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Abstract

This paper presents a multiple criteria decision approach for trading weekly tool capacity between two semiconductor fabs. Due to the
high-cost characteristics of tools, a semiconductor company with multiple fabs (factories) may weekly trade their tool capacities. That is,
a lowly utilized workstation in one fab may sell capacity to its highly utilized counterpart in the other fab. Wu and Chang [Wu, M. C., &
Chang, W. J. (2007). A short-term capacity trading method for semiconductor fabs with partnership. Expert Systems with Application,

33(2), 476–483] have proposed a method for making weekly trading decisions between two wafer fabs. Compared with no trading, their
method could effectively increase the two fabs’ throughput for a longer period such as 8 weeks. However, their trading decision-making is
based on a single criterion—number of weekly produced operations, which may still leave a space for improving. We therefore proposed
a multiple criteria trading decision approach in order to further increase the two fabs’ throughput. The three decision criteria are: number
of operations, number of layers, and number of wafers. This research developed a method to find an optimal weighting vector for the
three criteria. The method firstly used NN + GA (neural network + genetic algorithm) to find an optimal trading decision in each week,
and then used DOE + RSM (design of experiment + response surface method) to find an optimal weighting vector for a longer period,
say 10 weeks. Experiments indicated that the multiple criteria approach indeed outperformed the previous method in terms the fabs’
long-term throughput.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The manufacturing of semiconductor products is a long-
route process. A semiconductor product, called a wafer,
involves hundreds of operations. These operations are gen-
erally grouped into tens of layers. The tools for semicon-
ductor manufacturing are capital-intensive. A tool may
cost up to ten millions of dollars. A typical wafer fab (a
semiconductor factory) involves hundreds of tools, which
as a whole may cost over 1 billion dollars. Therefore, effec-
tive management of tool capacity has been a significant
research issue.
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Traditionally, effective management of tool capacity has
been investigated from three perspectives—in terms of deci-
sion horizon. From long-term perspective, some literature
addressed the tool planning problem (Wu, Erkoc, & Kara-
buk, 2005); that is, how to purchase tools to fulfill a long-
term forecasted demand that typically ranges from one to
several years (Bard, Srinivasan, & Tirupati, 1999; Çatay,
Erengüç, & Vakharia, 2003; Christie & Wu, 2002; Connors,
Feigin, & Yao, 1996; Grewal, Bruska, Wulf, & Robinson,
1998; Hood, Bermon, & Barahona, 2003; Swaminathan,
2000, 2002; Wu, Hsiung, & Hsu, 2005). From medium-term
perspective (ranging from one to several quarters), research-
ers addressed the product mix planning problems, which
examined how to select customer orders to optimize
the use of tool capacity (Bermon & Hood, 1999; Chou &
Hong, 2000; Chung, Lee, & Pearn, 2003; Chung, Lee, &
Pearn, 2005). From short-term perspective, the issues of
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production planning (Odrey, Green, & Appello, 2001;
Chen, Chen, Lin, & Rau, 2005) and shop floor control
(Chen & Chen, 1996; Kuroda, Tomita, & Maeda, 1999;
Mönch & Drießel, 2005) are addressed, which attempt to
effectively use the tool capacity to produce the committed
orders. Most literature based on the three perspectives essen-
tially dealt with the tool capacity problem of a single fab.

A recent track on capacity planning turned to the
mutual support of tools among different fabs. A semicon-
ductor company usually has its fabs built in a cluster; that
is, the fabs are close in their physical locations. This pro-
vides opportunities for tool capacity support among fabs.
Deboo (2000) and Toba et al. (2005) took several different
fabs as a single big one; a product before its completion
may travel through more than one fab. They developed a
dispatching algorithm for dynamically planning the route
of a product. This approach implicitly assumed the adop-
tion of a central management system. That is, each fab is
not an autonomy unit; therefore, the performance of each
individual fab may not be easily identified.

Managing each fab based on individual performance is
undoubtedly important in motivating diligent work. A
company may manage its multiple fabs by a de-centralized
management system. That is, each fab operates in an
autonomy manner and supports each other by trading tool
capacity periodically. Wu and Chang (2007) proposed a
method to find a weekly trading portfolio in order to max-
imize the two fabs’ throughput in a longer period such as
8 weeks. They used total number of weekly completed
operations as the criterion for finding the trading portfolio.
Experiments indicated that such a weekly trading criterion
indeed would increase the longer-period fab throughput.

However, our analysis indicates that the capacity trad-
ing criterion proposed by Wu and Chang (2007) still left
a space for improving. Typically, a semiconductor product
involves hundreds of operations, grouped into tens of lay-
ers. The productivity of a fab could be measured in three
indices—number of operations, number of layers, and
number of products (known as throughput). Intuitively,
maximizing the output volume of operations would maxi-
mize that of layers, in turn that of products. However, a
layer is a combination of specific operations; therefore,
producing a higher number of operations may not lead
to producing a higher number of layers if many operations
are unable to be aggregated into a layer. This implies that
the longer-period fabs’ throughput could be possibly
increased by adopting a new capacity trading criterion.

This paper proposes the use of a multiple criteria in the
decision of weekly capacity trading between two fabs. Three
trading criteria are considered: number of operations, num-
ber of layers, and number of products. To integrate these
three criteria, a weighting for each has to be determined.
Different weighting assignments lead to different trading
outcomes, in turn different longer-period throughputs. We
therefore attempt to identify an optimal weighting vector
for the three trading criteria in order to maximize total
profit of the two fabs of a longer period, such as 10 weeks.
The research framework involves two modules. The first
module, for given a weighting vector of criteria, aims to
determine its optimal weekly trading portfolio. That is,
we attempt to find a weekly trading portfolio that would
maximize a1 Æ O + b1 ÆL + c1 Æ W, where [a1,b1,c1] denotes
the given weighs of criteria and O, L, and W respectively
denotes the number of operations, layers, and wafers in
that week. The second module attempts to find an optimal
weighting vector [a*,b*,c*] in order to maximize the total
profit of the two fabs—which would yield after the two
fabs have traded capacity for a longer period, say 10 weeks.
These two modules have been implemented and tested by
numerical examples. Experiments indicated that the pro-
pose approach indeed outperform the previous work.

2. Module 1—finding weekly trading portfolio

The first module is to find a weekly trading portfolio
that would maximize the fabs’ weekly aggregated output.
The aggregated output involves three components: number
of operations, number of layers, and number of wafers,
with the weights for integrating the three components being
given. The development of this module involves three steps:
(1) how to define the solution space of trading portfolios,
(2) how to evaluate the performance of each trading port-
folio, and (3) how to find a near-optimal solution.

2.1. Define solution space

In practice, a semiconductor fab comprises dozens of
workstations; each workstation involves a number of func-
tionally identical tools. For any two workstations in differ-
ent fabs, we could trade their capacity if the two are
functionally identical. Such a pair of workstations is called
a tradable pair of workstations. Consider a case where the
two fabs have m tradable pairs. The solution space of trad-
ing portfolios would include N ¼

Qm
i¼1ðBi þ 1Þ elements,

where Bi denotes the maximum number of trading units
for a tradable pair i; that is, its trade option could range
from 0 to Bi units.

For a tradable pair i, we determine that Bi ¼ round up
ð 1

2u jqs;i � qb;ij � Qs;i � T Þ, where u denotes the basic trading
units; qs,i denotes the utilization of the workstation that
sells capacity; qb,i denotes the utilization of the workstation
that buys capacity; Qs,i denotes the number of tools in the
workstation that sells capacity; and T denotes the number
of working hours per week. Consider a case with u = 20 h,
qs, i = 60%, qb,i = 90%, Qs,i = 5 tools, and T = 168 h. Then
Bi = round_up(6.3) = 7 trading units. That is, the two
workstations can trade at most 140 h.

Notice that the qs,i and qb,i refer to the workstation uti-
lizations in the coming week while there is no capacity trad-
ing applied. The workstation utilizations are estimated by
carrying out a discrete-event simulation. The simulation
is a deterministic model; that is, the daily uptime of each
tool is assumed to be a constant rather than stochastic.
The adoption of this assumption is based on the simulation
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findings by Kim, Shim, Choi, and Hwang (2003) whose
experiment results advocated the use of deterministic simu-
lation model in predicting a fab’s short-term behavior such
as one week. The deterministic simulation program is
abbreviated Det_Sim(Si, Tk), where Si denotes the initial
status of the two fabs at week i, and Tk denotes the trading
portfolio applied at week i. In evaluating qs,i and qb,i, we
use Det_Sim(Si,T0), where T0 denotes a no-trading
decision.

2.2. Evaluate performance of trading portfolios

The performance of a trading portfolio is evaluated by
the fabs’ aggregated output I = a1 Æ O + b1 Æ L + c1 Æ W

where O, L, and W respectively denotes the total number
of operations, layers, and wafers produced by the two fabs;
and [a1,b1,c1] denotes the predefined weights for the three
components. The higher the value of I, the more preferable
is the trading portfolio.

As stated, the performance of a trading portfolio can be
estimated by carrying out a deterministic simulation pro-
gram. According to our experiments, one such estimation
by using a typical personal computer (PC) takes about
40 s in computation. Consider a case where the fabs have
four tradable workstations, each of which has at most 15
trading units. Then, the total number of trading portfolios
would be (15 + 1)4 = 65,536, requiring about 30 days.

This research proposed two methods to reduce the com-
putation time. Firstly, the neural network (NN) technique
is used to emulate the function of simulation, which could
yield results in a much speedy way. Experiments indicated
that, by the NN technique, the computation time per esti-
mation would be much less than one second. Secondly, we
used the genetic algorithm (GA) technique to reduce the
number of estimations; that is, trading portfolios are not
exhaustively evaluated—only a limited number of ‘‘seem-
ingly good’’ trading portfolios are tested.

Consider the simulation program as a transformation
mechanism. Then, the input is a trading portfolio and
the output involves three components (O, L and W).
The application of NN technique is to construct an
input/output mapping to emulate the function of the sim-
ulation program. To do so, we firstly sample K trading
portfolios and compute their performances by simulation.
The obtained K pairs of input/output vectors are then
used to construct a neural network for each fab by the
back-propagation algorithm (Fausett, 1994; McClelland
& Rumelhard, 1988; Rumelhart, Hinton, & Williams,
1986).

This algorithm would establish a non-linear mapping
between the input/output vectors. That is, given an input
vector, the neural network through the non-linear mapping
could compute the output of each fab speedily. The neural
network is called well-trained if its projected output vectors
are close to those obtained from the simulation; typically
their degree of discrepancies is measured by RMSE (root
mean squared errors). A well-trained neural network could
then be interpreted as a ‘‘faster simulator’’. By constructing
a neural network for each fab, we could then speedily com-
pute the aggregated output of the two fabs.

2.3. Find a near-optimal solution

With a well-trained neural network, we used the GA
technique to find a near-optimal trading portfolio from
the huge solution space. The GA technique has been widely
used in solving a large space search problem and has been
justified in its effectiveness in finding a near-optimal solu-
tion (Mitchell, 1998). The GA used in this research is
briefly described below.

Each trading portfolio is modeled as a string of numer-
als, called chromosome. Each number in the string, called
gene, represents a trading option for a particular type of
workstation. The performance of a trading portfolio is
called the fitness of the chromosome. Changing the gene
values of a existing chromosome leads to the creation of
a new one. Methods for such a chromosome creation are
called genetic operators.

The solution search mechanism of the GA is by evolving
a population of chromosomes, which is limited in number
during the evolution. An evolution generation means that
the population has been updated once. In the population
updating process, some chromosomes are replaced by
‘‘seemingly good’’ new ones, which are created by genetic
operators. The genetic operators involve three types: repro-
duction, crossover, and mutation. The population updat-
ing process terminates when either the best solution
cannot be improved further or the population has evolved
over a predefined number of generations. And the best
chromosome in the final population is the trading portfolio
provided by the GA.

2.4. An integrated procedure

The aforementioned steps of the first module can be
summarized below by a procedure called Find_Weekly_
Trading([a,b, c],Si), where [a,b,c] is the given weighting
vector and Si denotes the initial status of the two fabs at
week i—the particular week for making the trading deci-
sion. The output of the procedure is denoted by
Q�i ða; b; cÞ, which represents the optimal trading portfolio
at week i.

Procedure Find_Weekly_Trading([a,b,c],Si)

Step 1: Use Det_Sim(Si,T0) to estimate the utilization of
each tradable pair of workstations

Step 2: Define the solution space N of trading portfolios
Step 3: Establish a neural network to emulate Det_Sim

• Randomly sample K trading portfolios
• For each of the K trading portfolios, use Det_

Sim(Si,Tk) to compute its weekly outputs of O,
L, W in each fab

• Construct a neural network for each fab
• Aggregate the projected outputs of the two fabs
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Step 4: Use GA to search an optimal trading portfolio

Q�i ða; b; cÞ from solution space N.

3. Module 2—select optimum weights for trading criteria

The ultimate purpose of trading tool capacity between
fabs is to make their long-term total profits as higher as
possible. In the first module, we have presented how to find
a weekly optimum capacity trading decision based on a
particular weighting vector [a,b,c]. This implies that the
use of different weighting vectors may yield different total
profits. Therefore, how to find an optimum weighting vec-
tor is important.

The second module therefore attempts to find an optimal
weighting vector [a*,b*,c*] for aggregating the three trading
decision criteria—number of operations (O), number of lay-
ers (L), and number of wafers (W) in order to maximize the
total profit of the two fabs, from a longer-period perspective
(T weeks). That is, making trading decisions successively for
T = 10 weeks based on the vector [a*,b*,c*] would maxi-
mize the 10 weeks total profit of the two fabs.

This module involves two procedures. The first proce-
dure is to compute the T weeks total profit of the two
fab, while the weighting vector [a,b,c] has been given.
The second procedure is to find an optimum weighting vec-
tor [a*,b*,c*] from the set S = {[a,b,c]ja + b + c = 1,
0 6 a,b,c 6 1}.
3.1. Compute total profit in T weeks

The procedure to compute the T weeks total profit for a
given weighting vector [a,b,c], called Compute_Profit

(a,b,c), is described below with its notation firstly
introduced.

Notation

[a,b,c] the given weighting vector
Q�i ða; b; cÞ ¼ ½w1;w2; . . . ;wk� an optimum trading portfolio

at week i, where wi denotes the number of trading
units for tradable workstation i and k denotes the
number of tradable pairs

Si the initial status of the two fabs at week i, which
describes the WIPs before each workstation and
the up-or-down status of each machine

Fi the final status of the two fabs at week i, which de-
scribes the WIPs before each workstation and the
up-or-down status of each machine; i.e.,Fi = Si+1

Vi = [v1,v2, . . . ,vm] total produced volumes of each prod-
uct in the two fabs at week i, where m is the num-
ber of product types

Ri = [r1, r2, . . . , rm] contribution margin of each product at
week i, where m is the number of product types

Pi total profit of the two fabs at week i

P(a,b,c) total profit of the two fabs in T weeks
Procedure Compute_Profit(a,b,c)

Step 0: Initialization, input [a,b,c] and S1

For i = 1, . . . ,T

Step 1: Use the procedure Find_Weekly_Trading([a,b,c],
Si) to compute Q�i ða; b; cÞ

Step 2: Use a stochastic simulation program Sto SimðSi;
Q�i ða; b; cÞÞ to estimate Si+1 and Vi after implement-
ing the trading portfolio Q�i ða; b; cÞ

Step 3: Compute total profit P i ¼ V i � RT
i at week i

Endfor
Step 4: Compute the total profit of the T weeks P ða; b; cÞ ¼PT

i¼1P i

In Step 2 of the above procedure, the stochastic simula-
tion program Sto_Sim(Si, Q�i ða; b; cÞ) is used for predicting
the behavior of the two fabs after carrying out a capacity
trading portfolio; that is, it takes Q�i ða; b; cÞ and Si as input
and generates Si+1 and Vi as output, which could be used to
obtain the total profit P(a, b,c).

Notice that in evaluating the longer-period (say, T =
10 weeks) performance of a trading portfolio, we have to
use a stochastic simulation rather than a deterministic sim-
ulation. This is to reflect the unpredictable nature of a real
wafer fab and attempts to justify the robustness of a weekly
optimum trading portfolio.

3.2. Find an optimum weighting vector

We now discuss how to find an optimum weighting vector
[a*,b*,c*] from the set S = {[a,b, c]ja + b + c = 1, 0 6 a,
b,c 6 1} in order to maximize the total profit of the T weeks.
The techniques of mixture design of experiments (DOE) and
response surface method (RSM) are used. That is, we sample
a number of weighting vectors, compute their total profits,
and use the obtained results to construct a response surface,
which is polynomial function that could be used to quickly
estimate the total profit for each [a,b,c] in S.

Using an appropriate experiment design model is very
important in effectively predicting the behavior of a system.
In our experiment, the three factors are imposed by a con-
straint a + b + c = 1 and are not independent. Therefore,
the simplex centroid design (Montgomery, 1991) is used for
the three mixture components. As shown in Table 1, 10 design
points are selected in the experiment; the total profit P(a,b,c)
for each design point could be computed by applying the pro-
cedure Compute_Profit(a,b,c). The 10 pairs of [(a,b,c),P] are
then used to construct the response surface. With the response
surface, an optimum weighting vector [a*,b*,c*] could then be
easily identified by analytical approaches such as the gradient
method (Myers & Montgomery, 1995).

3.3. Rationales for choosing optimization techniques

Notice that in the first module we use the technique of
NN + GA in finding an optimal weekly trading portfolio.



Table 1
Simplex centroid design points for a mixture experiment

Design point a b c

1 1 0 0
2 0 1 0
3 0 0 1
4 1/2 1/2 0
5 1/2 0 1/2
6 0 1/2 1/2
7 1/3 1/3 1/3
8 2/3 1/3 1/3
9 1/3 2/3 1/3

10 1/3 1/3 2/3
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In contrast, in the second module, we use the technique of
DOE + RSM to find an optimal weighting vector. A ques-
tion may arise: why two different techniques are used in
searching an optimum solution?

By its very nature, the technique of DOE + RSM
requires much less number of sampled solutions (only 10
points in this application) in constructing the response sur-
face. Therefore, it is more suitable for cases with a longer
computation time per solution evaluation, whereas the
technique of NN + GA is more suitable for cases with a
shorter computation time per solution evaluation.

In this research, the second module attempts to evaluate
the performance of a weighting vector [a,b,c]. That is, for a
given weighting vector [a,b,c], we need to compute the
optimum trading portfolio for each of the T weeks. This
would become quite time-consuming if we attempt to eval-
uate a large number of weight vectors [a,b,c]. To limit the
number of sampled weighting vectors, the technique of
DOE + RSM is thus used in the second module.
4. Numerical example

The proposed approach has been tested by a numerical
example. Table 2 shows the number of product mixes,
number of workstations, contribution margin of each
product, and some other features of process routes in the
two trading fabs, where a type of product is denoted by
xPyM which specifies that the product has x poly-layers
and y metal layers (Xiao, 2001). The contribution margin
of each product and the process routes are disguised from
those provided by industry. And we assumed that only four
types of workstations are tradable between the two fabs.

The two simulation programs Det_Sim and Sto_Sim are
coded by using eM-plant (Tecnomatix Technologies Ltd,
Table 2
Tools and products for the two fabs

FAB Number of
workstations

Total number
of tools

Product

Fab_A 60 275 4P1M
1P7M

Fab_B 60 201 1P3M
1P8M
2001). The experiment design and response surface meth-
ods are carried out by using MINITAB (Minitab Inc.,
2003). The neural network and the GA programs are coded
by using C programming language.

In the example, the two fabs are designed to trade capac-
ity from week 1 to week 10 (i.e., T = 10). The fabs’ initial
status (S1) is generated by Sto_Sim, which starts from an
empty fab until comes to a steady state by uniformly releas-
ing wafers based on the given product mixes.

In constructing an NN for modeling a fab’s behavior for
a particular week, we sampled K = 2000 trading portfolios.
Then we use Det_Sim to compute the weekly fab output of
each trading portfolio. Subsequently, the input/output of
the 2000 trading portfolios are used to construct a neural
network for the week. By using a typical PC (personal com-
puter), it takes about 40 s for carrying out the simulation
once. We used 50 PCs in a lab to do the computation. That
is, 40 simulation runs have to be performed on a PC and
takes about 26.7 min. With the 2000 data being available,
the computation time for constructing the neural network
is much faster, about less 1.5 min by using only one PC.
Likewise, the computation effort for the GA to obtain
Q�i ða; b; cÞ takes less than 1.5 min. With the Q�i ða; b; cÞ being
available, we used Sto_Sim to compute the initial fab status
of week i + 1, which takes about 1.0 min in computation.

Therefore, the computation time for running simula-
tions, constructing a neural network, carrying out the GA
search, and updating the fabs’ initial status of next week
takes about 30 min in total. That is, with a computation
facility of 50 PCs, the two fabs can make their weekly trad-
ing decision in 30 min, if the weighting vector of the decision
criteria [a,b,c] has been given. In practice, half an hour deci-
sion-making is acceptable for a weekly trading decision.

In contrast, the computation time for finding an optimal
weighting vector [a*,b*,c*] is much more computationally
extensive. For a given weighting vector [a,b,c], we have
to compute the optimal weekly trading decisions for
10 weeks, which will take 5 h (0.5 h/week * 10 weeks) com-
putation on a computing facility with 50 PCs. In the DOE,
we have 10 weighting vectors to be evaluated, and this will
take about 50 h computation—seemingly an astonishing
value! However, the decision of an optimal weighting vec-
tor [a*,b*,c*] is not made weekly. A practical application
maybe updates [a*,b*,c*] quarterly, which then takes 50 h
of computation—seemingly acceptable to a semiconductor
fab. This computation time surely can be reduced if more
number of PCs is used.
Total processing
time (h)

Total number
of operations

Contribution
margin

400 358 65
440 412 80

318 276 50
480 446 100



Table 3
Ten weekly optimal trading portfolios for [a,b, ,c] = [1,0,0]

Week Trading portfolio
[a,b,c] = [1,0,0]

1 (180,240,960,320)
2 (180,220,780,300)
3 (160,240,640,280)
4 (160,240,600,260)
5 (180,220,620,300)
6 (140,220,560,300)
7 (160,200,600,300)
8 (180,180,640,280)
9 (160,200,600,300)

10 (160,180,680,240)
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Table 1 shows the 10 weighting vectors selected for con-
structing the response surface. Table 3 shows the weekly
optimum trading portfolios for the 10 weeks while
[a,b,c] = [1,0,0]. Table 4 shows total profit of the 10 weeks
for each of the 10 weighting vectors in the DOE. The equa-
tion of the response surface with R2 = 0.852 is shown
below, where y denotes the total profit divided 1000; that
is, in unit of thousand dollars. The contour and three-
dimensional plots of the response are shown in Fig. 1. A
Table 4
The responses of 10 design points

Design point Criteria weights Throughput of ea

a b c 4P1M 1

1 1 0 0 993 6
2 0 1 0 1001 6
3 0 0 1 1013 6
4 1/2 1/2 0 1024 6
5 1/2 0 1/2 1041 6
6 0 1/2 1/2 1031 6
7 1/3 1/3 1/3 1027 6
8 2/3 1/3 1/3 1085 6
9 1/3 2/3 1/3 1024 6

10 1/3 1/3 2/3 1025 6
No. trading – – – 882 5

Optimal trading 0.63 0.13 0.24 1088 6
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Fig. 1. Contour and 3-D
flag in the contour plot identifies the region that maximizes
the total profit of the two fabs
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The embedded algorithm in MINITAB for searching an
optimal solution from the response surface is then used to
find [a*,b*,c*] = (0.63,0.13,0.24). As shown in Table 4, the
total profit obtained by using [a*,b*,c*] exceeds those
obtained by the 10 sampled weighting vectors. In addition,
the table also indicates that the decision of no trading is the
lowest in total profit. This confirmed the claim of Wu and
Chang (2007); that is, weekly trading tool capacity is effec-
tive in generating more profit. Compared to Wu and Chang
(2007), this research further increases the total profit by
using an optimal weighting vector in weekly trading.

The extraordinary outcome of the proposed approach
has two important implications. Firstly, it advocates the
use of multiple criteria in trading weekly capacity between
fabs. Secondly, a weekly performance evaluation of a
ch product Total profit Total output

P7M 1P3M 1P8M

28 787 554 209,535 2962
38 792 562 211,905 2993
45 799 558 213,195 3015
61 820 577 218,140 3082
48 816 574 217,705 3079
51 812 572 216,895 3066
59 823 581 218,725 3090
27 833 585 220,835 3130
55 808 568 216,160 3055
41 810 557 214,105 3033
69 689 488 186,100 2628

75 841 591 225,870 3195
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plot for the response.
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semiconductor fab may better be evaluated from three
perspectives—number of operations, number of layers,
number of wafers. Due to the long cycle time characteris-
tics of semiconductor manufacturing, managers in prac-
tice tend to evaluate a fab’s weekly performance by the
number of produced operations, and evaluate its quarterly
performance by the number of wafers produced. To align
the short-term (week) and relative long-term (quarter)
objectives, the weekly performance evaluation may need
a multiple criteria such as proposed.

5. Concluding remarks

This paper presents a method for determining an opti-
mal weighting vector [a*,b*,c*] for a multiple criteria deci-
sion on weekly trading tool capacity between two
semiconductor fabs. The three decision criteria involve
number of operations (O), number of layers (L) and num-
ber of wafers (W). That is, if the two fabs make weekly
trading decision by maximizing the aggregated output
a*O + b*L + c*W, their resulting long-term profits will
reach a maximum.

In the proposed method, we used the techniques of
NN + GA to obtain an optimal trading portfolio for each
week while the weighting vector [a,b,c] is given. The data
set for constructing a NN is generated by a deterministic
simulation program Det_Sim. The total profit in the case
of using a weighting vector [a,b,c] is estimated by a sto-
chastic simulation program Sto_Sim. Finally, the tech-
niques of DOE + RSM are used to find an optimal
weighting vector [a*,b*,c*], where a design point in the
DOE denotes a sampled weight vector.

In terms of total profit, experiments indicated that the
proposed multiple criteria approach outperformed the
previous study that uses only a single criterion—number
of operations. This finding has two important implica-
tions. Firstly, it advocates the use of multiple criteria in
trading tool capacity. Secondly, a weekly performance
evaluation of a semiconductor fab may better be evalu-
ated from three perspectives—number of operations,
number of layers, number of wafers. In practice, manag-
ers tend to evaluate a fab’s weekly performance by the
number of produced operations, and evaluate its quarterly
performance by the number of wafers produced. To align
the short-term (week) and long-term (quarter) objectives,
the weekly performance evaluation may need a multiple
criteria such as proposed.

Some possible enhancements of this research are being
investigated. Firstly, how to reduce the computation efforts
in evaluating the performance of a weighting vector, which
now takes about 5 h on 1 facility with 50 PCs. Secondly, we
attempt to justify whether the adoption of a smaller/longer
time bucket for making capacity trading decisions would
improve the total profits further. A smaller time bucket
may denote that a trading decision is made every 3 days,
while a longer time bucket may denote that a trading deci-
sion is made every 2 weeks.
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