called lifting 
steps. Using the language of algebraists, the decomposi-
tion of lifting-based DWT corresponds to a factorization of 
the polyphase matrix of the wavelet into elementary ma-
trices. The lifting-based approach can provide advantages 
such as in-place implementation of the fast DWT, capabil-
ity of integer-to-integer transform, ease for hardware imple-
mentation, less storage space requirement, and flexibility for 
some adaptations on DWT.

For the lifting structure, each finite impulse response 

(FIR) wavelet filter is factored into several pairs of lifting 
steps. One pair of lifting steps includes a prediction step
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Fig. 2 The block diagram of the lifting-based DWT containing one pair 

of lifting steps.

followed by one update step. In this paper, we only discuss 

the 5/3 wavelet, and the 5/3 wavelet can be realized with 

only one pair of lifting steps. The block diagram in Fig. 2 

shows the structure of the lifting-based DWT containing one 

prediction step and one update step. For the one-dimension 

lifting-based DWT, the input samples are classified into two 

categories (even and odd) first. Then, each odd sample is 

predicted by some specific even-neighbor samples (This de-

pends on the wavelet type.), and replaced by the residual 

obtained from subtracting the odd sample by the prediction 

value. After the prediction step, in the followed update step, 

each of the even samples is updated by the value generated 

from its odd-neighbor samples. Note that, in the update 

step, the odd samples are not the original inputs, since they 

have been changed in the preceding prediction step. Finally, 

the outputs are down-sampled to produce the low frequency 

subband and the high frequency subband and complete a 

lifting-based DWT with one pair of lifting steps. The lifting-

based IDWT can be implemented by reversing the steps in 

the corresponding lifting-based DWT. The following equa-

tions are a realization of the 5/3 wavelet lifting-based DWT:

y(2k+1)=xext(2k+1)

-[xext(2k)+xext(2k+2)]/2, (4)

y(2k)=xext(2k)+[y(2k-1)+y(2k+1)+2]/4, (5)

d(k)=y(2k+1), (6)

s(k)=y(2k). (7)

For the 5/3 wavelet used in this paper, Eqs. (4) and (5) are 

the prediction function and the update function, respectively. 

Equations (6) and (7) are two down-sampling relations used 

to generate the low frequency subband output s(k) and the 

high frequency subband output d(k), respectively, where x is 

the 1-D input data, and xext means the symmetric extended 

version of x. Assume that x={1,2,3,4,5}, and we have 

xext={•c,4,3,2,1,2,3,4,5,4,3,2,•c}. Assuming the 

length of x is even, 0•…k•…(length of x)/2. The operations 

corresponding to Eqs. (4) and (5) can be also represented as 

Fig. 3. The lifting-based IDWT of the 5/3 wavelet is shown 

in Eqs. (8)-(11).

y(2k+1)=d(k), (8)

y(2k)=s(k). (9)

Fig. 3 The structure of a lifting-based one-dimensional 5/3-wavelet 
DWT.

Fig. 4 A direction selection example with angle ƒÆ in 1-D •ehorizontal•f 

DWT.

x'(2k)=yext(2k)-[yext(2k-1)

+yext(2k+1)+2]/4, (10)

x'(2k+1)=yext(2k+1)+[x'(2k)

+x'(2k+2)]/2, (11)

where yext is the symmetric extended version of y and x' 

is the reconstruction version of the input x. The lifting-

based IDWT begins from applying Eqs. (8) and (9) for up-

sampling d and s to produce y. Then, the even input samples 

are reconstructed by using Eq. (10). Finally, using Eq. (11) 

to reconstruct the odd samples of x.

2.2 Directional Lifting DWT

The conventional separable 2-D DWT can be implemented 

by consecutively applying 1-D DWT in horizontal and ver-

tical directions, or vice versa. That means if we use the 

lifting structure to implement 2-D DWT, the prediction and 

update directions are parallel to the horizontal or vertical 

axes. For the lifting-based DWT whose directions of pre-

diction and update steps are adaptive is called a direction-

adaptive DWT (DA-DWT) or adaptive directional lifting-

based DWT (ADL-DWT). Figure 4 shows a direction selec-

tion in the lifting step of a direction-adaptive DWT, where
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Fig. 5 Nine prediction directions for an odd sample in 1-D •ehorizontal•f 

DWT.

Fig. 6 The update stage with ƒÆ=45•‹.

the direction line intersects the horizontal axis by an angle ƒÆ

. Applying sub-pixel technique, although the angle ƒÆ can 

be any value between 0 and ƒÎ/2 (radians), only nine direc-

tions were used in [1]. In [6], they also used nine directions 

for prediction and update, but these nine directions were not 

the same as those in [1]. In this paper, we use the direc-

tions in [6], because this method does not involve complex 

sub-pixel computation and has better performance. Figure 5 

shows the nine directions and their corresponding neighbors 

of an odd sample in prediction step of a 5/3-wavelet DWT. 

In Fig. 6, each of the even samples is updated by its two odd 

neighbors along the line with ƒÆ=45•‹.

ADL-DWT [1] and DA-DWT [6] are proposed to com-

press a rectangular image by dividing the whole image into 

a lot of fixed-size small square blocks. After dividing an im-

age into many small square blocks, the optimal direction for 

directional lifting DWT of each block is determined . Then, 

some connected blocks with the same lifting direction are 

grouped to form a large rectangular block with the same di-

rection for saving the bits of side information [1] . Different 

from the method in [1], the method used in [6] splits a larger 

square block into several small rectangular blocks instead of 

merging some small square blocks to form a larger rectan-

gular block. For lossless image compression, the best di-

rection (ƒÆ) of prediction and update of the directional lifting 

DWT is the direction that spends the least amount of bits to 

compress this (square or rectangular) block. For lossy im-

age compression, the best direction of the directional lifting 

DWT in a block should be the one that has the highest PSNR 

value for a given bit-budget. Either lossless or lossy image 

compression, the best direction selection should have strong 

energy compaction effect in the low frequency subband. On 

the other hand, energy compaction in low frequency sub-

band is equivalent to that the energy left in high frequency 

subband is little. Hence, the optimal direction selection can 

be approximately determined by choosing the direction in 

which the directional DWT has the smallest absolute sum of 

the coefficients in the high frequency subband.

The last step of the 1-D directional DWT is a sub-

sampling stage, and the subsampling method is just like 

the way in the conventional DWT, i.e. the subsampling di-

rection is the horizontal direction for a •erow•f directional 

adaptive DWT. After the •erow•f directional adaptive DWT is 

complete, the •ecolumn•f direction DWT is performed on the 

whole segment block, and the last step is the subsampling 

step following the •ecolumn•f directional DWT in a one-level 

direction-adaptive DWT. The realization of the •ecolumn•f 

direction-adaptive DWT is the same as the •erow•f direction-

adaptive DWT, if the segment block after •erow•f direction-

adaptive DWT is rotated clockwise 90 degrees.

2.3 DWT for Arbitrarily Shaped Segments

Because of fast growth of multimedia applications, the 

needs of searching, accessing, indexing, and manipulating 

visual information at the semantically meaningful object 

level are becoming more and more urgent. MPEG-4 stan-

dard supports such a functionality of making a visual object 

available in the compressed form, and this functionality pro-

vides flexibility for manipulating a visual object in multime-

dia applications and improves the compression efficiency in 

very low bit-rate coding. There are two major parts in an 

object-based video coding. One is the intra frame coding, 

and the other is the inter frame coding. The inter frame cod-

ing involving motion prediction, which will not be discussed 

here, and we focus on the intra frame coding in this paper. 

The intra frame coding of the object-based video coding can 

be divided into object shape coding and object texture cod-

ing. The shape mask (Fig. 7 (b)) is used to represent the re-

gion that the object occupied, and the simplest shape mask 

can be a binary figure which has value 1 for each pixel in the 

object and value 0 for each pixel outside the object. Thus,
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Fig. 7 Test objectl and its shape mask: (a) 256•~256 object 1 image 

with background, (b) shape mask of object 1.

Fig. 8 An arbitrarily shaped segment and the relation of its even and odd 

pixels in the prediction step of the I-D row direction lifting-based DWT.

using the shape mask, the object in an image can be eas-
ily segmented. The most popular technique for object tex-
ture coding is the shape-adaptive DCT (SA-DCT) [8], which 
uses 8-by-8 blocks to approximate the shape of the object to 
be coded. Since an object usually can not be represented by 
8-by-8 blocks perfectly, a lot of boundary blocks do not to-
tally reside in the object and make this method inefficient. S. 
Li et al. proposed a shape-adaptive discrete wavelet trans-
form (SA-DWT) for arbitrarily shaped visual object cod-
ing [9], and they used SA-DWT for the texture coding of the 
intra frame part in object based video coding. Lu et al. also 

proposed an object texture coding technique [11] that com-
bined SA-DWT and SPECK algorithm [10]. The experi-
mental results in [11] showed that SA-DWT with extensions 
of zerotree entropy coding (ZTE) outperforms SA-DCT up 
to 0.97dB in Y-plane PSNR, 1.29dB in U-plane PSNR, and 
0.89dB in V-plane PSNR, for the Akiyo sequence (CIF) at 
1.0bpp.

The works of [9] and [11] used the convolution-based 
DWT, and both of them involved complicated computation. 
Using the lifting-based DWT and global even-odd relation 
we can realize SA-DWT easily. Figure 8 shows that an arbi-
trarily shaped segment contains 10 pixels in a 6-by-8-pixel 
image, and it also shows the relation of even and odd pixels 
in the prediction step. In Fig. 8, the two arrows, pointing 
to each odd pixel, are used to indicate that the odd pixel's 
two nearest neighbors in the same row are used to predict

Fig. 9 An arbitrarily shaped segment and the relation of its even and odd 

pixels in the update step of the 1-D horizontal lifting-based DWT.

Fig. 10 The subsampling result of the arbitrarily shaped segment in 
Figs. 8 and 9 after 1-D horizontal lifting-based DWT.

the odd pixel. For the 5/3 wavelet DWT, the prediction 
value of each odd pixel in the lifting-based horizontal 1-
D DWT is the mean value of its right and left neighbors. 
After the prediction step, the residual that each odd pixel 
subtracts its prediction value is stored in the position of the 
odd pixel. If the even neighbor does not in the segment, the 
symmetric extension is used to generate a new even pixel 
value for prediction. For the single point in a row (e.g. the 

pixel at row 1 and column 3), its two neighbors for predic-
tion are set to zero. Figure 9 shows the update relation of 
the arbitrarily shaped segment when the lifting-based hor-
izontal 1-D 5/3 DWT is performed on the segment. Each 
even pixel in the segment is updated by using Eq. (5) in the 
update step, and the corresponding pixels (coefficients) are 
its left and right odd neighbors in the 1-D lifting-based hor-
izontal 5/3-wavelet DWT. The processing methods of the 
symmetric extension and single points are the same as those 
in the prediction step. The last step of the 1-D lifting-based 
DWT is a subsampling step by which the transformed 1-D 
data are classified into high and low frequency subbands, 
and the result is shown in Fig. 10. Then, the transformed 
image in Fig. 10 is transformed by the vertical lifting-based 
5/3-wavelet transform. The algorithm of 1-D lifting-based 
vertical 5/3-wavelet DWT is just like the algorithm of the
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Fig. 11 The first prediction step of the 2-D shape-direction-adaptive 

DWT (ƒÆ=45•‹) performed on an arbitrarily shaped segment.

Fig. 12 The first update step of the 2-D shape-direction-adaptive DWT 

(ƒÆ=45•‹) performed on an arbitrarily shaped segment.

1-D lifting-based horizontal 5/3-wavelet DWT.

2.4 The Proposed SDA-DWT

Shape-adaptive and direction-adaptive functionalities are 

two important improvements of DWT, and the experimen-

tal results in [1], [6], [9], and [11] show that they are very 

efficient for still image coding. ADL-DWT [1] and DA-

DWT [6] were designed for processing rectangular images, 

so they can not process an arbitrarily shaped segment di-

rectly. On the other hand, SA-DWT [9] and the method 

proposed in [11] can process arbitrarily shaped object, but 

they do not offer the direction-adaptive functionality. In this 

paper, we proposed a new DWT which has both the shape-

adaptive and direction-adaptive abilities, and we call it the 

shape-direction-adaptive DWT. The inputs of SDA-DWT, 

proposed in this paper, are the image containing the object 

to be transformed and the corresponding shape mask with 

or without partition, and the outputs are the transformed im-

age of the object and the corresponding shape mask after 

SDA-DWT.

The proposed SDA-DWT can be described by using 

Figs. 11-16, and the same arbitrarily shaped segment in 

Figs. 8 and 9 and the 5/3-wavelet are used for illustration. 

Compared to SA-DWT step in Fig. 8, the corresponding 

SDA-DWT step is shown in Fig. 11. In Fig. 11, assume that

Fig. 13 The horizontal subsampling result of Fig. 12 in SDA-DWT.

Fig. 14 The second prediction step of the 2-D SDA-DWT on an arbitrar-
ily shaped segment.

the 45-degree direction is selected, so each odd pixel in the 
segment is predicted by two nearest even neighbors on the 
45-degree line passing through this pixel. Then, each odd 

pixel is replaced by the residual obtained from subtracting 
the pixel value by the prediction value. If the prediction 
is good enough, the residual will be a small value. In the 

prediction step, the symmetric extension method is used for 
generating those even samples not in the segments, and the 
symmetric relation is about the line, passing through the odd 

pixel to be predicted, of 45 degree. According to Eq. (5), 
the update step in Fig. 12 is corresponding to the Fig. 9 of 
SA-DWT, and every even sample in the segment is updated 
by its two nearest odd neighbors (They already have been 
replaced by the residual values in the previous prediction 
step.) on the 45-degree line. After performing a pair of lift-
ing steps (i.e. a prediction and an update steps), the trans-
formed image is subsampled, and the result is shown in 
Fig. 13. The subsampling process is the same as the con-
ventional horizontal subsampling method, and the subsam-

pled coefficients are classified into the low-frequency sub-
band and the high-frequency subband.

When the horizontal subsampling step is complete, the 
second part (corresponding to the vertical conventional 1-
D DWT) of SDA-DWT begins from a prediction step (the 
second prediction step in SDA-DWT). Each odd sample in
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columns of the segment is predicted by its left and right even 
neighbors on the 45-degree line compared to the vertical line 

(Fig. 14). Then, the second update step of SDA-DWT is 
performed on the even samples in columns of the segment 
(Fig. 15). Finally, a conventional subsampling along the ver-
tical direction is performed on the coefficients in Fig. 15, and 
the image is transformed and divided into four subbands LL, 
LH, HL, and HH (Fig. 16). The symmetrical extension is 
used to generate the even samples and odd samples, not in 
the segment, for prediction and update, respectively. From 
Fig. 11 through Fig. 16, the one-level SDA-DWT is per-
formed, and the LL subband can be used to be further trans-
formed for multi-level SDA-DWT. The new shape mask is 

generated by subsampling the input shape mask along the 
horizontal and vertical directions, respectively.

Both ADL-DWT and DA-DWT partition an image into 
many small blocks. For texture features which are smaller 
than the smallest block size in the two methods, ADL-DWT 
and DA-DWT can not well exploit the correlation of the tex-
ture features in the small block. Moreover, even for large. 
texture features, since the block locations are fixed, this 
makes the partition usually not optimal. Thus, some energy 
will be left in the high-frequency subband. The proposed 
method can handle any shaped segments at any location, so 
it can exploit the correlation of such textures and get bet-
ter energy clustering to attain better compression efficiency.

Fig. 15 The second update step of the 2-D SDA-DWT on an arbitrarily 

shaped segment.

Fig. 16 The vertical subsampling result of Fig. 15 in SDA-DWT.

SA-DWT and the object-based SPECK are for object im-
age compression, and they have the ability to process any 
shaped visual object. They do not have the texture-feature-
size and fixed-block-location problems, but they use con-
ventional (i.e. horizontal and vertical) directions for predic-
tion and update. Lack of the capability of directional adapt-
ability makes them unable to well exploit the spatial correla-
tion of non-vertical and non-horizontal line textures. On the 
contrary, SDA-DWT can adapt the filter direction, accord-
ing to the texture features in each of the partition segments 
of the interested object, for well exploiting the correlation 
and obtaining better compression efficiency.

In SDA-DWT, for handling the finite length data of 1-
D wavelet transform, the symmetric extension of input data 
is used. The symmetric extension is effective and easy to 
implement, but, for the boundary between two partition seg-
ments, applying symmetric extension causes blocking effect 
for low bit-rate conditions. For such a problem, using the 
actual data at the extension points can alleviate the block-
ing effect. Periodic extension is another solution for finite 
length 1-D DWT computation, but it usually suffers from 
causing abrupt change at boundaries and needs more regis-
ters to implement.

3. Experimental Results

In this section, three test object images (Figs. 7, 18, 20) are 
used for simulation to evaluate the performance of SDA-
DWT, SA-DWT and DA-DWT. The original sizes of test 
images 1(Fig. 7) and 2 (Fig. 18) are 256-by-256 pixels, and 
the third test image (Fig. 20) is 128-by-128 pixels. Although 
the video frame size in MPEG-4 is 360-by-288, we choose 
square images in order to reduce the bits used for coding 
the paths in SPECK coding. For comparison, all methods 

(i.e. SA-DWT, DA-DWT, and SDA-DWT) use the same 5/3 
wavelet, and both SA-DWT and SDA-DWT use symmet-
ric extension for transform calculation while DA-DWT uses 
symmetric extension for transform calculation only on the 
boundary between the object image and background. For 
the partition boundaries in the object image, DA-DWT uses 
the practical values at the extension points. Here, we ig-
nore the bits for side information (i.e. the partition of DA-
DWT and the shape masks of SA-DWT and SDA-DWT) 
for simplification and focusing on the main problem. The 
decomposition-level decision in wavelet transform is impor-
tant and difficult. For a suitable design of decomposition 
levels, energy clustering effect will make compression effi-
cient. However, excessively many levels can not improve 
the overall compression efficiency, since the LL subband 
becomes a very small region that may degrade the overall 
compression efficiency. The suitable number of wavelet de-
composition levels mainly depends on the image size, im-
age content, and the coder/decoder used. In most cases, for 
a 512-by-512-pixel image, we select 3, 4, or 5 levels em-

pirically. In this paper, 4 decomposition levels were used 
because the test images are small size. In the followings, 
PSNR (peak-signal-to-noise ratio) values and the lengths
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Table 1 The bit numbers of the bit stream of each test object image after 
SPECK coding. (SDA1 and SDA2 represent SDA-DWT without object 

partition and with object partition, respectively. SA means SA-DWT and 
DA is DA-DWT)

Table 2 The PSNR results for lossy compression of object image 1. (Ob-
ject 1 contains 30,535 pixels)

of bit streams after SPECK coding are used as two perfor-

mance measures. The PSNR calculation is based on a 256-

by-256-pixel image (objects 1 and 2) or an 128-by-128-pixel 

image (object 3), and the bpp (bit/object pixel) calculation 

is based on the pixel number in an object image.

For the first object image (Fig. 7), our interested object 

is a suitcase covered with many line textures, and the object 

occupies 30,353 pixels in a 256-by-256-pixel image. SDA-

DWT and SA-DWT are evaluated by compressing object-1 

image. Since the orientations of lines in object 1 are almost 

the same, we do not partition the object into small segments, 

i.e. the whole visual object is a large segment. After per-

forming 4-level SDA-DWT on the visual object, the trans-

formed object image is coded by using the SPECK algo-

rithm, and the resulted bit-stream can represent a compres-

sion file of the object image. The same procedures are per-

formed on test image 1 except that SDA-DWT is replaced 

by SA-DWT, and we have another compression file of the 

object image by using SA-DWT. Table 1 shows the sizes (in 

bits) of each object image for each method, and it tells us 

that SDA-DWT is more efficient than SA-DWT is. The bit 

number of SDA-DWT compression file is about 77.8% size 

of the SA-DWT compression file. Table 2 shows that SDA-

DWT outperforms SA-DWT up to 5.88dB under 2.15-bpp 

(256•~256bits) condition. In this case, the performance 

of SDA-DWT is always better than that of SA-DWT be-

cause of the directional line textures on the object. For the 

characteristic of the textures on object 1, if we choose +45•‹ 

direction in the prediction step of the 1-D •ehorizontal•f trans-

form, the predicted values will very close to the actual val-

ues of odd pixels. Thus, much energy is clustered in the 

low-frequency subband, and that makes the wavelet trans-

form very successful, which makes the overall compression 

scheme very efficiently. Two object-1 reconstruction im-

ages of SDA-DWT and SA-DWT, under 1-bpp condition 

(i.e. 30,353bits), are shown in Fig. 17 for comparison. The 

reconstruction quality of SDA-DWT is obvious better than 

that of SA-DWT.

For the test image of object 2 (Fig. 18 (a)), SDA-DWT 

and SA-DWT are simulated and compared by their PSNR 

values and file sizes. The gray-level object-2 is segmented

Fig. 17 The reconstruction images of object 1 under 1-bpp condition: 
(a) the result of SDA-DWT, (b) the result of SA-DWT. (Object 1 contains 
30,353pixels)

Fig. 18 Test object 2 and its shape mask with partition: (a) object-2 im-

age in 256•~256 frame, (b) object-2 shape mask with partition. (Object 2 

contains 45,012pixels)

Table 3 The PSNR results for lossy compression of object image 2. (Ob-

ject 2 contains 45,012pixels. SDA1 and SDA2 represent SDA-DWT with-

out object partition and with object partition, respectively)

from the famous test image Barbara, and Fig. 18 (b) shows 
the shape mask of the visual object. Two cases are simulated 
for evaluating SDA-DWT. First, the whole object 2 without 

partition is used for simulation, and second, object 2 is par-
titioned into two parts (Fig. 18 (b), the white region and the 

gray part) for simulation. The partition shown in Fig. 18 (b) 
is an example for arbitrarily shaped partition which is not 
the optimal one. Table 1 shows that, for compression-file 
size, SDA-DWT with object-image partition is the most ef-
ficient case among these cases, SDA-DWT without object 

partition is second place, and SA-DWT is third place. SDA-
DWT with object partition reduces 0.95% bit budget of SA-
DWT's, and SDA-DWT without object partition reduces 
0.24% bit-budget. On the other hand, the PSNR values in 
Table 3 show that SDA-DWT with partition has the best 

performance. The results show that for a texture rich (es-
pecially, non-horizontal or non-vertical edges) image, the 
performance of lossy compression can be enhanced by suit-
ably partitioning the object image. The proposed method 
offers much flexibility for partition, since it can handle seg-
ments with any shape. The reconstruction object images of
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Fig. 19 The object-2 reconstruction images under 1.46-bpp condition: 
(a) the result of SDA-DWT with object partition according to Fig. 18 (b), 
(b) the result of SA-DWT.

Fig. 20 Test object 3 and its shape mask with partition: (a) object-3 im-

age in 128•~128 frame, (b) object-2 mask with partition. (Object 3 contains 

10,000pixels)

SDA-DWT with object partition and SA-DWT, under 1.46-

bpp condition, are shown in Fig. 19. We also performed 

the experiments on the object images segmented from Lena, 

Claire, and Akiyo. Since these object images lack non-

horizontal or non-vertical edges or the directions of textures 

are random, without suitable object partition, the perfor-

mance of SDA-DWT and SA-DWT are almost the same.

For the third gray-level object image (Fig. 20 (a)), all 

the three methods (SA-DWT, DA-DWT, and SDA-DWT) 

are evaluated. The object-3 image (synthesized from the 

images in USC image database) contains 10,000 pixels in 

a 128-by-128-pixel area, and there are five different textures 

on the object. Hence, the object image is partitioned into 

5 segments (Fig. 20 (b)) for SDA-DWT. Although object-

3 image is rectangular, SDA-DWT can handle any shaped 

objects. DA-DWT is originally designed for processing a 

rectangular image, but object-3 image can be viewed as 

an squared 128-by-128-pixel image containing an object 

3. DA-DWT partitions the object image into many small 

blocks (Fig. 22 (b)) to discover the texture direction which 

can not be seen in large scale. Table 1 shows that, for loss-

less compression, SDA-DWT uses the least amount of bits, 

and DA-DWT is the most bit consuming one. For the PSNR 

comparison, Tables 1 and 4 show that SDA-DWT outper-

forms SA-DWT up to 4.31dB in PSNR under 1-bpp (bit

/object pixel) condition, and reduces the bit-budget up to 

5.66% (the base is 67,726bits) for lossless compression. 

SDA-DWT also outperforms DA-DWT up to 5.44dB in

Fig. 21 The reconstruction object images, under 1-bpp condition: (a) the 
result of SDA-DWT, (b) the result of SA-DWT.

Fig. 22 The reconstruction object image and the partition and direction 
in DA-DWT: (a) the reconstruction result under 1-bpp condition. (b) mask 
partition and block directions of partition used in DA-DWT.

Table 4 The PSNR results for lossy compression of object image 3. (Ob-

ject 3 contains 10,000pixels.)

PSNR under 3.28-bpp condition, and reduces the bit-budget 
up to 14.0%. The reconstruction results under 1-bpp con-
dition are shown in Figs. 21 and 22 (a). From the experi-
ments of object 3, we understand that SA-DWT can not well 
exploit the correlation of the directional textures, so it has 

poor performance for this test object image. For DA-DWT, 
since its resolution is not high enough (the smallest parti-
tion block is 16-by-16), can not represent non-rectangular 
segment boundaries perfectly, and wastes coding bits on the 
object background; DA-DWT has the poorest performance 
for the special object-image.

4. Conclusions

In this paper we propose SDA-DWT, which can be used for 
arbitrarily shaped image segments, and whose direction of 

prediction and update are adaptive. From the experimental 
results, SDA-DWT has superior performance than SA-DWT 
or DA-DWT does for visual objects with non-horizontal or 
non-vertical edge textures. SDA-DWT can be applied to 
any wavelet-based application, although, in this paper, we 
only give the examples of the intra frame compression of
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the object-based video compression in MPEG-4 standard. 

The extra costs of SDA-DWT compared to SA-DWT are 

the increased complexity and the storing and processing of 

the side information of the directions in each segment of 

the object image. For convenience, we focus on how to 

compress the partitioned still-object image while assuming 

that the partition of the object image has been done in this 

work. In order to achieve the optimal result, a good texture-

segmentation method is necessary.
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